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Abstract

As we enter the era of increasingly accurate gravitational wave observatories and even
new detectors in the pipeline, the modelling of gravitational wave emission by black
hole binary systems is of great importance. In general a gravity theory can be tested
with the gravitational wave detections because the data analysis relies on cross correlat-
ing the detector output with the theoretical model. With the upcoming high-accuracy
experiments, one expects to be able to distinguish possible corrections to General Rel-
ativity (GR) in the strong gravity regime, aiding in the search for an accurate gravity
model including a quantum description. We study the gravitational wave emission from
the inspiral of a black hole binary in quadratic modified gravity. This class of theories is
a promising beyond GR model which can be seen as a higher curvature extension that
makes the theory renormalizable. Specifically, we study a candidate theory within this
class, namely scalar Gauss Bonnet (sGB) gravity. sGB introduces on top of the Hilbert
Einstein action, a topological invariant quadratic curvature term and a free scalar field,
leading to the possibility of having black hole solutions with non zero scalar hair. This
results in additional scalar radiation from a black hole binary system. For modelling
the gravitational wave signal in this theory the inclusion of the curvature corrections
and the scalar radiation are required.
We re-derive the results from recent literature of the two body Lagrangian up to first
order in the Post Newtonian (PN) expansion in sGB gravity and reconstruct the scalar
waveform amplitude and phase evolution. Several typographical and algebraic errors
from previous calculations are identified and resolved. For the first time we include
tidal effects induced by the scalar field around the black holes in the modelling of the
binary system and gravitational radiation. We find that the tidally induced corrections
contribute at the same PN order and scale the same with distance and frequency as
the sGB correction to the gravitational wave phase. Finally, we investigate the depen-
dency of the sGB correction and tidally induced correction on the coupling constant
and physical properties of the binary and find that the tidal effects dominate over the
sGB corrections for large separations of the black holes.
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1 INTRODUCTION 1

1 Introduction

It starts to become a bit of a cliché to open a study on gravitational waves with the first
gravitational wave detection in 2015 by the LIGO-VIRGO detectors[1], but things become
a cliche for good reasons. This historical moment verified what Einsteins theory of General
Relativity, our current theory for gravity, already predicted approximately hundred years
before. Massive objects like black holes or neutron stars in an accelerating asymmetrical
motion produce ripples in the fabric of spacetime, what was then named to be gravitational
waves (GWs). Spectacular indeed, as well for astronomy as it opened a whole new way to
gather information about objects in the universe[2, 3].
Now around seven years after the first detection, many events of gravitational waves com-
ing from black hole and neutron star binaries have been measured[4, 5, 6]. There are even
new detectors in the pipeline, for example the more accurate Einstein telescope [7] or the
space based telescope LISA [8] probing a different frequency range. Rapid progress is also
made on the theory side. One of the many scientific opportunities with GWs is testing the
accuracy of models for gravity. As the measurement of GWs was a real breakthrough for
Einsteins theory of General Relativity, the theory is not flawless. On many scales this the-
ory works very well, for example on the scales of the solar system, GR passes the tests with
high accuracy [9]. However in more extreme situations (high energy) as for example the
gravity inside a black hole, or on very small scales when quantum effects come into play,
GR cannot describe gravity accurately [10]. Already quite soon after Einstein had proposed
his theory, the search for alternatives or alternations began, resulting in a zoo of possible
modified versions of a theory of gravity[11]. Ideally an alternative theory would preserve
the successes of GR on scales such as the solar system but would have some improvements
on the small and strong gravity scales so it can be combined to include quantum effects.

In this thesis we dive into this world of modified gravity to see how one could use GWs to
test these theories in the strong gravity regime. For this we focus on a class of modified
gravity theories called quadratic gravity which are extensions of GR with quadratic terms in
the spacetime curvature [12]. This extension is quite natural as it would be an order higher
in the expansion of the curvature. Even more appealing is that these quadratic terms make
it possible to quantize the theory which allows for including the description of quantum
effects [13]. This is related to the motivation for the inclusion of higher order curvature
terms from the low energy limit of string theory[14]. Within this subclass of quadratic
gravity theories we will focus on scalar Gauss Bonnet (sGB) gravity. This theory includes a
quadratic curvature correction to the GR framework and this curvature term coupled to a
new introduced scalar field. A distinct feature in this theory is the possibility for black hole
solutions to have non zero scalar field, resulting in black holes with scalar hair[15]. The
main focus of this thesis work lies on producing accurate templates of the phase of the GWs
coming from a coalescing black hole binary, including the interesting effect of the scalar
hair solution of the black holes. These templates can be used to compare with the theoret-
ical wave form phase in GR to see if there are differences in an event in strong gravity. If
these differences are there, which is already shown in [16, 17]. In future research these
accurate templates can be compared with data from gravitational waves to constrain the
modified theory and to see if it would be a more accurate description of gravity on those
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scales.

Most previous work on constraining gravity theories focuses on tests of GR and constrain-
ing parameters [9, 18, 19, 20, 21, 22], for example leaving the coefficients describing
corrections to Newtonian gravity on the waveform general and phenomenologically con-
strain their value with the data. Then one can compare these constraints on the waveform
with the corrections that would come from GR. This is called a Parametrized Post New-
tonian (PPN) method. In this way one can search for alterations to GR on the waveform
but interpretation for the underlying gravitational theory is limited. In contrast construct-
ing whole templates gives much more constraining power then most previously conducted
tests. However this is a more time consuming task and therefore it is more interesting to
build the framework that covers a broader class of modified gravity theories, which in this
case is done for the class of quadratic gravity theories.

In this thesis we focus on a system of two non spinning black holes rotating around each
other which would produce GWs in the detectable range 1. The GWs coming from a merg-
ing event of two black holes have different stages. At the beginning of the event the black
holes are rotating around each other; this is called the inspiral. When the black holes are
so close together they are within the radius of the Innermost Stable Circular Orbit (ISCO)2

they actually collide and we enter the merger stage. After the merger there is the ringdown
as shown Fig. 1. The inspiral can be modelled well analytically, while for the merger one
needs for example numerical tools. Therefore we focus in this thesis on the inspiral stage.

Figure 1: Sketch of the coalescence event of two black holes in a binary system and its
gravitational wave signal in time.

1This is approximately 10 − 104Hz for the ground based detectors and about 0.1 × 10−3 − 1Hz for future
space based detector LISA[23]

2the smallest distance to a black hole at which a stable circular orbit exist, this is in general taken as a
proxy for the end of the inspiral and start of the merger stage.
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Recently the dynamics of a binary black hole system and the waveform templates in sGB
were studied in [24, 16, 17]. Solving the set of coupled non linear equations of motion for
the spacetime and scalar field in this theory is very complicated and to analytically solve
them requires establishing an approximation scheme. A widely used method for these kind
of calculations is the Post Newtonian (PN) approximation where one expands in correc-
tions to the Newtonain gravity limit. This approximation can be used in a region near the
GWs source for example to calculate binary dynamics of the system, at larger distances
different methods are required. In the references above the authors constructed the La-
grangian of the binary dynamics and the waveforms in sGB for the first time to 1st order
in this PN expansion. In this thesis we will re-derive and check their results. On top of
that we will include the description of tidal effects coming from the non zero scalar field
around the black holes that can exists in vacuum solutions for sGB gravity as opposed to
GR. These tidal effects influence the binary dynamics of the system and induce an addi-
tional dipole moment to the multipole expansion of the scalar field itself which contributes
to the radiation of the scalar field. To include these effects in the calculation of the orbital
dynamics and radiation the tidal deformability parameter needs to be obtained. This pa-
rameter characterises the sensitivity of the scalar field to tidally deform in the presence of
the scalar field of the companion black hole. It is defined as the ratio between the induced
scalar dipole moment and the scalar tidal field of the companion black hole. By zooming in
on the scalar field solution of one black hole to first order in the perturbation of the scalar
tidal field, we can derive the expression for the induced dipole moment and tidal field by
looking at the asymptotic multipole expansion of the scalar field solution, resulting in the
tidal deformability parameter.

This thesis is organised as follows; we start with technical background chapters on GWs
in section 2, modified gravity in section 3 and tidal effects in section 4. Then we continue
with the main part of the report starting with binary dynamics analysis in section 5 which
includes a study of the binding energy and the effects of the tidal terms in sGB gravity.
After that we derive the tidal deformability parameter in section 6. Finally we calculate the
phase evolution in section 7 and analyse the dependency of the tidally induced phase cor-
rections compared to the sGB terms and GR phasing and their dependence on the coupling
and properties of the binary system. We find that these corrections have opposite depen-
dencies on the coupling and mass ratios of the black holes in stages of the very early inspiral
in which the scalar radiation contributions dominate and later in the inspiral. Furthermore
for large separations during the early inspiral the tidal corrections to the GW phase actu-
ally dominate over the sGB corrections. Lastly we finish with a discussion and conclusion
in section 8 and outlook for future research in section 9. The more lengthy and technical
calculations can be found in the appendix starting in section A, as well as an overview of
the results from GR, we use in this analysis, a description of the Mathematica package we
used for the calculations and a discussion on similar analysis for another quadratic gravity
theory called dynamical Chern Simons gravity.
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2 Gravitational waves

We start with a description on how one can derive the most important features of GWs
starting from the equations of motion coming from GR, to give an intuitive picture of the
concept of GWs. A short note on detection is given as well. Then we will discuss how one
can calculate the wave function of the GWs. An important point to note is that in principle
the calculations done on GWs always start from the equations of motion in GR which one
solves for a perturbation in the spacetime fabric. However for solving these equations ana-
lytically one has to implement approximations as these equations are non linear. Therefore
these calculations can be done on very different levels of complexity depending on which
approximations can be made, which depends again on the system that generates the waves
and/or at what distance from the source you are solving the equations. Therefore we spec-
ify explicitly for the calculations which assumptions and approximations we make.
We will start looking at the general features of gravitational waves keeping it unspecified
what kind of source would have generated these waves and assuming that the background
spacetime is flat, see Fig. 2a, 2b. Then we will shift to the more astrophysical accurate
system of two black holes rotating around each other, as shown in Fig. 2c for which we
have to reconsider the approximation scheme.
This whole discussion is taking place in a GR context, no modified gravity considered for
now. The first part is to give some intuition on gravitational waves. In the last subsection
2.4 we will look at gravitational waves in the strong gravity regime which explains the tools
we will also need for calculations of the binary dynamics and gravitational wave phase in
the core parts of this report in sections 5, 7.
The information in this section is largely based on Ch 1, 3 and 5 of the book by Maggiore[25].

(a) (b) (c)

Figure 2: Different systems to consider for calculating the gravitational waveforms. Con-
sidering a) vacuum solutions with a flat spacetime background, b) solutions for a generic
source with a flat spacetime background and c) a gravitationally bound system of two black
holes.

2.1 Gravitational waves in linearized theory

As GWs are the ripples in our spacetime, we can start our discussion with looking at the
action describing this spacetime. In GR this action is given by
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S = SHE + SM =
c4

16πG

∫
d4x
√
−gR + SM , (2.1)

with SHE the Hilbert Einstein action and SM the action of the applicable matter distribu-
tion. In GR we have the metric gµν and its determinant g describing the properties of the
spacetime and the Riemann tensor Rµναβ, Ricci tensor Rµν and the Ricci scalar R describing
the geometric properties as curvature of the spacetime 3. Varying the action with respect
to the metric gµν results in the Einstein field equations which are basically the equations of
motion of spacetime

Rµν −
1

2
gµνR =

8πG

c4
Tµν . (2.2)

Here the energy momentum tensor is defined as

Tµν =
−2√
−g

δSM
δgµν

. (2.3)

These equations describe how the geometry of the spacetime defined by the terms on the
LHS are related to the distribution of matter described by the energy momentum tensor.
To see explicitly how linearized GWs arise from the solutions to the Einstein field equations
we express the equations in terms of perturbations in the spacetime metric. With this
approach we split up the contribution of the rapidly varying part of the metric and the
underlying flat spacetime in respectively the wave part and background, see Fig. 2a. Here
the perturbations in the metric are regarded as the GWs. Furthermore we can simplify
the equations a lot by making use of the symmetries we have in GR. We can define the
perturbations to the spacetime metric hµν as

gµν = ηµν + hµν . (2.4)

Furthermore we assume that these perturbations are small |hµν | � 1 and that the back-
ground metric is flat which is the weak field approximation. If we substitute this metric
in the field equations and expand to linear order in hµν , we describe GWs in the so called
linearized theory. In this framework indices can be raised or lowered with the flat space
Minkowski metric ηµν .
Thus when expanding the Ricci tensor and scalar up to linear order in the metric perturba-
tions4, substituting in the Einstein equations and making use of the following definition

h̄µν = hµν −
1

2
ηµνh, (2.5)

with the trace h = ηµνhµν , this results in the linearized Einstein equations

�h̄µν + ηµν∂
ρ∂σh̄ρσ − ∂ρ∂ν h̄µρ − ∂ρ∂µh̄νρ = −16πG

c4
Tµν . (2.6)

We can do one more simplification using the symmetries of GR. As the Einstein equations
are in a covariant, tensorial form, the equations are invariant under all coordinate transfor-
mations, as tensors are coordinate independent objects. The system is therefore invariant

3see D for the definitions of these expressions defined within the GR framework
4see Appendix D for these expanded terms
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under translations and Lorentz transformations. In addition, the theory is invariant under
active coordinate transformations; transformations for which the transformed coordinate
is invertible, differentiable with a differentiable inverse. This transformation can be per-
formed locally and is a local symmetry property. This local symmetry is called the gauge
freedom in GR. If one chooses a certain reference frame to express the coordinates in, this
gauge freedom gets fixed. However after choosing a set of coordinates there is still a small
invariance left; the invariance under infinitesimal local transformations. This freedom gets
fixed by the following gauge constraint5

∂ν h̄µν = 0, (2.7)

which is called the Lorentz gauge. Using this constraint the linearized field equations reduce
to the wave equation

�h̄µν = −16πG

c4
Tµν . (2.8)

The calculation of the waveforms of gravitational waves and the effects they have in linear
theory comes down to solving this wave equation.

2.1.1 Propagation of gravitational waves in vacuum

As a first study we can look at how the waves propagate on a flat spacetime background,
see Fig. 2a. We can then set the source term Tµν in the wave equation to zero as we assume
empty space. The wave equation then becomes

�h̄µν = 0. (2.9)

From this we can already see that since � = − (1/c2) ∂2
0 + ∇2 the propagation speed of

gravitational waves is the speed of light c.

Outside the source we can make even more use of the gauge freedom as the Lorentz gauge
still does not fix the gauge entirely. This comes from the transformation of ∂ν h̄µν , the
Lorentz gauge condition is not violated when also applying another infinitesimal coordinate

5Deriving this gauge condition works as follows. In general the Einstein equations are invariant under
the active coordinate transformation xµ → x′µ(x) also called a diffeomorphism. Under this transformation
the metric transforms as gµν(x) −→ g′µν(x′) = ∂xα

∂x′µ
∂xβ

∂x′ν gαβ(x). Choosing a set of coordinates in principle fixes
this gauge freedom but one can check that the equations are then still invariant under infinitesimal transfor-
mations xµ → x′µ = xµ + ξµ(x) with |∂µξν | being of similar order as the metric perturbations . Under this
transformation the perturbations transform to lowest order as hµν(x) → h′µν (x′) = hµν(x) − (∂µξν + ∂νξµ)

using the transformation rule of the metric gµν . Then with hµν = h̄µν − 1
2ηµν h̄ this transformation for h̄µν

is given by h̄µν → h̄′µν = h̄µν − (∂µξν + ∂νξµ − ηµν∂ρξρ). Then taking the partial derivative, the second and
third term cancel and one has ∂ν h̄µν →

(
∂ν h̄µν

)′
= ∂ν h̄µν − �ξµ. Now because of the freedom to choose ξ

we can always make sure
(
∂ν h̄µν

)′
= 0 by letting �ξµ = ∂ν h̄µν . This always allows for a solution for ξ as the

d’Alembertian is invertible using a Greens function.
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transformation.6 This freedom together with the Lorentz gauge can be used to write the
metric in the transverse-traceless (TT) gauge:

h0µ = 0, hii = 0, ∂jhij = 0 (2.10)

We will from now on use the superscript TT to denote the metric written in the TT gauge.
To see the consequences of this gauge it is instructive to look at possible solutions of Eq.
(2.9). A set of solutions to the homogeneous wave equation are plane waves

h̄TTµν = Aµν(k)eik
αxα , (2.11)

with kµ = (w/c,k) , k the wave vector, Aµν the polarization tensor and w/c = |k| with w
the angular frequency of the wave. At the end of the calculation we take the spatial part of
the expression to obtain the physical modes.
From the first TT gauge condition we also have that all temporal components are 0. From
the traceless condition follows that h̄µν = hµν , hence

hTTij = Aij(k)eik
αxα . (2.12)

From the transverse gauge condition we derive

∂jhij = ikjAije
ikαxα = kjAij = 0. (2.13)

If we now choose the propagation direction along the z axis, then the only non zero com-
ponent of the wavevector is k3 and from Eq. (2.13) we have Ai3 = 0. As the solution should
be traceless we also have that A11 = −A22. As the metric tensor and thus the perturbations
are symmetric in its indices it follows that A12 = −A21. Then taking the real part we obtain
the solution

hTT
ij (t, z) =

 A11 A12 0
A12 −A11 0
0 0 0


ij

cos[ω(t− z/c)]. (2.14)

Or by convention the components of the polarization tensor are called h+ for A11, plus
polarization and h× for A12

hTT
ij (t, z) =

 h+ h× 0
h× −h+ 0
0 0 0


ij

cos[ω(t− z/c)]. (2.15)

So we see that plane waves in vacuum have only two degrees of freedom, the TT and
Lorentz gauge reduce the degrees of freedom from 10 to 2 7.

6On top of the transformation of ∂ν h̄µν in the previous footnote we can do another infinitesimal trans-
formation. If we then set �ξµ = 0 nothing changes for the condition ∂ν h̄µν = 0. If �ξµ = 0 then also
�ξµν = �(∂µξν + ∂νξµ − ηµν∂ρξρ) = 0 as the flat space d’Alembertian commutes with the partial derivatives.
Then from the transformation in footnote 3: h̄µν → h̄′µν = h̄µν − (∂µξν + ∂νξµ − ηµν∂ρξρ) which in vacuum
satisfies �h̄µν = 0, it holds that we can choose four independent functions ξµ which satisfy �ξµν = 0 to sub-
tract from the 6 components of h̄µν . Then ξ0 can be chosen so the trace of h̄µν vanishes making h̄µν = hµν
and the other ξi to set h0i = 0. Then together with the Lorentz gauge one derives the TT gauge.

7The Einstein equations consists of 4x4=16 equations but as the equation is symmetric under exchange
of indices this reduces to 10
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In general a symmetric tensor, and thus a general plane wave solution hµν can always be
put in the TT gauge using

hTTij = Λij,klhkl, (2.16)

where Λij,kl is the TT projection operator. To construct it explicitly, we first define the
projector

Pij(n) = δij − ninj,
being a symmetric and transverse tensor with trace 2. Here n = k

|k| is a unit vector along
the propagation direction of the GWs. With this projector we can construct the TT projector
operator

Λij,kl(n) = PikPjl −
1

2
PijPkl, (2.17)

which is transverse on all indices, traceless with respect to i,j and k,l and symmetric under
the exchange of ij with kl. In full this projector is given by

Λij,kl(n) =δikδjl −
1

2
δijδkl − njnlδik − ninkδjl

+
1

2
nknlδij +

1

2
ninjδkl +

1

2
ninjnknl.

(2.18)

If we would now like to look at the physical effects of a passing gravitational wave, we can
not look at the movement of one single test particle as that would only tell us about the
coordinate values that may change. As in GR we have the freedom to change coordinates
we can always find coordinates in which the particle appears not to move, in fact it turns
out that these are the transverse traceless coordinates. We can however look at the relative
motion of particles. Relative motion in GR is described by the geodesic deviation equation
which describes how the spacetime trajectories, geodesics, of two particles influence each
other

D2ξ

dτ 2
= −Rµ

νρσξ
σ dx

ν

dτ

dxρ

dτ
, (2.19)

with the covariant derivative given by

D2ξ

dτ 2
=
dξ

dτ
+ Γµνρξ

ν dx
ρ

dτ
. (2.20)

If we assume slowly moving particles then we can express the four velocity dxν

dτ
as a unit

vector in time plus corrections first order in hTTµν but as Rµ
νρσ is already first order we can

neglect the corrections to the four velocity

dxρ

dτ
= (1, 0, 0, 0). (2.21)

Then only Rµ00σ is relevant and is given8 in the TT gauge

Rµ00σ =
1

2
∂0∂0h

TT
µ0 . (2.22)

8for the Riemann tensor in terms of the metric perturbations see the GR recap in Appendix D
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As for slowly moving particles to lowest order the proper time τ approximates the time
coordinate t we can write the geodesic deviation in lowest order as

∂2

dt2
ξµ =

1

2
ξσ
∂2

∂t2
hTTµσ . (2.23)

If we look at the indices of this equation, we can see that for a wave travelling in the z
direction, only the ξ1 and ξ2 components will change, the third component is 0. Thus the
relative distance between the test particles is only changed by the wave in the directions
perpendicular to the propagation direction, similar to waves in electromagnetism.
Using Eq. (2.15), considering the polarization directions separately, so first set hx = 0

∂2

dt2
ξ1 =

1

2
ξ1 ∂

2

∂t2
h+ cos[ω(t− z/c)], (2.24)

∂2

dt2
ξ2 = −1

2
ξ2 ∂

2

∂t2
h+ cos[ω(t− z/c)], (2.25)

which to lowest order is given by

ξ1 = ξ1(0) + ξ1(0)
1

2
h+cos[ω(t− z/c)], (2.26)

ξ2 = ξ2(0)− ξ2(0)
1

2
h+cos[ω(t− z/c)]. (2.27)

Thus particles with a separation along the x axis oscillate in the same x direction, same for
those in the y direction. If we consider particles intially at rest in a circle in the x,y plane,
when a wave passes they will oscillate back and forth forming a plus shape. See Fig. 3. In
the case were h× = 0 we have

ξ1 = ξ1(0) + ξ2(0)
1

2
h×cos[ω(t− z/c)], (2.28)

ξ2 = ξ2(0)− ξ1(0)
1

2
h×cos[ω(t− z/c)]. (2.29)

Then the circle of particles is moving back and forth in a x shaped manner see Fig. 3, hence
the notation of h+ and h×.

So essentially as a GW passes, it stretches and squeezes spacetime itself. In the TT gauge
the coordinates change similarly to the stretching and squeezing therefore in these coordi-
nates the particles remain stationary. However the proper distance between the particles
does change.
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Figure 3: Circle of particles moving back and forth in plus and cross shaped manner when
a gravitational wave passes.

2.2 Generation of gravitational waves in linearized theory

In the previous section we solved the wave equation assuming a flat background spacetime
and vacuum which is a valid assumption at a position in space far away from any source.
However if we want to study the generation of gravitational waves we have to introduce
a source, hence a non zero energy momentum tensor. We will still keep it general what
kind of source this would be, see Fig. 2b. In this case we will see that in linearized theory
we can expand the formulas for gravitational wave production in terms of the velocity of
the source divided by the speed of light v

c
. For sources whose system is determined by

non gravitational forces, this expansion is valid and can be separated from the weak field
expansion. However in the case of gravitationally bound systems the velocity and gravita-
tional field expansion are coupled and we have to use a different approximation scheme.
We will see more about this in the next section 2.4.

We start again with now the sources wave equation

�h̄µν = −16πG

c4
Tµν . (2.30)

As the RHS does not depend on h̄µν this equation is linear and can be solved with a Greens
function. The appropriate solution is the retarded Greens function Eq. (C.10a) as it de-
pends on the past lightcone, respecting causal relations. Then the solution becomes

h̄µν(t,x) =
4G

c4

∫
d3x′

1

|x− x′|
Tµν

(
t− |x− x′|

c
,x′
)
. (2.31)

The solution depends on the retarded time which describes that the gravitational wave at
a certain time t was sourced at time t − |x−x

′|
c

with |x−x′|
c

the distance from point x to the
source point x′ divided over the speed of light, so the time it takes for the wave to travel to
point x.
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For a point outside the source we can write this too in the TT gauge using the TT pro-
jector from Eq. (2.17)

hTT
ij (t,x) =

4G

c4
Λij,kl(n)

∫
d3x′

1

|x− x′|
Tkl

(
t− |x− x′|

c
,x′
)
. (2.32)

We will specialize to n = x̂ and |x| = r. We are interested in the GWs far away from
the source, for example at a detector on earth. Then if d is the radius of the source, the
distance to the detector is much larger than the radius of the source r � d, see Fig. 4. We
can Taylor expand 1

|x−x′| around small |x′|

|x− x′| = r − x′ · n + ... . (2.33)

Figure 4: location source relative to the observer

Then we can expand to O(1/r) and take the fraction out of the integral

hTT
ij (t,x) =

1

r

4G

c4
Λij,kl(n)

∫
d3x′T ′kl

(
t− r

c
+

x′ · n
c

,x′
)
. (2.34)

We assume non relativistic sources; the velocities inside the source are small compared to
c and hence we can expand in terms of v

c
� 1 as a multipole expansion.

To see how we can expand the energy momentum tensor term it is convenient to look for
a moment at its Fourier transform

Tkl

(
t− r

c
+

x′ · n
c

,x′
)

=

∫
d4k

(2π)4
T̃kl(ω,k)e−iω(t−r/c+x′·n/c)+ik·x′ . (2.35)
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Expanding the exponential again for small |x′|

e−iω(t−r/c+x′·n/c) =e−iω(t−r/c)

×
[
1− iω

c
x′ini +

1

2

(
−iω

c

)2

x′ix′jninj + . . .

]
.

(2.36)

This is the same as writing the energy momentum tensor in the expansion

Tkl

(
t− r

c
+

x′ · n
c

,x′
)
'Tkl

(
t− r

c
,x′
)

+
x′ini

c
∂tTkl +

1

2c2
x′ix′jninj∂2

t Tkl + . . . ,

(2.37)

with the derivatives evaluated at (t− r/c, x′).

We define the following moments

Sij(t) =

∫
d3xT ij(t,x),

Sij,k(t) =

∫
d3xT ij(t,x)xk,

Sij,kl(t) =

∫
d3xT ij(t,x)xkxl,

(2.38)

which for the higher orders contain higher products of x. The expression for hTTij becomes

hTT
ij (t,x) =

1

r

4G

c4
Λij,kl(n)

×
[
Skl +

1

c
nmṠ

kl,m +
1

2c2
nmnpS̈

kl,mp + . . .

]
ret

.
(2.39)

The notation of the indices of the moments S are such that the first indices represent the
indices of the energy momentum tensor and after the comma the indices of the powers of
x. This means that the moments are symmetric in the indices before or after the comma but
not by interchanging the two sets. The subscript "ret" denotes evaluation of the derivatives
in retarded time. These are the first moments of the full multipole expansion of hTTij . As
the derivatives to xi in Eq. (2.39) give factors of v and the multipoles are multiplied with
factors of 1

c
this expansion is done in v

c
� 1.

To get a more physical intuition of this expression it is more insightful to re-express the
moments. Therefore we define the following mass multipole moments of the energy density
T 00
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m =
1

c2

∫
d3xT 00(t,x),

mi =
1

c2

∫
d3xT 00(t,x)xi,

mij =
1

c2

∫
d3xT 00(t,x)xixj,

(2.40)

and so forth for higher order of xi. Similar for the following momentum multipole moments
of the momentum density T 0i

P i =
1

c

∫
d3xT 0i(t,x),

P i,j =
1

c

∫
d3xT 0i(t,x)xj,

P i,jk =
1

c

∫
d3xT 0i(t,x)xjxk .

(2.41)

In linearized gravity the Lorentz gauge Eq. (2.7) together with the wave equation Eq.
(2.30) give the following simplification of the conservation of the energy momentum tensor

∂νTµν = 0. (2.42)

Using its zero component we can derive

∂0T
00 = −∂iT 0i. (2.43)

With this we can rewrite the derivative of the mass monopole as

cṁ =

∫
V

d3x∂0T
00 = −

∫
V

d3x∂iT
0i = −

∫
∂V

dSiT 0i = 0, (2.44)

with V some volume larger than the source and the energy momentum tensor vanishing
on its boundary as the tensor is zero outside the source. This vanishing ṁ denotes that in
linearized theory there is conservation of mass. However in a physical system GWs would
radiate away mass/energy, but in linearized gravity one neglects the back action of the
GWs on the source.
Similarly we can write

cṁi =

∫
V

d3xxi∂0T
00 = −

∫
V

d3xxi∂jT
0j =

∫
V

d3x
(
∂jx

i
)
T 0j =

∫
V

d3xδijT
0j = cP i. (2.45)

Continuing one can derive the following results

ṁij = P i,j + P j,i, Ṗ i = 0,

Ṗ i,j = Sij,
(2.46)

with Ṗ i = 0 the conservation of momentum.
Using these identities we can re-express the lowest order moment of S. Using the expres-
sions for ṁij and Ṗ i,j gives

Sij =
1

2
m̈ij. (2.47)
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Substituting back in the multipole expansion for hTTij , to lowest order we have

hTT
ij (t,x) =

1

r

2G

c4
Λij,kl(n)m̈kl(t− r/c). (2.48)

We can re-write this formula in a more commonly used form. First we can write mkl in
terms of its irreducible representations in the following way, decomposing in its trace and
traceless parts

mkl =

(
mkl − 1

3
δklmii

)
+

1

3
δklmii. (2.49)

The last term can be neglected as the TT projector in hTT
ij selects only the traceless part.

Now we define the (reduced)9 quadrupole moment

Qij = mij − 1

3
δijmkk =

∫
d3xρ(t,x)

(
xixj − 1

3
r2δij

)
, (2.50)

using ρ = 1
c2
T 00 which to lowest order is the mass density. This then gives for the waveform:

hTT
ij (t,x) =

1

r

2G

c4
Λij,kl(n)Q̈kl(t− r)

≡ 1

r

2G

c4
Q̈TT
ij (t− r/c).

(2.51)

Which is well known as the quadrupole formula describing the generation of gravitational
waves till lowest order, first derived by Einstein [26, 27]. This formula tells us what
sources we can expect to generate GWs [28]. The sources do need to have a time varying
quadrupole moment for the above formula to be non trivial. This means that we need a
change in the distribution of matter around its centre of mass. So for example a spinning
object such as a black hole is a symmetric system and even though it is spinning it does not
change the distribution. But a black hole or neutron star binary does and would therefore
radiate. In general objects accelerating in a non-spherical manner could generate GWs.
One even expects that similar to the CMB (Cosmic Microwave Background) in the early
universe quantum fluctuations have generated a stochastic GW background [29]. However
as we would like to detect the waves, requiring a large enough amplitude, large and vary-
ing quadrupole momenta are required which brings us back to the black hole and neutron
star binaries.

This formula also highlights the difference in behaviour of GWs versus electromagnetic
waves for which one can apply the same procedure with a multipole expansion to ap-
proximate the solution to the wave equation. For electromagnetic radiation the monopole
moment is zero, as we also have charge conservation, but the dipole moment is not. There-
fore electromagnetic radiation can be generated by moving a charge up and down, but
GWs can not be generated by moving a mass back and forth. From this we can also discuss
another point of confusion, because both gravitational and electromagnetic radiation scale

9In general the quadrupole moment is defined as Iij = 1
c2

∫
xixjT 00d3x thus mij , the reduced quadrupole

moment is the traceless part of this.
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as 1/r with respect to the amplitude. The energy of the waves scales with the amplitude
squared thus scales as 1/r2. When we measure electromagnetic radiation, we measure its
energy as it arrives at the measurement device. Hence this radiation has fallen of as 1/r2

with respect to the source following the inverse square law. However when we detect the
GWs the signal has fallen of as 1/r with respect to the source. This is because when we
measure GWs, we do not measure the energy but the squeezing and squishing of spacetime
which is related to the amplitude as we have seen in 2.1.1. This is fortunate as the signal
we detect dampens less quickly than the electromagnetic counterpart.

2.3 Detection of gravitational waves

The property of the GWs of stretching and squeezing spacetime as we saw in 2.1.1 is used
in the detection of the waves. The GWs detectors called interferometers, they measure the
waves in in the following way, also shown in Fig. 5. The detectors have two very long
perpendicular arms. A beam of light is split, one part moving into one arm and the other
part in the other arm. The two light beams are therefore in phase. The light beams are
bouncing back and forth in the arms between two mirrors and finally arrive together at
the detector. The detector measures the phase of the two beams. As the two beams are in
phase there is destructive interference when there are no perturbations
When a GW passes the relative length of the arms changes and as light always moves with
the same velocity, this results in a change in the travel time leading to a shift in phase.
The light beams are not in phase anymore and the detector can measure the interference
pattern.

Figure 5: Sketch of the set up of a GW interferometer. The lightbeams are split in the two
perpendicular directions and move up and down between the mirrors. When a GW passes
a small phase shift is measured at the detector.
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The shift that the detectors have to pick up in the signal of the laser is unbelievably tiny.
To make an estimate of the order of magnitude we assume Newtonian mechanics for the
orbital motion of two black holes rotating around their centre of mass. We paraphrase
the calculation done in [30][p.305-307]. For a bound binary system, the force of gravity
equals the centrifugal force on circular orbits. We take R as the radius of the system, then
we have for the force balance

GM2

(2R)2
=
Mv2

R
−→ v =

√
GM

4R
. (2.52)

Together with the orbital period T = 2πR
v

this gives as an estimate for the frequency

f =

√
GM

16π2R3
∼
√
c2Rs

R3
, (2.53)

with Rs = 2GM
c2

the Schwarzschild radius of a black hole. Substituting the coordinates and
Newtonian approximation for this circular motion in the quadrupole formula Eq. (2.51)
results in an estimate for the GWs amplitude. Then if we take a typical system of a black
hole binary with both black holes having a mass of 10 solar masses and at approximately
100MPc distance, the frequency and amplitude are given by

f ∼ 102Hz, h ∼ 10−21 (2.54)

So the detectors have to pick up a change in length of the order 10−21. Therefore making
the arms as long as possible results in a larger relative length change between the two
sides of the arm. By using optical cavities to let the laser bounce up and down between the
mirrors the change in distance is accumulated, making it a bit easier to measure.

There are now multiple GW detectors based on interferometry in different locations. The
current ones are LIGO in the US, Virgo in Italy, GEO in Germany and KAGRA in Japan.
The most advanced detectors are the advanced LIGO and Virgo, of which LIGO has two
detectors in Washington and Louisiana consisting of intereferometers with arms of 4km.
It was the LIGO detector that made the first gravitational wave detection facilitated by
shared efforts on the data analysis of both the Virgo and Ligo collaborations[1]. Having
multiple detectors to measure an GW event is important. As the perpendicular arms of the
different detectors have different orientations, one can compare the measurements of the
different detectors to determine the direction and orientation in the sky the GW came from.

The two new detectors that are in the pipeline and attract most of the attention are the Ein-
stein telescope (ET) and the LISA detector. The ET will be an underground based detector
which will have a wider sensitive frequency bandwidth and will be able to detect smaller
strains than the current LIGO/VIRGO detectors. The telescope will be build in the Nether-
lands or in Italy. The decision for the location will probably be made next year. However
as the project is not funded yet, there is no set date for when it will start operating the
estimate now is approximately mid-2030s.
The LISA telescope is an even more ambitious plan to construct a detector in space led by
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ESA with contributions from NASA and is actually well underway to be launched around
2037. The idea is to place three detectors in a triangle formation in a heliocentric orbit
around the sun at approximately 50 million km behind the earth. The detectors will be
separated at around 2.5 million km and hence can detect much smaller frequencies. This is
also illustrated in Fig. 6. Having the possibility to detect other frequencies is interesting for
detecting GWs from other sources than neutron star and black hole binaries and to detect
different classes and mass scales of the black hole binaries.

Figure 6: Sensitivity curves of the GW detectors with on the vertical axis the strain and
on the horizontal axis the frequency. We focus on the aLIGO/aVIRGO, ET and LISA curves.
The colored surfaces show the related GW sources in the corresponding sensitivity regimes.
Source:[31].

From Eq. (2.23) we have seen that the effect of GWs on test particles, and therefore on
the detector, is given by the waveform hµν which depends again on the amplitude and the
waveform phase. For data analysis most of the information of the GWs is coming from the
waveform phase[32]. During a binary black hole coalescence event the first stage is the
inspiral part. As the binary system loses energy in the form of GWs the relative distance
between the black holes becomes smaller. From Eq.2.52 follows that the orbital velocity
will increase which leads to an increase of the frequency as well according to Eq. (2.53).
During the inspiral stage the frequency increases slowly. At the end of the inspiral and just
before the merger, the freqency goes up in a peak, as is also depicted in Fig. 1. The first
part of the inspiral of stellar mass black hole binaries can not be detected by the current
GW detectors as the frequency of the waves is too low. For frequencies lower than 10Hz the
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seismic vibrations on the ground make the GWs indistinguishable from the noise. Generally
when the frequency of the waves reaches above the 10Hz to approximately 500Hz. This
maximum frequency is roughly the estimate for the frequency at which large mass stellar
black hole binaries merge. The GWs from stellar mass binaries contain around thousands
of cycles that can be detected by the current ground based detectors [25]. Therefore any
information that is related to the phase of the GWs is accumulated over all these cycles.
This is very valuable for determining the mass of the BHs which influences the phase but
also in our case the additional curvature and scalar field terms of sGB gravity alter the
waveform phase. Therefore modelling the inspiral part of the event is not only convenient
as it can be done analytically but also has an accumulated effect of the differences of the
GB gravity relative to GR. As thus most information is encoded in the phase we focus in
this thesis on calculating the phase evolution in section 7.

2.4 Departure from linearized theory

2.4.1 The Relaxed Einstein Equations

In the strong gravity regime, for example in a black hole binary system, we can not as-
sume that our background metric is flat and that the perturbations to the metric are small.
Therefore we can not reduce the Einstein equation into the form of Eq. (2.8). However
it is still possible to cast the Einstein equations in a wave equation form by expressing the
terms in the gothic metric

gαβ =
√
−ggαβ. (2.55)

With this metric we can define the field

hαβ ≡ (−g)1/2gαβ − ηαβ. (2.56)

This definition is exact so we do not assume hαβ to be a small perturbation.
One can re-express the Einstein equations from Eq. (2.2) in terms of the gothic metric and
hαβ, together with imposing the deDonder/Harmonic gauge

∂βg
αβ = 0→ ∂βh

αβ = 0. (2.57)

This gauge is the generalization of the Lorentz gauge from Eq. (2.7) to curved spacetime.
Then the exact Einstein equations are recast in the form

�hαβ =
16πG

c4
ταβ , (2.58)

with � = −∂2/∂t2 +∇2 the flatspace d’Alembertian [33] and

ταβ = (−g)Tαβ +
c4

16πG
Λαβ. (2.59)

Here is Tαβ the energy momentum tensor and the nonlinear field contributions are con-
tained in Λαβ wich is given by

Λαβ =
16πG

c4
(−g)tαβLL +

(
∂νh

αµ∂µhβν − hµν∂µ∂νh
αβ
)
. (2.60)
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Where tαβLL the Landau Lifshitz energy momentum pseudo tensor

16πG

c4
(−g)tαβLL =gλµg

νρ∂νh
αλ∂ρh

βµ +
1

2
gλµg

αβ∂ρh
λν∂νh

ρµ

− gµν
(
gλα∂ρh

βν + gλβ∂ρh
αν
)
∂λh

ρµ

+
1

8

(
2gαλgβµ − gαβgλµ

)
(2gνρgστ − gρσgντ ) ∂λhντ∂µhρσ.

