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Abstract

Community detection is the task of discovering groups of nodes sharing similar patterns
within a network. With recent advancements in deep learning, methods utilizing graph rep-
resentation learning and deep clustering have shown great results in community detection.
However, these methods often rely on the topology of networks (i) ignoring important fea-
tures such as network heterogeneity, temporality, multimodality and other possibly relevant
features. Besides, (ii) the number of communities is not known a priori and is often left to
model selection. In addition, (iii) in multimodal networks all nodes are assumed to be sym-
metrical in their features; while true for homogeneous networks, most of the real-world net-
works are heterogeneous where feature availability varies. In this paper, we propose a novel
framework (named MGTCOM) that overcomes the above challenges (i)–(iii). MGTCOM al-
lows to discover dynamic communities through multimodal feature learning by leveraging
a new sampling technique for unsupervised learning of temporal embeddings. Importantly,
MGTCOM is an end-to-end framework optimizing network embeddings, communities, and
the number of communities in tandem. In order to assess its performance, we carried out an
extensive evaluation on a number of multimodal networks. We found out that our method
is competitive against state-of-the-art and performs well under the inductive setting.
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1. Introduction

Various systems can be modelled as complex networks such as social [28], citation [45, 60],
biological [24] and transaction [56] networks. The task of identifying patterns of nodes with
common properties, in such networks, is referred to as community detection. There is an
abundant number of community detection methods in literature that approach this problem
through modularity optimization [50, 4, 59], clique identification [19, 40], and spectral op-
timization [69, 30]. With recent advancements in graph representation learning a new type
of methods have emerged which utilize context-based learning techniques (e.g., DeepWalk
[55], LINE [63] or Node2Vec [27]) to obtain topology-aware node embeddings. These embed-
dings are either combined with existing clustering methods [7, 81] or are jointly optimized
with found clusters [9, 58, 34] to obtain communities.

In the above studies, the dynamic and multimodal characteristics of real-world networks are
overlooked. These characteristics can manifest as meta-topological features (node and rela-
tion types) [8], temporal features, and contentual features (e.g., text and image attributes).
Introduction of multimodality contrasts homophily assumed by previous methods as het-
erophily and can play an essential role in detecting communities in multimodal networks,
as connected nodes may belong to different communities when multiple feature types are
considered [94]. While it is common for causal links to be present between these features,
it cannot be assumed without extensive domain knowledge. Various algorithms have been
devised to address the issue of temporality and multimodality [26, 43, 41, 18], though as far
as we are aware none of the methods are able to address the lossless setting where all the
features are incorporated.

Another challenge is information variance present in heterogeneous real-world networks.
Different node or relation types may have different feature subsets and/or dimensionality.
Let us consider the Twitter dataset (SDS) we use as a case study in Chapter 7. This network
consists of users, tweets, hashtags, and various relations in-between. Here tweets have con-
tent as textual features and post dates as temporal features, while users only have biography
as textual features, and hashtags have neither. Similarly, users form a directed follower rela-
tion link, while multiple relations may be present between tweets such as retweet, mention
or quote. The meta-topological information describes important semantics of this network,
while varying features and topology can be used to identify individual nodes. If these char-
acteristics are ignored by a model, then the quality of the communities discovered can be
affected.

With the emergence of web-scale network datasets (often exceeding billions of nodes), recent
advancements have pushed for scalability in graph representation learning [29, 88]. To this
end, graph convolution methods have allowed for inductive inference on unseen nodes no
longer requiring storing full graph Laplacian or node embeddings in memory. Utilizing
this representation function learning helps solve scaling issues faced by many auto-encoder-
based and shallow embedding community detection methods [47, 52, 71].

In this paper, we propose a novel community detection framework (MGTCOM) that is able to
address the aforementioned challenges. MGTCOM discovers dynamic communities through

1



1. Introduction

multimodal feature learning and unsupervised learning with a new sampling technique. In
particular, our key contributions include:

(i) A robust method for unsupervised representation learning on multimodal networks

(ii) A new sampling technique for unsupervised learning of temporal embeddings

(iii) An end-to-end framework optimizing network embeddings, communities, and number
of communities in tandem

(iv) Extensive evaluation on the quality of various features in multimodal networks

(v) Implementation of various graph sampling algorithms found in the literature1 (See repos-
itory).

We compare MGTCOM with state-of-the-art methods and demonstrate its robustness on
inference tasks.

The rest of the thesis is organized as follows. Related works and relevant material is dis-
cussed in Chapter 2 and Chapter 3 respectively. Chapter 4 covers the details of our frame-
works. In Chapter 5 we present extensive experimental results including comparison with
baseline methods. Chapter 6 provides ablation studies to support our design decisions. Fi-
nally, in Chapter 7 we provide a deep dive into results produced on the Social Distancing
Students dataset as a case study. Source code for the MGTCOM framework can be found on
github2.

1https://github.com/EgorDm/tch-geometric
2https://github.com/EgorDm/MGTCOM

2

https://anaconda.org/egordm/tch_geometric
https://anaconda.org/egordm/tch_geometric


2. Related Work

In this section, we provide an in-depth overview of related work and highlight important
differences with our work by mainly focusing on graph embedding and community detec-
tion methods. A comparison of MGTCOM with the state-of-the-art is given in Table 2.1. As
can be seen, MGTCOM is able to generate: (i) node, (ii) meta-topology, (iii) content, and
(iv) temporal embeddings as well as (v) is able to infer the number of communities (K).
By contrast, state-of-the-art methods (such as GraphSAGE and ComE) are able to produce
either two or three of the above. A commonality of all the methods is that they are all uti-
lize topological features. Similarly, we focus on representation based community detection
methods in contrast to traditional link-based methods. We explain in detail these methods
below. Throughout the paper we will use the terms network and graph interchangeably.

2.1. Graph Embedding

With the growing amount of rich graph data, efficient representation is highly demanded for
retrieval and analytical purposes. Graph embedding focuses on the representation of nodes
into low-dimensional vectors. The graph representation field stems from computational
linguistics, which relies heavily on the notion of distributional semantics, stating that words
occurring in the same context are semantically similar. By creating a parallel between words
and nodes the linguistic approaches can be generalized to work in the context of graphs and
vice versa.

Approaches such as DeepWalk [55], LINE [63], SDNE [68] and Node2Vec [27] utilize ran-
dom walks as a means to generate context and adopt the Skip-gram [48] model to directly
learn the node embeddings (shallow embedding methods). By defining a trade-off between
first- and higher-order proximity they provide a way to fine-tune the learned topological
representations for the task at hand. Grover and Leskovec [27] observe in their work that
depth-first search sampling strategies (higher-order proximity) encourage network commu-
nities while breadth-first search (first-order proximity) encourages structural similarity as
the local neighborhood is more thoroughly explored.

On the other hand, matrix factorization-based approaches represent first-order proximity
using an adjacency or Laplacian matrix. Consequently, they decompose the matrix in order
to obtain node-based representation matrix [6]. As this process is quite expensive O(n2.372),
graph autoencoders (GAE) [65, 37] and graph convolutional networks (GCN) [38] are used
instead.

Newer methods aim to solve various issues with current approaches involving scalability
[29, 88], incorporation of node/edge features [29, 79], application to heterogeneous [5, 16,
32], attributed [12, 77] and temporal [51, 14, 78] networks (see Table 2.1 for comparison). In
line with this, our proposed method (MGTCOM) is able to address all of the above issues.

3



2. Related Work

Table 2.1.: A comparison of MGTCOM with state-of-the-art on embedding (node, meta-
topology, content and temporal information) and ability to infer the number of communi-
ties k. (top: graph embedding methods; bottom: community detection methods).

topology meta-
topology content temporal infers K

GraphSAGE [29] • •
SageDy [78] • • •
CTDNE [51] • •

HGT [32] • • •
ComE [9] •

GEMSEC [58] •
GRACE [82] • •

Fani et al. [18] • • •
CP-GNN [43] • •

MGTCOM • • • • •

2.1.1. Scalability

The authors of GraphSAGE (Hamilton et al. [29]) argue that many graph embedding meth-
ods are transductive and therefore have to be retrained upon the introduction of new or un-
seen nodes (nodes that are not part of the training data). Additionally, with the emergence
of web-scale graphs containing billions of nodes, it is not possible to keep all node embed-
dings in memory [88]. Hence, in GraphSAGE, they introduce a local k-hop neighborhood
sampling strategy and a GCN architecture that is able to infer node representations based on
the sampled subgraph. A caveat of this approach is that the GCN architecture requires the
presence of node features. While various workarounds exist to use zero or random vectors
for missing features, this limits its application for various graph datasets. In MGTCOM we
overcome this issue by introducing auxiliary embeddings for nodes with missing features.
By keeping auxiliary embeddings of most important nodes at hand, a primary embedding
can be computed for each node within the graph.

2.1.2. Heterogeneous networks

The above methods mainly work on homogeneous networks in which all nodes and edges
belong to the same types. Often real-world data cannot be efficiently represented using ho-
mogeneous networks. Hence, to accurately represent real-world information heterogeneous
networks are used. These networks involve meta-topological information that characterizes
various relationships between different types of nodes/entities [83]. Since most graph em-
bedding methods are designed for homogeneous networks, extending them to incorporate
heterogeneous networks is not trivial.

One way to address meta-topological features is by using meta-path constrained random
walks to capture semantic and structural relations between different node/entity types
[16, 21]. Meta-path describes a sequence of entity and relation types. For example, an
”APA” meta-path would define a path between Author-Paper-Author node types. Derivative
works introduce attention-based mechanisms to learn the importance of the meta-types [75].

4
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While highly successful, the technique faces certain limitations, mainly that the construc-
tion of meta-paths requires extensive domain knowledge and that in highly heterogeneous
networks such as knowledge graphs, the amount of meta-paths becomes unmanageable.

Other methods utilize a representation-based approach [5, 76] to explicitly capture meta-
topological features by defining relations as translations between different node types. This
approach is further utilized in GCN-based methods [32, 91] to apply them in an inductive
setting. Furthermore, in Hu et al. [32] the authors improve the neighborhood sampling
algorithm by introducing a type-based budget for unbiased sampling.

2.1.3. Temporal networks

Multimodal networks are dynamic and may evolve over time. Temporal networks are a
specialization of multimodal networks as they attach a start and end timestamp to each node
and edge. Accordingly, graph representation methods should have the ability to capture this
evolution.

Temporal graph embedding approaches are mainly split into two categories. Snapshot-based
approaches operate by temporally splitting the graph into multiple snapshots or subgraphs
and applying (modifying) existing graph embedding methods by temporally smoothing be-
tween the snapshots [93, 25, 44, 53]. The second category are the continuous temporal rep-
resentation approaches which attempt to capture temporal information within the learned
embeddings. Generally, these methods look at the temporal progression of individual nodes
rather than utilizing predefined snapshots. The techniques vary; CTDNE introduces biased
temporal random walks [51]; SageDy introduces a neighborhood sampling technique to fil-
ter for temporal neighborhood [78]; BurstGraph captures node representation changes using
a RNN [92]; HyTe [14] modifies representation-based techniques to explicitly learn temporal
information.

2.2. Community Detection

A community reveals patterns within its members that are different from those in other
communities in a network. There is an abundance of work concerning the finding of com-
munity structures by relying mainly on topological features [20, 80]. Despite this, the term
community does not have a universally accepted definition. In their work Peel et al. [54]
argue that community detection does not have a one size fits all solution and that defini-
tion and quality highly depend on the task at hand. Similarly, they observe that the task of
community detection is analogous to finding clusters in document vectors. Nevertheless a
few common characteristics distinct community detection from tasks such as topic analysis
and clustering including the involvement of topological information and the fact that the
number of communities is not known a priori.

Recent community detection methods focus on exploiting feature-rich information found in
multimodal networks [61]. The focus has shifted from link-based methods towards deep
learning methods which combine graph embedding methods with clustering algorithms
(such as k-means or spectral clustering) [65, 39]. Similar methods are employed to learn find
communities that take into account global context by utilizing graph autoencoders [74, 7] or
graph affiliation networks [84]. More advanced methods utilize multi-objective optimization
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2. Related Work

by combining topological accuracy and cluster quality metrics during graph representation
learning [9, 58, 70, 90]. Other methods focus on modifying [34] or augmenting [35] graph
context sampling algorithms to reinforce communities within learned representations.

