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Abstract 
Environmental air pollution is observed to contribute to the prevalence and incidence of 
chronic diseases. The exact underlying mechanisms by which air pollutants initiate disease 
have not been completely elucidated. However oxidative stress and inflammation are the 
most common related mechanisms underlying for these health outcomes. Genetic variation 
in specific molecular pathways or other biomarkers can provide information on these 
mechanisms that are associated with a certain type of exposure. In this paper, we used an AI 
tool, the Euretos Knowledge Platform to identify candidate genes related to air pollution 
exposure and those involved in the occurrence and development of the (cardiovascular) 
diseases. An user case experiment was conducted based on a candidate gene set derived 
from literature. Next to this, an orientating experiment was performed with the use of the 
search engine with in the same programme. Based on those experiments, several genes and 
pathways related with the exposure on air pollution and associated with the diseases were 
identified. Genes marked for detoxification (SOD1, SOD2, GCLC, GCLM GPX1 and CAT) and 
metabolism of xenobiotics (GSTP1, GSTM1, CYP1B1, GCLC and GCLM) were recognised. 
Furthermore, genes related to inflammatory responses (IL1B, IL6, IL6R and CXCL8) are 
marked in this study as well. Euretos showed potential for implementation in environmental 
epidemiology research. However, more research and extra changes are required for data 
search and desirable for the user case for an direct implantation of the programme. 

 

 

 

 

 

 

 

 



Introduction 

The way we live and behave is impacting our own life, and the life of other people. The 
World Health Organisation (WHO) stated that household combustion, motor vehicles and 
industrial facilities are just a few but the most common sources of air pollution. Air pollution 
is a complex mixture include particulate matter (PM), carbon monoxide, ozone, nitrogen 
dioxide and sulfur dioxide. Air pollution is a growing public health concern of global 
significance, according to the WHO (2021). 

The common consensus is that environmental (air) pollution and non-chemical stressors 
contribute to the prevalence and incidence of chronic diseases (Daiber et al., 2019). The 
authors stated that a higher risk for noncommunicable disease such as cardiovascular, 
metabolic and mental diseases are associated with traffic noise and air pollution. Next to 
this, air pollution kills an estimated seven million people worldwide every year (WHO, 2021). 
WHO data also shows that 99% of the global population breathe air that exceeds their WHO 
guideline limits containing high levels of pollutants. Air pollution is recognized as a human 
carcinogen, therefore being a risk factor for (lung) cancer (Xing et al., 2019). It is also a major 
risk factor for other acute and chronic diseases including cardiovascular disease (Lederer et 
al., 2021; Mannucci et al., 2019) and chronic respiratory diseases (Guan et al., 2016; Park et 
al., 2021). Oxidative stress and inflammation are commonly considered as presumptive 
mechanisms underlying for these health outcomes (Fuertes et al., 2020; Hahad et al., 2020). 
However the exact underlying mechanisms by which air pollutants initiate disease have not 
clearly been completely clarified.  

Despite the fact that exposure to air pollution has been shown to induce changes in gene 
expression (Huang et al., 2011; Wittkopp et al., 2016), evidence for mechanisms related to 
different disease outcomes is scarce. Investigating genetic variation in specific molecular 
pathways can provide information on physiological disturbances that are associated with a 
certain type environmental exposure. Next to this, genetic changes and early biomarkers 
form various systems could help to prevent and control the damage effects of air pollution 
(D. Yang et al., 2017). Focusing on genes (genomics), proteins (proteomics), mRNA 
(transcriptomics) or metabolites (metabolomics) could help clarified the unclear pathways. 
Studying these different (multi-)omics data can provide biological insights for empirically 
observed exposure disease associations (Sun & Hu, 2016). Despite the significant research 
on air pollutant-associated health effects, the underlying molecular mechanisms by which air 
pollutants initiate disease remain unclear. Oxidative damage, inflammation and endothelial 
dysfunction have been suggested as potential underlying mechanisms of air-pollutant 
associated adverse health (Lederer et al., 2021). Recently, it has been shown that short-term 
exposure of air pollution could lead to adverse cardiopulmonary effects (Liu et al., 2021).  