(2.61)

The good news is that even without an approximation we can recast the Einstein equations
in a wave equation form, for which we have methods to compute solutions. This recasted
equation is called the relaxed Einstein equation. This name is coming from the fact that Eq.
(2.58) is equal to the Einstein equations only together with the Harmonic gauge condition
from Eq. (2.57) which we imposed. However one can independently solve Eq. (2.58)
without considering the Harmonic gauge condition. Then it would be less constrained
than the Einstein equations, therefore named "relaxed".
The bad news is that the RHS of Eq. (2.58) is highly nonlinear in hαβ, therefore the
equation is a nonlinear differential equation. To write Eq. (2.58) in an integral form, we
can use a retarded Greens function from Eq. (C.10a), resulting in

hαβ(t,x) = −4G

c4

∫
d4x′

ταβ (t′,x′) δ (t′ − t+ |x− x′| /c)
|x− x′|

= −4G

c4

∫
d3x′

|x− x′|
ταβ (t− |x− x′| /c,x′) ,

(2.62)

which is an integral differential equation for hαβ. The effect of the field hαβ also turning
up on the RHS of Eq. (2.58) shows that GWs themselves are a source of GWs. For any
realistic source it is not possible to find an exact solution, therefore we need an approxi-
mation method. However there is no perturbation scheme that is valid covering the entire
spacetime. Instead one has to use different approximations in different regimes depending
on the distance to the source and match the different expansions at the boundaries of the
valid regions. For the generation of GWs, one can use the so called Post Newtonian expan-
sion, which we will discuss below. However this method breaks down at large distances
from the source.
However in general when one solves the equation iteratively to sufficiently high order the
computed GWs will cause more GWs at higher orders. Fortunately the expansions we will
do in this thesis do not reach high enough order for these effects to come into play but it is
an important feature from the non linear nature of gravity.

2.4.2 Methods for solving the Relaxed Einstein Equations

We will give a qualitative overview on solving the differential equation Eq. (2.58) in a per-
turbative approach, taking into account the different approximation methods at different
scales. These methods can be divided in two approaches, one constructed by the group of
Blanchet and Damour[34, 35] and the other approach by the group of Will, Wiseman and
Pati[33]. In principle the methods are equivalent. We will use the latter method in our
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calculation in section 7.

The method from Blanchet and Damour splits the calculation into different domains re-
lated to the important length scales. These scales are the size of the black hole system d
and the distance R to the source within the Post Newtonian (PN) approximation is valid.
We will see later in subsection 2.4.3 what exactly defines this distance. For non relativistic
sources the distance for which the PN expansion is valid is much larger than the system
size R � d, hence distance R lies outside of the source. For the region from inside the
source out to distances R, the field equations can be solved perturbatively in orders devi-
ating from Newtonian gravity. Outside of the source, the energy momentum tensor is zero
and the only contributions from the source term ταβ comes from the gravitational field. For
sources where the gravitational field inside is not too large, the field outside the source be-
comes flat fast. Therefore for these sources practically up to the system size d, one can use
a Post Minkowskian (PM) approximation in which the field equations can be solved order
by order in terms of deviations from flat space. Thus in the region 0 < r < R the equations
can be solved order by order with an PN approximation and in the region d < r < ∞ one
can use the PM approximation, see Fig. 7 for the length scales.

In the overlap region d < r < R the two expansions need to be matched with a method
called matched asymptotic expansion. The general idea of a matched asymptotic expan-
sion is that one has an expansion that is valid for some inner region and an expansion
that is valid for an outer region. In the region where the regions of validity overlap the
expansions should be equal, hence the outer limit of the inner expansion can be equaled
to the inner limit of the outer expansion. This can be solved as the solution in the overlap
region. For the composite expansion that would be valid over the whole domain, one can
add the solution of the inner and outer expansion and subtract the solution of the overlap
region.

Here we will only provide a rough sketch of this approach, since applying this method
requires highly nontrivial details for the PM, PN and matched asymptotic expansion. For
example within these approximation methods, to solve the wave equation Eq. (2.58) for
the different orders of the approximation, one can use a multipole expansion, similar as
in electrodynamics. A more detailed description is given in [25][Ch5.3], [36] and on the
matched asymptotic expansion for GWs [37].
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Figure 7: Near zone and far zone regions

In this thesis we will use the approach of Will, Wiseman and Pati to solve Eq. (2.58), which
is named the "Direct Integration of the Relaxed Einstein equation" (DIRE) approach. As a
first step one splits the integral domain of Eq. (2.62) into two parts. From the dirac delta in
the integral can be concluded that to calculate the waveform at position P (ct,x), one has
to integrate over the past light cone of this point in space. As in our case we are interested
in the waveforms that the detector will measure, our point will lie very far away from the
actual GW source; the black hole binary. One can define the following regions. We set the
the centre of mass of the binary system at the origin of the coordinate system. The system
has size d and one defines the position from a field point x relative to the position of the
source x′ as R = |x− x′|. As the characteristic wavelength is given by

λ =
v

c
d, (2.63)

we define the zone in which the PN expansion is valid (called near zone) as the worldtube
R < λ. The region outside the near zone is the far zone. The integration is then split over
the hypersurface that is given by the part of the past lightcone that intersects with the near
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zone, called N and over the part of the lightcone in the far zone called C − N also shown
in Fig. 8. In principle you can put your field point in the near zone or the far zone, thus
resulting in four different integrals with the splitted integration domain. However as we
are interested in the GWs at the detector, the field point x lies in the far zone. Adding the
results of the integrations over both domains together to get the total result, cancels the
dependence on the boundary R. That this happens was first shown up to 2 PN order by
Ref. [38] and later via induction for all orders by Ref. [33].

Figure 8: The past lightcone of field point P intersects with the near zone world tube.
Figure based in [17].

For the calculation in the near zone, one can express the integral in terms in a multipole
expansion of the source term ταβ. Then because we are in the near zone we can expand
the source term up to 1PN order and solve the integral differential equation perturbatively.

For the far zone calculation, one does the same only the source term does not contain the
energy momentum contribution any more as the far zone does not contain the black hole
binary itself. However ταβ is not zero. This is because the source in the relaxed Einstein
equation Eq. (2.58) depends also on the metric and metric perturbations itself, which are
not zero in the far zone.
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2.4.3 The Post Newtonian approximation

As discussed before, to solve the relaxed Einstein equations with the DIRE approach, one
can expand the source terms with the so called Post Newtonian expansion. We also use this
approximation for the calculation of the 2 body Lagragian in section 5.

Assuming linearized gravity, we assumed a flat background metric. Then we can assume
that the sources contribute negligibly to the curvature of spacetime. To calculate the GWs,
one can expand in v

c
separately from the corrections to spacetime. However this is only a

valid approximation if the system is governed by non gravitational forces. But as we are
interested in the GWs coming from black hole binaries which are gravitationally bound,
the approximation from before is no longer entirely accurate.
For self gravitating systems holds

v2

c2
∼ Rs

d
, (2.64)

with Rs the Schwarzschild radius and d the typical system size. This relation shows that the
velocity of the source is coupled to the curvatuve of spacetime, given by Rs

d
which measures

the strength of the gravitational field near the source. This relation is a consequence of the
virial theorem: kinetic energy of a stable system of discrete objects in a bound potential is
related to

< T >∼< Vtot >, (2.65)

with T ∝ mv2 and Vtot ∝ −GMm
r
∝ Rs

d
for gravitational systems, thus relating the velocity

expansion to the strength of gravity.

Figure 9: Regimes of valid-
ity for the different pertur-
bation methods in the pa-
rameter space of the field
strength Rs

d
and the veloc-

ity. Figure based on [25].

For describing these systems we need to go beyond a flat
background spacetime, which can be described by Newtonian
gravity. Considering gravitationally bound (semi) relativistic
systems one has to go a step further to the post Newtonian
regime. As can be seen in Fig. 9 this PN [39] description is
valid in the region where Rs

d
and v2

c2
are comparable and not

too close to 1. This is the case for slowly moving sources in a
weakly gravitationally bound system. In these situations we
have the following small parameter to expand in

εPN =
v2

c2
∼ Rs

d
. (2.66)

In practice one often expands in factors of 1
c2

which leads
to the same results as using the formal expansion parame-
ter εPN .
The PN expansion is only valid during the inspiral of the coa-
lescence event. When the black holes get too close, the grav-
itational fields that the black holes move in, becomes very
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strong and the velocities are high. Still the PN expansion works to describe the motion
approximately even in this regime where it is not entirely valid. This has been compared
with numerical simulations [40]. When the actual merger happens the expansion does
break down.

One note on the regime of validity of this expansion. As already mentioned in the previous
part we can define the following zones based on the hierarchy of length scales of our
system, see also Fig. 7:

• the near zone, the distance to the source is much smaller than the typical reduced
wavelength Eq. (2.63) of the GWs: r � λ; retardation effects are negligible and in
this region the PN approximation works well.

• far(wave)zone, the distance to the source is much larger than the typical reduced
wavelength of the gravitational source: r � λ, PN approximation breaks down.

• intermediate region, is between those two regions: r ∼ λ

That the PN expansion is only valid in the near zone can be reasoned in the following way.
We discuss a source moving non-relativistically, therefore the time derivatives are of order
v smaller than the spatial derivatives

∂

∂t
∼ ∂

∂xi
∂xi

∂t
∼ v

∂

∂xi
. (2.67)

Because of this relation between the time and spatial derivatives the retardation effects
(effects on quantities that are expressed in the retarded time t − r

c
) are small corrections

r
c
� t. This has the following consequence: retarded functions such as the the source terms

in Eq. (2.62) can be expanded for small retardation

F (t− r

c
) ∼ F (t)− r

c
Ḟ (t) +

r2

2c2
F̈ (t) + ... . (2.68)

Each time derivative scales as a factor 1/t, which is of the order of the frequency and
therefore of order of the orbital frequency w. We can write the reduced wavelenght from
Eq. (2.63) as

ω

c
=

1

λ
, (2.69)

using that the orbital angular frequency is half the gravitational wave angular frequency.
Thus the expansion is in r

λ
. Therefore PN expansion and the expansion of the retarded

function is valid in near zone with r � λ. More intuitively can be seen from above expan-
sion that r should not be too large otherwise this expansion becomes divergent, the "not
too large" relative to the scales in the system is then quantified with r � λ.

To implement the PN expansion one usually starts from an ansatz for the expansion of the
metric up to a certain PN order. By substituting this expanded metric back into the Einstein
equations and energy momentum tensor and expanding and equating the equations order
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by order, one can solve for the metric components.

To be able to write the metric one PN order higher than Newtonian order, we first need
to know the metric in the Newtonian limit. We can begin with the geodesic equation
describing the path of a test particle through spacetime 10, writing this equations in the
Newtonian limit, it should reduce to the Newtonian equation of motion. Comparing the
geodesic equation in this limit with this equation of motion, we can derive what the metric
components are in the Newtonian limit. The geodesic equations in GR are given by

d2xµ

dτ 2
+ Γµνλ

dxν

dτ

dxλ

dτ
= 0. (2.70)

The second derivative of xµ to the proper time can be rewritten with respect to the coordi-
nate time t using the following relation derived from the acceleration with respect to the
coordinate time

d2xi

dt2
=

(
dt

dτ

)−1
d

dτ

[(
dt

dτ

)−1
dxi

dτ

]

=

(
dt

dτ

)−2
d2xi

dτ 2
−
(
dt

dτ

)−3
d2t

dτ 2

dxi

dτ
.

(2.71)

With the last term in the second line, we subtract zero as d2t
dt2

= 011. This seems to only
makes life a lot more complicated but in writing it this way, we use the geodesic equation
with µ = i and µ = 0 to substitute d2xi

dτ2
and d2t

dτ2
in

d2xi

dt2
= −Γiνλ

dxν

dt

dxλ

dt
+ Γ0

νλ

dxν

dt

dxλ

dt

dxi

dt

= −c2Γi00 − 2Γi0jc
dxj

dt
− Γijk

dxj

dt

dxk

dt
+

[
c2Γ0

00 + 2Γ0
0jc
dxj

dt
+ Γ0

jk

dxj

dt

dxk

dt

]
dxi

dt
.

(2.72)

In the Newtonian limit we assume low velocity, weak gravity and a static field. Low ve-
locity means dxi

dτ
� dt

dτ
thus we can neglect the spatial derivatives with respect to the time

derivatives.Then Eq. (2.72) becomes

d2xi

dt2
= −c2Γi00. (2.73)

For a static field the time derivative to the metric is zero, ∂gµν
∂x0

= 0. Then the zero component
of the Christoffel symbol reduces to

Γµ00 =
1

2
gµλ(

∂gλ0

∂x0
+
∂g0λ

∂x0
− ∂λg00) = −1

2
gµλ

∂g00

∂xλ
. (2.74)

Then in weak gravity we can expand the metric in the Minkowski metric plus a small
perturbation as in Eq. (2.4). Therefore to first order in the perturbations we have

Γµ00 = −1

2
ηµλ

∂h00

∂xλ
→ Γi00 = −1

2

∂h00

∂xi
(2.75)

10See Appendix (D)
11Or in the famous words of S. Wepster, we apply the method of "creatief niks doen".
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Then the acceleration comes
d2xi

dt2
=
c2

2

∂h00

∂xi
. (2.76)

Comparing this with the Newtonian equation of motion

a =
d2xi

dt2
= −∇U, (2.77)

with U the Newtonian potential. We have

h00 = −2
U

c2
, g00 = −1 + 2

U

c2
. (2.78)

Therefore in the Newtonian limit we recover for all the metric components

g00 = −1 + 2
U

c2

g0i = 0

gij = δij

(2.79)

How to go PN orders beyond this? The counting can be inferred from the action

S = −mc2

∫
dt

√
−gµν

dxµA
dt

dxνA
dt

= −mc2

∫
dt

√
−g00 − 2g0i

viA
c
− gij

viAv
j
A

c2
.

(2.80)

As gij is multiplied with PN factor v2

c2
this components will be one PN order lower than g00

which is not multiplied with any factor of v2

c2
. This corresponds to one factor lower than

g00. As g0i is multiplied with v
c
, this component should be expanded only in odd factors,

which correspond to half PN orders. Because of this multiplication, g0i counts one factor v
c

below g00. Therefore the metric components one PN order higher will be

g00 = −1 + 2
U

c2
− 2

U2

c4

g0i = 0− 4
gi
c3

gij = δij + 2δij
U

c2
.

(2.81)

Or expressed differently

g00 = e
−2U

c2 +O
(

1

c6

)
g0i = 0− 4

gi
c3

+O
(

1

c5

)
gij = δije

2U
c2 +O

(
1

c4

)
.

(2.82)
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The fact that the potential U can be taken the same for both the time and purely spatial
components and why one can write the potential of g0i with only one spatial index, can be
derived starting with taking a general expression for these higher order metric components
and solving the Einstein equations order by order. This is done in Appendix E.

This metric expansion will be the starting point for applying a PN expansion in the sub-
sequent sections. In this thesis we expand up to 1PN order. Going to higher orders will
become very cumbersome very quickly. Also when expanding to higher orders beyond
Newtonian gravity the nonlinearity of GR comes into play. GWs will backreact on the mat-
ter sources beyond a certain order of the expansion, influencing the equations of motion.
Also the gravitational field itself is source for GWs, but then GWs at higher order become
also source of GWs. When working to 1PN order we do not need to worry about these
effects as they come into play at 2.5PN in GR.
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3 Modified gravity

Thus far we have studied GWs describing gravity with GR. However in this thesis we are
interested in new phenomena that arise for GWs when gravity differs from GR. Therefore
we will first look in general at why it would be interesting to modify the theory of gravity
and which modifications are proposed. Then we give a qualitative overview of the theories
that is studies in this thesis; scalar Gauss Bonnet gravity.

3.1 Motivation to modify the theory of gravity

A valid question to pose is ’Why do we need a modification of the current theory of gravity?’.
Here we would like to give some motivation. Our current theory of gravity is Einstein’s the-
ory of General relativity which describes gravity as the effect due to curvature in the fabric
of spacetime (see appendix D for a short recap of the GR formalism). Even after more than
a century, it still holds up against many experimental test and is the best description of how
gravity works on macroscopic scales. For example, GR predicted very precisely events in
our solar system as the precession of the perihelion of Mercury’s orbit and the deflection of
lightrays because of the gravitational field of the sun. Also the direct measurements of the
predicted GWs[1] and black holes[41] are a major accomplishment in the direction of GR
(for an overview see [9]).

However on small scales when high energies and elementary particles become important,
GR does not hold up. Modelling gravity on those scales becomes important when describing
the insides of black holes or the beginning of the universe. The most important problem
is that when one writes this description of gravity in a quantum field theory[42] format,
which is now our current model to describe the physics on smallest scales with the standard
model, the theory becomes nonrenormalizable[10]. This means that the infinities that arise
in the quantities can not be compensated by including counterterms to cancel them. When
a theory is nonrenormalizable it is not an accurate description on those scales. The goal
of modified theories of gravity is to solve the problems of GR on small scales but also to
reduce to GR on the macroscopic scales on which it is well tested.
Other open questions that can not be answered with GR are for example the nature of dark
energy and dark matter, the matter-antimatter asymmetry in the early universe and the
existence of singularities in a blackhole. One of the possible answers to those questions is
that the description of gravity with GR is incomplete. There is quite some motivation to
look beyond the theory of GR for possible improvements. Since the formulation of GR, a
wide variety of possible modified gravity theories has been explored[11].

3.2 How to modify the theory of gravity?

In 1971 David Lovelock[43] showed that when starting from an action which only contains
second order derivatives in the spacetime metric, the Einstein field equations can be the
only possible equations of motion, later named Lovelock’s theorem. In the same spirit he
formulated the now so called Lovelock’s gravity; the most general description of gravity
which coincides with GR in three and four dimensions.
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Lovelock’s theorem has some implications[44] for if we want to modify GR and hence the
Einstein field equations. If one wants to have another outcome for the equations of motion,
there are five possibilities:

(i) Include higher order derivatives of the metric

(ii) Introduce other fields next to the metric tensor

(iii) Another number of spacetime dimensions

(iv) Introduce non-locality

(v) Introduce emergence; the equations of motion are not derived from the action.

Modified gravity theories can be categorised by these options and sometimes they use mul-
tiple, see Fig.3. However the fifth one is often not considered as it would undermine the
basis of all field theories.

Figure 10: Violations of Lovelocks theorem

Item (i) can be achieved by adding extra scalar curvature terms to the Hilbert Einstein
action. This is because the curvature terms depend on derivatives of the metric, hence
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higher powers of these terms introduce higher order derivatives. Instead of only the Ricci
scalar R one could also add terms as Rn

S =
1

16πG

∫
d4x
√
|g|f(R), (3.1)

with f(R) = R + γRn. This would be a quite natural extension as the curvature in the
Universe is quite small. On solar system scales then only the leading order term R would
play a role and GR would be the accurate approximation in this limit. The higher order
terms would only become important in strong gravity, thus strong curvature regimes. One
can also think about adding other curvature scalars as contractions of the Ricci tensor and
Riemann tensor like Q = RµνR

µν or P = RµναβR
µναβ. The theories which add extra powers

of the Ricci scalar are called f(R) theories and theories that add also other invariants are
called f(R,Q, P ) theories. These theories modify GR only in the pure gravitational sector.
The downside of these theories is that when introducing higher order derivative terms in
the metric in most cases one also introduces ghost instabilities. That higher order deriva-
tives in the action and in the EOMs lead to instabilities was proved by Ostrogradsky [45] by
showing that the corresponding Hamiltonian becomes unbounded from below12. Ghosts
are fields with a negative energy or norm which indicates an instability in the theory. Be-
cause of this negativity the vacuum is unstable as creating pairs of fields with positive and
thus with negative energy can be a process of zero net energy. Therefore this will happen
infinitely, which can not be physical. One can deal with these instabilities by introducing a
cut off that suppresses the ghost fields at the scales at which the theory is valid. There are
specific combinations of higher order curvature terms that do not introduce ghost fields as
we will discuss in the case of scalar Gauss Bonnet gravity below.

Item (ii), introducing other fields is interesting as this is also motivated from different di-
rections. For example a possible candidate for a quantum gravity theory is string theory.
However string theory does not describe gravity as GR. This can be reasoned from the fun-
damental vibration modes of loops of the fundamental strings[30][p299-300]. Two of the
modes have the same polarization as that of gravitational waves and represent the states of
a massless spin 2 particle, the graviton. But the strings also have another vibration mode
corresponding to a spin 0 particle, or a scalar. This latter mode is an indication that string
theory rather predicts a modified gravity theory of GR with an extra scalar field degree of
freedom. There is also motivation of the addition of a scalar field from cosmology. To ex-
plain the acceleration of the expansion of our universe the quintessence field is introduced
which is a very light scalar field. A well known class of theories that introduce such an ex-
tra scalar field is scalar-tensor modified gravity theories (tensor refers to the metric tensor).

12One can show this in the general case as is also given in Appendix C of [46]. But as an instructive example
one can also see it from the classical example of a higher derivative oscillator Lagrangian, paraphrasing
this reference: L = 1

2 q̈
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In this thesis we only work with modified gravity theories which break Lovelocks theorem
by introducing item (i) and (ii). However as (super) string theory is one of the possible
candidates for a quantum gravity model, it is interesting to also look at higher dimensional
gravity theories. These theories assume that the dimensions can be compactified at solar
system scales to the 4D case but can open up on other scales. Introducing non locality is
motivated by string theory as it also has non local aspects[47].

From this general overview we can conclude that there are many modified gravity theories,
how to make a choice which one to focus on? First of all, the theory has to reduce to GR
on the macroscopic scales and therefore has to pass the tests that are already done for GR
on those scales. Therefore most of the theories named above add terms with a coupling
term to the Hilbert Einstein action of GR so it can reduce to GR again at the right scales.
Secondly the theory should be free from mathematical instabilities, as for example the Os-
trogradski instabilities described above.
Furthermore the goal of a modified gravity is that it can explain (some of the) questions
that are still open in GR. It is therefore interesting if the theory originates from a quan-
tum mechanical description of gravity so it can be used to describe gravity on the smallest
scales, for example fundamental quantum gravity candidates as string theory and quantum
loop gravity.
Lastly the modified gravity theories should be tested in the regime where they differ from
GR, the regime of small scales or high energies. An excellent probe for this goal are grav-
itational waves as they are generated by the extreme event of a merger of a black hole
binary and therefore in a system with high energies and strong gravity. For these events
one expects the modified gravity theory to differ from GR and hence predict a difference in
the produced GWs [48].

3.3 Scalar Gauss Bonnet gravity

In this thesis we focus on a specific class of modified gravity theories called scalar Gauss
Bonnet gravity. These theories are an extension to GR which introduces an extra scalar field
ϕ which is nonminimally coupled to a quadratic curvature term. This quadratic curvature
term is the Gauss Bonnet invariant

R2
GB = RµνσρR

µνσρ − 4RµνR
µν +R2, (3.2)

with coupling parameter α. The total sGB action is given by

S =
c4

16πG

∫
d4x
√
−g[R− 2gµν∂µϕ∂νϕ+ αf(ϕ)R2

GB]. (3.3)

Thus the Hilbert Einstein action gets extended by a kinetic term of the scalar field and the
non minimally coupled quadratic curvature term to a coupling function depending on the
scalar field f(ϕ). Different choices for the coupling functions lead to different ’flavours’ of
sGB gravity, which we will discuss below.
This theory therefore avoids Lovelocks theorem by introducing another field which is
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this scalar field, and includes higher order derivatives terms of the metric by including
a quadratic curvature term (the Riemann tensor already contains second order derivatives
of the metric). Note that the scalar field is part of the gravitational sector and not a matter
field.
Including a quadratic curvature term is a natural extension of GR as it can be regarded
as the lowest order in a series expansion in the curvature. It can therefore be seen as an
effective theory only up to the second-lowest order in curvature. Another attractive feature
of quadratic curvature terms is that they make the theory renormalizable [13], as these
terms have the same form as the one loop divergent terms that shows up when one tries
to quantize gravity and therefore can act as a counterterm [11]. Regarding the ghost in-
stabilities that higher order derivative terms can introduce, the particular combination of
the quadratic curvature terms of the Gauss Bonnet invariant are such that in the equations
of motion, the higher order derivatives are canceled. Therefore the theory is still free13 of
Ostrogradsky instabilities [49].
Also it was shown that the theory in the weak coupling limit is mathematically well posed
[50]. And the theory can be derived from Lovelock gravity, the most general theory for
gravity which results in second order equations of motion [51], [52].
On top of all this, the GB term also turns up in the low energy limit in the effective action
of the bosonic sector in heterotic string theory 14 [55], and in the low energy expansion of
supersymmetric string theory [56] and is therefore a candidate for a gravity theory with
quantum corrections.

There are different kinds of sGB gravity theories depending on the form of the coupling
function between the scalar field and the GB invariant. Different choices for the coupling
function also influence the possible black hole solutions in the theory and what constraints
there are for the coupling constant α. One can divide the choices for the coupling functions
into two types, categorized according to the way in which the resulting theory can violate
the no-hair theorem [57][58][59]. This theorem states that black holes can be described
solely by their external observables, namely their mass, charge and angular momentum.
All the information about "hair", the matter that formed the black hole or is falling into it
disappears behind the horizon.

13At first sight this seems to have something to do with the GB term to be a topological invariant term
which in 4D is a surface term which would vanish in the integral of the action. However as we have a
scalar field coupled to this term it is a bit more subtle. As explained in [49] the GB invariant coupled to a
general field can still have higher order derivatives in the field equations because with the equation of motion
of this extra field, this field can be written as a function of the GB invariant and be substitute in the field
equations resulting in higher order derivatives. This can be solved by adding a kinetic term of this field to
the action (which is the case in sGB gravity). Then with the equations of motion from that action the metric
and (scalar)field can be uniquely determined and the equations on motion do not contain higher than second
order derivatives, as explained more explicitly in the beginning of section B of [49].

14Ref. [14] was the first to seriously study if string theory could be a theory for unifying all interactions.
They did a small Regge slope expansion, carrying this expansion in their low energy field limit to second order
in metric derivative terms and carried further this would give higher derivative terms, leading with quadratic
curvature terms. This was indeed the case in the low energy limit of heterotic super string theory[53]. This
quadratic term consisting of a contraction of two Riemann tensors is most conveniently written as the GB
invariant, the other terms can be neglected as they can be made vanishing by a redefinition of the field and
hence carry no physical meaning [54]
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Much recent interests has focused on finding black hole solutions for which this no hair
theorem is violated as this would be different from GR and would leave an imprint on the
GW signal. This violation can happen in two different ways. In general one can look at the
equation of motion of the scalar field which is

�ϕ = −1

4
αf ′(ϕ)R2

GB. (3.4)

(We will derive this in section 5). The GB invariant contains the scalar invariant RµνσρR
µνσρ

named the Kretschmann scalar. This scalar is generally non zero for black hole solutions.
Consequently a non-zero derivative of the coupling function results in a non-trivial solution
for Eq. (3.4). It can be that the first derivative of the coupling function never vanishes. In
this case the non zero scalar solution is present in the theory. We call solutions correspond-
ing to a non vanishing derivative of the coupling function, solutions of type I. It can also be
that the derivative of the coupling function does vanish for some values of the scalar field,
in this case a non trivial scalar solution can happen spontaneously. We call solutions of this
type, type II.

3.3.1 Compact object in type I sGB theory

Coupling functions of type I are for example a shift symmetric coupling function f = 2ϕ
and a dilatonic one f ≈ e2ϕ. The naming of these theories are respectively shift symmet-
ric scalar Gauss Bonnet gravity (ssGB) and Einstein dilation scalar Gauss Bonnet gravity
(EdGB). sGB gravity with a dilatonic coupling function is explicitly motivated by string the-
ory. In the low energy limit after compactification to 4D in heterotic string theory, the extra
low energy degrees of freedom appear in the effective action as a dilaton field with a GB
coupling [60]. The coupling constant is then proportional to the Regge slope. Black hole
solutions in this theory have nontrivial scalar hair, which modifies the gravitational mass
of the black hole.

The black hole solutions of these type I coupling functions, or more specific for shift sym-
metric sGB [61] and dilatonic sGB[62, 63, 15] always have a non vanishing scalar field.
Therefore the black hole solutions of GR acquire corrections [64, 65, 66]. The evolution
of the scalar field in this type is also studies in dynamical collapse scenarios [67, 68, 69],
in these systems the scalar field eventually relaxes to the static configurations again. One
important thing to note is that in this type of sGB theory neutron stars can not scalarize.

The argument of a vanishing scalar field around a neutron star is based on the following
reasoning[70, 71]. The scalar charge is defined as the lowest order term in a multipole
expansion of the asymptotic limit of the scalar field (we will do this expansion explicitly in
section 6 ). The asymptotic limit is the limit of large distances r from the source where the
scalar field reduces to

ϕ ∼ µ

r
+O(r−2), (3.5)

with µ in this case the scalar charge. The equation of motion of the scalar field is given
by Eq. (3.4). On the RHS of this equation is the derivative of coupling function but in the
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asymptotic expansion the derivative reduces to a constant. R2
GB is a topological invariant

which in 4D is a surface term. Performing the integral over both sides of the EOM makes
the RHS vanish. Then as for an isolated compact object one is interested in stationairy
solutions, the box operator reduces to only spatial derivatives. Using stokes theorem gives∫ √

−g∇ϕ =

∫ √
−g (∂iϕ)nidS =

∫ √
−g (∂rϕ) dS = 0, (3.6)

with ni a radial unit vector and the integration is done over a two sphere at infinity. After
substituting Eq. (5.81), the integral has the unique solution of µ = 0, hence a vanishing
scalar charge. The question now is why does this argument not hold for black holes? As
stated in [71] this argument holds for compact object without a horizon. If one does that
calculation of the scalar charge explicitly for neutron stars and black holes, the difference
lies with that for neutron stars one has to match the solution of the GB invariant inside the
star, depending on its equation of state, with the solution outside the neutron star which
corresponds to the Schwarzschild solution. For black holes, everything inside the horizon is
shielded and to first approximation at large distances the black hole can be described as a
point particle with a mass that dependents on the scalar field (we will say more about this
in section 5.1.1), so no matching has to be done. The integral in the argument above for
black holes will therefore be over all of space (instead of only outside the compact object)
with a localised contribution from a point particle description with a scalar field dependent
mass and therefore does not vanish [24]. We will actually calculate the scalar charge and
dipole moment of the scalar field explicitly in section 6 .

3.3.2 Compact object in type II sGB theory

Coupling functions of type II are for example quadratic functions f ≈ ϕ2 or Gaussian func-
tions f ≈ eϕ

2. In these models the well known GR BH solutions as Kerr and Schwarzschild
exist in certain limits, but can have configurations with a nontrivial scalar field for specific
scalar field bands. This is known as spontaneous scalarization[72, 73, 74, 75, 76, 77].
This spontaneous scalarization is allowed for both black holes and neutron stars [78]. In
a dynamical system as for example a black hole collapse, it is possible for the black holes
to have a dynamical spontaneous scalarized scalar field [79, 80, 81] and end up with a
scalar field in the remnant. Or they descalarize, ending up with no scalar field in the final
configuration[82].

3.3.3 Constraints on the coupling

Tests to constrain the value of the coupling constant so far are only done for coupling
functions of type I, more specifically for a dilatonic coupling function in EdGB theory. The
first constraints are coming from the fact that the theory should recover the results on so-
lar system scales from GR. Basically the theory should reduce to GR on those scales. The
constraints for the coupling constant of EdGB gravity coming from the solar system test
of Shapiro time delay (gravitational time delay) measured by the Cassini probe is given
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by
√
α < 8.9 × 106 km [83]. If the coupling constant would be greater than this value,

the differences with GR would be too large at the solar system scale. However there are
now stronger constraints coming from low mass x-ray binary observations [84] and from
Bayesian parameter estimation with GW detections [85]. Current bounds from GWs are
now set to be

√
α . 1.7 km [86] [87], improved recently by [88] to

√
α . 1.18− 1.33 km.

In this thesis we intend to keep the coupling function general and specify particular cou-
plings only for analysis parts. However we do assume in general that the black holes we
consider have a non trivial scalar field. This results has the consequence that an inspi-
ralling black hole binary radiates not only quadrupole radiation corresponding with GWs
but also dipolar radiation coming from the scalar field. The waveform templates and wave-
form phase evolution of these two forms of radiation were analyzed for the first time by
[16][17]. On top of that, the scalar field leads to the interesting result of scalar tidal effect
as we will discuss further in section 4.
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4 Tidal effects

In this thesis we will not only look at the waveforms and phase of the scalar field radiation
coming from a scalarized black hole binary in sGB gravity but on top of that we will include
tidal effects in the framework as well.

When thinking about tidal effects the first thing that comes to mind is often the tidal effects
here on earth from the gravitational pull from the moon (and to some lesser extend from
the sun). Because the gravitational field scales with 1/r2, the side of the earth facing the
moon experiences a stronger gravitational field than the other side. Or to be more specific,
to lowest order the side of the earth closest to the moon experiences a higher acceleration
towards the moon than the opposite side of the earth. Also the upper and lower side have
a component of their acceleration inwards resulting in the gravitational quadrupolar shape
bulge of water we experience as the tides in the sea, see Fig. 11.

Figure 11: Tidal forces and tidal bulge in earth moon system as often explained in Newto-
nian gravity

In this thesis we will actually not focus on gravitational tidal effects but on tidal effects
coming purely from the scalar fields around black holes in sGB gravity. However as this is
less intuitive, it is still interesting to first take a look at gravitational tidal effects as a lot of
the processes can be taken over to the scalar field case.
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4.1 Gravitational tidal effects

To start, it is interesting to find out why the gravitational tides are quadrupolar effects. In
Newtonian mechanics one can describe tidal effects as follows. The Newtonian gravita-
tional potential is given by the solution to the Poisson equation

∇2UA = −4πρA −→ UA(t,x) =

∫
d3x′ρA (t,x′)

1

|x− x′|
, (4.1)

with UA the gravitational potential of body A and ρA the mass density. For positions far
away from the source x > x′, one can Taylor expand around x′i = 0

1

|x− x′|
=

1

r
+
nix′i

r2
+

3

2

ninj − δij/3
r3

x′ix′j + . . . , (4.2)

with r = |x− x′| and ni = x−x′
r

the unit vector. We will use the notation ninj − δij/3 =
n<inj> with <> denoting symmetric trace free tensors (STF tensors). These tensors are
symmetric under exchange of any two indices and vanish when taking to trace to any
index. One can use a basis from STF tensors to construct these multipole expansions,
which is equivalent to using a basis of spherical harmonics [89]. Substituting Eq. (4.2) in
Eq.(4.1) gives

UA =
1

r

∫
ρA(t,x′)d3x′+

ni

r2

∫
ρA(t,x′)x′id3x′− 3

2

n<inj>

r3

∫
ρA(t,x′)x′<ix′j>d3x′+ ... . (4.3)

then similar to Eq. (2.40) we define the multipole moments

mA =

∫
A

d3xρA(t, x), Qij
A =

∫
A

d3xρA(t, x)x′<ix′j>, (4.4)

the monopole moment giving the mass of the body and the quadrupole moment Qij. The
dipole moment

Qi
A =

∫
ρA(t,x′)x′id3x′ (4.5)

is proportional to the centre of mass as this is defined as

xCM =
1

mA

∫
d3xρA(t,x)xi. (4.6)

By setting our origin x′i in the centre of mass, this dipole term vanishes. This results in the
expansion of Eq.(4.3)

UA =
mA

r
+

3

2

1

r3
Qijn<inj> + ... . (4.7)

Now we can assume that our body A is in the external gravitational field of a companion
body with the distance between the bodies much larger than their characteristic size. The
potential that is felt by body A because of external sources can be Taylor expanded around
the origin as well

U ext
A (t,x) = U ext

A (t,x) +
∂U ext

A

∂xi
|O xi −

1

2
Eijxixj +O

(
r2
)
, (4.8)



4 TIDAL EFFECTS 38

with

Eij = − ∂
2U ext

A

∂xi∂xj
|O, (4.9)

the tidal field. Without loss of generality we can set the constant value in Eq. (4.8) to zero
and if our origin is set to the centre of mass, the dipole term vanishes as before. Further-
more as in the origin the external field does not have a source (source of this potential is
the companion body but we are considering the field at body A), the Poisson equation for
this external potential is ∇2U ext

A = δijEij = 0. This makes the tidal field trace free and as it
is already symmetric in its indices we can write

U ext
A = −1

2
Eijx<ixj> = −1

2
Eijn<inj>r2. (4.10)

Thus the total potential is given by

UA =
mA

r
+

3

2

1

r3
QA,ijn

<inj> +O
(

1

r4

)
− 1

2
Eijr2n<inj> +O

(
r3
)
. (4.11)

Next, we construct the Lagrangian of the binary system from L = T − V with T = TA + TB
the total kinetic energy and V = VA +VB the total potential energy. Writing the energies in
terms of the motion of the centre of mass zA and the internal part as done in [90]

TA =
1

2

∫
A

d3xρAż
2
A+T int

A , VA =
1

2

∫
A

d3xρAUext+Vint =
1

2

∫
A

d3x(
1

2
QijEijUext) + ...+Vint .

(4.12)
We can assume for body A that companion B is a point mass and vice versa. The linear order
contribution, if both bodies would be extended objects, can be extracted from adding both
contributions. Then moving to the CM frame of the binary system gives

T =
1

2
µv2 + Tint, V = −µm

r
+

1

2
QijEij + ...+ Vint, (4.13)

with the total mass m = mA + mB, the reduced mass µ = mAmB/m, the separation r =
zA − zB with magnitude r and relative velocity v2 = ṙ · ṙ. We can construct the Lagrangian
and thus the action

S = Sorbit +

∫
dt

[
−1

2
QijEij + ....+ Lint

]
, (4.14)

with Sorbit =
∫
dtLorbit , Lorbit = (µ/2)v2 + µM/r and Lint describing the internal dynamics.

In the case of a spherical symmetric body in a binary system, the multipole moments of
the potential are induced by the tidal field of the other body [91]. For a neutron star
the Lagrangian for the dynamics of these induced moments is given by a tidally driven
harmonic oscillator [92]

Lint =
1

2

[
1

2λw2
0

Q̇ijQ̇
ij − 1

2λ
QijQ

ij + ...

