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Abstract
Current optoelectronic technologies depend crucially on insulators and semiconductors, whose
response to photoexcitation at room temperature is largely dominated by bound electron-hole
pairs known as excitons. While the physics of excitons in regular materials are very well
understood, knowledge of their behavior in topological insulators is still severely limited.
These novel phases of matter are receiving much attention due to their excellent prospects for
energy-efficient electronics, (pseudo)spintronics devices and quantum-information processing.
Therefore, a full understanding of light-matter interactions in these materials requires the inves-
tigation of physical and topological properties of bulk excitons.

In this work, we analyze the topology and dispersion of bulk Wannier excitons in thin
nanosheets of bismuth selenide (Bi2Se3), a prototypical three-dimensional topological insulator.
We find that excitons inherit the topology of the underlying electronic band structure, quanti-
fied by the winding numbers of the constituent electron and hole pseudospins as a function
of the total exciton momentum. We also show that every s-wave exciton state consists of a
nonchiral doublet of degenerate states with quadratic dispersion for low momenta, as well as a
chiral doublet with one linear mode and one quadratic mode. We derive an effective model
for the chiral excitons and consider their topological properties. Furthermore, we analyze
the many-body screening due to the coherent surface states on the effective bulk electron-
hole interaction, and consider the effect of surface plasmons. Our study is backed up by self-
consistent numerical calculations and paints a complete picture of bulk excitons in quasi-two-
dimensional topological materials with a band inversion at the Γ point. This picture can now in
principle be used for the investigation of interactions between excitons themselves and other
excitations such as plasmons and photons.
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1
Introduction

In this work we will study excitons in a topological insulator. This will require familiarity with
the physics and mathematical treatment of these concepts. The purpose of this preliminary
chapter is precisely to provide the reader with the appropriate background. Several of the
concepts presented in this chapter will not be needed to a very deep extent. However, we
have chosen to provide some level of detail to put them into the wider context of the most
relevant literature. We begin by introducing some basic notions of the mathematical branch
of topology before moving on to the concept of a topological insulator. We then give some
physical examples of such systems and introduce the particular material we shall be concerned
with in the remainder of this thesis. Finally, we briefly discuss the concept of excitons and
introduce some basic terminology ubiquitous in the literature.

1.1 Topology in condensed matter

The mathematical branch of topology consists in the study of continuous deformations between
functions. Many of the physical phenomena that will be explored in this work can ultimately
be traced back to nontrivial topological properties of the system. Therefore, in this section we
present a brief summary of the main ideas behind this powerful tool. We will favor intuition
over rigor and closely follow the physically motivated exposition of Refs. [1, 2, Ch. 1]. A
thorough review of topological concepts in condensed-matter physics can be found in Ref. [3].

1.1.1 Homotopy

Let f , g : M → X be continuous functions between two topological spaces M and X. In the
context of condensed-matter physics, X is often called the order parameter space. A homotopy
between f and g is a continuous map H : M × [0, 1] → X such that H(x, 0) = f (x) and
H(x, 1) = g(x) for all x ∈ M. As a simple example let M = S1 in this section and assume
that the mappings start and end at the same base point x0 ∈ X, so that they constitute loops.
Then f and g are said to be homotopically equivalent if there exists a homotopy between them,
that is, if their respective loops can be continuously deformed into each other. We denote this
equivalence by f ∼ g. A map that is homotopic to the constant map x0 is called null-homotopic
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1.1. Topology in condensed matter

or topologically trivial. The corresponding loop can be continuously deformed to a point. Fig. 1.1
shows several examples of loops. Since homotopy is an equivalence relation, the set of loops
in X can be divided into disjoint homotopy classes. The equivalence class of f is denoted by [ f ]x0

(we will drop the subscript x0 when no confusion arises), and when f ∼ g their equivalence
classes are identical, [ f ] = [g]. The homotopy class of a null-homotopic map f is denoted by
[ f ] = [e], where e denotes the constant map x0.

x0

f

(a)

x0

f

(b)

[f ] = [e] [f ] �= [e]

x0

f

(c)

[f ] = [g]

x0

f

(d)

[f ] �= [g]

g g

x0

f

(e)

Pc([f ]) = [c ◦ f ◦ c−1]

y0c

c−1

Figure 1.1. Examples of homotopies. (a) A null-homotopic loop, which can be continuously deformed
to a point. The homotopy class of f then equals that of the constant map x0, [ f ] = [e]. (b) If the target
space has a “hole” (symbolized by a black point), there exist maps which cannot be deformed to x0 and
thus [ f ] 6= [e]. (c) Two homotopically equivalent maps, which can be continuously deformed into each
other and thus [ f ] = [g]. (d) If the target space has holes then there exist homotopically inequivalent
loops. (e) When the target space is path-connected, there exists a bijection between the sets of homotopy
classes of any two points x0, y0 ∈ X. It is defined via the map Pc([ f ]x0) = [c ◦ f ◦ c−1]y0 , where c is any
path between y0 and x0. Hence, there exists an isomorphism connecting the fundamental groups with
different base points, π1(X, x0) ∼= π1(X, y0). Figure adapted from Ref. [1].

Two maps with the same base point x0 can be concatenated to form a new loop f ◦ g. This
operation, in turn, defines a concatenation operation on homotopy classes via [ f ] ∗ [g] ≡ [ f ◦ g].
It is straightforward to show that with this operation the set of homotopy classes becomes a
group, denoted the first homotopy group or the fundamental group of X at x0 and denoted by
π1(X, x0). Suppose now that the target space is path-connected, i.e., there exists a continuous
path between any two points x0, y0 ∈ X. Then there exists a trivial isomorphism between
fundamental groups at different base points, π1(X, x0) ∼= π1(X, y0) for all x0, y0 ∈ X. This
isomorphism sends [ f ]x0 → [c ◦ f ◦ c−1]y0 , where c : X → X is any path from y0 to x0 [cf.
Fig. 1.1 (e)]. Hence, in the path-connected case we can simply talk about the fundamental
group π1(X).

What has been explained above for the case when the base manifold is S1 can be generalized
to maps between arbitrary topological spaces. It is not required to talk about loops in order to
define the homotopy classes of a given target space. Furthermore, the set of homotopy classes
of a map Sn → X always admits a group structure. The corresponding group πn(X) is called
the nth homotopy group of X. All groups πn(X) with n ≥ 2 are Abelian.

1.1.2 Winding numbers

We have now seen that mutually deformable mappings form equivalence classes. It is possible
to define a quantity that serves to identify individual classes. This quantity is called the degree
of the map f , deg f , or also the winding number w. Of course, this means that configurations
with different winding numbers cannot be continuously deformed into each other. It turns
out that the winding numbers provide a bijection of the homotopy classes into the integers, as
originally shown by Hopf. Two functions f and g are homotopically equivalent if and only if
deg f = deg g, and the mapping is topologically trivial when deg f = 0.

2



1.1. Topology in condensed matter

The most general expression for the winding number of f is given by

deg f =

�
M f ∗(Ω)�

X Ω
, (1.1)

where Ω is a differential n-form defined on the target manifold X of dimension n, and f ∗(Ω)
denotes its pullback by f onto the base manifold M of dimension m [3, Ch. 5, 4, Ch. 2]. For
concreteness consider the case X ∼= Sn and define local coordinates {xi}m

i=1 on M and {Xi}n
i=1

on X. In this case Ω is most conveniently chosen as the surface volume form with respect to
the metric induced from Rn+1. Explicitly,

Ω =
1
n!

εµ0µ1 ...µn Xµ0 dXµ1 ∧ · · · ∧ dXµn , (1.2)

because then dΩ = (n+ 1)ω with ω the standard volume form on Rn+1. It follows from Stokes’
theorem that

�
Sn Ω = (n + 1)

�
Bn+1 ω = (n + 1)Vn+1, where Bn+1 is an (n + 1)-dimensional unit

ball with boundary ∂Bn+1 = Sn and volume Vn+1. The pullback of Ω by f is

f ∗(Ω) =
1
n!

εµ0µ1...µn f µ0
∂ f µ1

∂xν1
. . .

∂ f µn

∂xνn
dxν1 ∧ · · · ∧ dxνn . (1.3)

Note that f µ is shorthand for (ψ ◦ f ◦ ϕ−1(x))µ, where ϕ : M → Rm and ψ : X → Rn are the
local coordinate maps on M and X, respectively.

Physically speaking, one of the most interesting scenarios arises when the base manifold
and the target manifold are m- and n-dimensional spheres, respectively. In the context of
magnetism, for instance, one often works with a magnetization field m(x) in real space which
can be mapped onto a sphere via stereographic projection1. Each point on the sphere is therefore
assigned a certain value of m. Furthermore, there are different possibilities for the allowed spin
orientations, i.e., for the spin-space dimensionality. Depending on the system, the spins may
be allowed to only take two values (up or down, as in the case of Ising spins), be confined to
a plane, or point in any direction in three-dimensional space. These correspond to X ∼= S0, S1,
and S2, respectively. Thus, if m is the dimensionality of the space occupied by the spins and n is
the dimensionality of the sphere traced by all their possible orientations, we are led to consider
maps f : Sm → Sn.

When the base and target manifolds have the same dimension n ≥ 1, the homotopy group
is simply

πn(Sn) ∼= Z , (1.4)

and thus Abelian. It follows that each homotopy class can be characterized by an integer. This
integer is nothing but the degree or winding number of the map, and it counts how many
times the base manifold is wrapped around the target manifold under the map. We note that
the case n = 0 is a slight exception to the above, and it is found that π0(S0) ∼= Z2. Also, in the
case 0 < m < n it is easy to see that πm(Sn) ∼= {e} (the trivial group), because any mapping
can be deformed to a point in the presence of an additional dimension in the target space. For
instance, a map f : S1 → S2 maps a circle onto a sphere, and one can always pull the circle
back to a point by dragging each of its points towards the north pole. Finally, the case m > n is
nontrivial and will not be considered here.

To give a concrete physical example we consider a magnetization texture, or skyrmion, ari-
sing from spherical spins. The target space is S2 and a point on the 2-sphere can be parametrized
as m = (m1, m2, m3) under the constraint |m| = 1. The base manifold M is two-dimensional
and can be parametrized by coordinates (x1, x2). These may refer to arbitrary curvilinear

1Note that this requires that the magnetization field assumes a constant value at infinity, because all points with
|x| → ∞ get mapped to the north pole of the sphere.
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1.1. Topology in condensed matter

coordinates such as, e.g., spherical (M ∼= S2), polar or Cartesian (M ∼= R2) coordinates. The S2

winding number then takes the form

wS2 =
1

8π

�
M

εabc ma ∂mb

∂xi
∂mc

∂xj dxi ∧ dxj =
1

4π

�
M

m ·
(

∂m
∂x1 × ∂m

∂x2

)
dx1 dx2 . (1.5)

If we use the usual representation m = (sin θ sin φ, sin θ cos φ, cos θ) in spherical coordinates,
then this becomes

wS2 =
1

4π

�
M

sin θ

(
∂θ

∂x1
∂φ

∂x2 − ∂θ

∂x2
∂φ

∂x1

)
dx1 dx2 . (1.6)

1.1.3 Topological robustness

We have now seen that skyrmions can be classified according to their winding number due
to the relation πn(Sn) ∼= Z. Textures with different winding numbers are not homotopically
equivalent and thus cannot be continuously deformed into each other. This introduces a natural
notion of topological stability or robustness in a magnetic system. Fig. 1.2 shows different trivial
and nontrivial skyrmion configurations. In an idealized case, a skyrmion with nonzero winding
number is impossible to disentangle to a topologically trivial state due to the need to surpass
an infinite energy barrier. In practice this barrier is not infinite due to the discreteness of the
lattice. Furthermore, the finiteness of experimental samples sometimes makes it possible to
inject or eject topological defects through the edges. For this reason, real skyrmions are not
entirely indestructible.1 Solitons in Real Space: Domain Walls, Vortices, Hedgehogs, and Skyrmions 15

=~

(a) (b)

(c) (d)

(e) (f)

Fig. 1.5 2π domain walls, skyrmions and merons (or vortices) as smooth, nonsingular topological
textures that owe their stability to the homotopy relations πn(Sn) = Z as exemplified by stereo-
graphic projection. a A 2π -domain wall in an easy-plane system wraps once around the unit circle
as one proceeds along the chain. b The uniform ferromagnetic state maps to a single point and hence
represents a topologically trivial state. c A hedgehog skyrmion in a 2D sample. The topological
stability is apparent when the 2D sample is projected to a sphere via stereographic projection while
maintaining the spin direction. A hedgehog skyrmion leads to a hedgehog defect on the sphere. The
topological stability of the skyrmion is a consequence of the relation π2(S2) = Z. d Upon stereo-
graphical projection, a Bloch-type skyrmion results in a hedgehog defect that has been ‘combed’
along the equator. This results from a continuous deformation of the hedgehog structure shown
in (c). Configurations (c) and (d) cannot be deformed into the uniform state shown in (b) without
violating continuity of the magnetization field on the sphere. This illustrates the topological stability
of skyrmions. e A hedgehog-type meron, often also described as a vortex (albeit with nonvanishing
coremagnetization), corresponds to half a skyrmionwhich is evident upon stereographic projection.
f A Bloch-type meron is topologically equivalent to the hedgehog-type meron shown in (d)

In this context it should also be noted that chirality itself is not caused by the
DMI as is sometimes argued in the literature. Chirality may emerge completely
spontaneously. In fact, it has been shown that already at the quantum level chirality
emerges due to solitons undergoing quantum fluctuations in a spin chain, an effect
that was observed via polarized neutron scattering [36]. Note that this emergence of
chirality is spontaneous and related to the double valuedness of a spin-1/2 wavefunc-
tion. It is thus fundamentally different from a chirality that arises due to an explicit
parity breaking DM-type interaction in the Hamiltonian which gives rise to spin
spirals observed in thin films [37, 38] (Fig. 1.6).

Skyrmions—We are now in a position to explain the topological stability of
skyrmions. For d = m = 2, i.e., isotropic spins on a 2D plane, (1.1) predicts
π2(S2) = Z, explaining the existence of (simple) skyrmions with winding num-
ber |wS2 | = 1 (cf. Fig. 1.5). As shown in Fig. 1.5c, stereographic projection (here

Figure 1.2. Examples of magnetization textures or skyrmions in a two-dimensional magnetic spin
system. (a) A magnetization texture with constant value at infinity can be mapped to a sphere via
stereographic projection, providing a means to observe the nontrivial winding of the skyrmion. (b) A
topologically trivial skyrmion configuration with zero winding number, for which all the spins on the
sphere point in the same direction. (c) A skyrmion with a winding number |wS2 | = 1 is such that the
spins wind once around the sphere when crossing the xy-plane in any direction. (d) Another skyrmion
with unit winding number, which is homotopically equivalent to that in (c). The skyrmions in (c) and
(d) are topologically distinct from the trivial magnetization texture in (b). Source: Ref. [2, Ch. 1].

Even though this notion of topological robustness is most easily understood for a magnetic
system, it can be readily generalized to many other areas of physics. In the problem of describ-
ing the band structure of a semiconductor at low energies, is often the case that a certain vector-
valued parameter formally plays the role of a magnetic field. For instance, one often encounters

4



1.2. Topological insulators

the Hamiltonian
H(k) = d(k) · σ , (1.7)

where the components of σ are the three Pauli matrices spanning the Lie algebra su(2). Often
1
2 σ describes the spin of a fermion, although the above Hamiltonian may also describe other
(more abstract) degrees of freedom. The vector d(k), with k the crystal momentum, plays the
role of a magnetic field coupling to these degrees of freedom. The topological properties of the
resulting eigenstates are then fully determined by d(k) and its potentially nontrivial winding
around the unit sphere. One subtlety here is that in an n-dimensional system the crystal
momentum does not lie on Sn or Rn. Rather, the space of all allowed momenta is isomorphic
to the torus Tn owing to the periodicity of the Brillouin zone. In this context, then, one is led to
consider the problem of finding the set of homotopy classes of maps T2 → X, with X a certain
classifying space. As we will see, identifying which classifying spaces are physically relevant
and finding the corresponding homotopy classes ultimately leads to an elegant classification of
fermionic condensed-matter systems.

1.2 Topological insulators

The quantum-mechanical band theory of solids developed in the 20th century provides a way
to describe the electronic structure of metallic and insulating states [5, 6]. The translational
symmetry of the crystal allows for the definition of a periodic Brillouin zone, a collection of
crystal momenta k according to which all physical states can be classified. The band structure
is described by a Bloch Hamiltonian H(k), whose eigenstates are the Bloch states |un(k)〉,
defined in a single unit cell. The corresponding eigenvalues En(k) define energy bands which
collectively make up the band structure of the crystal. An insulator is a system where the
filled valence bands and the empty conduction bands are separated by a nonzero energy gap
everywhere within the Brillouin zone. The simplest such state is the electrically inert atomic
insulator, in which electrons are bound to atoms in closed shells. Interaction between the atoms
leads to covalent bonding and a smaller energy gap, resulting in a semiconductor. Even though
an atomic insulator and a semiconductor differ in the details of their band structure, there
is a sense in which both can be regarded as the same phase. One can imagine tuning the
Hamiltonian so as to continuously interpolate between the two without closing the energy
gap at any point of the process. In this way one obtains a topological equivalence between
different insulating states. In this sense, then, all conventional insulators and semiconductors
are equivalent to each other and in fact equivalent to the vaccum of Dirac’s relativistic theory
of the electron.

The question that arises now is whether such a continuous deformation is always possible
between two arbitrary insulators. In other words, are all insulating states topologically equiva-
lent to the Dirac vacuum? The answer is no, and the counterexamples correspond to fascinating
states of matter known as topological insulators. A topological insulator is simply a state of
matter for which the deformation to the atomic insulator cannot be performed without closing
the energy gap somewhere in the Brillouin zone at some point of the process. In this section,
which closely follows the exposition of Refs. [7, 8], we give an introduction to the physics and
classification of these novel phases of matter.

1.2.1 Antiunitary symmetries

In order to better understand how to classify topological insulators one needs to be familiar
with some special symmetries that occur in condensed-matter systems. Here we give an over-
view of how these symmetries are realized in nonsuperconducting fermionic systems, which is
the relevant setting for our purposes.
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1.2. Topological insulators

Let {ψ̂I , ψ̂†
I }I=1,...,N be a set of fermionic creation and annihilation operators satisfying the

anticommutation relations
{ψ̂I , ψ̂†

J } = δI J . (1.8)

The indices I and J stand for all possible combinations of the degrees of freedom of the particles,
such as lattice site or spin. A general noninteracting fermion system is described by a second-
quantized Hamiltonian Ĥ. For a nonsuperconducting system, Ĥ is generically given by

Ĥ = HI Jψ̂
†
I ψ̂J = ψ̂†Hψ̂ . (1.9)

Note that in the last expression we use matrix notation, with ψ̂ being an N-component vector
and H an N × N matrix corresponding to the single-particle (i.e., first-quantized) Hamiltonian.

Consider a transformation of the creation and annihilation operators, ψ̂ → Û ψ̂ Û−1, with Û
some operator on the Fock-space. The transformation via Û corresponds to a symmetry of the
system if it preserves both the anticommutation relations and the Hamiltonian,

Û{ψ̂I , ψ̂†
J } Û−1 = {ψ̂I , ψ̂†

J } , (1.10a)

Û Ĥ Û−1 = Ĥ . (1.10b)

According to Wigner’s symmetry representation theorem, any symmetry transformation in
quantum mechanics can be represented on a Hilbert space by an operator that is either linear
and unitary, or antilinear and antiunitary. For our purposes we will be mainly interested in
analyzing all possible antiunitarily realized symmetries, i.e., those for which either the first- or
second-quantized operator is antiunitary. There are three possibilities, which are reviewed in
detail in Refs. [9, 10].

The first one is time-reversal symmetry. Time reversal acts on the many-body Hamiltonian
via an antiunitary operator T̂ . In first-quantized language, the symmetry is realized via an
antiunitary operator T that satisfies T HT−1 = H, that is, [H, T ] = 0. In the case of a Bloch
Hamiltonian H(k) = e−ik·r H eik·r, time reversal gives T H(k)T−1 = H(−k). Furthermore,
there are two possibilities for the square of the operator T , namely T2 = ±1. Summarizing,
there are three ways in which a Hamiltonian may respond to time-reversal symmetry. These
are classified by a number T that takes the following values:

T =


0, when the Hamiltonian is not time-reversal invariant,
+1, when the Hamiltonian is time-reversal invariant and T2 = +1,
−1, when the Hamiltonian is time-reversal invariant and T2 = −1.

(1.11)

The second such symmetry is particle-hole symmetry. It acts on the many-body Hamiltonian
through a unitary operator Ĉ, but in first-quantized language corresponds to an antiunitary
operator C such that CHC−1 = −H, i.e., {H, C} = 0. For a Bloch Hamiltonian, particle-hole
symmetry gives CH(k)C−1 = −H(−k). Again, the operator C may square to +1 or −1, so we
assign a number C that classifies the particle-hole character of the Hamiltonian:

C =


0, when the Hamiltonian is not particle-hole invariant,
+1, when the Hamiltonian is particle-hole invariant and C2 = +1,
−1, when the Hamiltonian is particle-hole invariant and C2 = −1.

(1.12)

The combination of T̂ and Ĉ may lead to a third symmetry, the so-called chiral or sublattice
symmetry. The corresponding operator on the Fock space is defined as Ŝ ≡ T̂ · Ĉ, which is
antiunitary. Chiral symmetry acts on the single-particle basis via a unitary operator S ≡ T · C
that satisfies SHS−1 = −H, so again {H, S} = 0. This corresponds to SH(k)S−1 = −H(−k)
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1.2. Topological insulators

for a Bloch Hamiltonian. Note that, even though S acts on H in the same way as C does, the
former is unitary whereas the latter is antiunitary. Unlike for the time-reversal and particle-hole
symmetries, the chiral operator always satisfies S2 = +1. The chiral character of H is given by
a number S as follows:

S =

{
0, when the Hamiltonian does not possess chiral symmetry,
1, when the Hamiltonian does possess chiral symmetry.

(1.13)

A system that breaks both time-reversal and particle-hole symmetry may still have chiral sym-
metry. However, when only one of T and C is broken, S = 0 necessarily. In other words,
whenever T 6= 0 or C 6= 0 the chiral character of the system is completely determined. However,
when T = C = 0, we have both possibilities for S. Counting all possible combinations of T,
C, and S gives a total of (3 × 3 − 1) + 2 = 10 distinct symmetry classes. These are given in
Table 1.1.

class T C S

A 0 0 0
AIII 0 0 1
AI + 0 0
BDI + + 1
D 0 + 0
DIII − + 1
AII − 0 0
CII − + 1
C 0 − 0
CI + − 1

Table 1.1. The ten symmetry classes according to the different possible realizations of antiunitarily
realized symmetries, namely: time reversal (T), particle-hole (C), and chiral symmetry (S). The plus and
minus signs below T and C stand for the square of the corresponding operators T and C, respectively.

1.2.2 The tenfold way

We have established that a topological insulator is a state of matter which cannot be deformed
to Dirac’s vacuum without closing the energy gap. However, it is still unclear how many
of these states there are, and how precisely they differ from the atomic insulator. Consider
an insulating lattice system in d dimensions possessing some of the antiunitary symmetries
described in the previous section, and no unitary symmetries2. The corresponding Hamiltonian
will then unambiguously belong to a single symmetry class. Continuous deformations of this
Hamiltonian will induce changes in the energy spectrum and the wave functions. However,
these changes will be adiabatic provided we never close the energy gap and preserve the original
antiunitary symmetries. We can now ask ourselves which Hamiltonians can be connected in
this way. This question can be answered with tools from topology.

Before we begin, the problem can be simplified as follows. The Bloch Hamiltonian satisfies

H(k)|ua(k)〉 = Ea(k)|ua(k)〉 , (1.14)

2In general, a system will possess some unitary symmetries such as rotational symmetry, parity symmetry, etc.
However, here we assume that we have gotten rid of these by block-diagonalizing the Hamiltonian in subspaces
of well-defined quantum numbers. We then focus on one of these individual blocks, whose remaining symmetries
can only be antiunitary.

7



1.2. Topological insulators

where a denotes the band index and k is the d-dimensional crystal momentum living in the first
Brillouin zone, BZd ∼= Td. We consider the case of a ground state with n filled and m empty
bands. Since we are interested in topological properties of the system, we may continuously
deform the Hamiltonian into a simplified form where all filled bands have energy E = −1 and
all empty bands have energy E = +1. We denote this simplified Hamiltonian by Q(k). All
topological properties will remain unchanged by this continuous deformation.

To illustrate the role of topology in this problem we consider the simplest possible case,
namely a system possessing no symmetry conditions at all. This corresponds to class A in
Table 1.1. The simplified Hamiltonian can be written in the following form:

Q(k) = U(k)ΛU(k)† , where Λ =

[
Im 0
0 −In

]
. (1.15)

Here, In denotes the n × n identity matrix. The matrix Λ contains the eigenvalues and U(k)† ∈
U(m + n) is the unitary matrix of eigenvectors that diagonalizes Q(k). Consider a case where
U(k) is of the form

U(k) =

[
Um(k) 0

0 Un(k)

]
, (1.16)

with Um(k) ∈ U(m) and Un(k) ∈ U(n). In this case, Q(k) = Λ and the simplified Hamiltonian
remains invariant with respect to the case when U(k) = Im+n. There are no other instances in
which Q(k) remains unchanged. Therefore, the matrix U(k) can be regarded as an element of
the coset space U(m + n)/(U(m)×U(n)). Hence, every ground state of Q(k) can be described
by the map

U : BZd → U(m + n)/(U(m)× U(n))
k 7→ U(k) .

(1.17)

Every such map describes a ground state, that is, a Fermi sea of occupied states. We now ask
ourselves how many distinct ground states of this kind there are, i.e., how many such maps
exist that cannot be continuously deformed into each other. For the moment, let us assume for
simplicity that the Brillouin zone is not a torus, but a d-dimensional sphere. In this case, we
know from Sec. 1.1 that the answer is given by the homotopy group πd(U(m + n)/(U(m) ×
U(n))), which is known. For instance, when the spatial dimension is d = 2, one obtains
π2(U(m + n)/(U(m)× U(n))) ∼= Z. This means that for every integer there is a ground state,
and ground states which are assigned different integers cannot be continuously deformed into
each other without closing the energy gap of the bulk Hamiltonian H(k). In three dimensions,
one finds π3(U(m+ n)/(U(m)×U(n))) ∼= {e}, so the homotopy group is trivial and all ground
states are homotopically equivalent.

We have now seen how to classify the topologically inequivalent Hamiltonians in symmetry
class A when the crystal momentum is taken to live on a sphere. In order to obtain a true
physical classification, one ought to consider the Brillouin zone as a torus. The answer is
then not given by a homotopy group, but rather by its generalization to maps from Td to the
appropriate classifying space. For the rest of the symmetry classes, the procedure follows in the
same vein. The symmetries impose certain constraints on the form of the Hamiltonian, which
in turn determine the corresponding classifying space. Once the correct classifying space has
been found, topologically distinct ground states are identified via the homotopy classes of the
maps from the Brillouin zone to this space. In this way, topological phases are viewed as
the homotopy classes of continuous families of gapped Hamiltonians. This program has been
carried out for all topological insulators and semiconductors of noninteracting fermions. Three
entirely different approaches have been used, namely (i) Anderson localization by Schnyder,
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1.2. Topological insulators

Ryu, Furusaki, and Ludwig [11–13], (ii) K-theory by Kitaev [14], and (iii) quantum anomalies by
Ryu, Moore, and Ludwig [15]. While the first two are only applicable to noninteracting systems,
the classifying principle based on quantum anomalies extends to interacting theories. In this
section we are mainly concerned with the noninteracting case. The resulting classification is
shown in Table 1.2 and takes the form of a periodic table for topological insulators, commonly
called the tenfold way. Given one of the ten symmetry classes and the dimensionality of space,
one can readily identify whether this setting admits distinct topological phases and the kind of
topological invariant that characterizes them. For d ≥ 8, the table loops back starting from the
first column, a phenomenon known as Bott periodicity.

Now that we have the tools to know which kinds of systems should host nontrivial topologi-
cal phases, we are in position to briefly review two important physical examples of such states
of matter. We begin with the quantum Hall effect in the following section and then proceed to
discuss the quantum spin Hall effect.

class symmetry dimension
T C S 0 1 2 3 4 5 6 7

A 0 0 0 Z 0 Z 0 Z 0 Z 0
AIII 0 0 1 0 Z 0 Z 0 Z 0 Z

AI + 0 0 Z 0 0 0 2Z 0 Z2 Z2

BDI + + 1 Z2 Z 0 0 0 2Z 0 Z2

D 0 + 0 Z2 Z2 Z 0 0 0 2Z 0
DIII − + 1 0 Z2 Z2 Z 0 0 0 2Z

AII − 0 0 2Z 0 Z2 Z2 Z 0 0 0
CII − − 1 0 2Z 0 Z2 Z2 Z 0 0
C 0 − 0 0 0 2Z 0 Z2 Z2 Z 0
CI + − 1 0 0 0 2Z 0 Z2 Z2 Z

Table 1.2. Classification of topological insulators or “tenfold way”. All gapped fermionic Hamiltonians
are classified according to their antiunitary symmetries and the dimensionality of space. The symbols
Z, 2Z, and Z2 denote the kind of topological invariant that labels the distinct topological phases in
a particular setting. A zero corresponds to the situation in which there are no nontrivial topological
invariants, that is, all gapped Hamiltonians are homotopically equivalent to each other.

1.2.3 The quantum Hall effect

The simplest setup in which topology plays a crucial role in a condensed-matter system is that
giving rise to the integer quantum Hall effect (IQHE), which we present in this section. The effect
is extensively discussed in Refs. [16, Chs. 1–4, 17, Chs. 1–3]. We assume that the reader is
familiar with the classical Hall effect, discovered in 1879 by Edwin Hall [18].

The IQHE can be observed in a setup such as that of Fig. 1.3 and was first discovered in
1980 by von Klitzing, Dorda, and Pepper [20, 21]. The setup is identical to that of its classical
counterpart, with the difference that the IQHE is observed at low temperatures for strong
values of the magnetic field B. We recall that the classical Drude model gives ρxx = m/ne2τ
and ρxy = B/ne for the longitudinal and transverse conductivities, respectively. Here, τ is the
scattering time (average time between electron collisions) and n is the electron density. While
this holds for small magnetic fields, the IQHE is characterized by a deviation of this law for
higher values of B. In the IQHE regime one finds that the transverse resistivity exhibits plateaux
and the longitudinal resistivity vanishes whenever ρxy remains constant, as explained in the
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Figure 1.3. The integer quantum Hall effect. (a) Experimental setup for the observation of the IQHE.
A semiconducting sample of length L and width W is crossed by an electric current of magnitude I
in the x-direction. When turning on a magnetic field of magnitude B perpendicular to the sample, a
measurable potential difference VH appears in the y-direction. Classically, this is attributed to the fact
that electrons deviate from their straight trajectories due to a nonvanishing Lorentz force, causing a
net accumulation of charge at both sides of the sample. The associated transverse resistance, or Hall
resistance, is RH = VH/W and is equal to the transverse resistivity in this geometry. (b) Longitudinal
and transverse resistances (Rxx and Rxy = RH, respectively) as a function of the magnetic field. For
small B, the longitudinal resistance remains constant and the transverse resistance grows linearly, which
corresponds to a classical Hall effect. Increasing the magnetic field causes the Hall resistance to increase
in discrete multiples of h/e2 at certain values of B. More precisely, RH = h

e2
1
ν , where ν is an integer. The

longitudinal resistivity shows a sharp peak at each of these sudden increases. In between these values
of the magnetic field, RH remains constant and the profile shows a series of plateaux with vanishing
longitudinal resistivity. Source: Ref. [19].

caption of Fig. 1.3. At each of these plateaux, the transverse conductivity has the value

ρxy =
h
e2

1
ν

, with ν ∈ Z . (1.18)

Here, h is Planck’s constant and −e is the charge of the electron. In the limit τ → ∞, which is
valid for pure enough samples, the conductivity is simply σxy = ρ−1

xy . The quantization of σxy

has been measured to one part in 109 [22].

It is now well known that the IQHE is a consequence of the quantum-mechanical behavior
of a noninteracting electron gas in a magnetic field in combination with disorder arising from
impurities, as originally shown by Laughlin [23]. The bulk of the sample mostly contains
localized states bound to the impurities, while the edges are perfectly conducting thanks to the
presence of extended states. These edge states are chiral: they propagate in only one direction
along the boundary of the sample, either clockwise or counterclockwise. The corresponding
dispersion relation is gapless and forms a conduit between the valence and conduction bands,
as seen in Fig. 1.4 (a). While a detailed understanding of the physical origin of the IQHE is not
necessary for our subsequent discussion, we want to draw attention to the following expression
for the quantization of the conductivity, first derived by Thouless, Kohmoto, Nightingale, and
den Nijs (TKNN) via the Kubo formula [24]:

σxy =
e2

h

N

∑
n=1

Cn . (1.19)

The sum runs over all N filled bands, and for each of these Cn ∈ Z is an integer called the
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1.2. Topological insulators

TKNN invariant or the (first) Chern number. It has the following expression in terms of the Bloch
state |unk〉 of the nth occupied band3:

Cn = − i
2π

�
BZ

dkx dky

(〈
∂unk

∂kx

∣∣∣∣∂unk

∂ky

〉
−
〈

∂unk

∂ky

∣∣∣∣∂unk

∂kx

〉)
. (1.20)

The key point is that the Chern number is actually a topological invariant. This explains the
robustness of the quantum Hall state and the extremely accurate quantization of σxy. It must
be noted that the Chern number of a single band is only defined when there are no accidental
degeneracies with other bands, but the sum over all occupied bands is well-defined even in
the presence of such degeneracies. An integer quantum Hall system belongs to class A in
the classification of topological insulators of Table 1.2. Therefore, the above Chern number is
precisely the topological invariant characterizing the different phases in this symmetry class in
two dimensions. Similarly, the table immediately reveals that there should be no quantum Hall
response in 3D, which is a well-known result.

