
1

Generating Traffic for the Traffic Simulator

Zvezdelin Stoyanov

1094459

Master thesis

July 2022

Supervisor: Prof. Dr. I. Velegrakis

Second Supervisor: Ir. O.A. Vermeulen

Second examiner: Dr. I.R. Karnstedt-Hulpus

2

Abstract

The goal of our work was to create a traffic simulation environment where vehicles are moved

across a road network. Cars can have different settings that change their decision making

process.

The simulator requires accurate data in order to achieve meaningful results. This paper

describes the traffic generation for our simulator. The script has different tools for generating

car data, according to the required purpose of the simulation. The described work in this paper

is capable of generating cars starting from specified areas ending in other specified areas,

generating flows of cars, using real data to create realistic synthetic data, and generating data

for simulating events.

3

Table of Contents

Introduction ..4

Purpose ...4

Alternative Simulators ..4

Comparison to "Simulation of Urban MObility" (SUMO) ...4

Different Methods for Generating Traffic ..5

1. Generating Cars Based on Edge Probabilities ..5

1. Setting Edge Probabilities ..5

2. Generating Cars ...5

2. Generating Cars Using Flows ..6

3. Generating Cars Using Real Data ..6

4. Causing Events ...7

1. Outgoing Event ...7

2. Incoming Event ..7

Using the Traffic Generator ..7

1. Generating Cars According to Edge Probabilities ..7

1. Setting Edge Probabilities ..7

2. Generating Cars after Setting Probabilities ...8

3. Editing the Car List ...8

2. Generating Cars Using Flows ..9

1. Timed Flows ...9

2. Flows with Probability ...9

3. Generating Cars Using Real Data ..9

4. Generating Cars for Events ..9

1. Outgoing Event ...9

2. Incoming Event ... 10

5. Clear Car List .. 10

Limitations .. 10

Conclusion.. 11

References .. 12

4

Introduction

Purpose

The simulator can be used in experiments for various purposes, such as traffic forecasting,

evaluation of road capacity and analyzing traffic.

The Traffic Generator has a key role in successfully using the simulator. Adding cars

manually is not possible for large-scale scenarios and a data generation script is required. This

script allows for creating big lists of cars – their starting point, their ending point, and their

departure time. Their arrival time is not a part of the generated data, as it is to be calculated by

the simulator.

Using the simulator together with the Traffic Generator allows for optimization of traffic

systems. It is faster and cheaper to use the simulator than performing real-world testing

experiments.

Alternative Simulators

There exist alternative packages to our simulator. CityFlow and Simulation of Urban Mobility

(SUMO) are two of the most widely used ones. The reason for the creation of CityFlow was

that SUMO has slower performance for large road networks and large traffic flow. CityFlow

has optimized data structures and more efficient algorithms than SUMO. CityFlow is more

efficient but it is not more effective. The difference in effectiveness (how accurate the

simulation is) between the two is minimal and SUMO remains the number one most popular

package for simulating traffic. It has over 20 years of history and has been used in numerous

international projects.

Comparison to "Simulation of Urban MObility" (SUMO)

SUMO’s documentation describes the package as “an open source, highly portable,

microscopic and continuous traffic simulation package designed to handle large networks”.

The script we have created shares some features with SUMO. The common features between

our traffic generator and what the creators of SUMO call their “demand modelling” are the

following: both SUMO and our script can be used to create random traffic. Both can be used

to create flows. Both can use real data – this happens by using “detector data” in SUMO,

which is taking information from observation points and then using this data to generate

demand. Using real data can be done with our script thanks to SDV – a package for creating

realistic synthetic data. Both my generator and SUMO can generate cars from specific areas

leading to other specific areas – this can be done in SUMO by using the OD matrices (origin-

destination matrices), and a similar effect can be done in our script by using the edge

probabilities.

5

An advantage of our script over SUMO is that our traffic generator can create traffic for

simulating events – such as football matches, concerts, or other occasions where multiple cars

end up in a single location in a specific time, or multiple cars leave from a single location in a

specific time. In order for a user to achieve such an effect in SUMO, he would have to

manually use the existing tools in order to do so. By using my generator, the user can use the

two functions for events, which can handle the car generation for events automatically.

Another advantage of our script over SUMO is the option to choose which model to use when

using real data to generate synthetic data. The user can choose from 4 different machine

learning models. An evaluation framework is also given, so that the user can see which model

gives the most accurate results.

Different Methods for Generating Traffic

1. Generating Cars Based on Edge Probabilities

1. Setting Edge Probabilities

The first data generating method works by generating data based on pre-defined probabilities.

Every edge gets assigned an individual probability of being a start point or being an end point.

We have created two starting settings – a homogenous distribution, where every edge gets

assigned the same probability, and a heterogeneous distribution, where every edge gets

assigned a random probability. After running one of the two functions, the script outputs two

lists – the edges’ probability of being a starting location and their probability of being an end

location. Furthermore, there is function that can be used to adjust entries in the lists. This way

the user can individually change the probabilities of edges of interest.