]
, (4.15)

with w0 the oscillation mode frequencies and λ the tidal deformability parameter. The tidal
deformability parameter is often considered in the adiabatic limit; assuming the internal
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timescale being much faster than the time scale of the variations in the tidal field. Subsi-
tuting the Lagrangian Eq. (4.15) back into the action Eq. (4.14) and varying with respect
to the quadrupole moment gives the following equation of motion for the quadrupole

Q̈ij + ω2
2Q

ij = −λω2
2E ij. (4.16)

In the adiabatic limit for which the second derivative becomes negligible, we have the
solution

Qij = −λEij. (4.17)

Showing that indeed the quadrupole moment is induced by the quadrupole tidal field. The
tidal deformability parameter λ describes the strength of the response to the tidal field.
Following the same calculation with general expansion of the potential up to general order
in the multipoles gives this relation for general order multipoles, each with a different λ.
Usually these higher multipoles are subdominant over the quadrupole contribution.

However what you might have noticed that everything up to now was done for Newtonian
gravity. In GR, similar to expanding around the CM in Newtonian dynamics, one can define
the gravitational potential around a reference centre of mass worldline [93]. At the scales
of large distances outside the body compared to the size of the object but small compared
to the radius of curvature of the gravitational field of the companion, the multipole mo-
ments can be determined by expanding the asymptotic metric in a local asymptotic rest
frame [90]. The lowest order in this expansion corresponds to a point particle description.
For a non rotating black hole this would mean that it is only described by its mass. This ex-
pansion method is called skeletonization. We discuss skeletonization again in section 5.1.1
specific for scalarized black holes in sGB gravity in which case the scalar field dependency
can be described as funcion of the mass.
As an example of the expansion, the 00 component of the metric in Schwarzschild coordi-
nates for a black hole in an external tidal field of its companion is given by

g00 = −1 +
2m

r
+

3

r3
Qijn

<inj> +O

(
1

r3

)
− Eijr2n<inj> +O

(
r3
)
, (4.18)

which is the same expansion as for our Newtonian potential above.
To derive the Lagrangian in GR we can go back to the action in Eq. (4.14) and use the
minimal coupling principle [30](see also Appendix D) and put in in the covariant form.
The corresponding Lagrangian is then given by[94],

L =
z

4λ

[
1

z2ω2
f

DQµν

dσ

DQµν

dσ
−QµνQ

µν

]
− z

2
EµνQ

µν , (4.19)

withD a covariant derivative, z =
√−uµuµ ensuring invariance under different parametriza-

tions, uµ = ẏµ with wordline yµ(σ) and σ the worldline parameter.
In the case of GR, the tidal effects are now described by the curvature of spacetime and
the tidal field in this case is defined as projections of the curvature tensor on the worldline,
expressed as projections of the Weyl tensor corresponding to the companion body. The
Weyl tensor is the trace free part of the riemann curvature tensor.

Eµν = z−2Cµανβu
αuβ (4.20)
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As this expression is symmetric under exchange of indices, the tidal field is an STF tensor.
In the Newtonian limit the Weyl tensor is related to the gravitational potential and the tidal
field reduces to Eq. (4.9).
Starting from the relativistic action Eq. (4.19), one can derive that in the adiabatic limit
the relation Eq. (4.17) still holds in GR but the spatial indices replaced with spacetime
indices. What is also different from the Newtonian case is that in GR there is an additional
tidal field due to frame dragging effects. This field is called the "gravitomagnetic" tidal field
which induces current multipole moments. This effect does not play a further role in the
scope of this thesis.

4.2 Scalar tidal effects

In our situation we are considering two black holes which do not contain water as on the
earth, or at all consists of matter that can deform as for neutron stars. Hence these gravi-
tational tidal effects do not deform the black holes. What is possible is that in sGB, black
holes can have a non zero scalar field. The gradient in the scalar field of the companion
black hole can exert tidal effects on the scalar field of the other black hole in a similar way
as for gravitational tidal effects. Therefore we can use many of the expressions from the
previous section for the scalar field case. However one important difference is that, when
expanding the scalar field as a Taylor expansion around the origin, the dipole moment does
not vanish as we will see explicitly in section 6. Therefore the lowest order tidal effects
in the case of the scalar field are coming from dipolar effects. Also the Lagrangian for
these effects can again be described as a tidally driven harmonic oscillator and thus with
Eq. (4.19) for the scalar dipole moment Q(s)

µ . We denote scalar field related terms with
the superscript (s). As we saw before, in the adiabatic limit one can derive the relation
between the tidal field and the in this case now the dipole moment

Q(s)
µ = −λ(s)E (s)

µ , (4.21)

with λs the scalar tidal deformability parameter. The scalar tidal effects are generated by
the gradient in the scalar field of the companion, similarly as in the Newtonian case for the
Newtonian gravitational potential. The scalar tidal field is therefore expressed as

E (s)
µ ≡ ∂µϕ. (4.22)

Also when plugging Eq. (4.21) back in the Lagrangian one gets the Lagrangian in the
adiabatic limit for the scalar tidal effects

Ltid =
λ(s)

2
E (s)
µ E

µ
(s). (4.23)

Together with Eq. (4.22) we have the action describing the scalar tidal effects of body A in
the tidal field of B and vice versa

Stid = −
∑
A 6=B

1

2
λ

(s)
A

∫
dsBc (gµν)B (∂µϕ)B (∂νϕ)B , (4.24)
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with

dsB =

√
−gαβdxαBdx

β
B =

√
−gαβ

dxαB
dt

dxβB
dt

dt, (4.25)

defined as the evolution along the wordline. This is the action we can use to incorporate
the scalar tidal effects in the orbital dynamics of the BH system in section 5. We will also
include the tidally induced dipole moment Qµ in the expansion of the scalar field in section
7, to incorporate the effects on the scalar waveform. To actually analyse these effects we
need to know the expression for the scalar tidal deformability parameter which we calcu-
late in section 6.

An interesting thing to note is that we derived this action now specifically describing the
scalar tidal effects. These effects fall under a broader category of finite size effects; effects
coming from higher order terms of the expansion in the derivatives of the scalar field and
the metric along the worldline. In [95] they show that when starting from the most general
action, considering second order terms in the expansion, up to two derivatives to the scalar
field and metric, only the scalar tidal field terms are nonvanishing after making use of the
gauge symmetries of the system. These are exactly the tidal terms we described in this
section.
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5 Binary dynamics

After our general discussion on GWs, modified gravity and tidal effects we can now specify
to the calculations on gravitational radiation from a black hole binary system in sGB grav-
ity. For this we start with a calculation of the binary dynamics; the Lagrangian and energy
of the inspiralling black hole system. The changes in the dynamics during the inspiral carry
through in the gravitational radiation that is sent into space, therefore we need to look at
the system itself first.
We start with the sGB, matter and tidal action and use the variational principle to derive
from it the equations of motion. Then we expand these equations of motion for small tidal
effects and in the PN expansion. We solve the equations order by order up to linear order
in λs and to 1PN. With these solutions we can construct the metric and substitute in the
action to derive the Lagrangian. Subsequently the binding energy up to 1PN can be derived
from the Lagrangain. The binding energy as a function of the frequency for circular orbits
is a gauge invariant quantity, for which we analyse the effects of including the scalar tidal
effects on the system.

5.1 The action

The total action of a binary black hole system is described by the gravitational action of
sGB gravity[16, 17], the matter action and the tidal action

S =
c4

16πG

∫
d4x
√
−g[R− 2gµν∂µϕ∂νϕ+ αf(ϕ)R2

GB] + Sm + Stidal. (5.1)

Where we have the Ricci scalar R, the metric gµν , the scalar field ϕ which is non minimally
coupled via a coupling function to the quadratic curvature term given by the GB invariant
Eq. (3.2). We will use a different way of writing this invariant term

R2
GB = ∗R∗µνρσR

µνρσ. (5.2)

The double dual of the Riemann tensor is defined as

∗R∗cµνd =
1

4
εabefRefghε

ghcd, (5.3)

with εghcd being the anti symmetric Levi Civita tensor. We will discuss the matter action of
Eq. (5.1) below and the tidal action is given by Eq. (4.24).

In this calculation we keep the coupling function general but as discussed in section 3.3
there are different types of functions. However as we are interested in the effect of includ-
ing tidal terms because of the scalar hair on the black holes, we assume a coupling function
for which the scalar hair does not vanish and scalar tidal effects are present. We specify
specific coupling functions for the analysis in sections 5.8, and 7.5.
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5.1.1 Skeletonization and the matter action

The system we are considering consists two non spinning black holes. What kind of black
holes are considered keeps being general in this calculation, however for the analysis part
we assume stellar mass black holes. These are black holes formed from gravitational col-
lapse of a star. The masses of these black holes typically range from order 5 to tens of solar
masses15. Black holes are vacuum solutions of the Einstein equations (see Appendix D) and
are not made of any matter, only purely described by the curvature of space time. Still we
would like to describe them with a "matter" action, how is this valid?
Hints are given by the no hair theorem described in section 3.3. The black holes are solely
described by their mass, charge and angular momentum. As we are talking about non
spinning chargeless black holes, we only have to care about the mass. This is similar to
electrons16 which we can describe well with a point particle description. Furthermore the
external gravitational field of a black hole is the same as would be for a point particle of
similar mass. Lastly for our calculations we only consider the inspiral part of the coales-
ence, when the black holes are far away from each other, relative to the scales of the system
one can therefore treat them approximately as point particles.
The formal route to this approximation is that similar as in Newtonian mechanics, one
can do a expansion around the centre of mass, which in GR would be considered a CM
wordline, as a multipole expansion. Elaborate but dense details on this can be found in the
analysis of W.G. Dixon [93]. Then one could argue that the lowest order, corresponding to
a point particle approximation, is accurate enough. The procedure of reducing the descrip-
tion of the black holes to an effective point particle description is called skeletonization, see
Fig. 12. The action of a point particle is given by Spp = −c

∫
dsm,

with m the mass of the particle.

In our modified gravity context however we assume the black holes also have scalar hair,
violating the no hair theorem. We therefore need to implement this scalar field in the
skeletonization description. In 1975 Eardley [97] was the first to generalize this descrip-
tion for modified gravity, more specific for scalar tensor theory. In [98] it was effectively
implemented for Einstein-Maxwell dilation theories and by among others the same author
also for sGB gravity [24]. In this description the scalar field can be implemented by letting
the mass depend on the scalar field. For this the mass function m(ϕ) is introduced. The
idea behind this is that if one expands the metric in a PN expansion and looks at the 00
component, to lowest order the Poisson equation from Newtonain gravity should be recov-
ered Eq. (4.1) (as we saw too in the end of section 2.4.3 for GR). However if one does this
for scalar tensor theory one recovers Eq. poissoneq with an altered effective Newtonian
constant Geff , which depends on the scalar field. The value of the Geff can therefore vary
in this theory. According to the equivalence principle, the gravitational mass should be
equal to the inertial mass. However if Geff can vary with the scalar field then the inertial
mass m will too. Therefore making the mass a function of the scalar field can describe the
contribution of the scalar field in the skeletonization procedure. A caveat is that in sGB

15As opposed to the hypothesized primordial black holes that are formed from dark matter overdensities
in the early universe [96]; these black holes can have a smaller masses.

16In the case of electrons charge does matter of course.
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gravity we do recover the Poisson equation to lowest order. Still the scalar field is part of
the gravitational sector and hence plays a role in the gravitational mass, which becomes a
scalar-field-dependent mass function.

To sum up, on the orbital scale we describe the black holes in the binary system as two
point particles with their mass depending on the scalar field. They form the "matter" in this
description given by the point particle action. For now we will keep the number of bodies
in the system general but when calculating the Lagrangian we specify to the two bodies in
the binary. Thus the matter action becomes

Sm = −c
∑
A

∫
dsAmA(ϕ), (5.4)

with dsA defined as Eq. (4.25).

Figure 12: Sketch of skeletonization

5.2 The field equations

To get the equations of motion, we vary the total action Eq. (5.1) with respect to the metric
and the scalar field. The variation to the metric, after quite some rewriting of the variation
of the GB invariant 17 results in

δS

δgµν
=

c4

16πG

√
−g
[
Rµν −

1

2
gµνR− 2∇µϕ∇νϕ+ gµν∇ρϕ∇ρϕ+ αελωρµRλωσεε

σε
να∇α∇ρf(ϕ)

]
− δSm
δgµν

− δStidal
δgµν

= 0.

(5.5)
17For explicitly varying the curvature terms in the GB invariant, one can use the expressions in Appendix

D. Doing this gives a whole string of terms which can conveniently be rewritten in the form of the term
proportional to the coupling constant in Eq. (5.5). In Appendix F we link to a mathematica notebook by L.
Stein which describes this rewriting.
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Thus for the field equations we have

Rµν −
1

2
gµνR︸ ︷︷ ︸

GR

= 2∂µϕ∂νϕ− gµν∂ρϕ∂ρϕ− αε λω
ρµ Rλωσεε

σε
να∇α∇ρf(ϕ)

+
16πG

c4

1√
−g

(
δSm
δgµν︸ ︷︷ ︸

GR

+
δStidal
δgµν

).
(5.6)

We see that sGB is indeed a modified gravity theory, it modifies the Einstein equations with
extra terms: respectively the kinetic terms in the scalar field, a term proportional to the
coupling constant which in further reference we will call the GB term and the last term
includes the tidal effects. Here we also see in practice that the GB invariant term cancels
higher derivative terms of the metric and thus only second order derivative terms to the
metric in the equations of motion.

It is more convenient to have this expression in the trace reversed form. Therefore we first
take the trace by multiplying with gµν resulting in an expression for R, after relabelling its
indices we substitute this expression back into Eq. (5.6) which gives

Rµν = 2∇νϕ∇µϕ+
1

2
gµνg

αβαελωραRλωσεε
σε
βξ∇ξ∇ρf(ϕ)− αελωρµRλωσεε

σε
νξ∇ξ∇ρf(ϕ)

+
8πG

c4

(
Tmµν −

1

2
gµνT

m

)
+

8πG

c4

(
T tidalµν − 1

2
gµνT

tidal

)
,

(5.7)

with

Tmµν =
−2√
−g

δSm
δgµν

, T tidµν =
−2√
−g

δStidal
δgµν

, (5.8a)

and

Tm = gαβTmαβ, T tid = gαβT tidαβ . (5.9a)

The energy momentum tensor and its trace corresponding to the matter and tidal action.

We checked that this is consistent with equation D.1a in [24] by rewriting their GB term in
the field equations.
From variation with respect to the scalar field follows

�ϕ = −1

4
αf ′(ϕ)R2

GB −
4πG

c4
(δ̄Sm + δ̄Stidal), (5.10)

with

δ̄Sm =
1√
−g

δSm
δϕ

, δ̄Stidal =
1√
−g

δSm
δϕ

, (5.11a)

and � ≡ gαβ∇α∇β the d’Alembertian operator.
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To actually vary the matter and tidal action in Eq. (5.8) and Eq. (5.11) we substitute
in these definitions the actions Eq. (5.4) and Eq. (4.24). The energy momentum tensor
describes the matter distribution. As we describe our black holes as point particles, we want
to localize the energy momentum tensor on the positions of the black holes. Therefore we
introduce a delta function to localize the integrals in the actions on the location xA(t) of
the black hole. We put the actual variation to the metric of this terms in the appendix A
as the expressions are quite long. Here we give the results. With Eq. (A.1) and Eq. (A.2)
energy momentum tensors from Eq. (5.8) become

Tmµν = c
∑
A

mA(ϕ)δ(3)(x− xA(t))

dxAµ
dt

dxAν
dt√

ggαβ
dxαA
dt

dxβA
dt

, (5.12a)

T tidalµν = c
∑
A

λ
(s)
A

∂µϕ∂νϕ
√√√√gαβ

dxαA
dt

dxβA
dt

g
+ gρσ∂ρϕ∂σϕ

dxAµ
dt

dxAν
dt

2

√
ggαβ

dxαA
dt

dxβA
dt

 δ(3)(x− xA(t)).

(5.12b)

Then for the expressions in Eq. (5.11), with Eq. (A.3) and Eq. (A.4) we have

δ̄Sm = −c
∑
A

δ(3)(x− xA(t))
dmA(ϕ)

dϕ

√√√√gαβ
dxαA
dt

dxβA
dt

g
, (5.13a)

δ̄Stidal =
∑
A 6=B

λ
(s)
B δ(3)(x− xA(t))c

gµν∂µ∂νϕ
√√√√gαβ

dxαA
dt

dxβA
dt

g
+
∂ν(

√
−gαβ

dxαA
dt

dxβA
dt
gµν)

√
−g

∂µϕ

 .
(5.13b)

Next we will expand both sides of the equations of motion from Eq. (5.7) and Eq. (5.10)
for weak gravitational field and non relativistic velocities in a Post Newtonian expansion.
Solving the equations to linear order and up to 1PN.

5.3 Post Newtonian expansion of the sGB field equations

To solve the equations of motion in a similar way as discussed in section 2.4 for GR, in a
gravitationally bound system we need to go beyond linearized gravity and use a PN expan-
sion.

For the PN expansion the small parameter is given by εPN = Rs
d
≈ v2

c2
. In practice this comes

down to tracking the factors of 1/c2, hence in our calculation we expand explicitly in these
factors. Then we solve the differential equations perturbatively per order in the expansion.

5.3.1 PN expansion of the fields

Before we can expand the expressions in the field equations in Eq. (5.7) and Eq. (5.10),
we first expand the fields U and gi, which were defined in the PN expansion of the metric
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in Eq. (2.81) and the scalar field.

The PN expansion contains quite some subtleties which can make tracking the order right
be a daunting task. It turns out18 that the most consistent way of tracking the PN orders and
solving order per order happens when tracking and expanding in factors of 1/c2. Therefore
we omit the parameter εPN and just track the factors of 1/c2. When solving the equations
per expansion order we link back to actual PN orders. Expanding to 1PN corresponds to
expanding to 1/c4, see Eq. (2.81).

For the U and gi fields this results in

U

c2
=
U (0)

c2
+
U (1)

c4
+O(1/c6), (5.14)

gi
c3

=
g

(0)
i

c3
+O(1/c5). (5.15)

For the scalar field we use a slightly different approach, combining the convention from
[24], defining the scalar field as a background field plus perturbations

ϕ = ϕ0 + δϕ, (5.16)

for which we PN expand the perturbations. In the expansions the scalar field dependent
mass m(ϕ) and the coupling function f(ϕ) are expanded around this background value ϕ0.
For the PN expansion of the perturbations we redefine the field

δϕ =
ϕc
c2
, (5.17)

including the explicit 1/c2. It turns out that this is more convenient to work with as the U
and gi field are also defined with this explicit factor of 1/c2, and as combinations of these
fields arise during the calculation, they are in this way treated at equal footing. During
the calculation we will therefore express everything in terms of ϕc and when we look at
the solutions for the EOMs we will translate back to the actual scalar field solution. The
expansion of this redefined scalar field perturbations is given by

ϕc
c2

=
ϕ

(0)
c

c2
+
ϕ

(1)
c

c4
+O(1/c6). (5.18)

Now we can expand the expressions in the field equations and define the EOMs per expan-
sion order, matching the same factors of 1/c2.

5.3.2 Expanding the scalar field equation

We start with the PN expansion of the scalar field equation, which in the redefined field ϕc
is given by

18We explain the reasons after this calculation, see 5.4.4



5 BINARY DYNAMICS 48

�
ϕc
c2

= −1

4
αf ′(ϕ)R2

GB −
4πG

c4
(δ̄Sm + δ̄Stid). (5.19)

Here on the LHS we only include the scalar field perturbations Eq. (5.17) as the back-
ground field is unperturbed.

We look at the expansions of the terms on the RHS of Eq. (5.19). We have the expansion
of the coupling function using Eq. (5.16) and Eq. (5.18)

f ′ (ϕ) =f ′ (ϕ0) + f ′′ (ϕ0)
ϕ

(0)
c

c2
+ f ′′ (ϕ0)

ϕ
(0)
c

c4
+O(

1

c6
). (5.20)

We expand the other quantities in the EOM in the same way. For the box operator this
results in

� = �(0) +
1

c2
�(1) +

1

c4
�(1) +O(

1

c6
), (5.21)

where the (0) order term corresponds to the flat space d’Alembertian �η.

For the expansion of the expressions R2
GB , δ̄Sm and δ̄Stidal we substitute the PN expansion

of the metric Eq. (2.81) and the expansion of the scalar field ϕc from Eq. (5.18) and
gravitational fields U Eq. (5.14) and gi Eq.(5.15)) and expand in 1/c2. We have to pay
attention to the prefactor 4πG/c4 in Eq. (5.19), as this already carries the factor of 1/c4.
Again writing out explicitly these expansions becomes a bit cumbersome so we show this
in the Appendix A.

The expressions concerning the matter action Eq. (5.4) and Eq. (5.13a) contain the mass
function depending on the scalar field which is therefore also expanded in the following
way [24]

mA(ϕ) = mA (ϕ0) +m′A (ϕ0)
ϕ

(0)
c

c2
+

1

2
m′′A (ϕ0)

ϕ
(1)
c

c4
+O(1/c6)

= m0
A

[
1 + α0

A

ϕ
(0)
c

c2
+

1

2

(
α0
A

2 + β0
A

) ϕ(1)
c

c4

]
+O

(
1/c6

)
,

(5.22)

with m0
A = mA (ϕ0) and

αA(ϕ) ≡ d lnmA(ϕ)

d(ϕ)

βA(ϕ) ≡ dαA(ϕ)

d(ϕ)
,

(5.23)

with α0
A = αA(ϕ0) called the scalar charge, measuring the strength of the coupling of the

physical mass to the back ground scalar field. In the same manner we define β0
A = βA(ϕ0).

For the expansion of the GB invariant we used the Mathematica package xAct (see Ap-
pendix F) to calculate the curvature expressions and to substitute the expanded metric
components from Eq. (2.81). Looking at the lowest order terms in 1

c2
results in

R2
GB = 8

(
(∂i∂j

U (0)

c2
)(∂i∂j

U (0)

c2
)−4U

(0)

c2
4U

(0)

c2

)
+O(1/c6), (5.24)
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and thus this term contributes R2 (1)
GB at order O(1/c4), R2 (0)

GB vanishes.

The explicit expansion of δ̄Sm in Eq. (A.20) results in

δ̄Sm = −
∑
A

δ(3)(x− xA(t))
[
c2α0

Am
0
A + (m0

A((α0
A)2 + β0

A)ϕ(0)
c

−α0
Am

0
AU

(0) − 1

2
α0
Am

0
Av

2
A)

]
+O(1/c2),

(5.25)

giving a leading order contribution of δ̄S(−1)
m corresponding to order O(c2).

The explicit expansion of δ̄Stid in Eq. (A.21) then gives

δ̄Stid =
∑
A

λ
(s)
A δ(3)(x− xA(t))�ϕ(0)

c +O(1/c2). (5.26)

Thus resulting in only a contributing of δ̄S(0)
tid corresponding to order O(c0).

Substituting these expansions for R2
GB , δ̄Sm, δ̄Stidal back in Eq. (5.19) for the different

expansion orders, only looking at the equations with matching orders in the expansion
parameters as we found above

O(1/c2) �η
ϕ

(0)
c

c2
= −4πG

c4
(δ̄S(−1)

m ), (5.27a)

O(1/c4) �η
ϕ

(1)
c

c4
= −1

4
αf ′

(
ϕ

(0)
c

c2

)
R

2 (1)
GB −

4πG

c4
(δ̄S(0)

m + δ̄S
(0)
tid ). (5.27b)

Substituting the expansions

O(1/c2) �η
ϕ

(0)
c

c2
=

4πG

c4
(
∑
A

δ(3)(x− xA(t))c2α0
Am

0
A), (5.28a)

O(1/c4) �η
ϕ

(1)
c

c4
= − 2αf ′

(
ϕ

(0)
c

c2

)(
(∂i∂j

U (0)

c2
)(∂i∂j

U (0)

c2
)−4U

(0)

c2
4U

(0)

c2

)
− 4πG

c4(
−
∑
A

δ(3)(x− xA(t))

[
(m0

A((α0
A)2 + β0

A)ϕ(0)
c − α0

Am
0
AU

(0) − 1

2
α0
Am

0
Av

2
A)

]

+
∑
A

λ
(s)
A δ(3)(x− xA(t))�ϕ(0)

c

)
.

(5.28b)

Next, we do the same for the gravitational equations of motion.
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5.3.3 Expanding the R00 and R0i components

Starting from the gravitational equation of motion

Rµν = 2∇νϕ∇µϕ+
1

2
gµνg

αβαελωραRλωσεε
σε
βξ∇ξ∇ρf(ϕ)− αελωρµRλωσεε

σε
νξ∇ξ∇ρf(ϕ)

+
8πG

c4

(
Tmµν −

1

2
gµνT

m

)
+

8πG

c4

(
T tidalµν − 1

2
gµνT

tidal

)
.

(5.29)

We can split this in the different components. From solving these equations to 1PN we
recover the dynamics of the metric, more specifically the fields we defined in our metric
PN expansion U and gi. It turns out that we only need the 00 component equation and 0i
component equation to solve for these fields. This can be seen from expanding R00 and
R0i in terms of 1/c2 by substituting the PN expansion of the metric Eq. (2.81). This can be
done with the mathematica package xAct (see Appendix F), which results in

R00 = −3∂0∂0
U

c2
− ∂i∂i

U

c2
− 4∂0∂i

gi
c3
,

R0i = −2∂i∂0
U

c2
− 2(∂k∂i

gk
c3
− ∂k∂k

gi
c3

).

(5.30)

Using the harmonic gauge ∂β
√
−ggαβ = 0 which in the PN expansion becomes

∂0
U

c2
= −∂k

gk
c3
, (5.31)

results in
R00 = ∂0∂0

U

c2
− ∂i∂i

U

c2
= −�η

U

c2
+O(1/c4),

R0i = 2∂k∂k
gi
c3

= 24gi
c3

+O(1/c5).
(5.32)

Hence solving the equations of motion for R00 and R0i gives the solutions for the fields U
and gi.
Starting with the 00 component substituting Eq. (5.32)

R00 = −�η
U

c2
= 2∂0

ϕc
c2
∂0
ϕc
c2

+
1

2
g00g

αβαελωραRλωσεε
σε
βξ∇ξ∇ρf (ϕ)− αελωρ0Rλωσεε

σε
0ξ∇ξ∇ρf

(ϕc
c2

)
+

8πG

c4

(
Tm00 −

1

2
g00T

m

)
+

8πG

c4

(
T tid00 −

1

2
g00T

tid

)
.

(5.33)
We can analyse the RHS to see in what orders the expansion is going to be. In the first term
we again immediately substituted the scalar field perturbations Eq. (5.17) as the deriva-
tives acting on the background field vanish. This first term can be neglected as it would be
at least of order 1/c6 (additional factor of 1/c2 comes from the two time derivatives) which
is too high for a 1PN expansion.
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We first look at the expansion in 1/c2 of the terms in the RHS of Eq. (5.33). Starting with
the second and third term using for the derivatives on the coupling function the chain rule,
followed by the lowest order expression in Eq. (5.20)

1

2
g00g

αβαελωραRλωσεε
σε
βξ∇ξ∇ρf(ϕ)− αελωρ0Rλωσεε

σε
0ξ∇ξ∇ρf(ϕ) =(

1

2
g00g

αβαελωραRλωσεε
σε
βξ − αελωρ0Rλωσεε

σε
0ξ

)(
f ′′(ϕ0)∂ξ

ϕ
(0)
c

c2
∂ρ
ϕ

(0)
c

c2
+ f ′(ϕ0)∂ξ∂ρ

ϕ
(0)
c

c2

)
.

(5.34)

Now if ξ and ρ are both 0 the Levi Cevita tensor vanishes which leads to a trivial result. If
one of the indices is temporal, the partial derivatives on the scalar field would give a factor
of 1/c resulting in an odd power of c which does not match with the orders related to the
expansion of U in Eq. (5.14) on the LHS of Eq. (5.33). Hence we consider both indices
spatial. We expand the term inside the first set of brackets in Mathematica with the xAct
package, substituting the PN expanded metric components in the Riemann tensor. At the
lowest order in 1/c2 this gives

1

2
g00g

αβαελωiαRλωσεε
σε
βj − αελωi0 Rλωσεε

σε
0j = −4α(δij∂i∂

iU
(0)

c2
− ∂i∂j

U (0)

c2
) +O(1/c2). (5.35)

Thus in total the only part of this expression that contributes to the differential equations
with the right order of 1/c2 is

1

2
g00g

αβαελωραRλωσεε
σε
βξ∇ξ∇ρf(ϕ)− αελωρ0Rλωσεε

σε
0ξ∇ξ∇ρf(ϕ) =

4α(δij∂i∂
iU

(0,0)

c2
− ∂i∂j

U (0,0)

c2
)f ′(ϕc0)∂

ξ∂ρ
ϕ

(00)
c

c2
.

(5.36)

For the last two terms in Eq. (5.33) we have the following term regarding the EM tensors:
T00 − 1

2
Tg00. This can be rewritten using the PN expansion of the metric components Eq.

(2.81) only to order c0

T00 −
1

2
Tg00 = g0µg0νT

µν − 1

2
Tg0µg0νg

µν = g00g00T
00 − 1

2
g00g00g

00gρσT
ρσ = T 00 − 1

2
T 00 +

1

2
T ii

=
1

2
(T 00 + T ii).

(5.37)
Then we are interested in the expansion in 1/c2 of T 00 and T ii. We write the actual expan-
sions again in the Appendix A and give here the results. For the matter energy momentum
tensors we have expanding as Eq. (A.22) and Eq. (A.23)

Tm00 =
∑
A

(m0
Ac

2 +m0
Aα

0
Aϕ

(0)
c −m0

AU
(0) +m0

A

1

2
v2
A)δ(3)(x− xA(t)) +O(1/c2) (5.38a)

Tmii =
∑
A

m0
Aδ

(3)(x− xA(t))v2
A +O(1/c2). (5.38b)
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For the tidal energy momentum tensors using Eq. (A.24) and Eq. (A.25) we have

T tid00 =
∑
A

λ
(s)
A

[
c2∂0

ϕ
(0)
c

c2
∂0
ϕ

(0)
c

c2
+

1

2
c2gρσ∂ρ

ϕ
(0)
c

c2
∂σ
ϕ

(0)
c

c2

]
δ(3)(x− xA(t)) +O(1/c4) (5.39a)

T tidii =
∑
A

λ
(s)
A

[
c2∂i

ϕ
(0)
c

c2
∂i
ϕ

(0)
c

c2

]
δ(3)(x− xA(t)) +O(1/c4). (5.39b)

The lowest order contribution to T00 starts at O(1/c2) since expanding gρσ∂ρ ϕ
(0)
c

c2
∂σ

ϕ
(0)
c

c2
leads

to terms at this and higher orders.

Thus the differential equations from Eq. (5.33) after fully performing the PN expansions,
turn into the following system of equations per order in the expansion

O(1/c2) −�η
U (0)

c2
=

4πG

c4

(∑
A

δ(3)(x− xA(t))m0
Ac

2

)
(5.40a)

O(1/c4) −�η
U (1)

c4
=

4πG

c4

(∑
A

(m0
Aα

0
Aϕ

(0)
c −m0

AU
(0) +m0

A

3

2
v2
A)δ(3)(x− xA(t))

)

+ 4α(δij∂i∂
iU

(0)

c2
− ∂i∂j

U (0)

c2
)f ′(ϕ0)∂ξ∂ρ

ϕ
(0)
c

c2
.

(5.40b)

(5.40c)

Next, we consider the expansions of the 0i component of the field equations given by

R0i = 2∆
gi
c3

= 2∂0
ϕ

(0)
c

c2
∂i
ϕ

(0)
c

c2
+

(
1

2
g0ig

αβαελωραRλωσεε
σε
βξ − αελωρ0Rλωσεε

σε
iξ

)
∇ξ∇ρf(ϕ)

+
8πG

c4

(
Tm0i −

1

2
g0iT

m

)
+

8πG

c4

(
T tid0i −

1

2
g0iT

tid

)
.

(5.41)

As in the PN expansion of the metric Eq. (2.81), we saw that gi/c3 is already at 1PN order
we do not need to expand further. Analysing again the RHS to see in what orders the
expansion is going to be, we see that the first term can be neglected again as it is of order
1/c5 and the LHS is of order 1/c3.
Again we look at the expansion in 1/c2 for the terms on the RHS of Eq. (5.41). Starting
with the second term in the expression, rewriting the derivatives of the coupling function
in the same way as in Eq. (5.36)

(
1

2
g0ig

αβαελωραRλωσεε
σε
βξ − αελωρ0Rλωσεε

σε
iξ )∇ξ∇ρf(ϕ) =

(
1

2
g0ig

αβαελωραRλωσεε
σε
βξ − αελωρ0Rλωσεε

σε
iξ )

(
f ′′(ϕ0)∂ξ

ϕ
(0)
c

c2
∂ρ
ϕ

(0)
c

c2
+ f ′(ϕ0)∂ξ∂ρ

ϕ
(0)
c

c2

)
.

(5.42)
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The term proportional to the first derivative of the coupling function is of order O(1/c2) if
ξ and ρ are spatial or of order O(1/c3) if one of them is 0 and the other spatial. The term
proportional to the second derivative of the coupling function is at least order of O(1/c4)
which is in both cases of higher order than we are considering for Eq. (5.41). We can
calculate the expansion of both index combinations in Mathematica with xAct which gives

1

2
g0ig

αβαελωjαRλωσεε
σε
βk − αελωj0 Rλωσεε

σε
ik = 4α(−2∂k∂i

gj
c3

+ 2∂k∂j
gi
c3
− ∂i∂j

gi
c3
δik + 2∂i∂i

gj
c3
δik

+ ∂j∂i
gj
c3
δjk − 2∂j∂j

gi
c3
δjk) +O(1/c5)

(5.43a)

1

2
g0ig

αβαελωjαRλωσεε
σε
β0 − αελωj0 Rλωσεε

σε
i0 = −4α(−δij∂i∂i

U (0)

c2
+ ∂i∂j

U (0)

c2
) +O(1/c4). (5.43b)

These terms are multiplied with the coupling function first derivative term respectively of
orders O(1/c2) and O(1/c3). Thus both terms are of order O(1/c5) and can be neglected.

For the last two terms in Eq. (5.41) we can again rewrite the energy momentum tensor
term inside the brackets as follows, using the PN expanded metric components Eq. (2.81)
of order c0

T0i −
1

2
Tg0i = g00giiT

0i − 1

2
g00giig

0igρσT
ρσ = T 0i. (5.44)

Hence we are interested in the expansion of T 0i, which can again be found in Appendix A.
For Tm0i we have with Eq. (A.26)

Tm0i = c
∑
A

m0
Av

i
Aδ

(3)(x− xA(t)) +O(1/c). (5.45)

For T tid0i with Eq. (A.27) this results in

T tid0i =
∑
A

λ
(s)
A

[
c2∂0

ϕ
(0)
c

c2
∂i
ϕ

(0)
c

c2
+

1

2
cgρσvAi ∂ρ

ϕ
(0)
c

c2
∂σ
ϕ

(0)
c

c2

]
δ(3)(x− xA(t)) +O(1/c4). (5.46)

We see that the lowest order here is of higher order than we are considering and thus this
term does not contribute.

Thus the differential equation from Eq. (5.41) with matching orders of 1/c results in

O(1/c3) 2∆
g

(0)
i

c3
= −8πG

c3

∑
A

m0
Av

i
Aδ

(3)(x− xA(t)). (5.47)
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5.4 Solving the differential equations

To sum up we have the following differential equations resulting from the field equations
Eq. (5.7) and Eq. (5.10) per specific order in the PN expansion. For the scalar field:

O(1/c2) �η
ϕ

(0)
c

c2
=

4πG

c4
(
∑
A

δ(3)(x− xA(t))c2α0
Am

0
A), (5.48a)

O(1/c4) �η
ϕ

(1)
c

c4
= − 2αf ′

(
ϕ

(0)
c

c2

)(
(∂i∂j

U (0)

c2
)(∂i∂j

U (0)

c2
)−4U

(0)

c2
4U

(0)

c2

)
− 4πG

c4(
−
∑
A

δ(3)(x− xA(t))

[
(m0

A((α0
A)2 + β0

A)ϕ(0)
c − α0

Am
0
AU

(0) − 1

2
α0
Am

0
Av

2
A)

]

+
∑
A

λ
(s)
A δ(3)(x− xA(t))�ϕ(0)

c

)
.

(5.48b)

For the U potential:

O(1/c2) −�η
U (0)

c2
=

4πG

c4

(∑
A

δ(3)(x− xA(t))m0
Ac

2

)
(5.49a)

O(1/c4) −�η
U (1)

c4
=

4πG

c4

(∑
A

(m0
Aα

0
Aϕ

(0)
c −m0

AU
(0) +m0

A

3

2
v2
A)δ(3)(x− xA(t))

)

+ 4α(δij∂i∂
iU

(0)

c2
− ∂i∂j

U (0)

c2
)f ′(ϕ0)∂ξ∂ρ

ϕ
(0)
c

c2
.

(5.49b)

(5.49c)

For the gi potential

O(1/c3) ∆
g

(0)
i

c3
= −4πG

c3

∑
A

m0
Av

i
Aδ

(3)(x− xA(t)). (5.50)

We now discuss how to relate the various terms to specific PN orders. The lowest order
terms with a factor 1/c2 correspond to 0PN. One order in factors of c higher then corre-
sponds to 1PN, thus 1/c4. The lowest order of the gi solution carries a factor of 1/c3 and
we saw in the PN expansion of the metric Eq. (2.81) that this corresponds to 1PN.

In the next sections we solve these differential equations per PN order. On top of that we
consider the equations in zeroth and first order in λ(s), the tidal deformability parameter,
as a separate expansion in the tidal effects.
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5.4.1 Solving for leading PN order

First we look at the equations at 0PN

�ηU
(0) = −4πG

c2

∑
A

δ(3)(x− xA(t))m0
Ac

2, (5.51a)

�ηϕ
(0)
c = 4πG(

∑
A

δ(3)(x− xA(t))α0
Am

0
A). (5.51b)

To solve for the fields we can make use of the inverse of the box operator which is given
by a Greens function, see Appendix C. Here we will use the half retarded half advanced19

Greens function solution Eq. (C.11). Then the solution to Eq. (5.51a) becomes

U (0) = G
∑
A

∫
d4x′

(
δ (t− t′)
|x− x′|

+
|x− x′|

2

1

c2
∂2
t δ (t− t′)

)
m0
Aδ

3(x′ − xA(t))

= G
∑
A

mA

(
1

|x− xA(t)|
+

1

c2
∂2
t

∫
dt′
|x− xA (t′)|

2
δ (t− t′)

)
= G

∑
A

mA

(
1

|x− xA(t)|
+

1

c2
∂2
t

|x− xA(t)|
2

)
.

(5.52)

We define rA = xA(t) − x, rA = |rA|. We can rewrite 1
c
∂trA = 1

c
(nA · vA) with nA = rA/rA

the directional unit vector, as

1

c2
∂2
t rA =

1

c2
∂t (nA · vA) =

1

c2

rA (rA · aA + v2
A)− (rA · vA) (nA · vA)

r2
A

=
1

c2

1

rA

[
v2
A + rA · aA − (nA · vA)2] , (5.53)

with aA = ∂tvA the relative acceleration.