In 1988, a toy model for a quantum Hall effect without magnetic field was devised by
Haldane [27]. The Haldane model is defined on a honeycomb lattice and its crucial feature
is a second-nearest-neighbor hopping that breaks time-reversal symmetry. In this way it was
first established that the quantum Hall effect is not necessarily a consequence of an external
magnetic field, but can rather be placed in a wider context of phenomena associated with
broken time-reversal symmetry.

1.2.4 The quantum spin Hall effect

We now move on to the quantum spin Hall effect (QSHE), which was first introduced in 2005
in a seminal paper by Kane and Mele [28]. Their original model uses graphene, consisting
of a honeycomb lattice of carbon atoms with two sublattices A and B. The Brillouin zone is
hexagonal with the states near the Fermi energy residing near the K and K′ points (or valleys)
at opposite corners. The Hamiltonian describing the QSH system is given by

H(k) = H0(k) + HSO(k) , (1.21)

where

H0(k) = −ivF(σxτzkx + σyky) , (1.22a)
HSO(k) = ∆SO σzτzsz . (1.22b)

Here, the Pauli matrices σi act on the two sublattices of graphene, the τi act on the two valleys,
and the si act on the spin degree of freedom. More precisely, σz = +1 (−1) describes states
on the A (B) sublattice, τz = +1 (−1) describes states at the K (K′) point, and sz = +1
(−1) describes states with up (down) spin. Note that Kronecker products are understood
everywhere. The term H0(k) describes the effective-mass approximation valid near the two
valleys, whereas HSO(k) describes the spin-orbit interaction. The parameter vF is called the
Fermi velocity, since it gives the group velocity of the gapless states described by H0(k) with
dispersion ε0(k) = ±vF|k|. The spin-orbit term leads to a gap 2|∆SO|, and the dispersions of
the total Hamiltonian are given by ε(k) = ±

√
v2

F|k|2 + ∆2
SO.

3Technically speaking, generators of translations do not commute with one another in the presence of a magnetic
field and one cannot directly apply Bloch’s theorem. However, one can define a “magnetic lattice” where each
unit cell has area hc/eB and encloses a single flux quantum, in such a way that lattice translations commute.
Bloch’s theorem is then restored and one can write the eigenstates in terms of magnetic Bloch functions with crystal
momentum k. More information on this point can be found in Refs. [25, 26].
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It is straightforward to verify that the following operators implement the time-reversal and
particle-hole symmetries, respectively:

T = iτxsyK , with T2 = −1, (1.23a)

C = τxσzK , with C2 = +1. (1.23b)

Here, K denotes the complex conjugation operator, that is, K iK−1 = −i and K2 = 1. If we do
not allow for perturbations that break these symmetries, the model has T = −1 and C = +1,
and thus S = 1. It therefore belongs to the symmetry class DIII in Table 1.2. The corresponding
topological invariant in 2D is denoted by ν and is either 0 or 1, i.e., ν ∈ Z2. In addition to
these antiunitary symmetries, the model also has inversion symmetry. Because of this, the
topological invariant can be determined as the product of parities of the Bloch functions of all
occupied bands at the four time-reversal-invariant momenta (TRIM) [29, 30]:

(−1)ν =
4

∏
i=1

δi , where δi =
N

∏
m=1

ξ2m(Γi) . (1.24)

Here, ξ2m(Γi) is the parity eigenvalue of the 2mth occupied band at the TRIM Γi. It shares the
same eigenvalue with its degenerate time-reversed partner arising from the famous Kramers
theorem, which states that every energy level of a time-reversal-symmetric system with half-
integer spin is at least doubly degenerate [31, 32]. The above expression for ν can be cast into
the following form involving the Pfaffian of a matrix W :

(−1)ν =
4

∏
i=1

Pf [W(Γi)]√
det [W(Γi)]

, with Wαβ(k) = 〈uα(−k)|T |uβ(k)〉 . (1.25)

The system presented by Kane and Mele once again hosts edge states. Unlike the chiral
edge states of the QHE, however, the QSHE is characterized by the appearance of helical edge
states. In this scenario there are states propagating in both directions at each edge, and these
are “spin-filtered”, that is, electrons with opposite spin propagate in opposite directions. This
phenomenon is known by the name of spin-momentum locking and is illustrated in Fig. 1.4 (b).
The topological invariant ν counts the parity of the number of Kramers pairs of states at each
edge [33, 34]. A nontrivial QSH phase is characterized by an odd number of such pairs.

It is worth mentioning that the parameter ∆SO in graphene is far too small to actually
observe a QSH phase. However, almost immediately after the publication of Kane and Mele’s
paper, Bernevig, Hughes, and Zhang showed that a QSH state could be realized in HgTe–CdTe
quantum wells [35]. A detailed review on theoretical and experimental aspects of the QSHE
can be found in Ref. [36].

1.2.5 The bulk-boundary correspondence

The existence of edge states at the boundary of a topological insulator follows from to the so-
called bulk-boundary correspondence. While we will not go into much detail, this fundamental
principle relates a nontrivial topological property of the bulk with a physical observable at the
boundary. For instance, the absolute value of the Chern number in the QHE gives the number
of edge states that propagate along the edges of the sample. Physically, it is easy to realize that
something special must happen at the boundary between two topologically distinct phases. The
different topological invariants force the wave function to acquire a “twist” when crossing the
boundary between the two samples. The physical realization of this twist turns out to come in
the form of localized edge states. More information on the bulk-boundary correspondence can
be found in Refs. [37, 38].
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Figure 1.4. Comparison of the quantum Hall and quantum spin Hall effects. (a) In the QHE, chiral
electronic edge states move along the edges of the sample. This motion can be classically understood in
the sense of “skipping orbits”, depicted in black: the Lorentz force causes electrons to move in circles,
but those that are close to the edges cannot complete a full circular motion and skip forward instead.
The band diagram shows the dispersion relation of the chiral state at the top edge of the sample, which
crosses the gap between the bulk valence and conduction bands. (b) In the QSHE, there is no net charge
transport along the edges. The edge states are not chiral, but helical: up- and down-spin electrons
(depicted in blue and red, respectively) move in opposite directions along the edge, producing a net
spin transport. Again, the band diagram shows the dispersion of the helical states propagating along
the top edge of the sample. Both bands cross the energy gap in opposite directions, in accord with the
opposite group velocities of the corresponding electrons.

1.2.6 The role of interactions

So far, our exposition of topological insulators has not included many-body interactions of
any kind. In this simplified case, the classification of fermionic topological phases is very well
understood. However, a lot can be asked about topological phenomena in interacting systems.
First and foremost, it is natural to wonder if the free-fermion topological phases are stable
under the inclusion of interactions. Another interesting question is if there are generalizations
of topological insulators without a free-fermion analog. More generally, one is led to ask how
the free-fermion classification of Table 1.2 is altered in strongly correlated systems.

Noninteracting topological insulators and superconductors are commonly studied via the
formalism of topological band theory [33, 39], which is not suited for the analysis of interacting
systems. For this reason, Qi, Hughes, and Zhang first developed a topological field theory of
time-reversal invariant insulators, which is also apt for the study of interactions [40]. Another
powerful approach to the classification of correlated topological phases is based on quantum
anomalies, the phenomenon by which a classical global or gauge symmetry is lost in the quanti-
zation process [15, 41–43]. It is now known, for instance, that in 3D the classification of class
DIII collapses from Z to Z16 when interactions are added, and similar collapses have been
found in classes AIII and CI in three dimensions [44]. These reductions to smaller groups make
sense if we take into account that adding interactions will in general influence the energy gap.
In this way, two phases that were previously topologically inequivalent may now be connected
without closing the gap, which is kept finite thanks to interaction effects.

In particular, the stability of a quantum spin Hall phase in the presence of interactions
has been addressed in Refs. [45–47]. These articles consider the effect of weak disorder and
interactions on the edge modes of a QSH state. All studies agree that in a QSH system with
a nontrivial Z2 topological invariant, the edge states are robust against these perturbations.
However, the topological distinction between phases with an even or odd number of Kramers
pairs seems to disappear in the presence of strong interactions.
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1.3 Berry physics

The Chern number we have introduced in Eq. (1.20) is rooted in the mathematical theory of
fiber bundles [3]. However, it can be understood physically in terms of the Berry phase [48]. An
in-depth review of the topic can be found in Refs. [2, Ch. 6, 49, 50, Ch. 3]; here we outline the
main ideas.

1.3.1 Adiabatic evolution of a quantum system

Consider a physical system described by a Hamiltonian that depends on time through a set of
parameters R = (R1, R2, . . . ), that is, H(t) = H(R(t)). We let the system evolve adiabatically in
time as R(t) slowly moves along a path P through parameter space. It is useful to introduce an
instantaneous orthonormal basis of eigenstates |un(R)〉, that is, H(R)|un(R)〉 = εn(R)|un(R)〉.
Note that this alone does not completely determine the basis functions, as we can always make
a gauge transformation by multiplying |un(R)〉 by some R-dependent phase. We require that
this phase is smooth and single-valued along P .

According to the quantum adiabatic theorem [51], a system initially in one of its eigenstates
|un(R(0))〉 will remain as an eigenstate of the Hamiltonian H(R(t)) throughout the evolution.
This holds when the eigenstate in question does not become degenerate with another eigenstate
at some point of the process, which will be assumed to be the case. The only degree of freedom
is therefore the phase of the quantum state. We write the state at time t as

|ψn(t)〉 = e−iγn(t) exp
[
−i

� t

0
dt′ εn(R(t′))

]
|un(R(t))〉 . (1.26)

The second exponential is just the dynamical phase factor, but there may be an additional
contribution γn(t). Inserting this expression for |ψn(t)〉 into the time-dependent Schrödinger
equation, one finds that this extra phase can be expressed as a path integral in parameter space
as follows:

γn =

�
P

dR ·An(R) . (1.27)

Here, An(R) is the so-called the Berry connection, which is the vector-valued function

An(R) = −i 〈un(R)|∇R|un(R)〉 . (1.28)

The Berry connection is gauge-dependent. Indeed, under a gauge transformation

|un(R)〉 → eiζ(R)|un(R)〉 , (1.29)

with ζ(R) an arbitrary smooth function, An(R) transforms as

An(R) → An(R) +∇R ζ(R) . (1.30)

Let us now consider a cyclic evolution, with the system returning to the original parameter-
space point at time T, that is, R(T) = R(0). The requirement that eiζ(R) be single-valued implies
that any gauge transformation must be subject to the constraint ζ(R(T))− ζ(R(0)) ∈ 2πZ. It
follows that the phase γn can only be changed by an integer multiple of 2π and can in general
not be fully removed. Thus, for a closed path, γn becomes a quantity which is gauge-invariant
modulo 2π. This quantity is known as the Berry phase:

γn =

�
P

dR ·An(R) . (1.31)

It is clear from this definition that the Berry phase only depends on the geometric aspect of
the closed path. It is independent of how R(t) varies in time as long as the evolution is slow
enough for the adiabatic theorem to apply. Hence, the explicit time dependence is not essential
in our subsequent discussion and will be dropped henceforth.
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1.3. Berry physics

1.3.2 The Berry curvature

In analogy with electrodynamics, one can define a gauge-field tensor derived from the Berry
connection:

Ωn
µν(R) =

∂

∂Rµ
An

ν(R)− ∂

∂Rν
An

µ(R) = −i
(〈

∂un

∂Rµ

∣∣∣∣ ∂un

∂Rν

〉
−
〈

∂un

∂Rν

∣∣∣∣ ∂un

∂Rµ

〉)
. (1.32)

This field is called the Berry curvature, and it is manifestly gauge-invariant under (1.30). If the
parameter space can be regarded as three-dimensional, one can represent the Berry curvature
as a three-vector Ωn(R) = ∇R ×An(R) such that Ωn

ij = εijk Ωn
k .

Using the generalized Stokes theorem, the Berry phase (1.31) can now be written as the
surface integral

γn =
1
2

�
S

dRµ ∧ dRν Ωn
µν(R) , (1.33)

where S is an arbitrary surface bounded by the path P . Before moving on, let us comment
on a potentially puzzling aspect of gauge invariance regarding Eqs. (1.31) and (1.33). As we
have said, the first of these equations is only gauge-invariant modulo 2π. However, the Berry
curvature is fully gauge-invariant, and thus so is the Berry phase as expressed in Eq. (1.33). We
are forced to ask whether γn is fully gauge-invariant or not. The answer is that, if γn is to be
determined with knowledge of |un(R)〉 only on the curve P , then it is only well-defined modulo
2π. The Berry phase determined from Eq. (1.31) will then agree with that of Eq. (1.33) only
for a particular choice of gauge, while other choices will leave a mismatch of 2πm, with m an
integer. The question now is which gauge choice is “correct”. The solution is to choose a gauge
transformation that is smooth and continuous everywhere in S (including its boundary P). In
this case both equations will agree. By contrast, a gauge that shifts γn by an integer multiple
of 2π when regarding |un(R)〉 as a function defined only in the neighborhood of P cannot be
smoothly continued into all the interior of S. Indeed, in such a case one is forced to introduce
vortex-like singularities which technically do not allow for the application of Stokes’ theorem
to go from (1.31) to (1.33).

Note that so far we have only discussed the case where a single energy level can be separated
from the rest at all points of the adiabatic evolution. However, when there exist accidental
degeneracies between levels, the dynamics must be projected to the subspace spanned by the
corresponding eigenstates. In this situation a non-Abelian Berry curvature arises [52]. We will
not need to be concerned with this issue in the rest of this work.

1.3.3 The Chern theorem

We have seen that the Berry phase is fully gauge-invariant when computed as the integral of
the Berry curvature over the manifold S. It turns out that this phase is quantized in integer
multiples of 2π; this result is the famous Chern theorem. The corresponding integer, which
we denote by Cn for the eigenstate |un(R)〉, is called the Chern number or Chern index. It is
a topological invariant attached to the manifold of states |un(R)〉 defined over the surface S.
Therefore, manifolds with different Chern numbers are homotopically inequivalent.

In this thesis we will mostly be concerned with two-dimensional materials. A natural
candidate for the parameter space in this case is therefore the two-dimensional Brillouin zone
of crystal momenta k. Knowledge of the band structure of the system under consideration
allows us to compute the Chern number of individual bands, which reads

Cn =
1

2π

�
BZ

d2k Ωn
xy(k) . (1.34)
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1.4. Bi2Se3 as a topological insulator

Note that this is precisely the result of Eq. (1.20) for the quantization of the Hall conductivity.
A Bloch state |un(k)〉 with a given Chern number cannot be topologically equivalent to a Bloch
state with a different Chern number. In particular, Bloch states with a nonzero Chern number
cannot be equivalent to a state in the Dirac vacuum. Hence, the Chern number provides us with
a way to probe whether or not a given Hamiltonian describes a topological insulator.

1.4 Bi2Se3 as a topological insulator

In this section we introduce bismuth selenide (Bi2Se3), a transition metal chalcogenide that
turns out to be a topological insulator. We closely follow Refs. [53, 54] to provide an overview of
the physical phenomena that ultimately lead to the nontrivial bulk topology of this material.

1.4.1 Crystal structure, symmetries, and energy bands

The topological properties of Bi2Se3 can be understood from the interactions between the outer-
most electrons at the atomic sites of the crystal. To see which ones are most relevant, one must
take into account the crystalline structure of the material.

ARTICLES
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Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3
with a single Dirac cone on the surface
Haijun Zhang1, Chao-Xing Liu2, Xiao-Liang Qi3, Xi Dai1, Zhong Fang1 and Shou-Cheng Zhang3*
Topological insulators are new states of quantum matter in which surface states residing in the bulk insulating gap of such
systems are protected by time-reversal symmetry. The study of such states was originally inspired by the robustness to
scattering of conducting edge states in quantum Hall systems. Recently, such analogies have resulted in the discovery of
topologically protected states in two-dimensional and three-dimensional band insulators with large spin–orbit coupling. So
far, the only known three-dimensional topological insulator is BixSb1−x, which is an alloy with complex surface states. Here, we
present the results of first-principles electronic structure calculations of the layered, stoichiometric crystals Sb2Te3, Sb2Se3,
Bi2Te3 and Bi2Se3. Our calculations predict that Sb2Te3, Bi2Te3 and Bi2Se3 are topological insulators, whereas Sb2Se3 is not.
These topological insulators have robust and simple surface states consisting of a single Dirac cone at the 0 point. In addition,
we predict that Bi2Se3 has a topologically non-trivial energy gap of 0.3 eV, which is larger than the energy scale of room
temperature. We further present a simple and unified continuum model that captures the salient topological features of this
class of materials.

Recently, the subject of time-reversal-invariant topological
insulators has attracted great attention in condensed-matter
physics1–12. Topological insulators in two or three dimensions

have insulating energy gaps in the bulk, and gapless edge or
surface states on the sample boundary that are protected by
time-reversal symmetry. The surface states of a three-dimensional
(3D) topological insulator consist of an odd number of massless
Dirac cones, with a single Dirac cone being the simplest case.
The existence of an odd number of massless Dirac cones on the
surface is ensured by the Z2 topological invariant7–9 of the bulk.
Furthermore, owing to the Kramers theorem, no time-reversal-
invariant perturbation can open up an insulating gap at the Dirac
point on the surface. However, a topological insulator can become
fully insulating both in the bulk and on the surface if a time-
reversal-breaking perturbation is introduced on the surface. In
this case, the electromagnetic response of three-dimensional (3D)
topological insulators is described by the topological θ term of
the form Sθ = (θ/2π)(α/2π)

∫
d3x dt E ·B, where E and B are

the conventional electromagnetic fields and α is the fine-structure
constant10. θ = 0 describes a conventional insulator, whereas θ =π
describes topological insulators. Such a physically measurable and
topologically non-trivial response originates from the odd number
of Dirac fermions on the surface of a topological insulator.

Soon after the theoretical prediction5, the 2D topological
insulator exhibiting the quantum spin Hall effect was experimen-
tally observed in HgTe quantum wells6. The electronic states of the
2D HgTe quantum wells are well described by a 2+1-dimensional
Dirac equation where the mass term is continuously tunable by
the thickness of the quantum well. Beyond a critical thickness,
the Dirac mass term of the 2D quantum well changes sign from
being positive to negative, and a pair of gapless helical edge states
appears inside the bulk energy gap. This microscopic mechanism
for obtaining topological insulators by inverting the bulk Dirac
gap spectrum can also be generalized to other 2D and 3D sys-
tems. The guiding principle is to search for insulators where the

1Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China, 2Center for
Advanced Study, Tsinghua University, Beijing 100084, China, 3Department of Physics, McCullough Building, Stanford University, Stanford, California
94305-4045, USA. *e-mail: sczhang@stanford.edu.
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Figure 1 | Crystal structure. a, Crystal structure of Bi2Se3 with three
primitive lattice vectors denoted as t1,2,3. A quintuple layer with
Se1–Bi1–Se2–Bi1′–Se1′ is indicated by the red square. b, Top view along
the z-direction. The triangle lattice in one quintuple layer has three different
positions, denoted as A, B and C. c, Side view of the quintuple layer
structure. Along the z-direction, the stacking order of Se and Bi atomic
layers is ···–C(Se1′)–A(Se1)–B(Bi1)–C(Se2)–A(Bi1′)–B(Se1′)–C(Se1)–···.
The Se1 (Bi1) layer can be related to the Se1′ (Bi1′) layer by an inversion
operation in which the Se2 atoms have the role of inversion centres.

conduction and the valence bands have the opposite parity, and
a ‘band inversion’ occurs when the strength of some parameter,
say the spin–orbit coupling (SOC), is tuned. For systems with
inversion symmetry, a method based on the parity eigenvalues of
band states at time-reversal-invariant points can be applied13. On
the basis of this analysis, the BixSb1−x alloy has been predicted
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© 2009 Macmillan Publishers Limited.  All rights reserved. 

Figure 1.5. (a) Crystal structure of Bi2Se3, with primitive lattice vectors t1, t2, and t3. A rhombohedral
unit cell is shown, delimited by black arrows. (b) Projection of the triangle lattice on the xy-plane, with
three possible positions A, B, and C. (c) Side view of the quintuple-layer structure. The stacking order of
Se and Bi layers along the z-direction is · · · –C(Se1′)–A(Se1)–B(Bi1)–C(Se2)–A(Bi1′)–B(Se1′)–C(Se1)–· · · .
Source: Ref. [53].

The crystal structure of Bi2Se3 is rhombohedral. As shown in Fig. 1.5 (a), the crystal has
a layered structure stacked along the z-direction, and one unit cell contains two bismuth (Bi)
atoms and three selenium (Se) atoms. The crystal has inversion symmetry along the z-axis,
which makes the Bi atoms equivalent to each other, and similarly for two of the Se atoms. We
denote these by Bi1 and Bi1′, and by Se1 and Se1′, respectively. The remaining Se atom, which
we call Se2, is located between the two Bi atoms and is inequivalent to Se1 and Se1′. Five atomic
layers can be viewed as one unit, which is usually called a quintuple layer (QL), and consists of
the stack Se1–Bi1–Se2–Bi1′–Se1′. Each atomic layer forms a triangle lattice with three possible
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1.4. Bi2Se3 as a topological insulator

positions with respect to the z-axis, denoted as A, B, and C, as shown in Fig. 1.5 (b). These
layers are stacked in the order · · · –A–B–C–A–B–C–· · · along the z-direction. Hence, if in a
given layer the A sites are occupied by Se2 atoms, then in the following layer the Se2 atoms
will occupy either the B or C sites, but not the A sites. This implies that none of the primitive
vectors is directed along the z-axis. Our coordinate system is shown in Fig. 1.5 (c), and the
primitive vectors are given by

t1 =
(
0,
√

3a/3, c/3
)

, (1.35a)

t2 =
(
−a/2,−

√
3a/6, c/3

)
, (1.35b)

t3 =
(
a/2,−

√
3a/6, c/3

)
. (1.35c)

Here, a is the lattice constant in the xy-plane and c is the lattice constant along the z-direction.

The Bi2Se3 crystal has the following spatial symmetries:

(1) Three-fold rotation symmetry around the z-axis, R3. It is given by the transformation
(x, y, z) 7→ (x cos θ − y sin θ, x sin θ + y cos θ, z), with θ = 2π/3, which sends t1 7→ t2,
t2 7→ t3 and t3 7→ t1.

(2) Two-fold rotation along the x-direction, R2. It is given by the transformation (x, y, z) 7→
(x,−y,−z) along with the exchanges Bi1 ↔ Bi1′ and Se1 ↔ Se1′.

(3) Inversion, P. It is given by the transformation (x, y, z) 7→ (−x,−y,−z) along with the
exchanges Bi1 ↔ Bi1′ and Se1 ↔ Se1′. The Se2 site plays the role of an inversion center
of this lattice structure, so it is customary to choose it as the origin point.

(4) Time-reversal, T. This can be seen from the fact that there exists no spontaneous magneti-
zation of the atoms and hence no intrinsic magnetic field on the lattice.

Ab initio calculations of the band structure of Bi2Se3 as performed in Refs. [53, 54] show
that the inclusion of spin-orbit coupling (SOC) produces a band inversion at the Γ point. This is
a phenomenon by which the conduction and valence bands exchange their parities due to an
avoided crossing. Fig. 1.6 shows the band structure with and without SOC. Even though band
inversion is usually a necessary mechanism to obtain topological materials, topological non-
triviality can only be firmly established by the identification of a nonzero topological invariant.
We have seen that, in time-reversal-invariant insulators, the product of parities of the Bloch
wave functions of the occupied bands at all time-reversal-invariant momenta in the Brillouin
zone is a topological invariant. In Bi2Se3, the parity of one band at the Γ point changes when
turning on the SOC, whereas it remains unchanged for all occupied bands at the other TRIM
points. Since the system without SOC, and hence without band inversion, is guaranteed to be
a trivial insulator, Bi2Se3 is identified as a topological insulator.

1.4.2 Physics behind the band inversion

Keeping in mind the crystalline structure of Bi2Se3, we now proceed to analyze the interaction
effects between the outer-shell electrons of the Bi and Se atoms. This will allow us to understand
the band structure of the material as well as the origin of its topological properties. Indeed,
by systematically including all relevant couplings, the band inversion described in Sec. 1.4.1
naturally appears. A sketch of the different steps is shown in Fig. 1.7.

We start from the atomic orbitals of Bi and Se and consider a tight-binding model for the
corresponding valence electrons around the Γ point. The electron configuration of Bi is 6s26p3,
and that of Se is 4s24p4. Since the outermost shells of both types of atoms are p orbitals, it
is natural to only consider these p orbitals and neglect the rest. Due to the layered structure
of Bi2Se3, the chemical bonding between atoms within one QL is very strong, whereas the
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1.4. Bi2Se3 as a topological insulatorNATURE PHYSICS DOI: 10.1038/NPHYS1270 ARTICLES
a b

dc

2

1

0

F LZ

¬1

¬2

En
er

gy
 (

eV
)

Γ Γ Γ Γ

2

1

0

¬1

¬2

En
er

gy
 (

eV
)

F LZ

Γ

Γ

K
M

Z

K F

L

Bi2Se3

Bi2Te 3

Sb2Se3

Sb2Te 3

Figure 2 | Band structure, Brillouin zone and parity eigenvalues. a,b, Band structure for Bi2Se3 without (a) and with (b) SOC. The dashed line indicates
the Fermi level. c, Brillouin zone for Bi2Se3 with space group R3m. The four inequivalent time-reversal-invariant points are 0(0,0,0), L(π,0,0), F(π,π,0)
and Z(π,π,π). The blue hexagon shows the 2D Brillouin zone of the projected (1, 1, 1) surface, in which the high-symmetry k points 0, K and M are labelled.
d, The parity of the band at the 0 point for the four materials Sb2Te3, Sb2Se3, Bi2Se3 and Bi2Te3. Here, we show the parities of fourteen occupied bands,
including five s bands and nine p bands, and the lowest unoccupied band. The product of the parities for the fourteen occupied bands is given in brackets on
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to be a topological insulator for a small range of x , and recently,
surface states with an odd number of crossings at the Fermi energy
have been observed in angle-resolved photoemission spectroscopy
(ARPES) experiments12.

As BixSb1−x is an alloy with random substitutional disorder,
its electronic structures and dispersion relations are only defined
within the mean field, or the coherent potential approximation.
Its surface states are also extremely complex, with as many as
five or possibly more dispersion branches, which are not easily
describable by simple theoretical models. Alloys also tend to have
impurity bands inside the nominal bulk energy gap, which could
overlap with the surface states. Given the importance of topological
insulators as new states of quantum matter, it is important to
search for material systems that are stoichiometric crystals with
well-defined electronic structures, preferably with simple surface
states, and describable by simple theoretical models. Here, we
focus on layered, stoichiometric crystals Sb2Te3, Sb2Se3, Bi2Te3
and Bi2Se3. Our theoretical calculations predict that Sb2Te3, Bi2Te3
and Bi2Se3 are topological insulators, whereas Sb2Se3 is not. Most
importantly, our theory predicts that Bi2Se3 has a topologically
non-trivial energy gap of 0.3 eV, larger than the energy scale of
room temperature. The topological surface states for these crystals
are extremely simple, described by a single gapless Dirac cone
at the k = 0 0 point in the surface Brilloiun zone. We also
propose a simple and unified continuum model that captures
the salient topological features of this class of materials. In this

precise sense, this class of 3D topological insulators shares the
great simplicity of the 2D topological insulators realized in the
HgTe quantum wells.

Band structure and parity analysis
Bi2Se3, Bi2Te3, Sb2Te3 and Sb2Se3 share the same rhombohedral
crystal structure with the space group D5

3d (R3̄m) with five atoms
in one unit cell. We take Bi2Se3 as an example and show its
crystal structure in Fig. 1a, which has layered structures with a
triangle lattice within one layer. It has a trigonal axis (three-fold
rotation symmetry), defined as the z axis, a binary axis (two-fold
rotation symmetry), defined as the x axis, and a bisectrix axis
(in the reflection plane), defined as the y axis. The material
consists of five-atom layers arranged along the z-direction, known
as quintuple layers. Each quintuple layer consists of five atoms
with two equivalent Se atoms (denoted as Se1 and Se1′ in Fig. 1c),
two equivalent Bi atoms (denoted as Bi1 and Bi1′ in Fig. 1c)
and a third Se atom (denoted as Se2 in Fig. 1c). The coupling
is strong between two atomic layers within one quintuple layer
but much weaker, predominantly of the van der Waals type,
between two quintuple layers. The primitive lattice vectors t1,2,3
and rhombohedral unit cells are shown in Fig. 1a. The Se2 site has
the role of an inversion centre and under an inversion operation,
Bi1 is changed to Bi1′ and Se1 is changed to Se1′. The existence of
inversion symmetry enables us to construct eigenstates with definite
parity for this system.
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Figure 1.6. Band structure of Bi2Se3, (a) without spin-orbit coupling, and (b) with spin-orbit coupling.
While most qualitative features remain unchanged when switching on the SOC, a very clear difference
is observed at the Γ point, where the lowest conduction band and the highest valence band become
inverted as a result of an avoided crossing. Source: Ref. [53].
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Figure 1.7. Schematic diagram of the evolution from the atomic px,y,z orbitals of Bi and Se into the
conduction and valence bands of Bi2Se3 at the Γ point. The blue dashed line represents the Fermi level.
The following four steps are necessary to understand the band structure: (I) Hybridization of Bi orbitals
and Se orbitals. (II) Formation of bonding and antibonding states due to parity symmetry. (III) Crystal
field splitting arising from the asymmetry between the z- and x, y-directions. (IV) Influence of the SOC,
which, if strong enough, may induce a level crossing leading to band inversion. Figure adapted from
Ref. [54].

coupling between two neighboring QLs is predominantly due to van der Waals forces and
hence relatively weak in comparison. Therefore, we first focus on one QL, which has five atoms
in one unit cell. Each atom has three orbitals, namely px, py, and pz. We first neglect the spin
of the electrons in these orbitals; we will include it later in the discussion when we incorporate
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1.4. Bi2Se3 as a topological insulator

the effect of SOC. Hence we denote the different orbitals by

|Λ, α〉 , where

{
Λ ∈ {Se1, Bi1, Se2, Bi1′, Se1′} ,
α ∈ {px, py, pz} .

(1.36)

As seen in the previous section, the Se2 atoms are located in the middle of each QL and are
sandwiched between the two Bi layers, while the remaining Se atoms sit on the two outermost
layers. Since all the Se layers are separated by Bi layers, the strongest coupling in this system
stems from the interaction between Bi and Se layers. Without interaction, there are so far
two energy levels in the system, namely those of the p-shell electrons in each type of atom.
Including the aforementioned Bi–Se coupling causes level repulsion and breaks the degeneracy
of the Se levels, because Se1 and Se1′ are inequivalent to Se2. Consequently, the Bi levels are
pushed up and new hybridized states |Bi, α〉 and |Bi′, α〉 (α ∈ {px, py, pz}) of equal energy are
formed. On the other hand, the Se levels are pushed down. The Se1 and Se1′ orbitals hybridize
into states |Se, α〉 and |Se′, α〉 with equal energies, while the Se2 orbitals hybridize into states
|Se0, α〉. These have lower energy than |Se, α〉 and |Se′, α〉 because the sandwiching of the Se2
atoms between the two Bi layers causes a stronger level repulsion. The new states are shown
in Fig. 1.7 (I).

The inversion symmetry of the system makes it convenient to combine the hybridized
orbitals into bonding and antibonding states with definite parity. These read

|Bi±, α〉 = 1√
2

(
|Bi, α〉 ∓ |Bi′, α〉

)
, (1.37a)

|Se±, α〉 = 1√
2

(
|Se, α〉 ∓ |Se′, α〉

)
, (1.37b)

with the upper index denoting the parity eigenvalue. (Note that the p orbitals are odd under
inversion, and that the parity operator also exchanges the primed and unprimed atoms.) These
bonding and antibonding states are split upon taking into account the coupling between |Bi, α〉
(|Se, α〉) and |Bi′, α〉 (|Se′, α〉), with the antibonding state having higher energy than the bonding
state in both cases. As shown in Fig. 1.7 (II), this implies that the states |Bi+, α〉 and |Se−, α〉 are
closest to the Fermi surface, so we henceforth focus solely on these six states.

Next, we must take into account the fact that the layered structure makes the z-direction
fundamentally different from the x- and y-directions in the atomic plane. This causes a further
energy splitting between the pz and the px,y orbitals for both Bi+ and Se− states, a phenomenon
known as crystal field splitting. Ab initio calculations show that the energy of the |Bi+, px,y〉
states is higher than that of the |Bi+, pz〉 states, whereas the energy of |Se−, px,y〉 is lower than
that of |Se−, pz〉. In this scenario, the conduction band would consist mostly of electrons in
|Bi+, pz〉 orbitals, while the valence band would be dominated by |Se−, pz〉. This can be seen in
Fig. 1.7 (III).

