
UTRECHT UNIVERSITY

Faculty of Science

Department of Mathematics

Multi-fidelity spatial regression for air
temperature predictions using first,

second and third party data

1st July 2022

Author:
Daniëlle van Beekvelt
5953669

Supervisors:
Prof. Dr. Ir. Jason Frank

Utrecht University

Dr. Ir. Jouke de Baar
Dr. Irene Garcia-Martí

KNMI

Abstract
There has been a growing interest in using second and third party data in addition to first party data to make
weather predictions. This development is necessary, because it can provide predictions for a higher spatial
resolution than the predictions made using only first party data. Consequently, weather phenomena with a
high spatial variability such as rain and wind could be predicted more accurately. However, it has not been
shown before that using WOW-data as third party data leads to accurate predictions. In this thesis a modified
version of the interpolation method of Kriging will be used to demonstrate the value of WOW-data in weather
predictions. The Kriging procedure is modified such that it will be able to work with noisy data and such
that it can differentiate between the systematic and random errors in first, second and third party data. The
robustness of the method is examined by using synthetic data such that the model can be tested for weather
of various spatial variabilities. These tests show that up to a certain spatial variability first, first and second,
and first, second and third party data perform equally well. However, after a certain threshold is reached ,first
and second, and first, second and third party data perform better than just first party data.

Keywords: Kriging, Gaussian Processes, third-party data

CONTENTS 1

Contents

1 Introduction 2

2 Data 4
2.1 Description of geographic area . 4
2.2 Quality control . 6
2.3 Synthetic data . 6

3 Methodology 8
3.1 Interpolation and regression . 8
3.2 Multivariate Gaussian distributions . 11
3.3 Gaussian Processes . 12
3.4 Kriging . 15

3.4.1 Ordinary and simple Kriging . 15
3.4.2 Kriging as regression method . 16
3.4.3 Simple Kriging using a local error estimate . 18
3.4.4 Kernels . 19

4 Implementation 21
4.1 The correlation matrix, noise covariance matrix and solving linear systems 21
4.2 Hyperparameter estimation . 22
4.3 Temperature and uncertainty prediction . 23
4.4 Cross validation . 23

5 Results 25
5.1 Results from the synthetic data . 25
5.2 Results from the real data . 32

6 Conclusion 34
6.1 Acknowledgements . 35

A Notation table 36

B Why is the Cholesky decomposition allowed? 37

C KrigingLE code 38
C.1 License . 38
C.2 KrigingLE code . 38

D Code exchange log 42

References 43

List of figures 45

List of acronyms 47

List of terms 48

CHAPTER 1. INTRODUCTION 2

Chapter 1

Introduction

The Royal Netherlands Meteorological Institute (KNMI) is the national information and research facility for
meteorology, climate and seismology. Two of the KNMI’s core tasks are weather forecasting and climate
monitoring. In order to perform these tasks, observations are needed. Previously, the KNMI almost exclusively
relied on observations from their own observational networks, such that the quality of observations would be
up to the standards of the World Meteorological Organisation (WMO). The data gathered by the KNMI will
be referred to as ‘first party data’ or ‘1PD’. However, the spatial sparsity of the official network implies that
large parts of the country remain unobserved which might be detrimental to monitor local weather conditions [1].

In this thesis, we intend to use data from two different sources in addition to the KNMI observations
to make higher resolution weather forecasts with a nation-wide reduction in prediction uncertainty. The first
additional source is data from Rijkswaterstaat, a part of the Dutch Ministry of Infrastructure and Water
Management, which will be referred to as ‘second party data’ or ‘2PD’. Rijkswaterstaat uses weather stations
next to roads to, for example, keep track of possible formation of black ice. We assume that Rijkswaterstaat’s
data is not up to the WMO’s standards, but we consider it trustworthy enough to use [1]. The second additional
source will be called ‘third party data’ or ‘3PD’ and consists of a network of personal weather stations (PWS)
that are part of the Weather Observations Website (WOW) initiative, commenced by the UK Met Office in
2011 and joined by the KNMI in 2015. PWS are stations installed by citizens with an interest in monitoring
weather in their private spaces, such as their home or at school. PWS monitor weather phenomena such as
temperature, rain, pressure and wind. These devices are provided by commercial manufacturers, hence the
price range and the quality of the sensors used in the stations are highly variable. In addition, PWS are often
installed in urban and peri-urban areas, locations that seldom meet the WMO’s standards for station siting [1].

Using second and especially third party data offers a huge potential increase in the spatial density of
the weather station network. Being able to operate at a higher spatial resolution opens the door for a wide
range of new applications and operational services at KNMI. Two of these activities that 3PD can contribute
to are related to advancing towards a high-resolution weather forecast (e.g. local rainfall and wind gusts) and
the increased capacity of issuing weather warnings for severe weather conditions (e.g. hailstorms). This thesis
illustrates how the combination of 1PD with 2PD and 3PD data might help creating such high-resolution
services in the future. In addition, the work carried out in this research is the first demonstration of value for
WOW data, which might encourage and propel new research lines in this 3PD direction. Nevertheless, the
combination of data with different quality levels entangles a number of analytical challenges. In this work,
these challenges are modelled with multi-fidelity spatial interpolation techniques, which are properly adapted
to incorporate data of variable quality. Therefore, this thesis focuses on the application of a multi-fidelity
spatial interpolation method to air temperature observations coming from three quality-variable monitoring
networks. The objective of this analysis is demonstrating the potential of alternative weather observations to
devise high-resolution interpolations that can expand the existing services and motivate new ones.

For a more mathematical description of the problem, some notation must first be introduced. Random
variables will be denoted with capital letters such as X,Y , fixed or observed quantities by lower-case letters
such as x, y. Maximum likelihood estimators will be denoted by letters with a circumflex like x̂, ŷ. Matrices
and vectors will be denoted using bold letters like A,B and v,w, respectively. In addition, p() is used for
probability density functions and p(a|b) for the probability density function of a conditional upon b.

CHAPTER 1. INTRODUCTION 3

Now the problem can be described as the estimation of a function

g(x) : D → R (1.1)

representing, for example, the temperature in a geographical region D ∈ R2, for instance the Netherlands. The
estimation

f(x) : D → R (1.2)

is made based on given discrete data obtained from measurements, where the quality of measurements is
uncertain. Let n be the number of weather stations and i ∈ {1, · · · , n} be the index of the i-th station. We
distinguish between three classes of stations which we refer to as 1PD, 2PD and 3PD,

Sk = {i | i is a station providing kth party data} , k = 1, 2, 3. (1.3)

The given discrete data consists out of a set of pairs {(xi, yi)}, i = 1, ..., n, where xi ∈ D is the coordinate of
station i expressed in longitude and latitude. The measured temperature data yi ∈ R is given by yi = g(xi)+ϵi,
where ϵi is a measurement error that follows a normal distribution. This measurement error consists of a
systematic error b, called the bias and a random error σn, called the noise. We assume that b and σn are 0 for
i ∈ S1. The challenge is making the right estimations for b and σn for 2PD and 3PD. The given data combined
with the estimates for b and σn will be used to make the prediction f(x) of g(x) whose prediction uncertainty
needs to be small and uniformly bounded.

In the next chapter, the data used for the implementation of the interpolation method will be discussed
in more detail. This is followed by a chapter where the choice of method will be motivated and where the
mathematical background of the prediction method is explained in detail. After this has been discussed, there
will be an explanation of the implementation in Python. Finally, the results of the synthetic and real data
experiments will be shown and discussed.

CHAPTER 2. DATA 4

Chapter 2

Data

In the implementation of the multi-fidelity spatial interpolation method, temperature observations are used. In
the following section, the geographical locations of the stations that measure the temperature will be discussed.
We have chosen to use air temperature data, because there is an experimental quality control available for air
temperature observations for 3PD. The quality control will be explained in section 2.2. In addition, since a
new method is being implemented it is easier to test it with a phenomenon such as temperature that is quite
homogeneous in space and time. The robustness of the method will be tested on synthetic data that will be
introduced in the last section of this chapter.

2.1 Description of geographic area
The KNMI operates a network of 35 lands stations that are relatively uniformly distributed over the country
see Figure 2.1a, which ensures monitoring capabilities on the national scale. However, the visual inspection of
the image shows that large regions between stations have a sub-optimal coverage, thus local weather remains
unseen by the official network. Rijkswaterstaat operates sensor networks that are installed along the road
network, see Figure 2.1b. The WOW network is located throughout the country, but tends to be clustered
around urban and peri-urban environments as shown in Figure 2.1c.

In this thesis, we selected the date of 25th of January of 2019 to conduct the analysis. On that day,
there were 35 KNMI stations, 319 Rijkswaterstaat stations, and 409 WOW stations yielding observations. Note
that the 3PD stations have undergone a quality control procedure that will be further explained in section 2.2,
thus the stations present on the selected date have the highest quality possible. To use these stations to make
a prediction for the Netherlands, the country was divided in a grid of a 100 by 100 points, with a mesh size
of approximately 4 by 4 kilometres, see Figure 2.1d. This might be still considered a rather large spatial
resolution, but it is necessary due to computational constraints.

CHAPTER 2. DATA 5

(a) (b)

(c) (d)

Figure 2.1: The figures 2.1a, 2.1b and 2.1c show the locations of the weather stations from
each of the three parties. The KNMI has 10 more stations in the sea that are not shown
here, however we will mask the sea because we are interested in the predictions on land. In
Figure 2.1d the grid used for the predictions is shown.

CHAPTER 2. DATA 6

2.2 Quality control
In the implementation of the experiments data from the KNMI, Rijkswaterstaat and WOW is used. It
is assumed that the measurements from the KNMI are up to the WMO’s standards, i.e. it is assumed
that the KNMI measurements contain no bias or noise. In addition it is assumed that Rijkswaterstaat’s
data can be considered trustworthy enough for our use, in other words the bias and noise in the Rijk-
swaterstaat data are assumed to be acceptable [1]. However, WOW is a platform that allows everyone to
share their weather data. These observations come from devices of varying quality and are often placed at
urban locations that do not adhere to the WMO’s standards, therefore it is unknown how accurate their
data is. To ensure that the used WOW data is of sufficient quality, a quality control is carried out. The
quality control procedure used is based on the work of Napoly et al., 2018 and consists of 4 steps M1 up to M4 [2].

Let n be the number of stations and m be the number of measurements per station. Let T be a mat-
rix of size n ×m that represents the data set. Each row represents one station and each column is one time
step. Missing values or values flagged by the quality control procedure are filled in as ‘not a number’ (NaN).
The first level M1 makes use of the metadata, for example abnormalities in locations are taken into account. In
some cases the PWS are improperly installed and were by default assigned a location based on the IP address
of the wireless network, which led to stations having the same longitude and latitude. The data from these
stations are set to NaN, because they are not properly set up [2].
In M2 the outliers are detected and masked. The detection is done by using a modified version of the z-score.
The exact workings of this procedure is beyond the scope of this thesis so for more information we refer to [2].
After these suspicious measurements are detected and masked, we move on to M3.
During this step it is checked if there is enough daily and monthly coverage. To verify if there is enough
coverage the percentage of measurements that were flagged in step M2 is taken into account, when 20% or
more measurements from one station in a specified time frame are flagged it is assumed that the station is too
erroneous to use and therefore all data from that station is set to NaN.
In the end at step M4, we aim to filter out the stations that are indoors. The measurements from these
stations need to be removed, because the aim is to model the weather and measurements from indoor locations
might not capture the weather well. For example, during the winter the temperature measurements could
be substantially higher indoors due to heating. The filtering is done by computing the Pearson correlation
coefficient Pc between each station and the median of the WOW data for each month. If this coefficient is
lower than 0.9 for a station in a given month, then the measurements for that station are set to NaN for that
month. This approach allows to filter out the indoor systems, because it is assumed that the indoor stations
are less correlated to the outdoor stations and thus less correlated to the median of the WOW data [2].