And in the solution for U (0) Eq. (5.52) we can substitute

1

rA
+

1

c2
∂2
t

rA
2

=
1

rA

[
1 +

1

c2

(
1

2
v2
A −

1

2
(nA · vA)2

)]
+

1

2c2
nA · aA ≡

1

ρ̃A
(5.54)

After substitution this results in

U (0) = G
∑
A

m0
A

ρ̃A
. (5.55)

19In general the retarded solution is seen as the most physical solution. This is because the solution of
the equation can be seen as an initial value problem with its evolution depending on sources in the past,
respecting causal structure. However here we chose the solution resulting from a linear combination of the
retarded and advanced Greens functions. This means that the solution is given half by sources in the past and
half by the same sources in the future. The reason for selecting this solution is, if the solution is preferred to
be energy conserving and therefore to be symmetric in time, which is the case here.
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Using the same method for Eq. (5.51b) gives

ϕ(0)
c = −G

∑
A

m0
Aα

0
A

ρ̃A
. (5.56)

This were the solutions for 0PN, now we look at 1PN.

5.4.2 Solving for 1PN order corrections

We start with the solution for the gi potential which is in the form of a Poisson equation

∆g
(0,0)
i = −4πG

∑
A

m0
Av

i
Aδ

(3)(x− xA(t)). (5.57)

Which can be solved directly with a Greens function Eq. (C.4)

g
(0,0)
i = G

∑
A

m0
Av

A
i

rA
. (5.58)

Secondly we look at the equations for U and φc at 1PN to zeroth order in λ(s).

�ηU
(1) = − 4πG

∑
A

(m0
Aα

0
Aϕ

(0)
c −m0

AU
(0) +m0

A

3

2
v2
A)δ(3)(x− xA(t))

− 4αf ′(ϕ0)(4U (0)4ϕ(0)
c − (∂i∂jU

(0))(∂i∂jδϕ
(0)
c )),

(5.59a)

�ηϕ
(1)
c = 4πG(

∑
A

δ(3)(x− xA(t))m0
A((α0

A)2 + β0
A)ϕ(0)

c

− α0
Am

0
AU

(0) − 1

2
α0
Am

0
Av

2
A)

− 2αf ′(ϕ0)
(
∂i∂jU

(0)∂i∂jU
(0) −4U (0)4U (0)

)
=4πG(

∑
A

δ(3)(x− xA(t))m0
A((α0

A)2 + β0
A)ϕ(0)

c

− α0
Am

0
AU

(0) − 1

2
α0
Am

0
Av

2
A)

+ 2αf ′(ϕ0)
(
4U (0)4U (0) − ∂i∂jU (0)∂i∂jU

(0)
)
.

(5.59b)

Substituting the 0PN solutions for U (0) from Eq. (5.55) and for ϕ(0)
c from Eq. (5.56),
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taking the lowest order term from 1/ρ̃A within these solutions

�ηU
(1) = − 4πG

∑
A

(m0
A

3

2
v2
A −G

∑
B 6=A

m0
B

rB
(1 + α0

Bα
0
A))δ(3)(x− xA(t))

− 4αf ′(ϕ0)G2
∑
B,A

m0
Am

0
Bα

0
A(∂iA∂A,i∂

j
B∂B,j − ∂A,i∂B,i∂A,j∂B,j)

1

rA

1

rB

= −4πG
∑
A

(m0
A

3

2
v2
A −G

∑
B 6=A

m0
B

rB
(1 + α0

Bα
0
A))δ(3)(x− xA(t))

− 4αf ′(ϕ0)G2
∑
B,A

m0
Am

0
Bα

0
A4hAB,

(5.60a)

�ηϕ
(1)
c = 4πG(

∑
A

δ(3)(x− xA(t))α0
Am

0
A(−1

2
v2
A −G

∑
B 6=A

m0
B

rB
(1 + α0

Bα
0
A −

β0
Aα

0
B

α0
A

))

+ 2αf ′(ϕ0)G2
∑
B,A

m0
Am

0
Bα

0
A4hAB,

(5.60b)

using the definition [24]

4hAB = (∂iA∂A,i∂
j
B∂B,j − ∂A,i∂B,i∂A,j∂B,j)

1

rA

1

rB
. (5.61)

Applying the Greens function Eq. (C.11) with Eq. (5.54)

U (1) = G
∑
A

m0
A

ρ̃A
(
3

2
v2
A −G

∑
B 6=A

m0
B

rB
(1 + α0

Bα
0
A))− 4αf ′(ϕ0)G2

∑
B,A

m0
Am

0
Bα

0
AhAB(x)

(5.62a)

ϕ(1)
c = G

∑
A

m0
Aα

0
A

ρ̃A
(
1

2
v2
A +G

∑
B 6=A

m0
B

rB
(1 + α0

Bα
0
A −

β0
Aα

0
B

α0
A

)) + 2αf ′(ϕ0)G2
∑
B,A

m0
Am

0
Bα

0
AhAB(x)

(5.62b)

Next, we consider separately at the equation first order in λ(s), substituting the 0PN solution
Eq. (5.56)

�ηϕ
(1)
c = 4πG(

∑
A

λ
(s)
A δ(3)(x− xA(t))�ϕ(0)

c )

= 16π2G2(
∑
A

λ
(s)
A δ(3)(x− xA(t))(

∑
B 6=A

δ(3)(x− xB(t))α0
Bm

0
B)

(5.63)

When the term with the product of delta functions is convoluted with the Greens function,
this term will always give zero if xA 6= xB, which is the case for two black holes which are
not at the same position. Thus it does not contribute to our solution of the scalar field up
to 1PN.
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5.4.3 Solutions for the potentials and scalar field up to 1PN

Substituting the solutions obtained from the order by oder expansion discussed above gives
the following fields

U

c2
= ε1

c

U (0)

c2
+
U (1)

c4

=
G

c4

∑
A

m0
A

ρ̃A
(c2 +

3

2
v2
A −G

∑
B 6=A

m0
B

rB
(1 + α0

Bα
0
A))− 4α

f ′(ϕ0)

c4
G2
∑
B,A

m0
Am

0
Bα

0
AhAB(x),

(5.64)

gi
c3

=
g

(0)
i

c3
= G

∑
A

m0
Av

A
i

rA
, (5.65)

ϕ = ϕ0 +
ϕc
c2

= ϕ0 + ε1
c

ϕ
(0)
c

c2
+ ε2

c

ϕ
(1)
c

c4

= ϕ0 −
G

c4

∑
A

m0
Aα

0
A

ρ̃A
(c2 − 1

2
v2
A −G

∑
B 6=A

m0
B

rB
(1 + α0

Bα
0
A −

β0
Aα

0
B

α0
A

))

+ 2α
f ′(ϕ0)

c4
G2
∑
B,A

m0
Am

0
Bα

0
AhAB(x).

(5.66)

These solutions correspond to the 1PN near zone fields calculated in [24].

5.4.4 Motivation expansion method and generalization for tidal perturbations

Before we continue with the calculation of the 2 body Lagrangian we first elaborate on the
choice for performing the PN expansion by explicitly tracking factors of 1/c2 as this is not
necessarily convention.

This choice solves the following ambiguities that arise otherwise. In the expansion of the
terms in the EOMs, the terms proportional to U and the scalar field in the expressions
should be treated as first order, so when solving the EOMS order by order, you can plug in
the zeroth order solutions in these terms. Furthermore, it is the contribution −1 from the
PN metric expansion Eq. (2.81) that results in the 0th order equation of motion. There is
therefore some conflict, the two terms in g00 up to 1PN are treated as two different orders,
although it is defined as a whole as 0PN.
This can be resolved by saying that U at lowest order inherently carries a 1PN order, which
is done in [24]. The confusing thing about this is that the GB term proportional to α in for
example the equation of motion of R00 from Eq. (5.33) is proportional to4U4ϕ−∂ijU∂ijϕ
at lowest order. This product of the two fields which both carry inherently an order of 1PN
would make it total a second order term, however it is still part of the 1PN solution.
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In this way it also seems odd to talk about the 0PN solution for U as the U in this case
would carry the 1PN order. The nice thing about including the factors of c and tracking
them is that the prefactor of the terms linear in the fields carries a factor of 1/c2 and the GB
term does not. As the two fields at lowest order carry a factor of 1/c2, this guarantees that
the factors of c in all these terms are equal and can all be treated as 1PN. Also automatically
you treat the −1 and 2U/c2 in g00 as different orders.

When considering the solution for the scalar field to linear order in the tidal deformability
in Eq. (5.63) we found that to 1PN order this contribution vanishes. This is a consequence
of the skeletonization approach we discussed in section 5.1.1. The tidal effects to this order
are decoupled from the near zone fields and need to be included separately, as we will see
in the next section when calculating the Lagrangian. It would have been interesting to
derive this from scratch using a more general expansion framework. This can be done
by expanding the fields first for small tidal perturbations with εtid followed by the PN
expansion, e.g. for the scalar field

ϕ = ϕ(0) + εtidϕ
(1) +O(ε2

tid), (5.67)

with ϕ(k) ∝ λk(s). Each of the tidal expansion coefficients ϕ(0) and ϕ(1) is further expanded
in a PN approximation to 1PN order. For ϕ(0) this is

ϕ(0) = ϕ(0,0) + ε1
PNϕ

(0,1) +O(ε2
PN), (5.68)

with ϕ(k,l) ∝ λks(
v2

c2
)l. By substituting these expansions of the fields in the expressions of the

EOMs Eq. (5.19), Eq. (5.33) and Eq. (5.41), one can again solve the differential equations
per expansion order using similar methods as in previous section. This time additional
terms of the tidal expansion of the fields would arise. To 1PN order this still should result
in a vanishing contribution as this is a property of the skeletonization, but we leave it for
future work to show this explicitly.

5.5 The 2 body Lagrangian up to leading PN order

With the expressions for the fields up to 1PN we can calculate important quantities such as
the acceleration and binding energy regarding the dynamics of the binary system. Up till
now we kept the number of bodies general by expressing everything in a sum over the par-
ticles A. Now we specify to a two body system and we start by calculating the Lagrangian.

For the Lagrangian of particle A in the field of a point particle B we assume: the mass
of the test particle to be zero mA = 0 and rA = rB = |xA − xB| ≡ r (and consequently
nA = −nB = (rA − rB) /r ≡ n). The Lagrangian is given by

LA =
dSA
dt

+
dStidal
dt

. (5.69)
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With the action expanded up to 1PN for the metric components using Eq. (2.81)

SA = −mA(ϕ)c2

∫
dt

√
−gµν

dxµA
dt

dxνA
dt

≈ −mA(ϕ)c2

∫
dt

√
1− 2U

c2
+

8g
(0)
i

c3

via
c
− v2

a

c2
− 2U (0)

c2

v2
a

c2

≈ −mA(ϕ)c2

∫
dt(1− U

c2
+

4g
(0)
i

c3

via
c
− 1

2

v2
a

c2
+

1

2

(U (0))2

c4
− 3

2

U (0)v2
a

c4
− 1

8

v4
a

c4
).

(5.70)

In the latter equation we Taylor expanded the squareroot. Then we have, using the expan-
sion of m(ϕ) Eq. (5.22)

dSA
dt

= −m0
Ac

2

[
1 + α0

A

ϕc
c2

+
1

2

(
α0
A

2 + β0
A

) (ϕ
(0)
c )2

c4
− U

c2
+

4g
(0)
i

c3

via
c

−1

2

v2
a

c2
+

1

2

(U (0))2

c4
]− 3

2

U (0)v2
a

c4
− 1

8

v4
a

c4
− α0

A

U (0)ϕ
(0)
c

c4
− α0

A

v2
aϕ

(0)
c

c4

]
.

(5.71)

Furthermore in the two body case we can rewrite the expression of ρ̃ as follows

d

dt
(n · vA) =

1

r
[v · vA − (n · vA) (n · v)] + n · aA

So,
1

ρ̃A
≡ 1

rA

[
1 +

1

2c2
(v2

A − (nA · vA))2

]
+

1

2c2
nA · aA

=
1

r

[
1 +

1

2c2
(vA · vB − (n · vA) (n · vB))

]
+

1

2c2

d

dt
(n · vA) .

(5.72)

In the integration the total derivative term will be integrated out. Therefore we have
1/ρ̃A = 1/ρ̃B = 1/ρ̃.

Then writing down the different terms for particle A in the field of B that contribute to the
action Eq. (5.71) up to 1PN contains using above expression for ρ̃ Eq. (5.72)

U

c2
=
Gm0

B

c4r
(c2 +

1

2
(vA · vB)− 1

2
(n · vA)(n · vB)− 3

2
v2
B)− 4α

f ′(ϕ0)

c4
G2(m0

B)2α0
BhBB(x),

(5.73a)
ϕc
c2

=
−Gm0

Bα
0
B

c4r
(c2 − 1

2
(vA · vB)− 1

2
(n · vA)(n · vB)− 1

2
v2
B) +

2αf ′(ϕ0)G2(m0
B)2

c4
hBB(x).

(5.73b)
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And for the order O(1/c4) terms

ϕ
(00)
c

2

c4
=

1

c4

G2(m0
Bα

0
B)2

r2
, (5.74a)

4g
(0,0)
i viA
c4

=
4

c4

Gm0
BvB · vA
r

, (5.74b)

1

2

(U (0,0))2

c4
=

1

2c4

G2(m0
B)2

r2
, (5.74c)

−3

2

U (0,0)v2
A

c4
= −3

2

1

c4
G
m0
Bv

2
A

r
, (5.74d)

−α0
A

U (0,0)ϕ
(00)
c

c4
=
α0
A

c4

G2(m0
B)2α0

B

r2
, (5.74e)

−α0
A

v2
Aϕ

(00)
c

c4
= α0

Av
2
AG

m0
Bα

0
B

rc4
. (5.74f)

Furthermore we use for the Greens function as shown in [24](correcting a minus sign typo)

hBB = − 1

2r4
. (5.75)

Substituting this all in Eq. (5.71) gives

dSA
dt

= −mAc
2

[
1− 1

2

v2
A

c2
− 1

8

v4
A

c4
− m0

BG

rc4

(
c2 +

3

2
v2
B +

1

2
(vA · vB)− 1

2
(n · vA)(n · vB)

+ α0
Aα

0
B

(
c2 − 1

2
v2
B +

1

2
(vA · vB)− 1

2
(n · vA)(n · vB)

)
− 4(vA · vB) +

3

2
v2
A −

1

2
α0
Aα

0
Bv

2
A

)
+
G2(m0

B)2

c4r2

(
1

2
+

1

2
((α0

A)2 + β0
A)(α0

B)2 + α0
Aα

0
B

)
− (α0

A + 2α0
B)
αf ′(ϕ0)(m0

B)2G2

c4r4

]
.

(5.76)
For the action regarding the tidal Eq. (4.24) we have using Eq. (2.81) and Eq. (5.18)

dStidal
dt

= −1

2
cλ

(s)
B

√
−gαβ

dxαB
dt

dxβB
dt

gµν∂µ
ϕ

(0)
c

c2
∂ν
ϕ

(0)
c

c2

= −1

2
cλ

(s)
B

√
c2(1− U (0)

c2
− v2

B

2c2
)[−e

2U
c2 (∂0

ϕ
(0)
c

c2
)2 + e

−2U

c2 (∇ϕ
(0)
c

c2
)2]

= −1

2
λ

(s)
B c2(∇ϕ

(0)
c

c2
)2,

(5.77)

to lowest order. Using our lowest order solution for ϕc
c2

from Eq. (5.56) this results in

(∇ϕc
c2

)2 = G2 (m0
Aα

0
A)2

c4r4
. (5.78)
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Combining Eq. (5.69), Eq. (5.76) and Eq. (5.77) we derive for the the Lagrangian for
particle A

LA = −m0
Ac

2 +
1

2
m0
Av

2
A +

1

8c2
m0
Av

4
A +

Gm0
Am

0
B

c2r
(c2 +

3

2
v2
B +

1

2
(vA · vB)− 1

2
(n · vA)(n · vB)

+ α0
Aα

0
B(c2 − 1

2
v2
B +

1

2
(vA · vB)− 1

2
(n · vA)(n · vB))− 4(vA · vB) +

3

2
v2
A −

1

2
α0
Aα

0
Bv

2
A)

− G2m0
A(m0

B)2

c2r2
(
1

2
+

1

2
((α0

A)2 + β0
A)(α0

B)2 + α0
Aα

0
B) +

αf ′(ϕ0)G2m0
A(m0

B)2

c2r4
(α0

A + 2α0
B)

− 1

2
λ

(s)
A

G2(m0
Bα

0
B)2

c2r4

(5.79)
For constructing total Lagrangian of the two body system we add the contribution from
body B, which has the same functional form as Eq. (5.5) but with indices A and B inter-
changed. We introduce the the expressions

ᾱ = 1 + α0
Aα

0
B, γ̄ = − 2α0

Aα
0
B

1 + α0
Aα

0
B

,

β̄A =
β0
A(α0

B)2

2(1 + α0
Aα

0
B)2

, δ̄A =
α0
B + 2α0

A

(1 + α0
Aα

0
B)2

,

m = mA +mB, µ =
mAmB

m
.

(5.80)

with for the scalar charges to lowest order, the solution is calculated in [24], given by

α0
A = − αf

′(ϕ0)c4

2G2(m0
A)2

,

β0
A = −αf

′′(ϕ0)c4

2G2(m0
A)2

.

(5.81)

And for the terms proportional to the tidal deformability λ(s) we define

ζ ≡ λ
(s)
A

m0
Bα

0
B

2

ᾱ2m0
A

+ λ
(s)
B

m0
Aα

0
A

2

ᾱ2m0
B

, (5.82)

which can be used to rewrite the term in proportional to the tidal effects, which we will
name Ltid

Ltid =
1

2

G2

c2
(λ

(s)
A

(m0
Bα

0
B)2

r4
+ λ

(s)
B

(m0
Aα

0
A)2

r4
)

=
1

2

G2ᾱ2m0
Am

0
B

c2r4
(λ

(s)
A

m0
B(α0

B)2

ᾱ2m0
A

+ λ
(s)
B

m0
A(α0

A)2

ᾱ2m0
B

)

=
1

2

G2ᾱ2µm

r4c2
ζ.

(5.83)
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Our total two body Lagriangian is given by

L = Lorbit + Ltid

= −m0
Ac

2 −m0
Bc

2 +
1

2
m0
Av

2
A +

1

2
m0
Bv

2
B +

ᾱGm0
Am

0
B

r
+

1

8c2
m0
Av

4
A +

1

8c2
m0
Bv

4
B

+
ᾱGm0

Am
0
B

2c2r
(3(v2

A + v2
B)− 7(vA · vB)− (n · vA)(n · vB) + 2γ̄(vA − vB)2)

− ᾱ2G2m0
Am

0
B

2r2c2
(m0

A(1 + 2β̄B) +m2
B(1 + 2β̄A)) +

αf ′(ϕ0)ᾱ2G2m0
Am

0
B

c2r4
(m0

Aδ̄A +m0
B δ̄B)

− 1

2

G2ᾱ2µm

r4c2
ζ.

(5.84)
In the first two and a half lines this Lagrangian contains 0PN and 1PN order GR terms
for ᾱ = 1 concerning the kinetic energy terms and gravitational energy terms. With the
O(c2) + O(c0) order terms being the Newtonian; 0PN contributions and the O(1/c2) or-
der terms, the 1PN GR corrections. The term proportional to the coupling constant is the
purely GB related term and thus comes in at 1PN. The last term proportional to ζ is due
to the inclusion of the tidal action and also comes in at 1PN. We also note that the scaling
with r of the GB and tidal term is the same, however, they contribute with a different sign
so their effects are opposite.

This result up to the tidal terms corresponds to the result of the two body Lagrangian in
[24]. In [17] the GB term has a minus sign as this expression was calculated with a typo
in the Greens function from [24], which we corrected in Eq. (5.75).

5.6 Relative acceleration

Now we will look into calculating several properties of the dynamics. We start with the
relative acceleration of the two bodies.
One can derive the relative acceleration from the Euler Lagrange equations

1

m0
A

∂L
∂xA

− 1

m0
B

∂L
∂xB

=
1

m0
A

d

dt

∂L
∂vA

− 1

m0
B

d

dt

∂L
∂vB

. (5.85)

Calculating these derivatives is a straightforward but a bit tedious because of the long
expressions. Therefore this part is moved to Appendix B. Here we will look only at the
results for the acceleration

a = −Gᾱmn

r2
+
Gᾱm

c2r2

{
n

[
3

2
ηṙ2 − (1 + 3η + γ̄)v2

]
+ 2vṙ[2− η + γ̄]

+
2Gᾱmn

r

[
2 + η + γ̄ + β+ −

∆m

m
β− −

2αf ′ (ϕ0)

ᾱ3/2r2

(
3S+ +

∆m

m
S−

)
+

ζ

mr2

]}
,

(5.86)
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using the definitions

S± ≡
α0
A ± α0

B

2
√
α

, β± ≡
β̄A ± β̄B

2
,

η ≡ m0
Am

0
B

m2
, ∆m ≡ m0

A −m0
B.

(5.87)

Now to simplify this expression we make the assumption that the orbits are approximately
circular. For a later moment in the inspiral this is a valid approximation, non circular
motions get removed from the orbits by dissipative effects of the GWs [25]. During the
inspiral the relative distance shrinks much more slowly than the orbital period and one can
in general assume it to be constant over an orbit. This assumption is defined as

ṙ = n · v = 0 and r̈ =
1

r

[
a · r + v2 − (n · v)2

]
= 0

−→ v2 = −a · r ≈ Gᾱm

r
+O(1/c2).

(5.88)

The relative acceleration becomes

a = −Gᾱmn

r2
+
Gᾱm

c2r2

{
n

[
−(1 + 3η + γ̄)

Gᾱm

r

]
+

2Gᾱmn

r

[
2 + η + γ̄ + β+ −

∆m

m
β− −

2αf ′ (ϕ0)

ᾱ3/2r2

(
3S+ +

∆m

m
S−

)
+

ζ

mr2

]}
.

(5.89)

Then using w2 = v2

r2
= −a·r

r2
we have for the angular frequency

w2 =
Gᾱm

r3

{
1− Gᾱm

rc2

[
3− η + γ̄ + 2β+ − 2

∆m

m
β− −

4αf ′ (ϕ0)

ᾱ3/2r2

(
3S+ +

∆m

m
S−

)
+

2ζ

mr2

]}
.

(5.90)
As the information about the binary system comes from GWs, it is most convenient to ex-
press for example the binding energy or the phase in terms of the angular frequency, which
we can deduce from the waves instead of the distance r. Also is the distance r a gauge
dependent quantity. For this we can use above relation for the angular frequency which we
can invert perturbatively in r in the following way.

We want to invert this expansion up to 1PN order, or factor 1/c2. Say that we have the
following ansatz for r(w) up to 1PN

r = r0(1 +
r1

c2
). (5.91)

Substituting this ansatz in Eq. (5.90) and expanding up to 1/c2 gives

w2 =
Gᾱm

r3
0

+
1

c2

(
−3Gᾱmr1

r3
0

− Gᾱm

r4
0

[
3− η + γ̄ + 2β+ − 2

∆m

m
β−

−4αf ′ (ϕ0)

ᾱ3/2r2
0

(
3S+ +

∆m

m
S−

)
+

2ζ

mr2
0

]
.

(5.92)
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Equating the lowest order terms results in

w2 =
Gᾱm

r3
0

−→ r0 =

(
Gᾱm

w2

)1/3

. (5.93)

Equating the second order terms gives

0 =
1

c2

(
−3Gᾱmr1

r3
0

− Gᾱm

r4
0

[
3− η + γ̄ + 2β+ − 2

∆m

m
β− −

4αf ′ (ϕ0)

ᾱ3/2r2
0

(
3S+ +

∆m

m
S−

)
+

2ζ

mr2
0

])
.

(5.94)
Solving this for r1

r1 =
−Gᾱm

3r0

[
3− η + γ̄ + 2β+ − 2

∆m

m
β− −

4αf ′ (ϕ0)

ᾱ3/2r2
0

(
3S+ +

∆m

m
S−

)
+

2ζ

mr2
0

]
(5.95)

Resulting in the inverted expression

r(w) = r0(1 +
r1

c2
) =

(
Gᾱm

w2

)1/3(
1− (Gᾱw)2/3

3c2

[
3− η + γ̄ + 2β+ − 2

∆m

m
β−

−4αf ′ (ϕ0)w2

c2ᾱ3/2

(
S+ +

∆m

3m
S−

)
− 2ζw2

3c2m

]
= (

ᾱGm

w2
)1/3 − Gᾱm

c2
(1 +

γ̄

3
− η

3
+

2β+

3
− 2∆m

3m
β−) + (

Gmw4

ᾱ7/2
)1/3 4αf ′[ϕ0]

c2
(S+ +

∆m

3m
S−)

− (
Gᾱw4

m2
)1/3 2ζ

3c2
.

(5.96)

5.7 The binding energy

One can derive the energy from the Lagrangian with a Lagrange transformation

E =
n∑
i=1

q̇i
∂L
∂q̇i
− L. (5.97)

So in our case
E = vA

∂L
∂vA

+ vB
∂L
∂vB

− L. (5.98)

Calculating the derivatives to the velocity of Eq. (5.84)

∂L
∂vA

= m0
AvA +

1

2
m0
Av

3
A +

Gᾱm0
Am

0
B

2c2r
[6vA − 7vB − n (n · vB) + 4γ̄ (vA − vB)] , (5.99)

and for ∂L
∂vA

the same expression with A↔ B.
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Filling in Eq. (5.98)

E = m0
Ac

2 +m0
Bc

2 +
1

2
m0
Av

2
A +

1

2
m0
Bv

2
B −

Gᾱm0
Am

0
B
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+

3

8
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Av

4
A +

3

8
m0
Bv

4
B

− Gᾱm0
Am

0
B

2c2r
[−3(v2

A + v2
B) + 7(vA · vB) + (n · vA)(n · vB)− 2γ̄(vA − vB)2]

+
ᾱ2G2m0

Am
0
B

2r2c2
(m0

A(1 + 2β̄B) +m2
B(1 + 2β̄A))− αf ′(ϕ0)ᾱ2G2m0
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0
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c2r4
(m0

Aδ̄A +m0
B δ̄B)

+
1

2

G2ᾱ2µm

r4c2
ζ.

(5.100)
Now we switch to CM frame, to lowest order approximation20 the coordinates in this frame
are

xA ≈
m0
B

m
r, xB ≈ −

m0
A

m
r,

vA ≈
m0
B

m
v, vB ≈ −

m0
A

m
v.

(5.101)

Thus in the CM frame the expression is given by
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2 +m0
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2 +
1

2
µv2 − Gᾱm0
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+
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8
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G2ᾱ2µm
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(5.102)
Using ṙ = (v · r)/r = n · v together with Eq. (5.87) and Eq. (5.80) this reduces to

E = mc2 + µ

[
1

2
v2 − Gᾱm

r
+

3

8c2
(1− 3η)v4 +

Gᾱm

2c2r
[(3 + η + 2γ̄)v2 + ηṙ2]

+
ᾱ2G2m2

r2c2
(
1

2
+ β+ −

∆m

m
β−)− αf ′(ϕ0)

√
ᾱG2m2

c2r4

(
3S+ +

∆m

m
S−

)
+

1

2

G2ᾱ2m

r4c2
ζ

]
.

(5.103)

Writing this in terms of the angular frequency we can substitute for r the relation Eq.
(5.96). Then using the dimensionless PN counting parameter which depends on the angu-
lar frequency

x =

(
Gᾱmω

c3

)2/3

, (5.104)

20In section 7.2 we discuss the calculation of the CM coordinates up to 1PN. We find that the next terms
in Eq. (7.14) and Eq. (7.16) are of order 1PN, as v in the binding energy always comes as the square or to
the fourth power, substituting these higher order terms would give terms of 2PN order or higher which we
do not consider here.
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the binding energy becomes

E(x) = −µc
2x

2

(
1 + x

[
−3

4
− η

12
− 2

3
γ̄ +

2

3
β+ −

2

3

∆m

m
β− −
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3

c4αf ′(ϕ0)

G2ᾱ7/2)m2
x2

(
3S+ +

∆m

m
S−

)
+

5

3

c4ζ

G2m3ᾱ2
x2

])
.

(5.105)
This result differs slightly from [17] as the GB term has a minus sign in the brackets com-
pared to the plus in this paper, this was due to the typo in [48] already mentioned when
discussing the two body Lagrangian. Furthermore, our result here corrects the numerical
prefactor to be 10

3
instead of 22

3
as in [17].

5.8 Binding energy analysis

With the expression of the binding energy up to 1PN we can already analyze the effects
of the tidal contributions on the dynamics and their dependence on the parameters. The
change in binding energy during the coalescence event does work through in the radia-
tion signal, but it is not an observable that is measured. However it is interesting for the
comparison with numerical relativity simulations. As the binding energy as function of the
frequency is a gauge independent quantity, it is interesting on its own right to study its
features, in section 7.5 we will see how the binding energy dependencies work through in
the GW phase evolution.

The tidal term ζ depends on the tidal deformability parameter λs. In the next section 6 we
show that it is given by

λ(s) =
7

6
mBHαf

′′ (ϕ∞) , (5.106)

with mBH the mass of the black hole in the binary, furthermore depending linearly on
the coupling constant and the second derivative of the coupling function evaluated at the
scalar field at infinity. We set the scalar field at infinity to zero which is equal to the back-
ground field ϕ∞ = ϕ0 = 0. As discussed in section 3.3 there are different types of coupling
functions that are commonly used. For including tidal effects, the second derivative of the
coupling function evaluated at the scalar field at infinity should not be zero as follows from
Eq. (5.106). This is the case for exponential, quadratic and Gaussian coupling functions.
Other effects from the scalar field and the GB nonlinear curvature contributions depend on
the scalar charge Eq. (5.81), which depends again on the first derivative of the coupling
function. Non vanishing first derivative at ϕ0 is only the case for linear and exponential
coupling. The only choice for which both effects are present simultaneously is an exponen-
tial coupling resulting in EdGB with coupling function f(ϕ) = 1

4
e2ϕ.

We are interested in the contribution of the term in Eq. (5.105) proportional to ζ relative
to the GB term proportional to α and their total contribution with respect to the GR case.
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The binding energy in GR is recovered from Eq. (5.105) for zero coupling

EGR(x) = −µc
2x

2

(
1 + x

[
−3

4
− η

12

])
. (5.107)

First we compare the tidal and GB term. In Eq. (5.105) they have opposite sign. All the
terms are positive except for the terms depending on the scalar charge and its derivative
which are defined with a minus sign, see Eq. (5.81). Therefore S+ and S− are negative,
canceling the minus sign in front of the GB term, while ζ depends only on the square of
the scalar charge, hence no sign change occurs in the tidal term. Therefore in the end the
contribution of the tidal term and Gauss Bonnet term is both additive (or substractive as
the binding energy is defined with an overall minus sign).
From Eq. (5.105) we can also see that both terms have the same scaling with x from Eq.
(5.104). Rewriting this PN parameter in terms of the frequency using w = πf21 Thus also
the same scaling with the orbital frequency. We find the same scaling with total mass as
well. We do find a different dependence on the coupling constant α and the mass ratio
q = mA

mB
. We plot the contours of the ratio of the term proportional to ζ in Eq. (5.105)

and the term proportional to α, showing the dependencies on the mass ratio and coupling
constant, see Fig. 13.

21For GWs holds wGW = 2worbital in the adiabatic and quadrupolar approximation.
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Figure 13: Contour values of the ratio Ebinding,ζ
Ebinding,GB

for different values of the coupling con-
stant, here given in the squareroot corresponding to how the bounds on this parameter
are set, and the mass ratio q = mA

mB
. Furthermore setting f [ϕ] = 1

4
e2ϕ, m = 15M�, at a

frequency of f ≈ 586Hz corresponding to the ISCO frequency22

As the values of these contours in Fig. 13 are positive, the sign of the tidal and GB term
in the binding energy are indeed the same. From the values we can also see that the tidal
term is about a factor 10−2 − 10−3 smaller than the GB term. While the extra contribution
from the tidal term to the binding energy is quite small, it can nevertheless be significant
in the GW signal as differences are accumulated in the phase during the inspiral. We can
see that for a small value of the mass ratio and a larger coupling constant the value of
the energy ratio is highest. However our current upperbound for the coupling constant is
around ≈ 1km, this in the lower section of this plot, however in this analysis the focus lies
at gaining intuition on the parameter dependencies.

Next we analyse the total binding energy, compared to the binding energy in GR, see Fig.
14

22This frequency corresponds to the frequency at the radius of the ISCO which is a proxy for the end of the
inspiral.
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Figure 14: The absolute value of the difference between the binding energy in EdGB gravity
and GR as a function of the GW frequency. The red line with tidal contribution and the
orange line without. The inset shows a magnified part of frequency range 380-390Hz.
Again setting f [ϕ] = 1

4
e2ϕ, m = 15M�, q = 1

2
and
√
α = 1.7× 103km.

In general we see that the difference in binding energies becomes larger for larger frequen-
cies. The difference when including the tidal effects is very small and can only be seen in
the inset. If we subtract both lines we find the results shown in Fig. 15 for different mass
ratios.
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Figure 15: The absolute value of the difference between the binding energy in EdGB gravity
with tidal effects and GR minus the difference without tidal effects for different mass ratios.
Again setting f [ϕ] = 1

4
e2ϕ, m = 15M�, q = 1

2
and
√
α = 1.7× 103km.

From this plot we see that the difference with GR by including tidal effects on top of the
GB corrections is larger for smaller values of q as corresponding with the results shown in
Fig. 13.
From this we can conclude that we see some non trivial effects in the binding energy from
including the tidal term. The scaling with the frequency and total mass is degenerate with
the scaling of the GB terms but has different dependencies on the coupling constant and
mass ratios. Larger α and smaller q result in the largest differences from the GR values.
The effects are however very small but we can not conclude from this how significant the
effects will be in the gravitational radiation signal, that we will analyse in section 7.5.
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6 Tidal deformability calculation

In this part we focus on calculating the strength of the response of our scalar field ϕ around
one of the black holes in the binary to the gradient of the scalar field of the companion black
hole; the scalar tidal field. This strength is given by the scalar tidal deformability parameter
λ(s) as we have seen in section 4. We start with the equation of motion of our scalar field
of the scalarized black hole

�ϕ =
4πG

c4
µs, (6.1)

with the source term given by

µs =
−δSm√
−gδϕ

− c4

16πG
αf ′(ϕ)R2

GB. (6.2)

The wave equations we encountered in linearized gravity in Eq. (2.30) and the gothic for-
mulation in Eq. (2.58) had a flat space d’Alembertian operator and we could therefore use
a Greens function to write it in an integral form. In Eq. (6.1) we are not in the gothic for-
mulation and the d’Alembertian is still general. As an instructive example, we do assume
we have a flat spacetime background for the following discussion.

In the case of a flat background we can invert the d’Alembertian operator with the retarded
Greens function Eq. (C.10a)

ϕ =
−G
c4

∫
µs (τ,x′)

|x− x′|
d3x′, (6.3)

where the delta function was already evaluated making τ the retarded time. We can write
this in a multipole expansion framework similar as for the Newtonian potential Eq. (4.3)
as we are dealing again with a scalar quantity. In this case we keep the expansion to all
orders.
If we are in a position far away from the source x � x′, we can do the following Taylor
expansion

1

|x− x′|
=

1

r
+
nixi

r2
+

3

2

ninj − δij/3
r3

xix′j + . . .

=
∞∑
l=0

1

rl+1

(2l − 1)!!

l!
n<L>x′<L>,

(6.4)

which is the same as Eq. (4.2) but to general order. As ninj − δij

3
removes the trace of

ninj which is also symmetric in its indices, from these unit vectors the STF part is taken.
This can also be done for the higher order terms. The L summation denotes the product
corresponding with dimensionality l. Substituting this in Eq. (6.3) gives the asymptotic
expansion of the scalar field

ϕ =
G

c4

∫ ∞∑
l=0

1

rl+1

(2l − 1)!!

l!
n<L>x′<L>µs (τ,x′) d3x′. (6.5)
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We define the "mass" monopole and higher order multipoles as

m(s) = −
∫
d4x′µ(τ,x′),

Q
(s)
L = −

∫
d4x′µ(τ,x′)x′<L>.

(6.6)

Hence our asymptotic scalar field can be written in the multipole expansion

ϕ =
G

c4

m(s)

r
+
G

c4

∞∑
l=1

(2l − 1)!!

l!

1

rl+1
n<L>Q

(s)
<L>. (6.7)

Here we come back to the discussion on neutron stars having vanishing scalar hair for type
1 coupling functions in section 3.3.1. The scalar charge is defined as the coefficient scaling
as 1/r, so here this would be m(s). As this is the integral over the source from Eq. (6.2), we
see that this integral is over the GB invariant and over the matter action corresponding to
a point particle with scalar dependent mass varied with respect to the scalar field. Because
of this extra integral, the scalar charge for black holes non zero while for neutron stars it
vanishes.

We assume the black hole and its companion to be at large distance relative to each other.
Then we Taylor expand the scalar field of the companion that is felt by our black hole
around the origin

ϕext = ϕext |O +
∞∑
l=1

1

l!
x′
<L> ∂ϕext

∂x′<L>
|O

=
∞∑
l=1

1

l!
n<L>E (s)

<L>r
l,

(6.8)

with E the scalar tidal field defined in Eq. (4.22). This tidal field influences the multipoles
of the scalar field. If we assume we have a scalarized black hole with scalar field back-
ground ϕB given by Eq. (6.5) which is placed in the scalar field of an external source the
scalar field can be described as follows with the effect of the tidal field on the multipole
structure

lim
r→∞

ϕ = ϕB + εtid

∞∑
`=1

[
(2`− 1)!!

`!

Gn<L>Qs
<L>

c4r`+1
− 1

`!
n<L>r`Es<L>

]
. (6.9)

We express the tidal perturbations with dimensionless parameter εtid. In this section we will
not track explicitly the PN factors or factors of 1/c2 as in section 5 as we are not explicitly
doing a PN expansion. For lowest order this reduces to the dipole moments

lim
r→∞

ϕ ∼ . . .+ εtid

[
GniQs

i

c2r2
+O

(
r−3
)
− rniEsi +O

(
r2
)]

∼ . . .+ εtid

1∑
m=−1

Y1m

[
GQ̃1m

c2r2
− rẼ1m + . . .

]
.

(6.10)
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In the last line we switched from Cartesian basis with the STF tensors forming the complete
basis structure to a spherical harmonic basis using

Qs
in

i =
1∑

m=−1

Q̃1mY1m, (6.11)

which in general holds for STF vectors and tensors contracted with higher powers of n[99].
As we have seen in section 4 in the adiabatic limit the induced dipole moment is related to
the tidal field via

Qs
i = −λsEsi or Q̃s

i = −λsẼsi . (6.12)

To derive Eq. (6.10) we did an asymptotic expansion to very large distances. At far dis-
tances from the source we can assume spacetime to be flat therefore does this final asymp-
totic result also hold in the case of curved spacetime in the region near the source.

Now to calculate λ(s) we are solving the EOM of the scalar field for static perturbations
to the scalar field from the tidal field. We will solve for the dominant contribution of the
perturbations up to leading order in εtid. Then writing this solution in the asymptotic ex-
pansion which allows for reading of the expression for the induced dipole moment scaling
with 1

r2
and the tidal field scaling with r. Using the relation Eq. (6.12) results in the ex-

pression for the scalar tidal deformability.