The last crucial missing ingredient is the spin-orbit coupling. As mentioned at the outset,
we now introduce an additional spin index σ ∈ {↑, ↓} and label the states by |Bi+, α, σ〉 and
|Se−, α, σ〉. The SOC Hamiltonian is given by

Hso = λ(r)L · S , (1.38)

where λ(r) = 1
2m2

e c2
1
r

∂U
∂r depends on the detailed potential U between the outer-shell electrons

and the rest of the atom. It is convenient to transform the px and py orbitals into p± orbitals
with definite orbital angular momentum. These are given by

|Λ, p±, σ〉 = 1√
2

(
|Λ, px, σ〉 ± i |Λ, py, σ〉

)
, where now Λ ∈ {Bi+, Se−} . (1.39)
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1.4. Bi2Se3 as a topological insulator

These satisfy Lz |Λ, p±, σ〉 = ± |Λ, p±, σ〉. With the help of the Clebsch-Gordan tables we can
find the matrix elements of the SOC Hamiltonian in this basis. Note that Hso commutes with
Jz, the third component of the total angular momentum J = L + S, and hence the angular
momentum along the z-direction is still conserved. In other words, the matrix elements of Hso
between subspaces of different eigenvalues of Jz all vanish. The remaining, possibly nonzero
matrix elements read

〈Λ, p+, ↑| Hso |Λ, p+, ↑〉 = 〈Λ, p−, ↓| Hso |Λ, p−, ↓〉 = λΛ/2, (1.40a)
〈Λ, p+, ↓| Hso |Λ, p+, ↓〉 = 〈Λ, p−, ↑| Hso |Λ, p−, ↑〉 = −λΛ/2, (1.40b)

〈Λ, p+, ↓| Hso |Λ, pz, ↑〉 = 〈Λ, p−, ↑| Hso |Λ, pz, ↓〉 = λΛ/
√

2, (1.40c)
〈Λ, pz, ↓| Hso |Λ, pz, ↓〉 = 〈Λ, pz, ↑| Hso |Λ, pz, ↑〉 = 0. (1.40d)

Here, λΛ is a linear combination of the SOC coefficients for Bi and Se which depends on
how much the respective orbitals are mixed into the state Λ, but is always positive because
the effective potential U is necessarily attractive. At this point, a further hybridization takes
place, but the conservation of Jz greatly constrains which orbitals can mix together. Specifically,
|Λ,+ 3

2 〉 = |Λ, p+, ↑〉 and |Λ,− 3
2 〉 = |Λ, p−, ↓〉 are still eigenstates of the Hamiltonian, whereas

|Λ, pz, ↑〉 (|Λ, pz, ↓〉) mixes with |Λ, p+, ↓〉 (|Λ, p−, ↑〉) to give new hybridized orbitals, whose
corresponding states we denote by |Λ±,+ 1

2 〉 (|Λ±,− 1
2 〉). If we denote the energies after step

(III) (right before the incorporation of the SOC) by EΛ
x (degenerate with EΛ

y ) and EΛ
z , then

introducing Hso shifts EΛ
x upwards by λΛ/2, whereas the other eigenenergies are obtained

by diagonalizing the following 2 × 2 Hamiltonian:

HΛ =

[
EΛ

x − λΛ/2 λΛ/
√

2
λΛ/

√
2 EΛ

z

]
. (1.41)

In the end, the new energy levels read

EΛ
3/2 = EΛ

x + λΛ/2, (1.42a)

EΛ±
1/2 =

1
2
(EΛ

x + EΛ
z − λΛ/2)± 1

2

√
(EΛ

x − EΛ
z − λΛ/2)2 + 2λ2

Λ , (1.42b)

with each of these being doubly degenerate. We see that |Bi+−,± 1
2 〉 have the lowest energy

out of the Bi+ states, while |Se−+,± 1
2 〉 have the highest energy among the Se− states. For strong

enough SOC, it can happen that the energy of |Se−+,± 1
2 〉 is actually higher than that of |Bi+−,± 1

2 〉,
i.e., there exists a level crossing between these states. This corresponds to the the green dashed
square of Fig. 1.7 (IV).

The SOC does not only lead to level crossing at the Γ point, but also induces level repulsion
between the Bi+− and Se−+ at the touching points. This ultimately leads to an avoided crossing of
the valence and conduction bands. Effectively, what has happened with respect to the situation
in Fig. 1.7 (III) is that we have interchanged the low-momentum regions of the two bands.
The key insight is now that this band swapping takes place between bands of definite but
opposite parities. At points located far enough from the Γ point, the valence band states are
mostly Se−+ and the conduction band states are mostly Bi+−, with parity eigenvalues −1 and
+1, respectively. However, approaching the Γ point mixes these states together, and very
close to Γ the valence band is now mostly Bi+− and the conduction band is mostly Se−+. A
sketch of the situation can be found in Fig. 1.8. Consequently, moving along one of the bands
inverts the parity eigenvalue. Since the Γ point is a time-reversal-invariant momentum, we
have changed the sign of one and only one of the parities that enter formula (1.24) for the
Z2 topological invariant4. This means that the SOC has converted a trivial insulator into a
topological insulator.

4Note that Eq. (1.24) is only valid for a 2D system, but that a completely analogous expression can be constructed
for a three-dimensional topological insulator [30].
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Figure 1.8. Physical effect of the spin-orbit coupling. (a) Without SOC, the bands near the Fermi level
(assumed to lie inside the gap) maintain the ordering corresponding to completely uncoupled Bi and Se.
(b) The SOC drives the bands closer to each other, and when the coupling is large enough the energies
at the Γ point may invert their ordering. When level repulsion is not taken into account the bands seem
to dip into each other; however, this naive picture is unphysical. (c) When additionally considering the
level repulsion induced by the SOC, the bands feature an avoided crossing with an exchange of parities
with respect to the situation in (a).

1.5 A first look at excitons

We have now introduced the first ingredient of this work, namely the concept of a topological
insulator and some of its physical manifestations. However, our objective goes beyond the
understanding of single-particle states in these materials. Indeed, the goal of this thesis is to
study bound electron-hole pairs, known as excitons, in the bulk of Bi2Se3 nanosheets. For this
reason, in this section we introduce the concept of an exciton and some common terminology.
Our purpose here is not to give a detailed mathematical treatment, nor to explain their role in
the physics and optical properties of semiconductors. Some excellent and thorough reviews of
these vast and intensely researched topics can be found in Refs. [55–59].

1.5.1 The exciton concept

Consider the absorption of a photon by a semiconductor. If the photon energy is large enough,
this process can promote a valence electron to the conduction band. A positively charged
vacancy, called a hole, is left behind in the valence band. The conduction electron and the
hole, being oppositely charged, interact electrostatically via the attractive Coulomb interaction.
Hence, the two particles can form a bound state which is neutral in charge. This bound electron-
hole state is what we call an exciton. Being a bound state, the energy of an exciton is lower than
the sum of energies of the individual particles. In practice, this means that the energy of the
original photon does not necessarily have to be larger than the semiconductor band gap in
order to create the exciton.

An exciton carries a crystal pseudomomentum equal to the sum of the individual electron
and hole momenta. This pseudomomentum plays the role of a total quasiparticle momentum
and allows the exciton to move through the crystal. It also determines the dispersion relation
of the exciton when viewed as a single composite particle. In normal semiconductors, where
the conduction and valence bands are quadratic with a certain effective mass, the excitonic
dispersion is also quadratic in the total momentum. However, in materials with a more compli-
cated band structure, the dispersion relation of excitons may also have a nontrivial dependence
on their total momentum. In Ch. 3 we will see that the band inversion of Bi2Se3 does indeed
have such an effect.

On the other hand, there also exists a relative momentum between the electron and hole that
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1.5. A first look at excitons

make up an exciton. This relative momentum determines the internal structure of the exciton.
In normal semiconductors, the quadratic dispersion of the single-particle bands allows for the
separation of the quantum two-body problem into its center-of-mass and relative components.
In this case the internal exciton states are analogous to those of a hydrogen atom with the mass
of the proton and electron being substituted by the effective electron and hole masses of the
underlying band structure.

In passing, we comment on a potentially confusing point when consulting the literature,
where the exciton energy levels are typically represented inside the gap of the semiconductor
band diagram. Set the origin of energy at the chemical potential and consider a shift of this
quantity, so that the zero of energy is also changed. The individual electron and hole energies
are then modified by equal and opposite amounts, which implies that the exciton energy levels
are independent of the shift. In other words, the difference between an exciton level and the
chemical potential remains constant under any shift of the Fermi level. As a consequence of
this, the exciton levels do not actually have a well-defined place in the band diagram. However,
when only zero-momentum excitons are studied, it is customary to take the bottom of the
conduction band as the position of the electron-hole continuum, i.e., the region without bound
electron-hole states, and represent the excitons midgap by subtracting their binding energies.
This cannot be done consistently for different values of the total momentum, as the conduction
band generally has a different shape from the electron-hole continuum.

1.5.2 Wannier and Frenkel excitons

There are two different types of excitons which can be typically found in semiconductors, and
which describe opposite limiting cases. The first type corresponds to tightly bound excitons
called Frenkel excitons, first introduced in 1931 by Frenkel as “excitation waves” [60]. In Frenkel’s
model, the interaction between electrons of neighboring atoms is taken to be much weaker
than the forces binding each electron to individual atoms. Typically, this is the case when all
electronic shells within each atom are closed and the system is insulating, such as in solid xenon
or sodium chloride. If one of the electrons in an atom absorbs a quantum of light, it can remain
bound to its atom due to the interaction with the positive charge field generated by its own
absence from the original closed shell. This describes a very localized exciton whose radius is
typically smaller than the size of a single unit cell. Furthermore, the excited atomic state is not
confined to a particular atom but can wander through the crystal by passing from one atom
to the next. These itinerant excited states are the reason for the name excitation waves coined
by Frenkel. Due to the reduced size of these kinds of excitons, it is not possible to use the
effective electron and hole masses nor the background dielectric constant of the solid for their
description.

Clearly, a different approach must be considered to describe excitons in solids where the
valence electrons do not longer belong to a single atom, but rather are shared between two
or more neighboring ions in the form of covalent bonds. This is typically the situation in
semiconductors, where the electrons have gained some room to move in when compared to
a fully insulating state. It can be shown that larger interactions between atoms lead to wider
valence bands and thus to a larger spatial extent of valence electrons. This scenario is more
akin to our above definition of excitons, whereas Frenkel excitons may be regarded as a special
case valid for crystals with large band gaps and steep valence bands. The larger freedom of
electrons and holes now leads to loosely bound excitons whose spatial extent can range from
tens to hundreds of atomic sites. It is now justified to use the background dielectric constant of
the solid, ε, to describe the Coulomb interaction between electrons and holes, as well as their
effective masses m∗

e and m∗
h arising from the underlying band structure. Hence, one is led to
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the Wannier equation for a single exciton [61]:(
− ∇2

e
2m∗

e
−

∇2
h

2m∗
h
− e2

4πεreh

)
Ψα(re, rh) = EαΨα(re, rh) . (1.43)

Here, re and rh are the positions of the electron and the hole, respectively, and reh ≡ |re − rh|.
The index α describes the collection of quantum numbers labeling each excitonic state. This
model describes so-called Mott-Wannier or simply Wannier excitons, which are indeed analogous
to a hydrogen atom. In particular, the kinetic energy of an exciton with total momentum Q is
given by the usual expression

K(Q) =
Q2

2M∗
X

, (1.44)

where M∗
X = m∗

e + m∗
h is the total exciton mass. Note that here we have been dealing with the

specialized case of semiconductors with a parabolic band structure. In this work, we will have
to consider a more general setting which we will describe in the following chapters. Also, we
will only be concerned with Wannier excitons, so we will not consider Frenkel excitons any
further.

1.5.3 Bright and dark excitons

In the previous section we have seen how excitons are typically classified according to their
size when compared to that of a single unit cell. Another classification exists depending on
their response to electromagnetic radiation. Bright excitons are those which can be formed
simply through the absorption of a single photon. On the other hand, dark excitons cannot
be created solely via optical transitions and additionally require phonon scattering or some
other nonradiative process. Since the momentum carried by a single photon can usually be
neglected, bright excitons are typically associated with a direct band gap whereas dark excitons
are associated with an indirect gap. This is illustrated in Fig. 1.9.
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Figure 1.9. Comparison between bright and dark excitons. A bright exciton is typically formed through
absorption of a single photon (yellow arrow). By contrast, the electron and the hole in a dark exciton
are connected by an optically forbidden transition. The formation of dark excitons thus requires both a
photon absorption and a subsequent phonon-scattering event (purple arrow).

The properties of the valence and conduction bands determine the optical generation rate of
electron-hole pairs. In quantum mechanics, the dominant contribution to a radiative process is
due to electric-dipole radiation. Electric-dipole transitions are subject to the fulfilment of some
selection rules. Firstly, the change in total angular momentum J between the initial and final
states must satisfy ∆J ∈ {0,±1}, with transitions between two J = 0 states being forbidden.
Similarly, the total azimuthal angular momentum mJ can only change by ∆mJ ∈ {0,±1}, with
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1.5. A first look at excitons

∆mJ 6= 0 if ∆J = 0 [62, Ch. 9]. Finally, the initial and final states must have opposite parities,
since the dipole operator is odd under inversion.

The intensity of optical absorption by excitons in regular semiconductors with quadratic
bands was originally studied by Elliott in Ref. [63]. It is found that when dipole transitions
are allowed, s-wave excitons are bright whereas the rest are dark. Since the spin structure in
normal semiconductors leads to a singlet and a triplet, this means that the ground-state singlet
is bright whereas the triplet is dark. By contrast, for band structures with dipole-forbidden
transitions it is found that p-wave excitons are bright and all others are dark. Later on we
will study how the situation is modified in Bi2Se3. We note that in this material electric-dipole
transitions are allowed, because the states |Bi+−,± 1

2 〉 and |Se−+,± 1
2 〉 that make up the valence

and conduction bands near the Γ point have opposite parities, and transitions between them
can satisfy the angular-momentum rules.

1.5.4 Direct and indirect excitons

Excitons in real materials have a finite lifetime owing to the fact that the electron and the
hole can recombine with each other. However, depending on the nature of the excitons, this
recombination process may be heavily suppressed. This can lead to excitons with longer
lifetimes. For instance, the Wannier model describes excitons with a quadratic kinetic energy
whose minimum is located at zero total momentum. This is called a momentum-direct exciton.
However, we can imagine materials with a more complicated band structure where the kinetic
energy of excitons is a more complicated function of the total momentum Q, such that its
minimum is shifted away from the origin. These excitons are then called momentum-indirect
[64, 65]. Momentum-indirect excitons were first observed in silicon and germanium [66]. In
such excitons, the individual momenta of the electron and the hole are necessarily different,
and thus they cannot easily recombine into a single photon. Therefore, nonradiative processes
are required to bring the exciton momentum to zero before radiative recombination is possible.
This results in longer-lived excitons.

Directness or indirectness of excitons can also be defined in real space. In a spatially indirect
exciton, illustrated in Fig. 1.10, the electron and the hole are confined to different material
layers which are spatially separated [67]. Another possibility is to confine the particles in two
separate quantum dots [68]. Recombination processes are now supressed because they require
interlayer quantum tunneling of one of the composing particles. This can lead to lifetimes
several orders of magnitude longer than those of spatially direct excitons.

Direct Indirect

e h

e

h

Figure 1.10. Comparison between spatially direct and spatially indirect excitons. In indirect excitons, the
electron and the hole are confined to different material layers, and thus recombination is more difficult
than for electron-hole pairs living in the same layer.
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2
The Low-Energy Model

Having presented the main physics of topological insulators, in this chapter we will lay the
foundations of our model for excitons in Bi2Se3 nanosheets. We firstly present the specific
details of an effective low-energy Hamiltonian suitable for the general description of three-
dimensional Bi2Se3. We will solve for the eigenstates and energy levels in a thin material
slab and give a description of the topological surface states. Then we will integrate out the
third dimension and obtain an effective two-dimensional Hamiltonian whose eigenstates and
topology will be discussed. This effective two-dimensional Hamiltonian will serve as the basis
for our description of excitons in the following chapter.

2.1 Effective Hamiltonian

We are interested in finding an effective Bloch Hamiltonian H(k) describing the states near the
Fermi surface in Bi2Se3. We have seen that these are |Bi+−,±1/2〉 and |Se−+,±1/2〉. In what
follows, we simplify the notation and rename these to |Bi+, σ〉 and |Se−, σ〉, respectively, with
σ ∈ {↑, ↓}. We choose the ordered basis(

|Bi+, ↑〉 , |Se−, ↑〉 , |Bi+, ↓〉 , |Se−, ↓〉
)

. (2.1)

In order to describe a particular crystal, the periodic lattice Hamiltonian H must commute
with the operators representing the symmetries of the corresponding lattice. The desired Bloch
Hamiltonian is then related to the lattice Hamiltonian through

H(k) = e−ik·r Heik·r , (2.2)

and the underlying symmetries are expressed through specific relations between the Bloch
matrices at different momenta. For instance, the Bi2Se3 lattice symmetries are realized as

RH(k)R−1 = H(R3k) , (2.3a)

PH(k)P−1 = H(−k) , (2.3b)

T H(k)T−1 = H(−k) , (2.3c)
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2.1. Effective Hamiltonian

where R, P, and T are appropriate representations of the three-fold rotation, parity, and time-
reversal symmetries, respectively, acting on the combined spin and orbital space (2.1). Also,
R3 ≡ Rz(2π/3), with Rz(θ) the usual rotation matrix around the z-axis. Note that, even though
P and T act on H(k) in the same way, the former operator is unitary whereas the latter is
antiunitary. In our basis, the representations of these symmetry operations are [53]

R = exp[i (π/3)σz ⊗ I2] , (2.4a)
P = I2 ⊗ τz , (2.4b)
T = iσy ⊗ I2 K , (2.4c)

where σi and τi are the Pauli matrices acting on the spin (|↑〉 , |↓〉) and orbital (|Bi+〉, |Se−〉)
spaces, respectively. Again, K denotes the complex conjugation operator, with K iK−1 = −i
and K2 = 1. It is immediate to verify that T2 = −1.

An effective Bloch Hamiltonian possessing a given set of crystal symmetries can always be
derived in the vicinity of an arbitrary crystal momentum k0 by means of the so-called k · p
method [69, Ch. 2, 5, Ch. 9]. The most general three-dimensional Hamiltonian compatible with
the symmetries of Bi2Se3 is derived from k · p theory in Refs. [53, 54] around the Γ point. To
quadratic order in k, it reads

H(k) = ε0(k) +M(k) I2 ⊗ τz + A1kz σz ⊗ τx + A2(kxσx + kyσy)⊗ τx , (2.5)

where

ε0(k) = C + D1k2
z + D2(k2

x + k2
y) , (2.6a)

M(k) = M − B1k2
z − B2(k2

x + k2
y) . (2.6b)

In matrix form, it is explicitly given by

H(k) = ε0(k)I4 +


M(k) A1kz 0 A2k−
A1kz −M(k) A2k− 0

0 A2k+ M(k) −A1kz

A2k+ 0 −A1kz −M(k)

 , (2.7)

with k± = kx ± iky. The parameter values for Bi2Se3 are obtained by fitting existing experimental
data to the theoretical model and are given in Table 2.1.

Parameter Value
C −0.0068 eV
M 0.28 eV
A1 0.22 eV nm
A2 0.41 eV nm
B1 0.10 eV nm2

B2 0.566 eV nm2

D1 0.013 eV nm2

D2 0.196 eV nm2

Table 2.1. Model parameters for the k · p Hamiltonian for three-dimensional Bi2Se3 of Refs. [53, 54].
These values are extracted in Ref. [53] by fitting the resulting band structure to experimental data.

The above Hamiltonian belongs to class AII in the tenfold way of Table 1.2. The three-
dimensional Z2 topological invariant, which is also obtained via a product of parities as in
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the 2D case, indicates that it is a topological insulator. Note that it is in fact identical (modulo a
unitary transformation) to the Hamiltonian for a 3D topological insulator presented in Ref. [70].
The Z2 topological invariant is explicitly evaluated in Ref. [53] for several materials, and is
nontrivial in Bi2Se3. This implies that we expect boundary modes at the surfaces of a thin two-
dimensional sample. These surface states will be derived explicitly in the next section.

It is important to note that, in our effective theory, we let momenta become continuous.
This implies that we effectively send the lattice spacing to zero and thus get rid of the Brillouin
zone and the periodicity of the Bloch Hamiltonian, which we from now on refer to as simply
the Hamiltonian. However, the Hamiltonian still describes the Bi2Se3 crystal in the sense that
it still exhibits the symmetries of the original lattice.

In this thesis we shall be concerned with effectively two-dimensional material samples. For
this reason, from now on we redefine x ≡ (x, y) and k ≡ (kx, ky) as the in-plane coordinates and
momenta, respectively, and additionally indicate the z-dependence exlicitly when necessary.
For instance, our Hamiltonian is now written as H(k, kz), and the Γ point is now simply defined
as kx = ky = 0.

2.2 Solution of the 3D model

Since we are interested in the description of Bi2Se3 nanosheets, in this section we will solve the
Hamiltonian (2.7) in a thin material slab of thickness ` lying on the xy-plane. We closely follow
the method of Refs. [71, 72]. The in-plane momenta kx and ky are still good quantum numbers,
and we choose to solve the model at the Γ point because we are merely interested in the low-
energy physics. The solution for arbitrary k can be obtained through a similar procedure and
is derived in Ref. [73]. In our case, the Hamiltonian reduces to a block-diagonal form,

H(0, kz) =

[
h+(kz) 0

0 h−(kz)

]
, (2.8)

where h±(kz) are 2 × 2 matrices given by

h±(kz) = (C + D1k2
z) + (M − B1k2

z)σz ± A1kzσx . (2.9)

In view of our choice of basis (2.1), h+ and h− describe fermions with a well-defined spin in
the z-direction (↑ and ↓, respectively). On the other hand, kz is not a good quantum number
anymore due to the breaking of translational invariance along the z-direction caused by the
geometry of the slab. For this reason we perform the substitution kz → −i∂z. Now we can
solve either of these 2 × 2 Hamiltonians, say h+, by proposing a plane-wave ansatz for the
wave function, ψΛ(z) ∝ uΛeΛz, such that h+(−i∂z)ψΛ(z) = EψΛ(z) for some trial energy
E. Here, uΛ is a (z-independent) two-component vector satisfying the eigenvalue equation
h+(−iΛ)uΛ = EuΛ. Naturally, there may be several solutions for Λ, in which case the total
wave function Ψ(z) will be a linear superposition of the different ψΛ(z) with coefficients fixed
by boundary conditions. In our case, we will assume that the electronic states do not leak out of
the nanosheet, and thus we choose the hard-wall boundary conditions Ψ(z = ±`/2) = 0.

The matrix h+(−iΛ) has two eigenvalues, namely

λ± = C − D1Λ2 ±
√
(B1Λ2 − M)2 − A1Λ2 . (2.10)

Setting either of them equal to E gives four distinct solutions for Λ, which come in the form
±Λ±(E), where

Λ±(E) =

√
−R(E)±

√
S(E)

2(D2
1 − B2

1)
. (2.11)
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Here we have defined

R(E) ≡ A2
1 + 2D1(E − C)− 2B1M , (2.12a)

S(E) ≡ R(E)2 − 4(D2
1 − B2

1)[(E − C)2 − M2] . (2.12b)

In principle one would have to be careful not to introduce spurious solutions for Λ, which
is a possibility due to the nonlinear nature of Eq. (2.10). In this particular case, however, it
turns out that the spurious solutions of the equation λ+ = E are actually the true solutions
of λ− = E, and vice versa. Since we are interested in satisfying either of the equations, as
they both impose that E be an eigenvalue of the Hamiltonian, we can ultimately keep all the
solutions in Eq. (2.11). Now let Λ be a solution to either λ+ = E or λ− = E. In both cases, the
corresponding eigenvector of the matrix h+(−iΛ) reads

uΛ =

[
g(Λ)

−iA1Λ

]
, (2.13)

where g(Λ) ≡ E + M − C + (B1 + D1)Λ2. Note that we assume that A1 is nonzero, otherwise
h+(kz) is already diagonal and equivalent to two uncoupled infinite wells. Since the eigenstates
read ψΛ(z) = uΛeΛz, and both Λ and −Λ are allowed, we may now create wave functions with
definite-parity components, ψ±

Λ(z) ∝ ψΛ(z)± ψ−Λ(z), and from now on Λ ∈ {Λ+, Λ−} only.
Then we obtain the solutions

ψ+
Λ(z) =

[
g(Λ) cosh(Λz)
−iA1Λ sinh(Λz)

]
, ψ−

Λ(z) =

[
g(Λ) sinh(Λz)

−iA1Λ cosh(Λz)

]
. (2.14)

Finally, we now see that there are two eigenstates, namely ϕ+(z) ≡ ∑Λ∈{Λ+,Λ−} αΛψ−
Λ(z) and

χ+(z) ≡ ∑Λ∈{Λ+,Λ−} βΛψ+
Λ(z), as the boundary conditions at ±`/2 are equivalent due to the

well-defined parity of all components. The subscript + in ϕ+ and χ+ stands for the fact that
these are eigenstates of h+. The eigenstates of h− are similarly denoted by ϕ− and χ−, and are
simply obtained by changing A1 to −A1 in ϕ+ and χ+, respectively. Requiring a nontrivial
solution for the coefficients αΛ and βΛ leads to two transcendental equations, namely

[E + M − C + (B1 + D1)Λ2
+]Λ−

[E + M − C + (B1 + D1)Λ2
−]Λ+

=
tanh(Λ−`/2)
tanh(Λ+`/2)

for ϕ+ , (2.15a)

[E + M − C + (B1 + D1)Λ2
+]Λ−

[E + M − C + (B1 + D1)Λ2
−]Λ+

=
tanh(Λ+`/2)
tanh(Λ−`/2)

for χ+ . (2.15b)

These can be solved numerically for the allowed energies of the states ϕ+ and χ+, which we
denote by Eϕ and Eχ, respectively. There are in general many solutions, corresponding to the
quantized energy levels of the problem under consideration. The eigenstates are

ϕ+(z) = Nϕ

[
(B1 + D1)ηϕSϕ(z)

−iA1Cϕ(z)

]
with energy Eϕ , (2.16a)

χ+(z) = Nχ

[
(B1 + D1)ηχCχ(z)

−iA1Sχ(z)

]
with energy Eχ , (2.16b)

with Nϕ and Nχ normalization constants and

Cξ(z) =
cosh(Λξ

+z)

cosh(Λξ
+`/2)

−
cosh(Λξ

−z)

cosh(Λξ
−`/2)

, (2.17a)

Sξ(z) =
sinh(Λξ

+z)

sinh(Λξ
+`/2)

−
sinh(Λξ

−z)

sinh(Λξ
−`/2)

, (2.17b)
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ηϕ =
(Λϕ

+)
2 − (Λϕ

−)
2

Λϕ
+ coth(Λϕ

+`/2)− Λϕ
− coth(Λϕ

−`/2)
, (2.17c)

ηχ =
(Λχ

+)
2 − (Λχ

−)
2

Λχ
+ tanh(Λχ

+`/2)− Λχ
− tanh(Λχ

−`/2)
. (2.17d)

Here we have defined Λξ
± ≡ Λ±(Eξ), with ξ ∈ {ϕ, χ}, which can be found by putting the

solution Eξ obtained from Eqs. (2.15) back into (2.11). As we have said, the eigenstates of h−,
ϕ− and χ−, are obtained from Eqs. (2.16) by changing A1 to −A1. In particular, they are
degenerate in energy with ϕ+ and χ+, respectively. This is an immediate consequence of the
Kramers degeneracy theorem.

With this, we have a complete description of the eigenstates of the k · p Hamiltonian at the
Γ point. In the following sections we will show examples of the resulting probability densities,
and in particular we will show that the spectrum includes localized surface states due to the
nontrivial topology.

2.2.1 Bulk states

By solving the transcendental equations (2.15) we firstly obtain energy levels corresponding to
the usual semiconductor bulk bands at the Γ point. Of course, the results will depend on the
thickness of the nanosheet, which is our only free parameter. For reasons that will become clear
below, we choose ` = 6 nm in this section. The eigenenergies for the first few states are shown
in Table 2.2. Also, Fig. 2.1 shows the probability densities of some of these states as computed
from Eqs. (2.16).

n Ec (eV) Ev (eV)
1 0.281 −0.284
2 0.342 −0.308
3 0.503 −0.412
4 0.756 −0.596
5 1.084 −0.843
6 1.480 −1.146

Table 2.2. Energies of several low-lying conduction and valence states in the bulk of a thin Bi2Se3
nanosheet of thickness ` = 6 nm, as obtained from Eqs. (2.15). All energies are measured with respect to
the Fermi level.

One may object that the value of Ec − Ev = 0.565 eV (for n = 1) overestimates the band gap
of Bi2Se3, as theoretical studies report values of 0.31 eV–0.32 eV [74, 75] and experimental data
gives 0.35 eV [76]. However, Ec − Ev is not necessarily expected to match these values. The
reason is that, at least in our model, Bi2Se3 is an indirect semiconductor; in other words, the
band gap is not the difference between the energies at the Γ point. In fact, the model of Ref. [53]
on which the Hamiltonian (2.7) is based does predict an indirect band gap of 0.3 eV, as well
as our obtained Γ-point gap of ∼ 0.565 eV. Furthermore, although to much lesser degree, the
literature values for the band gap presented here correspond to bulk Bi2Se3, whereas the thin
slab geometry could in principle alter the bands. In practice, however, this effect only seems
relevant for a number of QLs smaller than that corresponding to our choice of ` [75, 77].
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2.2. Solution of the 3D model
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Figure 2.1. Probability densities of the lowest four conduction (red) and valence (blue) states in the
bulk of a thin Bi2Se3 nanosheet of thickness ` = 6 nm, as obtained from Eqs. (2.16). The corresponding
energies are found in Table 2.2. We note that, due to the vector nature of the eigenstates, the probability
densities do not exhibit the characteristic nodes of the infinite-well solutions.

2.2.2 Surface states

Arguably, one of the most interesting features of the spectrum we have obtained is the presence
of topologically protected surface states. When the thickness ` is large enough, one finds
that the transcendental equations (2.15) contain a common solution, Eϕ = Eχ, which lies in
the bulk band gap of the insulator. This is the so-called Dirac point. We denote the surface-
state eigenfunctions of h± by ϕS

± and χS
±. Plotting the probability density of any of the four

degenerate states in this case reveals that these are localized near the two surfaces of the slab.
As we reduce `, quantum tunneling processes between the top and bottom surfaces become
possible and a small gap ∆ ≡ |Eϕ − Eχ| opens at the Γ point [71–73, 78, 79]. The probability
densities, which up to this point were identical for all surface states, now become slightly
different. This effect will be discussed in more detail below. In Fig. 2.2, where we have plotted
the probability densities for several values of `, all these features can be observed. Finally, note
that the fact that Eϕ 6= Eχ does not contradict the Kramers theorem, as there are still two states
for each value of the energy.

For later convenience, we now define the following ordered basis spanning the surface-state
subspace for a given thickness:

(
ψ1, ψ2, ψ3, ψ4

)
≡
([

ϕS
+(z)
0

]
,

[
0

χS
−(z)

]
,

[
χS
+(z)
0

]
,

[
0

ϕS
−(z)

])
. (2.18)

The probability densities of these eigenstates are symmetric about z = 0. However, it will often
be convenient to create linear combinations of these states such that the probability density is
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2.2. Solution of the 3D model

localized near one of the two surfaces. One may verify that, in the absence of a gap, not only
Λϕ

± = Λχ
±, but also ηϕ = ηχ and Nϕ = Nχ in Eqs. (2.16). Then, by defining

ψt,↑ ≡
1√
2
(ψ1 + ψ3) , ψt,↓ ≡

1√
2
(ψ2 + ψ4) , (2.19a)

ψb,↑ ≡
1√
2
(ψ1 − ψ3) , ψb,↓ ≡

1√
2
(ψ2 − ψ4) , (2.19b)

we obtain eigenstates of the Hamiltonian whose probability densities are localized near the top
(z = `/2) or bottom (z = −`/2) surfaces, as indicated by the subscripts t and b, respectively.
Furthermore, the spin in the z-direction remains well-defined because we are not mixing the
eigenstates of h+ and h−. Another advantage which will be important later is that these states
are orthogonal even without the integral over z, i.e.,

ψ†
s,σ(z)ψs′,σ′(z) ∝ δs,s′δσ,σ′ . (2.20)

We stress that, strictly speaking, these results are only valid when ∆ = 0. However, we have
numerically verified that they still hold to good approximation when ∆ is relatively small, in
practice all the way down to ` ≈ 6 nm. Reasons for this are given in the following section,
where we discuss the behavior in the ultrathin limit.
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Figure 2.2. Probability densities of the conduction (red) and valence (blue) surface states of a thin Bi2Se3
nanosheet of varying thickness, as obtained from Eqs. (2.16). For large `, the states are localized at the
surfaces and have the same energy. As the thickness decreases, tunneling processes between the two
surfaces become possible and the probability densities become more and more bulk-like. The coupling
between the surfaces opens a gap ∆ which breaks the degeneracy of these states at the Γ point. The
Kramers theorem is preserved because in all cases there are actually two states of each type.
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2.3. Effective surface Hamiltonian

2.2.3 Effects of material thickness

As we have said, when ` is large enough the system hosts gapless, topologically robust surface
states. Decreasing the thickness eventually produces a hybridization between the modes at
both surfaces. This overlap induces level repulsion and a nonzero energy gap opens at the
Dirac point. The analytical solution of the model presented in the previous section does not
show an observable gap when the thickness is larger than around 6 nm. This agrees with
experimental data [80, 81] and density functional theory calculations [82] showing that Bi2Se3
remains ungapped all the way down to six quintuple layers, as the thickness of one QL is
around 1 nm [83–85].

A more careful analysis shows that the decay of the gap with increasing ` is nonmonotonous,
and features an exponential decay with a superimposed oscillatory pattern [71, 73, 79]. In this
picture, the material alternates between a trivial and a topological quantum spin Hall phase.
This oscillatory behavior, however, has yet to be observed experimentally. In fact, the results
of Ref. [80] suggest that the period of these oscillations might be too large to observe them
before the system becomes essentially gapless for growing `. Moreover, there seems to be some
disagreement in the literature regarding the nature of the phase below the 6 QL threshold.
While the theoretical predictions of [71] in combination with the experimental findings of [80]
predict that a quantum spin Hall phase should exist between 2 and 5 QLs, Ref. [81] claims that
in this regime Bi2Se3 behaves like a trivial insulator.