2.2.1. Multimodal Methods

Many methods rely on homophily which refers to the assumption that ”individuals” sharing
similar patterns are more likely to be connected [46]. With the emergence of multimodal
community detection methods heterophily becomes equally important as similarity may not
always be correlated with topological features [94]. Some argue that consideration of link
or content information alone is sufficient for identifying communities [18]. Sparsity, noise,
and irrelevant information may mislead traditional community detection or topic modeling
algorithms. However, both types of information may be of interest for analysis and may be
valuable in overcoming noise in multimodal networks.

In line with this, various methods [42, 62] modify Latent Dirichlet Allocation algorithm to
incorporate attribute, topological and meta-topological information. Cao et al. [7] and Yang
et al. [82] utilize autoencoders to jointly optimize graph embeddings on content and topo-
logical information. Fani et al. [18] use topic models to construct a user interest histogram
over a time axis, which in turn is used to learn temporal content-based node representations.
These representations are interpolated with topological representations, the similarity along
edges is computed, and fed as edge weight to the existing link-based community detection
algorithm (namely Louvain [4]).

2.2.2. Heterogeneous Networks

Meta-topological information is a valuable asset for the analysis of found communities. This
information can be used in various ways to assist in community detection, for instance, by
the representation of small node-specific ego-networks [33] and learning the importance of
network relations [62]. Luo et al. [43] propose CP-GNN which combines a heterogeneous
graph transformer architecture with k-means clustering to find communities in content-rich
heterogeneous graphs. Moreover, they devise a context-path-based k-hop neighborhood
sampler to reinforce the discovery of community structures in topological data.

2.3. Clustering

The task of clustering is to find groups of documents in a d-dimensional vector space based
on a predefined similarity metric in an unsupervised manner [49]. Many community detec-
tion algorithms rely on existing clustering algorithms such as k-means [43, 7, 65, 39, 86] and
Gaussian Mixture Models (GMM) [9, 13]. Others employ end-to-end clustering techniques
such as deep embedding clustering [82] and clustering loss based parameter optimization
[58, 90].

As it is uncommon to know the number of clusters in community detection tasks [20],
determining the optimal cluster count is often left to model selection which might become
computationally expensive. While various non-parametric clustering algorithms exist such
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2. Related Work

as DBSCAN [17], OPTICS [2] and BIRCH [89] they are not straightforward to incorporate
into end-to-end applications.

Bayesian non-parametric methods such as Dirichlet Process Mixture (DPM) have had great
results in clustering and community detection tasks where the number of communities is un-
known [95, 96, 66]. As these models can evaluate the likelihood of a set of cluster parameters
being drawn from a prior distribution, the task is transformed into a Markov Chain Monte
Carlo (MCMC) sampling problem. Since there are prohibitively many possible parameter
states, various hierarchical algorithms are proposed to explore the most promising states ef-
ficiently [64, 11]. Because these methods can be estimated using Expectation-Maximization
(EM) algorithms, the previously introduced embedding methods can be utilized to learn
representations and clusters in an end-to-end manner [9, 57].
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3. Preliminaries

We present a brief overview of the key concepts and notations used in community detection
and graph representation learning. The notations can be found in Table 3.1.

Definition 3.0.1 (Heterogeneous graph). A heterogeneous graph, denoted as G = (V , E ,A,R)
consists of a set of nodes V , a set of edges E , and their associated type mapping functions
ϕ : V → A and ψ : E → R. ϕ (resp. ψ) maps a node (resp. edge) to its type. A and R
denote predefined sets of node and edge types, respectively, where |A| ≥ 1 and |R| ≥ 1. G
is a homogeneous graph if |A| = 1 and |R| = 1.

We define a multimodal information network by combining the notion of heterogeneous,
continuous-time, and contentual networks.

Definition 3.0.2 (Multimodal graph). A multimodal graph is defined as G = (V , E ,A,R, T ,X )
where T is a set of timestamps t and X is a set of type specific feature matrices Xϕ(·). Each
node v ∈ V (resp. edge e ∈ E ) has a time range τ(v) = [ts, te] (resp. τ(e) = [ts, te]), indicating
the time period on which it is considered valid, where ts, te ∈ T . In addition, each node v
has an attribute vector x ∈ Xϕ(v).

Definition 3.0.3 (Incompleteness constraints). Real-world multimodal networks can be noisy,
incomplete, and may change over time. In order to represent this information we introduce
additional indicator functions to denote whether a node has a time interval 1T : V → {0, 1},
has a feature vector 1X : V → {0, 1}, or is unseen during training 1V : V → {0, 1}. We refer
to the noisiness, incompleteness, and temporality as incompleteness constraints.

Definition 3.0.4 (Context window). A context window connects nodes based on some pre-
defined criteria. Two nodes are context neighbors if they occur in the same context window. In
our work, we use two different kinds of context windows. The first is the topological context
window. It connects two nodes vi and vj if there exists a k-hop path pEk in graph G through
which they are connected. The second is temporal context window pTω . It connects vi and vj

if they occur within a given time window ω = [ts, te]. Going forward we use PEk and PTω to
denote a fixed size sample of all possible context windows.

Definition 3.0.5 (Gaussian Mixture Model). Gaussian mixture models (GMM) is a cluster-
ing algorithm that assumes the data points are generated by K d-dimensional multivariate
Gaussian distributions Eq. (3.1). Here cluster parameters θk for k ∈ {1, ..., K} consist of the
mean vector µk ∈ Rd and the covariance matrix Σk ∈ Rd×d. A K-dimensional binary variable
z is used to denote membership of a particular point n where ∑k znk = 1. Mixing coefficients
πk specify a marginal distribution over z, such that ∑n∈N p(znk = 1) = πk where πk ∈ [0, 1]
and ∑K

k=1 πk = 1. Consequently rk represents conditional probability of z given a data point
x Eq. (3.2).

8



3. Preliminaries

Table 3.1.: Notation used in this paper.

Notation Description
V The set of nodes in a graph
A The set of node types
E The set of edges in a graph
R The set of edge types/relations
T The set of timestamps in a graph
Xϕ(·) Feature matrix for node type ϕ(·)

ϕ(v) ∈ A Type of node v
ψ(e) ∈ R Type of edge e

Gv k-hop neighborhood subgraph for node v
d ∈N Size of node embedding vector

Ev ∈ Rd Auxiliary embedding vector for node v
Zv ∈ Rd Primary embedding vector for node v

ZEv , ZTv ∈ Rd Task specific embedding vectors for node v
K ∈N Number of communities

N (µk, Σk), θk Parameters for the k’th cluster/community
µk ∈ Rd k’th cluster mean vector

Σk ∈ Rd×d k’th cluster covariance vector
z ∈ {0, .., K}|V| Community membership assignment vec-

tor
ω Interval window for temporal context sam-

pling
Pl ∈ V l Sampled context window of length l

p(x; θ) =
K

∑
k=1

πkN (µk, Σk) (3.1)

rk = p(zk = 1|x) = πkN (x | µk, Σk)

∑K
j=1 πjN

(
x | µj, Σj

) (3.2)

Assuming that the points X ∈ RN×d are drawn independently from the distribution, the
log-likelihood function is given by Eq. (3.3). The value of µk, Σk, πk can be found by set-
ting derivative of ln p(X | π, µ, Σ) to zero with respect to their values yielding closed form
equations Eqs. (3.4) to (3.6). Nk represents the number of points assigned to cluster k. While
model parameters can be computed given values of X and r are known, it is important to
note that r is dependent on the model parameters Eq. (3.2). Expectation-Maximization (EM)
is an elegant iterative technique devised to find such clustering parameters. Given an initial
cluster assignment that may be obtained using k-means or a similar technique, expectation (E)
and maximization (M) steps are applied alternatively Fig. 3.1. The E step uses current cluster
parameters to evaluate posterior probabilities Eq. (3.2), while the M step uses these proba-
bilities to compute new model parameters using Eqs. (3.4) to (3.6). The model is deemed
converged once the change in parameters or assignment falls below a certain threshold.
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3. Preliminaries

(a) (b) (c) (d)

Figure 3.1.: Visualization of Expectation-Maximization algorithm [3]. (a) Clusters are ran-
domly initialized. (b) Cluster centers are updated according to the initial assignment (M
step). (c), (d) Expectation and Maximization steps are repeated until convergence.

ln p(X | π, µ, Σ) =
N

∑
n=1

ln

{
K

∑
k=1

πkN (xn | µk, Σk)

}
(3.3)

µk =
1

Nk

N

∑
n=1

rnkxn (3.4)

Σk =
1

Nk

N

∑
n=1

rnk (xn − µk) (xn − µk)
T (3.5)

πk =
Nk
N

(3.6)

Gaussian Mixture Models suffer from severe overfitting problems in the form of single-
point collapse and the fact that the number of clusters needs to be known a priori. Bayesian
parametric (BP) and non-parametric (BNP) mixture models aim to solve these issues by in-
troducing prior distributions governing the model parameters (π, µ, Σ) and using maximum
a priori (MAP) instead of maximum likelihood estimation.

Definition 3.0.6 (Dirichlet Process Mixture Model). Dirichlet process mixture model (DPMM)
is a part of BNP mixture models which finds a clustering solution when K is unknown.
DPMM extends GMM as it is an infinite mixture model Eq. (3.7) with the Dirichlet process
as prior distribution on the number of clusters Eq. (3.8). Here hyperparameter α0 is the
concentration parameter referring to the prior amount of observations associated with each
component, and Γ refers to the mathematical function ”gamma” which in its essence is a
generalization of the factorial function that can deal with any real number > 0. The cluster
parameters θ are assumed to be i.i.d. and are drawn from a prior distribution. In our case,
Normal Wishart Distribution (NW) Eq. (3.9) where hyperparameters κ and ν represent the
concentration parameter and degrees of freedom of the Wishart distribution respectively.
The data is parameterized by the data mean µ and Λ which is the precision matrix (inverse
of the covariance matrix Σ).
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p(x) =
∞

∑
i=1

πiN
(

x, µi, Λ−1
)

(3.7)

p(π) = Dir (π; α0) =
Γ(α0)

∏K
i=1 Γ(α0)

K

∏
i=1

πα0−1
i (3.8)

p(µ, Λ) = NW(µ, Λ; κ0, µ0, ν0, W0)

=
K

∏
i=1
N
(

µi | µ0, (κ0Λi)
−1
)

︸ ︷︷ ︸
p(µi |Λ,κ0,µ0)

W (Λi | W0, ν0)︸ ︷︷ ︸
p(Λ|W0,ν0)

(3.9)

The prior parameters α0, κ0, and ν0 are set to a predetermined values, whereas prior param-
eters µ0 and W0 are calculated on a sample of the full dataset using Eqs. (3.14) and (3.15).
Here α0, ν0, κ0 ∈ R+ and ν0 > d + 1.

xi =
1
Ni

N

∑
n=1

rnixn (3.10)

Si =
1
Ni

N

∑
n=1

rni (xn − xi) (xn − xi)
T (3.11)

EM can similarly be used to approximate solutions for DPM models. During the E step
Eq. (3.2) is once again used to estimate the assignments. While during the M step Eqs. (3.10)
and (3.11) equations analogous to Eqs. (3.4) and (3.5) are used to estimate the data covariance
and data mean. Subsequently the following closed form equations are used to compute
posterior parameters for the given prior Eqs. (3.12) to (3.16). Given the posterior parameters,
the new cluster parameters are inferred using Eqs. (3.14) and (3.17). When α0, κ0, and ν0
are much smaller than N, the posterior distribution will be influenced primarily by the data
rather than the prior. We use λ to denote computed posterior parameters.