We start again with the action and the EOM in Eq. (5.1), Eq. (5.6) and Eq. (5.10)
respectively. This time we do not include the matter related terms in the form of the
energy momentum tensor as we are purely interested in the reaction of the scalar field to
the tidal field and not in the generation of the field itself.
We would like to solve the EOM of the scalar field perturbatively. In GR the solution of the
Einstein equation for a static black hole is given by the Schwarzschild metric

ds2
Schwarzschild = −(1− u)c2dt2 +

1

1− u
dr2 + r2

(
dθ2 + sin2 θdφ2

)
, (6.13)

with
u =

rS
r
, rS =

2Gm

c2
. (6.14)

Here rS is the Schwarzschild radius (see Appendix D. We assume a small coupling limit, in
which the GB coupling parameter is small. It is more convenient to work with a dimension-
less version of the coupling constant by dividing the coupling constant by the characteristic
lenght scale in the system, the Schwarzschild radius

α̂ ≡ α

r2
S

� 1 ∝ εα̂, (6.15)

tracking this small coupling parameter with εα̂. Looking at the scalar field EOM in Eq.
(5.10) we can see that the solutions will be of order α̂ and thus the dominant tidal response
will come from linear order in this parameter. If we look at the gravitational EOM in Eq.
(5.6) all the terms on the RHS are of order α̂2 as they contain two derivatives of ϕ which
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is of linear order. Or when applying the chain rule on the derivatives on coupling function,
the GB term of order α̂ multiplied with two derivatives of the scalar field which is also of
order α̂. Hence at linear order in α̂ the GB terms in the gravitational field equations do not
play a role yet and we can take the GR Schwarzschild metric. This metric does not change
at this order.
In the Schwarzschild metric one can explicitly calculate the components of the curvature
tensors and hence the expression of the GB invariant which is given by

R2
GB =

48G2m2

c4r6
. (6.16)

In this metric the EOM becomes

�ϕ = −48G4m4α̂

c8r6
f ′(ϕ)εα̂. (6.17)

We expand the scalar field up to linear order in α̂

ϕ = ϕ(0) + εα̂ϕ
(1) +O

(
ε2
α̂

)
. (6.18)

Then we would also like to study the linear perturbation in the scalar field because of the
tidal effects. Thus we expand the scalar field also in a background part denoting with
the second superscript being 0 and a static (adiabatic limit) tidal perturbation with second
superscript being 1, tracking this expansion with small tidal perturbation parameter εtid.
As we are interested in the dominant effects we expand up to linear order

ϕ = ϕ(0,0) + εtidϕ
(0,1) + εα̂ϕ

(1,0) + εtidεα̂ϕ
(1,1) +O(ε2

tidε
2
α̂). (6.19)

Similar to the expansion of the scalar field in section 5 we substitute this expansion in the
EOM and equate the terms with the same expansion parameters using the Taylor expansion
for the coupling function

f ′(ϕ) = f ′(ϕ(0,0)) + f ′(ϕ(0,0))εα̂ϕ
(1,0) + f ′(ϕ(0,0))εtidϕ

(0,1) +O(ε2
α̂ε

2
tid) (6.20)

This results in the following equations

�ϕ(0,0) = 0, εα̂�ϕ
(1,0) = −48G4m4α̂

c8r6
f ′
(
ϕ(0,0)

)
εα̂

εtid�ϕ
(0,1) = 0, εtidεα̂�ϕ

(1,1) = −48G4m4α̂

c8r6
f ′′
(
ϕ(0,0)

)
ϕ(0,1)εtidεα̂,

(6.21)

where the box operator is the d’Alembertian which we can write out in coordinates as we
specify our metric being the Schwarzschild metric, as opposed to the flat space d’Alembertian
in section 5. As we are interested in the static solutions the operator reduces to the Lapla-
cian in the Schwarzschild metric

�ϕ(r, θ, φ) =

{
1

r2

[
1

sin2 θ

∂2

∂φ2
+

cos θ

sin θ

∂

∂θ
+

∂2

∂θ2

]
+

(
2

r
− 2Gm

r2c2

)
∂

∂r
+(

1− 2Gm

rc2

)
∂2

∂r2

}
ϕ(r, θ, φ).

(6.22)
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Solutions to these differential equations can be found with the method of separation of
variables in a spherical harmonic basis as they are defined as eigenfunctions of the angular
part of the laplacian. Therefore we start with the ansatz

ϕ = R(r)S(θ, φ) =
∑
`m

RlmYlm(θ, φ) =
∑
`m

Rlme−imφS`m(θ), (6.23)

with Ylm the spherical harmonics given by

Y`m(θ, φ) = e−imφS`m(θ). (6.24)

The θ dependent function has the following properties: S`m(θ) = N`mP`m(cos θ), with Plm
Legendre polynomials and N2

`m = (2`+ 1)(`−m)!/[4π(`+m)!], thereby holds the following
property for the derivative

∂2S`m
∂θ2

= −
[
`(`+ 1)− m2

sin2(θ)

]
S`m(θ)− cos θ

sin θ

∂S`m
∂θ

. (6.25)

These are standard properties of spherical harmonics.

6.1 Solution at O(ε0
tidε

0
α̂)

Plugging in the ansatz Eq. (6.23) in the 0th order differential equation and taking the
derivatives gives

− e−imφS`m(θ)

[
(
2Gm

rc2
− 1)R(0,0)′′

lm(r) + (
2Gm

r2c2
− 2

r
)R(0,0)′

lm(r) +
l(1 + l)

r2
R

(0,0)
lm (r)

]
= 0.

(6.26)
So we can divide by the φ and θ dependent terms and for convenience we rewrite the
coordinate r with Eq. (6.14)

(1− u)R
(0,0)′′
B`m (u)−R(0,0)′

`m (u)− `(`+ 1)

u2
R

(0,0)
`m (u) = 0. (6.27)

The solutions to this equation are the hypergeometric functions 2F1

R
(0,0)
lm = (−1)l

1

u
c1 2F1(−l;−l;−2l;u) + (−1)1+lu1+lc2 2F1(1 + l; 1 + l; 2 + 2l;u). (6.28)

As we are not considering any perturbations for this solution we are interested in the
ground-state solution for l = 0. The solution reduces to R00 = c1 + c2 log(1− u) but as the
log is divergent at the horizon u = 1, we have to set c2 = 0 to have a well defined solution.
Thus the solution for the scalar field becomes to this order

ϕ(0,0) = c1Y00 = c1
1

2
√
π

= ϕ∞, (6.29)

where we chose c1 = 2
√
πϕ∞ absorbing the numerical factors and making sure the solution

is equal to the field far from the source of the perturbations.
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6.2 Solution at O(ε0
tidε

1
α̂)

Substituting the ansatz Eq. (6.23) in the (1,0)th order differential equation and taking the
derivatives gives(

lSlm(θ)

r2
− l2Slm(θ)

r2

)
R

(1,0)
lm (r) +

(
−2GmSlm(θ)

c2r2
+

2Slm(θ)

r

)
R(1,0)′

lm(r)

+

(
Slm(θ)− 2GmSlm(θ)

c2r

)
R(1,0)′′

lm(r) =
48G4m4

c8r6
α̂f ′(ϕ(0,0)).

(6.30)

As the RHS has no angular dependence as we can use our previous solution Eq. (6.29)
as argument of the coupling function, we can set the indices l = m = 0 and putting the
equation again in terms of u gives

(1− u)R
(1,0)′′
00 (u)−R(1,0)′

00 (u) = −6
√
πu2α̂f ′ (ϕ∞) . (6.31)

Of which the solution is given by

R
(1,0)
00 = c2 + 2

√
π(u+

1

2
u2 +

1

3
u3)f ′(ϕ∞) + log[1− u](−c1 + 2

√
πα̂f ′(ϕ∞)). (6.32)

For a regular solution we choose c1 such that the log term vanishes. Also at infinity the
theory should reduce to GR again and thus should not have a contribution at this order.
Therefore we choose c2 = 0. Then for the total ϕ at this order we have

ϕ(1,0) = R
(1,0)
00 Y00 = α̂f ′ (ϕ∞)

(
u+

1

2
u2 +

1

3
u3

)
, (6.33)

hereby reproducing the result in [24].

So the total scalar field up to linear order in the coupling is given by

ϕbackground = ϕ∞ +
α

r2
S

f ′ (ϕ∞)

(
rS
r

+
1

2
(
rS
r

)2 +
1

3
(
rS
r

)3

)
, (6.34)

without any tidal perturbation. There is no angular dependence and radially the scalar
field scales as (assuming the scalar field at infinity to be zero) shown in Fig. 16.
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Figure 16: Radial profile of the unperturbed scalar field around a black hole as a function
of the radius in units of rS.

6.3 Solution at O(ε1
tidε

0
α̂)

Substituting in the ansatz Eq. (6.23) in the (0,1)th order differential equation and taking
the derivatives gives

e−imφSlm(θ)

(
− l
r

(1 + l)R
(1,0)
lm (r) + 2

(
1− Gm

c2r

)
R

(1,0)
lm

′(r) +

(
r − 2Gm

c2

)
R

(1,0)
lm

′′(r)

)
= 0.

(6.35)
Dividing by the angular terms again and expressing the equation in terms of u

(1− u)R
(1,0)
lm

′′(u)−R(1,0)
lm

′(u)− l(l + 1)

u2
R

(1,0)
lm (u) = 0. (6.36)

Which again has the solution with the hypergeometric functions 2F1 but this time with the
argument 1 + 2l compared to Eq. (6.28). As we are interested in the first order tidal effects
corresponding to the dipole we can set l = 1 to obtain explicitly

R01
1m =

(−2 + u)c1 + 4c2

u
− (−2 + u)c2 log[1− u]

u
. (6.37)

Setting c2 = 0 to eliminate the log due to the boundary condition that the solution mucht
be regular at the horizon at u = 1. We rename the constant c1 = c10. So we have for ϕ

ϕ(1,0) =
1∑

m=−1

R
(0,1)
1m Y1m =

1∑
m=−1

c1(1− 2

u
)Y1m. (6.38)
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6.4 Solution at O(ε1
tidε

1
α̂)

Next substituting the ansatz Eq. (6.23) in the (1,1)th order differential equation and taking
the derivatives gives

e−imφSlm(θ)

(
− l(1 + l)

r2
R

(1,1)
lm (r) + 2(

1

r
− Gm

c2r2
)R

(1,1)
lm

′(r) + (1− 2Gm

c2r
)R

(1,1)
lm

′′(r)

)
= −48G4m4α̂

c8r6
f ′′(ϕ∞)e−imφSlm(θ)R

(0,1)
lm .

(6.39)

Dividing by the angular terms and rewriting everything in terms of u

(1− u)R11′′
1m (u)−R11′

1m(u)− 2

u2
R11

1m = −3u2f ′′ (ϕ∞)R01
1m(u). (6.40)

Substituting the previous solution Eq. (6.37) and solving gives

R
(1,1)
1m = −(−2 + u)log[1− u](c2 − 7c10f

′′(ϕ∞)

u
+

6(−2 + u)c1 + 24c2 + c1u(84− 7u2 + 2u3)f ′′(ϕ∞)

6u
(6.41)

We take the constant c2 again so the log vanishes. This results in

R11
1m = [c1 − 14c10f

′′ (ϕ∞)]

(
1− 2

u

)
+

1

3
c10f

′′ (ϕ∞)

(
−7

2
u2 + u3

)
. (6.42)

Here the first term has the same structure as the O(ε1
tidε

0
α̂) solution Eq. (6.38) correspond-

ing to an external field. We are interested in the tidal field of order ε1
α̂, therefore we set this

first term to zero fixing c1.

ϕ(1,1) =
1∑

m=−1

Y1m
1

3
c1f
′′ (ϕ∞)

(
−7

2
u2 + u3

)
. (6.43)

Thus the total scalar field solution for first order in the perturbation is given by

ϕ(1) =
∑
m

{
c10

(
1− 2r

rS

)
+

1

6
α̂f ′′ (ϕ∞) c10(−7 + 2

rS
r

)

}
Y1m +O

(
α̂2
)

(6.44)

So the perturbation in the scalar field is proportional to l = 1 spherical harmonics corre-
sponding to the dipole. Plotting the value of the perturbed scalar field squared as radius
(taking the real part of the spherical harmonics) results in a rescaled dipole spherical har-
monic shape as shown in Fig.17.
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Figure 17: The value of the scalar field squared as radii varying over the angles θ: [0, π], φ:
[0, 2π]. The blue surface corresponds to r = 2rS and orange surface to r = 1.5rS.

Thus we have some symmetric field in the φ direction. For angles in θ ranging from 0 to 1
2
π

we have a positive values scalar field and for angles ranging from 1
2
π to π a negative value.

As the radius is larger for larger distances r we have that the perturbations in the scalar
field become larger in magnitude further away from the black hole.
It is interesting to compare this to gravitational tidal effects in GR which perturb the gravi-
tational field in a quarupolar manner, hence resulting in the field being proportional to the
l = 2 spherical harmonic depicted in Fig. 18.
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Figure 18: Real part of spherical harmonic
∑2

m=−2 Y
m

2 squared varying over the angles θ:
[0, π], φ :[0, 2π]. The blue surface corresponding to r = 2rS and orange surface to r = 1.5rS.

Fig. 19 shows a sketch of the scalar fields around the black hole based on the solutions we
found above.
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Figure 19: Sketch of the unperturbed and perturbed scalar fields around a black hole. Blue
color corresponds to negative values and orange colors to positive values. For comparison
a quadrupolar scaling scalar field is also shown.

6.5 Extracting the tidal deformability parameter

To read off the dipole moment and tidal field from our solution, we perform an asymptotic
expansion of our scalar field solution as in Eq. (6.10). As we are solely interested in the
induced dipole and tidal field terms we only have to look at the linear perturbation part of
the solution given by Eq. (6.44). Expanding for r →∞ or u→ 0 gives

lim
u→0

ϕ(1) =
1∑

m=−1

Y1m(θ, ϕ)c10

[
−7α̂u2f ′′ (ϕ∞)

6
− 2c10

u

]
+ . . . . (6.45)

Or in terms of r

lim
r→∞

ϕ(1) =
1∑

m=−1

Y1m(θ, ϕ)c10

[
−14α̂G2m2f ′′ (ϕ∞)

3c4

1

r2
+

c2

Gm
r

]
+ . . . . (6.46)

Comparing with Eq. (6.10) we can read off
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Q̃
(s)
1m = −c10

14α̂Gm2f ′′ (ϕ∞)

3c2
, Ẽ

(s)
1m =

c2

Gm
c10. (6.47)

Thus the tidal deformability parameter is given by

λ
(s)
`=1 = −Q̃

(s)
1m

Ẽ
(s)
1m

=
14

3
α̂
G2m3

c4
f ′′ (ϕ∞) , (6.48)

λ
(s)
`=1 =

7

6
mαf ′′ (ϕ∞) . (6.49)

This tells us that the sensitivity of the scalar field of a black hole in sGB gravity depends
linearly on its mass, coupling and second derivative of the coupling function.
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7 Scalar waveform and phase evolution

Thus far we only looked at the dynamics of the black hole binary system and calculated the
fields up to 1PN in the near zone, but we not yet calculated its radiation. Ultimately we
are interested in the effect of the GB and tidal terms on the GW signal from these systems.
As we have seen in section 2, one can calculate the gravitational waveforms by solving the
Einstein field equations for a perturbation in the gravitational field. As we are considering a
system of gravitationally bound black holes we have to look further than linearized gravity
and use the relaxed Einstein equations as our starting point. However in the case of sGB
gravity as opposed to GR, we also have a scalar field which can radiate too. We solve
the EOMS up to 1PN with the DIRE approach as already qualitatively discussed in section
2.4.2. This calculation in sGB gravity is previously in [16] [17] and we rederive the scalar
field results from scratch, correcting some algebraic errors. Up to the GB related terms, the
the expression should be consistent with the results in the same calculation in scalar tensor
theory done in [100][101][102][92].
In this thesis we are interested in the effect of including tidal terms in the calculation of
the waveform compared to the 1PN GR and 1PN GB terms. As shown in section 5 the tidal
terms do not contribute up to 1PN to the solutions for the near zone fields. However at
1PN there is a non-vanishing tidally induced scalar dipole moment as shown in section 6.5.
In the calculation of the the scalar waveform, expanding the field in multipole moments,
the tidal term is included in the dipole moment. As the tidal terms do not play a role in the
metric perturbation calculation at the orders we are considering, we will use the results
from [17] in this regard and only calculate explicitly the scalar waveform including the
tidal terms. Using our results for the scalar waves together with the solutions for the tensor
waves from [17], we derive the phasing terms of the radiation using energy balance: the
change in binding energy which we calculated in section 5.7 should be equal to the rate of
change of the radiation, a.k.a the energy flux out of the binary. As the binding energy also
has a tidal contribution, the phasing terms have this contribution as well.
With these phasing terms we conduct an analysis of the expressions to quantify the effect
of the tidal terms compared to the GB and GR terms, and study the dependencies on the
parameters.

7.1 Waveform calculation

As discussed in section 2.4.1 the Einstein equations can be written in a wave equation form
named the relaxed Einstein equations, using the gothic metric from Eq. (2.55). Together
with the harmonic gauge condition from Eq. (2.57) and the definition of the field hαβ from
Eq. (2.56), the sGB field equations from Eq. (5.7) and Eq. (5.10) can be written in the
relaxed form as well.

This results in [17]
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�ηh
αβ =

16πG

c4
µαβ,

µαβ = (−g)Tαβm +
c4

16πG

(
Λαβ
GB + Λαβ

GR

)
,

Λαβ
GR =

16πG

c4
(−g)tαβLL + hαν,µ h

βµ
,ν − hµνhαβ,µν ,

Λαβ
GB = −8α(−g)

(
∗R̂∗cαβdf(ϕ),cd

)
+ 4ϕ,cϕ,d

(
gαcgβd − 1

2
gαβgcd

)
.

(7.1)

Here we denote expressions written in terms of the gothic metric with .̂ An extra ΛGB is
present as opposed to the GR case Eq. (2.59). For the scalar field this becomes

�ηϕ =
4πG

c4
µs

µs = − δSm
δϕ
√
−g
− c4

16πG
αf ′(ϕ)R̂2

GB.
(7.2)

This equation still has the same form as the original equation of motion from Eq. (5.7) but
the expression of the GB invariant is now in terms of the gothic metric.

Here we will focus on the calculation of the waveform and energy loss regarding the scalar
field, as the tidal terms only play a role here. We use the results of the calculation for the
metric perturbations in [17]. The calculation of the latter is similar to the scalar field case,
however the scalar field calculation is a bit less involved as it is a scalar instead of a tensor.

Using a retarded Greens function C.10a23, we can write the wave equations as the integrals

hαβ(t,x) = −4G

c4

∫
d4x′

µαβ (t′,x′) δ (t′ − t+ |x− x′| /c)
|x− x′|

, (7.3)

ϕ(x) = −G
c4

∫
d4x′

µs (t′,x′) δ (t′ − t+ |x− x′| /c)
|x− x′|

. (7.4)

To solve for the scalar waveform ϕ up to 1PN we make use of the DIRE approach described
in section 2.4.2. This comes down to splitting the integration domain, which is the past
lightcone, into the contribution from the near zone crossing the past lightcone and the
domain outside in the far zone as illustrated in Fig.8. We first focus on the near zone
contribution and we will argue that the far zone contribution is higher PN order than we
are considering here.

7.2 Near zone contribution to the scalar waveform

For the scalar waveform we start with Eq. (7.4). Since we are in the near zone (defined in
section 2.4.3 ) the integration variable x′ satisfies |x′| < λ while for our field point at the

23Here we choose again the retarded Greens function instead of the half retarded, half advanced Greens
function in the calculation in section 5. The retarded Greens function depends on the sources in the past, as
is the case here for the waveforms sources by the binary system.
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detector, we have R = |x− x′| > λ. Therefore we can expand the integration variable x′ in
the |x− x′| terms as an expansion in x′/R to express the field in the form

ϕ(x) =
∞∑
l=0

δϕl(x)

= −G
c4

∞∑
l=0

(−1)l

l!
∂L

(
1

R
ILs (τ)

)
,

(7.5)

with
ILs (τ) =

∫
M
d3x′µs(τ,x

′)x′
L
. (7.6)

Here ILs are the scalar multipole moments and δϕl(x) the scalar field moments. Further-
more we use the retarded time is τ = t − R/c and M is the hypersurface cut out by the
intersection of the near zone with the constant time hypersurface tM = τ . As the region
M is bounded, the integral is convergent.

For GWs we are only interested in the spatial part and use the fact that

∂iIs(τ) =
∂τ

∂xi
dIs
dτ

= −n
i

c

dIs
dτ

= −n
i

c

dIs
dt
, (7.7)

with ni the unit vector in the observational direction. Finally we have for the scalar field
moments

δϕl(x) =
G

Rc4

nL
l!

(
∂

c∂t

)l
ILs +O

(
R−2

)
. (7.8)

from Eq.(7.5) follows that summing these moments gives the total scalar waveform. Thus
to construct the scalar waveform we are interested in the scalar multipole moments ILs and
its derivatives.

In section 5 we showed that the 1PN expansion of the scalar field ϕ is given by (leaving out
the tidal terms as we saw they do not contribute) Eq. (5.66) or here written down slightly
rewritten

�ηϕ = −2α
1

c4
f ′ (ϕ0)

(
(∂i∂jU

(0))(∂i∂jU
(0))−4U (0)4U (0)

)
+

4πG

c4

∑
A

δ(3)(x− xA(t))

[
m0
Aα

0
A

(
c2 + (α0

A +
β0
A

α0
A

)ϕ(0)
c − U (0) − 1

2
v2
A

)]
+ (A↔ B).

(7.9)
Now for the multipole moments we need the 1PN expansion of the source term µs. To get
this expression we factor out the prefactor 4πG

c4
corresponding to Eq. (7.2). Hence the 1PN

expansion of the source term is given by

µs = − α

2πG
f ′ (ϕ0)

(
(∂i∂jU

(0))(∂i∂jU
(0))−4U (0)4U (0)

)
+
∑
A

δ(3)(x− xA(t))

[
m0
Aα

0
A

(
c2 + (α0

A +
β0
A

α0
A

)ϕ(0)
c − U (0) − 1

2
v2
A

)]
.

(7.10)
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Note however that we did not write the R2
GB, corresponding to the first term in Eq. (7.10),

in terms of the gothic metric. The expression for R2
GB in terms of the gothic metric as given

in [17], have the same dependencies on the potentials as in Eq. (7.10). In this reference is
also shown that the integral over this term in the expression for the multipole moments Eq.
(7.6) is zero, hence this contribution is vanishing24. Therefore we will not explicitly write
R2
GB in terms of the gothic metric, but the (very long) expression can be found in Appendix

A of [17].

Thus the source term up till 1PN is given by

µs =
∑
A

δ(3)(x− xA(t))m0
Ac

2α0
A(1− v2

A

2c2
− U (0)

c2
+ (α0

A +
β0
A

α0
A

)
ϕ

(0)
c

c2
). (7.11)

The multipole moments are computed from Eq. (7.11) and Eq. (7.6)

Is = m0
Ac

2α0
A

{
1− v2

A

2c2
− Gm0

BαAB
rc2

+O
(
c−4
)}

+ (A↔ B),

I is = xiAm
0
Ac

2α0
A

{
1− v2

A

2c2
− Gm0

BαAB
rc2

+O
(
c−4
)}

+ (A↔ B),

I ijs = xijAm
0
Ac

2α0
A

{
1 +O

(
c−2
)}

+ (A↔ B),

I ijks = xijkA m0
Ac

2α0
A

{
1 +O

(
c−2
)}

+ (A↔ B),

(7.12)

using the lowest order solution of potential U from Eq. (5.55) and ϕ0 from Eq. (5.56) and
αAB =

(
1 + αAαB + βAαBα

−1
A

)
. To continue we need to cast these expressions in the centre

of mass frame of our binary system and calculate the appropriate derivatives according to
Eq. (7.8). The induced scalar tidal dipole moment adds linearly to the orbital dipole from
Eq.(7.12).

The reason why we have expanded the multipoles to the specific orders given in Eq. (7.12)
is because the quadrupole and octupole get an extra factor of 1/c2 because of the time
derivatives taken in Eq. (7.8).

The PN order counting will work for this calculation a bit different than in the section
before. As gravitational radiation is a purely GR phenomemon, we do not have a New-
tonian order result anymore. It is convention to take the GR result as 0PN. This is given
by the order of the quadruoplar formula. We saw in Eq. (2.51) this expression is propor-
tional to 1/c4, which thus correspond to 0PN in this context. As the lowest order terms
in the source of the scalar field are proportional to c2, multiplied with 1/c4 in the formula
of the scalar field moments Eq. (7.8), this will be of order 1/c2 and thus relative -1PN order.

24One can show that after integrating by parts the contributing terms either depend on R or are propor-
tional to ∇2U = −4π

∑
AmAδ

3(x−x′). The former means that the expression depends on the term splitting
the DIRE integral contributions. The answers should not depend on this boundary and therefore will vanish.
The latter gives terms that are proportional to δ3(xA − xB) which is always vanishes during the inspiral as
xA 6= xB .
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With these scalar multipole moments we can calculate the scalar field multipole moments
Eq. (7.8) by first transforming these expressions to the CM frame and taking the appropri-
ate time derivatives.

The CM frame coordinates coordinates are given by the generalised version of Eq. (4.6)

X i
CM =

1

m

∫
µ00rid3r, (7.13)

with µ00 the component of the gravitational source term in Eq. (7.1) which can be ex-
panded to 1/c2. The integral is done in [17] which gives for the positions

xA =

[
mB

m
+
µ∆m

2m2c2

(
v2 − Gmᾱ

r

)]
r + δ +O

(
c−3
)

xB = xA withmB → −mA,

(7.14)

with

δ = −2η

(
Gmᾱ

rc2

αf ′ (ϕ0)√
ᾱr2

S+

)
r. (7.15)

And for the velocities, differentiating the expressions above to time

vA =
mB

m
v +

µ∆m

2m2c2

[(
v2 − Gmᾱ

r

)
v − Gmᾱ

r2
ṙr

]
+ δ̇ +O

(
c−3
)
,

vB = vA withmB → −mA,

(7.16)

with

δ̇ = 2η
Gmᾱ

rc2

αf ′ (ϕ0)√
ᾱr2

S+(3ṙr− v). (7.17)

We also recall the earlier defined expressions Eq. (5.80) and Eq. (5.87) in which we will
express the equations again. This makes the expressions easier to compare with other
literature. In literature for scalar tensor theory, they use the terms S±, β±, γ̄ as well and
although the definitions for these terms are different as it is a different theory, they play
the same ’role’. Therefore the dependencies of the terms in our expressions excluded from
the GB and tidal terms, can be directly compared to the results for scalar tensor theory in
[100][101][102].

By doing the differentiation in Eq. (7.8) we make use of the following identities

∂r

∂t
= ṙ,

∂v

∂t
= a,

∂v

∂t
=

v · a
v

,
∂n

∂t
= 0,

r · v = ṙr,

r̈ =
ṙ2

r
+
v2

r
+

r · a
r
,

(7.18)

and the relative acceleration a given by Eq. (5.86).
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7.2.1 Monopole moment

Starting with the monopole moment Is in Eq. (7.12). Substituting the CM expression for
vA and vB and expanding to order O(c0) gives

Is,CM =mᾱ1/2

(
S+ +

∆m

m
S−
)

+ µᾱ1/2

(
−1

2

(
S+ −

∆m

m
S−
)
v2 +

[
−2S+ +

8

γ̄

(
S+β̄+ + S−β̄−

)] Gᾱm
r

)
.

(7.19)

Then substituting in Eq. (7.8) results in

δϕ0 =
Gm
√
ᾱ

Rc2

(
S+ +

∆m

m
S−
)

+
Gµ
√
ᾱ

Rc4

{
−v

2

2

(
S+ −

∆m

m
S−
)

+

(
8

γ̄
(S+β+ + S−β−)− S+

)
Gᾱm

r

} (7.20)

Thus as opposed to GR we have a non-vanishing monopole moment. However only the
parts depending on v and r contribute to the scalar radiation.

7.2.2 Dipole moment

Continuing for the dipole moment I is from Eq. (7.12). To this expression we add the
contribution of the induced scalar tidal dipole moment. This dipole moment is given in
section 4.2, here we slightly change the notation and as before we are only interested in
the spatial part

Qtid
i = −λ(s)∂iϕ. (7.21)

We found the lowest order solution of the scalar field to be Eq. (5.56). Substituting in the
induced dipole moment results in

Qtid
i =

λ
(s)
A

c2
∂i
Gm0

Aα
0
A

r
+
λ

(s)
B

c2
∂i
Gm0

Bα
0
B

r

= ζ̄
ri
c2r3

,

(7.22)

with
ζ̄ = λAGm

0
Bα

0
B + λBGmAα

0
A. (7.23)

Note that this tidal term is slightly different from the tidal term that contributed to the bind-
ing energy Eq. (5.82), among others does Eq. (7.23) depend linearly instead of quadratic
on the scalar charge.
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Then the scalar dipole moment in relative coordinates including the tidal term is given by

I is,CM = µᾱ1/2c2

{
2S−ri +

(
∆m

m
S+ − ηS−

)
v2

c2
ri

+

[
1

2

∆m

m
S+ +

(
−3

2
+ 2η

)
S− −

4

γ̄

δm

m

(
S+β̄+ + S−β̄−

)
+

4

γ̄

(
S−β̄+ + S+β̄−

)] Gαm
c2r

ri

−2Gmᾱ

r

ri

r2

αf ′[ϕ0]√
ᾱc2

S+(
∆m

m
S− + S+) +

riζ̄

c2
√
ᾱr3µ

}
.

(7.24)
Taking one time derivative and substituting in Eq. (7.8) gives

δϕ1 =
Gµ
√
ᾱ

Rc3

{
(n · v)

[
2S− +

v2

c2

(
∆m

m
S+ − ηS−

)
+
Gᾱm

rc2

(
∆m

2m
S+ +

(
2η − 3

2

)
S− −

4

γ̄

∆m

m
(S+β+ + S−β−) +

4

γ̄
(S−β+ + S+β−)

−2S+

(
S+ +

∆m

m
S−
)
αf ′ (ϕ0)√

ᾱr2
+

ζ̄

ᾱ3/2Gm2ηr2

)]
+
Gᾱm

c2r2
ṙ(n · r)

[
−5

2

∆m

m
S+ +

3

2
S−

+
4

γ̄

∆m

m
(S+β+ + S−β−)− 4

γ̄
(S−β+ + S+β−) + 6S+

(
S+ +

∆m

m
S−
)
αf ′ (ϕ0)√

ᾱr2

− 3ζ̄

ᾱ3/2Gm2ηr2

]}
.

(7.25)
Hence in this theory when moving to the centre of mass frame the dipole does not vanish
compared with GR, see section 4. As we will see in the total waveform, the first term of the
dipole moment sources the lowest order contribution of the scalar radiation.

7.2.3 Quadrupole moment

Next we look at the quadrupole moment I ijs in Eq. (7.12). In relative coordinates it be-
comes

I ijs,CM = µ
√
ᾱc2(S+ −

∆m

m
S−)rirj. (7.26)

Taking two time derivatives and substituting in Eq. (7.8) gives

δϕ2 =
Gµ
√
ᾱ

Rc4

(
S+ −

∆m

m
S−
){

(n · v)2 − Gᾱm

r

(n · r
r

)2
}

(7.27)

7.2.4 Octupole moment

Lastly for the octupole moment I ijks in Eq. (7.12), we write the expression in relative
coordinates

I ijks,CM = µ
√
ᾱc2(−∆m

m
S+ + (1− 2η)S−)rirjrk. (7.28)

Taking three time derivatives and substituting again in Eq. (7.8) gives
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δϕ3 =
Gµ
√
ᾱ

Rc5

(
(1− 2η)S− −

∆m

m
S+

)(
3

2

Gᾱm

r4
ṙ(n · r)3 − 7

2

Gᾱm

r3
(n · v)(n · r)2 + (n · v)3

)
.

(7.29)

7.2.5 Far zone contribution

As described in appendix C of [17] the far zone contributions to the tensor and scalar
waveforms are beyond 1PN order. We will make an argument why this is the case for the
scalar waveform. In the far zone the integration domain lies outside of the source so does
not contain any matter contribution, see Fig.8. The source µs therefore only contains terms
related to the fields. In the far zone these fields have contributions coming from the near
zone and the far zone, which add to give the total field contribution in this region. This
time we can not just substitute the lowest order field solutions we found in section 5 in
our expression for µs as these fields are only calculated in the near zone. The near zone
contributions to these field can be calculated with Eq. (7.5) and similar expression for the
metric fields, which gives the same results for the fields as described above and in [17] for
the metric perturbation field.

The far zone contributions to the field can be calculated from the far zone field integrals
[100], given by Eq. (7.3) and Eq. (7.4) which in the far zone can not be expanded in
|x′|/R as in the near zone. However one can do a change of coordinates to retarded time.
The integral domain in this case is over the far zone excluding the near zone. However
these contributions to the waveforms can only come from backreaction effects of the GWs
as in this region there is no matter source. Backreaction effects come in at higher PN order
which makes the far zone contributions to the field also higher PN order than we consider.
This is shown explicitly for scalar tensor theory in [100, 101].
To actually calculate the waveform contribution in the far zone one can use these far zone
integrals again over the source terms without the matter part, substituting the solutions for
the fields, which thus contain only a contribution from the near zone up till the PN order
we are considering. However in the source term of the scalar field without the matter in
Eq. (7.2), the only contribution is coming from R2

GB which we have seen has a vanishing
contribution when integrated over up to 1PN in the expansion. So in the orders we are
considering we have no far zone contribution to the waveforms for the scalar field.
Similar argument is given for the far zone part of the tensor waveform which is also higher
order, see appendix C of [17].
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7.2.6 The scalar waveform to relative 0.5PN order

The total scalar waveform is given by the sum of the near zone scalar field moments

ϕ = δϕ0 + δϕ1 + δϕ2 + δϕ3

=
Gm
√
ᾱ

Rc2

(
S+ +

∆m

m
S−
)

+
Gµ
√
ᾱ

Rc4

{
−v

2

2

(
S+ −

∆m

m
S−
)

+

(
8

γ̄
(S+β+ + S−β−)− S+

)
Gᾱm

r

}
Gµ
√
ᾱ

Rc3

{
(n̂ · v)

[
2S− +

v2

c2

(
∆m

m
S+ − ηS−

)
+
Gᾱm

rc2

(
∆m

2m
S+ +

(
2η − 3

2

)
S− −

4

γ̄

∆m

m
(S+β+ + S−β−) +

4

γ̄
(S−β+ + S+β−)

−2S+

(
S+ +

∆m

m
S−
)
αf ′ (ϕ0)√

ᾱr2
+

ζ̄

ᾱ3/2Gm2ηr2

)]
+
Gᾱm

c2r2
ṙ(n · r)

[
−5

2

∆m

m
S+ +

3

2
S−

+
4

γ̄

∆m

m
(S+β+ + S−β−)− 4

γ̄
(S−β+ + S+β−) + 6S+

(
S+ +

∆m

m
S−
)
αf ′ (ϕ0)√

ᾱr2
− 3ζ̄

ᾱ3/2Gm2ηr2

]}
Gµ
√
ᾱ

Rc4

(
S+ −

∆m

m
S−
){

(n · v)2 − Gᾱm

r

(n · r
r

)2
}

Gµ
√
ᾱ

Rc5

(
(1− 2η)S− −

∆m

m
S+

)(
3

2

Gᾱm

r4
ṙ(n · r)3 − 7

2

Gᾱm

r3
(n · v)(n · r)2 + (n · v)3

)
.

(7.30)
Sorting this per PN order, leaving out the non radiative part of the monopole moment leads
to

ϕ =
Gµ
√
ᾱ

Rc3

{
P−1/2ϕ̃+

1

c
ϕ̃+

1

c2
P 1/2ϕ̃+O

(
c−3
)}

, (7.31)

P−1/2ϕ̃ = 2S−(n · v), (7.32)

ϕ̃ =

(
S+ −

∆m

m
S−
)[
−Gᾱm

r

(n · r
r

)2

+ (n · v)2 − 1

2
v2

]
+
Gᾱm

r

[
−2S+ +

8

γ̄
(S+β+ + S−β−)

]
,

(7.33)



7 SCALAR WAVEFORM AND PHASE EVOLUTION 93

P 1/2ϕ̃ =

(
−∆m

m
S+ + (1− 2η)S−

)[
3

2

Gᾱm

r4
ṙ(n · r)3 − 7

2

Gᾱm

r3
(n · v)(n · r)2 + (n · v)3

]
+ (n · v)

{(
∆m

m
S+ − ηS−

)
v2 +

Gᾱm

r

[
1

2

∆m

m
S+ +

(
2η − 3

2

)
S−

−4

γ̄

∆m

m
(S+β+ + S−β−) +

4

γ̄
(S−β+ + S+β−)

]}
+
Gᾱm

r2
ṙ(n · r)

[
3

2
S− −

5

2

∆m

m
S+ +

4

γ̄

∆m

m
(S+β+ + S−β−)− 4

γ̄
(S−β+ + S+β−)

]
+ 2

Gᾱm

r

αf ′ (ϕ0)√
ᾱr2

S+

(
S+ +

∆m

m
S−
)[

3
ṙ

r
(n · r)− (n · v)

]
− ζ̄√

ᾱµr3

[
3
ṙ

r
(n · r)− (n · v)

]
.

(7.34)
Where the first term corresponds to -0.5PN, the second term to 0PN and the third term to
0.5PN. The -0.5PN term comes from the dipole moment, the 0PN term from the quadrupole
and radiative monopole parts and the 0.5PN term comes from the octupole moment and
the other terms in the dipole moment, also including the GB (terms proportional to α
directly) and tidal terms. This result is consistent with [17] except for an overall factor of
2. This factor is present in [101] but should be absent in this derivation as the prefactor of
our EOM is proportional to 4π and in the cited paper 8π is used.

7.3 The energy loss

With the scalar waveform we can construct the expression for the energy loss related to
the rate of change in the waveform. The energy of a wave is in general given by the
square of the amplitude. The energy loss would then result from its time derivative. More
specifically:

Ės =
1

4π

c3R2

G

∮
ϕ̇2 d2Ω. (7.35)

The prefactor of this formula is different from that in [17]. The correct prefactor is given
by [70] and included in Eq. (7.35). Note that in the differentiation of ϕ, the relative accel-
eration appears when differentiating the velocity. For the lowest order term in the scalar
waveform in Eq. (7.31) the higher order terms of the relative acceleration contribute. To
calculate the term inside the integral of Eq. (7.35), we differentiate ant take the square
of the scalar waveform Eq. (7.31). Only terms up to a total factor of 1/c5 are kept, corre-
sponding to a relative 0.5PN order. This results in the terms

ϕ̇2 = P−1/2 ˙̃ϕ2 + ˙̃ϕ2 + P−1/2 ˙̃ϕ ˙̃ϕ+ P−1/2 ˙̃ϕP 1/2 ˙̃ϕ. (7.36)
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The integration is done over the directional unit vectors n in the scalar waveform by using
the following identities[99]∫

nk1...kmd
2Ω = 0 (m odd ),∫

nk1...kmd
2Ω = [4π/(m+ 1)!!]×

[
δk1k2 . . . δkm−1km + distinct permutations

]
(m even ).