Although these studies could imply a possible impact of specific air pollutants on humans, 
the results are sometimes inconclusive. Therefore, research is sometimes placed in a better 
perspective after clutching at straws. If the data acquired from your conducted research is 
confirmed by another study, your obtained data will be more acceptable. Mirroring obtained 
data to other studies is without a doubt a great principle to check your data for significance. 
Unfortunately, conformation of the empirical data is in most cases possible by ‘cherry 
picking’ facts and statements from previous literature. Even the more debatable and rare 
results can be linked to previous studies. AI-driven statistic tools could provide a powerful 



tool in this type of data analysis. These artificial intelligence programmes can examine, 
observe and predict possible relations between experimental derived data. These 
functionality accelerates the analysis of gene- or datasets by easing the transition from data 
collection to biological related concepts and systems (Dennis et al., 2003).  

Extensive experimental methods such as genome-wide association studies (GWAS) identify 
increasingly large numbers of potential interesting genes and genetic variants. These type of 
studies have made a significant contribution to our understanding of the genetics of complex 
disorders over decade (Dehghan, 2018). Next to the increasing amount of available data 
from these studies, both biological complexity and the significant rate of empirical data 
production require computational and consistent approaches to interpretate potential new 
associated genes and elucidate gene-disease and gene-environment relations (Hettne et al., 
2016). On the account of these factors, it is nearly impossible to perform these phases of 
research by hand. For these cases, statistical AI tools can provide the solution.  

In environmental epidemiology a variety of enrichment analysis AI tools are implemented in 
different types of research, despite the lack of real literature references. One example, the 
Database for Annotation, Visualization and Integrated Discovery (DAVID) is used for the 
classification of gene function and pathway enrichment of empirical derived gene lists in 
research (T.-Y. Yang et al., 2014). Whereas other studies have focus on Ingenuity Pathway 
Analysis (IPA) (Smit-McBride et al., 2018) to identify potential miRNA gene targets and for 
gene pathway analysis. An addition study combined both tools in their conducted research 
(Toonen et al., 2018). More recent performed research (Everson et al., 2021) enhanced their 
study by using EnrichR. This tool is implemented to test for enrichment of transcription 
factor targets from, in this type of study, ENCODE/ChEA databases. 

Our research started with an alternative approach and with the use of another AI tool. This 
air pollution focused research was conducted with the implementation of the Euretos 
Knowledge Platform (1), an alternative AI tool. In contrast to DAVID, which was described as 
rapid, complete and the foundation of the integration of information-rich data analytics 
methods (Dennis et al., 2003), Euretos consist of different engines and tools to perform 
analytics. Data sets could be uploaded and created with the database and literature search. 
With these sets, enrichment and network analysis can be performed on the same 
programme.  The Euretos platform could give new insights using both curated data base 
annotation and literature from scientific publications. This is the first time implementing this 
tool into environmental epidemiology to the best of our knowledge.  

In contrast to environmental epidemiology, Euretos is already implemented for 
pharmaceutical, drug and disease research. The Euretos Knowledge Platform (EKP) is used in 
cancer research and other disease and drug research. The platform describes itself as 
recognized as on one of the leading companies in pharmaceutical research and featured as 
one of the major players in their field. Euretos features a large AI- integrated knowledge 
base containing over 275 life science databases and millions of publications. The search 
engine of the EKP provides ranked list in over 100 categories (f.e. genes or pathways). These 
list are based on a variety of different sources, therefore they should give an extensive 
overview of the current knowledge (1). Knowledge regarding to the terms created by 
combining synonyms of the used search terms. The data sets obtained by the search engine 



can be used to give new biological multi-omics insights and provide biomolecular interaction 
analysis. The tool provide options for gene set enrichment, gene set ranking and 
transcription network analysis. The search and analytics are optimised for disease and drug 
biology, nevertheless it possibly could give new insights in environmental epidemiology. 