2. Generating Cars

After defining the probabilities of each edge, we can proceed with the actual generation of the

data blocks or cars. The generator has two functions. It can generate cars/blocks according to

starting probabilities or ending probabilities. The code works by generating a random value

between 0 and 1 at each tick of the total time, and compares that random value with the

previously assigned probability of the edge being a start/end point. If the probability of the

edge is larger or equal to the generated random value, a car is created. If the probability is less

than the random value, no car is created. In other words, if we set the probability of an edge

being a starting point = 1, and we run the function generating cars according to starting

probabilities, it will generate a car on that edge at each tick, as the probability is 100%.

6

 2. Generating Cars Using Flows

An alternative way to generate cars/blocks is by using flows. A flow is defined as a car

followed by other cars that appear in the same position at later points of time. Flows can be

used together with the previous generator in order to add more cars, or they can be used

separately, if the flows are sufficient for the simulation and the user does not require other

traffic.

The first type of flow is a timed flow. By using it a car appears at each tick and follows the

previous cars. The tick size can be adjusted, in order to regulate how often cars appear.

The second type of flow is a flow with probability. It works by generating a random value

between 0 and 1 and comparing the random value to the defined probability. If the defined

probability is larger than the random value a car is created. This comparison is done at each

tick. If we set the probability to equal 1, that would create the same result as the timed flow,

as that would create a car every tick. Tick size is also modifiable.

3. Generating Cars Using Real Data

There is a possibility for the user to run a simulation imitating real data. This can happen by

importing a file containing the real data of cars (their starting position, their ending position

and their starting time). After importing, the user can generate synthetic data by using the

functions of SDV – the Synthetic Data Vault. This is a library that aims to generate new

synthetic data that has the same format and statistical properties as the original dataset. The

synthetic data is generated by using one of the following models:

• Gaussian Copula - It allows us to describe the distribution by analyzing the

dependencies between their marginal distributions

• CTGAN - Based on the GAN-based Deep Learning data synthesizer

• TVAE - Triplet-based vibrational auto encoder

• CopulaGAN - variation of the CTGAN Model which takes advantage of the CDF

based transformation that the GaussianCopulas apply to make the underlying CTGAN model

task of learning the data easier

The user can choose which model to use, based on the accuracy of the synthetic data. The

accuracy of the synthetic data is evaluated and returned by the function. The evaluation

function works by applying different metrics and returns the average of the scores obtained in

each one of them. The output is a number between 0 and 1, and the closer it is to 1, the more

similar the synthetic data is to the real data.

7

4. Causing Events

 1. Outgoing Event

An outgoing event is an event in which there is a single starting point of multiple cars. The

difference between an outgoing event and a flow is that in a flow all cars have the same

direction, however in an outgoing event the cars can have different directions. The user has to

specify the location of the event - which is the starting point for the cars, the edges that can be

the ending locations for cars (this can be set to all edges if required), how many cars per tick,

and tick size.

This can be used to simulate real life events where many cars leave from the same place at

roughly the same time.

 2. Incoming Event

An incoming event can be used to simulate events where many people cars arrive at the same

place at roughly the same time. This script responsible for this works by estimating how much

time it will take cars to reach that location, and creates cars, such that they arrive at similar

times. The estimation for how long each car will take to reach the location is calculated by

first applying Dijkstra’s algorithm and finding the shortest path. It then calculates the time it

takes for a car to go through that street by dividing its length by its speed limit. After that it

sums up the time it takes to go through all streets on the route, and lastly, it subtracts the time

it will take from the desired time of arrival.

Using the Traffic Generator

Remark

The user has to decide which data generation method he wants to use. It is possible to use

only one or all four depending on the scenario. If you wish to use flows only you can skip to

point 2, as edge probabilities are not required for flows. If you wish to use real data only, you

can skip to point 3. If you wish to use event generation only, you can skip to point 4.

1. Generating Cars According to Edge Probabilities

1. Setting Edge Probabilities

First, the user has to select whether he wants to use a random distribution or a uniform

distribution as a starting setting for the probabilities.

The uniform distribution function (uniform_prob) takes as input:

8

 prob – the desired probability that will be set for all edges

 edges – the number of edges

The random distribution function (random_prob) takes as input only the number of edges.

After running one of the two functions, the output is edge_start_prob and edge_end_prob.

These are lists containing how likely an edge is going to be a starting position for a car or an

ending position of a car. The index of the lists serves as the edge number.

The data can then be modified for the required purpose. There is a function to edit the data

called - edit_edge_prob. It takes as input:

 edge - the edge number, it can also be a list of edges

 start_or_end – whether you want to edit the starting or ending probabilities

2. Generating Cars after Setting Probabilities

After creating the probabilities, we can move on to creating the cars or blocks. The

car_gen_start is the function that is responsible for creating cars according to the starting

probabilities we have created earlier (edge_start_prob list).

The input for the function car_gen_start is:

 Maxtime – the time at which you want the generator to stop creating new cars

 Start_point - the starting points – which are set to 0.5 by default (the center of the

edge), and end points – also set to 0.5 by default.

This function creates a car list of the generated cars. The car list contains the starting edge,

starting point, ending edge, ending point, starting time.