πi =
Ni

∑K
j=1 Ni + α0

(3.12)

κi = κ0 + Ni (3.13)

µi =
1
κi

(κ0µ0 + Nixi) (3.14)

W−1
i = W−1

0 + NiSi +
κ0Ni

κ0 + Ni
(xi − µ0) (xi − µ0)

T (3.15)

νi = ν0 + Ni (3.16)

Σi =
νW−1

i
ν− d + 1

(3.17)

The described implementation solves overfitting and cluster count, though it is an incom-
plete one since in practice the cluster count has a defined upperbound K (computationally
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and storage-wise). While the clusters can get pushed out of existence, no additional clusters
can be created. To solve this issue many variants of DPMM have been proposed utilizing the
Chinese Restaurant process, Collapsed Weight sampling, etc. We focus on the split/merge
sampling algorithm introduced by Chang and Fisher III (DPMMSC) [11]. For an exhaustive
discussion, we refer interested readers to [3, 10].

DPMMSC exploits an alternate perspective in which DPMM is defined as a Monte Carlo
Markov Chain if all the chosen priors are conjugate (i.e. prior distribution is in the same
form as the posterior distribution). The stationary distribution is defined by the probability
of cluster parameters given the data observations Eq. (3.19). Intuitively in this approach
sampling methods are used to approximate the E step of EM by sampling from the current
estimate of posterior distribution p(z|X, θold) (proposal distribution), where during M step
the new state θ is found. A similar methodology is employed to transition between different
values of K by proposing θ directly. As proposal space is unmanageably large, a greedy
strategy is employed to propose the most promising states.

Hs =
αΓ(Ni1)p(Xi1 ; λi1)Γ(Ni2)p(Xi2 ; λi2)

Γ(Ni)p(Xi; λi)
(3.18)

p(µi, Σi|Xi) = NW(µ, Λ; κ0, µ0, ν0, W0) (3.19)

p(X; λ) =
∫

p (X | µi, Σi) p (µi, Σi; λ) d (µi, Σi)

=
1

π
Nd
2

Γd (ν0/2)
Γd(νi/2)

|ν0Λ0|ν0/2

|νiΛi|νi/2

(
κi
κ0

)d/2
(3.20)

For each supercluster i, two auxiliary subclusters are defined with parameters θi1 and θi2
forming a two-component GMM. Once subclusters are in a converged state, the split pro-
posals are made given the supercluster and its two subcomponents. Similarly, supercluster
merges are proposed by picking k nearest candidates for each supercluster.

The proposed candidates are either accepted or rejected by the Metropolis-Hastings (MH)
algorithm moving the model to the next state. As the split acceptance ratio Hs is defined
by the probability of data being sampled from the split state in contrast to the current state
Eq. (3.18). Analogously, the merge ratio is its inverse, namely 1

Hs
. Eqs. (3.3), (3.9), (3.12)

and (3.19) are used to derive the marginal probability of data being generated by parameter
set λ given prior parameters Eq. (3.20) (note that π refers to the mathematical constant,
and Γd refers to mathematical function digamma). The proposals are considered once the
supercluster model has converged. If no proposal is accepted, then DPMMSC is considered
as converged.

Definition 3.0.7 (Graph Convolutional Neural Networks). Graph Convolutional Neural
Networks (GCN) [38, 29, 36] generate node embeddings given a spatial filter which is ap-
plied as a convolution given each node’s graph neighborhood. The convolution operation
enables GCNs to propagate structural information of graphs throughout the network (re-
ferred to as message-passing). By layering this process, the receptive field of each node
expands to its k-hop neighborhood.

Suppose Hl
t is the representation of node t at layer l, a forward step of the message-passing

procedure is defined as Eq. (3.21) where N(t) is t’s neighboring node set and E(s, t) is the set
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3. Preliminaries

of edges between nodes t and its neighbor s. Here the operator Message(·) extracts useful
information from the neighboring source nodes s, while the Aggregate(·) operator gathers
the neighborhood information via some aggregation operator such as mean, sum or max to
get contextualized representation of t.

H(l)
t = Aggregate

∀s∈N(t),∀e∈E(s,t)

[
Message

(
H(l−1)

s , e, H(l−1)
t

)]
(3.21)

The time complexity to run a forward step over the entire training set is O(|V| · deg · d2)
where deg refers to the average node degree. While deg ≪ |V| is true for most graphs,
a vital optimization step is to sample a fixed size Nv ensuring that deg is bounded by a
constant.

(iii) Aggregation

(ii) Message Passing

(i) Mutual Attention

Q-Linear   

K-Linear    

K-Linear    

V-Linear    

V-Linear    

Edge 
Scaled 
Softmax

A-Linear   

Figure 3.2.: Visualization of a Heterogeneous Graph Transformer Layer. Given target node t
and neighboring source nodes s1 and s2 by edges e1 and e2, mutual attention and messages
are computed. Within aggregation step the messages are attended and combined with
previous target node embedding H(l−1)

t resulting in the new embedding vector H(l)
t

Definition 3.0.8 (Heterogeneous Graph Transformer). Classical GCNs focus mainly on ho-
mogeneous graphs. A fair amount of works describe ways to adapt existing algorithms
by introducing a Message step parameterized by meta-topological types. Based on the ob-
servation that the value of different connections varies given a node type, attention-based
mechanisms are introduced into the aggregation process. Inspired by success in NLP Het-
erogeneous Graph Transformer (HGT) [32] adopts the transformer architecture [67] by calcu-
lating mutual attention based on representation and meta-types of source, target and relation
information.

Hl
t = Aggregate

∀s∈N(t),∀e∈E(s,t)
[Attention (s, e, t) ·Message (e, t)] (3.22)
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HGT consists mainly of three components, (i) mutual attention possession performance of
each source node, (ii) message passing extracts information from source nodes, and (iii)
target-specific aggregation which combines the neighborhood messages. A general form for
a forward pass is defined as Eq. (3.22) and is visualized in Fig. 3.2.

The attention vector is calculated by mapping source node s into Key K and target node t
into a Query Q vectors Eqs. (3.25) and (3.26). A single head attention vector is calculated
as inner product similarity vector between Key K and Query Q vectors (See Eq. (3.24))
given a relation specific interaction matrix, where prior tensor µ ∈ R|A|×|R|×|A| denotes
significance of each relation triplet. K(s) and Q(t) are computed as projections of source s
and target t nodes respectively Eqs. (3.25) and (3.26). The final attention vector results from
a concatenation of h attention heads per source node Eq. (3.23).

AttentionHGT(s, e, t) = Softmax
∀s∈N(t)

(
∥

i∈[1,h]
ATT-Headi(s, e, t)

)
(3.23)

ATT-Headi(s, e, t) =
(

Ki(s)WATT
ψ(e) Qi(t)T

)
·

µ⟨ϕ(s),ψ(e),ϕ(t)⟩√
d

(3.24)

Ki(s) = K-Lineari
ϕ(s)

(
H(l−1)

s

)
(3.25)

Qi(t) = Q-Lineari
ϕ(t)

(
H(l−1)

t

)
(3.26)

Similarly, the multi-head message is computed by applying type-dependent projection (V-Linear)
to the input source node representation and transforming it using the edge type matrix
WMSG

ψ(e) ∈ R
d
h×

d
h to incorporate the relation dependency into the result Eq. (3.28). In both op-

erations, edge interaction matrices and the head-specific type projection matrices are shared
to minimize the number of used parameters.

MessageHGT(s, e, t) = ∥
i∈[1...h]

MSG-Headi(s, e, t) (3.27)

MSG-Headi(s, e, t) = V-Linear i
ϕ(s)

(
H(l−1)

s

)
WMSG

ψ(e) (3.28)

Finally, during the aggregation step, the calculated attention is applied to neighborhood
messages and summed into the neighborhood representation vector Eq. (3.29). The final
node representation vector H(l)

t results from the summation of the projected neighbor-
hood vector into the target node space and the previous representation of the target vector
Eq. (3.30).

H̃(l)
t = ⊕

∀s∈N(t)
(AttentionHGT(s, e, t) ·MessageHGT(s, e, t)) (3.29)

H(l)
t = A-Linearϕ(t)

[
σ
(

H̃(l)
t

)]
+ H(l−1)

t (3.30)

See Fig. 3.2 for a visualization of a forward pass of single layer HGT.

14



3. Preliminaries

Problem formulation. Given a multimodal graph G, our goal is to learn a node embed-
ding function ζ : Gv → Rd which given a k-hop neighborhood subgraph Gv of node v
produces a d-dimensional embedding vector Zv. The objective is to minimize the distance
between embedding Zv to other node embeddings, given that they are topological and/or
temporal context neighbors of node v. Taking into account incompleteness constraints (Def-
inition 3.0.3), ζ should work under any valuation of (1X (v), 1T (v), 1V(v)). We also aim to
find community parameters ` = {N (µ1, Σ1), ...,N (µK, ΣK)} and node-to-community assign-
ment z ∈ {0, .., K}|V| such that their members have a low inter-proximity in contrast to other
nodes. Finally, the found community count K should approximate the ground truth number
of communities.
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4. The Proposed Approach

Figure 4.1.: Overview of the MGTCOM framework. (a) In the embedding step primary em-
beddings are used in auxiliary tasks to construct the multi-objective loss. (b) Clustering
step updates clustering by alternating between Expectation (E), Maximization (M), and
Proposal (P) steps. (c) In the topological (topo) embedding task, random walk sampling
and feature-wise attention minimize inter-node proximity. (d) In the temporal (tempo)
embedding task, ballroom walk sampling and feature-wise attention minimize proximity
between temporally related nodes. (e) Clustering task adds community awareness to the
embeddings by minimizing proximity between nodes within the same cluster.

We present our framework for Community Detection in Temporal Multimodal Graphs (MGT-
COM) that learns multimodal representation vectors for graph nodes and detects communi-
ties in tandem. We achieve this by leveraging heterogeneous graph transformers [32] to learn
a primary node embedding function ζ. In order to handle the incompleteness constraints, we
introduce an auxiliary embedding vector E for known (or seen) nodes with missing features.
Next, we learn task-specific node representation for topological and temporal information
by combining primary embeddings with task-specific transformation/attention and context
sampling. As we utilize random walks for topological context sampling, we introduce its
analogue as an unbiased temporal window sampling algorithm for temporal context collec-
tion. Finally, we adopt DPMM for community detection and close the loop by introducing
cluster-based loss to ensure the graph embeddings are community-aware. MGTCOM consists
of three major components (as can be seen in Fig. 4.1): primary embedding module, (a)
task-specific learning, and (b) community detection/clustering module. MGTCOM also has
a graph sampling component. In the following, we describe the components in detail.
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Algorithm 4.1: Batchwise primary node embedding
1 Procedure EmbedPrimary()

Input: multimodal graph G = (V , E ,A,R,X ), mini-batch B ⊆ V , auxiliary node
embedding E ∈ RNX̄×d where NX̄ = |{v|v ∈ V , 1X (v) = 0}|, number of
convolutional layers L

Output: The primary embedding ZB for nodes in batch B
2 GB(VB , EB ,AB ,RB ,XB)← HeteroSample(G,B, L);
3 for s ∈ VB do

4 H(0)
s =


Linear(xs) 1X (s) = 1
Dropout(Es) 1V (s) = 1
0d otherwise

;

5 for l = 1 to L do
6 H(l) = GeLU(HeteroConv(GB , H(l−1)));

7 ZB = {H(L)
t |t ∈ B};

8 return ZB

4.1. Primary embedding module

The central component of our framework is responsible for inferring the primary represen-
tation vector Zv given a node v ∈ V in a graph G. Motivated by the success of inductive
GCN-based methods [29, 88, 32], we build our architecture by combining L graph convolu-
tion layers (HeteroConv or HGCN) and a graph subsampler (HeteroSample).

Specifically, we use the budget-based subgraph sampling algorithm and the heterogeneous
graph transformer (HGT) proposed by Hu et al. [33]. HGT captures topological, meta-
topological, and content-based aspects by combining off-the-shelf graph convolution with
node type-specific projection and edge type-based attention.

Algorithm 4.1 provides a full overview of the primary embedding algorithm. The basic idea
is to infer node representation from its k-hop heterogeneous neighborhood subgraph Gv
while handling edge cases introduced by the incompleteness constraints (Definition 3.0.3) in
order to handle web-scale multimodal graphs. The inference starts by sampling a subgraph
GB given a batch of central nodes using the budget sampling algorithm on line 2. The budget
sampling algorithm works by restricting sampled subgraph at each layer given a per node
type limit. For our use case, we define this limit as multiple |B| to avoid re-tuning its value
for each dataset.