In any case, all theoretical and experimental studies agree that for 6 QLs or more, which
corresponds to a thickness of ` & 6 nm, the material is in a topologically nontrivial phase.
Furthermore, the asymptotic large-` behavior is recovered extremely quickly with increasing
number of QLs, which explains why Eqs. (2.19) and (2.20) are still valid to a very good approx-
imation even when approaching the critical thickness. Topological protection of the surface
states is guaranteed in the large-thickness regime and has also been observed experimentally
in Ref. [86], where it is demonstrated that for ` & 6 nm the system exhibits metallic surface
transport. By contrast, the surface conductance abruptly drops below this critical thickness.

2.3 Effective surface Hamiltonian

So far we have only solved the model at the two-dimensional Γ point, which prevents us
from seeing the shape of the dispersions for nonzero values of the momentum. However,
knowledge of the surface states ψα(z) at the Γ point is enough to derive an effective low-
energy Hamiltonian. This Hamiltonian will be denoted by HS(k) and will allow us to obtain
the correct dispersion relation for small but nonzero values of k. The components of HS are
obtained by projecting H(k,−i∂z) onto the Hilbert space spanned by the four surface states
[54, 71, 72]:

HS(k)αβ = 〈ψα| H(k,−i∂z) |ψβ〉 =
� `/2

−`/2
dz ψ†

α(z)H(k,−i∂z)ψβ(z) . (2.21)

In the basis (ψ1, ψ2, ψ3, ψ4) this always turns out to be a 4 × 4 block-diagonal matrix with two
2 × 2 entries. Furthermore, when ∆ = 0 this is also the case in the basis (ψt,↑, ψt,↓, ψb,↑, ψb,↓),
and one may verify that the components in both bases are equal. For this reason, in the
absence of a gap the two 2 × 2 blocks can be seen as describing the top and bottom surfaces
separately. As expected, when the Dirac point becomes gapped, the Hamiltonian in the latter
basis additionally contains a small coupling between the equal-spin states at the top and bottom
surfaces. We will henceforth assume the gapless limit at all times. This is a good approximation
in the continuous model even for ` = 6 nm, and experimentally holds down to 6 quintuple
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2.4. Effective bulk Hamiltonian

layers. In this case, both 2 × 2 blocks are identical and read

hS(k) = E0 + D|k|2 − vF(k × σ) · ẑ . (2.22)

Here E0 is the energy at the Γ point, and we take the asymptotic (i.e., large-`) values for the
various parameters. Their values are shown in Table 2.3. The last term, which explicitly reads
(k × σ) · ẑ = kxσy − kyσx, is called a Rashba term. It arises from the combined effect of the
spin-orbit coupling and the asymmetry of the crystal potential in the directions parallel and
perpendicular to the nanosheet [87]. A more detailed analysis, such as that of Ref. [54], would
reveal higher-order terms proportional to k3 that break rotational symmetry. For small enough
`, the expected gap term is also reproduced [71], even though we have neglected it in our
large-thickness limit.

Parameter Value
E0 0.0296 eV
D 0.122 eV nm2

vF 0.407 eV nm

Table 2.3. Asymptotic values for the parameters of the effective Bi2Se3 surface Hamiltonian.

The eigenenergies of this Hamiltonian are

ε±(k) = E0 ± vF|k|+ D|k|2 . (2.23)

For small momenta the energies grow linearly with |k|, as corresponds to a model of massless
particles, in this case Dirac fermions. The parameter vF is called the Fermi velocity. At zero
momentum the valence and conduction bands cross linearly at a single point and form the
characteristic Dirac cone. The dispersions of the surface states for small k are shown in Fig. 2.3,
where we also show the first valence and conduction bulk states determined in the following
section.

Due to the Rashba term in hS, the surface eigenstates always satisfy 〈σz〉 = 0. This does
not contradict our discussion of the two-dimensional QSHE, as the surface modes derived here
correspond to a three-dimensional topological insulator. Quite on the contrary, the physical
picture is the same, as the phenomenon of spin-momentum locking remains. Indeed, the
expected values of the spin operator in the states of energy ε±(k) are

〈σ〉± = ± cos φk x̂ ± sin φk ŷ , (2.24)

where φk is the polar angle of the momentum k with the x-axis. This equation implies that the
electron’s spin always tends to form a right angle with the direction of its momentum, winding
exactly once around itself as φk changes from 0 to 2π. Spin-momentum locking is the source
of robustness of these surface states. If the system contains impurities that do not break the
time-reversal symmetry, then these impurities cannot change the direction of the spin. And
since the direction of k is locked to that of the spin, it follows that scattering events due to these
impurities are strongly suppressed, i.e., they will not be able to change the electron’s direction
of motion.

2.4 Effective bulk Hamiltonian

The procedure we have followed in order to obtain an effective surface Hamiltonian can equally
well be used for the bulk. This effective bulk Hamiltonian will be our starting point for the
treatment of excitons in the next chapter. However, there is one difference with the surface
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2.4. Effective bulk Hamiltonian

case, which is that the number of bulk states one obtains in our continuous model is infinite,
since Eqs. (2.15) give infinitely many solutions. The complete effective bulk Hamiltonian would
then of course also be a matrix with infinite entries. However, let us for the moment imagine
that the low-energy physics of the problem of interest are somehow constrained to the first
valence and conduction bands, i.e., transitions to higher excited states are not allowed. Then
it is correct to consider only the corresponding subspace of the effective Hamiltonian. We will
assume that this is the case for our exciton problem of the following chapter. For this reason, we
proceed to project the three-dimensional Hamiltonian onto the subspace of the single-particle
Hilbert space spanned only by the first conduction and valence subbands, and neglect the effect
of all the higher excited states. In the next section we will comment on the validity of this
approximation, which will be ultimately verified in Ch. 3.

Solving the model at the Γ point for the bulk conduction and valence ground states as
explained in Sec. 2.2, we find two lowest-lying conduction ground states χc

± and two highest-
lying valence ground states ϕv

±. We then choose the following ordered basis of eigenfunctions:([
χc
+(z)
0

]
,

[
iϕv

+(z)
0

]
,

[
0

χc
−(z)

]
,

[
0

−iϕv
−(z)

])
. (2.25)

The reason for the factors of ±i will become clear in a moment. Projecting the Hamiltonian onto
the subspace spanned by these eigenfunctions in the same way of Eq. (2.21) gives an effective,
z-independent Hamiltonian for the bulk. It reads

H̃(k) = ε̃0(k)I4 +


M̃(k) 0 0 Ã2k−

0 −M̃(k) Ã2k− 0
0 Ã2k+ M̃(k) 0

Ã2k+ 0 0 −M̃(k)

 , (2.26)

where ε̃0(k) = C̃ + D̃2|k|2 and M̃(k) = M̃ − B̃2|k|2. We see that this Hamiltonian is precisely
of the form of (2.7), with A1 = B1 = D1 = 0 and with some renormalized values of the model
parameters. We have labeled these with a tilde in the equation above, but we shall drop it
henceforth. The values of the renormalized parameters are shown in Table 2.4. The global
phases in Eq. (2.25) can now be easily understood; we have chosen them so that our effective
Hamiltonian has exactly the same form as its three-dimensional counterpart instead of being
related to it by a unitary transformation. One small caveat to this is that the basis in which the
effective Hamiltonian is expressed is not that of Eq. (2.1), because the Bi+ and Se+ orbitals are
hybridized in the eigenstates (2.16). Of course, this does not influence the emerging physics in
any way.

Parameter Bare (3D model) Renormalized (` = 6 nm)
C −0.0068 eV −0.0012 eV
M 0.28 eV 0.28 eV
A2 0.41 eV nm 0.41 eV nm
B2 0.566 eV nm2 0.473 eV nm2

D2 0.196 eV nm2 0.202 eV nm2

Table 2.4. Bare parameters for the three-dimensional model and their renormalized values after
projecting the Hamiltonian onto the single-particle ground states for ` = 6 nm.

We have now integrated out the z-dependence and obtained an effective model suitable
for describing the physics inside a thin material nanosheet. The above Hamiltonian will be
valid for problems which can be mostly regarded as two-dimensional in the sense that the
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2.5. Analysis of the bulk Hamiltonian

dynamics in the z-direction are largely unimportant in comparison to the in-plane physics. In
the following we will work with the renormalized values of the material parameters in order to
describe the bulk of our Bi2Se3 nanosheets. Our numerical values for exciton binding energies,
radii, etc., which we will obtain in Ch. 3, will thus be valid for the particular value ` = 6 nm.
However, all topological arguments and conclusions will still be valid for any value of ` small
enough for the problem to be regarded as two-dimensional, since a continuous deformation of
` would merely produce a change in the renormalization of the model parameters.

2.4.1 A word on the first-band approximation

Before moving on, let us comment on our first-band approximation consisting in disregarding
the excited bulk states. In general we expect this approximation to become more accurate with
decreasing film thickness, as the energy splitting of the subbands in a naive infinite-well model
goes as m−1`−2, with m the effective mass of the particle. Even so, in the particular case of Bi2Se3
the effective masses are relatively small, as can be checked by diagonalizing (2.7) as a function
of kz at the 2D Γ point; this yields bands that are rather flat at the origin. For this reason, it
is not entirely clear a priori that the physics of an interacting system should play out almost
exclusively in this subspace. However, let us particularize to our problem of interest, namely
that of finding bound electron-hole eigenstates of a certain interacting two-body Hamiltonian.
The interaction potential between the two particles will induce transitions between energy
levels whose splitting is smaller than their binding energy, which is the characteristic energy
available for the exchange of a virtual photon. Hence, we expect the effect of bands whose
energy differs from that of the first band by an energy larger than the exciton binding energy to
be negligible. This gives a quantitative way of checking the correctness of our approximation a
posteriori: it will be valid whenever the obtained binding energies are smaller than the splitting
of the n = 1 and n = 2 states of Table 2.2.

On another note, we must mention that we have also quietly neglected transitions between
the first conduction and valence bands and the surface states. Of course, a global tight-binding
Hamiltonian would need to include a hopping term between these subspaces. However, we
have neglected this term in view of the fact that it depends on the overlap of wave functions.
Since the surface states are localized at both sides of the sample, while the bulk wave functions
are maximized around the middle, this overlap is expected to be small. This is precisely the
statement that the surface states are robust: their strong coherence makes hopping to other
states unlikely.

2.5 Analysis of the bulk Hamiltonian

In this section we study the physics behind our newly obtained effective bulk Hamiltonian. We
will first give expressions for the energy bands and eigenstates, and then we will give a careful
explanation of the nontrivial topological properties that it gives rise to.

2.5.1 Band structure and eigenstates

The Hamiltonian (2.26) can be straightforwardly diagonalized and gives the eigenenergies

εc,v(k) = ε0(k)±
√

M(k)2 + A2
2|k|2 . (2.27)

Each of these is doubly degenerate due to the fact that H(k) contains two uncoupled subspaces
with equal eigenvalues. These subspaces have a well-defined spin-orbit parity (either +1 or −1),
which is defined as the eigenvalue of σz ⊗ τz. Note that the operators τi are now understood to
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2.5. Analysis of the bulk Hamiltonian

act on the hybridized Bi+ and Se− orbitals, so that nothing changes in practice. The dispersions
are shown in Fig. 2.3, where we have also included the Dirac cone corresponding to the topolog-
ical surface states. In particular, we note that the bulk bands of our effective model reproduce
the expected band inversion around the Γ point.

The physical origin of the double degeneracy of each band is the presence of both time-
reversal symmetry and inversion symmetry [88]. Under time reversal, k → −k and σ → −σ
(where in this case σ represents the spin-orbit parity) and therefore εσ(k) = ε−σ(−k). On the
other hand, inversion sends k → −k but leaves σ unchanged, and thus εσ(k) = εσ(−k). The
combination of both requirements leads to εσ(k) = ε−σ(k), and hence every band is doubly
degenerate for arbitrary values of k.

We denote the eigenstates of H(k) by |χα
k〉, with α ∈ {c, v} ∪ {+,−}. Here, c and v stand

for the conduction and valence bands, respectively, and the sign corresponds to the spin-orbit
parity. A convenient basis of eigenstates is given explicitly by

∣∣χv,+
k

〉
=

1√
1 + k2 f (k)2


− f (k)k−

0
0
1

 ,
∣∣χv,−

k

〉
=

1√
1 + k2 f (k)2


0
1

− f (k)k+
0

 , (2.28a)

∣∣χc,+
k

〉
=

1√
1 + k2 f (k)2


1
0
0

f (k)k+

 ,
∣∣χc,−

k

〉
=

1√
1 + k2 f (k)2


0

f (k)k−
1
0

 , (2.28b)

where we have defined

f (k) ≡ A2

M(k) +
√
M(k)2 + A2

2k2
, with k ≡ |k| . (2.29)

Note that the states as we have defined them are well-behaved for any value of k; in particular
they are nonsingular at k = 0 since M > 0. On another note, their inner products satisfy〈

χc,s
k

∣∣χc,s
q
〉
=
〈
χc,−s

k

∣∣χc,−s
q
〉∗

=
〈
χv,−s

k

∣∣χv,−s
q
〉
=
〈
χv,s

k

∣∣χv,s
q
〉∗ , (2.30a)〈

χc,s
k

∣∣χv,s
q
〉
=
〈
χc,−s

k

∣∣χv,−s
q
〉∗

= −
〈
χv,−s

k

∣∣χc,−s
q
〉
= −

〈
χv,s

k

∣∣χc,s
q
〉∗ , (2.30b)

where s ∈ {+,−}.

2.5.2 Topological properties

Let us now show that the effective two-dimensional bulk Hamiltonian (2.26) preserves the
topological properties of the original three-dimensional model. Note that, if we do not allow
for perturbations that break time-reversal symmetry, then it belongs to the symmetry class AII.
The Z2 topological invariant signals the existence of a quantum spin Hall phase.

To understand the topological nature of the Hamiltonian we begin by writing it as H(k) =
d(k) · Γ. Here we have defined d(k) ≡ (A2kx, A2ky,M(k)) and Γ ≡ (σx ⊗ τx, σy ⊗ τx, τz), where
the Kronecker products have been omitted. This reduces to two uncoupled Hamiltonians
H±(k) = d±(k) · σ in the two spin-orbit subspaces, with d±(k) ≡ (A2kx, A2ky,±M(k)). We
can therefore treat these Hamiltonians independently.

The topological properties of H±(k) can be traced back to the winding of the unit vector

n±(k) =
d±(k)
|d±(k)|

(2.31)
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Figure 2.3. Band structure of two-dimensional Bi2Se3 around the Γ point of the Brillouin zone. Both the
bulk conduction and valence bands are shown, as well as the gapless Dirac cones corresponding to the
topologically protected surface states. The origin of energy corresponds to the Fermi level of undoped
Bi2Se3. Note that the dispersions are isotropic in the employed k · p approximation, and that the bulk
bands do not follow the usual parabolic dispersion relation. Instead, they display band inversion and
an avoided crossing of the uncoupled states, which are represented with dashed lines. The conduction
and valence band are each doubly degenerate due to the combined effect of inversion symmetry and
time-reversal symmetry.

around the unit sphere as we move around the Brillouin zone. Note that this is well-defined
everywhere in the Brillouin zone because the Hamiltonian is gapped for all momenta whenever
M 6= 0 and A2 6= 0, which is assumed henceforth. We can compute the corresponding winding
number with the expression introduced in Sec. 1.1.2, that is,

w± =
1

4π

�
BZ

d2k n± ·
(

∂n±
∂kx

× ∂n±
∂ky

)
. (2.32)

Computing the integrand gives

n± ·
(

∂n±
∂kx

× ∂n±
∂ky

)
= ± A2

2(M + B2k2)[
(M − B2k2)2 + A2

2k2
]3/2 . (2.33)

This must be integrated over our infinite Brillouin zone, yielding

w± = ±1
2
(sgn M + sgn B2) . (2.34)

There is a nontrivial winding whenever the signs of M and B2 agree. In this regime, the
Hamiltonian describes a QSH phase, and thus has a nontrivial Z2 topological invariant. When
the signs of M and B2 are opposite, the Hamiltonian describes a topologically trivial phase.
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This agrees with the discussion of Refs. [35, 70], where the presented QSH Hamiltonians are
(up to a unitary transformation) identical to our effective bulk Hamiltonian.

Even though the full Hamiltonian H(k) is time-reversal invariant, the two blocks H±(k)
individually break the time-reversal symmetry. Hence, they belong to the symmetry class
AIII and can be classified according to a Z topological invariant. We have seen that this
invariant corresponds to the Chern number of the eigenstates. Computing this quantity for
the eigenstates in (2.28) gives

Cc,s = −Cv,s =
s
2
(sgn M + sgn B2) , (2.35)

where s ∈ {+,−}. The detailed calculation of these Chern numbers can be found in App. 2.A,
where we also give an expression for the corresponding Berry curvatures. Again, we are led
to the conclusion that a topologically nontrivial phase arises when M and B2 have the same
sign.

Let us clarify, in passing, how the Z and Z2 topological invariants are related to each other.
As discussed in Ref. [37], the bulk Chern number of each 2× 2 block gives the number of chiral
edge modes (counterclockwise minus clockwise) present at the boundary of a finite sample1.
On the other hand, as explained in Sec. 1.2.4, the Z2 topological invariant dictates whether
there is an even or an odd number of Dirac cones at the edge. In the nontrivial regime we
have obtained Chern numbers of ±1 for the filled bands of the block Hamiltonians, so there is
always an extra chiral mode in each direction. The nontrivial Z2 invariant tells us that there is
an odd number of Dirac cones. Since our Hamiltonian is two-dimensional, a Dirac “cone” in
this case just corresponds to two oppositely moving modes that intersect linearly. These two
modes are precisely the additional chiral states described by the unit Chern numbers.

1Note that here we are referring to the hypothetical boundary of a two-dimensional sample, and not to the top
and bottom surfaces. Our nanosheets will always be assumed to be very large in the xy-directions, so the edge
modes discussed in this paragraph will never play a role in the remainder of this work.
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Appendices

2.A Berry curvature and Chern number of the eigenstates

In this section we compute the Chern number of the bulk eigenstates |χα
k〉, which is well-

defined whenever the energy gap does not close anywhere in the Brillouin zone. As shown
in Fig. 2.3, this is the case for our model parameters of interest. We give the relevant steps for
the state |χc,+

k 〉; the rest can be computed in a similar fashion. Firstly, we have

∂

∂kx
|χc,+

k 〉 =
[

kx

k
∂h
∂kx

, 0 , 0 , − kxk+
k

∂g
∂k

+ g(k)
]T

, (2.36a)

∂

∂ky
|χc,+

k 〉 =
[

ky

k
∂h
∂kx

, 0 , 0 ,
kyk+

k
∂g
∂k

+ ig(k)
]T

, (2.36b)

where g(k) ≡ f (k)[1 + k2 f (k)2]−1/2 and h(k) ≡ [1 + k2 f (k)2]−1/2. Then the Berry curvature
reads

Ω(c,+)
xy (k) = 2 Im

〈
∂kx χc,+

k

∣∣∂ky χc,+
k

〉
= 2g(k)2

[
1 + k

∂

∂k
log g(k)

]
. (2.37)

By using the explicit form of g(k), one finds

Ω(c,+)
xy (k) =

2k f (k)2[
1 + k2 f (k)2

]2
∂

∂k
log [k f (k)] . (2.38)

For the rest of the states, one finds Ω(c,−)
xy = −Ω(c,+)

xy and Ω(v,s)
xy = −Ω(c,s)

xy , with s ∈ {+,−}. The
Chern number for each band must be computed from

Cα =
1

2π

�
d2k Ω(α)

xy (k) , (2.39)

where the integral in this case runs over all space because in our continuous model the bound-
aries of the Brillouin zone have been sent to infinity. That is,

Cc,+ =

� ∞

0
dk

2k2 f (k)2[
1 + k2 f (k)2

]2
∂

∂k
log [k f (k)] . (2.40)
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2.A. Berry curvature and Chern number of the eigenstates

The integral can be done by the change of variable u(k) = 1 + k2 f (k)2, because

du = 2k f (k)
∂

∂k
[k f (k)] = 2k2 f (k)2 ∂

∂k
log [k f (k)] . (2.41)

Then we simply find

Cc,+ =

� u(∞)

u(0)

du
u2 . (2.42)

Everything we have done so far is completely general and holds for arbitrary values of the
model parameters, provided there is always a nonzero gap between the valence and conduction
bands. The Chern number ultimately only depends on the values of u(0) and u(∞). These
limits must be taken with care. We recall that

f (k) =
A2

M(k) +
√
M(k)2 + A2

2k2
, (2.43)

where M(k) = M − B2k2, and note that the sign of A2 is unimportant because u(k) only
depends on f (k)2. The only requirement is A2 6= 0 in order to be in the insulating regime.
One now may verify the following table:

M > 0 M < 0
B2 > 0 u(0) = 1, u(∞) = ∞ u(0) = ∞, u(∞) = ∞
B2 < 0 u(0) = 1, u(∞) = 1 u(0) = ∞, u(∞) = 1

It immediately follows that the Chern number vanishes when MB2 < 0. By contrast, Cc,+ = +1
when M > 0, B2 > 0, and Cc,+ = −1 when M < 0, B2 < 0. In our model, the former is the
relevant case. A similar procedure yields Cc,− = −Cc,+ and Cv,s = −Cc,s. We can summarize the
results as

Cc,s = −Cv,s =
s
2
(sgn M + sgn B2) . (2.44)

Note that ∑s Cv,s = 0 as expected from the fact that the total Hamiltonian has time-reversal
symmetry and inversion symmetry, so that the sum of Berry curvatures of all occupied bands
vanishes [30]. Similarly, the result Cv,s = −Cc,s follows from the fact that the total Berry
curvature vanishes separately for each of the irreducible blocks that make up the total Hamil-
tonian [89, Ch. 4]. We see that the nonzero Chern numbers arise whenever MB2 > 0. This is
precisely the case for which there exists a band inversion. In this regime the insulator is in a
topologically nontrivial phase, in agreement with Ref. [35]. By continuously modifying one of
the parameters, either M or B2, the gap eventually closes, and it reopens with the insulator in a
trivial state. This corresponds to a topological phase transition.
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3
Excitons in Bi2Se3

Now that we have obtained a low-energy model describing the physics of noninteracting
particles, we will begin our treatment of excitons by adding the electromagnetic interaction
between electrons and holes. We will first solve for the exciton dispersions and wave functions
for arbitrary values of the total quasiparticle momentum. The features of the exciton spectrum
in topological Bi2Se3 will be explained analytically and compared with the situation in a trivial
insulator. We will also check our first-band approximation introduced in the previous chapter
and verify that our approach is self-consistent. Finally, an effective low-energy model for
excitons will be derived and used to elucidate the topological properties of the excitonic band
structure.

3.1 Electrons and holes

So far we have cast the eigenstates in terms of conduction and valence states. However, in
many applications it will be useful to work in the physically equivalent electron-hole picture
(note that here the term electron refers exclusively to conduction electrons). Mathematically, the
transformation of one picture to the other is simple, yet slightly subtle for holes. To understand
it precisely it is best to consider the problem in the second-quantized formalism. The field
operators in the conduction-valence picture are written as [90, Ch. 6]

ψ̂i,σ
c (x) = ∑

k,s
ĉk,s χi,σ

k; c,s(x) , (3.1a)

ψ̂i,σ
v (x) = ∑

k,t
v̂k,t χi,σ

k;v,t(x) , (3.1b)

where ĉ and v̂ are the annihilation operators of conduction and valence electrons, respectively.
The indices i ∈ {Bi+, Se+} and σ ∈ {↑, ↓} denote our (hybridized) orbital and spin states,
respectively. The single-particle wave functions are defined as

χi,σ
k;α(x) ≡ 〈x; i, σ|k; α〉 = eik·x

√
V
〈i, σ|χα

k〉 , (3.2)

41



3.2. Exciton states

where the states |χα
k〉 are given in Eqs. (2.28). On the other hand, we may write down the field

operators in the electron-hole picture as

ψ̂i,σ
e (x) = ∑

k,s
êk,s χi,σ

k; e,s(x) , (3.3a)

ψ̂i,σ
h (x) = ∑

k,t
ĥk,t χi,σ

k; h,t(x) , (3.3b)

where ê and ĥ are the annihilation operators of (conduction) electrons and holes, respectively.
The key point now is that creating a hole at position x in the spin-orbit state (i, σ) is equivalent
to destroying a valence electron at the same position and state. Hence, ψi,σ

v (x) must be identified
with ψ̂i,σ

h
†(x). Furthermore, the hole that is created must have opposite momentum to that of

the destroyed electron, so v̂k,t is identified with ĥ†
−k,t. Then, it follows that the valence-electron

and hole wave functions are related through

〈x; i, σ|k; h, t〉 = 〈x; i, σ|−k; v, t〉∗ = eik·x
√

V
〈χα

−k|i, σ〉 . (3.4)

On the other hand, the electron states remain unchanged with respect to the conduction-valence
picture.

3.2 Exciton states

Consider an electron and a hole at positions re and rh and with momenta ke ≡ Q/2 + k and
kh ≡ Q/2 − k, respectively, bound into an exciton with total momentum Q. Here, k is a
relative momentum between the two particles. The real-space coordinates conjugate to Q and
k are denoted by R and r, respectively. The following relations are satisfied:

Q = ke + kh , k =
ke − kh

2
, (3.5a)

R =
re + rh

2
, r = re − rh . (3.5b)

Note that we make no attempt to use the center-of-mass coordinate system because the electron
and hole masses are not well-defined due to the band inversion. The equations above are
acceptable because they preserve the canonical commutation relations in the operator language,
[ri, k j] = [Ri, Qj] = iδij.

Since the two particles interact with each other, their relative momentum k will not be
conserved and only Q will be a constant of the motion. A general exciton state is then a
superposition of states with all possible k. Let us assume for the moment that the electron
and the hole have well-defined spin-orbit parities s and t, respectively. A generic exciton state
with total momentum Q can then be written as

|Q; s, t〉 = 1√
V

∑
k

ΦQ; s,t(k) ê†
Q/2+k, s ĥ†

Q/2−k, t |G〉 . (3.6)

Here, |G〉 denotes the neutral semiconductor ground state, which is killed by the annihilation
operators of both holes and conduction electrons. Also, ΦQ;s,t(k) is the relative electron-hole
wave function, whose determination is one of the objectives of this chapter. As we will see
in the next section, the interaction can also couple states with different spin-orbit parities, so
the true eigenstates of the full interacting problem will be linear combinations of the different
states |Q; s, t〉.
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3.3. Effective potential for the electron-hole interaction

We further note that, in reality, |Q; s, t〉 stands for an entire family of states that need to
be labeled by additional quantum numbers, since (in analogy to the hydrogen problem) there
will in general be many different solutions for the excitonic wave functions. For the moment,
however, we just leave this additional dependence implicit; later we shall introduce a notation
to label the individual states within these families.

3.3 Effective potential for the electron-hole interaction

Consider an exciton with total momentum Q and relative momentum k′. The band structure
of Bi2Se3 modifies the interaction, V, between the electron and the hole. These may scatter
into a new state with relative momentum k. Note, however, that the total momentum Q
is conserved. To lowest order, this effect is captured by the following direct and exchange
Feynman diagrams:

Q/2 + k′, s′ Q/2 − k′, t′

Q/2 + k, s Q/2 − k, t

Q/2 + k′, s′ Q/2 − k′, t′

Q/2 + k, s Q/2 − k, t

Evaluating them (cf. App. 3.A for a detailed calculation) gives the matrix elements for the
effective interaction. The contribution to the scattering amplitude of the direct and exchange
diagrams reads, respectively,

VD
s,t;s′,t′(Q; k, k′) = δss′δtt′V(k − k′)〈χc,s

Q/2+k|χ
c,s
Q/2+k′〉〈χv,t

−Q/2+k′ |χv,t
−Q/2+k〉 , (3.7a)

VX
s,t;s′,t′(Q; k, k′) = δstδs′t′V(Q)〈χc,s

Q/2+k|χ
v,s
−Q/2+k〉〈χ

v,s′
−Q/2+k′ |χc,s′

Q/2+k′〉 . (3.7b)

Here, V(q) stands for the bare electrostatic momentum-space interaction between electrons
and holes within the nanosheet. In the low-momentum regime q → 0 we always expect the
potential to acquire the usual two-dimensional Coulomb form, proportional to q−1. One may
verify that the inner products in Eq. (3.7b) tend to zero linearly with Q, and thus the exchange
interaction always vanishes at Q = 0.

Which precise form to choose for the interaction potential for larger momenta is a quite
nontrivial question. Even though the topology of the problem will be unaffected by the partic-
ular choice of V, the numerical values of, e.g., exciton binding energies and radii may still be
greatly affected by it. For this reason, the next section presents a detailed discussion of typically
used approximations for the electron-hole interaction in semiconductor nanosheets.

3.3.1 Discussion of the interaction potential

Consider a thin semiconducting layer of thickness ` occupying the region −`/2 ≤ z ≤ `/2.
The film possesses a bulk dielectric constant εd in the direction parallel to the substrate, and the
surrounding environment has a dielectric constant εs < εd. Then the electrostatic interaction
energy between two charges e and −e located at points (r, z) and (0, z′) (with r the in-plane
coordinates and z ≥ z′) is given by the Rytova-Keldysh (RK) potential [91],

VRK(r; z, z′) = − e2

ε0εd

�
d2k
(2π)2 e−ik·r cosh

[
k(`/2 − z) + η

]
cosh

[
k(`/2 + z′) + η

]
k sinh

[
k`+ 2η

] , (3.8)
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3.3. Effective potential for the electron-hole interaction

where

η =
1
2

log
(

εd + εs

εd − εs

)
. (3.9)

When εs � εd and ` � r, the Rytova-Keldysh potential reduces to the so-called Struve-
Neumann (SN) potential, which reads

VSN(r) = − e2

4ε0εd`

[
H0

(
2εs

εd

r
`

)
− Y0

(
2εs

εd

r
`

)]
. (3.10)

Here, Y0 is the Bessel function of the second kind (also called the Neumann function) and H0 is
the Struve function. Note that, rather confusingly, the Struve-Neumann potential is sometimes
also called the Rytova-Keldysh potential in the literature [92, 93]. For even larger distances,
r � (εd/2εs)`, this potential further reduces to the Coulomb potential with the permittivity of
the surrounding medium,

VC(r) = − e2

4πε0εsr
. (3.11)

Physically, this is to say that in this large-thickness limit the electric field lines connecting both
charges lie mainly outside of the nanosheet.

In momentum space, the Struve-Neumann potential is

VSN(k) = − e2

2ε0εs

1
k
[
1 + (εd/2εs)`k

] (3.12)

and the Coulomb potential is

VC(k) = − e2

2ε0εsk
. (3.13)

Note that these potentials arise from purely classical considerations. Thus, they accurately
capture the behavior of the involved particles at long distances. At short distances, however,
the effects of quantum confinement become important and the resulting effective potential may
significantly differ from that given by Eq. (3.8). These effects will be irrelevant if the obtained
exciton radii are indeed within the regime of validity of the SN potential.

We have performed the subsequent numerical calculations with both the Struve-Neumann
potential and the Coulomb potential. We have chosen the relative permittivity εs = 6, which is
a typical low value for the environment [94]. The bulk dielectric constant has been set to εd = 28
in accord with recent first-principles studies of rhombohedral Bi2Se3 in the near-infrared region
[95, 96]. Furthermore, we use e2/ε0 = 18.0951 eV nm everywhere. Once the excitonic wave
functions corresponding to these potentials have been determined, the characteristic exciton
size can be found for each bound state by calculating the mean squared diameter, a0 ≡

√
〈r2〉.

This average distance between the electron and the hole can then be compared with the length
scales corresponding to the regimes of validity of both potentials. In this manner, the accuracy
of our calculations may easily be checked a posteriori.

Our findings, reported in the following sections, indicate that the long-distance Coulomb
potential is not a good approximation, as the exciton diameters of the lowest-lying states
are actually smaller than the chosen thickness of the nanosheet. Nevertheless, the tightly
bound exciton states resulting from the use of the bare Coulomb interaction allow us to clearly
visualize the effects of the topology, as discussed in Sec 3.8. Furthermore, the results obtained
with the use of the Struve-Neumann potential also a priori seem to indicate that this potential
is again not a satisfactory approximation, as the exciton radii are comparable or just slightly
larger than the slab thickness. Nevertheless, the validity of the calculations is restored by a
coincidence reported in Ref. [97], which provides a detailed study on the effects of quantum
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3.4. The exciton eigenvalue problem

confinement in semiconductor nanosheets. It is found that, both for small and large momenta,
the classical Struve-Neumann interaction very closely resembles the Rytova-Keldysh potential
with quantum-confinement effects included. In other words, even though the bare RK and SN
potentials start to differ significantly in the regime k` > 1, corrections introduced to the RK
interaction by quantum confinement make it similar to the SN interaction even for k` > 1,
as can be appreciated in Fig. 7 in the article. We stress that this is a coincidence with no
meaningful physical interpretation, but it makes our predictions valid, at least in the context
of the first-band approximation of Sec. 2.4, as our lowest conduction and valence probability
densities resemble that of the infinite-well ground state considered in the paper. Indeed, we
have checked that for Q = 0 the differences between exciton binding energies resulting from
using the SN and the quantum-confined RK potentials are of the order of 1 meV, whereas the
binding energies themselves are of the order of 15–25 meV. In any case, the soundness of the
results obtained with the SN interaction must ultimately be checked by comparing the exciton
binding energies with the splitting of the bulk subbands, as explained in Sec. 2.4.1.