(7.37)
Thus odd products of n are zero, therefore the product ˙P−1/2ϕ̃ ˙̃ϕ vanishes. Up to the re-
quired order for the even products, we only have products of 2 and 4 unit vectors∫

njnkd
2Ω =

4π

3
δjk,∫

njnknnnpd
2Ω =

4π

15
(δjkδnp + δjnδkp + δjpδkn).

(7.38)

This results in the energy loss expression

ĖS =
η2

Gᾱc3

(
Gᾱm

r

)4 [
4

3
S2
− +

8

15c2

(
Gαm

r

[(
−23 + η − 10γ̄ − 10β+ + 10

∆m

m
β−

)
S2
−

−2
∆m

m
S+S−

]
+ v2

[
2S2

+ + 2
∆m

m
S+S− + (6− η + 5γ̄)S2

− −
10

γ̄

∆m

m
S− (S+β+ + S−β−)

+
10

γ̄
S− (S−β+ + S+β−)

]
+ ṙ2

[
23

2
S2

+ − 8
∆m

m
S+S− +

(
9η − 37

2
− 10γ̄

)
S2
− −

80

γ̄
S+ (S+β+

+S−β−) +
30

γ̄

∆m

m
S− (S+β+ + S−β−)− 10

γ̄
S− (S−β+ + S+β−) +

120

γ̄2
(S+β+ + S−β−)2

])
− 4

c2

(
αf ′ (ϕ0)S−S+√

αr2

)(
S+ +

∆m

m
S−
)[
−3ṙ2 + v2 − 2Gᾱm

3r

]
−16

c2

(
αf ′ (ϕ0)S2

−

α3/2r2

)
(3S+ +

∆m

m
S−)(−2Gmᾱ

3r
)

+
2ζ̄S−

¯Gmµα
3/2
c2r2

[−3ṙ2 + v2 − 2Gmᾱ

3r
] +

8ζS2
−

mc2r2
(−2Gmᾱ

3r
) +O

(
c−3
)]
.

(7.39)
Note that the two different tidal contributions arise, namely the tidal term related to the
orbital dynamics ζ in Eq. (5.82) and the tidal term resulting from the induced scalar dipole
moment ζ̄ in Eq. (7.23).

We have an extra GB term compared to [17] coming from the product P−1/2 ˙̃ϕP 1/2 ˙̃ϕ in
which P−1/2 ˙̃ϕ contains a GB term coming from the higher order terms in the relative accel-
eration.
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7.4 Gravitational wave phase evolution

For the calculation of the phase we also need the tensor energy loss from [17]. This energy
loss is calculated along the same lines as the scalar energy loss. The gravitational waveform
is constructed from the spatial components of the perturbation in the metric making use of
a multipole moment construction in the near zone. Differentiating and taking the square
of the waveform, after the integration of the angular integrals results in

ĖT =
8

15

η2

Gᾱ2c5

(
Gᾱm

r

)4 {(
12v2 − 11ṙ2

)
+

1

28c2

[
−16

(
170− 10η + 63γ̄ + 84β+ − 84

∆m

m
β−

)
v2Gᾱm

r

+ (785− 852η + 336γ̄)v4 − 2(1487− 1392η + 616γ̄)v2ṙ2 + 3(687− 620η + 280γ̄)ṙ4

+8

(
367− 15η + 140γ̄ + 168β+ − 168

∆m

m
β−

)
ṙ2Gᾱm

r
+ 16(1− 4η)

(
Gᾱm

r

)2
]

+
3f ′ (ϕ0)α

4
√
αr2c2

[
−4(S+ +

∆m

m
S−)

(
−4v2

(
18Ẽ + 13

Gᾱm

r
− 45ṙ2

)
−ṙ2

(
108Ẽ + 85

Gᾱm

r
− 150ṙ2

)
+ 54ṙ4

)
+
Gαm

r

(
3S+ +

∆m

m
S−
)(

32v2 + 56ṙ2
)]

+
45f ′ (ϕ0)α

8
√
ᾱr2c2

[
S+(1 + 2η) + S−

∆m

m

] [
−4

7
v2

(
22Ẽ + 77

Gαm

r
− 199

3
ṙ2 +

18

5
v2

)
+

24

5
ṙ4 − 16

5
v2ṙ2 − ṙ2

7

(
992Ẽ + 737

Gᾱm

r
− 2404

3
ṙ2 +

8

5
v2

)]
+O

(
c−3
)}

.

(7.40)
We have now the expressions for different energies in the system, namely the binding
energy in Eq. (5.105) of the two black holes orbiting each other and the energy losses from
the gravitational and scalar radiation out of the system given by Eq. (7.40), Eq. (7.39). In
general we assume adiabatic motion during the inspiral. The circular orbits gradually have
a shrinking radius, hence the change of the orbital velocity over the period of the orbit is
much smaller than 1, or related to the angular velocity this becomes ẇ/w2 � 1. In this
limit the source from the energy loss/flux comes from the change in binding energy:

dE(x)

dt
= −F (x), (7.41)

with F = ĖS + ĖT the scalar and tensor energy flux and x given by Eq. (5.104). Using that
the angular velocity equals the change in the phase angle: ˙φphase = w with φphase the phase
angle in radians, the energy balance can be rewritten as

dφphase
dt

− c3x3

Gᾱm
= 0,

dx

dt
+
F (x)

E ′(x)
= 0. (7.42)

Thus we are interested in the quantities in terms of x, which we can rewrite using Eq.
(5.96) and Eq. (5.104).
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For the scalar energy loss from Eq.(7.39) this becomes

ĖS(x) = S4x4c5 + (S5 + S5GBx
2c4 + S5tidalx

2c4)x5c5, (7.43)

S4 =
4η2S2

−

3ᾱG
,

S5 =

(
8η2S−
45ᾱG

)(
−30∆m(S−β− + S+β+)

γ̄m
+

30(S−β+ + S+β−)

γ̄
+ 10

∆m

m
S−β−

− S−(5γ̄ + 10β+ + 10η + 21) +
6S2

+

S−
,

S5GB =

(
4αf ′[ϕ0]η2S−
3ᾱ7/2G3m2

)(
8S−
3ᾱ

(3S+ +
∆m

m
S−)− S+(S+ +

∆m

m
S−)

)
,

S5tidal =

(
2ηS−

3G3ᾱm3

)(
ζ̄

Gᾱ3/2m
− 8ηS−ζ

3

)
.

(7.44)

And for the tensor energy loss from Eq. (7.40) this is given by

ĖT (x) = T5x5c5 + (T6 + T6GBx
2c4 + T6tidalx

2c4)x6c5, (7.45)

T5 =
32η2

5ᾱ2G
,

T6 =

(
2η2

105ᾱ2G

)(
−1247− 448γ̄ + 896

∆m

m
β− − 896β+ − 980η

)
,

T6GB =

(
128αf ′[ϕ0]η2

5ᾱ9/2G3m2

)(
−2∆mS−

3ᾱm
− 2S+

ᾱ
− 233∆mS−

56m
+

∆mS+

m
− 261ηS+

28
+ S− −

177S+

56

)
,

T6tidal =
128η2ζ

15G3ᾱ4m3
.

(7.46)
Lastly the derivative of the binding energy from Eq. (5.105) with respect to x

E ′(x) = −µc
2

2
(1 + E ′2x), (7.47)

E ′2 = −3

2
− η

6
− 4γ̄

3
+

4

3

(
β+ −

∆m

m
β−

)
− 40c4

3G2

αf ′ (ϕ0)

m2ᾱ7/2
x2

(
3S+ +

∆m

m
S−
)

+
20c4

3ᾱ2G2m3
ζx2.

(7.48)
Then the total energy flux is given by the sum of the scalar and tensor energy loss. Sorting
per PN order this gives

Ftotal = F−1,S + F0,S + F0,T + F1,T , (7.49)

with the scalar terms from Eq. (7.43) given by

F−1,S =
4η2S2

−

3ᾱG
c5x4, (7.50)

F0,S = ĖS(x)− F−1,S. (7.51)
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And the tensor terms from Eq. (7.40) given by

F0,T =
32η2

5ᾱ2G
c5x5, (7.52)

F1,T = ĖT (x)− F0,T . (7.53)

There are different methods [103] for treating the ratio of the flux and the derivative of
the binding energy in Eq. (7.42) depending in which way one expands the ratio. We follow
here the same approximation method as in [17], called Taylor T4. In this approximant one
expands the whole ratio to the desired Post Newtonian order.
To expand the ratio of the flux over the derivative of the binding energy we split the cal-
culation in two regimes in which different terms dominate. The first is the regime where
the scalar dipole part dominates, corresponding to the -1PN term, this is called the dipolar
driven regime (DD). The other is the regime for which the 0PN order tensor flux dominates,
this is the quadrupolar driven regime (QD).

We will see in a moment that in the quadrupole driven regime, the dipole term in the ratio
scales as 5ᾱS2

−/24x compared to the quadrupole term. Therefore for frequencies for which
this term becomes dominant instead of the quadrupole term. For these frequencies the
dipolar driven regime holds. This is thus given by

xDD �
5ᾱS2

−

24
, fDDGW �

(
5

24

)3/2 c3S2
−
√
ᾱ

πGm
, (7.54)

using x = (Gᾱmπf
c3

)2/3.

Starting with the dipolar driven regime, here the F−1,S term dominates, hence we factor
this term out of the total flux.

FDD =
4η2S2

−

3ᾱG
c5x4(1 + fDD2 x+ ...), (7.55)

with

fDD2 =
24

5ᾱS2
−

+
4S2

+

5S2
−
− 4β+

3
+

4β−∆m

3m
− 14

5
− 4η

3
− 2γ̄

3
+

4β−S+

γ̄S−
− 4β+∆mS+

γ̄mS−
+

4β+

γ̄
− 4β−∆m

γ̄m

+
αf ′[ϕ0]c4x2

ᾱ5/2G2m2S−

(
8S−
3ᾱ

(3S+ +
∆m

m
S−)− S+(S+ +

∆m

m
S−)

)
+

ζ̄c4x2

2ᾱ7/2µG3m3S−
− 44x2

3ᾱ2G2m3
.

(7.56)
Then the ratio of Eq. (7.55) and Eq. (7.47) becomes, expanding to 1PN corresponding to
x5

FDD(x)

E ′(x)
= −

8ηc3S2
−x

4

3Gᾱm

[
1 +

(
fDD2 − E ′2

)
x+ ...

]
. (7.57)

We do the same for the quardupole driven regime. So first factoring the quadrupole term
in the total flux.
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FQD =
32η2

5ᾱ2G
c5x5(ξ + fnd2,Tx+ ...) +

4η2S2
−

3ᾱG
c5x4. (7.58)

with

ξ =
5ᾱS2

−

24
fDD2 , (7.59)

fnd2,T = −8β+

3
− 4γ̄

3
− 35η

12
+

8β−∆m

3m
− 1247

336

− 4αf ′[ϕ0]c4x2

ᾱ5/2G2m2

(
2

3ᾱ
(3S+ +

∆m

m
S−)− (

∆m

m
S+ + S−) +

1

56
(177S+ + 233

∆m

m
S−)

+
261

28
ηS+ − S−

)
+

4ζc4x2

3ᾱ2G2m3
.

(7.60)

Next, we expand the ratio of Eq. (7.58) and Eq. (7.47) up to 1PN

FQD(x)

E ′(x)
= −64ηc3x5

5Gmᾱ2

[(
ξ − E ′2

5ᾱS2
−

24

)
+
(
fnd2,T − ξE ′2

)
x+

5ᾱS2
−

24
x−1

]
. (7.61)

One can now substitute these ratios in Eq. (7.42) and solve the differential equations for x
and the phase angle ϕ numerically for the different regimes. We compute examples using
as the initial condition for x its value at the frequency for entering the LIGO/VIRGO sen-
sitivity band ≈ 10Hz. Solving for x and hence the frequency shows nicely the frequency
evolution during the inspiral and the change in the proxy for the merger time25 relative to
GR, see Fig. 20.

25The PN expansion should break down before the merger so this divergence behaviour does not exactly
mimic the merger, however the PN expansion for comparable black hole masses works better than expected
outside its validity range [40].
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Figure 20: Frequency evolution in time during the quadrupolar driven phase with and
without tidal contributions, which overlap in this figure, and compared with the 1PN GR
frequency. The moment when the frequency diverges is a proxy for the merger time. We
chose here f [ϕ0] = 1

4
e2ϕ,
√
ᾱ = 1.7km, m = 15M� and q = 0.25.

In the plot we can already see a difference in merging time between the GR frequency
evolution and the GB and tidal case. The difference without and with tidal terms is not
visible in this plot. Besides considering the time-domain phasing, it is also useful to study
the phase evolution in the frequency domain, as the GW data is also studied in this domain.
For this we need to do a Fourier transform. In Fourier space we will use the so called Taylor
T2 approximant for expanding the expressions [103].

Similar to what we have seen in section 2 one can write the gravitational waveform in the
exponential form h(t) = A(t)e−iφphase(t). Its Fourier transform is given by

h̃(f) =

∫
dtA(t)ei(2πft−φphase(t)). (7.62)

During the inspiral we can assume the stationary phase approximation (SPA)[104]. In
this approximation is assumed that the amplitude of the signal changes much more slowly
than the phase, which is valid to assume during the inspiral. In that case the exponential
osciallates in the integral while the amplitude slowly varies. The postive and negative
values in the oscillation cancel each other and the main contribution of the integral is given
by the points where the derivative of the phase is 2πf so the exponential has a stationary
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point. Thus we define the stationary point tf as the point where φ̇phase(tf ) = 2πf .
Then we can Taylor expand the exponent around this stationary point tf

2πft− φphase(t) ' 2πftf − φphase (tf )−
1

2
φ̈phase (tf ) (t− tf )2 + . . . . (7.63)

Substituting this expansion back in the Fourier integral results in

h̃(f) = A(tf )e
i(2πftf−φphase(tf ))

∫
dte−i

1
2
φ̈phase(tf )(t−tf )2

= A(tf )e
i(2πftf−φphase(tf ))

(
2

φ̈phase(tf )

)1/2 ∫
dxe−ix

2

= A(tf )

(
2π

φ̈phase(tf )

)1/2

e−i(ψf (tf )+π/4).

(7.64)

We assume the amplitude varies slowly around the stationary point and in the last equality
we use

∫∞
−∞ dxe

−ix2 =
√
πe−iπ/4, the known fresnel integral.

Then the Fourier phase angle is given by ψf (t) ≡ 2φphase(t)− 2πft

We can calculate the expressions for the time evolution and orbital phase with Eq. (7.42)
rewritten in terms of an integral and using Eq. (5.104) with w = πf and f = 1/t

t(v̄) = t (v̄ref ) +

∫ v̄ref

v̄

E ′(v̄)

F(v̄)
dv̄,

φphase(v̄) = φphase (v̄ref ) +
c3

Gᾱm

∫ v̄ref

v̄

v̄3E
′(v̄)

F(v̄)
dv̄.

(7.65)

Here we defined the new variable v̄ as

v̄ = x1/2 =
(
Gᾱmω/c3

)1/3
= (

Gᾱmπf

c3
)1/3, (7.66)

and v̄ref is the variable at some chosen reference point.

Then the Fourier phase angle is given by

ψf (tf ) = 2

(
φphase(v)− c3

Gᾱm
v̄3t(v̄)

)∣∣∣∣
v̄=v̄f

, (7.67)

written in terms of the frequency v̄f ≡ (πGmᾱf/c3)
1/3 at the stationary point.

Note that the ratio of the derivative of the binding energy and the flux is reversed in Eq.
(7.65) compared to Eq. (7.42). Also note that the derivative is now taken with respect to
the new variable v̄ in the binding energy.

We start again with expanding this ratio in the dipolar driven regime. We express the
binding energy Eq. (5.105) and the dipolar driven flux Eq. (7.55) in terms of the new
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variable v̄ = x1/2 and take the derivative of the binding energy to v̄. Then we expand the
ratio up till first order in x = v̄2 which corresponds to

E ′(v̄)

FDD(v̄)
=
−3ᾱGm

4ηS2
−c

3v̄7
(1 + (E ′0 − fDD2 )v̄2), (7.68)

E ′0 = −3

2
− η

6
− 4γ̄

3
+

4

3

(
β+ −

∆m

m
β−

)
− 40c4

3G2

αf ′ (ϕ0)

m2ᾱ7/2
v̄4

(
3S+ +

∆m

m
S−
)

+
20c4

3ᾱ2G2m3
ζv̄4,

(7.69)

fDD2 =
24

5ᾱS2
−

+
4S2

+

5S2
−
− 4β+

3
+

4β−∆m

3m
− 14

5
− 4η

3
− 2γ̄

3
+

4β−S+

γ̄S−
− 4β+∆mS+

γ̄mS−
+

4β+

γ̄
− 4β−∆m

γ̄m

+
αf ′[ϕ0]c4v̄4

ᾱ5/2G2m2S−

(
8S−
3ᾱ

(3S+ +
∆m

m
S−)− S+(S+ +

∆m

m
S−)

)
+

ζ̄c4v̄4

2ᾱ7/2µG3m3S−
− 44v̄4

3ᾱ2G2m3
.

(7.70)
Substituting this expansion in Eq. (7.65) and integrating gives the time and orbital phase.
Substituting these results in Eq. (7.67) results in the Fourier phase evolution in the dipolar
driven regime, which results in

ψ (tf ) = − 1

4ηS2
−v̄

3
f

[
1 +

9

2
ρDDv̄2

f + (ρDDGB + ρDDtid ) log (v̄f ) v̄
6
f +

(
v̄f
v̄ref

)6(
1 +

1

3
ρDDv̄2

ref

− (ρDDGB + ρDDtid )v̄6
ref log (v̄ref )− 3(ρDDGB + ρDDtid )v̄6

ref

−2

(
v̄f
v̄ref

)3(
1 +

3

2
ρDDv̄2

ref − 6(ρDDGB + ρDDtid )v̄6
ref

)]
+ ϕ (v̄ref )− 2πft (v̄ref ) ,

(7.71)

ρDD = − 108

5ᾱS2
−
− 18

γ̄

(
β+

∆m

m
β−

)
+

18

γ̄

S+

S−
(
∆m

m
β+ − β−)− 3γ̄ +

21η

4
+ 12(β+ −

∆m

m
β−),

−
18S2

+

5S2
−

+
117

20

ρDDGB =
c4

G2

6αf ′ (ϕ0)

m2ᾱ5/2S−

[
−16S−
ᾱ

(
2∆m

3m
S− + 3S+) + S+(

∆m

m
S− + S+)

]
,

ρDDtid =
3c4

G2ᾱ2m3η

[
− ζ̄

ᾱ3/2GmS−
+ 16ηζ

]
.

(7.72)
Note that the GB and tidal related terms always come in the combination of ρGB + ρtid
hence scaling in a degenerate way with the frequency. Also as both ζ̄ and ζ are part of ρDDtid ,
both the binary dynamics tidal contribution and the tidal contribution from the induced
dipole moment are present in this regime.
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For the quadrupolar driven regime we would like to do the same calculation. However
the quadrupole flux Eq. (7.58) contains the dipole term which is very small in this regime.
Therefore we split the contribution of the flux in the Fourier domain in a part not containing
dipole terms and a part only containing the dipole terms. The latter will be subdominant
in this regime. As the dipole term scales with S−, we can use this to track the small terms
in the flux:

FQD = Fnon-dip + Fdip ,

Fnon-dip ≡ lim
S−→0

F , Fdip ≡ F − Fnon-dip .
(7.73)

The ratio of the binding energy and flux in Eq. (7.65) can be expanded as

E ′(v̄)

F(v̄)
' E ′(v̄)

Fnon-dip (v̄)

(
1− Fdip (v̄)

Fnon-dip (v̄)

)
. (7.74)

We rewrite the quadrupole flux in Eq. (7.58) in terms of v̄ and split the two contributions
according to Eq. (7.73)

Fnon-dip (v̄) =
32η2ξ̄c5

5Gᾱ2
v̄10
[
1 + fnd2 v̄2 +O

(
c−3
)]
,

Fdip (v̄) =
4S2
−η

2c5

3Gᾱ
v̄8
[
1 + fd2 v̄

2 +O
(
c−3
)]
,

(7.75)

with ξ̄ =
(
1 + S2

+ᾱ/6
)
. The coefficients given by the coefficients from Eq. (7.58) altered to

this splitting procedure in the following way

fnd2 =
fnd2,T

ξ̄
(S− → 0, x→ v̄2),

fd = fDD2 (
1

S2
−
→ 0, x→ v̄2).

(7.76)

The ratio is then given by

E ′(v̄)

F(v̄)
' − 5Gmᾱ2

32c3ηξ̄v̄9

[
1 +

(
E ′0 − fnd2

)
v̄2 +O

(
c−4
)]

+
25Gmᾱ3S2

−

768c3ξ̄2ηv̄11

[
1 +

(
E ′0 − 2fnd2 + fd

)
v̄2 +O

(
c−4
)]
.

(7.77)

We substitute this expansion in Eq. (7.65) and we integrate, which gives the time and
orbital phase. Substituting these expressions in Eq. (7.67) results in the Fourier phase
related to the dipolar and non dipolar terms. In total, they form the Fourier phase angle
evolution in the quadrupole regime:
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ψnon-dip (tf ) = − 6ᾱ

256ηξ̄v̄5
f

[
1 +

20

9
ρndv̄2

f − 20(ρndGB + ρndtid)v̄
6
f

+
5

3

(
v̄f
v̄ref

)8(
1 +

4

3
ρndv̄2

ref − 4(ρndGB + ρndtid)v̄
6
ref

)
− 8

3

(
v̄f
v̄ref

)5(
1 +

5

3
ρndv̄2

ref + 5(ρndGB + ρndtid)v̄
6
ref

)]
,

ψdip (tf ) =
10S2

−ᾱ
2

3584ηξ̄2v̄7
f

[
1 +

7

4
ρdv̄2

f +
70

4
(ρdGB + ρdtid)v̄

6
f

+
7

3

(
v̄f
v̄ref

)10(
1 +

5

4
ρdv̄2

ref +
5

2
(ρdGB + ρdtid)v̄

6
ref

)
+

10

3

(
v̄f
v̄ref

)7(
1 +

7

5
ρdv̄2

ref + 7(ρdGB + ρdtid)v̄
6
ref

)]
(7.78)

Here the coefficients are given by

ρnd =
1247

336ξ̄
− 3

2
+

4

3
(ξ̄ − 1)γ̄ + (

4

3
+

8

3ξ̄
)(β+ −

∆m

m
β−),

ρndGB =
c4

G2

f ′ (ϕ0)α

m2ᾱ5/2

[
40

3ᾱ
(3S+ +

∆m

m
S−) +

S+

ξ̄
(−177− 261η +

4∆m

m
)− 8S+

ᾱξ̄

]
,

ρndtid =
c4ζ

G2ᾱ2m3

[
−20

3
+

4

3ξ̄

]
ρd =

1247

168ξ̄
− 43

10
+ (

35

6ξ̄
− 3

2
)η + (

8

3ξ̄
− 2)γ̄

+
4

γ̄
(β+ −

∆m

m
β−) +

4S+

γ̄S−
(β− −

∆m

m
β+) +

16

3ξ̄
(β+ −

∆m

m
β−),

ρdGB =
c4

G2

f ′ (ϕ0)α

m2ᾱ5/2S−

[
−S+(S+ +

∆m

m
S−) +

8S−
3ᾱ

(3S+ +
∆m

m
S−) +

S−S+

ξ̄
(
177

7
− 8∆m

m
+

16

ᾱ
+

522η

7
)

]
,

ρdtid =
c4

G2ᾱ2m3

[
ζ̄

2ᾱ3/2GµS−
+

16ζ

3

]
.

(7.79)
Again we have the degenerate scaling with the frequency of the GB and tidal terms. In this
regime the non dipolar part dominates over the dipolar part. The dominating tidal term in
this regime is therefore ρndtid which only contains a term proportional to ζ. This contribution
comes from the tidal contribution in the binary dynamics.

7.5 Analysis of the phasing terms

We are interested in the contribution of the tidal term with respect to the GB term and the
GR result to the phase. If we look at expressions for the phases in fourier space Eq. (7.71),
Eq. (7.78) we see that the contribution of the GB and tidal term always come in this com-
bination ρGB + ρtid and they scale therefore degenerate with respect to the frequency.

We begin by extracting the terms from the phase expression which are proportional to the
tidal terms ζ̄ and ζ and the GB term proportional to α. We can compare there relative con-
tributions. Studying the frequency dependence of these two contributions is trivial as they
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have the same scaling. We look at the frequency dependence when we look at the entire
phase expression. We are especially interested in configurations where the two contribu-
tions have the same sign as the total contribution depends on ρDDGB +ρDDGB which is enhanced
instead of canceled for same signs.

7.5.1 Analysis of the DD phase

We start by analysing the phasing in the dipolar driven regimen given in Eq. (7.71). We
consider this expression in the frequency range of 0.1× 10−3Hz to an upper bound of fDD

from Eq. (7.54), which depends on the choice of coupling constant and mass. The lower
bound corresponds to the LISA lower bound frequency. In general for stellar mass black
hole binaries and choice of the coupling constant is consistent with recent emperical con-
strants [105] (also discussed in section 3.3.3. For these choices the upperbound frequency
fDD is below 10Hz, which is the lower bound frequency for LIGO/VIRGO. However it is
within the LISA frequency band of 0.1 × 10−3Hz − 1Hz. We compare the contribution of
ρDDGB with the contribution of ρDDtid .
As before, we have that the scalar charge and its derivative are defined with a minus sign
in Eq.(5.81), making S± negative for mass ratios q < 1 which we in general consider. For
mass ratios larger than 1, one can swap the role of body A and B in the system and again
do the analysis for q < 1. The expression of ρDDGB is therefore negative and thus the GB
contribution to the phase makes the phase smaller relative to GR, which corresponds to
the findings in [16, 17]. We have seen that ζ in Eq. (5.82) is positive as it depends on the
square of the scalar charge. The tidal term related to ζ̄ from Eq. (7.23) is negative as it
depends linearly on the scalar charge, divided by negative S− and having an overall minus
sign. Thus ρDDtid consists of a positive and a negative term, making the sign of the overall
term depend on the mass ratio and total mass.
For the analysis below we use the following properties

f [ϕ] =
1

4
e2ϕ, m = 15M�,

fmin,DD = 0.1× 10−3Hz, fmax,DD =

(
5

24

)3/2 c3S3
−
√
ᾱ

πGm
Hz,

fmin,QD = 10Hz, fmax,DD = 586Hz,

(7.80)

and for
√
α we use the current constraints from literature corresponding to EdGB gravity

as described in section 3.3.3:
√
α = 1.18km and

√
α = 1.7km .

When we study the dependency of the tidal phase contributions and GB phase contributions
with the total mass we find that they scale the same. Therefore we look at the dependence
of the ratio of the tidal and GB terms with respect to the mass ratio, see Fig. 21.
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Figure 21: The ratio of the tidal phase contributions over the GB phase contributions versus
the mass ratio q = mA

mB
. The red line corresponding to the coupling constant

√
α = 1.18km

and the purple dashed line to
√
α = 1.7km. We use the properties in Eq.(7.80).

As the ratio is positive, the two contributions have the same sign for all mass ratios. The ra-
tio is of order 102 therefore the tidal contribution to the phase in the dipolar driven regime
is a factor 100 larger than the GB contribution in this frequency range. This plot also shows
that the ratio becomes smaller for a larger coupling constant value. This implies that we
find the largest difference in the phase occurs for mass ratios close to 1 and a smaller values
of the coupling constant.

The fact that the ratio of the tidal and GB contributions is larger for smaller coupling con-
stats is interesting, as one would generally expect corrections to GR to scale positively with
the coupling constant. The dependency of the terms on the coupling constant is not so
easy to track explicitly, as the quanitites S±, β±, γ̄, ᾱ, ζ and ζ̄ depend on the scalar charge,
which in turn depends on the coupling constant. To see where this behaviour comes from
we plot explicitly the dependency on the coupling constant of the tidal and GB phasing
terms and the ratio shown in Fig. 22.
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Figure 22: The tidal and GB contributions of the phase and the ratio of the tidal phase
contributions over the GB phase contributions as functions of the coupling constant. Fur-
thermore we use Eq. (7.80) and q = 0.5.

We see that the contribution of the tidal terms becomes less negative for a larger coupling
constant, the GB contribution stays nearly constant at −0.23rad. Therefore in total the
contribution to the phasing of the GB and tidal terms scales negatively with the coupling
constant and we thus expect an enlarged difference with the GR phasing in this regime for
a small coupling constant.

We compare the total dipolar driven phase with the 1PN GR phase (which can be found
in [25] but can also be recovered from setting α = 0 and hence also the scalar charge to
zero), see Fig. 23. We match the integration constants such that the GR phase matches
with the DD phase at the end of the frequency validity regime. This is done because there
is no GR equivalent of dipole radiation, only quadrupole radiation. For frequencies larger
than the DD validity frequency the quadrupole term becomes dominant and can hence be
compared with the GR case.
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Figure 23: Log linear plot of total phase in dipolar driven regime including tidal contri-
butions for two different coupling constants. The GR phase is also included and matched
with the DD phase for the upper bound frequency. The solid lines correspond to the EdGB
DD result and the dot-dashed line to GR. We use Eq. (7.80).

From the total dipolar driven phase evolution we see that for a mass ratio closer to 1 the
phase is two orders of magnitude greater. We also see that for a large mass ratio and larger
coupling constant the GR phase is first larger and for higher frequencies smaller than the
GB phase, while for smaller mass ratios the GR phase is always larger.

To see the differences more explicitly we plot the difference of the total dipolar driven
phase with the 1PN GR phase for different mass ratios and two coupling constants, and the
differences between the dipolar driven phase with and without tidal terms shown in Fig.
24.
What we see from the difference with GR plots is that for a smaller coupling constant the
GB + tidal contributions are always larger than the GR phase for a mass ratio near 1, while
for a larger coupling constant for small frequencies the GR phase is first larger and becomes
smaller for larger frequencies.
For the difference between the phase with and without tidal terms we see that it is enlarged
for mass ratio close to 1 and for a smaller coupling constant. Furthermore, the difference
is positive, hence in the dipolar driven regime the inclusion of the tidal contribution makes
the phase smaller. This is because both the tidal and GB contributions to the phase carry a
minus sign.
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Figure 24: The top two plots showing the total phase in the dipolar driven regime and
the 1PN GR phase for a mass ratio of 1/4, 1/2 and 4/5 for two different values of the
coupling constant. The bottom two plots showing explicitly the difference between the
dipolar driven phase with and without tidal terms for mass ratios of 1/4, 1/2 and 1 for two
different coupling constants. We use Eq. (7.80).
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7.5.2 Analysis of the QD phase

We repeat the same analysis for the quadrupolar driven expression Eq. (7.78). We consider
this regime for a frequency range of LIGO/VIRGO 10 − 586Hz with the upperbound being
the ISCO estimate. Here we do find that the scaling of the tidal contribution and GB
contribution with the total mass is different. We therefore study a contourplot, varying
both the total mass and mass ratio as shown in Fig. 25.
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Figure 25: Contour of the ratio of the tidal phase contributions over the GB phase contri-
butions varying the mass ratio q = mA

mB
and total mass for two different coupling constants.

We use Eq. (7.80).

Again we find the ratio to be positive, hence same sign contributions of the GB and tidal
terms. In the quadrupole regime the contribution of the tidal terms is largest for small
mass ratio and total mass, opposite to the dipolar driven case. Similarly, the decrease in
the ratio of the tidal to GB terms for smaller coupling is also opposite to the trend in the
DD regime.

To see where this behaviour with respect to the coupling constant comes from we plot again
the contribution to the phase of the tidal terms, GB term and the ratio versus the coupling
constant, see Fig. 26.
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Figure 26: The tidal and GB contributions of the phase and the ratio of the tidal phase
contributions over the GB phase contributions against the coupling constant. We use Eq.
(7.80) and q = 0.5.

This time both contributions are positive and the tidal contribution scales less quickly with
the coupling constant than the GB contribution. The magnitude of the contributions is
much smaller than in the dipolar driven regime. If we compare the expression of the
quadrupolar driven phase Eq. (7.78) with the dipolar driven phase Eq. (7.71) one sees
that the dipolar part of the QD phase has similar scaling as the DD phase. However the
dipolar part is very small in this regime and the non dipolar part dominates which has the
dependency on the coupling constant we see above in the plot.

If we now look at the difference between the total quadrupole phase with and without tidal
contribution, we indeed see this behaviour shown in Fig. 27.
For a smaller mass ratio the difference is enlarged and is of an order of magnitude of
10−5/10−6. The sign of the difference, opposite to the dipolar driven case, is negative
meaning that the contribution of the tidal terms to the phase makes the total quadrupolar
driven phase larger.

Next, we look at the total quadrupolar phase evolution with respect to the phase in GR. We
do not show the quadrupolar phase without tidal effects as the difference is to small to be
visible in these plots, see Fig. 28.
We see that the difference with GR is largest for small mass ratios and is of order 103 for
the larger coupling constant and of order 102 for the smaller coupling constant.
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Figure 27: Difference between the quadrupolar phase without tidal contribution and with
tidal contribution for two different values of the coupling constant. We use Eq. (7.80).
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Figure 28: The difference between the quadrupole driven phase and the 1PN GR phase for
mass ratios of 1/4, 1/2 and 1 for two different coupling constants. We use Eq. (7.80).

The features that the tidal contribution scales negatively in the DD regime and that its con-
tribution is so much larger than in the quadrupole driven regime is interesting. The tidal
contribution to the consists of the sum of the tidal term proportional to ζ which comes
from the orbital contribution of the tidal effects introduced in section 5 and the term pro-
portional to ζ̄ coming from the induced dipole moment which we included in the multipole
expansion of the scalar field. The dipolar driven regime is valid for low frequencies dur-
ing the early inspiral. As the black holes are here far apart the dominating contribution
is not coming from curvature related terms as the GB terms, but from the scalar field. As
the movement is here also very slow the contributions of the binary dynamics are also
not dominant. Therefore in this regime the dominating tidal contribution comes from the
induced scalar dipole moment, which has a negative scaling with the coupling constant.
The QD regime is valid for higher frequencies for which the binary dynamics related tidal
contribution becomes the dominant contribution, this term has a positive scaling with the
coupling constant. The latter correspondsto the scalings we also found in the binding en-
ergy analysis in section 5.8.
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7.5.3 Analysis for multiband detection

In previous analysis we studied the phasing in the quadrupolar and dipolar driven regimes
seperately. We focussed on a binary system with a total mass of 15M� corresponding to
stellar black holes in the light mass range and making the comparison possible to the pre-
vious results in [17] which studied the same system. It is interesting to study this system to
analyse the dependencies of the phasing terms, but to say something about detectability of
the differences requires considering more massive stellar black holes in the dipolar driven
regime.

As the frequency regime lies within the LISA frequency band it would be possible to detect
the dipolar driven radiation with this space based telescope. Although stellar mass black
holes are not the main target of the LISA telescope, it can still measure its radiation corre-
sponding to different stages in the events [106, 107]. An even more promising tool would
be to make use of multiband detection, meaning that radiation from the same event is first
measured by LISA from the very early inspiral stages and later picked up by ground based
detectors as aLIGO/VIRGO or ET [108, 109, 110, 111]. For example it has been shown
that the GWs from event GW150914 of a black hole binary with the black hole masses
≈ 30Msolar detected by LIGO was strong enough to be also measured with LISA [112]. As
the strain of the gravitational waves scales with the masses of the black holes (see section
2), it has been shown that for black hole masses comparable to the GW150914 binary or
larger the radiation will be suitable for multiband detection [108]. Therefore to have an
estimate of the detectibility of the differences in phase regarding the possibility for multi-
band detection we repeat the analysis for a system of m = 60M� and q = 0.5.

The ISCO frequency scales as fISCO ∝ 1/m[25], thus for this new system the ISCO fre-
quency is lowered from 586Hz to 146Hz26. The merger happens for lower frequencies, but
still in the LIGO/VIRGO frequency range. This frequency will be our upperbound frequency
in the QD regime for these systems.

We first look at the DD regime results for the phase, focussing on the total phase differences
with respect to GR and with and without tidal terms shown in Fig. 29.

26Here we use the ISCO frequency estimation from [17]



7 SCALAR WAVEFORM AND PHASE EVOLUTION 113

q= 1
4

q= 1
2

q= 4
5

0.00000 0.00002 0.00004 0.00006 0.00008 0.00010

-4× 1020

-3× 1020

-2× 1020

-1× 1020

0

f[Hz]

D
D
G
B
+
ti
d
al
-
G
R
[r
ad
]

(a)
√
α = 1.7km

q= 1
4

q= 1
2

q= 4
5

0.00000 0.00002 0.00004 0.00006 0.00008 0.00010
-1.4× 1022

-1.2× 1022

-1.0× 1022

-8.0× 1021

-6.0× 1021

-4.0× 1021

-2.0× 1021

0

f[Hz]

D
D
G
B
+
ti
d
al
-
G
R
[r
ad
]

(b)
√
α = 1.18km

q= 1
4

q= 1
2

q= 4
5

0.01 0.05 0.10 0.50 1
10

50

100

500

1000

5000

f x 10-4 [Hz]

D
D
G
B
-
D
D
G
B
+
ti
d
al
[r
ad
]

(c)
√
α = 1.7km

q= 1
4

q= 1
2

q= 4
5

0.005 0.010 0.050 0.100 0.500 1

0

2000

4000

6000

8000

10000

f x 10-4 [Hz]

D
D
G
B
-
D
D
G
B
+
ti
d
al
[r
ad
]

(d)
√
α = 1.18km

Figure 29: The top two plots show the total phase in the dipolar driven regime and the
1PN GR phase for a mass ratio of 1/4, 1/2 and 4/5 for two different values of the coupling
constant. The bottom two plots show explicitly the difference between the dipolar driven
phase with and without tidal terms for mass ratios of 1/4, 1/2 and 1 for two different
coupling constants.
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We see that for a total mass of 60M� the difference of the phase with respect to GR is only
negative and the magnitude of the difference is enlarged compared to Fig. 24. Also the
contribution of the tidal terms is enlarged compared to the 15M� case as can be seen from
the bottom plots.

For the QD regime we only plot the difference in phase with the GR as the differences
between the phase with and without tidal contributions becomes too small in the case of
larger black holes masses. The difference is shown in Fig. 30.
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Figure 30: The top two plots show the total phase in the quadrupolar driven regime and the
1PN GR phase for a mass ratio of 1/4, 1/2 and 4/5 for two different values of the coupling
constant. The bottom two plots show explicitly the difference between the quadrupolar
driven phase with and without tidal terms for mass ratios of 1/4, 1/2 and 1 for two different
coupling constants.

In the quadrupolar regime the magnitude of the differences is a factor of 105 smaller com-
pared to Fig. 28.