Once the graph is sampled we split the task of initial feature inference into three cases to
handle the incompleteness constraints. (i) If a feature vector is present, then it is simply
projected into the representation space. (ii) If the node is in the training set while no feature
vector is present, then its representation is drawn from the auxiliary embedding matrix E. To
avoid overreliance on the embeddings in preference for feature vectors we apply dropout
on the resulting representation. (iii) Finally, if an unseen node without a feature vector
is encountered, the zero vector (denoted as 0d) is used, indicating that its feature vector
has zero weight during the aggregation step of the graph convolution. Note that for large
datasets, it may not be feasible to keep a full auxiliary embedding matrix in memory. In
Section 6.3 we explore a setting where auxiliary embeddings are limited to a subset of
important nodes.
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On line 6, given the subgraph GB and the initial representation vector H(0), L layers of
HGT graph convolutions are applied. Each layer uses the representation vector of the previ-
ous layer and feeds its output through a GeLU [31] activation function (See Section 6.5 for
performance comparison). Finally, the output vectors at the Lth layer are used as primary
representation vectors and output for each query node in the batch on line 7.

4.2. Multi-task representation learning

During task-specific learning we focus on two main tasks capturing the intricacies of mul-
timodal networks. The topological task identified by E focuses on minimizing the repre-
sentation distance between nodes that are proximate within the network. Analogously, the
temporal task T focuses on minimizing the distance between nodes that co-occur at the same
timeframes. While fundamentally different since the tasks are trained in parallel, they bene-
fit from weight sharing and from node sharing during primary embedding as the subgraph
batches are centered around the same nodes.

4.2.1. Task-based attention

An important observation is that while temporal and topological communities are both im-
portant during analysis, they are not always correlated. In fact, in most of the benchmarking
datasets such as Cora and DBLP temporal features and graph structure show low correla-
tion. While it is very rare that contentual features are completely independent of topology
and temporality, we describe a general implementation that can be applied to such a case.

Given the above observation, we admit that it may not be possible to train a model that
excels at both tasks. To work around this issue while still capturing both tasks in a single
embedding vector we introduce task-based attention. The basic idea is that while primary
embedding extracts suitable features from the multimodal network, task-specific attention
selects the most relevant of these features for the task at hand. Inspired by transformers [67]
we define multi-head attention to capture various feature patterns Eq. (4.2). The task-based
transformation function is defined as Eq. (4.1) where the primary representation vector is
attended to using a simple matrix multiplication operation. We specialize this function for
topological task as f E (Z) producing ZE and temporal task f T (Z) producing ZT .

f task(Z) = Z ·ATTtask(Z) (4.1)

ATTtask(Z) = ∥
i∈[1..h]

σ
[
Lineartask

i (Z)
]

(4.2)

4.2.2. Objective function

In order to learn model parameters in an unsupervised way, we define contrastive loss. Task-
specific positive context sample P and a negative context sample P̄, both sharing a central
query node q are used to construct positive (q, p) and negative (q, n) node pairs respectively.
We define a max-margin-based loss function (Eq. (4.3)) which aims to maximize the inner
product similarity between the query and positive examples. On the other hand, the inner
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product of query and negative samples is minimized to be smaller than that of the positive
samples by some predefined value of ∆ (see Section 6.5 hyperparameter experiments). In
our tests, we found that averaging similarity over negative samples within the max loop
helps to smoothen out the noise caused by context sampling Eq. (4.4).

MM-Loss(Z, P, P̄, q) = max
n∈P̄

{
0, ZqZn − Z̃qZp + ∆

}
(4.3)

Z̃qZp =
1
|P| ∑

p∈P

(
ZqZp

)
(4.4)

4.2.3. Temporal context sampling

(a) (b) (c) (d)

Figure 4.2.: Visual overview of Ballroom Walk temporal sampling algorithm. (a) The sam-
pling timestamp tv for query node v is inferred given the nearest neighbor if the node is
static (blue). The relative time window is determined as ω + tv. (b) The root context nodes
are sampled from the relative time window (red). (c) Context is extended with temporal
random walks from the root nodes (yellow). (d) The context path is sampled from the
collected context (green).

Temporal features are often not correlated with network topology. We propose a separate
context sampling function that, given a query node and an interval window ω, returns
other nodes occurring within the same time window. The interval window ω is determined
by using the dataset statistics as a fraction of the complete time range T . By picking a
small enough interval window, a fine-grained continuous-time representation vector can be
learned. This is because additional granularity is achieved by centering the sample around
the query node.

Edge cases arising from the incompleteness constraints need to be handled where the nodes
are missing timestamps 1T = 1. While the usual semantic approach is to consider these
nodes omnipresent (static), the naive window sampling methods quickly get congested with
static to static context pairs. Our aim is to alleviate this issue using biased sampling in favor
of non-static pairs.

We start by introducing the temporal random walk procedure shown in Algorithm 4.2 which
enforces standard random walks over the network to stay within a predetermined temporal
window ω∗. Here random walk of size l is constructed by picking a randomly connected
node to the current head node (line 5) within a time window. If no such node is present, then
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Algorithm 4.2: Temporal Random Walk
1 Procedure TemporalRW()

Input: center node v, temporal window ω∗

Output: Temporal random walk Pl
2 Initialize Pl = [];
3 (u, tu) = (v,∅);
4 for i = 1 to l do
5 N(u) = {w|w ∈ V , (u, w) ∈ E , τ(w) ∩ω∗ ̸= ∅};
6 if N(u) = ∅ then /* Restart on dead end */

7 (u, tu) = (v, tv);
8 go to 5;

9 w ∼ N(u);
10 tu = max {tu, min τ(w)};
11 u = w;
12 Pl .append((u, ut));

13 return Pl

the random walk is restarted from any already picked node line 7. The walk is extended
with a new head node until it reaches the desired length.

Utilizing the idea of temporal random walks we propose our own sampling method ”Ball-
room Walk” whose outline is shown in Algorithm 4.3. It starts by inferring the sampling
timestamp tv by picking a random timestamp the query node v occurs in. If the node is
static, the timestamp of its nearest neighbor reachable through temporal random walk is
selected (line 3). To reliably sample the temporal neighborhood, n root nodes (w) are picked
occurring in the time-window relative to the sampling timestamp on line 4. Temporal con-
text C is constructed by collecting temporal random walks starting from root nodes w given
a relative time window ω + tv on line 7. Finally, l long context paths are created as random
subsets of C. Note that because a sampled context is valid for all member nodes, random
walk-like throughput optimization can be used by setting a larger window length than con-
text size [55].

Due to timestamp inference, the first- and second-order proximity static to static pairs are
ignored. By only passively sampling omnipresent nodes we mitigate the over-saturation
issue while still being fair. Most importantly the neighborhood of central nodes is being
sampled independently of their topology. By sampling within a temporal window, we avoid
not relying on the correlation of temporality with topology.

4.2.4. Graph sampling

The objective of task-specific learning is mainly defined by the context sampling method.
As our method allows for inference of primary and task-specific representations for unseen
nodes, we assume that topological, meta-topological and contentual features contain enough
information / are correlated with the objective of the tasks. To gather the topological context
PE , Node2Vec biased random-walk algorithm is utilized [27]. By choosing a low value for
its control parameter q we discourage structural/topological equivalence representation in
favor of larger neighborhood exploration (depth-first strategy) which is useful for commu-
nity representation. Similarly, we use ballroom sampling to collect temporal context PT of
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Algorithm 4.3: Ballroom walk sampling
1 Algorithm BallroomWalk()

Input: multimodal graph G = (V , E ,A,R,X ), relative temporal window ω, walks per
node n, walk length l, center node v,

Output: Temporal n random walks Pl
2 Initialize C;

3 tv =

{
tv ∼ τ(v) 1T (v) = 1
TemporalRW(v, (−∞, ∞)). f irst() otherwise

;

4 N(v) = {w|w ∈ V , τ(w) ∩ω + tv ̸= ∅};
5 for i = 1 to n do
6 w ∼ N ;
7 C = C ∪ TemporalRW(w, ω + vt);

8 RandomPermute(C);
9 for i = 1 to n do

10 Pl = {Cj|i · l ≤ j < i · l + l};
11 return Pl ;

size l as introduced in the previous section. The negative nodes are collected by sampling
random nodes from the graph. In our framework, the query nodes and negative contexts
are shared across both tasks.

4.3. Community detection

For community detection, we adopt the DPMM split/merge algorithm proposed by Chang
and Fisher III [11] as discussed in Definition 3.0.6. In our implementation, we use Normal
Wishart (NW) as a conjugate prior and use variational lower bound in our convergence
criteria. Specifically, we monitor the log sum of the variational lower bound Eq. (4.5) for
the supercluster and subcluster models. The variational lower bound is computed as the
product of variational distribution q(z), the normalizing constant of the Dirichlet distribu-
tion B(α0), and the normalizing constant of the Normal Wishart distribution C(W, ν). Once
its monitored value starts oscillating, then the model has converged and is moved into the
proposal state. If the model parameters remain unchanged during the proposal stage (no
split or merge is accepted), then the clustering is complete.

Lower-Bound(r) =

[
N

∏
n=1

K

∏
k=1

rnkernk

]
︸ ︷︷ ︸

q(z)

∏K
i=1 Γ(α0)

Γ
(

∑K
k=1 α0

)
︸ ︷︷ ︸

B(α0)

2
νd
2 |W|

ν
2 Γd

(ν

2

)
︸ ︷︷ ︸

C(W,ν)

(4.5)

The only parameters relevant for our clustering method are the prior hyperparameters (See
Definition 3.0.6). Most of the parameters (i.e. α, κ, and ν) are not very relevant if they
are much smaller than the sample count. We use the Σscale parameter to scale the dataset
covariance for more effective control over the strength of the data-bound prior parameters
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µ0, Σ0. In Section 6.5 we provide a more detailed analysis of result sensitivity to prior
parameters.

To fit the clustering model we use primary embedding to calculate assignment and posterior
parameters as it contains features relevant for both temporal and topological tasks. While not
explored in this thesis, it is worth noting that it is not necessary to have all the embeddings
in memory as exact posterior parameters depend on data µ and Σ which can be calculated
over multiple batches.

4.4. End-to-end approach

Given a graph embedding, it is straightforward to find communities by performing the em-
bedding and clustering tasks sequentially. This approach lacks a unified objective, thus, the
node embeddings may not be optimized for community detection. We extend the objective
with cluster-based loss calculated as the distance between node embedding and its assigned
cluster zv Eq. (4.6). This introduces a feedback loop that encourages the model to reinforce
community structures while optimizing the topological and temporal objectives Eq. (4.9).
The influence of three objectives can be controlled using hyperparameters βE , βT , and βC .

LC = ∥Zv − µzv∥
2
ℓ2 (4.6)

LE = MM-Loss(Z, PE , P̄, v) (4.7)

LT = MM-Loss(Z, PT , P̄, v) (4.8)

L = βELE + βT LT + βCLC (4.9)

With this closed feedback loop, the training procedure consists of two alternating stages (See
Fig. 4.1 and Algorithm 4.4). The embedding optimization stage (line 2), is responsible for opti-
mizing the graph embedding function parameters while keeping cluster parameters θ fixed.
Once the graph embeddings are updated we run Ic clustering/EM steps to optimize cluster
parameters θ while keeping node representations fixed line 10. Note that the representation
optimization stage is run until convergence as part of pretraining beforehand to ensure the
clusters are initialized properly.
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Algorithm 4.4: MGTCOM learning pipeline
1 for subiter = 1 to I do
2 for v ∈ V do

/* Gather context samples */

3 PE = Node2VecRandomWalk(G, l, v);
4 PT = BallroomWalk(G, ω, l, v);

5 P l∼ V Negative sampling;
6 B = PEl ∪ PTl ∪ P̄l ;
7 Z = EmbedPrimary(G, B);
8 Compute task embeddings ZE , ZT using Eq. (4.1);
9 Compute loss LE , LT , LC , L using Eqs. (4.6) to (4.9) given respective context PE , PT ;

10 for iter = 1 to Ic do
11 if i = 1 then
12 Initialize θ using K-means

13 Update θ using EM given Z
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In this section, we investigate the effectiveness of the proposed framework MGTCOM (in
Chapter 4) by evaluating its performance on auxiliary tasks related to multimodal networks.
We start by describing our experimental setup, whereafter we compare the performance of
our model against baseline methods.