Another important question is that of screening, by which the bulk interaction potential
may be modified due to the creation and annihilation of virtual electron-hole pairs. We have
opted to neglect this effect in the numerical calculations of this chapter, which can be partially
motivated as follows. We expect the screening to be caused mainly by the virtual excitation of
surface particles, whose dispersion forms a gapless Dirac cone. By contrast, the contribution
of virtual bulk electron-hole pairs should be heavily suppressed in view that the bulk of Bi2Se3
is insulating with an energy gap Eg

1. However, the so-called Thomas-Fermi momentum, corre-
sponding to the inverse of the characteristic screening length, should be proportional to the
density of states at the Fermi level for low frequencies [98, Ch. 2]. Since this vanishes at
the Dirac point, we expect no important contribution to the screening arising from the direct
diagram in Sec. 3.3 if the chemical potential is tuned appropriately. Assuming that this is the
case, it is correct to disregard the screening of the direct interaction in first approximation.
On the other hand, however, the dominant frequency contribution to the exchange diagram
takes place at the total exciton energy. In this case we cannot expect the low-frequency limit to
hold and there will be in principle a screening contribution, as interband (valence-conduction)
transitions of surface electrons are possible even when the chemical potential is located at
the Dirac point. Nevertheless, the exchange interaction vanishes for Q → 0, and thus this
effect is not important around the Γ point. For larger values of Q, we have to resort to an a
posteriori justification of the perturbative nature of the corresponding screening effects. In Ch. 4
we shall calculate the total energy shift in perturbation theory and discuss the validity of this
approximation.

3.4 The exciton eigenvalue problem

We are now interested in finding the exciton states that diagonalize the Coulomb problem
with both direct and exchange interactions present. The most general exciton state with total
momentum Q is written as∣∣ΨQ

〉
=

1√
V

∑
k,s,t

ΦQ; s,t(k) ê†
Q/2+k, s ĥ†

Q/2−k, t |G〉 . (3.14)

Note that the coefficients of the linear combination of individual states |Q; s, t〉 have been
absorbed into the wave functions. The expected value of the full two-body Hamiltonian in

1Quantitatively, the probability of excitation of bulk electron-hole pairs will be a factor of exp(Eg/kBT) smaller
than that of surface pairs. This only becomes of order unity around kBT ∼ Eg ≈ 0.22 eV for bismuth selenide,
corresponding to T ∼ 2500 K, way above our temperature scales of interest.
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the exciton state
∣∣ΨQ

〉
is

〈
ΨQ
∣∣Ĥ ∣∣ΨQ

〉
=

1
V ∑

k,k′
∑
s,s′

∑
t,t′

Φ∗
Q; s,t(k)〈Q, k; s, t|H|Q, k′; s′, t′〉ΦQ; s′,t′(k

′) , (3.15)

where the Hamiltonian matrix elements read

〈Q, k; s, t|H|Q, k′; s′, t′〉 =
[
εc(Q/2 + k)− εv(Q/2 − k)

]
δk,k′δs,s′δt,t′

+
1
V
[
VD

s,t;s′,t′(Q; k, k′)− VX
s,t;s′,t′(Q; k, k′)

]
. (3.16)

Note that the minus sign in front of εv comes from the fact that the energy of a hole is opposite of
that of the corresponding electron2. Again, we note that |ΨQ〉 in Eq. (3.14) must be understood
as a whole family of states that solve the exciton problem, which need to be labeled with
additional quantum numbers that we have omitted for the sake of brevity.

The exciton eigenvalue problem is now obtained by minimizing the following energy func-
tional with respect to the wave functions ΦQ; s,t, which are taken as the variational parameters:

F [Φ] =
〈
ΨQ
∣∣Ĥ ∣∣ΨQ

〉
− εQ

〈
ΨQ
∣∣ΨQ

〉
. (3.17)

Here we have added a Lagrange multiplier in order to account for the normalization condition
〈ΨQ

∣∣ΨQ〉 = 1
V ∑k,s,t |ΦQ; s,t(k)|2 = constant. This leads to a Bethe-Salpeter equation (BSE):

∑
k′,s′,t′

〈Q, k; s, t|H|Q, k′; s′, t′〉ΦQ; s′,t′(k′) = εQ ΦQ; s,t(k) . (3.18)

In general, our exciton eigenstates |ΨQ〉 are linear combinations of the basis states |Q; s, t〉. The
problem can be greatly simplified by noting that the two states with s 6= t are not coupled by
the exchange interaction, nor are they coupled to the subspace spanned by the states with s = t.
Hence, |Q;+,−〉 and |Q;−,+〉 are eigenstates of the Hamiltonian, and the BSE can be solved
in the subspaces spanned by these individual states. Furthermore, the properties in Eq. (2.30)
imply that

VD/X
s,t;s′,t′(Q; k, k′) = VD/X

−s,−t;−s′,−t′(Q; k, k′)∗, (3.19)

so the two states with s 6= t are degenerate in energy for any Q and ΦQ;+−(k) can be identified
with Φ∗

Q;−+(k). On the other hand, the states |Q;+,+〉 and |Q;−,−〉 are coupled by the
exchange interaction, so the BSE must be solved in this larger subspace. Nevertheless, for small
Q the inner products in Eq. (3.7b) tend to zero linearly with Q, so |0;+,+〉 and |0;−,−〉 are
degenerate eigenstates of the Hamiltonian, again with Φ0;++(k) = Φ∗

0;−−(k) up to an arbitrary
phase.

To numerically solve the problem, the wave functions ΦQ; s,t(k) are written as a Fourier-
series expansion,

ΦQ; s,t(k) = ∑
m

Φ(m)
Q; s,t(k)eimφk . (3.20)

Here, φk is the angle between k and the x-axis, which will simply be denoted by φ when there
is no risk of confusion. The full exciton problem then reads

∑
m′

[
K(m,m′)(Q; k)Φ(m′)

Q; s,t(k) + ∑
s′,t′

� ∞

0

dk′

2π
k′V (m,m′)

s,t;s′,t′ (Q; k, k′)Φ(m′)
Q; s′,t′(k

′)

]
= εQ Φ(m)

Q; s,t(k) , (3.21)

2Strictly speaking, this is only the case when the chemical potential coincides with the zero of energy. Since in
the previous section we have assumed a shift in the chemical potential so that it coincides with the Dirac point, we
take this as our new origin of energy.
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where we have defined

K(m,m′)(Q; k) =
� 2π

0

dφ

2π
e−i(m−m′)φ

[
εc(Q/2 + kφ)− εv(Q/2 − kφ)

]
, (3.22a)

V (m,m′)
s,t;s′,t′ (Q; k, k′) =

� 2π

0

dφ

2π

� 2π

0

dφ′

2π
e−imφeim′φ′(

VD − VX)
s,t;s′,t′(Q; kφ, k′

φ′), (3.22b)

with kφ ≡ (k cos φ, k sin φ) and k′
φ′ ≡ (k′ cos φ′, k′ sin φ′).

3.4.1 The case φQ = 0

When solving the problem numerically we choose Q along the x-direction, i.e., Q = Qx̂. When
Q forms a nonzero angle φQ with the x-axis the problem can be studied analytically with
knowledge about the case with φQ = 0, as will be done in the next section. For φQ = 0,
the potentials satisfy the property

VD/X
s,t;s′,t′(Qx̂; kφ, k′

φ′) = VD/X
s,t;s′,t′(Qx̂; k−φ, k′

−φ′)∗, (3.23)

which implies that the matrix elements V (m,m′)
s,t;s′,t′ (Qx̂; k, k′) are all real (cf. App. 3.C). The same

holds for K(m,m′)(Qx̂; k), as for zero φQ the imaginary part of the integrand in (3.65a) is odd
in φ. It follows that the Hamiltonian matrix in (3.64) is real and Hermitian. Thus, the Fourier
coefficients Φ(m)

Qx̂; s,t(k) that diagonalize the problem can all be simultaneously chosen as real3.

3.4.2 The case φQ 6= 0

The topological properties of the excitonic states can only be determined with knowledge about
the states on the entire Q-space, since we need knowledge about the states for arbitrary Q in
order to compute the Berry connection and curvature. This means that solving the problem
for Q = Qx̂ is not enough to discuss the topology and we need to study the general problem
in which Q forms a nonzero angle φQ with the x-axis. A careful analysis is carried out in
App. 3.D, where we also give relations between the wave functions at zero and nonzero φQ.
The most important conclusion is that the excitonic eigenstates split into two doublets, |Q; 0±〉
and |Q; 2±〉, given by

|Q; 0±〉 =
1√
2

(
|Q;+,−〉 ± |Q;−,+〉

)
, (3.24a)

|Q; 2±〉 =
1√
2

(
e−iφQ |Q;+,+〉 ± eiφQ |Q;−,−〉

)
. (3.24b)

In these, the convention is that the wave functions contained in |Q;+,−〉 and |Q;−,+〉 are
complex conjugates of each other, and similarly for those in |Q;+,+〉 and |Q;−,−〉. Due to the
combined phase factors e±iφQ , the members of the doublet |Q; 2±〉 have chirality two. We can
define a spin-orbit-parity pseudospin operator σ ≡ (σx, σy, σz) that acts on the space spanned
by |Q;+,+〉 and |Q;−,−〉. Its expected value for the states |Q; 2±〉 is

〈σ〉± = ± cos 2φQ x̂ ± sin 2φQ ŷ . (3.25)

The corresponding pseudospin texture is sketched in Fig. 3.1. We see that it has a winding
number of 2 around Q = 0, analogously to the valley pseudospin in Ref. [100].

3Actually, the integration measure slightly modifies the Hermiticity property to H(m)(k, k′) = (k′/k)H(m)(k′, k)∗

[99], but this does not invalidate the conclusion because it is merely an artifact of the continuum limit.
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Note that the wave functions in |Q; 2+〉 are in general different from those in |Q; 2−〉. This
is to say that the states |Q;+,+〉 and |Q;−,−〉 are not actually well-defined on their own in
the presence of an exchange interaction, which couples them and modifies them. However, the
expressions above still make sense for small Q, and more generally if we take into account that
the wave functions depend on the eigenstate itself.

Figure 3.1. Orientation of the spin-orbit pseudospin vector σ for the states |Q; 2+〉 (left) and |Q; 2−〉
(right) as the polar angle φQ varies from 0 to 2π. The pseudospin winds twice around itself in this
process.

3.5 Solution of the Bethe-Salpeter equation

In this section we discuss the solutions to the BSE (3.64). The numerical method we have
employed is based on Ref. [99]; a brief overview is given in App. 3.B. We have only considered
angular momenta |m| ≤ 3 after verifying that higher-m corrections do not play any significant
role for the low-lying states.

3.5.1 Labeling of the eigenstates

Before discussing the results, let us introduce a notation to label the different individual states
within the families |Q; 2±〉 and |Q; 0±〉 belonging to the subspaces with s = t and s 6= t,
respectively. It will be enough to specify two additional quantum numbers in order to identify
them unambiguously: a principal quantum number n ∈ {0, 1, 2, . . .}, and the azimuthal angular
momentum m at Q = 0, which can be chosen to satisfy m ∈ {−n, . . . , 0, . . . , n}. In this way,
the states are labeled in the same way as the orbitals of the 2D hydrogen problem [101]. The
number m is well-defined due to the rotational invariance of the problem at zero momentum.
Away from Q = 0 the states are labeled in the same way by connecting them to their zero-
momentum counterparts. This can be done unambiguously for the subspaces with s = t and
s 6= t, as the kinetic matrix couples all angular momenta and thus there exist no level crossings
within each subspace. We can now label individual states as |Q; 2±; n, m〉 and |Q; 0±; n, m〉.

In practice, we first identify m from the numerically obtained momentum-space wave func-
tions and then assign a value of n that conforms to the rule above4. The number of nodes of
the radial wave function is n − |m|+ (1 − δm,0) in the case of the hydrogen atom. Because we
are only interested in the low-lying states, we have not obtained enough excited states to verify
if this is also the case for topologically nontrivial Bi2Se3. However, we find that the ordering
is completely different from that of the hydrogen spectrum, which goes as −

(
n + 1

2

)−2. For
instance, the 1s state has a higher energy than the 1p, 2d and 3 f states.

4It is worth mentioning that some care must be taken when doing this. The gauge freedom |χα
q〉 → eiζα(q)|χα

q〉 of
the single-particle eigenstates shifts the interaction in the mth channel to the (m + w)th channel in the transformed
basis, where w is the winding number of ζα(q) [102]. Therefore, one ought to be careful when labeling exciton
states with their azimuthal angular momentum. The ambiguity disappears when demanding that the single-particle
eigenstates be nonsingular at q = 0, which is indeed the case for the states of Eq. (2.28) [103].
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3.5.2 Exciton energy spectrum

Fig. 3.2 shows the dispersions of the excitonic eigenstates arising from the BSE. The two plots
correspond to the results obtained by using the Coulomb and Struve-Neumann potentials. The
different colors label the absolute value of the azimuthal angular momentum m at Q = 0. The
solid, dashed and dotted lines correspond to states pertaining to the families |Q; 2+〉, |Q; 2−〉,
and |Q; 0±〉, respectively.

The upper magenta region in both figures is the electron-hole continuum, that is, the region
without bound electron-hole states. It can be obtained numerically by completely switching off
the interaction between particles. For fixed Q, it is given analytically by the minimum value of
the energy gap

∆Q(k) ≡ εc(Q/2 + k)− εv(Q/2 − k) . (3.26)

We have obtained it through both methods. In the figures, the magenta solid line corresponds
to minimizing ∆Q and the magenta dashed line is the continuum obtained numerically by
keeping |m| ≤ 3. We have checked that the dashed line converges to the analytical curve upon
the inclusion of higher angular momenta.

Turning to the figures, the first thing to notice is the difference in behavior between the
ground states of the |Q; 2±〉 and |Q; 0±〉 families (i.e., the states |Q; 2±; 0, 0〉 and |Q; 0±; 0, 0〉)
around Q = 0, as the former one splits off into one linear mode and one quadratic mode.
This may be analytically understood by expanding the coupling term VX

++;−−(Q; k, k′) in the
effective potential around this point, which is further analyzed in Ref. [104]. By contrast, the
states within the |Q; 0+〉 family are always degenerate with those of the |Q; 0−〉 family, as we
have already mentioned in Sec. 3.4. Correspondingly, for every value of Q, each of the dotted
lines in the figures simultaneouly represents not one, but two states.

The effective 2× 2 Hamiltonian for the chiral doublets has been discussed in Refs. [100, 105,
106] and will be presented in Sec. 3.9. The energy of the low-lying |Q; 0±〉 doublets follows a
quadratic dispersion both at small and large momenta, with a crossover taking place around
the minimum of the electron-hole continuum, as the inversion of the bands after that has less
of an effect. Also, the energies of the higher excited states closely follow the electron-hole
continuum, because the excitons are more delocalized in real space and their corresponding
wave functions approach those of a separate electron-hole pair. We have checked that the
contribution of nonzero angular momenta is important and must be included, as it drives
the excitonic dispersion into a clear indirect regime. By contrast, solving the Bethe-Salpeter
equation with an ansatz of pure s-wave excitons gives a direct dispersion relation.

Another striking feature is the splitting between the +m and −m states at Q = 0 in the
sector s = t. This is clearly seen in the figures, where for m 6= 0 there are always two distinct
energy levels with equal |m|. We find that the lower one always has m < 0 and the higher
one has m > 0. Note that this is only the case for the states pertaining to the families |Q; 2±〉.
It does not happen for |Q; 0±〉, for which the zero-momentum states are fourfold degenerate
when |m| > 0. Since rotational symmetry alone would imply the degeneracy of the +m and −m
states at zero momentum, there must exist an additional mechanism producing the observed
splitting between these states. This is analyzed in Ref. [102], where it is found that the presence
of Berry curvature induces precisely such an energy difference between the +m and −m states.
The total Berry curvature is the sum of the electron and hole contributions, Ωs,t = Ωe,s + Ωh,t.
Note that all functions are evaluated at the momentum k in the case of interest Q = 0. In
App. 2.A we have determined that Ωc,s = −Ωv,s and Ωc,s = −Ωc,−s. While for fixed spin-orbit
parity the Berry curvature of the electron is the same as that of the conduction band, the Berry
curvature of the hole is minus that of the valence band. This can be seen from our discussion in
Sec. 3.1, where we established that the wave function for holes is the complex conjugate of that
of valence electrons, and by observing that the Berry curvature is the imaginary part of an inner
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Figure 3.2. Excitonic dispersion relation as a function of the total exciton momentum Q for a few low-
lying states as obtained for the bare Coulomb potential with εs = 6 (top) and for the Struve-Neumann
potential with εs = 6 and εd = 28 (bottom). Shown are the exciton states |Q; 0±〉 (dotted lines), |Q; 2+〉
(solid lines), and |Q; 2−〉 (dashed lines) for different values of m. In both cases the 1s state (not shown)
has higher energy than the 1p, 2d and 3 f states. In the subspace with s = t, the zero-momentum states
with m > 0 have larger energy than those with m < 0. This splitting arises due to Berry-curvature
effects. The magenta region at the top represents the electron-hole continuum, delimited by a solid
purple line resulting from minimizing the energy gap ∆Q(k). The purple dotted line represents the
ground state in the absence of interactions as calculated numerically by including angular momenta
|m| ≤ 3, and approaches the analytical electron-hole continuum when including higher values of m.
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3.5. Solution of the Bethe-Salpeter equation

product. It follows that the total Berry curvature is Ωs,t = Ωc,s + Ωc,t, which is only nonzero
when s = t. This explains the zero-momentum features of the different exciton states.

The precise manner in which the Berry curvature causes the splitting can be intuitively
understood by using the results of Refs. [107–109]. It is shown that, in the presence of an
electric field, the Berry curvature can cause an anomalous transverse velocity of the particles in
the nth band,

vn(k) = ∇k εn(k)− qE × Ωn(k) . (3.27)

Here, q is the charge of the particle, and we recall that Ωn(k) = ∇k ×An(k). The first term is
the usual expression for the group velocity of a particle in the nth band, whereas the second
one is the anomalous contribution. Consider now an exciton with zero total momentum and
nonzero angular momentum m. There is an electric field pointing from the positively charged
hole to the negatively charged electron. Since our problem is two-dimensional, the Berry-
curvature vector lies along the z-direction. When the Berry curvatures of the electron and the
hole are the same, the anomalous velocity points in the clockwise (counterclockwise) direction
for both particles if the Berry curvature points towards the positive (negative) z-direction.
Therefore the states with +m and −m will have different orbital velocities, resulting in an
energy splitting between the two. A sketch of the situation is shown in Fig 3.3. By contrast,
when the Berry curvatures of the electron and hole are opposite of each other, this effect is
canceled.

E

Ωh

Ωe

−eE ×Ωh

eE ×Ωe

Figure 3.3. Electron (red) and hole (blue) orbiting around each other in a bound state. The orbital
velocity is clockwise or counterclockwise depending on the sign of the angular momentum. When the
Berry curvatures point in the same direction, the anomalous velocities of both particles also point in the
same direction along the orbit. This produces an energy difference between states with opposite angular
momenta, as for one of them the orbital speed increases whereas for the other one it is reduced. Figure
adapted from Ref. [102].

3.5.3 Spectrum without band inversion

Interestingly, the behavior of the exciton dispersions strongly depends on whether or not the
material is in the topologically nontrivial inverted regime. We have repeated the Coulomb-
potential calculation in the trivial state by changing the sign of B2. As shown in Fig. 3.4, we find
dispersions which are quadratic in the total exciton momentum, just like we would expect in
normal semiconductors. The only exception is a slight linear dependence for the upper mode of
the s = t subspace, which reflects the aforementioned effect of the exchange interaction around
zero momentum. Furthermore, the energy spectrum for Q = 0 in each of the four distinct
spin-orbit subspaces is analogous to that of the two-dimensional hydrogen atom. The most
prominent feature of this spectrum is the accidental (2n + 1)fold degeneracy of the nth level,
which does not explicitly include the azimuthal quantum number m [101]. Since we have four
different combinations of s and t, in our case we obtain a 4(2n + 1)fold degeneracy for each
level (in practice, we numerically find splittings of the order of 0.1 meV). The binding energies
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∆ of the zero-momentum states satisfy the rule ∆n
∆n+1

= (n+3/2)2

(n+1/2)2 , which agrees with the spectrum
of the 2D hydrogen atom. For nonzero Q, the bands are still found to be almost degenerate,
especially for n 6= 0. This means that the effect of the exchange interaction is extremely weak
in the trivial regime and highlights its importance in a topological phase.
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Figure 3.4. Exciton dispersion relations in the trivial insulator phase as obtained for the bare Coulomb
potential with εs = 6. The states |0; 2±; n, m〉 and |0; 0±; n, m〉 with equal n are found to be degenerate at
the origin to an accuracy of ∼0.1 meV, and there are 4(2n + 1) states in each level. The binding energies
are proportional to

(
n + 1

2
)−2, which precisely matches the two-dimensional hydrogen problem. These

results imply that exchange and Berry-curvature effects are weak in comparison to the situation in a
topological phase. Once again, the magenta region represents the electron-hole continuum.

3.5.4 Wave functions and probability densities

Solving the BSE also provides us with the exciton momentum-space wave functions for each
value of Q. We show the Q = 0 Fourier coefficients of the eigenstates |0;+,+; 0, m〉 in Fig. 3.5,
where we have also indicated the binding energies of the corresponding excitons. In particular,
we highlight the significantly different behavior of the ground-state wave function compared
to that obtained from the hydrogen problem, which is proportional to (1 + a2

0k2)−3/2, with a0
the excitonic Bohr radius.

Furthermore, the momentum-space wave functions can be Fourier-transformed to obtain
their real-space counterparts and the corresponding probability densities. Figs. 3.6 and 3.7
show examples of the latter for the subspaces with s 6= t and s = t, respectively, for zero and
nonzero total exciton momentum. We note that the states |0; 0±〉 do not appear rotationally
invariant, but show hydrogen-like orbitals instead. Since at Q = 0 the states with +m and −m
within the s 6= t subspace are degenerate, it is possible to create linear combinations such that
the momentum-space wave functions are purely real, e.g.,

|0;+,−; n, x〉 =
1√
2

(
|0;+,−; n,−1〉+ |0;+,−; n,+1〉

)
, (3.28a)
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Figure 3.5. Fourier coefficients of the relative momentum-space exciton wave functions of the zero-
momentum states |0;+,+; 0, m〉 and |0;−,−; 0,−m〉 for several values of m as ordered in Fig. 3.2.
Again, the top figure corresponds to the Coulomb potential and the bottom one to the Struve-
Neumann potential. The wave functions themselves are obtained by multiplying the magnitude by
the corresponding phase eimφk . The wave functions have a maximum around the momentum at which
the energy gap ∆Q(k) presents a minimum. In particular, note that in the s-wave case (red line)
the wave function significantly differs from that of the two-dimensional hydrogen atom, which is
(8πa2

0)
1/2(1 + a2

0k2)−3/2 (grey dashed line, with a value of a0 = 10/
√

8π suitable for comparison).
The values Em shown in the figure correspond to the excitonic eigenenergies of the displayed states and
are measured with respect to the chemical potential. The quantities ∆m are the binding energies of each
state, that is, the difference between the electron-hole continuum and Em.
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|0;+,−; n, y〉 =
i√
2

(
|0;+,−; n,−1〉 − |0;+,−; n,+1〉

)
, (3.28b)

|0;+,−; n, x2 − y2〉 = 1√
2

(
|0;+,−; n,−2〉+ |0;+,−; n,+2〉

)
, (3.28c)

|0;+,−; n, 2xy〉 =
i√
2

(
|0;+,−; n,−2〉 − |0;+,−; n,+2〉

)
, · · · . (3.28d)

The different orbitals have been labeled analogously to the hydrogenic case. The same can be
done with the states |0;−,+; n, m〉. Then we can again form doublets |0; 0±〉, which this time
do not have a well-defined value of m, but do correspond to a well-defined orbital. This is not
possible for the sector with s = t, where the +m and −m states are split by the Berry curvature,
and consequently their probability densities are rotationally invariant.

Quite generally, we see that the effect of a nonzero exciton momentum is to deform the wave
functions due to the breaking of rotational symmetry. Since the longitudinal and transversal
directions are not equivalent, the probability densities show lobes in one of these directions.

3.6 Exciton diameters and validity of the first-band approximation

We have also computed the mean excitonic diameter for the low-lying states at zero total
momentum, which is a straightforward task once the real-space probability density is known.
The results are shown in Table 3.2 for both the Coulomb and Struve-Neumann potentials. We
recall that the Coulomb potential is only expected to be accurate in the regime r � (εd/2εs)`,
as explained in Sec. 3.3.1. Hence, in this case we must compare the obtained diameters with the
nanosheet thickness. Since we chose ` = 6 nm, we immediately see that the Coulomb potential
cannot reliably model the electron-hole interaction in this system. Indeed, the diameter of
the lowest-lying excitons turns out to be smaller than the nanosheet thickness, and the limit
r � (εd/2εs)` is not reached.

m 0 −1 +1 −2 +2 −3 +3
VC 2.74 4.21 5.32 6.33 7.61 9.04 9.76√

〈r2〉 (nm)
VSN 5.64 7.02 7.51 8.72 9.13 10.57 10.89

Table 3.1. Mean exciton diameters of the zero-momentum states |0;+,+; 0, m〉 and |0;−,−; 0,−m〉 as
obtained with the Coulomb and Struve-Neumann potentials with εs = 6 and εd = 28. In the case of the
Coulomb potential the radii must be compared to the film thickness, which is ` = 6 nm.

Even though this argument suffices to discard the validity of the Coulomb potential in the
treatment of this problem, the same cannot be said about the Struve-Neumann interaction. The
latter is in principle only valid for r � `, which only seems to be the case for the higher-lying
states. However, as we discussed in Sec. 3.3.1, the SN potential is very close to the quantum-
confined Rytova-Keldysh potential, which in any case is expected to be the most accurate
choice for the system under consideration. Therefore, a diameter smaller or of the order of
the nanosheet thickness is of no concern in the case of the SN potential.

Consequently, the validity of the Struve-Neumann potential is solely determined by the
procedure anticipated in Sec. 2.4.1. We must compare the binding energies of the excitons
with the splitting of the first two bulk subbands. The splittings of the conduction and valence
subbands for ` = 6 nm are readily obtained from Table 2.2 and are about 61 meV and 24 meV,
respectively. The binding energies are given in Fig. 3.5, but we repeat them in the table below.

We see that, except for the ground state, all states have a binding energy that is smaller
than the relevant subband splittings. In the case of the ground state, the binding energy is
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Figure 3.6. Real-space probability densities of linear combinations of the states |0; 0±; 0, m〉 (left) and of
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Figure 3.7. Real-space probability densities of the states |0; 2±; 0, m〉 (left), |Q; 2−; 0, m〉 (center) and
|Q; 2+; 0, m〉 (right), with Q along the x-direction and Q = 0.7 nm−1. Each row corresponds to a different
m as ordered in Fig. 3.2a, namely (from top to bottom): m = 0,−1,+1,−2,+2.
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m 0 −1 +1 −2 +2 −3 +3
∆ (meV) 25.0 21.8 19.3 18.0 16.1 15.3 13.9

Table 3.2. Binding energies of the zero-momentum states |0;+,+; 0, m〉 and |0;−,−; 0,−m〉 as obtained
with the Struve-Neumann potential with εs = 6 and εd = 28.

only around 1 meV larger than the valence-band splitting, so we do not expect that including
the second subband will lead to great modifications. We conclude that the Struve-Neumann
potential is indeed apt for our study of excitons in Bi2Se3. On a final note, even though we
have only presented the analysis for the subspace with s = t, for s 6= t the results are extremely
similar and all conclusions hold in this case as well.

3.7 Selection rules and exciton brightness

Let us now study the selection rules for the generation of excitons in our model. We recall that
interband transitions between Bi and Se orbitals are dipole-allowed, as discussed in Sec. 1.5.3.
If Bi2Se3 were a normal semiconductor, we would expect s-wave excitons to be bright and all
others to be dark. We will see that this is not the case, and that some s-wave excitons are dark
while some d-wave excitons turn out to be bright.

It will be convenient to write the original single-particle Hamiltonian (2.26) in the following
form:

H(k) = ε0(k)I4 +M(k)I2 ⊗ τz + A2(kxσx + kyσy)⊗ τx , (3.29)

where we recall that M(k) = M− B2(k2
x + k2

y). We will focus on excitons with total momentum
Q = 0, as these are the most relevant ones from an experimental point of view. We have seen
that in this case their angular momentum m is a good quantum number. Furthermore, the
electron and hole can be taken to have well-defined spin-orbit parities s and t, respectively.

Consider a beam of light incident on the nanosheet located on the xy-plane. For simplicity
we take the photons as propagating in the positive z-direction. Thus, the polarization is parallel
to the nanosheet, and is described by a unit Jones vector ê. The oscillator strength of an exciton
|0; s, t; m〉 reads [103, 110]

f m,ê
s,t =

2
εm

s,t

∣∣∣∣ � d2k Φ(m)
0;s,t eimφk ê · 〈χc,s

k |v(k)|χv,t
k 〉
∣∣∣∣2 . (3.30)

Note that we effectively omit the principal quantum number n, as it does not play any role
in the discussion of this section. In this expression, εm

s,t is the energy of the zero-momentum
exciton and v(k) is the velocity operator.

In general, there are two contributions to the velocity matrix element contained in the
formula for the oscillator strength. The first one is interatomic and comes from electron hopping
between different lattice sites as described by the underlying tight-binding model. The second
one is intraatomic and arises from dipole transitions between orbitals of the same atom [111].
As explained in Sec. 1.4.2, the relevant orbitals of Bi and Se are p orbitals. Optical transitions
among them are dipole-forbidden due to the fact that they have the same parity. Therefore,
we only expect the interatomic contribution to play a role in Bi2Se3. In this case, it is valid to
approximate the velocity operator by

v(k) = ∇kH(k) . (3.31)
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3.8. Topology of the exciton basis

We will focus on left- and right-circularly polarized light, which is described by the Jones
vectors

ê± =
1√
2
(x̂ ± iŷ) . (3.32)

More precisely, ê+ corresponds to left-circular polarization and ê− corresponds to right-circular
polarization. Then one finds

ê± · v(k) =
1√
2

A2 σ± ⊗ τx −
√

2B2k± I2 ⊗ τz , (3.33)

where σ± ≡ σx ± iσy. Note that we have dropped the term proportional to ∂ki ε0(k), as it will
always drop out of the intraband transitions in Eq. (3.30). One thing to observe is that the
operators σ± ⊗ τx and I2 ⊗ τz are all spin-orbit-parity-even, that is, they do not couple electrons
with different spin-orbit parities. It immediately follows that, at least at the dipole level, all
excitons with s 6= t are dark under circularly polarized light, irrespective of their angular
momentum. By contrast, the velocity-matrix elements between valence and conduction states
with s = t read

〈χc,+
k | ê+ · v(k)|χv,+

k 〉 =
√

2
1 + k2 f (k)2

[
2B2k2 f (k) + A2

]
, (3.34a)

〈χc,+
k | ê− · v(k)|χv,+

k 〉 =
√

2k2 f (k)
1 + k2 f (k)2

[
2B2 − A2 f (k)

]
e−2iφk , (3.34b)

〈χc,−
k | ê+ · v(k)|χv,−

k 〉 =
√

2k2 f (k)
1 + k2 f (k)2

[
2B2 − A2 f (k)

]
e2iφk , (3.34c)

〈χc,−
k | ê− · v(k)|χv,−

k 〉 =
√

2
1 + k2 f (k)2

[
2B2k2 f (k) + A2

]
, (3.34d)

where f (k) was defined in Eq. (2.29) of the previous chapter. Except for the phase factors eimφk

and e±2iφk , all the quantities that appear in Eqs. (3.30) and (3.34) are real. Therefore, we can
immediately read off which excitons are dark and which ones are bright by checking whether
the oscillator strengths are zero or nonzero, respectively. For left-circularly polarized light ê+
we find that the excitons |0;+,+; 0〉 and |0;−,−;−2〉 are bright, whereas the rest are dark.
On the other hand, for right-circularly polarized light ê− the only optically active excitons are
|0;−,−; 0〉 and |0;+,+;+2〉. Note that these results combined are in accord with time-reversal
symmetry.

As advertised, our findings indicate that optical transitions in Bi2Se3 greatly differ from
the situation in ordinary semiconductors, where typically s-wave excitons are bright and the
rest are dark. Here we have found both bright and dark s-wave excitons, with their response
to circular light being subject to the spin-orbit parity of the constituent electrons and holes.
Furthermore, some d-wave excitons are also optically active, with the polarization direction
and the spin-orbit labels together determining the sign of their azimuthal angular momentum.

3.8 Topology of the exciton basis

In this section we will prove that the exciton basis |Q; s, t〉 inherits the topology of the underlying
band structure that was determined in Sec. 2.5.2. For a state with well-defined s and t, a Chern
number can be defined as in the single-particle case. Therefore, in this section we will first
ignore the coupling induced by the exchange interaction and compute the Chern number of
the exciton states |Q; s, t〉.
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The first step is to obtain the Berry connection, As,t(Q) = −i 〈Q; s, t|∇Q|Q; s, t〉. We find

As,t = A(e)
s,t +A(h)

s,t +A(Φ)
s,t , (3.35)

where

A(e)
s,t (Q) = − i

V ∑
k

∣∣ΦQ;s,t(k)
∣∣2〈χe,s

Q/2+k|∇Q|χe,s
Q/2+k〉 , (3.36a)

A(h)
s,t (Q) = − i

V ∑
k

∣∣ΦQ;s,t(k)
∣∣2〈χh,t

Q/2−k|∇Q|χh,t
Q/2−k〉 , (3.36b)

A(Φ)
s,t (Q) = − i

V ∑
k

Φ∗
Q;s,t(k)∇Q ΦQ;s,t(k) . (3.36c)

The first two expressions are simply the k-space-averaged Berry curvatures of the electron
and the hole, respectively. The term A(Φ) represents a contribution arising intrinsically from
the relative electron-hole wave function. We will see that this term does not contribute to the
Chern number, and hence does not play a significant role in the topology of the problem.