After the quality control is carried out, there are only stations left that can be used for the computa-
tions. One of the limitations of this quality control is that it does not apply any type of bias correction, thus
the observations received for the multi-fidelity analysis will have some errors. Dealing with these observational
errors is an important aspect of this research project.

2.3 Synthetic data
In addition to real data, synthetic data was also used for some experiments. This was done because it allows us
to look at what happens to the predictions for temperature fields g(x) with different spatial variability. With
the real data, the model is tested for one day, but by generating synthetic weather patterns it can be seen how
robust the procedure is. If the model is shown to be robust and that it works for functions g(x) with high
spatial variability, the model could also work for fine-grained weather phenomena such as wind or rain.
Synthetic data is used to test the robustness, because not only temperature values for the stations can be
generated, but for the grid points as well. Therefore, the prediction accuracy can be checked by looking at the
difference between the prediction and the true values for grid points.

Let ys and g(xg) denote the temperatures generated for the stations and the grid points ,respectively,
and let xs and xg denote the station and grid point locations ,respectively, given by their longitude and
latitude,

ys = a(cosNπxs
1 + cosNπxs

2) + ϵ

g(xg) = a(cosNπxg
1 + cosNπxg

2).

This g(xg) results in a temperature field that follows a lattice pattern, where the size of the lattice fields depend
on N , and N is a parameter that determines how many oscillations per degree longitude and latitude there
are. Furthermore, we multiply everything by amplitude a that was determined by looking at the amplitude

CHAPTER 2. DATA 7

of real measured temperature values, so that the minimum and maximum values of ys and g(xg) follow more
closely to the maxima and minima of real temperature data. In addition, a synthetic error ϵ is added to ys.
In consists of a systematic error value and random error value for the second and third party stations. These
factors are determined by running the Kriging procedure that is described in section 3.4 and observing what
values were predicted for the bias and noise. For the bias −3.22◦C and −2.46◦C were added to the second and
third party stations respectively and 0.57◦C and 1.62◦C for the noise. Note that these bias and noise values
were determined using data from the 25th of January, these values might differ for other days.

The resulting temperature fields g(xg) are shown for various N ’s in Figure 2.2. Temperature data has
a low spatial variability, so it is expected to be similar to Figure 2.2a and wind data is expected to show a
higher spatial variability like Figure 2.2b.

(a) (b)

(c)

Figure 2.2: The temperature maps for the synthetic data follow a lattice like pattern. When
N increases lattice becomes smaller and the pattern shows a higher spatial variability.

The goal of using synthetic data is to show that for weather patterns that show low spatial variability, the 1PD
stations alone suffice to make accurate predictions, but when the weather pattern has higher spatial variability,
using 2PD and 3PD data is beneficial. To use all of this data for making a prediction, we need a method that is
able to predict values of new data points given a set of known data. In the next chapter a few possible methods
will be addressed and one of them will be discussed more thoroughly.

CHAPTER 3. METHODOLOGY 8

Chapter 3

Methodology

In order to analyse the data discussed in chapter 2, a suitable prediction method is necessary. In this section,
multiple prediction methods are compared, and the most suitable interpolation method is extended to work
similar to a regression method. This is necessary to account for the errors that we assume are present in the
measured data.

3.1 Interpolation and regression
Interpolation and regression are both methods that help us predict the value of new data points when given a
discrete set of known data points. Although they both provide a continuous approximation to discrete data,
there is an important difference. For interpolation, all data points need to fit exactly, whereas this is not
necessarily required for regression [3, 4]. For interpolation, a set of data points is given and it is assumed
that this is perfect data, i.e. it contains no errors. The goal of interpolation is to find a single-valued curve
that passes through all of those given data points. For example, if (n + 1) data points are given, polynomial
interpolation can be used to find a polynomial of order n that passes through all n + 1 points exactly [4]. On
the other hand, if one tries to fit a polynomial of n − 1 it is over-constrained and finding a best fit leads to
regression. So in this way interpolation methods can be extended to regression methods when much data is
available.
Regression is a method that estimates the relationships between a dependent variable and independent
variables; it computes a curve or surface that fits best to the known data points. For regression it is assumed
that the known data is noisy, therefore regression does not aim to find a perfect fit for the known data. It also
assumes some knowledge of the functional relationship, for example if the relationship is linear or exponential.
An example of a linear method is ordinary least squares, this method computes a straight line that minimises
the sum of squared errors [3].

A spatial prediction needs to be made, so we are interested in spatial interpolation methods. Spatial
interpolation is a method that uses known data to estimate unknown values at locations where there is no
known data available. Spatial interpolation assumes that the surface that needs to be modelled is continuous
over space, which means that the surface does not have well-defined boundaries and can be seen in the
entire area of interest and smoothly transitions from value to value. Examples of continuous fields could be
temperature or relative humidity [5]. As a result, we can estimate the values at any location within our spatial
boundaries, in our case any location within the Netherlands. Something else that is assumed, is that the
attribute we are looking at is locally correlated. In other words, values that are spatially close together are
more likely to be similar than values that are spatially far apart [6]. If we look at temperature, this means that
we expect two locations that are several meters apart to have more similar temperatures than two locations
that are several kilometres apart. At the end of the process, we want to have estimated temperature values for
an area, such that the error with respect to the measured temperature is small and uniformly bounded. To
reach this, we need to select an interpolation method that fits the problem at hand best. In the next section we
will briefly discuss several popular spatial interpolation methods, such as splines, Inverse Distance Weighting
(IDW), and Kriging.

CHAPTER 3. METHODOLOGY 9

Splines

A spline is a function defined by a piecewise polynomial f(x), hence we do not fit one single high de-
gree polynomial through our data, but we fit low degree polynomials through smaller subsets of our data to
approximate g(x) [6].

Figure 3.1: Example of a spline. Source: [7].

The fitting is done by minimising the total surface curvature of f(x) which results in a smooth surface. In
3D we can imagine this as trying to bend a piece of paper such that it passes through all known points [6,
8, 9]. This is also how the technique got its name, originally a spline was a flexible piece of wood or metal
that was used to draw smooth curves between points [10]. The method works the best for surfaces with low
variance, hence it does not work well when points that are relatively close together have a large difference in
values. This is a result of spline using slope calculations to compute the shape of our ‘paper sheet’ [8].
Advantages of this method are that with only a few known values it can generate a sufficiently accurate
surface and it can preserve small details. A disadvantage is that it may have different extreme values
than the data set and that it is sensitive to outliers. These disadvantages are true for all exact interpol-
ators, but can result in more serious difficulties for this method because it works best for low variance surfaces [6].

Inverse Distance Weighting

As the name ‘Inverse Distance Weighting’ suggests, this method assigns weights to given data points
based on their distance from the point x∗ for which the value needs to be predicted. The known points that
are nearest to x∗ are assigned the highest weights and thus contribute more to the value of x∗ that needs to
be predicted [6]. This is different from the spline approach, because there a point either contributes to the
prediction or it does not and with Inverse Distance Weighting (IDW) there is a distinction in how much each
point contributes. In the example shown in Figure 3.2 the purple point in the middle represents x∗ and its
value needs to be predicted using the three closest red points whose values are written above the red dots.
The left point is the closest with a distance of 350 meters, so it is assigned the highest weight out of the three
points.

Figure 3.2: Example of a situation where IDW can be used. Source: [11]

To determine the interpolated values, IDW uses a linear-weighted combination of known sample points [8, 9].
Let us call the value of x∗ that needs to be predicted y∗ and y1, ..., yn the values of the known points, then

y∗ =

∑n
i=1 wiyi∑n
i=1 wi

.

CHAPTER 3. METHODOLOGY 10

The weights wi are computed as

wi =

 1
dp
i
, if di > d

0, else

with di the distance from the x∗ to known point xi, d is the radius of the area around x∗ within which the
points used for the prediction must be located, and p is a constant that can be chosen as well to influence the
weights. Constant p regulates how fast the weights decay with distance to the point x∗ [11].

This method may be used when the data set is dense and sufficiently uniformly distributed enough to
be able to capture local surface variation [8]. An advantage of this method is that it is very intuitive to
make predictions this way. Another advantage is that it can capture extreme changes well, and dense evenly
distributed points are well approximated. Due to working with weights associated with distance, the amount
of points used to computed the new values can be controlled by changing the radius d [6, 8].
A disadvantage is that IDW is also sensitive to outliers. Furthermore, if the data is unevenly distributed we
could get significant errors. For example when there is a data cluster, we could for example be using 50 known
points to make an estimation for 1 unknown point, but if we try to estimate a point outside of that cluster we
could only have 5 known points available for the estimation.

Kriging

Kriging is a method that is similar to IDW. Kriging also makes use of local weighting, but in addition
to that it uses statistical properties of the known data points. So it is a probabilistic method while splines and
IDW are deterministic methods.
A benefit of using statistics is that the covariance and correlation between any two points is estimated, which
makes it possible to compute an error map for the entire surface. This can allow us to quantify the accuracy of
the temperature prediction f(x). The statistical properties also allow kriging to work with data containing a
bias and noise, and it is able to make estimations for the bias and noise using maximum likelihood estimators
when they are unknown. Some disadvantages are that it is more computationally expensive and it needs more
user input than the other methods [6, 12]. A more detailed description of Kriging will be given in subsection 3.4.1.

Comparing methods

For our purpose, not just the distance between two points matters, the statistical correlation between
two stations depends on other factors as well. For example, their surroundings are important too, two stations
on a wide open field correlate differently than two stations with the same distance from each other in a crowded
city. Kriging would allow us to incorporate these differences in correlation due to its use of statistical properties
unlike the other methods. Another benefit of the statistical description is that we can compute the standard
deviations of the temperature prediction f(x), which can be used to make an uncertainty map of f(x). This
map is very interesting for us, because it shows us how accurate the prediction is at every location. Therefore, if
we plot the uncertainty map of f(x) that was predicted using first party data and the uncertainty map of f(x)
when first, second and third party data were used to predict it, it not only shows us what the improvements
are numerically, but also where those improvements are spatially.
Finally, Kriging is also able to deal with bias and noise that is present in the data. Doing so is also very
important for us, because we are dealing with multiple data sources with different fidelities [6, 12]. Kriging is
based the concept of ‘Gaussian Processes’, which we will first explain before diving into Kriging.

CHAPTER 3. METHODOLOGY 11

3.2 Multivariate Gaussian distributions
A random vector X = (X1, ..., Xn)

T follows a n-variate normal distribution if each random variable Xi, i ∈
{1, ..., n} follows a Gaussian distribution and every linear combination of the n random variables follows a
Gaussian distribution as well. Figure 3.3 shows an example of what such a distribution can look like.
Just like with the Gaussian distribution, its multivariate version is defined by a mean vector µ and a covariance
matrix Σ. For random vector X and its ith component Xi

X = (X1, ..., Xn)
T ∼ N (µ,Σ) =

1√
(2π)n|Σ|

exp(−1

2
(X − µ)TΣ−1 exp(X − µ))

Xi ∼ N (µi,Σii).

The component µi is the mean of i-th coordinate Xi and the covariance matrix Σ tells how the random variables
are correlated. It is defined as Σi,j = Cov(Xi, Xj) = E[(Xi−µi)(Xj−µj)

T], with i, j ∈ {1, ..., n}. The covariance
between Xi and Xj is the same as between Xj and Xi, therefore Σ always is symmetric [13, 14].

Figure 3.3: Example of a multivariate normal distribution. µ = (0, 0)T and Σ =

(
1 3/5

3/5 2

)
.