The Euretos Knowledge Platform consist of multiple main stages, of which the search engine 
for the research data, analytics of the generated data sets and formation of relation maps to 
identify possible new molecular pathways are used in this study. Euretos had an integrated 
search engine which can be used to create lists of ‘concepts’ associated with the input 
search terms. Euretos uses concepts to perform search and analytics with. The concepts can 
vary from genes (IL6, TNF), diseases (COPD, asthma) to simple terms (ozone) or pathways 
(cytokine signalling). The saved concepts lists described as a ‘set’ in the Euretos Platform, 
can be used to perform several analytics. Multiple sets can be evaluated in the program to 
reveal the conceptual overlap between the different sets. These concept lists could consist 
of genes, pathways or random associated concepts, based on the selected category list. 
Subsequently, after uploading own experimental data or created lists using ‘Search’, the next 
step is to evaluate the data against the platform's knowledge base. The ‘Analytics’ function 
can be used to perform enrichment or ranking analysis on single concepts lists or the overlay 
between different sets. Enrichment analysis can be conducted with the ‘Find Related’ option 
in the Analytics of the EKP. The ranking analysis can be performed with the ‘Rank Selection’ 
option, where (mostly) genes in a set can be ranked to determine whether a gene is 
differentially expressed for a disease, phenotype, or compound. This ranking is based on 
thousands of differential expression experiments that are available in the platform (2). The 
‘Relation map’ option of the programme creates a cobweb consisting of concepts uploaded 
into the sets and identify potential relations between the concepts. It uses both text mined 
literature abstract data or data from curated data base annotations to illustrated relations 
and links between the different concepts. The literature based relations are resulting in 
possible ‘abstract cooccurrences’, which is one on many relation types in this option. 
Furthermore, the curated sources could provide more “in depth” relations types, for this 
study: affects; binds with; catalysis; precedes; coexists with; controls expression of; forms 
protein complex with; gene product is; biomarker type; gene product variant results in 
abnormal; inhibits; interacts with; is a; is associated with; is manifestation of; predisposes; 
produces and stimulates. These indicate the type of relation between the concepts, with an 
optional label, name tag, and arrow clarifying the direction of the relation. Next to the 
possibility to import data sets and lists, individual concepts can be added to improve and 
supplement the analysis in the relation maps. An extensive protocol and overview of Euretos 
can be found in Supplementary file 1 (Euretos appendix).  

In our study, the search engine of the programme was applied to create data sets. The genes 
categories provides a set of genes that are associated with the input search term. Data sets 
consisting of genes associated to ‘air pollution’ and genes associated to specific concepts 
related to air pollution. Different types of air pollution ‘concepts’ were used. Particulate 
matter (PM), ozone, nitrogen oxides (Nitrogen dioxide), sulfur dioxide, volatile organic 
compounds (VOC), polycyclic aromatic hydrocarbons (PAH) and carbon monoxide were 
classified as pollutants of major public health concern by the WHO (2021). Next to this, we 
focused on different cardiometabolic pulmonary health outcomes in this study. Acute 
myocardial infarction (AMI), asthma, cerebrovascular accident (CVA), chronic obstructive 



pulmonary disease (COPD) and Diabetes Mellitus type 2 (T2DM) were selected based on 
their known association with air pollution (Cesaroni et al., 2014; Gehring et al., 2015; Li et al., 
2021; Merid et al., 2021; Park et al., 2021; Shah et al., 2013; Zhao et al., 2021). The 
‘Analytics’ function of the programme was used to find related pathways. Eventually, the 
relation map option of the EKP was implemented to identify key terms, indirect associations 
and concept clusters. In this case, the concepts are generally genes combined with air 
pollution concepts or health outcomes. 