For the Berry curvature Ω(Q) = ∇Q ×A(Q) one finds

Ωs,t = Ω
(e)
s,t + Ω

(h)
s,t + Ω

(Φ)
s,t , (3.37)

with

Ω
(e)
s,t (Q) = − i

V ∑
k
∇Q ×

(∣∣ΦQ;s,t(k)
∣∣2〈χe,s

Q/2+k|∇Q|χe,s
Q/2+k〉

)
, (3.38a)

Ω
(h)
s,t (Q) = − i

V ∑
k
∇Q ×

(∣∣ΦQ;s,t(k)
∣∣2〈χh,t

Q/2−k|∇Q|χh,t
Q/2−k〉

)
, (3.38b)

Ω
(Φ)
s,t (Q) = − i

V ∑
k

(
∇Q Φ∗

Q;s,t(k)
)
×
(
∇Q ΦQ;s,t(k)

)
. (3.38c)

Let us now calculate the Chern number of the state |Q; s, t〉. We can use Stokes’ theorem to
write its expression as

Cs,t =
1

2π

�
d2Q ·

(
∇Q ×A(s,t)(Q)

)
=

1
2π

�
dQ ·A(s,t)(Q) . (3.39)

Note that d2Q ≡ ẑd2Q is a vector-valued surface element. Similarly, dQ is a vector-valued
line element. The line integral is performed along a circular contour with Q → ∞. We split the
total Chern number as Cs,t = C(e)s,t + C(h)s,t + C(Φ)

s,t . We first show that C(Φ)
s,t vanishes. Omitting all

irrelevant indices, we have:

C(Φ) ∝
�

d2Q ·
(
∇Q Φ∗

Q

)
×
(
∇Q ΦQ

)
=

�
d2R Φ∗

R

�
d2R′ ΦR′

�
d2Q ·

(
∇Q e−iR·Q

)
×
(
∇Q eiR′·Q

)
=

�
d2R Φ∗

R

�
d2R′ ΦR′ (R × R′) ·

�
d2Q e−i(R−R′)·Q

= (2π)2
�

d2R Φ∗
R ΦR (R × R)z

= 0, (3.40)
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where we have defined the Fourier transform ΦQ =
�

d2Q ΦR eiR·Q and in the second-to-last
step we have used the fact that

�
d2Q e−i(R−R′)·Q = (2π)2 δ(R − R′). This shows that the wave

function itself does not contribute to the Chern number.

On the other hand, the electron contribution reads

C(e)s,t = − 1
2π

i
V ∑

k

�
dQ ·

(∣∣ΦQ;s,t(k)
∣∣2〈χe,s

Q/2+k|∇Q|χe,s
Q/2+k〉

)
. (3.41)

This should be equal to the Chern number of a single noninteracting conduction electron.
Indeed, we can imagine continuously decreasing the electron-hole interaction by reducing the
appropriate coupling constant. The wave function becomes strongly peaked at some value of
k, and hence the state |Q; s, t〉 contains two particles of well-defined momentum. The Chern
number is left unchanged under this deformation. More quantitatively, we can argue that this
is the case as follows. Since the line integral is performed along a contour at infinity, we can
approximate Q/2 + k ≈ Q/2. Then the only k-dependence in the integrand comes from the
wave function, and we can perform the sum 1

V ∑k |ΦQ;s,t(k)|2 = 1. We rename the Chern

number to C(e)s , as it is now manifestly independent of t. Applying Stokes’ theorem again we
are left with

C(e)s = − i
2π

�
d2Q ·

(
∇Q〈χe,s

Q/2|
)
×
(
∇Q|χe,s

Q/2〉
)

. (3.42)

By performing the change of variable Q′ = Q/2 we see that d2Q = 4d2Q′ and ∇Q = 1
2∇Q′ .

Hence we can simply remove the factor of 1
2 from |χe,s

Q/2〉. This is just to say that a rescaling of
the momentum cannot change the winding number. What is left is simply

C(e)s = − i
2π

�
d2Q

(
〈∂Qx χe,s

Q |∂Qy χe,s
Q 〉 − 〈∂Qy χe,s

Q |∂Qx χe,s
Q 〉
)

. (3.43)

But this is precisely the definition of the Chern number of a single noninteracting conduction
electron, so that C(e)s = s as computed in App. 2.A. On the other hand, for the hole we get

C(h)t = − i
2π

�
d2Q

(
〈∂Qx χh,t

Q |∂Qy χh,t
Q 〉 − 〈∂Qy χh,t

Q |∂Qx χh,t
Q 〉
)

. (3.44)

In this case we must be careful when using the result from App. 2.A, because the hole wave
function is the complex conjugate of the valence-electron wave function. This results in an
additional minus sign for the Chern number, in the same way as what was explained at the
end of Sec. 3.5.2. Hence we get C(h)t = t. Therefore, the Chern number of the state |Q; s, t〉 in
the absence of the exchange interaction is

Cs,t = s + t . (3.45)

As we have said before, switching on the exchange interaction does not couple the subspaces
with s = −t, and the states |Q; s, t〉 remain eigenstates of the problem. These states then have a
zero Chern number, and are therefore topologically trivial. On the other hand, what happens in
the subspace with s = t is more subtle. It is tempting to use Eq. (3.24b) to compute their Chern
number, but this is not allowed. The reason is that, despite their coupling, the bands touch
at Q = 0. Their individual Chern numbers are thus not defined. However, as determined
in Sec. 3.4.2, a nontrivial winding of the spin-orbit pseudospin remains. The chiral doublet is
therefore expected to be topologically nontrivial.

If we do want to define a Chern number for the chiral doublet, we need to open a small
gap at Q = 0. This will be done in the next section, where we first derive an effective model
for small Q. Despite being an approximation, this model preserves the topology around the
Γ point. The simplicity of the model will make it easy to incorporate a gap opening, which in
turn will further reveal the topological nontriviality of the s = t subspace.
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3.9 Effective model for small Q

We now focus on the subspace with s = t, which is the one hosting excitonic states with
nontrivial topology. We have seen that, at Q = 0, the excitonic spectrum in this subspace
consists of degenerate pairs, namely |0;+,+; n, m〉 and |0;−,−; n,−m〉. Applying degenerate
perturbation theory to these pairs of states (cf. App. 3.E for details), one arrives at the effective
Hamiltonian

Heff
n,m(Q) =

(
ωn,m +

Q2

2Mn,m

)
I2 + Jn,m(Q)

[
1 e−2iφQ

e2iφQ 1

]
. (3.46)

Here, ωn,m is the energy of the doublet at zero Q and Mn,m is an effective mass which can be fit
to the numerically obtained band structure. Note that Mn,m can be negative, which is the case
for the ground state excitons. The coupling Jn,m(Q) reads

Jn,m(Q) =


0 if m is odd,

Jn,m|Q|+ Q2

2M′
n,m

+O(|Q|3) if m is even,
(3.47)

and it is expected that Jn,m 6=0 � Jn,0. The above Hamiltonian coincides with the one derived in
Refs. [100, 105, 106] after replacing the K and K′ valley indices with our spin-orbit parities near
the Γ point.

This effective model explains the small-Q features of Fig. 3.2. Firstly, for even m, both
subspaces where s = t are coupled to first order in Q and hence the degeneracy at zero
momentum is in principle lifted. Omitting the subscripts n and m for clarity, the eigenenergies
are found to be

ε−(Q) = ω +
Q2

2M
, (3.48a)

ε+(Q) = ω + 2J|Q|+
(

1
2M

+
1

M′

)
Q2 . (3.48b)

One of the modes goes linearly in |Q|, while the other one is quadratic around Q = 0. This
is clearly observed in Fig. 3.2 for the ground-state excitons with zero angular momentum, for
which we find J > 0 and M < 0. In the case of higher even-m states the degeneracy seems
to be lifted very weakly, which indicates that the effective couplings of Eq. (3.46) are small.
On the other hand, this model predicts that the odd-m states ought to remain degenerate near
Q = 0, which can also be observed in the figure. This degeneracy is broken by terms cubic in
|Q| which have not been included in the perturbative treatment of App. 3.E.

3.9.1 Topological properties

Let us now analyze the topology of the effective Hamiltonian by focusing on the ground-state
doublet. Since the bands touch at zero momentum, it is not entirely clear that it can describe a
topological insulator. To remedy this we add a small gap term ∆σz that breaks the time-reversal
symmetry. Furthermore, to lowest order we are allowed to only keep terms linear in Q. We
also drop all terms that are proportional to the identity, as they cannot influence the topology
of the problem. We are left with a reduced toy model whose topological properties should be
qualitatively equivalent to those of the original physical system. The Hamiltonian for this toy
model reads

H(Q) =

[
∆ J|Q|e−2iφQ

J|Q|e2iφQ −∆

]
. (3.49)
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This can be written as H(Q) = d(Q) · σ, with d(Q) = (J|Q| cos 2φQ, J|Q| sin 2φQ, ∆). This has
the form of a “magnetic field” d(k) that couples to the pseudospin σ. Note that the pseudospin
operator agrees with the one introduced in Sec. 3.4.2.

We can now analyze the topological properties as a function of the gap parameter ∆. For
∆ > 0, we can write nonsingular eigenstates as

|v−〉 ∝

[
−J|Q|e−2iφQ

∆ +
√

∆2 + J2Q2

]
with energy ε−(Q) = −

√
∆2 + J2Q2 , (3.50a)

|v+〉 ∝

[
∆ +

√
∆2 + J2Q2

J|Q|e2iφQ

]
with energy ε+(Q) = +

√
∆2 + J2Q2 . (3.50b)

For ∆ < 0, the nonsingular eigenstates read

|v−〉 ∝

[
−∆ +

√
∆2 + J2Q2

−J|Q|e2iφQ

]
with energy ε−(Q) = −

√
∆2 + J2Q2 , (3.51a)

|v+〉 ∝

[
J|Q|e−2iφQ

−∆ +
√

∆2 + J2Q2

]
with energy ε+(Q) = +

√
∆2 + J2Q2 . (3.51b)

In both case the Berry curvatures are found to be

Ω±(Q) = ± J2∆(
∆2 + J2Q2

)3/2 , (3.52)

which can in turn be integrated to yield nonzero Chern numbers

C± = ± sgn ∆ . (3.53)

The limit ∆ → 0 can be taken from either side, but note that in this case there is an ambiguity
in the global phase of the eigenstates. For ∆ → 0+ one finds

|v−〉 =
1√
2

[
−e−2iφQ

1

]
, |v+〉 =

1√
2

[
1

e2iφQ

]
, (3.54)

whereas for ∆ → 0− one finds

|v−〉 =
1√
2

[
1

−e2iφQ

]
, |v+〉 =

1√
2

[
e−2iφQ

1

]
. (3.55)

The Berry curvatures reduce to magentic monopoles in momentum space, namely

Ω±(Q) = ±2π sgn ∆ δ(Q) . (3.56)

Here, sgn ∆ is defined according to whether the limit is being taken from above or from below.
When ∆ is strictly zero, the individual Chern numbers of the bands are technically speaking not
well-defined. However, the most sensible choice in this case is to write down eigenstates for
which the usual procedure for the calculation of the Chern number yields zero, that is,

|v±〉 =
1√
2

[
e−iφQ

±eiφQ

]
. (3.57)

Note that this is in fact consistent with defining the sign function at zero as sgn 0 = 0, which
is a common convention. The way in which we have written these eigenstates agrees with the
chiral doublets of Eq. (3.24b).
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3.9.2 Exciton edge states

We have seen that opening a small gap in the dispersion of the ground-state chiral doublet
gives a nonzero Chern number for the eigenstates. Let us now consider a position-dependent
gap parameter ∆ defined as

∆(x) =

{
∆1 < 0 for x < 0,
∆2 > 0 for x > 0.

(3.58)

The Chern numbers of the states |v−〉 and |v+〉 are therefore opposite at both sides of x = 0.
Due to the bulk-boundary correspondence, we expect topological surface states of excitons at
this interface. These exciton egde states should be chiral due to the breaking of time-reversal
symmetry, and we expect two such states due to the difference in Chern numbers at both sides
of the interface. A similar problem has been studied by Gong et al. in Ref. [112]. In this article,
the gap term is taken as a slowly varying magnetic field of the form ∆(x) = ∆0 tanh(x/l) and
two topological exciton states are indeed identified at the boundary.

We have attempted to solve the simpler model with ∆(x) as in Eq. (3.58). The substitution
Qx → −i∂x and the requirement that the wave function be normalizable and continuous at the
interface ultimately yield the following implicit equation for the energy levels:(

|Q|+
√

Q2 + ∆2
1 − E2)2

(E + ∆1)
√

E2 − ∆2
1

=

(
|Q| −

√
Q2 + ∆2

2 − E2)2

(E + ∆2)
√

E2 − ∆2
2

. (3.59)

However, it appears that this equation only has solutions when the signs of ∆1 and ∆2 are equal
instead of opposite. Furthermore, in this case there seems to be only one solution instead of
two. Hence, this procedure apparently does not give the exciton states we are looking for. The
resolution of this issue is left for future work.

63



Appendices

3.A Evaluation of Feynman diagrams

Here we explicitly calculate the Feynman diagrams in Sec. 3.3. The conduction and valence
wave functions corresponding to the single-particle states read

〈x; i|q; c, s〉 = eiq·x
√

V
〈i|χc,s

q 〉 , (3.60a)

〈x; i|q; v, t〉 = eiq·x
√

V
〈i|χv,t

q 〉 , (3.60b)

where s and t are the spin-orbit parities and the index i ≡ (i, σ) now denotes our combined
spin and orbit subspaces. The (conduction) electron and hole wave functions are then related
to the above through

〈x; i|q; e, s〉 = 〈x; i|q; c, s〉 , (3.61a)
〈x; i|q; h, t〉 = 〈x; i|−q; v, t〉∗ , (3.61b)

as explained in Sec. 3.1.

We begin with the direct diagram, which we denote by VD(Q, Q′; k, k′):

Q′/2 + k′, s′ Q′/2 − k′, t′

Q/2 + k, s Q/2 − k, t

x, i x′, i′

Note that the particles are taken as a electrons and holes, and not as valence and conduction
electrons. The standard Feynman rules with a spin-orbit-independent interaction V give:

VD
s,t;s′,t′(Q, Q′; k, k′)

= ∑
i,i′

�
d2x

�
d2x′ 〈x; i|Q/2 + k; e, s〉∗〈x′; i′|Q/2 − k; h, t〉∗ V(x − x′)
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× 〈x; i|Q′/2 + k′; e, s′〉〈x′; i′|Q′/2 − k′; h, t′〉

= ∑
i,i′

�
d2x

�
d2x′ 〈x; i|Q/2 + k; c, s〉∗〈x′; i′|−Q/2 + k; v, t〉V(x − x′)

× 〈x; i|Q′/2 + k′; c, s′〉〈x′; i′|−Q′/2 + k′; v, t′〉∗

= ∑
i,i′

�
d2x

�
d2x′

e−i(Q/2+k)·x
√

V
e−i(Q/2−k)·x′

√
V

ei(Q′/2+k′)·x
√

V
ei(Q′/2−k′)·x′

√
V

V(x − x′)

× 〈χc,s
Q/2+k|i〉〈i|χ

c,s′
Q′/2+k′〉〈χv,t′

−Q′/2+k′ |i′〉〈i′|χv,t
−Q/2+k〉

=
1

V2 〈χc,s
Q/2+k|χ

c,s′
Q′/2+k′〉〈χv,t′

−Q′/2+k′ |χv,t
−Q/2+k〉

×
�

d2x
�

d2x′ e−i(Q−Q′)·(x+x′)/2 e−i(k−k′)·(x−x′) V(x − x′)

=
1

V2 〈χc,s
Q/2+k|χ

c,s′
Q′/2+k′〉〈χv,t′

−Q′/2+k′ |χv,t
−Q/2+k〉

�
d2R e−i(Q−Q′)·R

�
d2r V(r)e−i(k−k′)·r

=
1
V

δQ,Q′V(k − k′)〈χc,s
Q/2+k|χ

c,s′
Q′/2+k′〉〈χv,t′

−Q′/2+k′ |χv,t
−Q/2+k〉 . (3.62)

In the third step we have used the fact that ∑i |i〉〈i| = 1. In the next one we have changed
to the relative variables R = 1

2 (x + x′) and r = x − x′; note that this transformation has a
unit Jacobian. Then we have used the relation 1

V

�
d2R e−i(Q−Q′)·R = δQ,Q′ . As expected, the

conservation of the total exciton momentum directly arises from the diagram. Note that the
factor of 1

V has been omitted in Eq. (3.7a), but reinserted explicitly in (3.16). The expression
(3.62) is the same as (3.7a) once we observe that the inner products between two states are
orthogonal for any values of the momenta if the spin-orbit parities are different.

Eq. (3.62) suggests the Feynman rules in momentum space. An electron with momentum
q and spin-orbit parity s gives |χc,s

q 〉 in the initial state and 〈χc,s
q | in the final state. A hole with

momentum q and spin-orbit parity t gives 〈χv,t
−q| in the initial state and |χv,t

−q〉 in the final state,
consistent with the transformation between holes and valence electrons. The interaction comes
with a factor of V(q)/V, where q is the momentum exchange, and one takes the inner product
between the two states at each end of the interaction.

These rules make it simple to guess the expression for the exchange diagram:

Q′/2 + k′, s′ Q′/2 − k′, t′

Q/2 + k, s Q/2 − k, t

According to what we said, we obtain

VX
s,t;s′,t′(Q, Q′; k, k′) =

1
V

δQ,Q′V(Q)〈χc,s
Q/2+k|χ

v,t
−Q/2+k〉〈χ

v,t′
−Q′/2+k′ |χc,s′

Q′/2+k′〉 . (3.63)

A direct calculation similar to the one above indeed yields the exact same result.
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3.B Numerical solution of the BSE

After performing a Fourier expansion, the BSE equation reads

∑
m′

[
K(m,m′)(Q; k)Φ(m′)

Q; s,t(k) + ∑
s′,t′

� ∞

0

dk′

2π
k′V (m,m′)

s,t;s′,t′ (Q; k, k′)Φ(m′)
Q; s′,t′(k

′)

]
= εQ Φ(m)

Q; s,t(k) , (3.64)

where

K(m,m′)(Q; k) =
� 2π

0

dφ

2π
e−i(m−m′)φ

[
εc(Q/2 + kφ)− εv(Q/2 − kφ)

]
, (3.65a)

V (m,m′)
s,t;s′,t′ (Q; k, k′) =

� 2π

0

dφ

2π

� 2π

0

dφ′

2π
e−imφeim′φ′(

VD − VX)
s,t;s′,t′(Q; kφ, k′

φ′), (3.65b)

with kφ = (k cos φ, k sin φ). The unknowns in this equation are the Fourier coefficients ΦQ; s,t(k)
and the eigenenergies εQ. For convenience we will work with the dimensionless momentum
u ≡ k`, which requires us to rescale the parameters in Table 2.4 accordingly.

In order to solve the BSE we follow the method described in Ref. [99]. The integral is
discretized into a sum over N + 1 points with momenta un = n∆u, where n = 0, . . . , N and
∆u � 1 is a small enough momentum step. In other words, we only perform the integral up to
some ultraviolet cutoff U ≡ uN � 1. The Hamiltonian matrix is firstly divided into blocks of
fixed s, t, s′ and t′. In practice, we only need to separately consider the Hamiltonians with s = t
and s 6= t, as they are uncoupled from each other. Furthermore, for s 6= t it suffices to consider
the block with s = +1, as it is degenerate and uncoupled from the one with s = −1. Each such
block is further organized into subblocks of fixed m and m′, and we have chosen to keep only
|m| ≤ 3 in our numerical calculations. Each subblock is calculated for all values of u, u′ ≤ U,
resulting in the matrix elements5

H(m,m′)
s,t;s′,t′ (Q; u, u′) = K(m,m′)(Q; u)δs,tδs′,t′δu,u′ +

∆u
2π

uV (m,m′)
s,t;s′,t′ (Q; u, u′) . (3.66)

The Fourier coefficients are accordingly arranged into a single column vector. The Hamiltonian
matrix can then be readily diagonalized. This yields the desired eigenenergies, as well as a
series of eigenvectors from which the eigenfunctions ΦQ;s,t(k) can be recovered by appropriately
reconstructing the Fourier sum.

Care must be taken when choosing ∆u and U, as these parameters will determine the
convergence of this method. However, the problem we are treating actually has an additional
degree of freedom besides the discretization and cutoff. The reason is that, in the absence
of screening, we need to regularize the interaction potential at zero momentum, where we
encounter the Coulomb divergence for any of the potentials of interest. To do this, we introduce
an additional parameter ∆Vu ≤ ∆u, which acts as an infrared cutoff such that the interaction
for u < ∆Vu simply saturates to V(u) ∝ (∆Vu)−1.

The continuum limit is achieved when ∆Vu ≤ ∆u → 0 and U → ∞. Hence, the cutoff
U must be chosen large enough for the potential to decrease significantly, which can always
be checked a posteriori by verifying that the wave functions decay to zero for u � U. If this
condition is met, the energies obtained for a given discretization are found to be independent
of the cutoff. By contrast, the energies in general depend slightly on ∆u and ∆Vu, but in such a
way which allows unambiguous extrapolation to ∆u → 0.

We have performed calculations for Q = 0 for different values of ∆u and ∆Vu. In Fig. 3.8,
we show the numerically obtained ground-state energies of the s = t subspace as a function

5It is not necessary to calculate every single subblock, as the potentials satisfy some symmetries that relate blocks
with different angular momenta. These properties are summarized in the next section.
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3.C. Symmetries of the potential matrix elements

of the ratio ∆Vu/∆u for fixed ∆u, and as a function of ∆u for a fixed value of this ratio. These
plots have been obtained for the Struve-Neumann potential and with U = 10 everywhere, and
we have checked that the results are the same for higher values of the cutoff. The first plot
reveals that there exists an ideal value of ∆Vu/∆u, namely ∆Vu/∆u ≈ 0.2262, for which the
energies are independent of ∆u. The second plot shows the energies obtained with this ideal
ratio, which indeed lie on a horizontal line. For other values of ∆Vu/∆u, the ground-state
energies lie on a straight line which can be unambiguously extrapolated to ∆u → 0, yielding
the same energy in all cases. We have verified that the same ideal value of ∆Vu/∆u is found
for the subspaces with s 6= t.

For our subsequent numerical calculations with the Struve-Neumann potential we have
therefore set U = 10, ∆u = 0.05 (corresponding to N = 200) and ∆Vu/∆u to its ideal value,
which allows us to skip the extrapolation to ∆u → 0.
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Figure 3.8. (a) Ground-state energy of the s = t subspace as a function of the ratio ∆Vu/∆u for different
values of the discretization ∆u. Around the ideal value ∆Vu/∆u ≈ 0.2262 (marked with a vertical
dashed line) the obtained energy is independent of the discretization as long as the latter is small
enough. (b) Ground-state energy as a function of the discretization ∆u for different values of the ratio
∆Vu/∆u. As ∆u → 0, all lines tend to the same value independently of ∆Vu. The thicker black line
corresponds to a value of ∆Vu/∆u close to the ideal ratio, for which the energies do not depend on ∆u,
resulting in a horizontal line. In these figures, the Struve-Neumann potential and a cutoff U = 10 have
been used.

3.C Symmetries of the potential matrix elements

In order to speed up the numerics we can exploit the symmetries of the potentials to relate
certain blocks H(m,m′)

s,t;s′,t′ (Q; k, k′) with different m, m′. First and foremost, we can always use the
Hermiticity property

V (m,m′)
s,t;s′,t′ (Q; k, k′) = V (m′,m)

s′,t′;s,t (Q; k′, k)∗ (3.67)

when filling the Hamiltonian matrix. However, there exist additional relations between the
different subblocks of the potential matrix. We begin by recalling that

VD/X
s,t;s′,t′(Q; k, k′) = VD/X

−s,−t;−s′,−t′(Q; k, k′)∗ , (3.68)

where s, t, s′, t′ ∈ {+,−}.
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3.C. Symmetries of the potential matrix elements

Let us start with the subspaces where s 6= t. The following properties hold:

VD
+−;+−(Qx̂; kφ, k′

φ′) = VD
+−;+−(Qx̂; k−φ, k′

−φ′)∗ , (3.69a)

VD
+−;+−(Q; kφ, k′

φ′) = VD
+−;+−(Q; kφ+π, k′

φ′+π)
∗ . (3.69b)

The equality (3.69a) implies that V (m,m′)
+−;+−(Qx̂; k, k′) is real:

V (m,m′)
+−;+−(Qx̂; k, k′) =

�
φ,φ′

e−imφeim′φ′
VD
+−;+−(Qx̂; kφ, k′

φ′)

=

�
φ,φ′

e−imφeim′φ′
VD
+−;+−(Qx̂; k−φ, k′

−φ′)∗

=

[ �
φ,φ′

eimφe−im′φ′
VD
+−;+−(Qx̂; k−φ, k′

−φ′)

]∗
=

[ �
φ,φ′

e−imφeim′φ′
VD
+−;+−(Qx̂; kφ, k′

φ′)

]∗
= V (m,m′)

+−;+−(Qx̂; k, k′)∗ . (3.70)

Here and below, the notation
�

φ,φ′ stands for
� 2π

0
dφ
2π

� 2π
0

dφ′

2π and kφ ≡ (k cos φ, k sin φ). On the
other hand, using (3.69b) we get

V (−m,−m′)
+−;+− (Q; k, k′) =

�
φ,φ′

eimφe−im′φ′
VD
+−;+−(Q; kφ, k′

φ′)

= ei(m−m′)π
�

φ,φ′
eim(φ−π)e−im′(φ′−π)VD

+−;+−(Q; kφ, k′
φ′)∗

= (−1)m−m′
�

φ,φ′
eimφe−im′φ′

VD
+−;+−(Q; kφ+π, k′

φ′+π)

= (−1)m−m′
[ �

φ,φ′
e−imφeim′φ′

VD
+−;+−(Q; kφ, k′

φ′)

]∗
= (−1)m−m′V (m,m′)

+−;+−(Q; k, k′)∗ . (3.71)

We now move on to the subspace with s = t. It holds that

VD/X
++;++(Qx̂; kφ, k′

φ′) = VD/X
++;++(Qx̂; k−φ, k′

−φ′)∗ , (3.72a)

VX
++;−−(Qx̂; kφ, k′

φ′) = VX
++;−−(Qx̂; k−φ, k′

−φ′)∗ , (3.72b)

VD
++;++(Q; kφ, k′

φ′) = VD
++;++(Q; kφ+π, k′

φ′+π) , (3.72c)

VX
++;−−(Q; kφ, k′

φ′) = VX
++;−−(Q; kφ+π, k′

φ′) = VX
++;−−(Q; kφ, k′

φ′+π) . (3.72d)

Note that (3.72c) does not come with a complex conjugate such as in Eq. (3.69b). The two first
relations again imply that the potential matrix is real when Q is chosen along the x-axis. Via a
similar procedure as before, the third one yields

V (m,m′)
++;++(Q; k, k′) = (−1)m−m′V (m,m′)

++;++(Q, k, k′) . (3.73)

This implies that this subblock vanishes identically when m − m′ is odd, i.e., when m and m′

have opposite parities. Note, however, that the kinetic matrix still couples subspaces of angular
momenta with different parities. Similarly, Eq. (3.72d) implies that

V (m,m′)
++;−−(Q; k, k′) = (−1)mV (m,m′)

++;−−(Q, k, k′) = (−1)m′V (m,m′)
++;−−(Q, k, k′) , (3.74)
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3.D. Analysis of the exciton problem with φQ 6= 0

which means that this element vanishes when either m or m′ is odd. Furthermore, the sectors
with opposite spin-orbit parities are related through

V (m,m′)
++;++(Q; k, k′) =

�
φ,φ′

e−imφeim′φ′(
VD − VX)

++;++
(Q; kφ, k′

φ′)

=

[ �
φ,φ′

eimφe−im′φ′(
VD − VX)

−−;−−(Q; kφ, k′
φ′)

]∗
= V (−m,−m′)

−−;−− (Q; k, k′)∗ . (3.75)

Finally, using the Hermiticity property we can also find

V (−m,−m′)
++;−− (Q; k, k′) = −

�
φ,φ′

eimφe−im′φ′
VX
++;−−(Q; kφ, k′

φ′)

= −
�

φ,φ′
eimφe−im′φ′

VX
−−;++(Q; k′

φ′ , kφ)
∗

= −
�

φ,φ′
eimφe−im′φ′

VX
++;−−(Q; k′

φ′ , kφ)

= −
�

φ,φ′
e−im′φeimφ′

VX
++;−−(Q; k′

φ, kφ′)

= V (m′,m)
++;−−(Q; k′, k) . (3.76)

3.D Analysis of the exciton problem with φQ 6= 0

In this appendix we carefully study the exciton problem for the general case when Q forms
a nonzero angle φQ with the x-axis. This is needed to determine Berry curvatures and other
topological properties, as they depend on the entire Q-space. By rotational symmetry, when
φQ 6= 0 the exciton wave functions have to be related to the wave functions at φQ = 0 via

ΦQ; s,t(k, φ) = eiϕQ; s,t ΦQx̂; s,t(k, φ − φQ) , (3.77)

that is, they can at most differ by a global phase. In this section it is important to remember the
property

VD/X
s,t;s′,t′(Q; k, k′) = VD/X

−s,−t;−s′,−t′(Q; k, k′)∗ . (3.78)

We start with the simpler case of the two subspaces with s 6= t, which are independent. For
this reason, and because of the property (3.78), we can always choose ΦQ;+−(k) = Φ∗

Q;−+(k)
for arbitrary Q. Furthermore, the nonzero potentials in this subspace satisfy

VD
+−;+−(Q; kφ, k′

φ′) = VD
+−;+−(Qx̂; kφ−φQ

, k′
φ′−φQ

) . (3.79)

This further implies that we may always choose ϕQ;+− = ϕQ;−+ = 0, as the exciton eigenvalue
problem in the variables (Q, kφ) is the same as in the variables (Qx̂, kφ−φQ). In summary, we
can always choose a gauge such that

ΦQ;+−(k, φ) = Φ∗
Q;−+(k, φ) = ΦQx̂;+−(k, φ − φQ) . (3.80)

In view of the degeneracy of these two subspaces, we can write down two doublet eigenstates

|Q; 0±〉 =
1√
2

(
|Q;+,−〉 ± |Q;−,+〉

)
, (3.81)
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3.E. Derivation of the effective model for small Q

with the convention that the wave functions contained in |Q;+,−〉 and |Q;−,+〉 satisfy (3.80).

On the other hand, the subspaces with s = t are coupled by the exchange interaction
for nonzero Q. The property (3.78) imposes the following constraint between the two wave
functions:

ΦQ;−−(k) = eiξQ Φ∗
Q;++(k) . (3.82)

However, we cannot simply set this phase factor to unity due to the coupling. To determine
ξQ we must take into account the following additional properties relating the potentials for
nonzero φQ with those for φQ = 0:

VD/X
++;++(Q; kφ, k′

φ′) = VD/X
++;++(Qx̂; kφ−φQ , k′

φ′−φQ
) , (3.83a)

VX
++;−−(Q; kφ, k′

φ′) = e−2iφQ VX
++;−−(Qx̂; kφ−φQ , k′

φ′−φQ
) . (3.83b)

These, together with (3.77) as well as the requirement that the functions Φ(m)
Qx̂; s,t(k) be real, imply

the constraints

ei(ξQ−ϕQ;++−ϕQ;−−) = ±1, (3.84a)

ei(ϕQ;++−ϕQ;−−+2φQ) = 1. (3.84b)

The two signs in the first equation correspond to the wave functions for the two states that
evolve from each degenerate pair in the families |0;+,+〉 and |0;−,−〉. However, note that
the wave functions in the state with the upper sign are generally not equal to those in the state
with the lower sign. There are no further requirements, because with these constraints ϕQ;++

becomes a global phase of the eigenstate:[
ΦQ;++(k, φ)

ΦQ;−−(k, φ)

]
= eiϕQ;++

[
ΦQx̂;++(k, φ − φQ)

±e2iφQ Φ∗
Qx̂;++(k, φ − φQ)

]
. (3.85)

In view of the above equation, we now choose eiϕQ;++ = e−iφQ and write the eigenstates of the
problem as

|Q; 2±〉 =
1√
2

(
e−iφQ |Q;+,+〉 ± eiφQ |Q;−,−〉

)
. (3.86)

Note that the choice of ϕQ;++ does not affect the pseudospin winding number. To write the
eigenstates in this form, we have explicitly separated the phase factors and again adopted the
convention that the wave functions contained in |Q;+,+〉 and |Q;−,−〉 satisfy

ΦQ;++(k, φ) = Φ∗
Q;−−(k, φ) = ΦQx̂;++(k, φ − φQ) . (3.87)

3.E Derivation of the effective model for small Q

Here we derive the effective model of Eq. (3.46) by applying degenerate perturbation theory
around Q = 0 in the subspace with s = t. We want to analyze the behavior of the states
|Q;+,+; n, m〉 and |Q;−,−; n,−m〉 for small total momentum, as they are degenerate at Q = 0.

We need to compute the matrix elements 〈Q; s, s; n, m|Ĥ|Q; s′, s′; n,−m〉, which in principle
should be done by using the wave functions obtained from solving the exciton problem at
nonzero Q without exchange interaction. However, for small Q, we can in first approximation
use the wave functions at Q = 0. Some care must be taken when doing this, because even
though |Q| is small, the angle φQ must be taken to be fixed and arbitrary. Then, we can
write

ΦQ; s,t(k)
∣∣∣
Q→0

≈ Φ(m)
0; s,t(k)eim(φk−φQ) , (3.88)
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where we have only kept the dominant Fourier coefficient in the zero-momentum limit, which
is real. As always, we have omitted the principal quantum number. Note that the phase eiϕQ; s,t

of the previous section is chosen as unity to respect the rotational symmetry of the problem.
Then we have, for instance,

〈Q;+,+; n, m|V̂D/X|Q;+,+; n, m〉 ≈
� ∞

0

kdk
(2π)2

� ∞

0

k′dk′

(2π)2 Φ(m)
0;++(k)Φ(m)

0;++(k
′) (3.89)

×
� 2π

0
dφ

� 2π

0
dφ′ e−im(φ−φ′) VD/X

s,t;s′,t′(Q; kφ, k′
φ′) .