A rough estimate for detectability is a difference in phase of about O(1) rad. All the differ-
ences we analysed for a system of m = 15M� in the previous section are above this order
in the phase for both the QD and DD regimes, except for the phase difference between the
tidal and non tidal included QD phase. But the differences with GR fall in the detectable
range. However such a binary system will not be detectable with LISA as the signal would
be too weak for such a small masses. If we analyse a more massive system that could be
used for multiband detection m = 60M�, we find the differences in the DD regime are
enlarged and still much above the detectability estimate. However the differences with the
GR phase in the QD regime for such a system are probably too small for detection with our
current detectors. However it can probably be detected with the higher accuracy of ET.
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8 Discussion and conclusion

In this thesis we calculated the near zone gravitational and scalar fields up to 1PN order
and the waveform phase evolution in quadratic gravity, specifically in scalar Gauss Bonnet
gravity.
For the near zone fields up to 1PN we recovered the results from [24] and we found that
the tidal terms do not play a role in these fields up to the order we are considering. They
are introduced separately in the two body Lagrangian and contribute at the same 1PN or-
der to the Lagrangian, relative acceleration and binding energy as the GB term and also
scale in the same way with the relative separation. Compared to the result for the binding
energy in [17] we corrected the prefactor of the GB term in this expression.

After a first analysis of the contribution of the tidal terms in the binding energy, which
turned out to be small, but it has the same sign as the GB related terms, we continued
to zoom in on the scalar field around one black hole in the binary system specifically. By
analysing the scalar field around this black hole and the first order perturbations from the
scalar field of the companion, we found that the scalar tidal effects induce a scalar tidal
dipole moment as opposed to a quadrupolar effect for gravitational tidal effects. From the
asymptotic expansion of the linear perturbation in the scalar field we recovered the tidal
deformability parameter for these scalar tidal effects.

With the 1PN near zone fields and tidal deformability parameter at hand, we continued
with the calculation of the scalar waveform and the gravitational wave phase using the
DIRE approach. Here we corrected some numerical factors and an additional GB term in
the scalar waveform compared to [17]. The tidally induced dipole moment adds linearly
to the scalar field dipole moment and again has the same PN order and scaling with the
relative distance as the GB term. However this tidal term has a different dependency on
the total mass/mass ratio and coupling constant as the tidal term related to the orbital
dynamics.
From the scalar en tensor waveforms, we constructed the phase evolution in the time and
frequency domains. Splitting the regimes in a dipolar dominated frequency range and a
quadrupolar dominated frequency range. From the expressions of the phase in the Fourier
domain we could already see that the GB and tidal contribution have a degenerate scaling
with the frequency.

From our analysis of the phasing terms we found that in the DD regime, the contribution of
the tidal and GB terms is around three orders of magintude larger than in the quadrupolar
driven regime. In both regimes for the sign of both contributions are equal although in
the DD regime they are both negative and in the QD regime they are positive. The scaling
of the tidal and GB contributions to the DD phase is the same for the frequency and total
mass, while the ratio between the two contributions is largest for mass ratios closer to 1.
As the tidal contribution becomes less negative for a larger coupling constant, while the GB
term stays constant, the total contribution in this regime becomes smaller for a larger cou-
pling constant, which is an interesting result. This is due to the fact that in the DD regime
the dipolar induced tidal contribution dominates from the orbital dynamics contribution.
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The situation is reversed in the QD regime.
In the QD regime we found that the ratio between the tidal and GB contributions was
largest for small mass ratios and total mass, which is the opposite as in the DD case. Also
as the contribution of the tidal and GB terms both increase with a larger coupling constant
the total difference with GR in this regime does become larger with a larger coupling con-
stant.

We repeated the analysis for a system of larger black hole masses that could be detected
with the LISA telescope and can possibly be used for multiband detection. We found that
the phase differences in the DD regime are enlarged compared to the smaller black hole
mass system. In the QD regime the differences are smaller. As a first rough estimate for
the possibility for detection, the phase differences with GR in QD regime for a m = 15M�
system is in detectable range, the DD phase differences with GR as well. However for these
masses the signal can not be measured with LISA. For a m = 60M� system the phase differ-
ences with GR in de DD regime are detectable but as the differences in the QD regime are
smaller for this system and they are out of the sensitivity range for current detectors. There
are however possibilities regarding the ET for detecting these differences. This possibility
for multiband detection is an opportunity for resolving the degeneracy of the scaling with
the frequency for the tidal and GB contributions. One can use their opposite scaling be-
haviour with the mass ratio and coupling constant in the two different regimes to mitigate
the degeneracy in the two contributions.

All in all our work resulted in an interesting first analysis of the inclusion of scalar tidal
effects in the GW signatures in sGB gravity, as we found interesting dependencies of the
tidal terms with respect to the coupling and even a dominant behaviour in the DD regime.
This shows that these tidal effects play a non-negligible role in the GW analysis for the kind
of systems we considered.
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9 Outlook

Lastly we have a short discussion on the possibilities for future research related to our find-
ings. One of the most straightforward ways to continue for future research would be to
extend this calculation to higher PN orders. In that case back reaction effects of the GWs
come into play and the far zone contribution enters. Also higher order tidal effects than
the dipolar contribution can be included which requires the extension of the calculation of
the tidal deformability parameter to higher orders.
Also already up to 1PN the contribution of the tensor flux in the phasing is till 1PN but the
scalar flux only till 0.5PN, so the extension of the scalar field up to 1PN would already be
interesting.

To make our current analysis more complete, we can add sGB corrections to the Schwarzschild
background we are using in the calculation of the scalar tidal deformability parameter.
However as these corrections come in at second order in the coupling constant[113], the
calculation of the tidal deformability also needs to be extended up to higher order in the
coupling constant.

Furthermore as we find that as the tidal contributions are not negligible and even domi-
nating in the DD regime, there is a bias on the parameter estimation in studies that de-
rive bounds on sGB, as this effect is not included before. For example there are probably
stronger constraints on the coupling constant when taking into account the scalar tidal ef-
fects. It would be interesting to reconsider these results including this effect.

Lastly doing the same analysis for other quadratic gravity theories is an interesting con-
tribution. We started looking into this analysis for dynamical Chern Simons gravity as
described in Appendix G. However as we found the dCS contributions relative to GR to
enter at higher PN orders, we left the full analysis for future work.
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A Explicit expressions from binary dynamics calculation

At the start of section 5 we vary the action with respect to the metric and scalar field to
derive the equations of motion. Here we give the variation of the energy momentum tensor
related terms Eq. (5.8) and Eq. (5.11). First for the terms of Eq. (5.8)

Tmµν =
−2√
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In the second equality we used δgµν = −gµαgνβδgαβ. Then for the tidal energy momentum
tensor we have
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Then for the expressions Eq. (5.11):
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gµν∂µ∂νϕ
√√√√gαβ

dxαA
dt

dxβA
dt

g
+
∂ν(

√
−gαβ

dxαA
dt

dxβA
dt
gµν)

√
−g

∂µϕ

 .
(A.4)

Where in the second to last equality we integrated by parts.

To solve the equations of motion order by order, we need to expand the different terms
in the equations in 1/c2. This is done by substituting the expansion of the scalar field and
the gravitational fields U and gi in the expressions, together with the PN expansion of the
metric

g00 = −e−
2U
c2 +O(ε2

PN),

g0i = − 4

c3
gi,1 +O(ε2

PN),

gij = δije
2U
c2 +O(ε2

PN).

(A.5)

With the fields having the expansions as discussed in section 5.3.1

U

c2
=
U (0)

c2
+
U (1)

c4
+O(1/c6), (A.6)

gi
c3

=
g

(0)
i

c3
+O(1/c5). (A.7)

For the scalar field we have the in background and perturbations

ϕ = ϕ0 + δϕ, (A.8)

followed by

δϕ =
ϕc
c2

=
ϕ

(0)
c

c2
+
ϕ

(1)
c

c4
+O(1/c6). (A.9)

Next we expand the expressions turning up in the RHS of the equations of motion, using
the expansions of the fields above. Therefore we first need to expand the following combi-
nations:

The following expression needs to be expanded up to O(1/c2)
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gµν∂µ∂νϕ = g00∂0∂0
ϕ

(0)
c

c2
+ g0i∂0∂i

ϕ
(0)
c

c2
+ gij∂i∂j

ϕ
(0)
c

c2

= −∂0∂0
ϕ

(0)
c

c2
+ δij∂i∂j

ϕ
(0)
c

c2
= �η

ϕ
(0)
c

c2
.

(A.10)

Next we expand the metric determinant. We would like to expand the upcoming expres-
sions up to O(1/c2). As the 0i component of the metric is already in 1/c3 we can neglect
this contribution, which makes our metric diagonal. The determinant of a diagonal matrix
is given by the product of the diagonal elements

g = −e−
2U
c2

+3 2U
c2 = −e

4U
c2 = −1− 4U (0)

c2
+O

(
1/c4

)
. (A.11)

Then we have also some other combinations of terms which we expand in 1/c2:

gαβ
dxαA
dt

dxβA
dt

= (−1 + 2
U (0)

c2
)

(
c
dt

dt

)2

+ (δij + 2δij
U (0)

c2
)v2

A

= −c2 + (U (0) + v2
A) +O

(
1/c2

)
,

(A.12)

1√
ggαβ

dxαA
dt

dxβA
dt

=
1√

(−1)(−c2 + 2U (0) + v2
A)

=
1

c

1√
1 + 2U(0)

c2
− v2A

c2

=
1

c
(1− U (0)

c2
+
v2
A

2c2
) +O(1/c4),

(A.13)

1√
−g

√
−gαβ

dxαA
dt

dxβA
dt

=
1√
e

4U
c2

√
−(−c2 + 2U (0) + v2

A)

=
1√
1
c

√
1− 2U (0)

c2
− v2

A

c2
= c(1− U (0)

c2
− v2

A

2c2
)

= c(1− U (0)

c2
− v2

A

2c2
) +O(1/c4),

(A.14)
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∂ν

(√
−gαβ

dxαA
dt

dxβA
dt
gµν
)

√
−g

= (1− 2U (0)

c2
)

gµν∂ν
√
−gαβ

dxαA
dt

dxβA
dt

+

√
−gαβ

dxαA
dt

dxβA
dt

∂νg
µν


= (1− 2U (0)

c2
)

 gµν

2

√
−gαβ

dxαA
dt

dxβA
dt

∂ν

(
−gαβ

dxαA
dt

dxβA
dt

)
+

√
−gαβ

dxαA
dt

dxβA
dt

∂νg
µν


= (1− 2U (0)

c2
)

[
gµν(1 + U(0)

c2
+

v2A
c2

)

2c
(−2∂νU

(0) +
4U (0)

c2
∂νU −

2v2
A

c2
∂νU

(0))

+c(1− U (0)

c2
− v2

A

2c2
)∂νg

µν

]
=

1

2

1

c
(1− 2U (0)

c2
)(1 +

U (0)

c2
+
v2
A

c2
)gµν(−2∂νU +

4U (0)

c2
∂νU −

2(U (0))2

c2
∂νU

(0))

+ c(1− 2U (0)

c2
)(1− U (0)

c2
− v2

A

2c2
)∂νg

µν

= c∂νg
µν − 3U (0)

c
∂νg

µν − v2
A

2c
∂νg

µν − 1

c
gµν∂νU +O(1/c2).

(A.15)
Lastly we also expand the mass function

mA(ϕ) = mA (ϕ0) +m′A (ϕ0)
ϕ

(0)
c

c2
+

1

2
m′′A (ϕ0)

ϕ
(1)
c

c4
+O(1/c6)

= m0
A

[
1 + α0

A

ϕ
(0)
c

c2
+

1

2

(
α0
A

2 + β0
A

) ϕ(1)
c

c4

]
+O

(
1/c6

)
,

(A.16)

with m0
A = mA (ϕ0) and

αA(ϕ) ≡ d lnmA(ϕ)

d(ϕ)

βA(ϕ) ≡ dαA(ϕ)

d(ϕ)
,

(A.17)

with α0
A = αA(ϕ0) called the scalar charge and β0

A = βA(ϕ0). The scalar charge measures
the strength of the coupling of the physical mass to the back ground scalar field. The
expression for this scalar charge is calculated in [24] for a small coupling approximation.
To first order it is given by

α0
A = − αf

′(ϕ0)c4

2G2(m0
A)2

. (A.18)

And thus for the β0 at lowest order

β0
A = −αf

′′(ϕ0)c4

2G2(m0
A)2

. (A.19)
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Then we can use these expansions to calculate the RHS of the differential equations of the
EOMs. Starting with the terms on the RHS of Eq. (5.19):

For the expansion of δ̄Sm we get using Eq. (A.14) and Eq. (5.22)

δ̄Sm = −c
∑
A

δ(3)(x− xA(t))
dmA(ϕc)

dϕc

√√√√gαβ
dxαA
dt

dxβA
dt

g

= −c
∑
A

δ(3)(x− xA(t))(0 +m0
Aα

0
A +m0

A((α0
A)2 + β0

A)
ϕ

(0)
c

c2
)c(1− U (0)

c2
− v2

A

c2
)

= −
∑
A

δ(3)(x− xA(t))c2α0
Am

0
A + (m0

A((α0
A)2 + β0

A)ϕ(0)
c

− α0
Am

0
AU

(0) − 1

2
α0
Am

0
Av

2
A) +O(1/c2).

(A.20)

For the expansion of δ̄Stid we get using Eq. (A.15), Eq. (A.14) and Eq. (A.10)

δ̄Stid =
∑
A

λ
(s)
A δ(3)(x− xA(t))c

gµν∂µ∂νϕ
√√√√gαβ

dxαA
dt

dxβA
dt

g
+
∂ν(

√
−gαβ

dxαA
dt

dxβA
dt
gµν)

√
−g

∂µϕ


=
∑
A

λ
(s)
A δ(3)(x− xA(t))c[�

ϕ
(0)
c

c2
c(1− U (0)

c2
− v2

A

c2
)

+ (c∂νg
µν − 2U (0)

c
∂νg

µν − U (0)

c
∂νg

µν − v2
A

2c
∂νg

µν − 1

c
gµν∂νU

(0))∂µ
ϕ

(0)
c

c2
]

=
∑
A

λ
(s)
A δ(3)(x− xA(t))c2[�ϕ(0)

c + ∂νg
µν∂µδϕ]

=
∑
A

λ
(s)
A δ(3)(x− xA(t))c2[�

ϕ
(0)
c

c2
+ ∂ig

ii∂i
ϕ

(0)
c

c2
]

=
∑
A

λ
(s)
A δ(3)(x− xA(t))c2[�

ϕ
(0)
c

c2
+ ∂i(1−

2U (0)

c2
)∂i

ϕ
(0)
c

c2
]

=
∑
A

λ
(s)
A δ(3)(x− xA(t))ϕ(0)

c +O(1/c2).

(A.21)
Then for the terms on the RHS of the differential equation of the U field, Eq. (5.33), we
have the following expansions for the energy momentum tensor terms. Using Eq. (A.13)
and Eq. (5.22)
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Tm00 = c
∑
A

mA(ϕ)δ(3)(x− xA(t))

dxA0
dt

dxA0
dt√

ggαβ
dxαA
dt

dxβA
dt

= c3
∑
A

m0
A(1 + α0

A

ϕ
(0)
c

c2
)δ(3)(x− xA(t))

1

c
(1− U (0)

c2
+
v2
A

2c2
)

=
∑
A

(m0
Ac

2 +m0
Aα

0
Aϕ

(0)
c −m0

AU
(0) +m0

A

1

2
v2
A)δ(3)(x− xA(t)) +O(1/c2).

(A.22)

And for Tmii

Tmii = c
∑
A

mA(ϕ)δ(3)(x− xA(t))

dxAi
dt

dxAi
dt√

ggαβ
dxαA
dt

dxβA
dt

= c
∑
A

m0
A(1 + α0

A

ϕ
(0)
c

c2
)δ(3)(x− xA(t))v2

A

1

c
(1− U (0)

c2
+
v2
A

2c2
)

=
∑
A

m0
Aδ

(3)(x− xA(t))v2
A +O(1/c2).

(A.23)

For the tidal energy momentum tensor using Eq. (A.13) and Eq. (A.14), we have

T tid00 = c
∑
A

λ
(s)
A

∂0
ϕ

(0)
c

c2
∂0
ϕ

(0)
c

c2

√√√√gαβ
dxαA
dt

dxβA
dt

g
+ gρσ∂ρ

ϕ
(0)
c

c2
∂σ
ϕ

(0)
c

c2

dxA0
dt

dxA0
dt

2

√
ggαβ

dxαA
dt

dxβA
dt

 δ(3)(x− xA(t))

=
∑
A

λ
(s)
A

[
c2∂0

ϕ
(0)
c

c2
∂0
ϕ

(0)
c

c2
(1− U (0)

c2
− v2

A

c2
) + c2gρσ∂ρ

ϕ
(0)
c

c2
∂σ
ϕ

(0)
c

c2

1

2
(1− U (0)

c2
+
v2
A

2c2
)

]
δ(3)(x− xA(t))

=
∑
A

λ
(s)
A

[
c2∂0

ϕ
(0)
c

c2
∂0
ϕ

(0)
c

c2
+

1

2
c2gρσ∂ρ

ϕ
(0)
c

c2
∂σ
ϕ

(0)
c

c2

]
δ(3)(x− xA(t)) +O(1/c4).

(A.24)
And for T tidii

T tidii = c
∑
A

λ
(s)
A

∂iϕ(0)
c

c2
∂i
ϕ

(0)
c

c2

√√√√gαβ
dxαA
dt

dxβA
dt

g
+ gρσ∂ρ

ϕ
(0)
c

c2
∂σ
ϕ

(0)
c

c2

dxAi
dt

dxAi
dt

2

√
ggαβ

dxαA
dt

dxβA
dt

 δ(3)(x− xA(t))

=
∑
A

λ
(s)
A

[
c2∂i

ϕ
(0)
c

c2
∂i
ϕ

(0)
c

c2
(1− U (0)

c2
− v2

A

c2
) + v2

Ag
ρσ∂ρ

ϕ
(0)
c

c2
∂σ
ϕ

(0)
c

c2

1

2
(1− U (0)

c2
+
v2
A

2c2
)

]
δ(3)(x− xA(t))

=
∑
A

λ
(s)
A

[
c2∂i

ϕ
(0)
c

c2
∂i
ϕ

(0)
c

c2
ε1
c

]
δ(3)(x− xA(t)) +O(

1

c4
).

(A.25)
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Lastly for the expansion of the RHS terms in Eq. (5.41) we have for the energy momentum
tensor using Eq. (A.13) and Eq. (5.22)

Tm0i = c
∑
A

mA(ϕ)δ(3)(x− xA(t))

dxA0
dt

dxAi
dt√

ggαβ
dxαA
dt

dxβA
dt

= c2
∑
A

m0
A(1 + α0

A

ϕ
(0)
c

c2
)δ(3)(x− xA(t))viA

1

c
(1− U (0)

c2
+
v2
A

2c2
)

= c
∑
A

m0
Av

i
Aδ

(3)(x− xA(t)) +O(1/c).

(A.26)

And for the tidal energy momentum tensor using Eq. (A.14) and Eq. (A.13)

T tid0i = c
∑
A

λ
(s)
A

∂0
ϕ

(0)
c

c2
∂i
ϕ

(0)
c

c2

√√√√gαβ
dxαA
dt

dxβA
dt

g
+ gρσ∂ρ

ϕ
(0)
c

c2
∂σ
ϕ

(0)
c

c2

dxA0
dt

dxAi
dt

2

√
ggαβ

dxαA
dt

dxβA
dt

 δ(3)(x− xA(t))

=
∑
A

λ
(s)
A

[
c2∂0

ϕ
(0)
c

c2
∂i
ϕ

(0)
c

c2
(1− U

c2
− v2

A

c2
) + cgρσvAi ∂ρ

ϕ
(0)
c

c2
∂σ
ϕ

(0)
c

c2

1

2
(1− U (0)

c2
+
v2
A

2c2
)

]
δ(3)(x− xA(t))

=
∑
A

λ
(s)
A

[
c2∂0

ϕ
(0)
c

c2
∂i
ϕ

(0)
c

c2
+

1

2
cgρσvAi ∂ρ

ϕ
(0)
c

c2
∂σ
ϕ

(0)
c

c2

]
δ(3)(x− xA(t)) +O(1/c4).

(A.27)
We use these expansions in section 5 to calculate the near zone fields.

B Calculation relative acceleration

One can derive the relative acceleration from the Euler Lagrange equations in relative form

1

m0
A

∂L
∂xA

− 1

m0
B

∂L
∂xB

=
1

m0
A

d

dt

∂L
∂vA

− 1

m0
B

d

dt

∂L
∂vB

. (B.1)

To calculate these derivatives we can use the following from r = xA − xB and n = r
r

∂r

∂xA
=

r

r
= − ∂r

∂xB
, (B.2)

∂

∂xA

1

rn
= − nn

rn+1
= − ∂

∂xB

1

rn
, (B.3)

∂

xA
(n · vA) =

∂

xA
(
r

r
) · vA + n

∂

∂xA

∂xA
∂t

= (
1

r
∗ 1− 1

r2
nr) · vA =

1

r
(vA − (n · vA)n) = − ∂

xB
(n · vA).

(B.4)
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Then we calculate the derivatives with the Lagrangian Eq. (5.84). To make this more
manageable we split the Lagrangian in three parts:

L0 = −m0
Ac

2 −m0
Bc

2 +
1

2
m0
Av

2
A +

1

2
m0
Bv

2
B +

Gᾱm0
Am

0
B

r
+

1

8c2
m0
Av

4
A +

1

8c2
m0
Bv

4
B, (B.5)

L1 =
ᾱGm0

Am
0
B

2c2r
(3(v2

A + v2
B)− 7(vA · vB)− (n · vA)(n · vB) + 2γ̄(vA − vB)2)

− ᾱ2G2m0
Am

0
B

2r2c2
(m0

A(1 + 2β̄B) +m2
B(1 + 2β̄A)),

(B.6)

L2 =
αf ′(φ0)ᾱ2G2m0

Am
0
B

c2r4
(m0

Aδ̄A +m0
B δ̄
′
B)− 1

2
λ

(s)
A

G2(m0
Bα

0
B)2

c2r4
− 1

2
λ

(s)
B

G2(m0
Aα

0
A)2

c2r4
. (B.7)

B.1 L0 part

Starting with Eq. (B.5), we first take the derivatives to x

∂L0

∂xA
= −Gᾱm

0
Am

0
B

r2
n = −∂L0

∂xB
. (B.8)

Next, we take the derivatives to v

d

dt

∂L0

∂vA
=

d

dt
(m0

AvA +
1

2c2
m0
A(vA)2vA)

= m0
AaA +

1

c2
m0
A(vA · aA)vA +

1

2c2
m0
A(vA)2aA =

d

dt

∂L0

∂vB
.

(B.9)

Then we substitute these equations into Eq. (B.1)

1

m0
A

∂L0

∂xA
− 1

m0
B

∂L0

∂xB
= −Gᾱm

r2
n, (B.10)

1

m0
A

d

dt

∂L0

∂vA
− 1

m0
B

d

dt

∂L0

∂vB
=aA − aB +

1

c2
(vA · aA)vA −

1

c2
(vB · aB)vB+

1

2c2
v2
AaA −

1

2c2
v2
BaB.

(B.11)
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B.2 L1 part

We perform similar calculation for Eq. (B.6)

∂L1

∂xA
= −Gᾱm

0
Am

0
B

2r2c2
n(3(v2

A + v2
B)− 7(vA · vB)− (n · vA)(n · vB) + 2γ̄(vA − vB)2

− Gᾱ

r
(m0

A(1 + 2β̄B) +m0
B(1 + 2β̄A))) +

Gᾱm0
Am

0
B

2rc2
(−1

r
(vA − (n · vA)n)(n · vB)

− (n · vA)
1

r
(vB − (n · vB)n) +

Gᾱn

r2
(m0

A(1 + 2β̄B) +m0
B(1 + 2β̄A)))

=
Gᾱm0

Am
0
B

2c2r2

{
−vA (n · vB)− vB (n · vA) +

[
3 (n · vA) (n · vB)− 3

(
v2
A + v2

B

)
+7 (vA · vB)− 2γ̄ (vA − vB)2 +

2Gᾱ

r

(
m0
A

(
1 + 2β̄B

)
+m0

B

(
1 + 2β̄A

))]
n

}
= −∂L1

∂xB
(B.12)

The derivative to v is given by

∂L1

∂vA
=
Gᾱm0

Am
0
B

2c2r
[6vA − 7vB − n (n · vB) + 4γ̄ (vA − vB)] , (B.13)

d

dt

∂L1

∂vA
= −Gᾱm

0
Am

0
B(n · v)

2c2r2
[6vA − 7vB − n (n · vB) + 4γ̄v]

+
Gᾱm0

Am
0
B

2c2r

(
6aA − 7aB −

v (n · vB)

r
− n (v · vB)

r
− n (n · aB)

+
2n (n · vB) (n · v)

r
+ 4γ̄a

)
=
Gᾱm0

Am
0
B

2c2r
(6aA − 7aB + 4γ̄a− n (n · aB)

+
1

r
[−v (n · vB)− n (v · vB) + (n · v) (3n (n · vB)− 6vA + 7vB − 4γ̄v)])

=
d

dt

∂L1

∂vB
(A↔ B,v→ −v,n→ −n).

(B.14)

Then we substitute this back in Eq. (B.1) resulting in

1

m0
A

∂L1

∂xA
− 1

m0
B

∂L1

∂xB
=
Gᾱm

2c2r2
{−vA (n · vB)− vB (n · vA)

+
[
3 (n · vA) (n · vB)− 3

(
v2
A + v2

B

)
+ 7 (vA · vB)− 2γ̄v2

+
2Gᾱ

r

(
m0
A

(
1 + 2β̄B

)
+m0

B

(
1 + 2β̄A

))]
n

}
,

(B.15)
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1

m0
A

d

dt

∂L1

∂vA
− 1

m0
B

d

dt

∂L1

∂vB
=
Gᾱm0

B

2c2r
{6a− aB + 4γ̄a− n (n · aB)

+
1

r
[−v (n · vB)− n (v · vB) + (n · v) (3n (n · vB)− 6v + vB − 4γ̄v)]

}
− Gᾱm0

A

2c2r
{−6a− aA − 4γ̄a− n (n · aA)

+
1

r
[−v (n · vA)− n (v · vA) + (n · v) (3n (n · vA) + 6v + vA + 4γ̄v)]

}
.

(B.16)

B.3 L2 part

Then for the last part of the Lagrangian Eq. (B.7) we recover the following expressions

∂L2

∂xA
= −4αf ′ (φ0)G2ᾱ2m0

Am
0
Bn

c2r5

(
m0
Aδ̄A +m0

B δ̄B
)

+ 2λ
(s)
A

G2(m0
Bα

0
B)2n

c2r5
+ 2λ

(s)
B

G2(m0
Aα

0
A)2n

c2r5

= − ∂L2

∂xB
,

(B.17)

d

dt

∂L2

∂vA
= 0 =

d

dt

∂L2

∂vB
. (B.18)

Then we substitute this back in Eq. (B.1) resulting in

1

m0
A

∂L2

∂xA
− 1

m0
B

∂L2

∂xB
= −4αf ′ (φ0)G2ᾱ2mn

c2r5

[
m0
Aδ̄A +m0

B δ̄B
]

+ 2λ
(s)
A

G2(m0
Bα

0
B)2n

m0
Ac

2r5

+ 2λ
(s)
B

G2m0
A(α0

A)2n

c2r5
+ 2λ

(s)
A

G2m0
B(α0

B)2n

c2r5

+ 2λ
(s)
B

G2(m0
Aα

0
A)2n

m0
Bc

2r5

= −4αf ′ (φ0)Gᾱ2mn

c2r5

[
m0
Aδ̄A +m0

B δ̄B
]

+
2G2mᾱ2n

c2r5
(λ

(s)
A

m0
B(α0

B)2

ᾱ2m0
A

+ λ
(s)
B

m0
A(α0

A)2

ᾱ2m0
B

),

(B.19)

with ζ = λ
(s)
A

m0
B(α0

B)2

ᾱ2m0
A

+ λ
(s)
B

m0
A(α0

A)2

ᾱ2m0
B

, and

1

m0
A

d

dt

∂L2

∂vA
− 1

m0
B

d

dt

∂L2

∂vB
= 0. (B.20)
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Next, we substitute all these parts together in Eq. (B.1), resulting in

− Gᾱmn

r2
+
Gᾱm

2c2r2
{−vA (n · vB)− vB (n · vA) + [3 (n · vA) (n · vB)

−3
(
v2
A + v2

B

)
+ 7 (vA · vB)− 2γ̄v2 +

2Gᾱ

r

(
m0
A

(
1 + 2β̄B

)
+m0

B

(
1 + 2β̄A

))]
n

}
− 4αf ′ (φ0)G2ᾱ2mn

c2r5

[
m0
Aδ̄A +m0

B δ̄B
]

+
2G2mᾱ2n

c2r5
ξ

= a + (vA · aA)vA − (vB · aB)vB +
1

2
(vA)2 aA −

1

2
(vB)2 aB

+
Gᾱm0

B

2c2r

{
6a− aB + 4γ̄a− n (n · aB) +

1

r
[−v (n · vB)− n (v · vB)

+(n · v) (3n (n · vB)− 6v + vB − 4γ̄v)]} − Gᾱm0
A

2c2r
{−6a− aA − 4γ̄a− n (n · aA)

+
1

r
[−v (n · vA)− n (v · vA) + (n · v) (3n (n · vA) + 6v + vA + 4γ̄v)]

}
.

(B.21)

We rewrite in terms of the relative acceleration

a = −Gᾱmn

r2
+
Gᾱm

2c2r2
{−vA (n · vB)− vB (n · vA) + [3 (n · vA) (n · vB)

−3
(
v2
A + v2

B

)
+ 7 (vA · vB)− 2γ̄v2 +

2Gᾱ

r

(
m0
A

(
1 + 2β̄B

)
+m0

B

(
1 + 2β̄A

))]
n

}
− 4αf ′ (φ0)G2ᾱ2mn

c2r5

[
m0
Aδ̄A +m0

B δ̄B
]

+
2G2mᾱ2n

c2r5
ξ −

(
(vA · aA)vA − (vB · aB)vB +

1

2
(vA)2 aA

−1

2
(vB)2 aB +

Gᾱm0
B

2c2r

{
6a− aB + 4γ̄a− n (n · aB) +

1

r
[−v (n · vB)− n (v · vB)

+(n · v) (3n (n · vB)− 6v + vB − 4γ̄v)]} − Gᾱm0
A

2c2r
{−6a− aA − 4γ̄a− n (n · aA)

+
1

r
[−v (n · vA)− n (v · vA) + (n · v) (3n (n · vA) + 6v + vA + 4γ̄v)]

}
).

(B.22)
From this we can see that the lowest order correction (Newtonian) is given by a = −Gᾱmn

r2

and thus also aA = −Gᾱm0
Bn

r2
aB =

Gᾱm0
An

r2
. Substituting the latter two in the expression for

aA and aB and grouping the terms results in

a = −Gᾱmn

r2
+

Gᾱ

2c2r2

[
Gᾱn

r
[8m2 + 4m0

Bm
0
A + 4γ̄m2 + 4m(m0

Aβ̄B +m0
Bβ̄A)

− 8αf ′(φ0)m

r2
(m0

Aδ̄A +m0
B δ̄B) +

4m

r2
ξ] + n [3m (n · vA) (n · vB)

+3(n · v)
(
n ·
(
m0
AvA −m0

BvB
))
− 3m

(
v2
A + v2

B

)
+7m (vA · vB)− 2mγ̄v2 − v ·

(
m0
AvA −m0

BvB
)

+m0
Bv

2
A +m0

Av
2
B

]
−mvA (n · vB)−mvB (n · vA) + 2m0

BvA (n · vA) + 2m0
AvB (n · vB)

+
(
6mv −m0

BvB +m0
AvA + 4γ̄mv

)
(n · v)− v

(
n ·
(
m0
AvA −m0

BvB
))]

.

(B.23)
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Rewriting even further gives

a = −Gᾱmn

r2
+
Gᾱ

c2r2

{
2Gᾱn

r
[2m2 +m0

Bm
0
A + γ̄m2 +m(m0

Aβ̄B +m0
Bβ̄A)

−2αf ′(φ0)m

r2
(m0

Aδ̄A +m0
B δ̄B) +

m

r2
ξ]

+n

[
3

2

(
m0
A (n · vA)2 +m0

B (n · vB)2)− 2mv2 +m0
Av

2
B +m0

Bv
2
A −mγ̄v2

]
+v
[
4m(n · v)−m0

A (n · vA) +m0
B (n · vB) + 2γ̄m(n · v)

]}
.

(B.24)

We move to the CM frame with the relative coordinates given by

xA ≈
m0
B

m
r, xB ≈ −

m0
A

m
r,

⇒ vA ≈
m0
B

m
v, vB ≈ −

m0
A

m
v.

(B.25)

Substituting these expressions in Eq. (B.24) gives

a = −Gᾱmn

r2
+
Gᾱ

c2r2

{
2Gᾱn

r

[
2m2 +m0

Am
0
B + γ̄m2

+m
(
m0
Aβ̄B +m0

Bβ̄A
)
− 2αf ′ (φ0)m

r2

(
m0
Aδ̄A +m0

B δ̄B
)

+
m

r2
ξ

]
+ n

[
3

2
m
m0
Am

0
B

m2
(n · v)2 +

(
(m0

A)3 + (m0
B)3

m2
− 2m−mγ̄

)
v2

]
+2mv(n · v)

[
2− m0

Am
0
B

m2
+ γ̄

]}
.

(B.26)

Then, using the definitions

S± ≡
α0
A ± α0

B

2
√
α

, β± ≡
β̄A ± β̄B

2
,

η ≡ m0
Am

0
B

m2
, ∆m ≡ m0

A −m0
B,

(B.27)

and reintroducing ṙ = (n · v), we can rewrite the relative acceleration as

a = −Gᾱmn

r2
+
Gᾱm

c2r2

{
n

[
3

2
ηṙ2 − (1 + 3η + γ̄)v2

]
+ 2vṙ[2− η + γ̄]

+
2Gᾱmn

r

[
2 + η + γ̄ + β+ −

∆m

m
β− −

2αf ′ (φ0)

ᾱ3/2r2

(
3S+ +

∆m

m
S−

)
+

ξ

mr2

]}
.

(B.28)

From this expression we continue in section 5.6.
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C Greens functions

In the main part of this thesis we often encounter wave equations as they are the differen-
tial equations governing the evolution of the GWs. Here we discuss some background on
Greens functions which are often used to solve wave like equations.

In the three dimensional case, the Greens function is a common way to solve the Poisson
equation

∇2f(x) = g(x), (C.1)

with the solution
f(x) =

∫
x′
G (x,x′) g (x′) dx′. (C.2)

Here is G the Greens function defined as

∇2G (x,x′) = δ (x− x′) . (C.3)

The solution for the Greens function of the equation above is given by

G (x,x′) = − 1

4π
· 1

|x− x′|
. (C.4)

In the (flat space) relativistic case, the Greens function is used to solve the wave equation

�ηφ(x, t) =

(
∇2 − 1

c2

∂2

∂t2

)
φ(x, t) = −ρ(x, t). (C.5)

Then the relativistic Greens function satisfies(
∇2 − 1

c2

∂2

∂t2

)
G (x, t,x′, t′) = δ (x− x′) δ (t− t′) . (C.6)

To derive the solution for G it is easiest to switch to Fourier space using the identity

δ (t− t′) =
1

2π

∫ ∞
−∞

e−iω(t−t′)dω. (C.7)

Then in Fourier space Eq. (C.6) becomes(
∇2 + k2

)
G (x,x′, ω) = δ (x− x′) eiωt

′
. (C.8)

This allows for the following solutions

G0 (x,x′, ω) =
− cos (k |x− x′|)

4π |x− x′|
eiωt

′
,

G+ (x,x′, ω) =
−e+ik|x−x′|

4π |x− x′|
eiωt

′
,

G− (x, x′, ω) =
−e−ik|x−x′|

4π |x− x′|
eiωt

′
.

(C.9)
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Transforming these solutions back to real space gives

G± (x, t,x′, t′) =
−δ
(

(t− t′)∓ |x−x
′|

c

)
4π |x− x′|

, (C.10a)

G0 (x, t,x′, t′) =
1

2
(G+ (x, t,x′, t′) +G− (x, t,x′, t′)) . (C.10b)

Where for the first solution, the + stands for the retarded Greens function, the solution
in this case depends on the sources in the past. The − stands for the advanced Greens
function, which depends on the sources in the future. In general the retarded solution
is seen as the most physical solution. In this case the solution of the equation can then
be seen as an initial value problem with its evolution depending on sources in the past,
respecting causal structure.
The G0 solution is formed from a linear combination of the retarded and advanced Greens
functions. This means that the solution is given half from sources in the past and half from
the same sources in the future. A reason for selecting this solution is, if the solution is
preferred to be energy conserving and therefore to be symmetric in time. For this reason
we select this solution in the calculation in section 5. This solution Eq. (C.10b) can be
expanded as

G0 (x, x′) =
1

2

[
δ (t− t′ − |x− x′|

|x− x′|
+
δ (t− t′ + |x− x′|

|x− x′|

]
=
δ (t− t′)
|x− x′|

+
|x− x′|

2
∂2
t δ (t− t′) + · · · .

(C.11)

D Expressions from General Relativity

As gravitational waves are a phenomenon fully described by GR, this thesis is heavily rely-
ing on its fundamentals. However it is a bit out of the scope to discuss the whole theory
here. Instead we mention the most important expressions from GR that we make use of in
this thesis and refer for more elaborate study to [30]. This is also the reference on which
this discussion is based. In this appendix we set c = 1.

Einsteins General Relativity describes gravity as the curvature of spacetime. The properties
of the spacetime are described by the spacetime metric gµν . This tensor is contained in

ds2 = gµνdx
µdxν , (D.1)

the invariant spacetime distance element, for which the metric defines the "shortest dis-
tance" in spacetime. When spacetime is curved this is no longer a straight line and the
metric tells you what it is instead.

The curvature of spacetime is characterised by different curvature tensors and a scalar. We
have the Riemann tensor defined as
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Rρ
σµν = ∂µΓρvσ − ∂vΓρµσ + ΓρµλΓ

λ
vσ − ΓρvλΓ

λ
µσ, (D.2)

with the following symmetry properties

Rρσµν = −Rσρµν ,

Rρσµν = −Rρσνµ,

Rρσµv = Rµvρσ·,

Rρσµν = −Rσρµν ,

Rρσµν +Rρµvσ +Rρvσµ = 0.

Hereby is Γρvσ the Levi-Civita connection defined as

Γσµν =
1

2
gσρ (∂µgνρ + ∂νgρµ − ∂ρgµν) . (D.3)

Contractions of the Riemann tensor result in the Ricci tensor

Rµν = Rλ
µλν , (D.4)

which is symmetric in its indices. Taking the trace of this tensor results in the Ricci ScalarR.

The path followed by a test particle through spacetime, called a geodesic, is described by
the geodesic equation

d2xµ

dλ2
+ Γµρσ

dxρ

dλ

dxσ

dλ
= 0. (D.5)

For generalizing flat space equations to curved backgrounds, one upgrades the partial
derivative to the covariant derivative and writes the equations in a covariant, coordinate
invariant form. This is called the minimal coupling principle. The covariant derivative is
defined as

∇µV
ν = ∂µV

ν + ΓνµλV
λ, (D.6)

∇µων = ∂µων − Γλµνωλ. (D.7)

Acting on a scalar, covariant derivatives reduce to normal partial derivatives.