The other function car_gen_end creates cars according to end probabilities (edge_end_prob).

The inputs are the same, and the output is the same.

3. Editing the Car List

The function edit_car_list is used to edit properties of cars. It can be used to change the

starting edge, the starting point, the ending edge, the ending point or the starting time.

edit_car_list takes as input:

 Car – the index of the car whose properties are to be changed

 Prop – 0/ 1/ 2/ 3/ 4, where the number corresponds to: starting edge/ starting point/

ending edge/ ending point/ starting time

 New_value – the new value for the selected property

9

2. Generating Cars Using Flows

1. Timed Flows

Timed flows can be implemented by using the function flow. Its inputs are:

 starting edge and ending edge

 starting point and ending point – both are set to the middle of the edge by default

 start_time and end_time – the beginning and ending of the flow

 tick – the tick size, set to 1 by default (a new car is generated at every heartbeat)

The output has the same format as the output of the previous generator, a list

containing: starting edge, starting point, ending edge, ending point, starting time.

2. Flows with Probability

The flow with probability flow_prob has the same inputs, the only difference is that there is

one more value to be input:

 prob - the probability - how likely a car is to appear at each tick

3. Generating Cars Using Real Data

The function syn_data_gen can be used in order to generate cars based on real data. The

function has the following inputs:

 File_name – the name of the file containing the real data. It has to be in the same

format as the outputs of the generator. It has to have a column 0 – containing the

indexes of cars, a column 1 – starting edges, a column 2 – starting points, a column 3

– ending edges, a column 4 – ending points, a column 5 – starting time.

It is also possible to exclude columns 2 and 4 if the real data does not contain points

and edges only.

 Sample_size – the required amount of cars that the user wants to generate

 Model – CTGAN/ GaussianCopula/ CopulaGAN/ TVAE – the required model

4. Generating Cars for Events

1. Outgoing Event

The outgoing event function out_event takes as input:

 Start_edge, start_point

10

 End_edges - it has to be a list with square brackets [] (a 1-d array), even if it is one

edge. It does not work correctly if the input is not in square brackets, due to Numpy’s

random choice function used in the script.

 ending point – set to 0.5 by default. It is not possible to generate cars using this

function that end in different points. This however can be done by using the

edit_car_list function (see 1.3)

 start time, end time – time diapason in which cars are generated

 tick size and cars per tick

2. Incoming Event

The incoming event function in_event takes as input:

 Start_edges – Has to be a 1-d array

 Start_points, end_point, end_edge

 End_time – the function does not have input for start time, as that is unknown and has

to be calculated by the script

 Cars – the desired number of cars

5. Clear Car List

The function clear_car_list takes no inputs. It is used to clear the global variable car_list. It

can be used whenever the user wants to create a new list of cars.

Limitations

A limitation of the traffic generator is that in order for it to create synthetic data based on real

data it needs to have complete training data. It requires a list of cars – their origin, their

destination and their departure time. SUMO on the other hand requires less in order for it to

imitate real data. SUMO is capable of generating traffic based on data coming from counting

devices. It can create realistic traffic only from information about how many cars pass through

a specific edge.

Another limitation is that probabilities are static. Both in the generator based on edge

probabilities and in the flow with probabilities. This means that the probabilities cannot

change during the data generation process. Once they are set, they remain the same during the

whole generation. This is something that SUMO is capable of doing as their flows probability

can change dynamically according to a distribution function.

11

Conclusion

The Traffic Generator allows for using the simulator to its fullest potential. By generating data using

one or more of the four tools, the user can create a list of cars that can then be used in the simulator

to achieve different purposes. We have successfully reached out goal to create possibilities for

generating cars for all scenarios that might be of interest. The user can create cars that start from

specified edges and end in other specified edges. Flows can be used in scenarios where the user

requires a car followed by other cars. Real data can also be used to create realistic synthetic data.

Events, where multiple cars end in a single location or start from a single location, can also be

simulated using the event generator.

12

References

Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart, “Exploring network structure,

dynamics, and function using NetworkX”, in Proceedings of the 7th Python in Science

Conference (SciPy2008), Gäel Varoquaux, Travis Vaught, and Jarrod Millman (Eds),

(Pasadena, CA USA), pp. 11–15, Aug 2008

Harris, C.R., Millman, K.J., van der Walt, S.J. et al. Array programming with NumPy. Nature

585, 357–362 (2020). DOI: 10.1038/s41586-020-2649-2.

Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann, Yun-Pang

Flötteröd, Robert Hilbrich, Leonhard Lücken, Johannes Rummel, Peter Wagner, and

Evamarie Wießner. "Microscopic Traffic Simulation using SUMO", IEEE Intelligent

Transportation Systems Conference (ITSC), 2018.

“The Synthetic Data Vault”, sdv.dev, accessed 2022-07-10

Zhang, Huichu, et al. “CityFlow: A Multi-Agent Reinforcement Learning Environment for

Large Scale City Traffic Scenario.” ArXiv.org, 13 May 2019,

https://arxiv.org/abs/1905.05217.