5.1. Evaluation metrics

There are no measures that can assess the quality of communities in multimodal networks.
Therefore, we evaluate our model component-wise by defining related auxiliary tasks. On a
high level, these tasks evaluate the efficiency of topological and temporal node embeddings
and found communities. The found communities shall capture important patterns in the
data which are useful for further analysis. In order to measure predictive performance over
distinct aspects of our data, we first define the following labels for calculating performance
metrics, then describe the auxiliary tasks.

• Ground truth labels Ly. Various datasets include manually selected ground truth la-
bels which capture valuable higher-order relations within data. By measuring prediction
performance on this label we gauge the quality of found communities.

• Node timestamps LT . We split the nodes evenly into snapshot labels given the timestamp
of their first occurrences. This allows measuring the quality of node embeddings on
temporal prediction.

• Link-based communities LG. While other measures such as modularity and link pre-
diction are well-suited for measuring the quality of node embeddings in capturing the
structure of a given network, they either require community assignment or measure low-
proximity similarity. In order to overcome this, we first identify community labels using
the Louvain method [4]. Then we use those labels to assess the quality of individual node
embeddings for community detection. As the Louvain method greedily approximates
optimal communities, we don’t use this label for formal comparison.

5.1.1. Classification (CF)

In the classification experiment, we evaluate predictive performance given task-related la-
bels. To elaborate, given a set of node embeddings and their respective ground truth labels,
we train a logistic regression model to predict node labels. For the predicted node labels,
we calculate the average accuracy classification measure.
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5.1.2. Link prediction (LP)

In this set of experiments, we evaluate link prediction performance. Given a set of positive
and negative node pairs, binary classification is used to predict whether an edge exists
within the graph. We use a held-out positive and randomly sampled negative sets of edges
to train a logistic regression model. The inner-product similarity between a pair of node
embeddings is used as input for the model. By repeating this process three times, the
average accuracy is calculated.

5.1.3. Cluster quality

Given node embeddings and their respective labeling, we calculate the silhouette coefficient
and Davies-Bouldin index which are helpful to estimate how coherent a clustering is. In this
case, a coherent clustering indicates how well represented the correlated patterns are within
the embeddings.

Definition 5.1.1 (Davies-Bouldin Index). Davies-Bouldin Index (DBI) is the ratio of the sum
of the average distance to the distance between the centers of mass of the two clusters. In
other words, it is defined as a ratio of within-cluster, to the between cluster separation. This
measure is defined as an average over all the found clusters and is therefore also a good
measure to decide how many clusters should be used (See Eqs. (5.2) and (5.3)). The si refers
to the average distance between each point in cluster i to its cluster center µi, and dist(µi, µj)

refers to the distance between cluster centers µi and µj. Since we use inner-product for node
similarity, we define inner-product distance as Eq. (5.1).

dist(Zi, Zj) = −
d

∑
m=0

ZimZjm (5.1)

Rij =
si + sj

dist(µi, µj)
(5.2)

DBI =
1
k

K

∑
i=1

max
i ̸=j

Rij (5.3)

(5.4)

5.1.4. Link-based Community quality

In this experiment, we measure link-based community quality. Girvan and Newman [23]
defined community structure as a group of nodes where inter-community connectivity is
higher than intra-connectivity. Following this definition, they introduce a modularity mea-
sure to evaluate the quality of found communities in a given network. We make use of
this measure in our empirical evaluation. Note that we use modularity (Definition 5.1.2) to
measure the quality of topological communities.
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Definition 5.1.2 (Modularity). Modularity directly measures the density of links inside a
graph and is therefore computed on communities (sets of nodes) individually by weigh-
ing edges using community similarity (or exact matching). Calculation of modularity is
done by aggregating per community r for each pair of nodes v and w the difference be-
tween the expected connectivity kvkw

2m (expected amount of edges between the nodes) and
the actual connectivity Avw (existence of an edge) given their degrees (kv and kw). The final
result represents the connectivity difference between the current and a random graph, as
expected connectivity is determined by random rewirings. Because intracommunity pairs
are weighted less than intercommunity pairs, the score can vary. See Eq. (5.5), where Svr
denotes membership of node v to community r (Eq. (5.6)), and m represents the total edge
count.

Q =
1

2m ∑
vw

∑
r


Connectivity︷︸︸︷

Avw − kvkw

2m︸ ︷︷ ︸
Expected Connectivity


Community Similarity︷ ︸︸ ︷

SvrSwr (5.5)

Svr =

{
1 zv = r
0 otherwise

(5.6)

5.1.5. Ground-truth community quality (COM)

Similarly, to measure the quality of detected communities for specific tasks, we measure
the Normalized Mutual Information Score (NMI) score given a task-based label (Defini-
tion 5.1.3).

Definition 5.1.3 (Normalized Mutual Information Score (NMI)). Normalized Mutual In-
formation is a popular measure used to evaluate network partitioning. It is a variant of a
common measure in information theory called Mutual Information defined by I(X; Y) =
H(X)− H(X|Y) and represents a reduction in entropy H(X) of variable X by observing the
random variable Y or vice versa. In the context of ground-truth community evaluation set-
ting this measure is used to quantify the overlap between two sets of partitions. The Mutual
Information score for two sets of partitions X and Y is computed using Eq. (5.7), where |X|
is the size of set X, Xi refers to i’th partition of set X, and N is the total number of data
points. Finally, the NMI score is computed by normalizing the MI score using the arithmetic
mean of entropy of respective partitions Eq. (5.8).

MI(X; Y) =
|X|

∑
i=1

|Y|

∑
j=1

∣∣Xi ∩Yj
∣∣

N
log

N
∣∣Xi ∩Yj

∣∣
|Xi|

∣∣Yj
∣∣ (5.7)

NMI(X; Y) =
MI(X; Y)

(H(X) + H(Y))/2
(5.8)
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5.2. Experimental setup

As shown in Table 2.1 of Chapter 2 there are no directly comparable methods to ours in terms
of features. For a fair and coherent comparison, we define three variants of the MGTCOM
model for evaluation. In addition to the complete end-to-end model MGTCOM, we split
our framework into a temporal model MGTCOMT and topological model MGTCOME , by
removing LT and LE from the objective respectively.

For evaluation, we split the network edges into disjoint training (80%), validation (10%), and
testing (10%) sets. During link prediction, we exclusively use links in the respective set as
positive pairs. Negative pairs are sampled given the full set of edges. Similarly, the clustering
is computed on the training embeddings while cluster-based metrics are calculated using test
and validation sets. During the calculation of predictive metrics such as link prediction and
classification, we run logistic regression three times and use the average to get an accurate
measurement.

5.2.1. Hyperparameters

The hyperparameters for MGTCOM model can be attributed to either network architecture,
topological random walk, temporal random walk or clustering. In Section 6.5 we explore
the sensitivity of our model to these hyperparameters. In Appendix A we display a com-
plete overview of all the hyperparameter values used for evaluation. The most important
hyperparameters are specified below.

For primary embedding, we use two HGT layers with neighborhood sampling sizes of 8
and 4. All the hidden dimensions are equal to the representation dimension, which is
64 (d = 64). For temporal and topological context sampling we use walk length l = 10
with 10 walks per node. Node2Vec is configured to use q = 0.5 to favor neighborhood
exploration. The temporal sampling window ω for ballroom walk is determined for each
dataset by splitting T into 20 even partitions. For the clustering module we define prior
parameters as ν = d + 1, κ = 1, α = 10 and Σscale = 0.05. We set trade-off parameters as
βE = 1, βT = 1, βC = 0.01. For max-margin loss we set ∆ to 0.1.

5.2.2. Baselines

We use various graph embeddings and community detection algorithms as baselines, cover-
ing state-of-art developments in related fields. For the baselines, we use the hyperparameters
reported in their respective papers. To keep the results comparable, we use representation
dimension d = 64 throughout.

• ComE [9] uses Gaussian mixture model to learn homogeneous graph embeddings and
cluster parameters jointly while utilizing random walk based context sampling.

• GEMSEC [58] uses random walks to learn community structure and embeddings simul-
taneously on homogeneous graphs.

• CP-GNN [43] learns node embeddings from a heterogeneous graph by utilizing trans-
formers and k-hop context sampling.
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• CTDNE [51] utilizes time-based biased random walks to learn spatio-temporal node
representations from dynamic networks.

• GraphSAGE [29] uses k-hop neighborhood sampling to learn node embeddings from
homogeneous graphs. Its unsupervised variant combines contrastive link sampling with
hinge loss.

• Node2Vec [27] adopts biased random walk and Skip-Gram to learn node embeddings
from homogeneous graphs.

5.2.3. Datasets

Table 5.1.: Dataset statistics. Temporal indicates if a dataset is temporal and labelled refers to
the availability of ground truth labels.

Dataset Node type # Nodes Edge type # Edges Temporal Labelled

DBLP
Author (A) 5,162 A - Authored - P 11,022

• •Paper (P) 5,511 P - Published In - V 5,511
Venue (V) 14

IMDB
Person (P) 8,491 P - Directed - M 4,939

•Movie (M) 5,043 P - Acted In - M 15,086
Genre (G) 26 M - Tagged - G 14,504

SDS

User (U) 34,919 U - Tweeted - T 56,173

•

Hashtag (H) 2,341 T - Reply To - U 21,769
Tweet (T) 56,173 T - Reply To - T 4,296

T - Quote - T 882
T - Mention - U 70,367
T - Mention - H 12,313
U - Follows - U 5,649,098

ICEWS Entity (E) 10,463 123 different types 915,028 •

Cora Paper (P) 2,708 P - Cites - P 10556 •

We use four widely used real-world (temporal) datasets for evaluation. These graphs are
of different types and contain information on different modalities. We applied additional
preprocessing on the IMDB, DBLP-HCN, and ICEWS datasets to include the multimodal
features present in the datasets but often not included in the graph due to sparsity of tem-
poral or content-based features. See Table 5.1 for a detailed comparison of node features.

• DBLP [85] is a citation network consisting of Authors, Papers and Venues. Aside from
being heterogeneous, the dataset also contains timestamps representing paper publication
dates and abstracts. There are thirteen ground-truth communities representing publica-
tion venues. The network contains 10687 nodes and 33066 edges. This dataset includes
ground truth labels.

• ICEWS [22] is a temporal knowledge graph in which nodes represent entities and times-
tamped edges the relationship between them. We model this data as a highly heteroge-
neous network consisting of different types of nodes (10463 in total) connected by 915028
timestamped edges. Edges are labeled with relations.
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• IMDB5000 [1] network consists of Actor, Director, Movie, and Genre nodes where each
Movie node type has a timestamp denoting the release date. Additionally, each actor
node has a set of attributes characterizing information unique to the actor such as age and
popularity, while movies have box-office data and keywords encoded as feature vectors.
This network has 13560 nodes and 69058 edges.

• SocialDistancingStudents (SDS) [72] represents a small part of the Twitter network
around a set of hashtags related to the COVID pandemic. This heterogeneous network
models connections between Users, Tweets, and Hashtags where parallel edges are pos-
sible due to relations such as tweeted, retweeted, quoted, etc. The tweet nodes contain
publication date timestamps and content encoded as feature vectors. 93433 nodes and
7420366 edges are included.

• Cora [87] is a homogeneous citation network. Nodes represent published papers and
contain feature vectors representing specific term occurrences in the abstract. Each node
is associated with one of the seven ground-truth labels.

5.3. Performance comparison

In this experiment, we evaluate the performance of learned node embeddings and detected
clusters. In particular, we evaluate the predictive quality of embeddings using classification
and link prediction, i.e., link prediction accuracy (LPACC), temporal LT and ground truth Ly
label classification accuracy CFACC. We evaluate the quality of detected clusters by calculat-
ing their NMI score based on predefined ground-truth communities Ly, LT , LG. This tells us
whether detected clusters approximate user-defined communities Ly, temporal partitioning
LT or the topology LG. Additionally, we calculate cluster and community quality scores for
the learned community assignments, specifically Davies Bouldin score and modularity.