Our study is divided into two part. Firstly, a ‘user case’ experiment was performed. For this 
study we used data obtained from an existing, already performed study: Associations 
Between Genome-wide Gene Expression and Ambient Nitrogen Oxides (Mostafavi et al., 
2017). This can be seen as a typical application for the AI tool in this type of research. In this 
case, the use of the EKP is the first step after obtaining the data. Secondly, we tried to use 
the search engine of Euretos to create our own data ‘sets’ consisting of genes (TOP10 test). 
These created lists could give new insights based on the available data in literature and 
databases. Which could provide with entire networks and new opportunities for additional 
research. The user case experiment tests the potential of the programme to compare and 
complement the existing obtained data. Whereas the TOP10 test provide a new approach 
for orientating into a new focus of (environmental epidemiological) biology. Both could be 
useful in their own way to strengthen research.  

The overall aim of this study was to evaluate to which extent Euretos added value for future 
epidemiological studies within the domain of environmental research. An addition 
comparison was made with the DAVID pathway enrichment tool, to show if the Euretos tool 
did add some additional and new value to the research. The potential implementation could 
help the researcher to map the obtained results within an curated database. In our 
conducted (user) case study, we focused on the identification of air pollution associated 
biological pathways and genetic relations, with biological interpretation of cohort (gen)omics 
data from Mostafavi (2017). Our goals with that experiment, in particular, was to test the 
programme on performed research, with curated data and the previous described analytical 
functions within the programme. The programme could provide with new insights for 
interpretation of new empirical data which was obtained through a GWAS or other type of 
studies. The research is conducted with the Euretos Platform. The environmental 
epidemiological omics data were studied in order to have a better understanding of the 
underlying biological pathways that relate air pollution exposure to health outcomes. With 
our approach, we carefully identified to which extent this AI tool is efficient for future 
epidemiological studies within the domain of environmental research.  

 

 

 

 

 



Methods 
The flowchart of our approach is depicted below (Figure 1). A brief summary, more extensive 

explanation is described after the figure: A) Real world obtained data is uploaded in the EKP. 

B) Euretos’ search engine results were filtered and selected for the TOP10 sets. In addition,  

sets obtained in step A and B were supplemented with either disease concepts or air 

pollution concepts were added for further analysis. C) Pathway enrichment was performed 

for the user case experiment, the real world observations. D) All the outputs were combined 

and review to create a general conclusion, that is usually visualised in several relations maps. 

E) Extra experts and extern analytic data could be added to contribute to and improve upon 

the obtained results. However, were not applied to this study. Therefore could be used for 

future application. F) Final results and conclusion are drawn from all the available knowledge 

obtained from the program and additional sources.  

 
Figure 1. The flowchart of a potential approach of implementation of the Euretos Knowledge 

Platform in environmental epidemiology. Adapted from preprint Mons (2020).  

Mostafavi (2017) article (A)  
The obtained data was selected from articles published by the IRAS, Institute of Risk 
Assessment Sciences (Mostafavi, 2017). Mostafavi, et al. (2017) display a table containing 
genes associated with long-term exposure to NOx and a table containing possible candidate 
genes, respectively table 1 and 3 in their manuscript. The experiment was done as typical 
application of the EKP in the field of environmental epidemiology. With the implementation 
of the tool, the research could be improved by providing possible new insights. Firstly, the 
gene list, consisting of 29 candidate genes previously associated to air pollution in the 
epidemiological literature was uploaded and analysed. This candidate gene list is tested as a 
positive control for implementation. A higher expectation applies for the candidate genes, 
because they are actually observed to be affected by air pollution. On the other hand, that 
certainty applies less to the cohort genes obtained by the conducted research. 



Based on applicability, the candidate genes list should give a better idea of the potential of 
the EKP for environmental epidemiological studies. Because this set contained genes with 
relations to each other that we reported several times in literature, according to the 
programme. Therefore, the candidate genes data set was added to the ‘Relation map’ 
function of the EKP and used for pathway enrichment in the ‘Analytic’ section of the 
programme. (C) Pathway analysis is performed in Euretos to identify potential enrichment in 
the set of genes. The enrichment results are sorted by P-value. These values are adjusted for 
multiple testing correction using the Benjamini-Hochberg procedure. The pathway analysis 
was only performed on the candidate set, due to the size of the cohort gene set (consisting 
of 11 genes). The pathway enrichment was also conducted with DAVID. The functional 
annotation clustering tool of this programme was used for pathway analysis (Background: 
Homo Sapiens). This pathway analysis was made to compare the analysis of Euretos with the 
renowned pathway analysis of DAVID.  