The distribution is centred around the mean and the shape of the ellipse in the xy-plane is
determined by the covariance matrix. It also shows that the two marginal distributions, shown
in red and blue, follow a univariate Gaussian distribution. Source: [15]

A nice property of Gaussian distributions is that they are closed under marginalisation and conditioning. This
means that when we apply marginalisation or conditioning, the result is again a Gaussian distribution. Let us
assume (

X1

X2

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
,

where X1 and X2 are random vectors with no components in common. Due to the marginalisation property,
we know

X1 ∼ N (µ1,Σ11)

X2 ∼ N (µ2,Σ22),

see [13]. Consequently the distribution of existing random variables will not be influenced by the addition
of new random variables. For example, the distribution of the measurements of the KNMI stations will not
change when measurements from Rijkswaterstaat are added.

Conditioning is computing the probability distribution of a variable depending on another variable, de-
noted as p(Y = y|X = x). This is very important for Gaussian processes (GPs), because it allows us to use
Bayes’ theorem to compute the posterior probability. The conditional distribution for a multivariate Gaussian
is defined as

X1|X2 ∼ N (µ1 +Σ11Σ
−1
22 (X2 − µ2),Σ11 −Σ12Σ

−1
22 Σ21), (3.1)

see [13, 14, 16]. Equation 3.1 can alternatively be written as,

E[X1|X2] = µ1 +Σ11Σ
−1
22 (X2 − µ2)

var(X1|X2) = Σ11 −Σ12Σ
−1
22 Σ21

CHAPTER 3. METHODOLOGY 12

3.3 Gaussian Processes
For a given set of known (x, y) pairs that satisfy g(x) = y, there are many classes of functions that fit the given
data. Therefore it can be difficult to find the right approximation f(x) of the true function g(x). A Gaussian
process (GP) provides an elegant solution by providing each of these possible functions with a probability. The
mean of this distribution gives the most likely description of the known data [17].

A GP is a stochastic process that consists of a (possibly infinite) collection of random variables, such
that every finite collection of those random variables follows a multivariate Gaussian distribution [16, 18].
The goal of the method that uses a GP is to find the distribution of the collection of random variables by
learning from training data D and predicting the data Y by modelling the distribution P (Y |D) as a multivariate
Gaussian distribution. The training data consists of input and output pairs, D = {(xi, yi)|i = 1, ..., n}, where
the input vector xi is d dimensional. The output is a real-valued scalar yi = g(xi) with an unknown function
g : D → R. If we write this in matrix form we get D = {X,y} with X ∈ Rd×n and y ∈ Rn. The goal is to
predict the output vector y∗ for previously unseen test input X∗ using D. This can be done by looking at
the probabilities of a certain function f(X) given D that approximates g(X) and the probability of observing
y∗ given f and X∗, i.e. determining p(f |D) and p(y∗|f,X∗), for all possible functions f . The probability
p(y∗|X∗, D) is then computed as follows:

p(y∗|X∗, D) =

∫
p(y∗|f,X∗)p(f |D)df (3.2)

, see [18, 19]. As mentioned in section 3.2, Gaussian distributions are closed under conditioning, which means
that p(y∗|X∗, D) also follows a Gaussian distribution. From the resulting distribution function p(y∗|X∗, D)
values for y∗ can be predicted by drawing samples. If we want to know the estimated value for a specific
point i, we have to look at the i-th component of the drawn vector. Equation 3.2 can be solved by using
Bayesian inference. This means that the hypothesis is updated when we get new information. In other words
the distribution changes when the set D becomes larger. This can be represented visually as shown in Figure 3.4.
In Figure 3.4a a number of samples are drawn from the prior distribution of Y . This is the distribution that is
assumed for Y before any observations are made. When observations become available this prior distribution
can be adjusted so that the samples comply with the observations, as shown in Figure 3.4b. From these samples,
the mean of the posterior distribution can be computed with a 95% confidence interval that is defined as two
times the standard deviation for each input value of x [17, 20].

CHAPTER 3. METHODOLOGY 13

(a)

(b)

(c)

Figure 3.4: In Figure 3.4a a lot of samples drawn from the prior distribution are shown, after
observations are made the samples that do not reflect the observations are removed and we are
left with the samples shown in Figure 3.4b. The result can be summarised by a mean function
shown by a dark blue line in Figure 3.4c and a 95% confidence interval around it, displayed by
the light blue shaded area. Source: [20]

To find this distribution p(y∗|X∗, D), we need to find its mean vector µ and covariance matrix Σ. µ is often
assumed to be 0 to simplify the computations. If µ is not equal to 0, the bias can be corrected after the
prediction is made. Estimating Σ is a bit more interesting, because Σ determines the shape of the distribution.
This means that the covariance matrix tells us which type of functions from all possible functions are the most

CHAPTER 3. METHODOLOGY 14

likely. The components of Σ are given by Σi,j = κ(p, p′), where κ is the covariance function, also known as the
kernel, and p and p′ are points in X or X∗. The covariance matrix Σ tells us how much influence p and p′ have
on each other. There are a lot of different kernel functions possible and we will go into more detail about them
in subsection 3.4.4 [14].

Thus, Gaussian Processes model distributions over functions which means that they can be used to
build a regression model. This is a model that estimates the relationships between one or more independent
variables and a dependent variable by providing a function. In Kriging, the Gaussian Process will be our prior
distribution function, this in combination with some data will allow us to compute a posterior distribution.
Which in turn can be used to predict the expected value of the output variable given the input variables.

CHAPTER 3. METHODOLOGY 15

3.4 Kriging
Kriging is a Bayesian interpolation method that originates in geostatistics and is based on GPs. There are a
few versions of Kriging, such as simple Kriging, ordinary Kriging and simple Kriging with local error estimates
(Kriging LE) [20, 21, 22]. These first two methods are very similar, except for how they view the mean µ of
the prior GP. If we want to predict the unknown output for a point xj using Kriging, we get an estimate f(xj)
of the true function g(xj) in the form f(xj) = µ + h(X,xj). For ordinary Kriging, µ is seen as an unknown
constant and for simple Kriging, µ is seen as a known constant. As the name suggests, Kriging LE is a version
of simple Kriging that uses local error estimates instead of one error estimate that is used for all the stations.
In the following sections we will discuss these methods more thoroughly.

3.4.1 Ordinary and simple Kriging
Kriging is a non-parametric approach for estimating a function g(x). This means that when the number of
data points increases, the number of parameters increases too, while in a parametric model the number of
parameters is fixed, in contrast with common approaches such as Bayesian linear interpolation [23]. Kriging
tries to estimate a distribution over all possible functions f(x) that fit the observed data. Kriging lets the prior
distribution on f(x) be a GP,

f(x) ∼ GP(m(x), κ(x,x′)),

where the mean m(x) is defined as m(x) = E[f(x)] and covariance function κ by κ(x,x′) =
E[(f(x) − m(x))(f(x′) − m(x′))T] [16, 18, 19, 24]. In our case, x is an n × 2 matrix containing the
locations of n weather stations and x′ is the matrix that contains the grid points for which we want to predict
the temperatures as defined in Figure 2.1d.

We need to define a distribution over function values at the points in x. Kriging assumes that the dis-
tribution p(f(x∗)) is jointly Gaussian with mean µ and covariance matrix P, in other words we assume the
prior distribution to be Y ∗ ∼ N (µ,P). Even though this distribution depends on x and y, this is still called a
prior distribution, because it is assumed a priori that Y ∗ can be modelled using a GP. In ordinary kriging, µ is
an unknown constant while in simple Kriging µ is assumed to be a known constant.
Furthermore we also assume the normal likelihood for the observations,

y|Y∗ ∼ N (HY∗, 0) (3.3)

where H is an observation matrix. Let n be the number of observations and p be the number of points we want
to predict, in case of the temperature prediction n is the number of weather stations and p is the number of
grid points from Figure 2.1d. Then the observation matrix H ∈ Rn×p tells us where the observations were taken
relative to the points we want to predict. An example of what a matrix H may look like is this:

H =

[
1
2

1
2 0 0

0 1 0 0

]
.

Here H has two rows and four columns so we have two stations and the grid used to make a prediction consists
of four points. The elements in the first row tell us that the first station can be found right between the first
two grid points and the second row shows that the second station is exactly at the second grid point.

The components of covariance matrix P are given by Pi,j = κ(xi,xj), where κ is a positive definite
kernel, just like for a GP, the kernel defines which type of functions from all of the possible functions are the
most likely under the prior. κ must be positive definite, to make sure that P is positive (semi) definite [16].
There are several different kernels, but here we will be using the kernel defined as follows

κ(xi,xj) = σ2ψi,j (3.4)

where σ2 is the product of the standard deviations of yj and yi, but since they are both from the same set y,
this is just the variance of y. Our choice for this kernel will be more thoroughly discussed in subsection 3.4.4.
ψi,j is the basis function corresponding to the correlation between the known data point xi and the data point
xj that needs to be predicted.

ψi,j(xi,xj) = exp
(
−

d∑
k=1

||(xi)k − (xj)k||2

2θ̂2k

)
, (3.5)

with d being the number of dimensions. θ̂ ∈ Rd is a spatial parameter that we can think of as an indicator that
tells us how quickly the function changes when xj moves closer or further away from xi. A high θ̂k value tells

CHAPTER 3. METHODOLOGY 16

us that a certain function is active along dimension k, and a low value that it is inactive [25].

To obtain θ̂, we use a maximum likelihood estimator with respect to θ, which is equivalent to minim-
ising [26]

L(θ) = log(|HPHT |) + (y −Hµ)T (HPHT)−1(y −Hµ). (3.6)

The product HPHT ∈ Rn×n can be interpreted as the matrix of correlations between sample data.
Besides θ̂, another MLE is needed for µ, which we will define as

µ̂ =
1T (HPHT)−1y

1T (HPHT)−11
, (3.7)

where 1 is an n × 1 vector of ones. Using all of this information, we would like to make the prediction. Our
prediction is the value at desired point xj that maximises the likelihood. Given the sample data and MLE’s of
θ and µ, this translates to

f(xj) = µ̂+

n∑
i=1

ciψi,j(xi,xj).

The constants ci are given by column vector c = (HPHT)−1(y − 1µ̂)[27].

As mentioned in section 3.1 an advantage of Kriging compared to the other methods is its ability to
produce an error map. This is due to known statistical properties, because this allows us to construct
correlation matrices. To make the error map we are interested in the variance. The variance can be computed
using the prior Y∗ ∼ N (µ,P), Equation 3.3 and Bayes’ rule to find the Kriging posterior

Y∗|y ∼ N (m, C)

where m is the posterior mean and C the posterior covariance. Recall that in section 3.2 for two random vectors
X1, X2 with (

X1

X2

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
,

their conditional distribution was defined as

X1|X2 ∼ N (µ1 +Σ12Σ
−1
22 (X2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21). (3.8)

Equation 3.8 can be applied to Equation 3.9 to find Y∗|y,(
Y∗

y

)
∼ N

((
µ̂
µ̂

)
,

(
P PHT

HP HPHT

))
. (3.9)

We have our covariance matrix P, which is Σ11. To get from stations to grid points, we used matrix H, so Σ22

is HPHT , Σ12 = PHT and Σ21 = HP. These are plugged into Equation 3.8 and results in

E[Y∗|y] = µ̂+PHT (HPHT)−1(y − µ̂)

= µ̂+K(y−µ̂)
var(Y∗|y) = P−PHT (HPHT)−1HP

= (I −KH)P

(3.10)

Where K = PHT (HPHT)−1 is the Kalman gain. Something like this is not possible for the other methods,
because we are unable to produce a matrix that tells us something meaningful about the correlation between
grid-points or about the correlation between grid-points and stations [28].