If we split the Hamiltonian as Ĥ = K̂ + V̂D − V̂X, where K̂ contains the band structure, then
under this aproximation one finds

〈Q;+,+; n, m|K̂ + V̂D|Q;+,+; n, m〉 ≈ ωn,m +
Q2

2Mn,m
+O(Q4) . (3.90)

Here, ωn,m is the energy of the exciton at Q = 0 and Mn,m is an effective mass. Both of these
parameters depend on m and the principal quantum number n labeling the different excited
states. On the other hand, using the property

VX
++;++(Qx̂; kφ, k′

φ′) = VX
++;−−(Qx̂; kφ, k′

−φ′) , (3.91)

it is straightforward to show that

〈Q;+,+; n, m|V̂X|Q;−,−; n,−m〉 ≈ e−2iφQ〈Q;+,+; n, m|V̂X|Q;+,+; n, m〉 . (3.92)

Putting everything together, we arrive at the effective Hamiltonian

Heff
n,m(Q) =

(
ωn,m +

Q2

2Mn,m

)
I2 + Jn,m(Q)

[
1 e−2iφQ

e2iφQ 1

]
. (3.93)

Below we show that the coupling Jn,m(Q) reads as follows:

Jn,m(Q) =


0 if m is odd,

Jn,m|Q|+ Q2

2M′
n,m

+O(|Q|3) if m is even,
(3.94)

and we expect that Jn,m 6=0 � Jn,0. It should be stressed that the excitons with odd angular
momentum only remain degenerate in our perturbative treatment where we consider the wave
functions at Q = 0. When higher-order Q terms are considered in the wave functions, the
degeneracy is lifted for these excitons as well. However, this effect is of order |Q|3.

To see that Eq. (3.94) holds we start from the expression for Jn,m(Q), which reads

Jn,m(Q) = −V(Q)

∣∣∣∣ 1
V ∑

k
〈χv,+

−Q/2+k|χ
c,+
Q/2+k〉Φ(m)

0;++(k)eimφk

∣∣∣∣2 . (3.95)

Since this is a real quantity, it should be independent of φQ, because the exciton spectrum can
only depend on the magnitude of the total momentum. To see that this is indeed the case, we
note that 〈

χv,+
−Q/2+kφ

∣∣χc,+
Q/2+kφ

〉
= eiφQ

〈
χv,+
−Qx̂/2+kφ−φQ

∣∣χc,+
Qx̂/2+kφ−φQ

〉
. (3.96)

Therefore, after a change of variable, the integrand in Eq. (3.95) only depends on φQ through a
global phase. We can expand the inner product in powers of |Q| by recalling that it vanishes
linearly when |Q| → 0:

〈χv,+
−Q/2+k|χ

c,+
Q/2+k〉 = α(k)|Q|+ 1

2
β(k)Q2 +O(|Q|3) . (3.97)
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Note that the φQ-dependence of the coefficients has been omitted in view of our comment
above. Assuming that the coefficient α(k) only varies slowly with k yields

Jn,m(Q) = −V(Q)

∣∣∣∣α(0)Φn,m
0;++(r = 0)|Q|+O(Q2)

∣∣∣∣2 . (3.98)

Here, Φn,m
0;++(r = 0) is the real-space probability amplitude at the origin, which is nonzero only

for s-wave excitons. Thus, renaming the couplings, in this case we obtain

Jn,0(Q) = Jn,0|Q|+ Q2

2M′
n,0

+O(|Q|3) , (3.99)

where we have used that V(Q) ∝ |Q|−1 in the long-wavelength limit. For even-m excitons with
m 6= 0 a similar expression will hold, but the linear coupling is expected to be much weaker
due to the fact that the wave function is zero at the origin. [The coupling is not necessarily zero
because α in Eq. (3.97) is still a function of k, hence higher-order k terms can contribute.] For
odd-m excitons the entire expression of Eq. (3.95) vanishes, which follows from our discussion
in App. 3.C. However, as explained above, the degeneracy is broken to third order in |Q| when
including higher-order terms in the wave functions themselves. This escapes our perturbative
treatment, which is therefore valid to order Q2.
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4
Many-body effects

In the previous chapter we have solved the exciton problem in Bi2Se3 in the simplest case.
That is, we have neglected the influence of many-body effects, such as interactions with the
topological electronic surface states, and obtained an idealized picture of bulk excitons. The
aim of this chapter is to refine this picture by including these effects in a perturbative scheme.
Our main interest is to find out how the surface states screen the bare bulk interaction and
to understand the new physics that arise from this screening. One important thing to note
is that we shall only be concerned with corrections to the two-body electron-hole potential.
The analysis of higher-body interactions is out of the scope of this thesis, and hence we will
systematically ignore the corresponding terms. Nevertheless, our methods and procedure can
be straightforwardly generalized to include these effects as well, if so desired.

4.1 Path integral setup

Many-body effects are most conveniently studied by means of the path integral formalism.
In this section we set up its essential ingredients and introduce some convenient notation to
be used in the remainder of this chapter. Once again we consider a thin slab of thickness `
located on the xy-plane, and start from the full three-dimensional model as described by the
Hamiltonian (2.7). Simplifications such as integrating out z-dependences will be performed as
we proceed.

We firstly introduce a set of fermionic (i.e., Grassmann-valued) bulk and surface fields,
which we denote by φB and φS, respectively. As in Ch. 2, we assume that these can be treated
independently due to the robustness of the surface states. In first instance, these fields depend
on the position (x, z) in real space, on the imaginary time τ, and on the orbital and spin degrees
of freedom i ∈ {Bi+, Se−} and σ ∈ {↑, ↓}, respectively. To shorten the notation we combine the
latter into an index i ≡ (i, σ). The partition function reads [90, Ch. 7, 113, Ch. 4]

Z =

�
D[φ∗]D[φ] exp(−S[φ∗, φ]) , (4.1)

where our total action S[φ∗, φ] is defined as

S = SB,0 + SS,0 + Sint . (4.2)
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4.1. Path integral setup

The free term SB,0 represents the free bulk action and is given by

SB,0[φ
∗
B, φB] = ∑

i,i′

�
d2x

�
dz

�
dτ φ∗

B;i(x, z, τ)

[
δii′

∂

∂τ
+ H(−i∇,−i∂z)ii′ − µδii′

]
φB;i′(x, z, τ) .

(4.3)

Similarly, SS,0 represents the free surface action and is obtained from the above equation by
simply changing φB to φS. Here, H(−i∇,−i∂z) stands for the full Bi2Se3 Hamiltonian (2.7)
after formally performing the substitution ki → −i∂i, and µ is the chemical potential. In this
chapter, all integrals over z are implicitly restricted to the interval [−`/2, `/2], and those over
τ run from 0 to β = (kBT)−1.

On the other hand, the interacting part of the action is

Sint[φ
∗, φ] =

1
2 ∑

i,i′
∑

A,A′

�
d2x

�
d2x′

�
dz

�
dz′

�
dτ φ∗

A;i(x, z, τ)φ∗
A′;i′(x′, z′, τ)

× V(x − x′; z, z′)φA′;i′(x′, z′, τ)φA;i(x, z, τ) , (4.4)

where A, A′ ∈ {B, S} and V is the bare interaction potential between electrons in the sample,
assumed to be instantaneous in imaginary time. Here we have assumed that the robustness of
the surfaces remains intact even when switching on the interaction between particles. In other
words, a coherent surface state is still forbidden to scatter into the bulk, so there are no terms
of the form φ∗

Bφ∗
BφBφS, for instance. We note that V is determined from electrostatics and is

thus independent of the microscopic details, which means it cannot change the orbital or spin
quantum numbers. Translational symmetry in the xy-plane ensures that V only depends on the
in-plane coordinates x and x′ through their difference. By contrast, the thin slab geometry may
give a more complicated dependence on the z and z′ coordinates as long as it is still symmetric
under the exchange of z and z′, such as in the case of the Rytova-Keldysh potential. Since the
details of the interaction potential are at present unimportant, we leave it unspecified for the
time being.

We now expand the surface fields in the basis of surface states (2.19) by writing

φS;i(x, z, τ) = ∑
s
〈i|ψs(z)〉 φS;s(x, τ) . (4.5)

Here, s ≡ (s, α) labels the different basis states, with s ∈ {t, b} and α ∈ {↑, ↓}. Note that
〈i|ψs(z)〉 stands for the component-wise inner product and in particular selects the i component
of the state ψs(z). For completeness, the inverse transformation is

φS;s(x, τ) = ∑
i

�
dz 〈ψs(z)|i〉 φS;i(x, z, τ) . (4.6)

This expansion allows us to work explicitly with the fields φS;s describing the two individual
surfaces themselves, which is desirable from a physical point of view. Furthermore, it allows us
to formally integrate out all the z-dependences and obtain a two-dimensional effective model.
The free part of the action SS,0 becomes

SS,0[φ
∗
S , φS] = ∑

s,s′

�
d2x

�
dτ φ∗

S;s(x, τ)

[
δss′ + HS(−i∇)ss′ − µδss′

]
φS;s′(x, τ) , (4.7)

where we have identified the components (2.21) of the effective surface Hamiltonian. For
convenience we remind the reader that it is given by

HS(k) =

[
hS(k) 0

0 hS(k)

]
with hS(k) = E0 + D|k|2 − vF(k × σ) · ẑ . (4.8)
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4.2. Effective bulk action

On the other hand, the part of the action that describes the surface-surface interactions now
becomes

S(SS)
int [φ∗

S , φS] =
1
2 ∑

s,s′

�
d2x

�
d2x′

�
dτ φ∗

S;s(x, τ)φ∗
S;s′(x′, τ)

× Vqc
ss′ (x − x′)φS;s′(x′, τ)φS;s(x, τ) . (4.9)

In this equation we have identified a quantum-confined version of the interaction potential in
a manner similar to Refs. [97, 114], which reads

Vqc
ss′ (x − x′) =

�
dz

�
dz′ πs(z)V(x − x′; z, z′)πs′(z′) . (4.10)

Here, πs(z) ≡ ψ
†
s (z)ψs(z) is the spin-independent probability density of the surface s, obtained

from the eigenstates (2.19). Note that the orthonormality property (2.20) is crucial to obtain this
result.

For convenience, we now introduce the notation from Ref. [90] to simultaneously denote
discrete and continuous matrix products by defining

(Φ|M|Ψ) ≡ ∑
x,x′

Φ∗(x)M(x, x′)Ψ(x′) . (4.11)

Here, x and x′ stand for all indices and coordinates the fields Φ and Ψ depend on, which may be
discrete, continuous (in which case the sum is understood to be an integral), or a combination
of both. Then we can simply rewrite the full action as

S =
(
φB
∣∣−G−1

B,0

∣∣φB
)

︸ ︷︷ ︸
SB,0

+
(
φS
∣∣−G−1

S,0

∣∣φS
)

︸ ︷︷ ︸
SS,0

+
1
2 ∑

A,A′

(
φ∗

AφA
∣∣V∣∣φ∗

A′φA′
)

︸ ︷︷ ︸
Sint

, (4.12)

where the free (inverse) bulk and surface Green’s functions are identified as

G−1
B,0(x, z, τ; x′, z′, τ′) = −

[
∂

∂τ
+ H(−i∇,−i∂z)− µ

]
δ(x − x′)δ(z − z′)δ(τ − τ′) , (4.13)

G−1
S,0 (x, τ; x′, τ′) = −

[
∂

∂τ
+ HS(−i∇)− µ

]
δ(x − x′)δ(τ − τ′) . (4.14)

Note that in writing the interaction term in Eq. (4.12) the interaction matrix V is understood to
be V(x, z, τ; x′, z′, τ′) = V(x − x′, z, z′)δ(τ − τ′).

4.2 Effective bulk action

In this section we will integrate out the fermionic surface fields and obtain an effective action
for the bulk fields. The first step is to decouple the term

(
φ∗

SφS

∣∣V∣∣φ∗
SφS

)
, which is not quadratic

in the surface fields and thus prevents us from integrating them out exactly. We perform a
Hubbard-Stratonovich transformation by introducing two real fields ρs(x, τ) with s ∈ {t, b},
which will represent the total densities on each surface. We write

1 =

�
D[ρ] exp

{
1
2 ∑

s,s′

�
d2x

�
d2x′

�
dτ ρs(x, τ)Vqc

ss′ (x − x′)ρs′(x′, τ)

}
, (4.15)
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4.2. Effective bulk action

where the measure is understood to contain the factor of exp{Tr[log(−V−1
qc )]/2} coming from

the path integral so that the whole expression equals unity. We now perform a shift in the
density fields by replacing

ρs(x, τ) → ρs(x, τ)− ∑
α

φ∗
S;s,α(x, τ)φS;s,α(x, τ) . (4.16)

Multiplying the partition function by this path integral over the density fields then gets rid of
the term in Eq. (4.9).

Let us now analyze the surface-bulk interaction term, S(SB)
int =

(
φ∗

SφS

∣∣V∣∣φ∗
BφB

)
. It is quadratic

in the surface fields, so in principle it poses no problem to integrate over them. Indeed, we may
rewrite it as a self-energy-like term

(
φS
∣∣MB

∣∣φS
)
, where MB is a matrix that depends on the bulk

fields:

MB;ss′(x, τ; x′, τ′) = δss′ δ(x − x′)δ(τ − τ′)∑
i′′

�
d2x′′

�
dz

�
dz′′

× πs(z)V(x − x′′; z, z′′)φ∗
B;i′′(x′′, z′′, τ)φB;i′′(x′′, z′′, τ) . (4.17)

At this point the total action, with the additional density fields included, reads

S =
(
φB
∣∣−G−1

B,0

∣∣φB
)
+
(
φS
∣∣−G−1

S,0 +MB
∣∣φS
)
+

1
2
(
φ∗

BφB
∣∣V∣∣φ∗

BφB
)
− 1

2
(
ρ
∣∣Vqc∣∣ρ)+ (ρ∣∣Vqc∣∣φ∗

SφS
)

.

(4.18)

The last term may be rewritten as
(
φS
∣∣ΣS[ρ]

∣∣φS
)
, where

ΣS[ρ]ss′(x, τ; x′, τ′) = δss′ δ(x − x′)δ(τ − τ′)∑
s′′

�
d2x′′ Vqc

ss′′(x − x′′)ρs′′(x′′, τ) . (4.19)

Then the action is quadratic in the surface fields and depends on them only through a term(
φS
∣∣−GS[ρ]

−1 +MB
∣∣φS
)
, where we have defined

GS[ρ]
−1 ≡ G−1

S,0 − ΣS[ρ] . (4.20)

Integrating out this term gives the standard factor of exp[Tr log(−GS[ρ]
−1 +MB)]. Hence, we

are left with

S =
(
φB
∣∣−G−1

B,0

∣∣φB
)
+

1
2
(
φ∗

BφB
∣∣V∣∣φ∗

BφB
)
− 1

2
(
ρ
∣∣Vqc∣∣ρ)− Tr log(−GS[ρ]

−1 +MB) . (4.21)

We now concentrate on the last two terms. We perform a fluctuation expansion of the
density fields around their minimum by writing ρs(x, τ) = ρ0;s(x, τ) + δρs(x, τ), such that
ρ0;s(x, τ) = 〈ρs(x, τ)〉. Then we can write

log(−GS[ρ]
−1 +MB) = log(−GS[ρ0]

−1)−
∞

∑
n=1

1
n
(
GS[ρ0]ΣS[δρ] + GS[ρ0]MB

)n . (4.22)

Demanding that the noninteracting terms linear in the density fluctuations vanish gives the
condition Tr

(
GS[ρ0]ΣS[δρ]

)
−
(
ρ0
∣∣Vqc

∣∣δρ
)
= 0. The fact that δρ is arbitrary leads to

〈ρs(x, τ)〉 = ∑
α

GS[ρ0] s,α;s,α(x, τ; x, τ) , (4.23)

which implicitly defines the mean surface densities ρ0;s.
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4.2. Effective bulk action

The rest of the terms in the summation of Eq. (4.22) can be conveniently represented as
Feynman diagrams. After dropping some unimportant constant terms that only depend on ρ0,
the action is now

S =
(
φB
∣∣−G−1

B,0

∣∣φB
)
+

1
2
(
φ∗

BφB
∣∣V∣∣φ∗

BφB
)
− 1

2
(
δρ
∣∣Vqc∣∣δρ

)
+

� 
+ + +

+ +

+ + + · · ·

 , (4.24)

where the external solid lines represent bulk fermions, the dashed lines represent the surface
propagator GS[ρ0], and the crossed dots stand for the surface-density fluctuations δρ. The
notation

�
{. . . } implies that we sum and integrate over the coordinates of all free ends. The

series is understood to contain all possible diagrams consisting of a single surface loop with an
arbitrary number and ordering of attached external legs of both types [except for the diagram
representing Tr(GS[ρ0]ΣS[δρ]), which has canceled the other noninteracting term linear in δρ].
The precise Feynman rules for these kinds of diagrams are given in App. 4.A.

The first diagram in Eq. (4.24) corresponds to the term GS[ρ0]MB in the expansion of (4.22).
It gives a Hartree correction to the free bulk propagator, such that we can write the sum of both
terms as

(
φB
∣∣−GB[ρ0]−1

∣∣φB
)
, where we have defined

GB[ρ0]
−1 ≡ G−1

B,0 − ΣB[ρ0] . (4.25)

In this case, the bulk self-energy correction is given by

ΣB[ρ0]ii′(x, z, τ; x′, z′, τ′) = δii′ δ(x − x′)δ(z − z′)δ(τ − τ′)

× ∑
s′′

�
d2x′′

�
dz′′ πs′′(z′′)V(x − x′′; z, z′′) 〈ρs′′(x′′, τ)〉 . (4.26)

On the other hand, the first diagram on the second line stands for 1
2 GS[ρ0]MBGS[ρ0]MB. It

provides a correction to the bare bulk-bulk interaction term 1
2

(
φ∗

BφB

∣∣V∣∣φ∗
BφB

)
, because we can

write its trace as 1
2

(
φ∗

BφB

∣∣V(1)
∣∣φ∗

BφB
)
, where

V(1)(x, z, τ; x′, z′, τ′) = ∑
s,s′

�
d2x′′

�
dz′′

�
d2x′′′

�
dz′′′

× πs(z′′)πs′(z′′′)V(x − x′′, z, z′′)V(x′ − x′′′, z′, z′′′)
× GS[ρ0]ss′(x′′, τ; x′′′, τ′)GS[ρ0]s′s(x′′′, τ′; x′′, τ) . (4.27)

We now choose to neglect all terms which are of order δρ3 and higher, that is, all those terms
in (4.24) with three or more crossed dots. In this way we obtain an action that is quadratic in the
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4.2. Effective bulk action

surface density fields, and hence it is possible to find a vector R and a matrix U such that

S =
(
φB
∣∣−GB[ρ0]

−1∣∣φB
)
+

1
2
(
φ∗

BφB
∣∣V + V(1)∣∣φ∗

BφB
)
+ S(>2)

B +
(
δρ
∣∣R)− 1

2
(
δρ
∣∣Vqc − U

∣∣δρ
)

.

(4.28)

The term S(>2)
B contains all δρ-independent diagrams of order (φ∗

BφB)
3 and higher, that is,

S(>2)
B =

�
 + + · · ·

 . (4.29)

Note that R and U are determined from the δρ-dependent diagrams in (4.24) and that both
depend on the bulk fields; in fact, they contain arbitrary powers of φ∗

BφB. Integrating out the
bosonic field δρ finally gives an effective bulk action, which reads

SB,eff[φ
∗
B, φB] =

(
φB
∣∣−GB[ρ0]

−1∣∣φB
)
+

1
2
(
φ∗

BφB
∣∣V + V(1)∣∣φ∗

BφB
)
+ S(>2)

B [φ∗
B, φB]

+
1
2
(R|[Vqc − U ]−1|R) +

1
2

Tr log[−(Vqc − U)] . (4.30)

The last two terms can be written in a more practical form by using the following identities:

(Vqc − U)−1 = V−1
qc + V−1

qc UV−1
qc + V−1

qc UV−1
qc UV−1

qc + · · · , (4.31a)

log[−(Vqc − U)] = log(−V−1
qc )−

∞

∑
n=1

(V−1
qc U)n . (4.31b)

The terms of order (φ∗
BφB)

3 and higher in the effective bulk action provide corrections to
the interactions between three or more particles. As mentioned at the outset, however, in this
chapter we are only interested in the effects of many-body phenomena on a single exciton,
i.e., on the two-body electron-hole problem. The Feynman diagrams contained in S(>2)

B do not
play a role in this scenario, and therefore we will omit this term altogether in the remainder
of this chapter. Nevertheless, one ought to keep in mind that a treatment of particle-exciton or
exciton-exciton interactions would require the inclusion of these kinds of diagrams.

With the above remark in mind, we now proceed to analyze the terms (R|[Vqc − U ]−1|R)
and Tr log[−(Vqc − U)]. By definition, R and U must be identified by looking at the diagrams
in Eq. (4.24) that are linear and quadratic in δρ, respectively. Let R = ∑∞

n=1 R(n) and U =

∑∞
n=0 U (n), where R(n) and U (n) contain all diagrams with exactly n instances of φ∗

BφB. Note that
R(0) = 0, as there are no diagrams that are linear in δρ and do not contain bulk fields. Since
in this chapter we only want to keep terms of order at most (φ∗

BφB)
2, we see that (R|[Vqc −

U ]−1|R) can simply be replaced by (R(1)|[Vqc − U (0)]−1|R(1)). On the other hand, for the term
in Eq. (4.31b) it suffices to take U = ∑2

n=0 U (n). The expressions for R(1) and U (n) for n ≤ 2 are
given in App. 4.A.

Using Eq. (4.31a) and the Feynman rules given in the appendix, one can show that the term
(R(1)|[Vqc − U (0)]−1|R(1)) is the following sum of bubble diagrams:

1
2
(R(1)|[Vqc − U (0)]−1|R(1)) (4.32)

=

� {
+ + · · ·

}
.
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4.3. The random-phase approximation

Together with 1
2

(
φ∗

BφB

∣∣V + V(1)
∣∣φ∗

BφB
)
, which contains the zero- and single-bubble diagrams,

these terms contain two-body diagrams consisting of a chain of simple bubbles. We collectively
denote them by 1

2

(
φ∗

BφB

∣∣V(RPA)
∣∣φ∗

BφB
)
. The subscript “RPA” stands for the so-called random-

phase approximation, which is detailed in the next section.

On the other hand, the effect of the trace operation on the terms in Eq. (4.31b) is to produce
all diagrams that can be formed with the following pieces by joining together pairs of dots:

, , , . (4.33)

Besides some unimportant vacuum bubble diagrams, this produces some self-energy and vertex
corrections to the propagator, such as:

, , , etc. (4.34)

It also gives self-energy and vertex corrections to the two-body interaction, such as:

, , , etc. (4.35)

Note that not all of these corrections are generated in this way, but only those that are obtained
from diagrams with exactly two dots. This is of course due to the fact that we have neglected
contributions of order δρ3 and higher. Also, if we were interested in more-body interactions,
we would have to include in the list of Eq. (4.33) similar diagrams with a higher amount of
external bulk fields, which we have neglected for the purposes of this chapter.

In this way, we finally arrive at the following effective action, which is suitable for the
analysis of the two-body interactions in Bi2Se3 nanosheets:

S(≤2)
B,eff [φ

∗
B, φB] =

(
φB
∣∣−GB[ρ0]

−1∣∣φB
)
+

1
2
(
φ∗

BφB
∣∣V(RPA)

∣∣φ∗
BφB

)
+

� {
self-energy and vertex corrections arising from (4.33)

}
. (4.36)

In order to further simplify the treatment, we now perform one of the most widely used
approximations in the literature of many-body physics.

4.3 The random-phase approximation

In the so-called random-phase approximation (RPA), the self-energy and vertex corrections are
neglected and the total effective interaction is approximated by the sum of all simple-bubble-
chain diagrams such as those in Eq. (4.32) [98, Ch. 2, 115, Ch. 10]. In other words, we simply
approximate the effective two-body action by

S(≤2)
B,eff [φ

∗
B, φB] ≈

(
φB
∣∣−GB[ρ0]

−1∣∣φB
)
+

1
2
(
φ∗

BφB
∣∣V(RPA)

∣∣φ∗
BφB

)
. (4.37)
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4.3. The random-phase approximation

The RPA is useful because the resulting diagrams form a geometric series which can be summed
exactly. Indeed, if we denote the RPA interaction by a thick photon line, it satisfies the following
diagrammatic Dyson equation:

x, z, τ x′, z′, τ′
=

x, z, τ x′, z′, τ′
+

x, z, τ x′, z′, τ′
. (4.38)

(Note that the indices i = i′ have been omitted everywhere.) In two-dimensional momentum
and frequency space, the Dyson equation analytically reads

V(RPA)(q, iωn; z, z′) = V(q; z, z′)

+

�
dz1

�
dz2 V(RPA)(q, iωn; z, z1)

{
∑
s,s′

πs(z1)Πss′(q, iωn)πs′(z2)

}
V(q; z2, z′) . (4.39)

The important object in this equation is the polarization operator Π(q, iωn), whose components
are given by

Πss′(q, iωn) =
1

Vβ ∑
α,α′

∑
k,m

GS[ρ0]s,α;s′,α′(k + q, iωn + iωm)GS[ρ0]s′,α′;s,α(k, iωm) . (4.40)

Note that GS[ρ0] contains the surface self-energy correction ΣS[ρ0] given in Eq. (4.19). We
will only focus on homogeneous systems with constant average surface densities, 〈ρs(x, τ)〉 ≡
ρ0,s, in which case we obtain

ΣS[ρ0]ss′(x, τ; x′, τ′) = δss′ δ(x − x′)δ(τ − τ′)∑
s′′

ρ0,s′′

�
d2x′′ Vqc

ss′′(x − x′′) . (4.41)

This Hartree self-energy can be canceled against a positively charged ion background, as in the
well-known jellium model [90, Ch. 8]. For this reason we will neglect it henceforth.

4.3.1 The polarization operator

Inverting (4.14) in momentum space allows for the explicit calculation of the polarization.
We will allow for different chemical potentials on both surfaces by changing µ → µs, thus
taking into account the possibility of gating the nanosheet. Note that, since the top and bottom
surfaces are uncoupled from each other in the effective surface Hamiltonian, the polarization
matrix has the diagonal structure diag(Πt, Πb). Thus, in principle one could easily account for
potential tunneling effects by including a small coupling between the top and bottom surfaces.
For simplicity, we neglect these effects in the present treatment. The only nonzero components
of the polarization operator then read

Πs(q, iωn) =
2

Vβ ∑
k,m

As(k + q, iωn + iωm)As(k, iωm) + Re[B(k + q)B∗(k)][
As(k + q, iωn + iωm)2 − |B(k + q)|2

][
As(k, iωm)2 − |B(k)|2

] , (4.42)

where

As(k, iωn) = −iωn + E0 + D|k|2 − µs , (4.43a)
B(k) = −ivFk+ . (4.43b)

After performing a partial fraction decomposition of the denominator, the Matsubara sum can
be evaluated by standard methods (cf. Ref. [90, Ch. 7]) and gives

Πs(q, iωn) = (4.44)
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1
2V ∑

k

[
1 +

(k + q) · k̂√
k2 + q2 + 2k · q

][
Ns
+(k + q)− Ns

+(k)
−iωn + ε+(k + q)− ε+(k)

+
Ns
−(k + q)− Ns

−(k)
−iωn + ε−(k + q)− ε−(k)

]
+

1
2V ∑

k

[
1 − (k + q) · k̂√

k2 + q2 + 2k · q

][
Ns
+(k + q)− Ns

−(k)
−iωn + ε+(k + q)− ε−(k)

+
Ns
−(k + q)− Ns

+(k)
−iωn + ε−(k + q)− ε+(k)

]
,

where k̂ is a unit vector in the direction of k, ε±(k) = ±vF|k| are the eigenenergies of the
single-particle surface Hamiltonian, and Ns

±(k) ≡ NFD(ε±(k)− µs) with NFD(x) = (eβx + 1)−1

are the Fermi-Dirac distributions of the conduction and valence bands, respectively. Note that
we have neglected the term proportional to k2 in the effective surface Hamiltonian, which only
measures small deviations from the linear dispersion relation and is hence irrelevant in the low-
energy limit. We have also set the origin of energy at the Dirac point, which simply amounts to
a shift by E0. The above equation can be written in the compact form

Πs(q, iωn) =
1
V ∑

k,κ,κ′

Ns
κ(k + q)− Ns

κ′(k)
−iωn + εκ(k + q)− εκ′(k)

Fκκ′(k, k + q) , (4.45)

where κ, κ′ ∈ {+,−} and Fκκ′(k, k′) = 1
2 (1 + κκ′ cos θ) is the overlap of states, with θ the angle

between k and k′. In this expression, the terms with κ = κ′ represent the system’s response
to intraband (valence-valence or conduction-conduction) transitions, whereas the terms with
κ 6= κ′ correspond to interband (valence-conduction) transitions.

Eq. (4.45) has been evaluated explicitly in the zero-temperature limit in Refs. [116–118].
Note that the polarization in Ref. [118] is defined with the opposite sign, and furthermore in
both papers it differs from (4.45) by a factor of gsgv = 4 which accounts for the spin and valley
degeneracy in graphene. In our case, the surface degeneracy gS = 2 does not appear in the
above equation because we treat both surfaces separately. To translate the results of the articles
to our problem, we must change gsgv to gS and (in the case of [118]) γ to vF, resulting in the
density of states (DOS)

D(ε) = ∑
s

Ds(ε) =
gS

2π

|ε|
v2

F
, (4.46)

with Ds(ε) = D(ε)/gS the DOS of a single surface.

For µs = 0 one finds a nonzero contribution due to the interband transitions, since even
when the chemical potential is located at the Dirac point the gapless surface-state spectrum
allows transitions between the valence and conduction bands. In this case the full polarization
assumes the form [117]

Πs(q, ω)
∣∣∣
µs=0

= − q2

16
√

v2
Fq2 − ω2

Θ(vFq − ω)− i
q2

16
√

ω2 − v2
Fq2

Θ(ω − vFq) . (4.47)

When µs 6= 0 we define Π̃s(q, ω) ≡ Πs(q, ω)/Ds(µs), where the chemical potential µs is
just the Fermi energy of the surface s in the zero-temperature limit. We also introduce the
dimensionless quantities x ≡ q/kF,s and ν ≡ ω/µs for each surface (we omit the surface
subscript in x and ν to avoid clutter). Here, kF,s is the Fermi momentum of the surface s, defined
by µs = ε(kF,s). With these conventions, our Π̃s is the same as Π̃ in Ref. [118] except for the
minus sign. In order to give an expression for the polarization in the general case µs 6= 0 we
define the complex function

G(z) = z
√

z2 − 1 − log
(
z +

√
z2 − 1

)
. (4.48)

Then, Π̃s can be written as [117]

Π̃s(x, ν) = −1 +
x2

8
√

ν2 − x2

{[
G
(

ν + 2
x

)
− iπ

]
− Θ

(
2 − ν

x
− 1
)[

G
(

2 − ν

x

)
− iπ

]
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4.3. The random-phase approximation

− Θ
(

ν − 2
x

+ 1
)

G
(

ν − 2
x

)}
, (4.49)

where Θ is the Heaviside theta function. We can also give separate expressions for the real and
imaginary parts of Π̃s as done in [118]. The polarization is split as

Π̃s(x, ν) = Π̃+
s (x, ν) + Π̃−

s (x, ν) , (4.50)

where Π̃+
s and Π̃−

s correspond to the intraband and interband transitions, respectively. Further-
more, we write

Π̃+
s (x, ν) = Π̃+

s,1(x, ν)Θ(ν − x) + Π̃+
s,2(x, ν)Θ(x − ν) . (4.51)

The real parts of Π̃+
s,i are given by

Re
[
Π̃+

s,1(x, ν)
]
= −1 +

1
8
√

ν2 − x2

{
f1(x, ν)Θ(|ν + 2| − x)

+ sgn(ν − 2 + x) f1(x,−ν)Θ(|ν − 2| − x)

+ f2(x, ν)
[
Θ(2 + x − ν) + Θ(2 − x − ν)

]}
, (4.52a)

Re
[
Π̃+

s,2(x, ν)
]
= −1 +

1
8
√

x2 − ν2

{
f3(x, ν)Θ(x − |ν + 2|)

+ f3(x,−ν)Θ(x − |ν − 2|)

+
πx2

2
[
Θ(|ν + 2| − x) + Θ(|ν − 2| − x)

]}
, (4.52b)

and their imaginary parts are given by

Im
[
Π̃+

s,1(x, ν)
]
=

1
8
√

ν2 − x2

{
f3(x,−ν)Θ(x − |ν − 2|)

+
πx2

2
[
Θ(2 + x − ν) + Θ(2 − x − ν)

]}
, (4.53a)

Im
[
Π̃+

s,2(x, ν)
]
=

−1
8
√

x2 − ν2
Θ(2 − x + ν)

[
f4(x, ν)− f4(x,−ν)Θ(2 − x − ν)

]
. (4.53b)

On the other hand,

Π̃−
s (x, ν) = − πx2

8
√

x2 − ν2
Θ(x − ν)− i

πx2

8
√

ν2 − x2
Θ(ν − x) , (4.54)

which is just the dimensionless version of (4.47).