The action describing the spacetime is the Hilbert Einstein action

SHE =

∫ √
−gRd4x. (D.8)

Varying this action with respect to the metric results in the Einstein field equations, in the
case that there is also a matter action, the field equations are given by

Rµν −
1

2
Rgµν = 8πGTµν , (D.9)

which describes how the curvature of spacetime reacts to the presence of matter. Due to
the symmetry in its indices, these equations consists of a set of ten equations. Taking the
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trace of these equations and substituting the solution back into the equation above gives
the trace reversed form of the Einstein equations

Rµν = 8πG

(
Tµν −

1

2
Tgµν

)
. (D.10)

Solving the Einstein equations gives the solution for the spacetime metric. From vacuum
solutions one can derive the spacetimes outside black holes. In the case of spherical sym-
metry the solution is given by the Schwarzschild metric

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dΩ2, (D.11)

which describes the spacetime outside a non spinning black hole. Rs = 2GM is defined
as the Schwarzschild radius of the black hole, which defines the event horizon. This is the
only black hole solution we consider in this thesis but an example of a more astrophysical
solution would be the solution for a spinning black hole given by the Kerr metric.

In the case of linearized gravity, when substituting the metric defined as the Minkowski
metric and small perturbations gµν = ηµν + hµν , the above defined curvature related terms
become, after neglecting higher order terms in hµν

Γρµν =
1

2
gρλ (∂µgνλ + ∂νgλµ − ∂λgµν)

=
1

2
ηρλ (∂µhνλ + ∂νhλµ − ∂λhµν) ,

(D.12)

Rµνρσ = ηµλ∂ρΓ
λ
νσ − ηµλ∂σΓλνρ

=
1

2
(∂ρ∂νhµσ + ∂σ∂µhνρ − ∂σ∂νhµρ − ∂ρ∂µhνσ) ,

(D.13)

Rµν =
1

2

(
∂σ∂νh

σ
µ + ∂σ∂µh

σ
ν − ∂µ∂νh−�hµν

)
, (D.14)

and lastly for the Ricci scalar

R = ∂µ∂νh
µν −�h. (D.15)

These curvature expressions up to linear order in the metric perturbations are required in
our discussion on linearized gravity in section 2.

E Post Newtonain expansions in GR

In section 2.4.3 we gave some qualitative arguments why the PN expanded metric has the
form of Eq. (2.81). Here we present a PN expansion of the metric more from first principle
and in a slightly different formulation. In the end is shown that it leads to the same metric
expansion as Eq. (2.81). This derivation is fully done in GR and we set c=1. This part is
largely based on the books by Maggiore [25], Weinberg [114] and Straumann[115].
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E.1 The post Newtonian expansion formalism

The procedure of calculating the lowest order PN correction terms of GR is as follows:
First we expand the different components of the metric tensor of our spacetime and the en-

ergy momentum tensor in the orders corresponding to the small parameter: ε ∼
√

Rs
d
∼ v

c
.

Then we recover the contribution of the Newtonian limit on the metric tensor components.
To compute the contribution of the first post Newtonian order (1PN) we have to insert
the expansion of the metric tensor and the energy momentum tensor in the Einstein equa-
tions Rµν − 1

2
gµν = 8πG

c4
Tµν up to the right order. Therefore we first need to calculate the

Christoffel symbols to the right order, substituting this in the Ricci tensor, and applying
the standard post Newtonian gauge to simplify these expressions. Filling these expansions
together with the expansion of the energy momentum tensor in the Einstein equations we
obtain differential equations for the metric components in the 1PN orders. These can be
solved with the Greens function method introducing four potentials.

Thus we begin by analysing the expansion of the metric tensor components and the EM
tensor in orders of ε.
In a classical system with conservative forces is invariant under time reversal (when ne-
glecting radiation). The components g00, gij are even and g0i is odd under time reversal, as
the velocity changes sign under reversed time, therefore g00, gij should only contain even
powers of v and g0i only odd powers.
Based on this we have the following ansatz:

g00 = −1 +(2) g00 +(4) g00 +(6) g00 + ...
, g0i =(3) g0i +(5) g0i + ...
, gij = δij +(2) gij +(4) gij + ... .

(E.1)

Which will be verified later as they lead to consistent solutions of the Einstein equations.
In the same way we also expand the energy momentum tensor

T 00 = (0)T 00 + (2)T 00 + . . . ,
T 0i = (1)T 0i + (3)T 0i + . . . ,
T ij = (2)T ij + (4)T ij + . . . .

(E.2)

An important thing to note is that we discuss a source moving at non-relativistic veloc-
ities, therefore the time derivatives are of order v smaller than the spatial derivatives
( ∂
∂t

= ∂
∂xi

∂xi

∂t
= ∂

∂xi
v). So we have for time derivatives and the d’Alembertian

∂
∂t

= O(v) ∂
∂xi
,

− 1
c2

∂2

∂t2
+∇2 = [1 +O(ε2)]∇2.

(E.3)
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Now we start analysing the Newtonian limit situation to see how we can get to a higher
order of 1PN. We begin with the geodesic equation

d2xµ

dτ 2
+ Γµνλ

dxν

dτ

dxλ

dτ
= 0. (E.4)

The acceleration term d2xi

dt2
can be rewritten as

d2xi

dt2
=

(
dt

dτ

)−1
d

dτ

[(
dt

dτ

)−1
dxi

dτ

]

=

(
dt

dτ

)−2
d2xi

dτ 2
−
(
dt

dτ

)−3
d2t

dτ 2

dxi

dτ
.

(E.5)

In which the last term in the second line is creatively subtract zero as d2t
dt2

= 0. This seems
to only make life a lot more complicated but in writing it this way we use the geodesic
equation with µ = i and µ = 0 to substitute d2xi

dτ2
and d2t

dτ2

d2xi

dt2
= −Γiνλ

dxν

dt

dxλ

dt
+ Γ0

νλ

dxν

dt

dxλ

dt

dxi

dt

= −Γi00 − 2Γi0j
dxj

dt
− Γijk

dxj

dt

dxk

dt
+

[
Γ0

00 + 2Γ0
0j

dxj

dt
+ Γ0

jk

dxj

dt

dxk

dt

]
dxi

dt
.

(E.6)

In the Newtonian limit we assume low velocity, weak gravity and a static field. Low ve-
locity means dxi

dτ
� dt

dτ
thus we can neglect the spatial derivatives with respect to the time

derivatives.
Then Eq. (E.6) becomes

d2xi

dt2
= −Γi00. (E.7)

From a static field follows ∂gµν
∂x0

= 0 and then Γµ00 = 1
2
gµλ(∂gλ0

∂x0
+ ∂g0λ

∂x0
− ∂λg00) = −1

2
gµλ ∂g00

∂xλ
.

Then in weak gravity we can expand the metric in the Minkowski metric plus perturbations:
gµν = ηµν + hµν , gµν = ηµν − hµν . Therefore to first order in ther perturbations we have
Γµ00 = −1

2
ηµλ ∂h00

∂xλ
thus Γi00 = −1

2
∂h00
∂xi

. Hence we have

d2xi

dt2
=

1

2

∂h00

∂xi
. (E.8)

Comparing this with the Newtonian equation of motion a = −∇φ, we have h00 = −2φ the
potential and g00 = −1− 2φ.Therefore in the Newtonian limit we recover g00 = −1 +2 g00,
g0i = 0, gij = δij.

Now the gravitational potential GmM
r

is of order O
(
Rs
d

)
= O

(
v2

c2

)
or as we set c = 1 of
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order v2. To go one step further to the 1PN order we would have to compute up to order
v4. Looking at Eq. (E.6) we therefore need:

Γi00 to order v4,

Γi0j to order v3,

Γijk to order v2,

Γ0
00 to order v3,

Γ0
0j to order v2,

Γ0
jk to order v.

(E.9)

For recovering the expressions of these Christoffel symbols we also need the expansion of
the metric components for the high indices which can be derived from gµνg

λν = δλµ

giµg0µ = 0,

g0µg0µ = 1,

giµgjµ = δij.

(E.10)

Which gives results in

(2)g00 = −(2)g00,
(2)gij = −(2)gij,
(3)gi0 = (3)gi0.

(E.11)

Now the Christoffel symbols are given by

Γµvλ =
1

2
gµρ
{
∂gρv
∂xλ

+
∂gρλ
∂xv

− ∂gvλ
∂xρ

}
. (E.12)

Looking at Eq. (E.9) we know that we will have the following expansions :

Γi00, Γijk, Γ0
0i have the expansion Γµνλ =2 Γµνλ +4 Γµνλ + ...

Γi0j, Γ0
00, Γ0

ij have the expansion Γµνλ =3 Γµνλ +5 Γµνλ + ...

Working out Γi00 explicitly gives
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Γi00 =
1

2
giρ(

∂gρ0

∂x0
+
∂gρ0

∂x0
− ∂g00

∂xρ
)

=
1

2
(δij +(2) giρ +(4) giρ)

(
∂

∂x0
((3)gρ0 +(5) g0ρ) +

∂

∂x0
((3)gρ0 +(5) gρ0)− ∂

∂xρ
(−1 +(2) g00 +(4) g00)

)
.

(E.13)
Hence collecting terms to the right order corresponding Eq. (E.9) using Eq. (E.1) and Eq.
(E.3) results in

(2)Γi00 = −1

2

∂ (2)g00

∂xi
,

(4)Γi00 = −1

2

∂ (4)g00

∂xi
+
∂ (3)gi0
∂t

+
1

2
(2)gij

∂ (2)g00

∂xj
.

(E.14)

Applying the same method for the other components of the Christoffel symbols

(3)Γi0j =
1

2

[
∂ (3)gi0
∂xj

+
∂ (2)gij
∂t

− ∂ (3)gj0
∂xi

]
,

(2)Γijk =
1

2

[
∂ (2)gij
∂xk

+
∂ (2)gik
∂xj

− ∂ (2)gjk
∂xi

]
,

(3)Γ0
00 = −1

2

∂ (2)g00

∂t
,

(2)Γ0
0i = −1

2

∂ (2)g00

∂xi
,

(1)Γ0
ij = 0.

(E.15)

To fill in these expressions further we calculate the explicit formulation of the orders of the
metric components. Therefore we need to solve the Einstein field equations Rµν − 1

2
gµν =

8πG
c4
Tµν . Thus we shall continue deriving the expressions of the right orders for the Ricci

tensor.

The Ricci tensor is given by

Rµν =
∂Γαµν
∂xα

−
∂Γαµα
∂xν

+ ΓρµνΓ
α
ρα − ΓρµαΓαρν . (E.16)

Then with E.1 we find for the expansion

R00 =(2) R00 +(4) R00 + ...,

Ri0 =(3) Ri0 +(5) Ri0 + ...,

Rij =(2) Rij +(4) Rij + ... .

(E.17)

When writing explicitly the zero component results in

R00 =
∂Γα00

∂xα
− ∂Γα0α

∂x0
+ Γρ00Γαρα − Γρ0αΓαρ0 (E.18)
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Using E.1 and Eq. (E.3) we have for the zero components to second and fourth order

(2)R00 =
∂Γi00

∂xi
,

(4)R00 =
∂ (4)Γi00

∂xi
− ∂ (3)Γi0i

∂t
+(2) Γi00

(2)Γiij −(2) Γ0
0i

(2)Γi00.

(E.19)

Similar approach for the other components gives

(3)Ri0 =
∂ (2)Γ0

0i

∂t
+
∂ (3)Γj0i
∂xj

− ∂ (3)Γ0
00

∂xi
−
∂ (3)Γj0j
∂xi

,

(2)Rij =
∂ (2)Γkij
∂xk

− ∂ (2)Γ0
i0

∂xj
− ∂ (2)Γkik

∂xj
.

(E.20)

Next, to get the components of the Ricci tensor in terms of the metric components to
right order, we substitute the Christoffel symbol components by Eq. (E.14) and Eq. (E.15),
which gives

(2)R00 = −1

2
∇2(2)g00, (E.21)

(4)R00 = −1

2
∇2(4)g00 +

∂2 (3)gi0
∂t∂xi

− 1

2

∂2 (2)gij
∂t2

+
1

2

(2)

gij
∂2 (2)g00

∂xi∂xj

+
1

2
(
∂ (2)gij
∂xj

)(
∂ (2)g00

∂xi
)− 1

4
(
∂ (2)g00

∂xi
)(
∂ (2)gjj
∂xi

)− 1

4
(
∂ (2)g00

∂xi
)(
∂ (2)g00

∂xi
),

(E.22)

(3)Ri0 = −1

2

∂2 (2)gjj
∂xi∂t

+
1

2

∂2 (3)gj0
∂xi∂xj

+
1

2

∂2 (2)gij
∂xj∂t

− 1

2
∇2 (3)gi0, (E.23)

(2)Rij =
1

2

∂2 (2)g00

∂xi∂xj
− 1

2

∂2 (2)gkk
∂xi∂xj

+
1

2

∂2 (2)gik
∂xk∂xj

+
1

2

∂2 (2)gkj
∂xk∂xi

− 1

2
∇2 (2)gij. (E.24)

We can simplify these expressions by choosing a gauge; the standard post Newtonian
gauge:

∂g0j

∂xj
− 1

2

∂gjj
∂x0

= O(c−5),

∂gij
∂xj
− 1

2
(
∂(gjj − g00)

∂xi
= O(c−4).

(E.25)

Which results in

∂ (3)g0k

∂xk
− 1

2

∂ (2)gkk
∂x0

= 0, (E.26)
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1

2

∂ (2)g00

∂xi
+
∂ (2)gij
∂xj

− 1

2

∂ (2)gjj
∂xi

= 0. (E.27)

Now we differentiate Eq. (E.27) with respect to xk which gives

1

2

∂2 (2)g00

∂xi∂xk
+
∂2 (2)gij
∂xj∂xk

− 1

2

∂2 (2)gjj
∂xi∂xk

= 0. (E.28)

Also interchanging i and k in Eq. (E.28) and adding this new equation and Eq. (E.28)
gives

∂2 (2)g00

∂xi∂xk
+
∂2 (2)gij
∂xj∂xk

+
∂2 (2)gkj
∂xj∂xi

− ∂2 (2)gjj
∂xi∂xk

= 0. (E.29)

With this expression Eq. (E.24) simplifies to

(2)Rij = −1

2
∇2 (2)gij. (E.30)

Now again back to the gauge equations, we differentiate Eq. (E.26) to time and replace
index k by i, resulting in

∂2 (3)g0i

∂xi∂x0
− 1

2

∂2 (2)gii
(∂x0)2

= 0. (E.31)

This then simplifies Eq. (E.22) to

(4)R00 = −1

2
∇2(4)g00+

1

2

(2)

gij
∂2 (2)g00

∂xi∂xj
+

1

2
(
∂ (2)gij
∂xj

)(
∂ (2)g00

∂xi
)−1

4
(
∂ (2)g00

∂xi
)(
∂ (2)gjj
∂xi

)−1

4
(
∂ (2)g00

∂xi
)(
∂ (2)g00

∂xi
).

(E.32)
Using Eq. (E.26) differentiated to xj to simplify Eq. (E.23) results in

(3)Ri0 = −1

4

∂2 (2)gjj
∂xi∂t

+
1

2

∂2 (2)gij
∂xj∂t

− 1

2
∇2 (3)gi0. (E.33)

With these expressions for the Ricci tensor components to the right order, we only need
the energy momentum tensor to the right order to fill in the Einstein equations Rµν =
8πG

(
Tµν − 1

2
Tgµν

)
.

As we saw in the beginning, the energy momentum tensor has the expansion of Eq. (E.2).
For the field equations we then need Sµν := Tµν − 1

2
gµνT

λ
λ , giving by the expansion

S00 = (0)S00 + (2)S00 + . . . ,

Si0 = (1)Si0 + (3)Si0 + . . . ,

Sij = (0)Sij + (2)Sij + . . . .

(E.34)

With for the specific order expressions, we substitute in Eq. (E.2) and Eq. (E.1) to the right
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order results in

(0)S00 =
1

2

(0)

T 00,

(2)S00 =
1

2

(
(2)T 00 − 2(2)g00

(0)T 00 + (2)T ii
)
,

(1)S0i = −(1)T 0i,

(0)Sij =
1

2
δij

(0)T 00.

(E.35)

Finally substituting the expansions in the field equations Rµν = 8πGSµν results in

∇2
[

(2)g00

]
= −8πG(0)T 00, (E.36)

∇2
[

(4)g00

]
=(2)gij

∂2 (2)g00

∂xi∂xj
+
∂ (2)gij

j

∂ (2)g00

∂xi
− 1

2

∂ (2)g00

∂xi
∂ (2)gjj
∂xi

− 8πG
{

(2)T 00 + (2)T ii − 2(2)g00
(0)T 00

}
,

(E.37)

∇2
[

(2)gij
]

= −8πGδij
(0)T 00, (E.38)

∇2
[

(3)g0i

]
= −1

2

∂2 (2)gjj
∂x0∂xi

+
∂2 (2)gij
∂x0∂xj

+ 16πG(1)T 0i. (E.39)

The differential equations of the from above can be solved with the Greens function
method, in the same way as solving the Poisson equation. Therefore for Eq. (E.36) and Eq.
(E.39) we have to solutions

(2)g00 = −2φ, (2)gij = −2δijφ. (E.40)

Where we introduced the potential φ, which is the Newtonian potential

φ = −G
∫
T 00 (t,x′)

|x− x′|
d3x′ (E.41)

We substitute this in the remaining Eq. (E.37) and Eq. (E.38) gives

∇2 (3)g0i = 16πG(1)T i0 +
∂2φ

∂x0∂xi
, (E.42)

∇2 (4)g00 = −8πG
(

(2)T 00 + 4φ(0)T 00 + (2)T ii
)

+ 4φ∇2φ− 4(∇φ)2. (E.43)

Now we can use the Poisson equation ∆φ = 4πG(0)T 00 and the identity (∇φ)2 = 1
2
∇2 (φ2)−

φ∇2φ to rewrite Eq. (E.43) in the following form

∇2
(

(4)g00 + 2φ2
)

= −8πG
(

(2)T 00 + (2)T ii
)
. (E.44)
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Then we define the potential ψ as

(4)g00 = −2φ2 − 2ψ. (E.45)

Hence this potential satisfies the equation

∇2ψ = 4πG
(

(2)T 00 + (2)T ii
)
. (E.46)

Since (4)g00 must vanish at infinity, the solution for ψ is again calculated with the Greens
function method

ψ = −G
∫

d3x′

|x− x′|
(

(2)T 00 (x′, t) + (2)T ii (x′, t)
)
. (E.47)

We also define the potentials ξi and χ as

ξi(x, t) = −4G

∫
d3x′

|x− x′|
(1)T i0 (x′, t) , (E.48)

χ(x, t) = −G
2

∫
|x− x′| (0)T 00 (x′, t) d3x′. (E.49)

They satisfy (which can be verified by using the Greens function method again on these
relations) the following equations

∇2ξi = 16πG(1)T i0, (E.50)

∇2χ = φ. (E.51)

With this we can write, following from Eq. (E.43)

(3)gi0 = ξi +
∂2χ

∂xi∂x0
. (E.52)

Thus we have in the first post Newtonian order of the expansion of the components of the
metric expressed in terms of the potentials φ, ξi, χ and ψ

(2)g00 = −2φ, (4)g00 = −2 (φ2 + ψ) ,
(2)gij = −2δijφ,

(3)gi0 = ξi + ∂χ
∂xi∂x0

.
(E.53)

Now we expressed the metric components in terms of the instantaneous potentials φ, ψ,
ξi and χ; their value at a certain time depends on the energy momentum tensor at that
same moment. We can also express the components in terms of a retarded potential; then
the value at time t depends on the value of the energy momentum tensor at retarded time
t − |x − x′|. This way of expressing the metric components is a useful starting point for
more complicated calculations as for higher order post-Newtonian approximations or the
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post-Newtonian approach in a modified gravity theory.

For g00 we can write

g00 = −1− 2φ− 2(φ2 + ψ) +O(ε6)

= −1− 2(φ+ ψ)− 2φ2 +O(ε6).
(E.54)

Note that ψ is of higher order than φ, hence we can replace φ2 with (φ+ψ)2. The additional
terms are above 1PN order and will therefore be neglected. Then we introduce the potential

V = −(φ+ ψ), (E.55)

which is of order v2. Now we can rewrite g00 as

g00 = −1 + 2V − 2V 2 +O(ε6)

= −e−2V +O(ε6).
(E.56)

Combining Eq. (E.36), Eq. (E.40) and Eq. (E.46) we have the differential equation

∇2(φ+ ψ) = ∂2
0φ+ 4πG

[
(0)T 00 + (2)T 00 + (2)T ii

]
. (E.57)

As to this order, we can again replace ∂2
0φ by ∂2

0(φ+ ψ) then we can write this as

�V = −4πG
[

(0)T 00 + (2)T 00 + (2)T ii
]

= −4πG
[
T 00 + T iı

]
.

(E.58)

With � = ηµν∂µ∂ν the flat space d’Alembertian and we could replace the orders of the
energy momentum tensor components by the whole expressions if we keep in mind to cut
them of at 1PN order. Hence we can write

�V = −4πGσ, (E.59)

with the active gravitational mass density defined as σ := T 00 + T ii. So the potential can
be written as an retarded integral using the (relativistic) greens function method

V (t,x) = G

∫
d3x′

1

|x− x′|
σ (t− |x− x′| /c,x′) . (E.60)

Similar procedure can be done for g0i only in our case this is clear how to do so. However if
one works with the Donder gauge condition ∂µ(

√
−ggµν) in harmonic coordinates instead

of Eq. (E.25) the expression of the field equation in terms of g0i is

∇2
[

(3)g0i

]
= 16πG(1)T 0i, (E.61)

with
(3)g0i = ζi,

ζi(t,x) = −4G

∫
d3x′

|x− x′|
(1)T 0i (t,x′) .

(E.62)



G DYNAMICAL CHERN SIMONS GRAVITY 154

Then using the active mass current density σi = T 0i and that retardation effects in ζi are of
higher order we can write, replacing ζi as Vi

Vi(t,x) = G

∫
d3x′

1

|x− x′|
σi (t− |x− x′| /c,x′) . (E.63)

Therefore in harmonic coordinates at 1PN order we can write the metric components as

g00 = −e−2V +O(v6)

g0i = −4Vi +O(v5)

gij = δije
2V +O(v4)

(E.64)

When starting from these expansions of the metric, one can obtain the 1PN Lagrangian
in a similar way by plugging these components into the field equations to solve them for
1PN orders of V and Vi and use these solutions together with the expression of the energy
momentum tensor to the right order to explicitly formulate the action and hence the La-
grangian. In the main part of this thesis (section 5) we use the latter approach with a slight
change of convention to use the fields U and gi respectively instead of V and Vi.

F Mathematica package xact

Mathematica was a widely used tool for most of the calculations presented in this thesis.
As for example doing the expansions, differentiations, numerical integration and plotting
the figures are standard possibilities in Mathematica, we also made use of the xAct pack-
age. Within this package the the GR properties and curvature terms as the Riemann tensor
are defined and one can work with index notation in an abstract, tensorial manner with-
out defining coordinates. Also we used subpackages as xpert which allows for varying the
field equations with respect to the metric or expanding and varying in a specific coordinate
frame and metric with xcoba.

The package, instruction and expanation on all the subpackages can be found on http:
//www.xact.es/. On https://github.com/xAct-contrib/examples example notebooks
can be found for using the packages for GR related problems. Specifically https://github.
com/xAct-contrib/examples/blob/master/EDGB-and-DCS-EOMs-and-C-tensors-simplified.
nb was used to rewrite the varied R2

GB in the field equations in a less messy form.

G Dynamical Chern Simons gravity

Another theory in the class of quadratic gravity is dynamical Chern Simons gravity. In
[131] the three dimensional Chern Simons term

CS(Γ) =
1

4π2

∫
d3xεijk

(
1

2
3Γpiq∂

3
jΓ

q
kp +

1

3
3Γpiq

3Γqjr
3Γrkp

)
, (G.1)

http://www.xact.es/
http://www.xact.es/
https://github.com/xAct-contrib/examples
https://github.com/xAct-contrib/examples/blob/master/EDGB-and-DCS-EOMs-and-C-tensors-simplified.nb
https://github.com/xAct-contrib/examples/blob/master/EDGB-and-DCS-EOMs-and-C-tensors-simplified.nb
https://github.com/xAct-contrib/examples/blob/master/EDGB-and-DCS-EOMs-and-C-tensors-simplified.nb
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was introduced as an interesting extension on top of the Hilbert Einstein action in three
dimensions as it is a massive gauge invariant quantity. In [132] for the first time they
extended the Chen Simons term to four dimensions with an embedding coordinate formed
by the divergence of the scalar field and included it to the Hilbert Einstein action in four
dimensions. More explicitly, to extend to four dimensions they used the Chern Simons
topological current Kµ

Kρ = 2ερµνλ
(

Γµa
b∂νΓ

a
λb +

2

3
ΓbµaΓ

c
νbΓ

a
λc

)
, (G.2)

and the divergence of this term

∂ρK
ρ =

1

2
εµναβRµνγδR

γδ
αβ ≡

∗RR. (G.3)

Which is the 3D CS term with an extra fourth component K0 including 4D Christoffel
symbols and can therefore be included in the 4D Hilbert Einstein action. Introducing an
embedding field ∂µϑ they added the following term to the action

−
∫
d4x

1

2
∂µϑK

µ =

∫
d4x

1

4
ϑ∗RR. (G.4)

Using integration by parts assuming the boundary term vanishes as the scalar field at the
boundary is zero. Applying this embedding in this way comes from similar analysis of mod-
ifying Maxwell theory with a Chern Simons term[133]. Adding this term to the Lagrangian
introduces to the inhomogeneous equation of motion the dual term of the electromagnetic
field tensor multiplied by the embedding coordinate, similar to the term in .

With the embedding the scalar field in the gravity theory, which could be treated as a con-
stant external field, resulting in non dynamical Chern Simons gravity, or as a dynamical
field, including a kinetic term for this field in the action. Both lead to fundamentally differ-
ent theories. The non dynamical framework there is no physical choice for what the scalar
field should be and often a quite ad hoc choice is made that simplifies the formulas. We
consider here the dynamical framework for which the scalar field is part of the gravitational
sector similar as in sGB gravity. The total action of dynamical Chern Simons is then given
by

S =
16πG

c4

∫
d4x
√
−g
[
R− 1

2
β(gab (∇aϑ) (∇bϑ) + 2V (ϑ)) + α

1

4
f(ϑ)∗RR

]
. (G.5)

With the scalar field ϑ and the scalar field dependent potential V (ϑ). In string theory
context potential becomes nonzero after supersymmetry breaking, but it is therefore only
relevant at such scales, can be neglected in semi classical systems [117]. and the quadratic
curvature term which goes by the name of the Pontryagin density given by

∗RR := RR̃ = ∗Ra
b
cdRb

acd. (G.6)

In which the star stands for the dual

∗Ra
b b
cd :=

1

2
εcdef Ra

bef . (G.7)
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In this theory generally there are two dimensional coupling constants α and β, in the
nondynamical version β is 0, we consider here the dynamical version for which we do have
an equation of motion for the scalar field.
Instabilities can arise in a theory due to the appearance of third order or higher order time
derivatives in the equations of motion. As opposed to sGB gravity the quadratic curva-
ture term in dCS is not such that it cancels the higher order derivatives to the metric in
the equations of motion. When the scalar field does not vanish this theory therefore does
contain ghost instabilities[134]. However quadratic gravity theories are often considered
as effective theories, begin the lowest order expansion of the higher curvature terms that
would be included in high energy regimes. It turns out that the ghost instabilities that
appear are in the high frequency regime[135] where the effective theory is no longer valid
so they do not have to cause problems.

As the dCS term in the action contains the dual of the Riemann tensor which contains again
the Levi Civita tensor, this term is odd under parity transformations. Because of this dCS
gravity allows for parity violating solutions. Parity violation is for example seen in weak
interactions in the Standard model. When varying the action with respect to the scalar
field one finds that the equation of motion for the scalar field is sources by the Pointygarin
density, hence the solutions for the scalar field are parity violating in this theory.
A bound on the value of the coupling constant was set by multimessenger neutron star
observations being α1/2 = 8.5km[136] but could not lead to a meaningfull constraint using
gravitational wave measurements [105]. In previous literature sCS corrections to the Kerr
metric were constructed in a slow rotation approximation[137, 138]. These terms come
in at 2 Post Newtonian order for these rotating systems. The corrections due to the scalar
field are dipolar and as an effect it weakens frame dragging and shifts the location of the
inner most stable circular orbit around the black holes.

The Chern Simons term has motivation in particle physics, string theory and quantum loop
gravity. This discussion is based on [117].
In particle physics, the CS invariant term turns up in the gravitational anomaly in the
standard model. An anomaly describes a quantum mechanical violation of a classically
conserved current. If we have via Noether’s theorem the conserved current ∂ajaA = 0,
then an anomaly would be quantum correction AA with ∂ajaA = AA. Global anomalies do
not lead to inconsistences although they do have physical consequences. However gauge
anomalies are a statement that the quantum theory is quantum mechanically inconsistent.
Gauge symmetries can be used to eliminate negative norm states in the quantum theory,
but in order to remain unitary, the path integral must also remain gauge invariant. Quan-
tum effects involving gauge interactions with fermions can spoil this gauge invariance and
thus lead to a loss of unitarity and render the quantum formulation inconsistent. There-
fore, if one is to construct a well-defined unitary quantum theory and if gauge currents are
anomalous, these anomalies must be cancelled by counterterms.

An example of a global anomaly in the Standard Model is the violation of the U(1) axial
current by a one-loop triangle diagram between fermion loops and the gauge field external
legs. This leads to the following famous ABJ anomaly: ∂ajAa = − 1

8π2 ε
abcdFabFcd. The deriva-
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tion of the ABJ anomaly also applies for gravitational anomaly. Instead of the field strenght
tensor, the Riemann curvature tensor is used, resulting in the gravitational ABJ anomaly:
DajAa = − 1

384π2
1
2
εabcdRabefR

ef
cd which contains the Pontryagin density. The gravitational ABJ

anomaly can be canceled by adding the appropriate counter term to the action, which turns
out to be the CS modification in the HE action.
The CS action can also be induced by other means, for example through Dirac fermions
coupling to the gravitational field in radiative fermion loop corrections, or it also arises in
Yang-Mills theories and non linearized gravity through proper time method and functional
integration.

In heterotic String theory the CS modification to GR arises from the Green Schwarz anomaly
cancelling mechanism. The key idea is that a quantum effect due to the gauge field that
couples to the string induces a CS term in the effective low energy 4D GR.
CS is extension of GR with addition of a parity violating term. This required by all 4D com-
pactifications of string theory for mathematical consistency because it cancels the Green
Schwarz anomaly. The low energy limit of superstring theories are 10 dimensional su-
pergravity theories. As in the particle physics cause, a triangle loop diagram between
gravitions and fermions will generate the gravitational anomaly, similarly hexagon loop
diagrams generate anomalies in 10 dimensions.
To cancel the anomaly the three form gauge field strength tensor in 10D supergravity is
shifted. After compactfying the theory to 4D this shifted term in the action after integra-
tion by parts ends up to be the gravitational Pointryagin interaction:

∫
d4xf(θ)RΛR.

Quantum loop gavity is an effort towards the quantization of GR through the postulate
that spacetime itself is discrete. When analyzing P and CP conservation in loop quantum
gravity it leads to CS theory with a constant CS parameter. However this is not yet the
dCS term. But when promoting the Barbero Immirzi parameter to a scalar field, the term
can be recoverd. This leads to torsion and parity violation when coupled to fermions
to the theory. When this torsion is used to construct an effective action they found that
one unavoidingly obtains CS modified gravity. One recovers SCS = +α 1

4

∫
V d

4x
√
−gϑ∗RR

and Sϑ = −β 1
2

∫
V d

4x
√
−g
[
gab (∇aϑ) (∇bϑ) + 2V (ϑ)

]
with ϑ = 3

2κ

1/2
β̃ with β̃ the Barbero

Immirzi scalar field and β = −1, α = 3
32π2

√
3κ.

G.1 Binary dynamics in dCS

Lastly we will shortly review similar calculation in dCS. At a first instance neglecting the
tidal part, we will make a comment on introducing the tidal terms in this theory at the end
of this section.

Starting from the action from

S =
16πG

c4

∫
d4x
√
−g
[
R− 1

2
β(gab (∇aϑ) (∇bϑ) + 2V (ϑ)) + α

1

4
f(ϑ)∗RR

]
. (G.8)
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With the Pontryagin density given by

∗RR := RR̃ = ∗Ra
b
cdRb

acd, (G.9)

with the dual Riemann tensor corresponding to

∗Ra
b b
cd :=

1

2
εcdef Ra

bef . (G.10)

Varying with respect to the metric and scalar field results in the equations of motion, rewrit-
ing the variation of the Pontryagin density in the form of the C tensor

Gµν + αCµν =
8πG

c4
Tmatµν +

1

2
T ϑµν

β�ϑ =
α

4

df(ϑ)

dϑ
∗RR.

(G.11)

Hereby is the energy momentum tensor of the scalar field defined as

T ϑµν = β

[
(∇µϑ) (∇νϑ)− 1

2
gµν (∇ρϑ) (∇ρϑ)

]
. (G.12)

And we define the following expression as the C-tensor

Cµν := vλε
λρε(µ∇εR

ν)
ρ + vρ

∗Rρ(µν)ε, (G.13)

with

vµ := ∇µf(ϑ) =
∂f(ϑ)

∂ϑ
∂µϑ,

vµν := ∇µ∇νf(ϑ) = ∇(µ∇ν)f(ϑ) =
∂2f(ϑ)

∂ϑ2
∂µϑ∂νϑ+

∂f(ϑ)

∂ϑ
∂µ∂νϑ.

(G.14)

Using that f(ϑ) is a scalar function. Again it is more convenient to work with the trace
reversed version of the EOM. Taking the trace and substituting the expression for R back
gives[122]

Rµν = −αCµν +
8πG

c4
(Tmatµν −

1

2
gµνT

mat) +
1

2
β∇aϑ∇bϑ. (G.15)

Using that the C tensor is tracefree.

Again we are now interested in the expansions of the EOM terms. We are not considering
any tidal terms, so only the expansion in terms of 1

c2
is done. We expand the scalar field

and U and gi in the same way as in Eq. (5.14) and Eq. (5.15).

For the scalar field EOM we expand the Pontryagin density in mathematica with the xAct
package, plugging in the 1PN expanded metric in the definition of the Riemann tensor. To
lowest order this gives
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∗RR = 8ε0iµν∂µ∂0
U (0)

c2
∂ν∂i

U (0)

c2
− 4εijρλ∂ρ∂i

U (0)

c2
∂λ∂j

U (0)

c2

= 8ε0ijk∂j∂0
U (0)

c2
∂k∂i

U (0)

c2
+ 8ε0ikj∂k∂0

U (0)

c2
∂j∂i

U (0)

c2

− 4εij0k∂0∂i
U (0)

c2
∂k∂j

U (0)

c2
− 4εijk0∂k∂i

U (0)

c2
∂0∂j

U (0)

c2
,

(G.16)

where we used the property of ε being 0 for two the same indices. We can simplify this
further by relabelling the double indices k to j and j to k in the second term and i to j and j
to i in the last term. Permuting the indices in epsilon so they all get the same order as the
first one gives

∗RR = 8ε0ijk∂j∂0
U (0)

c2
∂k∂i

U (0)

c2
. (G.17)

The expanded scalar field EOM then becomes

�ϑ =
α

β4

∗
RR,

�ϑ =
2α

β
ε0ijk∂j∂0

U (0)

c2
∂k∂i

U (0)

c2
.

(G.18)

To match up the orders on both sides of the EOM, the lowest order needs to be O(c5).
For R00 and R0i we have the same expressions as before 5.32.
For the C tensor components in the gravitational EOMs of the 00 component and 0i compo-
nent, we also expand their Riemann tensor terms by substituting the PN expanded metric
components with mathematica package xact. For the lowest order terms we then get

C00 = −2ε0µνi
∂f(ϑ)

∂ϑ
∂µϑ ∂ν∂i∂0

U (0)

c2
− ε0ρij(

∂2f(ϑ)

∂ϑ2
∂ρϑ∂iϑ+

∂f(ϑ)

∂ϑ
∂d∂iϑ)∂j∂0

U (0)

c2

+ 2ε0µiν
∂f(ϑ)

∂ϑ
∂µϑ∂ν∂j∂i

g
(3)
j

c3
− 2εj0µν

∂f(ϑ)

∂ϑ
∂µϑ∂ν∂i∂i

g
(3)
j

c3
,

(G.19)

C0i =
1

2

[
−ε0µij(

∂2f(ϑ)

∂ϑ2
∂µϑ∂iϑ+

∂f(ϑ)

∂ϑ
∂µ∂iϑ)∂k∂j

U (0)

c2
+ ε0µiν

∂f(ϑ)

∂ϑ
∂µϑ∂ν∂j∂

j U

c2

+εµ0ij(
∂2f(ϑ)

∂ϑ2
∂µϑ∂νϑ+

∂f(ϑ)

∂ϑ
∂µ∂νϑ)∂i∂ν

U (0)

c2
+ ε0µij(

∂2f(ϑ)

∂ϑ2
∂µϑ∂νϑ+

∂f(ϑ)

∂ϑ
∂µ∂νϑ)∂j∂ν

U (0)

c2

]
.

(G.20)

These C tensor expressions are already of order O(1/c3) respectively O(1/c2) and by sub-
stituting the lowest order solution of the scalar field this raises to at least order O(1/c7)
and O(1/c8). If we look at the total gravitational EOM Eq. (G.15). For the zeroth order
component this would mean that any dCS contribution comes in at at least O(1/c8) and for
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the 0i component at order O(1/c7). So at 1PN order, corresponding to O(1/c2), we do not
have any dCS contribution and just recover the GR case.

To get non trivial dCS behaviour we could expand to higher PN orders, but this becomes
very cumbersome very quickly so this would be out of the scope of this thesis. Even more
so it seems that as the scalar field is sourced by a parity violating quantity, the Pontrya-
gin density, it is only non trivial in parity violating dynamics, aka considering black holes
with spin. As all the dCS contributions to the EOM depend on the scalar field this would
mean that for static configurations dCS reduces to GR. Therefore another option is to study
(slowly) spinning black holes[137, 138]. The energy momentum tensor would then need
to include spin corrections. Due to these terms, the near zone scalar field solution already
gets contributions at leading PN order[70]. Since the scalar field is sourced by the Pon-
tryagin density which is a parity odd quantity, it therefore had influence on parity odd
quantities as the angular momentum of the black holes. In the skeletonization proces you
would therefore make the angular momentum a function of the scalar field instead of the
mass in sGB gravity.
For this thesis we leave the discussion on dCS gravity up till here and focus on sGB gravity.
Nevertheless it is still a worhtly pursuit to calculate the 1PN gravitational and scalar waves
in dCS for rotating black holes, possibly including tidal effects too. However this would be
a more elaborate study because of the inclusion of spin corrections, therefore we leave it
for future research.
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