3.4.2 Kriging as regression method
The methods discussed in subsection 3.4.1 work as an interpolation method, but we would like to use Kriging
as a regression method. This is because our data will be noisy, that is y = g(x) + ϵ with ϵ ∼ N (0,σ2

ϵ) the
irreducible error, therefore we do not want to force our prediction through our measured data points. We can
adjust our method by taking

Pi,j = κ(xi,xj)

= κ(xi,xj) + σ2
ϵ Ii=j ,

CHAPTER 3. METHODOLOGY 17

i.e. we add the variance of the error to the diagonal of the covariance matrix [18]. We only add this to the
diagonal because we assume that the errors between stations are uncorrelated.
Now we also need to adjust the correlation matrix HPHT , because it forces our prediction to pass exactly
through our sampled points. However, when we have noisy data, we do not need the prediction to pass through
our sample data exactly, therefore we add a regularisation constant σ2

n to the diagonal of HPHT . Let R = σ2
nI,

then we get HPHT +R. The assumed likelihood for the observations is also changed to y|Y∗ ∼ N (HY∗,R),
which also changes the Kriging posterior. Instead of applying Σ22 = HPHT in (3.8), we use Σ22 = HPHT +R.
We do not need to add R to Σ12 and Σ21 because R only adds noise to the variance of a location and not the
covariance between two locations. This results in a Kalman gain of K = PHT (HPHT +R)−1.

To be able to find the right θ̂, µ̂ and σ2
n, we need to adjust Equation 3.6 and Equation 3.7 too,

Lr(θ, σ
2
n) = log(|HPHT +R|) + (y −Hµ)T (HPHT +R)−1(y −Hµ)

µ̂r =
1T (HPHT +R)−1y

1T (HPHT +R)−11

where the subscript r stands for regression. However, in our implementation we used µ̂r equal to the mean of y
for lower computational speed. Now that the parameters are optimised for the new setting, the new theoretical
prediction can be defined as

fr(xj) = µ̂r + (PHT)T (HPHT +R)−1(y − 1µ̂r) (3.11)

[27].
Equation 3.11 tells us that when we have little noise, the prediction fr(xj) depends more on the measurements
y and less on the mean µ̂r than when we have a lot of noise. We can easily demonstrate this for the case with
just one measurement by using a Taylor expansion.

ŷr(xj) = µ̂r + σ2(σ2 + σ2
n)

−1(y − µ̂r)

= µ̂r +
1

1 +
σ2
n

σ2

(y − µ̂r)

=
(
1− σ2

n

σ2

)
y +

σ2
n

σ2
µ̂r +O

((σ4
n

σ4

)
.

We see that when the regularisation constant σ2
n increases, the factor in front of y decreases, while the factor

in front of µ̂r increases.

To see why it is important to incorporate noise into the computation, we look at an example discussed
in Forester et al. (2006). They compare the results of using Kriging as interpolation and Kriging as regression.
They considered an airfoil where the drag coefficient CD had to be minimised. The airfoil was defined by five
orthogonal shape functions. The first of these functions f1 was kept constant and represented the shape of a
NASA supercritial SC(2) airfoil. The next function, f2, is a least squares fitting to the preceding fit, and each
airfoil of the SC(2) series can be added to f1 with weight w2. In Figure 3.5 the difference between the two
methods is clearly visible. When we do not force the prediction for CD to go through all the sample points, we
get a much better prediction than when we do [27].

CHAPTER 3. METHODOLOGY 18

Figure 3.5: The results of using Kriging as a regression or as an interpolation method. It shows that when
we do not force the prediction through the measured data points, we get a much more natural looking result.
Source: [27]

3.4.3 Simple Kriging using a local error estimate
The idea behind Simple Kriging using a local error estimate (Kriging LE) is that we would like to be able to
assign each observation yi its own systematic error (bias) bi and random error (noise) with standard deviation
(σ2

n)i. To achieve this we modify the likelihood,

y|Y∗ ∼ N (HY∗ + b,R)

to have σ2
n ∈ Rn instead of a scalar. These changes translate into the posterior mean and likelihood function

E[Y∗|y] = µ̂r +K(y−µ̂r − b)

LLE(θ, σ
2
n, b) = log(|HPHT +R|) + (y −Hµ̂r − b)T (HPHT +R)−1(y −Hµ̂r − b)

(3.12)

Note that the likelihood function is now used to find θ, σ2
n and b. In Equation 3.12 it might look like a bias

is subtracted from all the data, but recall that for first party data a bias and noise of 0 were assumed. Using
a vector σ2

n brings us a benefit that we do not have to use the same σ2
n for all of the stations, but can make

distinctions between their accuracy. This is beneficial for us, because we are working with high fidelity data
where the difference in accuracies can vary several degrees Celsius.
In the implementation we do not give each station its own bias and noise value, but we did make the distinction
between first, second and third party stations. We decided this because it is a very costly process to determine
(σ2

n)i and bi for all individual stations.

In the table below there is a short overview of the equations in which Kriging LE differs from Simple
and Ordinary Kriging.

Quantity Simple and Ordinary Kriging Kriging LE

Assumed likelihood for observations y|Y∗ ∼ N (HY∗,R) y|Y∗ ∼ N (HY∗ + b,R)
Noise covariance matrix R = σ2

nI , σ2
n ∈ R R = σ2

nI , σ2
n ∈ Rn

posterior distribution mean E[Y∗|y] = µ+K(y −Hµ̂r) E[Y∗|y] = µ+K(y −Hµ̂r − b)

Minimising for hyper parameters log(|HPHT +R|) + (y −Hµ̂r)
T

(HPHT +R)−1(y −Hµ̂r)

log(|HPHT +R|) + (y −Hµ̂r − b)T

(HPHT +R)−1(y −Hµ̂r − b)

CHAPTER 3. METHODOLOGY 19

3.4.4 Kernels
The kernel function is very important for Kriging, because it defines which functions are most likely under
the prior, which in turn induces the generalisation properties 1 of the model [30]. For example, it determines
whether a function is stationary or non-stationary. The stationary kernel functions are translation invariant,
i.e. they only depend on the relative positions of their input. Non-stationary kernels depend on the absolute
positions of their input, which means an origin needs to be specified [16, 17]. Another property that is decided
by the kernel function is the variation speed. For example if the functions in Figure 3.4 vary too quickly, we can
slow it down by adjusting the parameter θ in the kernel function. Note that finding the right hyperparameters
for the kernel function such that we end up with the right properties for prediction f(x), such as the variation
speed, is exactly the numerical challenge in applying Kriging [17].

In Kriging a kernel κ must be positive-definite and is used to define the prior covariance between any
two function values

Cov[f(xi), f(xj)] = κ(xi,xj)

, see [30]. There are many kernels available, but three commonly used kernels are the squared exponential
kernel, periodic kernel and the linear kernel. These three will be discussed briefly to motivate why the squared
exponential kernel was chosen.

The squared exponential kernel is also known as the Gaussian kernel and allows one to model functions
with local variations. In d dimensions the kernel is defined as

κSE(xi,xj) = σ2 exp
(
−

d∑
k=1

||(xi)k − (xj)k||2

2θ2k

)
,

and is shown in the leftmost panels in Figure 3.6. κSE depends on the relative positions of x and x′ and is
therefore a stationary kernel. A nice property of this kernel is that it is infinitely differentiable, which means
that f(x) ∼ GP(m(x), κ(x,x′)) is infinitely continuously differentiable, i.e. f(x) is smooth [17, 30, 31]. The
periodic kernel can be used to model periodic functions with a repeating structure and in d dimensions it is
defined as

κPER(xi,xj) = σ2 exp
(
−

d∑
k=1

2

θ2k
sin2

(π||(xi)k − (xj)k||
p

))
,

where p is the period of the function and it is shown in the middle figures of Figure 3.6. This kernel is also
stationary, because it depends on ||xi − xj ||. The linear kernel is defined as

κLIN (xi,xj) = σ2(xi − c)(xj − c)

where c is the offset which tells us the x-coordinate of the point that all posterior lines must go through. In
the rightmost figures of Figure 3.6 we see that that point falls just out of the frame. κLIN is non-stationary
because it does not depend on the distance between x and x′ but rather on the value of the input.

1Generalisation is a term used to describe the ability of a trained model to adjust to previously unseen data [29].

CHAPTER 3. METHODOLOGY 20

Figure 3.6: Visualisation of the squared exponential kernel, the periodic kernel and the linear
kernel, from left to right respectively. On the first row the plot of the kernels is shown and on
the second row the types of functions they model are shown. Source: [30]

Overall, the squared exponential kernel seems to fit our needs best. This kernel works well when you try to
model smooth functions, which is exactly what we are trying to do with a temperature field [30]. However, this
does not mean it is the best kernel for other weather phenomena, for example for wind it is recommended to
use the exponential kernel [32].

CHAPTER 4. IMPLEMENTATION 21

Chapter 4

Implementation

Now that the theoretical background has been discussed, KrigingLE can be put in to practice. The implement-
ation of Kriging LE is made in Python and uses the data from the 25th of January 2019 provided by the KNMI
(1PD), Rijkswaterstaat (2PD) and WOW (3PD) to make a temperature prediction for the Netherlands. The
code and data used to make the predictions can be found on Github1.
To be able to make a prediction using Kriging LE, the data that is used for training and the points for which the
temperature should be predicted need to be defined. The points for which temperature needs to be predicted are
defined as the grid points as shown in Figure 2.1d. Our training data will be the data provided by the KNMI,
Rijkswaterstaat and WOW, and for each party this will consist out of a vector with station locations and their
corresponding average daily temperature in a vector. So we have three vectors consisting of the locations and
three vectors of the temperatures. If we want to work with data from multiple parties we concatenate their
data in numerical order. The station locations vector is denoted x and the temperature vector is denoted y,
however we work with a normalised version of y denoted yn.
The kriging process can roughly be divided in three steps; hyperparameter estimation, temperature prediction
and an error prediction. Before we can dive into these, we need to discuss how we construct our correlation
matrix HPHT , noise covariance matrix R and how we solve systems Ax = b for x.

4.1 The correlation matrix, noise covariance matrix and solving linear
systems

Correlation matrix

We defined our correlation matrix as HPHT , where H is an observation matrix and P the covariance
matrix. To build these, we need three things. The parameter θ and two sets of locations x1 and x2 between
which we want to know the correlation.
First we construct a zero matrix D of size |x1| × |x2| and then for each entry of D we compute ψi,j(xi,xj) as
in Equation 3.5. Note that we do not multiply by σ2 here as in Equation 3.4, because we work with normalised
data, which implies that σ2 is equal to 1

Noise covariance matrix

To construct this matrix we need to know the number of stations n, the noise standard deviation para-
meter σn and a proxy which tells us which noise parameter belongs to which party. Each party that is used
has its own noise parameter, for 1PD 0 noise is assumed and for the other parties we estimate σn as explained
in section 4.2. This means that σn is a vector of length 1 if we only use 1PD, first and second party data
(12PD) or first and third party data (13PD) and, length 2 if we use data from the first, second and third party
(123PD). To assure that we use the right noise value for each station a proxy array is used, this array contains
zeroes and ones where the ones indicate which of the noise values to use for which station. We construct a zero
matrix R of size n × n and add the noise to the diagonal of R. Note that we add σ2

n to each station, because
σn is expressed as a standard deviation and this is a noise covariance matrix.

1https://github.com/daniellevanb/KrigingLE

https://github.com/daniellevanb/KrigingLE

CHAPTER 4. IMPLEMENTATION 22

Solving linear systems

To solve linear systems such as Ax = b for x, we first use a Cholesky decomposition instead of using
x = np.linalg.solve(A,y) right away because the Cholesky decomposition is faster for repeated solves.
For a Cholesky decomposition, we decompose a Hermitian positive (semi) definite matrix A in A = LLT ,
where L is a lower triangular matrix. After L is computed, we solve Ly = b for y and lastly LTx = y for x
[33].
The proof of why we are allowed to use this decomposition here can be found in Appendix B.

4.2 Hyperparameter estimation
Now that we have introduced our basis, we can proceed to the first step of Kriging; making a prediction for
the hyperparameters b, σn and θ. The hyperparameter used for bias is b, σn for the standard deviation, also
referred to as noise, and θ is the spatial parameter. The bias tells us how big the systematic error is from a
certain party and the noise indicates what the random error is. Both b and σn are measured in degrees Celsius
and they can be a scalar values or a two dimensional vector depending on how many parties we use data from.
Spatial parameter θ is always a two dimensional vector that contains two parameters, one for the north-south
direction and one the east-west direction and it is measured in degrees.