The embeddings obtained from non-community detection methods were clustered using k-
means clustering with K = 20. Similarly, we use K = 20 for community detection methods
(ComE, GEMSEC, CP-GNN) that assume a predefined cluster count. The results are reported
in Table 5.2. It can be seen that while MGTCOM is competitive on task-specific measures
such as link prediction and timestamp prediction, the community detection methods still
have an edge on link-based modularity measures. A possible explanation for this would
be the fact that the DPMM process is more prone to getting stuck in local minima as the
clusters split and merge. Another possibility is that node features do not contain enough
information to model very specific network features such as modularity. In Section 6.3 we
further explore this issue by varying the auxiliary embedding ratio.

While CTDNE performs comparatively well in capturing the temporal aspect of the network,
we see that it still yields inferior results on datasets where temporal features are weakly
correlated with topology.

It is interesting to note that algorithms that rely on pairwise loss measures such as Graph-
SAGE and CP-GNN perform relatively well on classification-based measures while perform-
ing very poorly on cluster quality measures such as DBI and modularity. A possible expla-
nation for such observation is that the combination of neighborhood sampling and pairwise
loss reinforces structural similarity despite having a large receptive field. Our method suc-
cessfully overcomes this issue by modifying Hinge loss to work in a context path setting
(See Section 4.2.2).
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Table 5.2.: Comparison of performance of baselines on multimodal graph learning tasks.
(”-” means no data available, for example for temporal methods on static datasets such as
Cora). The calculated metrics are the link prediction accuracy (LPACC), predictive accuracy
on ground truth communities CFACC Ly, timestamp predictive accuracy CFACC LT , NMI
score of detected communities (COMNMI) given predefined communities (Ly, LT , LG),
Davies-Bouldin Index (DBI) and Modularity.

Dataset GraphSAGE Node2Vec ComE GEMSEC CTDNE CP-GNN MGTCOM MGTCOMT MGTCOME

DBLP

LPACC 0.624 0.710 0.735 0.544 0.701 0.522 0.743 0.634 0.794
CFACC Ly 0.315 0.832 0.842 0.831 0.809 0.506 0.896 0.330 0.884
CFACC LT 0.309 0.308 0.328 0.324 0.488 0.313 0.758 0.508 0.320

COMNMI Ly 0.051 0.549 0.463 0.385 0.537 0.209 0.465 0.059 0.492
COMNMI LT 0.006 0.033 0.025 0.022 0.059 0.022 0.209 0.168 0.026
COMNMI LG 0.040 0.425 0.470 0.314 0.401 0.107 0.336 0.039 0.371

DBI 0.472 2.305 2.205 4.056 1.206 4.780 2.039 4.205 5.188
Modularity 0.028 0.662 0.636 0.492 0.642 -0.035 0.427 0.137 0.514

ICEWS

LPACC 0.525 0.936 0.880 0.768 0.921 0.709 0.903 0.896 0.945
CFACC LT 0.294 0.301 0.264 0.310 0.285 0.273 0.316 0.318 0.313

COMNMI LT 0.018 0.040 0.015 0.022 0.022 0.013 0.057 0.002 0.011
COMNMI LG 0.227 0.354 0.548 0.309 0.347 0.204 0.119 0.001 0.447

DBI 1.027 1.697 2.559 3.867 1.533 4.737 3.883 3.598 3.182
Modularity 0.218 0.215 0.483 0.311 0.239 0.199 0.007 0.001 0.390

IMDB

LPACC 0.714 0.757 0.666 0.637 0.728 0.598 0.721 0.724 0.773
CFACC LT 0.346 0.373 0.394 0.380 0.488 0.316 0.659 0.556 0.377

COMNMI LT 0.022 0.025 0.031 0.013 0.065 0.004 0.239 0.231 0.026
COMNMI LG 0.039 0.181 0.197 0.094 0.160 0.033 0.107 0.031 0.158

DBI 0.301 1.803 3.840 4.951 1.749 4.806 2.257 1.285 4.013
Modularity -0.172 0.190 0.395 0.073 0.196 0.053 0.119 0.114 0.286

SDS

LPACC 0.922 0.953 0.758 0.878 0.955 - 0.934 0.616 0.956
CFACC LT 0.521 0.445 0.386 0.384 0.447 - 0.523 0.887 0.492

COMNMI LT 0.250 0.149 0.117 0.015 0.161 - 0.204 0.536 0.044
COMNMI LG 0.186 0.277 0.346 0.117 0.233 - 0.120 0.043 0.389

DBI 1.108 2.355 3.986 3.410 2.890 - 2.474 1.519 2.559
Modularity 0.088 0.163 0.301 0.037 0.016 - 0.015 0.005 0.374

Cora

LPACC 0.505 0.939 0.962 0.923 - 0.829 - - 0.958
CFACC Ly 0.659 0.798 0.864 0.845 - 0.780 - - 0.854

COMNMI Ly 0.376 0.345 0.434 0.437 - 0.370 - - 0.439
COMNMI LG 0.507 0.543 0.635 0.632 - 0.501 - - 0.643

DBI 1.526 1.250 2.021 1.500 - 2.634 - - 2.647
Modularity 0.636 0.691 0.785 0.780 - 0.677 - - 0.754

We also observe that the MGTCOM model performs well on both topology and temporal
prediction tasks in comparison to its task-specific counterparts.

5.4. Qualitative results

We further compare MGTCOM and the baseline models on the DBLP-HCN network. We
apply the T-SNE dimensionality reduction technique to visualize the trained node embed-
dings in 2D space colored by the ground truth label and the node timestamp (See Fig. 5.1).

Since in the DBLP-HCN dataset the timestamps are weakly correlated with its topology,
we can see that topology-focused embedding (and community detection) methods such as
ComE and Node2Vec do not capture temporal relations of nodes. On contrary, we observe
distinct patterns emerge when looking at MGTCOM generated embeddings for both of the
labels. Similar to that of ComE the community structures are visible in the node embeddings
though they are not as distinct.
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5. Experiments

(a) MGTCOM + Ly (b) MGTCOM + LT (c) ComE + Ly (d) ComE + LT

(e) Node2Vec + Ly (f) Node2Vec + LT (g) CTDNE + Ly (h) CTDNE + LT

Figure 5.1.: Visualization of trained embedding against ground truth labels (Ly, left) and
timestamp labels (LT , right) for DBLP-HCN dataset. (Note: The embeddings are calcu-
lated on the training dataset. Each of the plots contains a blob of nodes that have no edges
in the training set due to the validation split. None of the methods is equipped to handle
disconnected nodes.)

5.5. Inference results

Because the MGTCOM model operates on sampled neighborhood subgraphs, in contrast
to other methods it can operate in an inductive setting. Meaning that it is not necessary to
retrain the model to infer representation vectors for previously unseen nodes.

We evaluate the performance of MGTCOM and its task-specific variants in inductive settings
by controlling the ratio of nodes in the training set to the validation set. The test set remains
constant throughout the experiment to accurately assess performance on inferred nodes.
The relevant quality measures are computed exclusively on the test set and can be found in
Table 5.3.

In Fig. 5.2 we see the same measures plotted with the training ratio on the x-axis. From
Fig. 5.2 (a) we observe that varying training set size does not affect link-prediction tasks as
much as node classification tasks (b, c, d). Throughout the measures, we can see that using
only 75% of the data does not substantially affect the results. Interestingly, we observe that
the variance on the temporal prediction task increases when more data is provided.
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Figure 5.2.: Visual comparison of different model variants in the inference-based setting.
Graph nodes are split into three disjointed sets (train, validation, and test). The metrics
are measured while the training to validation ratio is varied. The test set is set to 10% of
the nodes and is kept constant. The average metrics per data value are plotted along with
their standard deviation.

Table 5.3.: Comparison of different model variants in the inference-based setting. Graph
nodes are split into three disjointed sets (train, validation, and test). The metrics are
measured while the training to validation ratio is varied. The test set is set to 10% of the
nodes and is kept constant.

Model % Train 10% 20% 30% 40% 50% 60% 70% 80% 90%

MGTCOM LPACC 0.686 0.728 0.774 0.755 0.780 0.833 0.861 0.887 0.872
CFACC Ly 0.428 0.474 0.548 0.571 0.638 0.799 0.861 0.899 0.927
CFACC LT 0.323 0.333 0.370 0.408 0.483 0.566 0.664 0.728 0.755
CFACC LG 0.347 0.368 0.419 0.432 0.473 0.580 0.626 0.685 0.736

MGTCOME LPACC 0.702 0.778 0.851 0.876 0.919 0.936 0.958 0.972 0.963
CFACC Ly 0.484 0.499 0.640 0.637 0.729 0.788 0.888 0.933 0.891
CFACC LT 0.312 0.311 0.306 0.308 0.314 0.305 0.312 0.316 0.311
CFACC LG 0.382 0.412 0.479 0.491 0.555 0.600 0.665 0.721 0.706

MGTCOMT LPACC 0.636 0.678 0.669 0.639 0.671 0.653 0.644 0.671 0.638
CFACC Ly 0.310 0.310 0.332 0.324 0.365 0.343 0.337 0.352 0.348
CFACC LT 0.323 0.341 0.372 0.403 0.485 0.532 0.562 0.677 0.610
CFACC LG 0.227 0.228 0.248 0.242 0.248 0.237 0.225 0.234 0.221

5.6. Learnable parameter reduction

An important goal of our work is to prove that inductive-based community detection is
feasible. We address the structural similarity bias found in many unsupervised inductive
algorithms by introducing a custom loss and sampling methodology in Section 4.2.2. While
our model still utilizes embeddings to address the incompleteness constraints, we show in
Section 6.3 that importance-based pruning is an effective optimization to keep the model
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scalable.

As result, our model takes advantage of the scalability of inductive representation learning
methods. In Table 5.4 we compare the parameter count of the MGTCOM model to the
node2vec model which directly learns node embeddings. Overall MGTCOM has fewer
parameters since the model size is bound by meta-topology. In highly heterogeneous graphs
such as the ICEWS dataset, the number of parameters may become larger than expected.
Specifically, the number of parameters is proportional to |A| + |R|. For exact analysis on
the number of learnable parameters the model uses, we refer the reader to Appendix A.2.

Table 5.4.: Parameter count comparison between node2vec and the MGTCOM model.

Dataset node2vec MGTCOM
DBLP 683,968 173,910
ICEWS 669,632 1,072,302
IMDB 867,840 170,846
SDS 5,979,712 231,282
Cora 173,312 136,390
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6. Ablation study

In this section, we investigate the sensitivity of our model to the described design choices and
hyperparameter values. Throughout the experiments, we keep the same base parameters as
described in the experimental setup. Similarly, the DBLP dataset is used throughout as it
provides a wide range of features suitable for the evaluation of all supported tasks.

6.1. Auxiliary Embedding Ratio

To address the incompleteness constraints, MGTCOM introduces auxiliary embeddings for
nodes without features. Zero-vector features are used for nodes that are unseen during
training and don’t have their own feature vector to encourage its inference from neighboring
nodes. While doing this introduces performance benefits, for large datasets it may not be
possible to store the auxiliary embeddings in memory.

We define a procedure to work around this scaling issue by noting that embeddings only
need to be constructed for a fraction of the most important nodes. This is due to scaling
laws applicable to most real-world networks. Specifically, in this experiment, we sort all the
nodes without features by their degree and use a fraction of the highest degree nodes for
auxiliary embeddings. Other nodes are given a zero-vector upon inference.
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Figure 6.1.: Performance results for topological MGTCOME and temporal MGTCOMT

models on various tasks where the ratio of auxiliary embedded nodes varies.