For the relation map, the set was enriched with the five different health outcomes (Acute 
myocardial infarction (AMI), asthma, cerebrovascular accident (CVA), chronic obstructive 
pulmonary disease (COPD) and Diabetes Mellitus type 2 (T2DM)), for the first analysis, and 
enriched with the concepts related to air pollution for another. All relations among different 
health outcomes and among the different concepts related to air pollution were removed on 
forehand. The concepts were arranged to improve the interpretation of the relation maps. If 
necessary, the weakest associations labels were disabled to improve the overall overview 
and interpretation. These labels, with connection: is associated with, have been removed 
because these are less concrete about the content of the connection between concepts.  

Secondly, the gene list, consisting of empirically obtained genes (cohort) associated with 
long-term exposure to NOx was uploaded manually to the programme. This corresponds to 
table 1 of the manuscript of Mostafavi (2017). The complete analysis was done largely the 
same way compared to the candidate gene list, mentioned before.  

TOP10 test (B) 
Initially, the sets consisting of genes associated with particulate matter were made using the 
Euretos Search engine. The input search term “particulate matter” was used in the search 
engine. The programme’ search recommendation: search with synonyms was applied. The 
additional category button ‘genes’ was used to obtain genes related to particulate matter. 
The top 10 of most referenced genes was selected and saved as a new concept set. These 
single sets were created to determine the most referenced genes with the corresponding 
type of air pollution. The number of concepts in a set was restricted by a limitation of 
function of the programme. Euretos’ ‘relation map’ function, one of the performed analytic 
tools, was limited to a total of 400 concepts. Therefore, these data sets are limited on 
number of concepts. This procedure was performed essentially identical for the remaining 
air pollution specific concepts, however with the corresponding input search term. This 
resulted in eight lists containing genes related to separately: particulate matter, ozone, 
nitrogen oxides, nitrogen dioxide, sulfur dioxide, volatile organic compounds, polycyclic 
aromatic hydrocarbons and carbon monoxide. The eight single sets, consisting of the 
different top 10 genes, were combined to perform analytics on the total set of air pollution 
associated genes. This ‘TOP10 gene set’ consists of 33 different genes. 



The TOP10 gene sets can be used to perform relation and general analytics on relevant 
concepts and give more insights on the relations between the concepts. These type of 
analytics were performed with the Relation map option of the EKP. Therefore, as already 
mentioned, the concepts sets of our interest consist of genes related to the relevant type of 
air pollution. Despite the variety of different sources used by the programme, the genes 
category only used abstract text-mining to draft the references lists.  

Relation maps were created to determine the relations between the individual genes. The 
TOP10 set was arranged in the ‘Relation map’ function of the programme. Followed by 
relation maps enriched with the different health outcomes or concepts related to air 
pollution. All relations among different health outcomes and among the different concepts 
related to air pollution were removed on forehand. This was done to create more accessible 
figures. The relation map option of EKP provides the user to disable and enable relation 
types labels. Starting with showing or hiding abstract and sentence co-occurrence relation 
types labels, to more in depth relation types (is associated with, promotes, binds with etc.) 
which can be selected individually. The relation types labels: Co-occurrence and ‘is 
associated with’ were disabled to improve interpretation. These types of relations are the 
most common and therefore cause an unreadable figure. Removing these relations labels 
with lower impact, leads to a clearer figure.  

 

 

 

 

 

 

 

 

 

 

 

 

 



Results 
Mostafavi (2017) article 
Candidate genes: The relations maps revealed that a total of seven genes were not related 
to any of the other genes in the dataset. The complete list of relations is shown in 
Supplementary Table 2. Figure 2 reveals a significant position for the transcription regulator 
gene, NFE2L2 (homo sapiens). This gene is observed to have several interactions with other 
genes and their products. Therefore, it is identified as a central gene in this network. Next to 
this, the relation between the antioxidant genes (Fuertes et al., 2020) and among the 
interleukins can be observed in the same figure (Fig. 2). As extra remark, the gene name ‘IL8’ 
was not present in the EKP. This concept was changed for the concept CXCL8, another name 
for the same gen.  