To estimate these hyperparameters we start by entering hyperbounds. These entered values provide the
program with an upper and lower bound for each hyperparameter. We determine the kernel parameter θ for
all data used together therefore we always have two lower and two upper bounds for θ, one set of bounds
for the longitude and one set of bounds for the latitude. Bias b and noise σn are determined for each party
individually, consequently the number of bounds depend on the number of parties we use data from. Note that
we assume 0 bias and 0 noise for first party data. The hyperbounds are defined in two lists, one for the upper
bounds and one for the lower bounds. They both always start with the bounds for b, followed by σn and ended
with θ. For the computation we will work with the logarithmic values of the bounds for σn and θ, because
using a logarithmic representation ensures uniform treatment across all scales.

To make sure the right hyperparameter is used for the right party, we use proxies. These are arrays
consisting of ones and zeroes that indicate weather a certain station has a bias or noise, and which hyper
parameter to use for it. For example if we are using first and second party data consisting of n1 first party
stations and n2 second party stations, our proxy array will be a one dimensional array of length n1 + n2 that
starts with n1 zeroes, to show that those stations do not have a bias or noise , followed by n2 ones to indicate
that those stations do have a bias and noise factor in their measurements. In the case we are using first, second
and third party data we have two bias and noise parameters. In that case our proxy will be a two dimensional
array of length n1 + n2 + n3 where n3 is the number of third party stations. Again the first n1 rows will only
be zeroes, followed by n2 rows with entries [1, 0] and finally n3 rows of [0, 1]. The rows used for the second
and third party indicate whether the first or second element of b or σn should be used for the stations. To
normalise the proxy array, we divide all ones by the standard deviation of y.

Now that we have defined the bounds between which we need to search for the optimal parameters and
the proxy to know which parameter belongs to which party we can look into finding the optimal hyper
parameters. To find these parameters, we use scipy.optimize.differential_evolution. This scipy library
function is a stochastic method used for global search optimisation problems. The algorithm needs a function
and bounds as input. It returns the parameters for which the function reached its minimum [34].
In our case, the input is a likelihood function with respect to the hyper parameters, and our bounds. The
output will be the optimal values of the parameters b, n and θ.

The maximum likelihood estimator (MLE) with respect to b, σn and θ from Equation 3.12, is:

L(b, σ2
n, θ) = − log |HPHT +R| − yT

nbA
−1ynb.

Where A = HPHT +R and

y
(i)
nb =

{
y
(i)
n , if i ∈ S1

y
(i)
n − bk, if i ∈ Sk , k = 2, 3

. (4.1)

Note that since scipy.optimize.differential_evolution looks for a minimum and this is a maximum
likelihood estimator, we will need to use −L(b, σ2

n, θ) as input.

CHAPTER 4. IMPLEMENTATION 23

To construct L(b, σ2
n, θ), the optimiser provides the likelihood function with a guess for the hyperpara-

meters. From this guess, we separate the bias, noise and spatial parameters from each other and we take
the exponent of the noise and spatial parameter, because we are working with their logarithm. After this
we adjust our yn to incorporate the estimated bias as is done in Equation 4.1. Subsequently HPHT +R is
computed as the sum of the correlation and noise covariance matrices. Instead of computing the determinant
of HPHT +R, we use the fact that the determinant of HPHT +R is equal to the product of the eigenvalues
of HPHT +R, so instead of log |HPHT +R|,

∑
log(eigenvalues HPHT +R) is computed [35].

For the next part lets say x = (HPHT +R)−1ynb, then x is solved from

x = (HPHT +R)−1ynb

(HPHT +R)x = ynb

using the Cholesky decomposition, which was the last component that was needed to compute L(b, σ2
n, θ).

4.3 Temperature and uncertainty prediction
Temperature prediction

Now that the optimal parameters are computed, the predictions can be made.
Firstly ynb is computed using the optimal estimate for b. Now we can compute our initial prediction y0, by
using

HPHTy0 +Ry0 = Ay0 = ynb

where HPHT is the correlation matrix between stations, which results in a normalised prediction for the
stations. To get from y0 to a prediction y∗

n for each grid point, y0 is multiplied with the correlation matrix
between stations and grid points, i.e. y∗

n = y0PHT . However, y∗
n is computed using normalised data and needs

to be denormalised in order to obtain the final temperature prediction y∗ = µ+ σy∗
n, where σ is the standard

deviation of y.

Uncertainty prediction

The uncertainty prediction is simply the standard deviation per grid point. In subsection 3.4.1 the
following was shown

var(y∗|y) = P−PHT (HPHT +R)
−1

HP

However, we are only interested in the diagonal of var(y∗|y), because this contains the expected error
within a grid point. Therefore, to lower the computation time instead of subtracting the entire matrices P and
PHT (HPHT +R)

−1
HP we can subtract their diagonals from each other. However, since we are working with

normalised data, the diagonal of P contains only ones. Consequently, the uncertainty can be computed as

normalised uncertainty =

√
I− diag

(
PHT (R+HPH

T
)−1H)P

)
uncertainty = σ

√
I− diag

(
PHT (R+HPH

T
)−1H)P

)
where I is a vector of ones of length n and σ the standard deviation of y.
The temperature prediction will be quantitatively verified in section 5.1, but the quantitative verification of the
uncertainty prediction is more complicated and beyond the scope of this research.

4.4 Cross validation
Besides the uncertainty map that shows the standard deviation of our prediction, it would be nice to have one
value to describe how accurate our map is. To get this value we use cross-validation (cv). cv is a method that
splits the known data into two disjointed sets; a training set and a test set. The training set is used to build
the model and the test set is used to compute how accurate the prediction is [17]. For example, we would like
to estimate a function f(x) and we are given 10 points that are on f(x). We can take one of those 10 points to
be our test set, and use the other 9 to make an estimation f̂(x) of what f(x) looks like. Then we can evaluate

CHAPTER 4. IMPLEMENTATION 24

the performance of our prediction by computing the loss between f̂(x) and the test point. We can use any
loss function with cv, but the squared error loss, (f̂(x)−f(x))2, is the most common and the one we will be using.

However, when we follow this cv procedure, not all data is used for training and if our test set is small
there is a possibility that the computed error has a large variance. Therefore, we will use k-fold cross validation.
Instead of splitting our data in to two disjointed sets, we now split it into k equal sized disjointed sets. We
pick one of those k sets to be our test set and use the other k − 1 sets for the training. We repeat this process
k times, such that each set is the test set exactly once. This way all our data is used for testing once, and all
data is used for training at least once. The downside to this approach is that instead of having to only compute
one model, we now must compute k models. If we take k equal to the number of given data points, we have a
special case, namely leave-one-out cross-validation (LOO-CV) [17].

Figure 4.1: Visualisation cross validation. Source: [36]

Before we can start the cross-validating, the hyper parameters need to be determined. Because computing
hyperparameters is a very expensive procedure, the hyperparameters were determined before we performed the
k-fold cross validation. The same set of hyperparameters was used throughout, instead of computing new ones
for each new training set. These hyperparameters were computed by running the hyperparameter estimation
part of the Kriging procedure using all test and training data together.

The first step after determining the hyperparameters is defining the training and test sets. In our situ-
ation, we have to deal with three data sources, and since we do not know how accurate the 2PD and 3PD is, we
decided to only use the 1PD to make the k test sets. This means that for our test set we had 1 1PD set, and
the training set consisted of the other k− 1 1PD sets supplemented by the 2PD and 3PD when needed. Before
the test sets are made, the 1PD is shuffled. Let us say that x1 and y1 are the arrays containing only the 1PD
station locations and measurement. When these are shuffled the same permutation is applied to x1 and y1.
The shuffling is necessary because the x1 contains the stations in location-wise order. If we do not shuffle, our
test sets would contain stations located in the same area and we want them to be distributed all over the country.

For each test group we are going to compute the error and in the end take the average over those er-
rors. When we compute the error we pick one test group j out of all the test groups. The remaining test
groups are added to the training data and used to make a prediction. Lets call the vector that predicts the
temperatures for our test stations p, and the vector with the measured temperatures for the test stations m.
Then the error Ej for test set j is computed as

Ej =
s∑

i=0

(pi −mi)
2

with s being the size of the test group. To get to the final error E , we repeat this for every test set we made
and add their errors up, take the average and compute the square root of it. The average of this is taken by
dividing by the number of 1PD stations n1, i.e.

E =
1

n1

√√√√1

k

k∑
j=1

Ej .

CHAPTER 5. RESULTS 25

Chapter 5

Results

5.1 Results from the synthetic data
Recall that in section 2.3 synthetic data was introduced, real station locations were used which were all assigned
a synthetic temperature defined as follows

ys = a(cosNπxs
1 + cosNπxs

2) + ϵ

g(xg) = a(cosNπxg
1 + cosNπxg

2)

here a stands for the amplitude is determined by real temperature data, the superscript g stands for ‘grid’ and
s for ‘station’. To ys a synthetic error ϵ was added consisting out of the bias and noise. The result of the true
temperature field g(xg) was a lattice pattern shown in Figure 2.2, where the size of the pattern was determined
by parameter N . The maps produced by g(xg) are going to be predicted using ys. These true temperature
fields can be used to evaluate the accuracy of our predictions.
In our results, we expect to see that the predictions using 1PD, first and second party data (12PD) and first,
second and third party data (123PD) all perform well if N is low, but we expect 12PD and 123PD to perform
better than 1PD when N is higher. When N is high there are a lot more oscillations and more measurement
points are needed to be able to identify them, for visualisation see Figure 5.1. Note that no bias was added to
the 2PD, only noise.

CHAPTER 5. RESULTS 26

(a)

(b)

Figure 5.1: Here we see the comparison between the performances of 1PD (on the left) and
12PD (on the right). In Figure 5.1a N is small and in Figure 5.1b N is large. The values
of the true function are shown in black, first party measurements as big circles, second party
measurements as smaller circles and the predictions are shown as a red line. The shaded red
area around the line is a 95% confidence interval, computed as twice the standard deviation
for the input value.
We see that when N is small, first party data is enough. However, when N is large first party
data provides too few measurements for an accurate prediction but adding second party data
ensures that an accurate estimation can be made

CHAPTER 5. RESULTS 27

We can see that these expectations are indeed true when we look at the root mean squared errors (RMEs)
that were computed between the prediction made for each grid point and g(xg), the true temperature value
for each grid point, for various combinations of first, second and third party data and various values of N . The
results are shown in Figure 5.2. For a small value of N we see that all combinations involving first party data
perform equally well. Between the values of N = 0.6 and N = 1.5 1PD starts to perform slightly worse than
12PD, 13PD and 123PD, but beyond N = 1.5 the difference becomes more significant. At N = 1.5 we hit the
Nyquist rate, which means that when the frequency of measurements per oscillation becomes lower than at
that point, we will not be able to make an accurate reconstruction of the original temperature field because
high frequencies are aliased to low frequencies as seen in the left panel of Figure 5.1b [37]. In that figure it can
be seen that the measurements for 1PD are not frequent enough, therefore we can not model all the oscillations
that are there.
Figure 5.2 also nicely shows why 2PD and 3PD are not used on their own: there is precise data needed, such as
the 1PD set, to compute the bias and noise variables. The 2PD and 3PD contain bias and noise therefore they do
not have the precise data needed to make accurate predictions for b and σn which leads to inaccurate predictions.

This figure tell us that for weather with low spatial variability such as temperature fields 1PD, 12PD,
13PD and 123PD are all performing equally well. However, after a certain level of spatial variability is reached
12PD, 13PD and 123PD perform better than 1PD. Therefore we can use 2PD and 3PD in addition to our
1PD to obtain a higher resolution weather prediction than the current one. Being able to perform at a higher
resolution will lead to a nationwide reduction of uncertainty in the predictions, especially for the weather with
a higher spatial variability such as rain or wind.