The functions fi read as follows:

f1(x, ν) = (ν + 2)
√
(ν + 2)2 − x2 − x2 log

[
(ν + 2) +

√
(ν + 2)2 − x2

|ν +
√

ν2 − x2|

]
, (4.55a)

f2(x, ν) = x2 log
(

ν −
√

ν2 − x2

x

)
, (4.55b)

f3(x, ν) = (ν + 2)
√

x2 − (ν + 2)2 + x2 arcsin
(

ν + 2
x

)
, (4.55c)

f4(x, ν) = (ν + 2)
√
(ν + 2)2 − x2 − x2 log

[
(ν + 2) +

√
(ν + 2)2 − x2

x

]
. (4.55d)

Together, the expressions presented in this section define the full analytic structure of the
polarization operator in the zero-temperature limit.
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4.4. Static screening

4.3.2 Solving the Dyson equation

The Dyson equation giving the RPA potential, Eq. (4.39), cannot be solved analytically for an
arbitrary interaction potential. However, we may exploit the fact that πs are the probability
densities of strongly localized surface states to solve it approximately to a very good degree of
accuracy. Indeed, we may approximate these by

πs(z) ≈ δ(z − 〈z〉s) , (4.56)

where 〈z〉s =
�

dz z πs(z) stands for the expected value of the z-coordinate. In practice, it
suffices to take 〈z〉t,b ≈ ±`/2 if the film is not unreasonably thin. Then the Dyson equation
becomes an algebraic equation, namely

V(RPA)(z, z′) = V(z, z′) + V(RPA)
B,t (z)ΠtVB,t(z′) + V(RPA)

B,b (z)ΠbVB,b(z′) . (4.57)

For clarity we have suppressed the momentum and frequency dependencies, and introduced
the notation VB,s(z) ≡ V(z, 〈z〉s) meant to highlight that this in general represents the interaction
between the surface s and a point in the bulk with coordinate z. This equation can be solved by
first putting z′ = 〈z〉s with s ∈ {t, b} and solving a system of equations for V(RPA)

B,s (z) in terms
of Vss′ ≡ V(〈z〉s, 〈z〉s′). This intermediate result is[

V(RPA)
B,t (z)

V(RPA)
B,b (z)

]
=

1
(1 − ΠtVtt)(1 − ΠbVbb)− ΠtΠbV2

tb

[
1 − ΠbVbb ΠbVtb

ΠtVtb 1 − ΠtVtt

][
VB,t(z)
VB,b(z)

]
. (4.58)

Plugging these results back into the right-hand side of Eq. (4.57) directly gives the RPA-corrected
bulk-bulk interaction V(RPA)(z, z′).

We shall mostly concern ourselves with the case when the system enjoys inversion symmetry
along the z-direction, meaning that Πt = Πb ≡ Π as well as Vtt = Vbb. Then,

V(RPA)
B,t (z) = V(RPA)

B,b (−z) =
(1 − ΠVtt)VB,t(z) + ΠVtbVB,t(−z)
[1 − Π(Vtt − Vtb)][1 − Π(Vtt + Vtb)]

, (4.59)

and the screened bulk-bulk potential becomes

V(RPA)(z, z′) = V(z, z′) +
P(z, z′) +P(−z,−z′)

[1 − Π(Vtt − Vtb)][1 − Π(Vtt + Vtb)]
, (4.60)

where
P(z, z′) ≡ Π(1 − ΠVtt)VB,t(z)VB,t(z′) + Π2VtbVB,t(z)VB,t(−z′) . (4.61)

We have now determined both the polarization and the effective RPA interaction. Therefore,
we are ready to investigate different kinds of many-body effects in bismuth selenide.

4.4 Static screening

In this section we wish to analyze how the topological surface states modify the bulk interaction
potential between particles in a thin slab. In general the polarization function depends on the
frequency of the particles involved in the scattering and hence introduces retardation effects
to the effective screened interaction potential. However, in the low-energy limit we expect the
typical times between successive scattering events to be much longer than the characteristic
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4.4. Static screening

time scale associated with a photon exchange. Hence we are mainly interested in the zero-
frequency limit of the effective interaction, also known as the static limit. In this case, the
components of the polarization function at zero temperature are [118]:

Π̃+
s (x, 0) =


−1 +

πx
8

, x ≤ 2,

−1 +
1
2

√
1 − 4

x2 +
x
4

arcsin
(

2
x

)
, x > 2,

(4.62a)

Π̃−
s (x, 0) = −πx

8
. (4.62b)

We see that the total static polarization of a single surface becomes a constant at q ≤ 2kF, just
like in a normal 2D system with parabolic band dispersions [119]. More precisely, in this case
Πs is (minus) the density of states at the Fermi level of the surface s, namely

Πs(q, 0)
∣∣∣

q→0
= − 1

2π

|µs|
v2

F
. (4.63)

From the point of view of the exciton problem considered in Ch. 4, the static approximation
is relevant because the typical frequency exchange in the direct interaction channel is expected
to be small. Therefore, the bare interaction potential in this channel ought to be modified by
its statically screened counterpart in order to obtain more accurate results. We now proceed to
analyze the static screening of the potentials of interest in the event of a small but nonzero
chemical potential. We will work in the long-wavelength limit in order to use the above
constant expression as the total polarization at all times. Note that this is in principle not correct
when finding the screened real-space potentials by performing a Fourier transform, which is a
sum over all values of q. Nevertheless, this so-called Thomas-Fermi screening is widely discussed
in the condensed-matter literature and counts with great experimental success [120–122]. For
simplicity we will set µt = µb in the remainder of this section.

4.4.1 Homogeneous interaction potentials

We begin with the simpler case when the bare interaction between particles anywhere within
the nanosheet is the same independently of their z coordinates, that is, Vtt = Vtb = VB,t =
VB,b ≡ V. This is a good approximation when the film thickness is very small and the typical
momenta satisfy q` � 1. In this case Eq. (4.60) reduces to

V(RPA)(q, ω) =
V(q)

1 − 2Π(q, ω)V(q)
, (4.64)

which is the standard RPA result for the case of an interaction V, with a factor of 2 arising from
the fact that there are two surfaces [98, Ch. 2, 115].

For convenience, we define a characteristic system screening length r0 as well as a charac-
teristic bulk energy scale V0 through

r0 ≡ εd

2εs
` , (4.65a)

V0 ≡ e2

4πε0εd`
. (4.65b)

We will study the screening of both the Coulomb and the Struve-Neumann potentials. In the
above units, they are expressed in real and momentum space as

VC(r) = 2V0
r0

r
, VC(q) = r2

0V0
4π

r0q
, (4.66)
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VSN(r) = πV0

[
H0

(
r
r0

)
− Y0

(
r
r0

)]
, VSN(q) = r2

0V0
4π

r0q(1 + r0q)
. (4.67)

(The definition of r0 in fact arises from the characteristic decay length of the Struve-Neumann
potential.) We also introduce a screening length λ through

λ−1 ≡ 1
2π

e2

ε0εs

|µ|
v2

F
. (4.68)

We will see that the screened interactions of interest are controlled by the single dimensionless
parameter

ξ ≡ r0

λ
. (4.69)

First we consider the Coulomb potential. Incorporating the Thomas-Fermi screening gives

VC(TF)(q) = r2
0V0

4π

r0q + ξ
. (4.70)

The inverse Fourier transform can be calculated and the screened Coulomb potential in real
space reads

VC(TF)(r) = 2V0
r0

r

{
1 − ξ

π

2
r
r0

[
H0

(
ξ

r
r0

)
− Y0

(
ξ

r
r0

)]}
. (4.71)

Again, H0 and Y0 are the Struve and Neumann functions, respectively. At short distances one
recovers the usual Coulomb potential. By contrast, when ξ > 0 the effects of screening become
apparent at large distances. Using the asymptotic expansion

[
H0(x)− Y0(x)

]∣∣∣
x→∞

=
2

πx
− 2

πx3 +O
(

1
x5

)
, (4.72)

one finds

VC(TF)(r)
∣∣∣
r→∞

=
2V0

ξ2

(
r0

r

)3

. (4.73)

Within the Thomas-Fermi approximation to the RPA potential, the effects of screening cause
the Coulomb potential to decay as r−3 at large distances, instead of the usual r−1. However,
the dependence in r is still algebraic in 2D, in stark constrast with the three-dimensional case
where the screened Thomas-Fermi interaction decays exponentially as e−r/λ/r.

Next we study what happens to the physically more relevant Struve-Neumann potential.
Its screened version in momentum space is given by

VSN(q) = r2
0V0

4π

r0q(1 + r0q) + ξ
, (4.74)

and in real space it is determined by the following integral:

VSN(TF)(r) = 2V0

� ∞

0
dx

xJ0(x)
x2 + (r/r0)x + ξ(r/r0)2 , (4.75)

with J0(x) the Bessel function of the first kind. The integral can be performed by doing a partial
fraction decomposition of the denominator, giving

VSN(TF)(r) =
πV0√
1 − 4ξ

{
Ξ+

[
H0

(
Ξ+

r
r0

)
− Y0

(
Ξ+

r
r0

)]
− Ξ−

[
H0

(
Ξ−

r
r0

)
− Y0

(
Ξ−

r
r0

)]}
,

(4.76)
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where Ξ± ≡ 1
2

(
1 ±

√
1 − 4ξ

)
. One may verify that this potential is real even for ξ > 1/4. The

case ξ = 1/4 has to be treated separately by either taking the limit of the above expression or
repeating the integral. The result is

VSN(TF)(r)
∣∣∣
ξ=1/4

= πV0

{[
H0

(
r

2r0

)
− Y0

(
r

2r0

)]
+

r
2r0

[
H−1

(
r

2r0

)
+ Y1

(
r

2r0

)]}
. (4.77)

One may again use the asymptotic expansion (4.72) to verify that VSN(TF)(r → ∞) is identical
to (4.73). This comes as no surprise, since the unscreened counterpart of the Struve-Neumann
potential reduces to the usual Coulomb potential in this limit.

Fig. 4.1 shows a comparison between the screened and unscreened versions of the Coulomb
and Struve-Neumann potentials derived in this section.
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Figure 4.1. Comparison between the bare (solid lines) and Thomas-Fermi-screened (dashed lines)
Coulomb and Struve-Neumann interaction potentials (red and green curves, respectively) for different
values of ξ. In both cases, the dashed curves correspond (from top to bottom) to ξ = 0.1, 1, 5. The
energies have been normalized to V0 = e2/4πε0εd`.

4.4.2 Rytova-Keldysh potential

Here we consider the static Thomas-Fermi screening of the full Rytova-Keldysh potential,
which in momentum space reads

VRK(q; z, z′) = 4πV0`
2 cosh

[
q(`/2 − z) + η

]
cosh

[
q(`/2 + z′) + η

]
q` sinh

[
q`+ 2η

] , (4.78)

In this case there are not two, but three competing length scales that determine the behavior of
the screened interaction, namely `, r0, and λ. This is in contrast to the previous section, as the
Coulomb and Struve-Neumann potentials implicitly assume the limit ` � r0. Hence, we need
two dimensionless parameters instead of a single one to fully describe the screening of the RK
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potential. It will be convenient in this case to consider a slightly different screening length from
that of the previous section, namely

Λ−1 =
1

2π

e2

ε0εd

|µ|
v2

F
=

εs

εd
λ−1 , (4.79)

and use the dimensionless parameter

ζ ≡ `

Λ
. (4.80)

The second sensible parameter to choose is the ratio between the dielectric constants of the bulk
and the environment, εd/εs.

Due to the z, z′-dependence of the RK potential, the screening must be determined from the
full RPA expression of Eq. (4.60). We have done this numerically for different values of ζ, z,
and z′ with the dielectric constants εd = 28 and εs = 6 which were already used in the previous
chapter. A comparison is shown in Fig. 4.2.
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Figure 4.2. Comparison between the bare (solid lines) and Thomas-Fermi-screened (dashed lines)
Rytova-Keldysh interaction potential for different values of ζ and different pairs (z, z′). The curves in the
figure show the top-top, middle-middle, top-middle and top-bottom interactions within the nanosheet.
In all cases, the dashed curves correspond (from top to bottom) to ζ = 0.02, 0.1, 0.5. The energies have
been normalized to V0 = e2/4πε0εd`.

4.5 Plasmons in the RPA

The RPA calculation also allows us to identify collective quasiparticle excitations of the surface
density fields. These collective excitations consist of fluctuations in the electron densities that
propagate on the corresponding surface, and go by the name of surface plasmons. Looking at
the last term in Eq. (4.28) we see that Vqc − U is the inverse surface density propagator. The
quasiparticle excitations are therefore located at the poles of (Vqc − U)−1, which according to
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(4.32) essentially corresponds to V(RPA). We are thus interested in determining the poles of the
dielectric function1

ε(q, ω) ≡ [1 − Π(Vtt − Vtb)][1 − Π(Vtt + Vtb)] . (4.81)

Since we are only interested in the long-wavelength behavior of the plasmon modes, it is
justified to simply use the Coulomb interaction for points lying on the same surface, that is,
Vtt(q) = VC(q). The interaction between the top and bottom surfaces, however, is taken as
Vtb(q) = VC(q)e−q`. This result can be obtained by Fourier-transforming the three-dimensional
Coulomb interaction after modifying the total distance between particles from r to

√
r2 + `2.

In the long-wavelength limit, q → 0, the dimensionless polarization in the high- and low-
frequency regimes assumes the following forms:

Π̃(x, ν) =


x2ν2

2

(
1 − ν2

4

)
, x < ν < 2,

1 + i
ν

x
, ν < x .

(4.82)

Solving the equation 1 − Π(Vtt + Vtb) = 0 to first order in q yields the dispersion

ω+(q) = ω0

√
q
kF

, where ω0 ≡

√
gS

8π

e2kF

ε0εs
|µ| . (4.83)

The corresponding plasmons are called optical, and correspond to the in-phase mode of the
coupled two-surface system. On the other hand, the out-of-phase mode is realized by acoustic
plasmons, whose dispersion is found from the equation 1 − Π(Vtt − Vtb) and reads

ω−(q) = ω0

√
`kF

2
q
kF

. (4.84)

An illustration of both plasmon modes can be found in Fig. 4.3. The optical mode always
exists in the long-wavelength limit, as ω+(q)/q → 0 for q → 0, and thus the condition x < ν
which was used in Eq. (4.82) is always satisfied. However, the same cannot be said about the
acoustic plasmons, because ω−(q) is linear in the momentum and therefore we need to make
sure that the proportionality constant is compatible with this precondition. The consequence
of this is that, for a fixed value of `, there exists a minimum chemical potential required to
observe surface plasmons of this nature. One finds the condition |µ| > µ∗ ≡ 8πvF

`
e2

ε0εs
, or

equivalently, λ < `/4. For smaller |µ|, the acoustic branch enters the region ω < vFq and
becomes overdamped [123].

In Fig. 4.4 we show plots of the real and imaginary parts of ε(q, ω). Similarly, Fig. 4.5
shows plots of the real and imaginary parts of ε(q, ω)−1, which can be regarded as a spectral
function. As such, its imaginary part is strongly peaked when Re[ε(q, ω)] = 0, that is, at the
plasmon dispersions. This is clearly observed in the corresponding figure after broadening the
dispersion by adding to the frequency a small imaginary part.

4.5.1 Plasmon decay

In the previous section we have determined the plasmon dispersions in the long-wavelength
limit, where the polarization was a real function. However, generally speaking, Π will have
an imaginary part and one must solve for ε(q, ωp − iγ) = 0, where the usual real plasmon

1In most of the literature, the dielectric function is defined through V(RPA) = V/ε. It is clear from Eq. (4.60) that
our definition of ε does not entirely conform to this custom. However, this is not a problem in view of the fact that
our ε still carries the entirety of the singular behavior of V(RPA).
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Figure 4.3. Cartoons of the in-phase (optical) and out-of-phase (acoustic) plasmons on the surfaces of a
Bi2Se3 nanosheet. The bumps represent the charge-density oscillations, which must add up to zero on
each surface due to electric neutrality.

dispersion ωp acquires an additional imaginary piece γ [117]. The imaginary part of a dispersion
relation is associated with a decay rate. This may be seen by observing that the time evolution
of an eigenstate of complex energy εn = ωn − iγn is given by e−iεnt |ψn〉, and thus acquires a
finite lifetime τn = (2γn)−1, as the probability of observation becomes proportional to e−t/τn .

In our case, plasmons decay into surface electron-hole states. This decay is possible when-
ever the plasmon dispersion lies in the electron-hole continuum or single-particle excitation
(SPE) region, defined by a nonzero imaginary part of the polarization function. Thus, in order
to fully understand the decay mechanism, we must find the boundaries of said regions, that
is, the allowed values of the energy change ω as a function of the momentum transfer q. Both
intraband (valence-valence) and interband (valence-conduction) transitions between surface
states are possible. Fig. 4.6 shows different scenarios and the precise boundaries are given in
the caption.

In Fig. 4.7 we have again plotted the real and imaginary parts of the dielectric function,
now on a larger scale, and we show the boundaries of the SPE regions explained above. We
see by comparing the plots that the plasmon modes, defined by Re[ε(q, ω)] = 0, always enter
one of the SPE regions. The optical mode always has a part inside the interband transition
region and never in the intraband region, and thus this mode can only decay via the former.
However, decay requires a minimum value of q, as the plasmon is not damped in the leftmost
dark-blue region of Fig. 4.6 where the polarization is real. On the other hand, the acoustic mode
will only decay via interband transitions if the chemical potential is higher than µ∗, but in the
overdamped regime |µ| < µ∗ decay may take place via both intra- and interband transitions.
Note that the figures all show the case |µ| > µ∗.

4.6 Corrections to the exciton spectra

The corrections to the bare interaction potential in the RPA scheme will in principle have
implications on the exciton states we determined in Ch. 3. Due to the coupling with the
surface electrons and holes, the correspoding exciton dispersions will in general acquire a
complex energy shift. We can compute this shift by treating the quantity δV ≡ V(RPA) − V
as a perturbation, where

δV(q, ω) ≡ − 2Π(q, ω)V(q)2

1 − 2Π(q, ω)V(q)
. (4.85)

Calculating the average value of this operator with the unperturbed wave functions then gives
a first-order correction to the energy.

This complex energy shift will have two effects. Firstly, the real part will slightly modify
the unperturbed energy levels. We must check that their shift preserves the original ordering of
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Figure 4.4. Left and right, respectively: typical plots of the real and imaginary parts of ε(q, ω). The
dashed white lines indicate the local long-wavelength plasmon dispersions ω+(q) ∝

√
q and ω−(q) ∝ q

resulting from setting the real part equal to zero. We have chosen a sufficiently large value of µ such
that the acoustic mode lies outside of the electron-hole continuum ω < vFq.
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Figure 4.5. Left and right, respectively: plots of the real and imaginary parts of the spectral-like function
ε(q, ω)−1. The plot of the imaginary part clearly shows the two plasmon dispersions. Formally these
correspond to delta functions, but we have broadened them for visualization purposes by adding to ω
a small imaginary part.

states and does not induce level crossings, which would correspond to nonperturbative effects.
Secondly, the imaginary part will now give the excitons a finite lifetime. From a point of view of
the dispersions, this corresponds to a broadening of the spectral lines. We must therefore check
that the energy difference between successive levels is larger than their combined half-widths,
since otherwise both levels will become hard to distinguish in a spectroscopy experiment. In
this section we have restricted ourselves to the results obtained with the Struve-Neumann
potential.

Excitons interact via the direct and exchange channels, which are now proportional to the
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Figure 4.6. Different kinds of transitions between surface bands, represented by a red arrow. The
chemical potential is represented as a dashed orange line and satisfies |µ| = vFkF. (a) Intraband
transitions with q < 2kF are only allowed in the range 0 < ω < vFq. (b) Intraband transitions with
q > 2kF, on the other hand, are only allowed for ω > vF(q− 2kF). (c) Direct (q = 0) interband transitions
are forbidden for 0 < ω < 2|µ|. (d) In general for q < 2kF, interband transitions are allowed only for
ω > vF(2kF − q).
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Figure 4.7. Left and right, respectively: typical plots of the real and imaginary parts of ε(q, ω). The right
panel shows the allowed transitions between surface bands. No transitions are possible inside the dark
blue regions, where Im[ε(q, ω)] = 0. Plasmon decay can take place whenever the plasmon mode lies
within one of the allowed transition regions.

interaction potentials V(RPA)(k − k′, ω − ω′) and V(RPA)(Q, εQ), respectively. Here, the internal
frequencies ω and ω′ are defined analogously to k and k′, i.e., by defining the electron and hole
energies as εQ/2 + ω and εQ/2 − ω, respectively. We will employ the static approximation
for the exchange diagram by replacing ω − ω′ by its mean value, which is simply zero. The
direct potential is then real and does not contribute to a finite exciton lifetime but only to a real
energy shift. Therefore, and because the results obtained in Fig. 3.2 indicate that εQ > vFQ for
all Q, excitons can only decay through the exchange channel in this approximation. However,
the exciton eigenstates in the subspaces s 6= t do not perceive the exchange interaction, and
thus their lifetimes remain infinite in the static approximation. Note that this result is exact, as
the RPA only modifies the electrostatic interaction and does not introduce couplings between
the different subspaces. The effect on the eigenstates living in the subspace with s = t is most
easily studied by considering Q along the x-direction and the gauge ΦQx̂,++(k) = ±Φ∗

Qx̂,−−(k),
where the + and − signs correspond to the higher- and lower-energy eigenstates, respectively.
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4.6. Corrections to the exciton spectra

In this case, the expected value of the perturbation is given by

〈δV̂X〉
∣∣∣
s=t

= −V(RPA)(Q, εQ)

∣∣∣∣ 1
V ∑

k

{
〈χv,+

−Qx̂/2+k|χ
c,+
Qx̂/2+k〉ΦQx̂,++(k)

± 〈χv,+
−Qx̂/2+k|χ

c,+
Qx̂/2+k〉

∗Φ∗
Qx̂,++(k)

}∣∣∣∣2 . (4.86)

The terms inside brackets reduce to the imaginary part of 〈χv,+
−Qx̂/2+k|χ

c,+
Qx̂/2+k〉ΦQx̂,++(k) for

the lower state. However, in view of the property

〈χv,+
−Qx̂/2+kφ

|χc,+
Qx̂/2+kφ

〉 = 〈χv,+
−Qx̂/2+k−φ

|χc,+
Qx̂/2+k−φ

〉∗ , (4.87)

the total integral must be real, as can be seen by again expanding ΦQx̂,++(k) into Fourier modes
with real coefficients. This means that there is no shift for the lower exciton mode to first
order in perturbation theory. By contrast, because the real part does not integrate to zero,
the upper mode does pick up a nonzero first-order correction (unless Q = 0, in which case the
exchange interaction vanishes). However, we have numerically verified that the corresponding
real energy shifts are several orders of magnitude smaller than those arising from the direct
diagram, and that the complex parts give extremely long lifetimes of hundreds of nanoseconds,
making the broadening completely negligible.

These results indicate that the shift of the excitonic energy levels will be mostly due to the
direct channel, and that exciton decay might actually be dominated by deviations from the
static approximation in the entire momentum range. While the latter are outside the scope
of the present work, we have numerically calculated the former in order to verify that the
obtained values are a posteriori compatible with a perturbative treatment. The results for Q = 0
are shown in Table 4.1. We see that, in all cases, the energy correction is quite small compared to
the unperturbed binding energies. More importantly, however, the corrected binding energies
of the individual states preserve the unperturbed level ordering. For these reasons, the effect
of Eq. (4.85) can be regarded as a true perturbation.

m 0 −1 1 −2 2 −3 3

∆(0)
m (meV) 25.0 21.8 19.3 18.0 16.1 15.3 13.9

δεm (meV) 5.0 4.7 4.4 4.2 4.0 3.9 3.6
∆(1)

m (meV) 20.0 17.1 14.9 13.8 12.1 11.4 10.3

Table 4.1. Energy shifts δεm for the exciton eigenstates |0;+,+; 0, m〉 and |0;−,−; 0,−m〉 as found for
the Struve-Neumann potential with εd = 28 and εs = 6 at zero chemical potential. The shifts are upward
due to the weaker nature of the screened RPA potential in the attractive direct channel. We also give the
unperturbed binding energies ∆(0)

m as well as their first-order-corrected values, ∆(1)
m = ∆(0)

m − δεm. We
see that the corrected binding energies of the individual states are such that the original level orderings
remain unaltered.

It is interesting to note that the corrected values of the binding energies are now smaller
than the splitting between the first and second bulk states of Table 2.2, both for the conduction
and valence bands. This is in contrast to their unperturbed counterparts, for which the valence-
band splitting was slightly smaller in the case of the ground state, as previously discussed in
Sec. 3.6. This implies that the lowest-bulk-subband projection procedure we employed in Ch. 2
to obtain a low-energy model is completely justified for the description of excitons when many-
body screening effects are included.

The results of this section validate our approach to excitons in Ch. 3. The qualitative aspects
of the obtained dispersion relations remain robust, i.e., excitons remain indirect and the modes
preserve their linear or quadratic behavior at Q = 0. The broadening of the spectral lines
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in the static approximation is either identically zero or absolutely negligible in comparison to
the typical energy scales. Clearly, exciton lifetimes must be estimated better by considering
deviations from the static approximation, which is left for future work. We note that we
expect the lifetimes of the different eigenstates to increase with energy. This can be understood
physically by noting that lower-lying states are more tightly bound and therefore interact more
strongly, increasing the probability per unit time of creating a surface electron-hole pair.
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Appendices

4.A Feynman diagrams and rules

Here we give the Feynman rules for the Feynman diagrams presented in Eq. (4.24). Each
diagram represents a certain number of equal terms of the series in Eq. (4.22). Firstly, there
are two kinds of vertices:

x, z, τ, i
x′, τ′, s′

= φ∗
B;i(x, z, τ)φB;i(x, z, τ)δ(τ − τ′)

×
�

dz′ πs′(z′)V(x − x′; z, z′) , (4.88a)

x, τ, s x′, τ′, s′
= δρs(x, τ)δ(τ − τ′)

�
dz′ πs′(z′)V(x − x′; z, z′) . (4.88b)

Secondly, the propagator is always

x, τ, s x′, τ′, s′
= GS[ρ0]ss′(x, τ; x′, τ′) . (4.89)

Finally, there is the issue of the symmetry factor of the diagram. Consider a one-loop diagram
with a total number n of external interaction vertices, that is, those in Eqs. (4.88). We need to
first multiply the diagram by 1

n in accord with the prefactor in Eq. (4.22). Then we need to count
the number m of ways in which the n external legs can be connected to the n fixed points of the
main surface loop in order to obtain the desired diagram. The total multiplicative factor is then
m
n . For instance, the diagram corresponding to GSMBGSΣSGSMBGSΣS has n = 4 and m = 2,
because the only possibilities to construct it are the following:

, .
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On the other hand, the diagram corresponding to GSMBGSMBGSΣSGSΣS has again n = 4 but
now m = 4, as the following combinations are possible:

, , , .

All of these diagrams arise from Eq. (4.22) and contribute equally due to the cyclicity of the
trace.

The matrices R and U introduced in Eq. (4.28) can be found from all contributing Feynman
diagrams by removing the external density fields δρ. We recall that R = ∑∞

n=1 R(n) and U =

∑∞
n=0 U (n) and that for the two-body problem it suffices to take R = R(1) and U = ∑2

n=0 U (n).
We also split U (2) = U (2,1) + U (2,2) since there are two distinct diagrams with two external
bulk-field pairs and two density fields; these are precisely the ones depicted above. We also
introduce a shorthand notation x ≡ (x, τ, s) and G ≡ GS[ρ0], as well as MB(x, x′) ≡ δxx′MB(x).
Then one finds2

R(1)(x) = ∑
x1,x2

Vqc(x, x1)G(x1, x2)G(x2, x1)MB(x2) , (4.90)

and

U (0)(x, x′) = ∑
x1,x2

Vqc(x, x1)G(x1, x2)G(x2, x1)Vqc(x2, x′) , (4.91a)

U (1)(x, x′) = 2 ∑
x1,x2,x3

Vqc(x, x1)Vqc(x′, x2)G(x1, x2)G(x2, x3)G(x3, x1)MB(x3) , (4.91b)

U (2,1)(x, x′) = ∑
x1,x2,x3,x4

Vqc(x, x1)Vqc(x′, x3)G(x1, x2)G(x2, x3)G(x3, x4)G(x4, x1)MB(x2)MB(x4) ,

(4.91c)

U (2,2)(x, x′) = 2 ∑
x1,x2,x3,x4

Vqc(x, x1)Vqc(x′, x2)G(x1, x2)G(x2, x3)G(x3, x4)G(x4, x1)MB(x3)MB(x4) .

(4.91d)

Note that the combinatorial factor in the diagrams contributing to U must be multiplied by an
additional factor of 2 to compensate for the factor of 1

2 that we have added in the last term of
Eq. (4.28).

2We remind the reader that the interaction is instantaneous in imaginary time, so in all of these expressions it is
understood that Vqc(x, x′) = Vqc

ss′ (x − x′)δ(τ − τ′).
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5
Summary and outlook

In this work, we have studied the properties of Wannier excitons in the bulk of thin Bi2Se3
nanosheets. The Coulomb interaction is heavily modified by both the thin-slab geometry and
the topological band structure of the material. As a consequence of this, we have found that
s-wave excitons consist of a nonchiral doublet with quadratic dispersion at low momenta, and
a chiral doublet with one nonanalytic linear mode and one quadratic mode. Our results show
that in principle the topology of the conduction and valence bands is inherited by the chiral
excitons, as the topologically nontrivial windings of the underlying electron and hole states
add up to give a total winding number of two around Q = 0. This winding manifests itself
as a nonzero Chern number once a small gap is opened between the two zero-momentum
states of the chiral doublet. Based on the topological properties of the effective model for the
ground-state chiral doublet, we have also predicted the existence of chiral excitonic edge states.
However, we have not yet succeeded in the explicit determination of their wave functions
and energies, an issue that must thus be addressed in future work on the topic. Additionally,
we have investigated some optical properties of the excitons at zero momentum. All excitons
whose constituent electron and hole have opposite spin-orbit parities are found to be dark
under circular polarization. For equal parities, s-wave and d-wave excitons are selectively
bright under left- or right-circular polarization.

We have also analyzed the effects of the coherent surface states on the bulk electron-hole
interaction, as they are expected to provide the main contribution to this phenomenon. A
formula for the screened interaction in the RPA scheme has been derived in the limit of perfectly
localized surface states and used to describe Thomas-Fermi screening of some common inter-
action potentials. This formula in principle allows for a detailed microscopic description of the
interaction potential as a function of the vertical position inside the nanosheet, as exemplified
with the Rytova-Keldysh potential. The surface plasmons have been studied in the RPA as
well, and we have found an optical branch and an acoustic branch. Due to these plasmons,
decay of bulk excitons into surface electron-hole pairs is in principle a possible mechanism but
its effect is negligible in the static approximation.

Since our work does not impose many restrictions on the model parameters, we expect that
it remains valid for other similar topological materials such as Bi2Te3 and Sb2Se3 by using the
appropriate parameter values.
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Despite the theoretical nature of the present work, many aspects are experimentally relevant
and could lead to a variety of applications outlined below. In particular, it would be of interest
to resolve the linear dispersion in the chiral doublet. This may be achieved by means of
terahertz spectroscopy, as the details of the dispersion affect the chemical equilibrium between
excitons and free charges in such pump-probe experiments [124–126]. The response to light
of chiral excitons would also be interesting to consider in order to probe our derived selection
rules and verify the different exciton types.

The work presented in this thesis concerns the treatment of free excitons inside Bi2Se3.
Knowledge of their behavior is undoubtedly important on its own, as their presence or absence
is crucial in optoelectronic devices such as lasers [127, 128], light-emitting diodes [129, 130] and
photovoltaic cells [131, 132]. Even so, however, our results are merely the first building block of
a much bigger picture, because interaction effects of bulk excitons with other (quasi)particles
have not been studied here. Both from a fundamental and from a practical point of view, the
physics of such interactions are the richest and most exciting aspect of the study of excitons in
semiconductors.

For instance, interactions between excitons and photons give rise to quasiparticles known as
exciton-polaritons. Such polaritonic modes have previously been achieved at room temperature
by Vanmaekelbergh et al. [133] and can be used for nanophotonic circuitry and waveguiding
with minimal losses [134]. Recent experimental observations strongly suggest that the topolog-
ical character of excitons is preserved in their recombination [135], allowing for the conversion
of spin into circular rotation of the emitted photon. Thus, exciton-polaritons enable waveguide
transfer of robust photonic states, which can then carry information over macroscopic distances
with minimal decoherence [136]. They may also undergo Bose-Einstein condensation [137]
and behave like a so-called superfluid, which flows around obstacles without dissipation [138].
Promising advances have been made toward the achievement of such a condensate at room
temperature, which would allow for the development of quasi-lossless quantum devices [139].

On the other hand, coupling between excitons and surface plasmons is another interesting
topic the basics of which have already been addressed in the previous chapter. Exciton-plasmon
interactions may allow for the design of specific absorption and emission properties, enabling
increased control of the optical behavior and energy flows almost all the way down to atomic
length and time scales [140]. This could make them suitable for efficient energy-conversion,
absorption and transfer applications [140–143]. They also enable ultrafast manipulation of spin
states [144] and exciton-exciton hybridization offering room-temperature quantum-information
transport and spin entanglement [145].

Exciton-exciton interactions are also of interest. They have been explored to represent
qubits, the degrees of freedom of a quantum computer [146, 147], although in this case the
particles are confined in quantum dots and the excitons are thus of the Frenkel type. Moreover,
since excitons are essentially bosonic particles, interactions between them may cause them
to undergo Bose-Einstein condensation [148–150]. We have found that excitons in Bi2Se3 are
indirect, which is desirable due to a reduced recombination rate and leads to the exciting
possibility of forming a supersolid, that is, a superfluid with periodic density order [151, 152].

All in all, the many-body physics of topological excitons and their interactions are very rich
and offer a vast number of possibilities for exciting new research in condensed-matter physics.
The free-exciton picture, which is now well understood, can be systematically refined and
expanded with the inclusion of such effects. Our work paves the way for the analysis of these
and other phenomena, which may lead to exotic phases of matter and exciting optoelectronics
and quantum-information applications.
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