In Fig. 6.1 we see the results of the tasks specific models when the auxiliary ratio is varied.
From figure (a) we can observe that while auxiliary embeddings don’t have a large influence
during link prediction, they are in fact necessary on prediction tasks as figures (b), (c), and
(d) indicate. It can be rightfully deduced that embeddings are necessary for temporal tasks
(figure (c)) since topology and content-based features are weakly correlated with temporal
features.
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6. Ablation study

6.2. Meta-topological features

Meta-topological features are an important part of multimodal graphs. In this experiment,
we aim to determine the importance of meta-topology in our evaluation setting. We eval-
uate the performance measures on heterogeneous and homogeneous variants of the DBLP
dataset. By varying convolutional layers between Heterogeneous Graph Transformer and
GraphSAGE [15] (each edge type has a separate set of weights), we additionally aim to
determine the importance of meta-topology-based attention used during the aggregation
step.
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Figure 6.2.: Performance results for (a) topological MGTCOME and (b) temporal
MGTCOMT models, on prediction tasks for heterogeneous and homogeneous variants of
the DBLP dataset. To determine the importance of meta-topological attention we vary the
convolutional layers HGT and GraphSAGE (which is adopted for heterogeneous graphs).

Overall in Fig. 6.2 we see that the addition of meta-topological features has a positive effect
on the classification performance of both topological as well as temporal models. This effect
is especially pronounced on link prediction and topology-based classification tasks for the
temporal model. The cause for this may be that while topological features are not provided
during training, meta-topology still conveys enough information about the topology.

From the results, we see that meta-topology-based attention yields benefits in classification
performance in contrast to naive aggregation techniques (improvement by 10%).

6.3. Trade-off Parameter

During analysis the trade-off parameters (βE , βT , βC ) are used to guide the trained embed-
dings to favor specific tasks. In this experiment, we explore the trade-off between temporal
and topological tasks by varying value of βE , βT while setting the constraint 1 = βE +
βT . The clustering weight parameter βC remains constant throughout as described in Sec-
tion 5.2.

In Fig. 6.3 (a) we can see an almost linear correlation between link prediction accuracy
and the topological weight parameter βE . On the other hand, in figures (b) and (d) we see a
more logarithmic curve for topology correlated classification measures. The most interesting
takeaway is that while variance is quite high on the temporal classification task, its curve
peaks at a value of 0.5. In further work, it may be worth exploring this phenomenon in more
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6. Ablation study

detail. The most probable assumption would be that the temporal model still benefits from
the fact that temporal features are weakly correlated with the topology.
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Figure 6.3.: Performance of MGTCOM model while varying topological loss weight param-
eter βT under 1 = βE + βT contraint.

6.4. Initial K sensitivity

In this section evaluate the sensitivity of the clustering results to the initial K value selection.
While our method does not require setting the cluster to count K, it can still be set to find
more accurate initial clustering, and help DPMM avoid local minima. Specifically, we have
varied the initial cluster count (init K) used for k-means initialization while keeping all other
parameters fixed.
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Figure 6.4.: (a) and (b): Cluster count progression during DPMM clustering given an initial
cluster count (init K). The clustering is done on pre-trained MGTCOM embeddings for
the DBLP dataset.

In Fig. 6.4 (a) we see that despite varying starting values, all the runs converge at 12-18
cluster range. Having a value that strongly deviates from the ”optimal” cluster count causes
a slower convergence since more split/merge operations are required. We can see a similar
pattern in the measured Davies-Bouldin index in Fig. 6.2 (b).
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6.5. Hyperparameter sensitivity
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Figure 6.5.: Performance of MGTCOME model with varying (a) random walks length l, (b)
number of random walks per node n, and (c) the exploration trade-off parameter q.

In this part, the sensitivity of other hyperparameters on the model performance is discussed.
The node2vec random walk algorithm used for the topological task relies on parameters such
as walk length l, the number of random walks n for each node, and the exploration trade-off
parameter q. In Fig. 6.5 we see that while the choice of random walk length has a significant
impact on link-prediction and classification performance (a), the model is not as sensitive
to the other parameters. A surprising observation is that the trade-off parameter does not
significantly affect the productivity accuracy of ground communities (CFACC Ly). A possi-
ble explanation for this may be the fact that we use both random walk and neighborhood
sampling algorithms making the trade-off ineffective.

The ballroom walk algorithm introduced in Section 4.2.3 similarly relies on the hyperpa-
rameters walk length l and the number of random walks started for each node n, though
they serve a different purpose. Increasing either the l or the n parameter only marginally in-
creases the models performance at timestamp prediction (See Fig. 6.6). For both parameters,
there is a positive correlation between performance and an increase in the receptive field.

The most sensitive/important parameter for our model is the representation dimension size
d. In Fig. 6.7 (a) we plot the predictive performance of the topological model while varying
the model representation dimension d and the hidden representation dimension h used in
in-between layers of graph convolution. The classification performance seems to benefit the
most from a larger d, while link-prediction only sees a marginal improvement. Moreover
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Figure 6.6.: Performance of MGTCOMT model with varying (a) random walks length l and
(b) number of random walks per node n.
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Figure 6.7.: Performance of MGTCOME model with varying (a) representation dimension
d, (b) the margin (∆) parameter for the hinge loss, and (c) activation function.

having hidden dimension size deviate from the representation dimension only seems to
degrade the model performance.

In Fig. 6.7 (b) we vary the margin parameter of hinge loss. It is conventional to use ∆ = 1
if the similarity is bounded (as is in our case), therefore we can see the model performance
degrade as the margin exceeds this threshold. Increasing loss beyond 1 amplifies the relative
relevance of small loss samples, which in turn makes the model more prone to noise.

While constructing the network we found that the choice of activation function noticeably

38



6. Ablation study

CFACC Ly LPACC

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

(2,2) HGT
(2,2) SAGE
(3,1) HGT
(3,1) SAGE
(3,2) HGT
(3,2) SAGE
(6,2) HGT
(6,2) SAGE
(8,4) HGT
(8,4) SAGE

Figure 6.8.: Performance of MGTCOME model with varying convolution layers. We vary
the architecture by switching between Heterogeneous Graph Transformer (HGT) and Het-
erogenous GraphSAGE convolutional layers. Similarly, we also modify the neighborhood
size of each node within the two-layer convolution setup. Format (x, y) represents the
number of neighbors per node in the first (x) and second (y) layer respectively.

affects the model performance. Choosing GeLU over ReLU activation speeds up model
convergence and gains a noticeable edge in classification tasks (See Fig. 6.7 (c)).

In Fig. 6.8 we vary the convolution architecture of the topological model and measure the
resulting test performance. As observed earlier HGT convolutional layers perform better
since they introduce meta-topology-based attention. Varying the layer neighborhood size
does not seem to affect the performance substantially, except for the fact that computed
performance measures during training are a lot smoother throughout.

Finally, in Fig. 6.9 we analyze the sensitivity of the resulting cluster count to the chosen prior
parameters for the DPMM algorithm. We notice that the σ scale and ν parameters have a
linear correlation with the resulting number of clusters. The σ scale parameter influences the
data-bound W hyperparameter and is to be expected to have a great impact. A larger prior
covariance corresponds to a larger probability that any of the clusters are drawn from it and
therefore results in a larger number of clusters. On the contrary, a larger degree of freedom
requires a larger amount of samples per cluster, therefore reducing the probability of smaller
clusters. We see a more noisy pattern from α and κ concentration hyperparameters as they
are not data-bound and are less effective when their value is much smaller than the total
number of data points N.

39



6. Ablation study

101 103 105
12

13

14

15

16

K

(a)

10 3 10 2 10 1 100

 scale

5

10

15

K

(b)

100 150 200

5

10

15

20

25

K

(c)

10 2 100 102

10

12

14

16

K

(d)

Figure 6.9.: Sensitivity of the resulting cluster count K on the DPMM prior parameters (a) α
the cluster concentration parameter, (b) the σ scale parameter influencing the covariance
of prior, (c) ν the degrees of freedom parameter for the Wishart prior distribution, and (d)
κ the concentration parameter of the Wishart prior distribution.
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7. Case study: Social Distancing Students
dataset

The Social Distancing Students dataset explores dutch public sentiment on governmental
COVID-19 measures on Twitter based on data between February to September 2020 [72].
Public sentiment is an important measure to consider before implementing certain measures
or policies as it may influence compliance or cause protests.

The dataset consists of a tweet network encapsulating tweet, retweet, quote, and mention
relations and a follower network modeling dynamics of the Twitter social network platform.
The network is constructed by gathering tweets matching a predefined set of keywords
related to the COVID-19 crisis. The follower network is constructed central to the users re-
lated to the tweets. Following the work in the original paper, the dataset contains sentiment
analysis labels indicating whether a tweet is in support or rejection of contemporary social
distancing policies.

For this case study we have trained the MGTCOM model on the dataset using the same
parameters as described in the evaluation (Section 5.2). In the following steps, we use the
dataset as well as training results to explore the patterns found in the data. Additionally, we
attempt to explain the learned features and communities based on the patterns seen in the
data they capture.
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Figure 7.1.: Given a latent feature vector (d = 32), for each feature, we plot attention aver-
aged over the whole dataset. A positive value means the feature is more important for
topological tasks, while a negative value means it is more important for temporal tasks.
In plot (b) we similarly visualize the attention averaged over data points while grouped
by node type.

In the first step of our analysis, we focus on the relative importance of various embeddings
features given their task-specific attention weight. In Fig. 7.1 we plot the attention ratio,
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7. Case study: Social Distancing Students dataset

which is computed as the mean difference between the topological and temporal feature-
wise attention (ATTE − ATTT ). Since, the attention is computed per node, in figure (b) we
plot the attention ratio grouped by node type. While on the feature level a clear distinction
is seen where features are more important for either task, we can see that attention between
different types doesn’t deviate much from the mean. This is not unexpected as the attention
is not parameterized by meta-topology, as it is rather implicitly encoded in the primary
embedding vector.

In Fig. 7.2 we visualize a temporal histogram for top nodes given individual features that
have a higher average temporal attention. Because our distance measure is based on inner-
product, the selection of top nodes works by simply sorting node embeddings by the selected
feature in descending order. In almost all the subplots we see pronounced peaks at certain
timestamps indicating that the latent features capture certain temporal patterns within the
data. Since many features capture the peaks during mid-October it is fair to assume that
those tweets have certain distinct underlying properties. As a baseline, we plot the general
tweet distribution over time in Fig. 7.3 to compare the peaks in feature histograms against.
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Figure 7.2.: Distribution of top 200 tweets over time ranked by latent embedding feature
which is correlated with high temporal attention. The dates on the x-axis are formatted as
month-date excluding the year 2021.

To further study the effectiveness of attended features we plot most common words occur-
ring in top tweets given the attended features in Fig. 7.4. In these word clouds, we see
more explanations for the patterns seen in the temporal histograms. For latent feature 11
we see the main keywords consisting of ”nk”, ”amsterdam”, and ”voetbal” referring to con-
temporary dutch soccer national championship games on 3, 16, 19, 24, and 30th of October.
All the games were played by ”Ajax” club based in the city Amsterdam and the dates corre-
spond to the peaks in the histogram. Similarly, feature 5 contains keywords ”dierendag” and
”bioindustrie” corresponding to national animal day on 3rd of October and related tweets
raising awareness to the bioindustry. Features 0 and 5 seem to contain more general words
referring to trending hashtags (”#scholenveilig” translated school safe) in anticipation to the
press conference from the Dutch parliament on 18th of October.

While topological information is gathered from neighboring nodes, it can still tell us about
trends on Twitter regarding hashtags and mentions. In Fig. 7.4 (b) we similarly plot key-
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Figure 7.3.: Tweet distribution over time in Social Distancing Students dataset.
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Figure 7.4.: Most common words occurring in the top 200 tweets given (a) temporally cor-
related latent features, (b) topologically correlated latent features.

words for the most valuable/attended topological features. There we see in features 19 and
13 keywords regarding measures for restaurants and grocery stores respectively. Feature 8
mainly contains travel keywords such as ”ov” and ”ns” referring to travel providers, while
feature 9 is more focussed on foreign affairs citing city ”Brussels” and country (”land”).

Next, we are interested in the predictive capability of the embeddings on the sentiment
labels provided in the dataset. In Fig. 7.5 we see a plot of the two most correlated latent
embedding features colored by the sentiment label. As the predictive accuracy on the label
is 81% and does not greatly exceed 79% most frequent label baseline, it is fair to assume that
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7. Case study: Social Distancing Students dataset

Figure 7.5.: Visualization of two latent embedding features most correlated with social dis-
tancing sentiment. Each of the data points is colored corresponding to the sentiment label
indicating that the content of the tweet is either for or against a certain measure.
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Figure 7.6.: Distribution of tweets given their respective communities over time.

the embeddings do not really capture the sentiment of the tweet contents.