Figure 5.2: This figure shows the RMSE values for different combinations of first, second and
third party data for various levels of spatial variability of the weather data. This RMSE was
computed between the predicted values for each grid point and the true value of each grid point.
It shows that for low spatial variability 1PD, 12PD, 13PD and 123PD perform equally well,
but after 1.5 oscillation per degree 1PD performs significantly worse than the other options.

CHAPTER 5. RESULTS 28

These findings are also reflected in the individual maps that were created using Kriging LE and ys.
For a low N , such as N = 0.1 in Figure 5.3, the maps look the same for 1PD, 12PD and 123PD. When the
uncertainty is computed for the three predictions as in section 4.3, all three end up an uncertainty of 0.0 degree
Celsius.

(a) (b)

(c) (d)

Figure 5.3: In Figure 5.3a the true temperature field is shown for N = 0.1. In the other figures
the predictions of Figure 5.3a are shown using 1PD, 12PD and 123PD.

When we look at the results for N = 1.5 in Figure 5.4 the differences between the three options are starting to
show. In Figure 5.4a the true temperature field is shown and in the following three images the predictions are
shown, the predictions are similar but there are some improvements visible between going from 1PD to 12PD or
123PD. For example the sharp corners in the contours are better resolved where the density of stations is high.
The improvement from going from 1PD to 12PD is also visible when we look at the uncertainty and difference
maps. In the uncertainty maps in Figure 5.4e and Figure 5.4f we can see that the average uncertainty goes
down from 1.232◦ Celsius to 0.168◦ Celsius and that for areas with little data available such as in the northern
provinces of Friesland and Groningen the uncertainty also decreases significantly. Note that while 12PD and
123PD perform significantly better, 1PD is still able to produce a map that resembles the true temperature
field. When we look at the differences between 12PD and 123PD Figure 5.4f and Figure 5.4g show what we
also saw in Figure 5.2. 12PD and 123PD perform similarly but 123PD performs slightly better.

CHAPTER 5. RESULTS 29

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.4: In Figure 5.4a the true temperature field is shown for N = 1.5. In the figures
Figure 5.4b to Figure 5.4d the predictions of Figure 5.4a are shown using 1PD, 12PD and
123PD. The following three figures display the improvement from going from 1PD to 12PD to
123PD by showing the uncertainty of the predictions made.

Now we have seen two cases where 1PD made reasonable predictions, but let us look at a more extreme case
of N = 7 shown in Figure 5.5. Here we can see that using only 1PD is not enough anymore to model the true

CHAPTER 5. RESULTS 30

temperature field, in Figure 5.5b we can see a pattern that does not resemble Figure 5.5a at all. The prediction
in Figure 5.5c resembles the true temperature map more, but we still see some holes in the pattern such as in the
north of the country around Friesland and Groningen. This is also visible when we look at the uncertainty and
difference maps of 12PD in Figure 5.5e and Figure 5.5g. Because there are so many oscillations the uncertainty
is only low when close to stations, in areas where there are not many stations we therefore see larger errors in
the prediction. In Figure 5.5g this is clearly visible as dark red or dark blue spots in the areas where there are
holes in the pattern in Figure 5.5c. Figure 5.5g and Figure 5.5h display the differences between the prediction
and the true temperature field, so the darker the red or blue the larger the difference between the predicted
temperature and the true temperature is for a point.
When the third party data is added, the average uncertainty is reduced by 0.9◦C and these spots with large
uncertainty and large differences are reduced in size too as shown in Figure 5.5f and Figure 5.5h.

CHAPTER 5. RESULTS 31

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.5: In Figure 5.5a the true temperature field is shown for N = 7. In the figures
Figure 5.5b to Figure 5.5d the predictions of Figure 5.5a are shown using 1PD, 12PD and
123PD. We see that using just 1PD is not enough to make an accurate prediction. The following
four figures show us the difference between the accuracy of using 12PD or 123PD. In Figure 5.5e
and Figure 5.5f the uncertainties of the predictions are shown and in Figure 5.5g and Figure 5.5h
the differences between Figure 5.5a and the predictions.

CHAPTER 5. RESULTS 32

5.2 Results from the real data
In the previous section it was shown that for complex weather data it is beneficial to use 2PD and 3PD in
addition to 1PD. However, the data used was synthetic and we would also like to see what happens when real
data is used. However, temperature fields do not exhibit high spatial variability so we do not expect to see a
large performance difference between using 1PD, 12PD and 123PD. In the predictions shown below in Figure 5.6
we see that there indeed are not any major differences between the three maps.

(a) (b)

(c)

Figure 5.6: In these figures we see the predicted temperature maps for the Netherlands for
the 25th of January 2019. In Figure 5.6a we see the prediction using just first party data, in
Figure 5.6b first and second party data is being used and in Figure 5.6c first second and third
party data was considered.

This is also reflected in the uncertainty of the predictions in Figure 5.7, there is a slight improvement in the
uncertainty of the prediction when second and third party data are added to the model. However, we see that
there is a slight decline in improvement when we only use 12PD. When cross-validation is used to compute the
error similar results are obtained, 0.78 for 1PD, 1.71 for 12PD, 0.57 for 123PD.

CHAPTER 5. RESULTS 33

(a) (b)

(c)

Figure 5.7: The uncertainty for the predictions made in Figure 5.6.

CHAPTER 6. CONCLUSION 34

Chapter 6

Conclusion

In this thesis we have introduced Kriging LE as a spatial regression method that allows us to deal with
multi-fidelity data. This method made that possible because it is able to make estimations for spatial, bias and
noise parameters. The adjustment of the parameters is necessary to make accurate predictions, since 2PD and
3PD are assumed not to be as precise as 1PD. Hence, in KrigingLE, the spatial parameter determines the spatial
correlation between the stations, whereas the bias and noise levels are adjusted to the 2PD and 3PD observations.

KrigingLE was tested for two scenarios, using synthetic data and real data. The experiment with syn-
thetic data shows that the current approach might be useful to model weather phenomena with high spatial
variability when 1PD is combined with 2PD and 3PD. The experiment with real data shows that the predicted
temperature fields average standard deviations decreases when 1PD is combined with 2PD and 3PD, which
tells us there is a significant improvement when including 2PD and 3PD.
This means that second and third party data can be used to increase the spatial resolution of weather
predictions and that they can be used to ensure that the nation wide prediction uncertainty is decreased
significantly, especially for phenomena such as rain and wind.

An interesting topic for future studies would be to determine which second and third party stations are
needed to improve the prediction and which stations are redundant. In this thesis we used all available second
and third party stations that passed the quality control, but it might be possible that some stations that were
used are redundant. This could happen when two stations are very close to each other, then it might not be
necessary to use both stations. Especially with the increasing number of WOW stations it is interesting to
investigate this, because eliminating redundant stations will decrease the computational cost. Besides looking
at where some stations are redundant, it is also interesting to look at which areas need more stations. This can
be especially promising for 3PD, because their stations are cheaper and can be placed where needed.
Another point for future research might be instead of using one noise variable for each party, using a noise
variable for each station. This will allow the prediction to be more precise, but comes with increased
computational cost.
Another point for future research might be looking into the number of noise and bias variables that are used.
Instead of using one noise and bias variable for each party, one could, for example, look into the possibility of
using a different noise and bias value for each sensor type. Increasing the number of noise and bias variables
will ensure that they can be estimated more accurately, therefore the prediction will be more precise. However,
since more variables need to be estimated this prediction will come with an increased computational cost.

CHAPTER 6. CONCLUSION 35

6.1 Acknowledgements
I would like to thank my supervisors Irene and Jouke, who were always ready to help and offer suggestions and
advice. Their knowledge and enthusiasm also made me more motivated and enthusiastic about the topic as
well. Furthermore I would like to express my gratitude for my supervisor, Jason, who guided me throughout my
thesis. I am also grateful to the KNMI for the opportunity to do this internship with them. I also appreciate
the RDWD climate service team from the KNMI for being so welcoming and interested in my research. Thanks
should also go to Palina Salanevich for being the second reader of my thesis.

APPENDIX A. NOTATION TABLE 36

Appendix A

Notation table

Quantity Thesis Code

data coordinates x x
grid coordinates x∗ xi
quantity of interest Y ∗ · · ·
data y y
drift µ mu
standard deviation σ st
observation matrix H · · ·
prior covariance matrix P · · ·
correlation matrix between sample data HPHT P
noise covariance matrix R R
predictor matrix (correlation between stations and grid points) ψ b
correlation matrix between sample data with noise HPHT +R A
posterior mean E[Y∗|y] yi
posterior covariance var(Y∗|y) · · ·
posterior uncertainty · · · ui
bias b bias hyper
noise σn

√
diagonal(R)

correlation length θ theta
bias proxy · · · eBiasProxy
noise proxy · · · eStdProxy
bias proxy coefficient · · · ebiahyper
noise proxy coefficient · · · estdhyper

APPENDIX B. WHY IS THE CHOLESKY DECOMPOSITION ALLOWED? 37

Appendix B

Why is the Cholesky decomposition
allowed?

As mentioned section 4.1 a Cholesky decomposition is only allowed for matrices that are Hermitian positive
(semi) definite. If a matrix is Hermitian positive definite the decomposition is unique, if it is Hermitian positive
semi-definite, this is not necessarily the case. For our purpose the decomposition does not need to be unique,
thus we are going to prove that A = HPHT +R is Hermitian and positive semi-definite.

Proof.

Definition B.0.1. A matrix X is Hermitian if and only if X is equal to its own conjugate transpose,
i.e. xij = xji [38].

Let A = HPHT + R, A consists of a composition of real valued matrices, therefore A must be real too.
Hence, to show A is Hermitian, we only need to show that A is symmetric.
A = HPHT + R, where HPHT is the correlation matrix between the grid points and therefore symmetric,
and R is a diagonal noise covariance matrix and thus also symmetric. The sum of two symmetric matrices is
again symmetric and therefore A is a Hermitian matrix.

Now we need to prove that A is positive semi-definite.

Definition B.0.2. A matrix A is positive semi-definite if xTAx is non-negative for every non-zero real
column vector x [39].

If matrix A and matrix B both are positive semi-definite, their sum must be positive semi-definite too [39].
Then for A+B we get for all non-zero real column vector’s x:

xT (A+B)x = x
T
Ax+ xTBx ≥ 0 (B.1)

because A and B both positive semi-definite, thus xTAx ≥ 0 and xTBx ≥ 0.
Hence it is enough to show that HPHT and R are positive semi-definite to show that A is positive semi-definite.
Lets start with R. We know that R is a diagonal matrix with non-negative entries. This means all eigenvalues
of R are larger or equal than 0 and therefore R is positive semi-definite [39].
Now we need to show that HPHT is semi positive definite too. P is a covariance matrix, for which Pi,j =
κ(xi,xj). Now recall from subsection 3.4.1 that kernel function κ was chosen such that it was positive definite
to ensure that P was positive (semi) definite. Now we apply H to get to the covariance matrix HPHT . Because
matrix multiplication is associative and P positive (semi) definite,

xTHPHTx = bTPb ≥ 0 (B.2)

Therefore HPHT is also positive (semi)definite. Note that P may be (strictly) positive definite, but HPHT

only positive semi-definite if H has a nontrivial null-space.
This concludes that HPHT+R is a Hermitian positive semi-definite matrix.