Finally, we analyze the patterns captured by the found communities. In Fig. 7.6 we visu-
alize temporal distribution of Tweets given their corresponding communities. Contrary to
temporal patterns, we see that the communities are mixed in their temporal correlation. For
example, cluster 14 has a distinct timestamp while cluster 4 is clearly centered around the
17th of October.

To get more insight into the nature of found communities we plot node type distributions
for the found communities in Fig. 7.7 (a) alongside the node type distribution of the whole
dataset. Aside from mixed-type communities we also see pure communities emerge captur-
ing only follower network data or the tweet data. Surprisingly, while hashtags make up a
small portion of the dataset, we see multiple communities containing a non-trivial fraction
of hashtags.

Similarly, various patterns the communities capture can be analyzed using the word clouds
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7. Case study: Social Distancing Students dataset
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Figure 7.7.: Distribution of node types (”User”, ”Tweet”, ”Hashtag”) over the (a) found
communities, (b) the full dataset.

in Fig. 7.8. There we see more pronounced patterns concerning grocery store policies (feature
1), the overfull hospitals (feature 5) and disease transmission (feature 6).

We conclude this section by noting that the found communities capture patterns by combin-
ing similar nodes in terms of content, time events and connections together which is very
useful for explorative analysis. This approach is unsuitable for predicting complex patterns
such as support for specific policies as it is not encapsulated in the objective function. A
more suitable way to capture such feature would use representation vectors for all sentence
tokens, instead of the full text average we use currently. We leave exploration of ways to
incorporate such feature extraction into graph embedding pipeline as future work.

Feature 0 Feature 1 Feature 5 Feature 6

Figure 7.8.: Most common words occurring in various communities.
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8. Future Work

While we have explored a multitude of topics, there is still a lot of room for further improve-
ments and exploration. Below we list a various of possible further research directions.

Our experiments have shown that temporal representation learning benefits greatly from
auxiliary embeddings as node features may often be too weakly correlated with temporality.
In contrast to topological tasks, auxiliary embeddings have been shown to be effective only
for the most important nodes. In future work, it may be valuable to explore more flexible
settings where representations are augmented with embeddings only for temporal tasks,
therefore reducing parameters and inference latency.

The scale of our model is meta-topology bound, meaning that the amount of learnable
parameters increases if there are more node or edge types. This reduces the effectiveness of
our framework on highly heterogeneous networks such as knowledge graphs. Future works
may explore improvements to our embedding method by utilizing techniques used in the
knowledge graph embedding field.

While detected communities excel in topological and temporal predictive capabilities, they
detected communities still under-perform on the modularity measure. Further work may
explore swapping node2vec random walk algorithm by motif-sampling [34] to encourage
strong link-based proximity.

The presented framework uses DPMMSC algorithm as introduced in the original paper [11].
Meanwhile, a multitude of works has been published that extend the algorithm to a deep
learning setting [57] or that address local minima issues faced by the algorithm. Hierar-
chical DPMM algorithms have been studied [64, 10] and may be invaluable for community
detection in analytical settings. Our clustering implementation can be further improved by
exploring the effectiveness of different priors and introducing new split/merge proposal
methods. Finally, we note that the detected communities are mainly dictated by the struc-
ture of node embeddings. Introducing a control parameter to bias communities towards
temporal and topological communities would improve ergonomics of community detection
when reusing the learned embeddings.
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9. Conclusion

In this paper, we introduce the MGTCOM framework for community detection in mul-
timodal graphs. It utilizes meta-topological, topological, content features, and temporal
information to detect communities. Moreover, we address common issues in multimodal
graphs such as information incompleteness, and inference on unseen data by adopting a
graph convolutional network architecture that combines k-hop neighborhood sampling and
random walk context sampling. We devise a unified objective and an efficient temporal sam-
pling method to learn multimodal community-aware node embeddings in an unsupervised
manner. Consequently, we leverage a split/merge-based Dirichlet process mixture model
for community detection where the number of communities are not known a priori. Our
empirical evaluation shows that MGTCOM is quite competitive with the state-of-the-art.
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A. Supplemental Material

A.1. Dataset construction

The datasets IMDB, DBLP and ICEWS were preprocessed into multimodel networks for
evaluation of our model. In the following sections, we discuss the construction of these
multimodal networks.

A.1.1. IMDB

IMDB dataset is originally made up of rows detailing movies and their information. To
construct the multimodal we normalize this dataset by splitting listed actors, directors and
genres per movie as a separate entity. Actors and directors are merged as person entity since
both sets overlap. Each movie is associated with a set of keywords. By collecting these words
into a vocabulary of 80 most frequent keywords, we construct an 80-dimensional one-hot
feature vector for each movie. The Genre and Actor entities have no feature representations.
Each movie is given [tv, ∞] time range, where tv is the release data of the respective movie.
Edges are constructed as ”person directed movie”, ”person acted in movie”, and ”movie has
genre” pairs.

A.1.2. DBLP

The DBLP dataset is constructed in a similar way as IMDB since the dataset consists of
Papers with their respective citations, authors, and venues. To construct the representation
vector for each paper, we use pre-trained sentence transformers [73] to embed the abstract
text. Authors and venues have no features. Each paper is given [tv, ∞] time range, where tv
is the publication date of the respective movie. Edges are constructed as ”paper cites paper”,
”author wrote paper” and, ”paper was published in venue” entity pairs.

A.1.3. ICEWS

The ICEWS datasets consists of triplets between subject, predicate, and object entities. As
ICEWS is a temporal knowledge graph, each triplet is associated with a timestamp. We
model this dataset by combining subject and object into one single entity type. Between
these entities, we create typed edges corresponding to the respective predicate. The name
of each entity is embedded into a feature vector using a pre-trained language transformer
[73]. Each edge is given [tv, tv] time range, where tv represents the timestamp when the
corresponding triplet was valid.
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A. Supplemental Material

A.2. Model parameter count analysis

In Eq. (A.1) till Eq. (A.8) we provide a set of equations to calculate the exact number of
trainable parameters for the MGTCOM model. We use parameters d(l) and h to denote latent
vector dimensionality at layer l and number of attention heads respectively. The largest
number of parameters come from the Heterogeneous graph transformer layer consisting
of four node type specific transformation layers (A, Q, K, V) layers and three relation type
specific transformation layers (A, P, M). The attention Aux-Emb and Feat-Lin are dependent
on dataset properties such as node count |V| and the input feature dimensionality dX (t).
Finally, we include cluster parameters µ and σ as learnable parameters, though not through
gradient descent.

Node-Lin(l) = ∑
t∈A

d(l−1)d(l) + d(l) (A.1)

Rel-Lin(l) = ∑
t∈R

hl(d(l)/hl)2 + d(l) (A.2)

HGT(l) = 4 ·Node-Lin(l) +3 · Rel-Lin(l) (A.3)

Aux-Emb = d(0)|V| · embed-ratio (A.4)

Att-Lin = (d(L)d(L) + d(L))h (A.5)

Feat-Lin = ∑
t∈A

dX (t)d(0) + d(0) (A.6)

Clus =
K

∑
i=0

d(L) + d(L)d(L) (A.7)

MGTCOM = Aux-Emb+Att-Lin+ Feat-Lin+Clus+
L

∑
l=1

HGT(l) (A.8)

A.3. Exact model parameters
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A. Supplemental Material

Table A.1.: Complete overview of used parameters for MGTCOM and its variants for bench
marking and tuning.

Config key Value

loss HINGE
hinge margin 0.1
metric DOTP
lr 0.02
repr dim 64
lp max pairs 5000
ballroom params/context size 10
ballroom params/num neg samples 1
ballroom params/walk length 20
ballroom params/walks per node 10
n2v params/context size 10
n2v params/num neg samples 1
n2v params/p 1
n2v params/q 0.5
n2v params/walk length 20
n2v params/walks per node 10
embed node ratio 1.0
conv num heads 2
conv num layers 2
num samples [3, 2]
sampler method HGT
split num test 0.1
split num val 0.1
tempo hidden dim 32
tempo repr dim 64
tempo weight 1.0
topo hidden dim 32
topo repr dim 64
topo weight 1.0
use tempo True
use topo True
infer k 3
prior alpha 1.0
prior kappa 1.0
prior nu 65
prior sigma scale 0.1

50



Bibliography

[1] IMDB 5000 Movie Dataset. https://kaggle.com/carolzhangdc/imdb-5000-movie-
dataset.

[2] Mihael Ankerst, Markus M. Breunig, Hans-peter Kriegel, and Jörg Sander. OPTICS:
Ordering Points To Identify the Clustering Structure. pages 49–60. ACM Press, 1999.

[3] Christopher M. Bishop. Pattern Recognition and Machine Learning. Information Science
and Statistics. Springer, New York, 2006.

[4] Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre.
Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory
and Experiment, 2008(10):P10008, October 2008.

[5] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana
Yakhnenko. Translating Embeddings for Modeling Multi-relational Data. In Advances
in Neural Information Processing Systems, volume 26. Curran Associates, Inc., 2013.

[6] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral Networks and
Locally Connected Networks on Graphs, May 2014.

[7] Jinxin Cao, Di Jin, Liang Yang, and Jianwu Dang. Incorporating network structure
with node contents for community detection on large networks using deep learning.
Neurocomputing, 297:71–81, July 2018.

[8] Yuwei Cao, Hao Peng, Jia Wu, Yingtong Dou, Jianxin Li, and Philip Yu. Knowledge-
Preserving Incremental Social Event Detection via Heterogeneous GNNs. pages 3383–
3395, April 2021.

[9] Sandro Cavallari, Vincent W. Zheng, Hongyun Cai, Kevin Chen-Chuan Chang, and
Erik Cambria. Learning Community Embedding with Community Detection and Node
Embedding on Graphs. In Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management, pages 377–386, Singapore Singapore, November 2017. ACM.

[10] Jason Chang. Sampling in Computer Vision and Bayesian Nonparametric Mixtures.
page 241.

[11] Jason Chang and John W Fisher III. Parallel Sampling of DP Mixture Models using Sub-
Cluster Splits. In Advances in Neural Information Processing Systems, volume 26. Curran
Associates, Inc., 2013.

[12] Weijian Chen, Fuli Feng, Qifan Wang, Xiangnan He, Chonggang Song, Guohui Ling,
and Yongdong Zhang. CatGCN: Graph Convolutional Networks with Categorical Node
Features. IEEE Transactions on Knowledge and Data Engineering, pages 1–1, 2021.

[13] Jun Jin Choong, Xin Liu, and Tsuyoshi Murata. Learning Community Structure with
Variational Autoencoder. In 2018 IEEE International Conference on Data Mining (ICDM),
pages 69–78, November 2018.

51



Bibliography

[14] Shib Sankar Dasgupta, Swayambhu Nath Ray, and Partha Talukdar. HyTE: Hyperplane-
based Temporally aware Knowledge Graph Embedding. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Processing, pages 2001–2011, Brussels,
Belgium, October 2018. Association for Computational Linguistics.

[15] CSIRO’s Data61. Stargazers · stellargraph/stellargraph.
https://github.com/stellargraph/stellargraph, 2018.

[16] Yuxiao Dong, Nitesh V. Chawla, and Ananthram Swami. Metapath2vec: Scalable Rep-
resentation Learning for Heterogeneous Networks. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’17,
pages 135–144, New York, NY, USA, August 2017. Association for Computing Ma-
chinery.

[17] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algo-
rithm for discovering clusters in large spatial databases with noise. In Proceedings of the
Second International Conference on Knowledge Discovery and Data Mining, KDD’96, pages
226–231, Portland, Oregon, August 1996. AAAI Press.

[18] Hossein Fani, Eric Jiang, Ebrahim Bagheri, Feras Al-Obeidat, Weichang Du, and Mehdi
Kargar. User community detection via embedding of social network structure and
temporal content. Information Processing & Management, 57(2):102056, March 2020.
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