APPENDIX C. KRIGINGLE CODE 38

Appendix C

KrigingLE code

C.1 License
Copyright 2021 Royal Netherlands Meteorological Institute (KNMI)

jouke.de.baar@knmi.nl
j.h.s.debaar@gmail.com
irene.garcia.marti@knmi.nl
d.vanbeekvelt@gmail.com

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.2 KrigingLE code

import numpy as np
import scipy.optimize

def strd(x):
out = str(np.round(x, decimals = 3))
return(out)

def fit(x,y,eBiasProxy ,eStdProxy ,hyperbounds , verbose =0):
normalise data
ndim = x.shape [1]
mu = np.mean(y)
st = np.std(y)
yn = (y-mu)/st
ebian = eBiasProxy/st
nebia = ebian.shape [1]

APPENDIX C. KRIGINGLE CODE 39

estdn = eStdProxy/st
#nestd = max(estdn.shape [1],1)
if estdn.shape [1] == 0:

estdn = 0*yn + 0.01
estimate hyperparameters
lowerbounds = []
for item in ('lb_bias ', 'lb_noise ', 'lb_theta '):

if item == 'lb_bias ':
lowerbounds +=list(hyperbounds[item])

else:
lowerbounds +=list(np.log(hyperbounds[item]))

upperbounds = []
for item in ['ub_bias ', 'ub_noise ', 'ub_theta ']:

if item == 'ub_bias ':
upperbounds +=list(hyperbounds[item])

else:
upperbounds +=list(np.log(hyperbounds[item]))

lowerbounds = np.matrix(np.array(lowerbounds)).ravel()
upperbounds = np.matrix(np.array(upperbounds)).ravel()
nhyper = np.size(upperbounds)

def goalfunctionlocal(x0):
print(ebian)
out = goalfunction(x0,x,yn,ebian ,estdn)
out = out[0,0]
return out

bounds=scipy.optimize.Bounds(lowerbounds.T, upperbounds.T,
keep_feasible=False)

opt = scipy.optimize.differential_evolution(goalfunctionlocal ,
bounds)

transfhyper = np.matrix(opt.x)

nbiasproxy = ebian.shape [1]
nStdProxy = estdn.shape [1]
transfhyper = np.matrix(transfhyper)
nhyper = transfhyper.shape [1]
if nbiasproxy == 0:

hyper = np.matrix(np.exp(transfhyper))
ynb = yn.copy()

else:
biashyper = np.matrix(transfhyper [:,0: nbiasproxy])
hyper = np.matrix(np.exp(transfhyper [:, nbiasproxy:nhyper]))
ynb = yn - ebian*biashyper.transpose ()

hypernoise = hyper [:,0: nStdProxy]
hypertheta = hyper[:,nStdProxy :]
compute initial state
A = buildA(x,estdn ,hypernoise , hypertheta)
y0n = np.linalg.solve(A,ynb)

output
model = {'x': x, 'estdn': estdn , 'mu': mu, 'st': st,

APPENDIX C. KRIGINGLE CODE 40

'biashyper0 ': biashyper , 'hypertheta0 ': hypertheta , '
hypernoise0 ' : hypernoise ,

'y0n': y0n}
return model

def predictMean(model ,xi):

predict value
b = corrmatrix(xi,model['x'],model['hypertheta0 '])
yin = b*model['y0n']

denormalise prediction
yi = model['mu'] + model['st']*yin
output
return yi

def predictStd(model ,xi):

#inflationFactor = len(model['y0n '])/(len(model['y0n '])-len(
model['hyper0 '])-len(model['biashyper0 ']))

predict variance
b = corrmatrix(xi,model['x'],model['hypertheta0 '])
A = buildA(model['x'],model['estdn'],model['hypernoise0 '],model

['hypertheta0 '])
#varyin = inflationFactor * (1. - np.diag(np.dot(b,np.linalg.

solve(A,b.T))))
varyin = 1. - np.diag(np.dot(b,np.linalg.solve(A,b.T)))
varyin = np.matrix(varyin).T
uin = np.sqrt(varyin)

denormalise prediction
ui = model['st']*uin

output
return ui

def corrmatrix(x1,x2,hyper):

ndim = x1.shape [1]
nhyper = hyper.shape [1]
theta = hyper[:,(nhyper -ndim):(nhyper)]

D = np.zeros((np.shape(x1)[0],np.shape(x2)[0]))

for k in range(ndim):
X2,X1 = np.meshgrid(np.squeeze(np.asarray(x2[:,k])),

np.squeeze(np.asarray(x1[:,k])))
H = X2-X1
if ndim ==1:

D += -0.5 * H**2 * np.squeeze(np.asarray(theta))**-2
else:

D += -0.5 * H**2 * np.squeeze(np.asarray(theta))[k]**-2

APPENDIX C. KRIGINGLE CODE 41

C = np.exp(D)
return C

def buildA(x,estdn ,hypernoise , hypertheta):
nestd = estdn.shape [1]
P = corrmatrix(x,x,hypertheta)
R = np.zeros((np.shape(x)[0],np.shape(x)[0]))
for k in range(np.shape(x)[0]):

for n in range(nestd):
R[k,k] = R[k,k] + (hypernoise [:,n]*estdn[k,n])**2

A = P + R
return A

def goalfunction(transfhyper ,x,yn,ebian ,estdn):
nbiasproxy = ebian.shape [1]
nStdProxy = estdn.shape [1]
transfhyper = np.matrix(transfhyper)
nhyper = transfhyper.shape [1]
if nbiasproxy == 0:

hyper = np.matrix(np.exp(transfhyper))
ynb = yn.copy()

else:
biashyper = np.matrix(transfhyper [:,0: nbiasproxy])
hyper = np.matrix(np.exp(transfhyper [:, nbiasproxy:nhyper]))
ynb = yn - ebian*biashyper.transpose ()

hypernoise = hyper [:,0: nStdProxy]
hypertheta = hyper[:,nStdProxy :]
A = buildA(x,estdn ,hypernoise , hypertheta)
goal = np.sum(np.log(np.linalg.eigvals(A))) + np.dot(ynb.T,np.

linalg.solve(A,ynb))

goal = np.real(goal)

return goal

APPENDIX D. CODE EXCHANGE LOG 42

Appendix D

Code exchange log

26-10-2021, Jouke to Daniëlle This file contained the initial KrigingLE code. It also provided four example
codes on how to use the kriging for estimating a one or two dimensional function using first party data
without proxies and initial guesses, and examples on how to use first and second party data without
proxies and initial guesses, with proxies and with proxies and initial guesses.

4-1-2021, Daniëlle to Xinrong Shared the KrigingLE code, that used a dictionary for the hyperbounds. Also
shared ‘realdata’ code that puts the given data in the right format, calls the right krigingLE functions and
eventually plots the predictions. Also shared ‘syntheticdata’ code, which uses synthetic data to simulate
stations and use that for a polynomial regression interpolation to make a prediction.

3-3-2022, Irene to Daniëlle Irene sent me a code to produce a mask that could filter out grid points in
Germany, Belgium or the sea. Unfortunately I was not able to install certain python packages needed for
this program, so she sent me the already computed binary mask file instead.

BIBLIOGRAPHY 43

Bibliography

[1] Irene Garcia-Martì et al. ‘From proof-of-concept to proof-of-value: approaching third- party data to op-
erational workflows of national meteorological services’. In: (2022).

[2] Adrien Napoly et al. ‘Development and Application of a Statistically-Based Quality Control for Crowd-
sourced Air Temperature Data’. In: Frontiers in Earth Science 6 (2018). issn: 2296-6463. doi: 10.3389/
feart.2018.00118. url: https://www.frontiersin.org/article/10.3389/feart.2018.00118.

[3] Alan O Sykes. ‘An introduction to regression analysis’. In: (1993).
[4] Johan Frederik Steffensen. Interpolation. Courier Corporation, 2006, pp. 1–4.
[5] Discrete and Continuous Data. [Online; accessed 16-5-2022]. url: http://wiki.gis.com/wiki/index.

php/Discrete_and_Continuous_Data#Continuous_Data.
[6] Marco A Azpurua and Karina Dos Ramos. ‘A comparison of spatial interpolation methods for estimation

of average electromagnetic field magnitude’. In: Progress In Electromagnetics Research M 14 (2010),
pp. 135–145.

[7] ttk592. Spline. 2021. url: https://github.com/ttk592/spline.
[8] GIS resources. Types of interpolation methods. [Online; accessed 9-02-2022]. url: https://gisresources.

com/types-interpolation-methods_3/.
[9] Daniel Kurtzman and Ronen Kadmon. ‘Mapping of temperature variables in Israel: sa comparison of

different interpolation methods’. In: Climate research 13.1 (1999), pp. 33–43.
[10] Wikipedia contributors. Spline — Wikipedia, The Free Encyclopedia. [Online; accessed 2-03-2022]. 2022.

url: https://en.wiktionary.org/wiki/spline.
[11] Inverse Distance Weighting (IDW) Interpolation. [Online; accessed 1-6-2022]. url: https : / /

gisgeography.com/inverse-distance-weighting-idw-interpolation/.
[12] Zaria Tatalovich, John P Wilson and Myles Cockburn. ‘A comparison of thiessen polygon, kriging, and

spline models of potential UV exposure’. In: Cartography and Geographic Information Science 33.3 (2006),
pp. 217–231.

[13] Fabian Dablander. Two properties of the Gaussian distribution. [Online; accessed 31-03-2022]. Feb. 2019.
url: https://fabiandablander.com/statistics/Two-Properties.html.

[14] Jochen Görtler, Rebecca Kehlbeck and Oliver Deussen. ‘A Visual Exploration of Gaussian Processes’. In:
Distill (2019). https://distill.pub/2019/visual-exploration-gaussian-processes. doi: 10.23915/distill.
00017.

[15] Wikipedia. Multivariate normal distribution. [Online; accessed 31-03-2022]. url: URL : https : / / en .
wikipedia.org/wiki/Multivariate_normal_distribution.

[16] Novi Quadrianto, Kristian Kersting and Zhao Xu. ‘Gaussian Process’. In: Encyclopedia of Machine Learn-
ing. Ed. by Claude Sammut and Geoffrey I. Webb. Boston, MA: Springer US, 2010, pp. 428–439. isbn:
978-0-387-30164-8. doi: 10.1007/978-0-387-30164-8_324. url: https://doi.org/10.1007/978-0-
387-30164-8_324.

[17] Christopher K Williams and Carl Edward Rasmussen. Gaussian processes for machine learning. Vol. 2.
3. MIT press Cambridge, MA, 2006, p. 111.

[18] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012, pp. 515–542. url: http:
//noiselab.ucsd.edu/ECE228/Murphy_Machine_Learning.pdf.

[19] Mohammad Shekaramiz, Todd K Moon and Jacob H Gunther. ‘A Note on Kriging and Gaussian Pro-
cesses’. In: (2019).

[20] Rodolphe Le Riche and Nicolas Durrande. ‘An overview of kriging for researchers’. In: (2019).
[21] Noel Cressie. ‘The origins of kriging’. In: Mathematical geology 22.3 (1990), pp. 239–252.
[22] Jouke HS de Baar et al. ‘Kriging regression of PIV data using a local error estimate’. In: Experiments in

fluids 55.1 (2014), pp. 1–13.
[23] Nick (https://stats.stackexchange.com/users/1913/nick). Why are Gaussian process models called

non-parametric? Cross Validated. URL:https://stats.stackexchange.com/q/46624 (version: 2012-12-27).
eprint: https://stats.stackexchange.com/q/46624. url: https://stats.stackexchange.com/q/
46624.

https://doi.org/10.3389/feart.2018.00118
https://doi.org/10.3389/feart.2018.00118
https://www.frontiersin.org/article/10.3389/feart.2018.00118
http://wiki.gis.com/wiki/index.php/Discrete_and_Continuous_Data#Continuous_Data
http://wiki.gis.com/wiki/index.php/Discrete_and_Continuous_Data#Continuous_Data
https://github.com/ttk592/spline
https://gisresources.com/types-interpolation-methods_3/
https://gisresources.com/types-interpolation-methods_3/
https://en.wiktionary.org/wiki/spline
https://gisgeography.com/inverse-distance-weighting-idw-interpolation/
https://gisgeography.com/inverse-distance-weighting-idw-interpolation/
https://fabiandablander.com/statistics/Two-Properties.html
https://doi.org/10.23915/distill.00017
https://doi.org/10.23915/distill.00017
URL:https://en.wikipedia.org/wiki/Multivariate_normal_distribution
URL:https://en.wikipedia.org/wiki/Multivariate_normal_distribution
https://doi.org/10.1007/978-0-387-30164-8_324
https://doi.org/10.1007/978-0-387-30164-8_324
https://doi.org/10.1007/978-0-387-30164-8_324
http://noiselab.ucsd.edu/ECE228/Murphy_Machine_Learning.pdf
http://noiselab.ucsd.edu/ECE228/Murphy_Machine_Learning.pdf
https://stats.stackexchange.com/q/46624
https://stats.stackexchange.com/q/46624
https://stats.stackexchange.com/q/46624

BIBLIOGRAPHY 44

[24] Kilian Weinberger. Lecture 15: Gaussian Processes. Machine Learning for Intelligent Systems, Course page.
July 2018. url: https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote15.
html.

[25] Alexander IJ Forrester, András Sóbester and Andy J Keane. ‘Multi-fidelity optimization via surrogate
modelling’. In: Proceedings of the royal society a: mathematical, physical and engineering sciences 463.2088
(2007), pp. 3251–3269.

[26] Jouke HS De Baar, Richard P Dwight and Hester Bijl. ‘Fast maximum likelihood estimate of the Kri-
ging correlation range in the frequency domain’. In: IAMG 2011: Proceedings of the International Associ-
ation of Mathematical Geosciences" Mathematical Geosciences at the Crossroads of Theory and Practice",
Salzburg, Austria, 5-9 September 2011 (2011).

[27] Alexander IJ Forrester, Andy J Keane and Neil W Bressloff. ‘Design and analysis of" Noisy" computer
experiments’. In: AIAA journal 44.10 (2006), pp. 2331–2339.

[28] Christopher K Wikle and L Mark Berliner. ‘A Bayesian tutorial for data assimilation’. In: Physica D:
Nonlinear Phenomena 230.1-2 (2007), pp. 1–16.

[29] Machine learning crash course. [Online; accessed 14-5-2022]. url: https://developers.google.com/
machine-learning/crash-course/generalization/video-lecture.

[30] David Duvenaud. ‘Automatic model construction with Gaussian processes’. PhD thesis. University of
Cambridge, 2014, pp. 8–10.

[31] Motonobu Kanagawa et al. ‘Gaussian processes and kernel methods: A review on connections and equival-
ences’. In: arXiv preprint arXiv:1807.02582 (2018). [Online; accessed 15-4-2022], pp. 6–12. url: https:
//arxiv.org/abs/1807.02582.

[32] Yanting Li, Shujun Liu and Lianjie Shu. ‘Wind turbine fault diagnosis based on Gaussian process classifiers
applied to operational data’. In: Renewable Energy 134 (2019), pp. 357–366.

[33] Michael Parker. ‘Chapter 13 - Matrix Inversion’. In: Digital Signal Processing 101 (Second Edition). Ed.
by Michael Parker. Second Edition. Newnes, 2017, pp. 149–162. isbn: 978-0-12-811453-7. doi: https:
//doi.org/10.1016/B978- 0- 12- 811453- 7.00013- 5. url: https://www.sciencedirect.com/
science/article/pii/B9780128114537000135.

[34] scipy.optimize.differential_evolution documentation. [Online; accessed 28-5-2022]. url: https://docs.
scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html.

[35] Oliver Knill. Math 19b: Linear Algebra with Probability, Lecture 28:eigenvalues. [Online; accessed 6-04-
2022]. url: https : / / people . math . harvard . edu / ~knill / teaching / math19b _ 2011 / handouts /
lecture28.pdf.

[36] Train/Test Split and Cross Validation in Python. Towards Data Science. [Online; accessed 11-04-2022].
url: https://towardsdatascience.com/train-test-split-and-cross-validation-in-python-
80b61beca4b6#:~:text=In%20K%2DFolds%20Cross%20Validation,it%20against%20the%20test%
20set..

[37] Emiel Por, Maaike van Kooten and Vanja Sarkovic. ‘Nyquist–Shannon sampling theorem’. In: Leiden
University 1 (2019), p. 1.

[38] RA Horn and CR Johnson. ‘Matrix analysis second edition’. In: (2013).
[39] Adriaan Van den Bos. Parameter estimation for scientists and engineers. John Wiley & Sons, 2007.

https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote15.html
https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote15.html
https://developers.google.com/machine-learning/crash-course/generalization/video-lecture
https://developers.google.com/machine-learning/crash-course/generalization/video-lecture
https://arxiv.org/abs/1807.02582
https://arxiv.org/abs/1807.02582
https://doi.org/https://doi.org/10.1016/B978-0-12-811453-7.00013-5
https://doi.org/https://doi.org/10.1016/B978-0-12-811453-7.00013-5
https://www.sciencedirect.com/science/article/pii/B9780128114537000135
https://www.sciencedirect.com/science/article/pii/B9780128114537000135
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html
https://people.math.harvard.edu/~knill/teaching/math19b_2011/handouts/lecture28.pdf
https://people.math.harvard.edu/~knill/teaching/math19b_2011/handouts/lecture28.pdf
https://towardsdatascience.com/train-test-split-and-cross-validation-in-python-80b61beca4b6#:~:text=In%20K%2DFolds%20Cross%20Validation,it%20against%20the%20test%20set.
https://towardsdatascience.com/train-test-split-and-cross-validation-in-python-80b61beca4b6#:~:text=In%20K%2DFolds%20Cross%20Validation,it%20against%20the%20test%20set.
https://towardsdatascience.com/train-test-split-and-cross-validation-in-python-80b61beca4b6#:~:text=In%20K%2DFolds%20Cross%20Validation,it%20against%20the%20test%20set.

LIST OF FIGURES 45

List of Figures

2.1 The figures 2.1a, 2.1b and 2.1c show the locations of the weather stations from each of the three
parties. The KNMI has 10 more stations in the sea that are not shown here, however we will
mask the sea because we are interested in the predictions on land. In Figure 2.1d the grid used
for the predictions is shown. 5

2.2 The temperature maps for the synthetic data follow a lattice like pattern. When N increases
lattice becomes smaller and the pattern shows a higher spatial variability. 7

3.1 Example of a spline. Source: [7]. 9
3.2 Example of a situation where IDW can be used. Source: [11] . 9
3.3 Example of a multivariate normal distribution. µ = (0, 0)T and Σ =

(
1 3/53/5 2

)
. The

distribution is centred around the mean and the shape of the ellipse in the xy-plane is determined
by the covariance matrix. It also shows that the two marginal distributions, shown in red and
blue, follow a univariate Gaussian distribution. Source: [15] . 11

3.4 In Figure 3.4a a lot of samples drawn from the prior distribution are shown, after observations
are made the samples that do not reflect the observations are removed and we are left with the
samples shown in Figure 3.4b. The result can be summarised by a mean function shown by a
dark blue line in Figure 3.4c and a 95% confidence interval around it, displayed by the light blue
shaded area. Source: [20] . 13

3.5 The results of using Kriging as a regression or as an interpolation method. It shows that when
we do not force the prediction through the measured data points, we get a much more natural
looking result. Source: [27] . 18

3.6 Visualisation of the squared exponential kernel, the periodic kernel and the linear kernel, from
left to right respectively. On the first row the plot of the kernels is shown and on the second row
the types of functions they model are shown. Source: [30] . 20

4.1 Visualisation cross validation. Source: [36] . 24

5.1 Here we see the comparison between the performances of 1PD (on the left) and 12PD (on the
right). In Figure 5.1a N is small and in Figure 5.1b N is large. The values of the true function
are shown in black, first party measurements as big circles, second party measurements as smaller
circles and the predictions are shown as a red line. The shaded red area around the line is a 95%
confidence interval, computed as twice the standard deviation for the input value. We see that
when N is small, first party data is enough. However, when N is large first party data provides
too few measurements for an accurate prediction but adding second party data ensures that an
accurate estimation can be made . 26

5.2 This figure shows the RMSE values for different combinations of first, second and third party
data for various levels of spatial variability of the weather data. This RMSE was computed
between the predicted values for each grid point and the true value of each grid point. It shows
that for low spatial variability 1PD, 12PD, 13PD and 123PD perform equally well, but after 1.5
oscillation per degree 1PD performs significantly worse than the other options. 27

5.3 In Figure 5.3a the true temperature field is shown for N = 0.1. In the other figures the predictions
of Figure 5.3a are shown using 1PD, 12PD and 123PD. 28

5.4 In Figure 5.4a the true temperature field is shown for N = 1.5. In the figures Figure 5.4b to
Figure 5.4d the predictions of Figure 5.4a are shown using 1PD, 12PD and 123PD. The following
three figures display the improvement from going from 1PD to 12PD to 123PD by showing the
uncertainty of the predictions made. 29

LIST OF FIGURES 46

5.5 In Figure 5.5a the true temperature field is shown for N = 7. In the figures Figure 5.5b to
Figure 5.5d the predictions of Figure 5.5a are shown using 1PD, 12PD and 123PD. We see that
using just 1PD is not enough to make an accurate prediction. The following four figures show
us the difference between the accuracy of using 12PD or 123PD. In Figure 5.5e and Figure 5.5f
the uncertainties of the predictions are shown and in Figure 5.5g and Figure 5.5h the differences
between Figure 5.5a and the predictions. 31

5.6 In these figures we see the predicted temperature maps for the Netherlands for the 25th of
January 2019. In Figure 5.6a we see the prediction using just first party data, in Figure 5.6b
first and second party data is being used and in Figure 5.6c first second and third party data was
considered. 32

5.7 The uncertainty for the predictions made in Figure 5.6. 33

List of acronyms 47

List of acronyms

cv cross-validation. 23, 24

GP Gaussian process. 11, 12, 15

IDW Inverse Distance Weighting. 8–10, 45

LOO-CV leave-one-out cross-validation. 24

MLE maximum likelihood estimator. 16, 22

PWS personal weather stations. 2, 6

RMSE root mean squared error. 27

WMO World Meteorological Organisation. 2, 6

List of terms 48

List of terms

k-fold cross validation method that computes how accurate the prediction is. Split the first party data in
K groups, and use K-1 of those groups, combined with the second and/or third party data to make a
prediction. Test how accurate the prediction is using the group of first party data that was not used for
the prediction [17]. 24

Kriging LE is Kriging regression using a local error estimate. 15, 18, 21, 28, 34

posterior distribution or a posterior, of an unknown parameter is the probability distribution of said para-
meter after taking observations into account. 18

prior distribution or a prior, of an unknown parameter is the probability distribution of said parameter before
observations are taken into account. 14, 15

WOW Weather Observation Website of the Met Office, the UK’s national weather service. This provides the
data from weather stations people have at home. https://wow.metoffice.gov.uk/. 2, 4, 6, 21, 34

https://wow.metoffice.gov.uk/

	Introduction
	Data
	Description of geographic area
	Quality control
	Synthetic data

	Methodology
	Interpolation and regression
	Multivariate Gaussian distributions
	Gaussian Processes
	Kriging
	Ordinary and simple Kriging
	Kriging as regression method
	Simple Kriging using a local error estimate
	Kernels

	Implementation
	The correlation matrix, noise covariance matrix and solving linear systems
	Hyperparameter estimation
	Temperature and uncertainty prediction
	Cross validation

	Results
	Results from the synthetic data
	Results from the real data

	Conclusion
	Acknowledgements

	Notation table
	Why is the Cholesky decomposition allowed?
	KrigingLE code
	License
	KrigingLE code

	Code exchange log
	References
	List of figures
	List of acronyms
	List of terms