 
Figure 2. Relation map represents the relations between the candidate genes (Mostafavi, 2017). All 
relation type labels are shown. (Figure can be observed in the Supplementary File, for further 
identification (Supplementary Figure 2) 

Supplementary File 2 Figure 3 reveals considerable relations between the candidate genes 

and the different health outcomes. The more in depth relations were attributed to the KLF2, 

SRGAP2 and the interleukins. According to the GWAS Catalog (source used by the EKP), the 

IL6, IL6R and Il1B gene products variants related to asthma. KLF2 and SRGAP2 possess the 

same relation related to this health outcome, whereas the SRGAP2 gene products also 

variants related to Diabetes Mellitus, type 2. The genes HMOX1 and Il6, were indicated by 

Supplementary File 2 Figure 3, as biomarker for respectively COPD and T2DM. As can be 

seen from Supplementary File 2 Figure 4, there was only one gene with a curated relation to 

one of the concepts related to air pollution. The HMOX1 gene product, Heme oxygenase, 

produces carbon monoxide, thus this CO relation is not air pollution related.  

The pathway analysis identified 203 significant pathways, with an extra 20 enriched 

pathways that did not pass the false discovery rate of 0.05. The top of the chart can be found 

in Table 1, the complete table is found in Supplementary Table 1. Most pathways that were 

identified were oxidation related, complemented with signalling and specific metabolic 

pathways. Based on the pathway analysis, we can compare the previously mentioned DAVID 



annotation tool with the Euretos AI tool. The pathway analysis of the candidate gene set in 

both Euretos and DAVID resulted in pathways concerning oxidation, signalling and metabolic 

pathways. Only exception was the pathways regarding aging, which were indicated by DAVID 

(Table 2). Besides, this was the pathway resulting in the highest enrichment score on the 

DAVID clustering tool. DAVID provides the user with this extra tool to look at the internal 

relationships of clustered terms and makes the biological interpretation more focused at a 

group level. 

Table 1. Top of the Euretos pathway analysis table. Listing the concept (pathway) name, number of 
concepts of the selected set represented in the relevant pathway, column for type indication 
(Enriched or Depleted), number of concepts in the category (pathway) and the corresponding 
Fisher’s exact test p-values. 

 
 

Table 2. Top of the DAVID pathway analysis table. Listing the system of classification, the GO term of 
the biological process, potential related terms (RT), number of concepts of the selected set 
represented in the relevant pathway, number of concepts in the category (pathway) and the 
corresponding P-value and adjusted for Benjamini test score. 

 



Cohort genes: Apart from the variant results from LARP1B and GNA15, in respectively T2DM 
and asthma, the other relations shown in Supplementary File 2 Figure. 5 were based on 
abstract co-occurrence or the simple ‘is associated with’ relation type. Next to this, 
Supplementary File 2 Figure 5 reveals only a single abstract co-occurrence between the 
cohort acquired genes. This co-occurrence could be assigned to the abstract of the chosen 
article, Mostafavi (2017). 

TOP10 test 
The set consisting of the top 10 most referred genes per type of pollutant was used for the 
first analysis. The program identified 33 individual genes in the set. However, several genes 
observed to be a false positive result. For example, the PAH (homo sapiens) gen was 
incorrectly present in all the pollutant sets according to Euretos. The association of all the air 
pollutants with this gene raised questions. In the end it turned out that the PAH gene was 
referred to due to the abbreviation of polycyclic aromatic hydrocarbon, PAH. The text mining 
did not made any distinguish between the gene or air pollutants. The complete set with 
genes was gone through. More false positive results will be discussed later. Next to this, the 
ten most referred genes associated with VOC different from 8 to 3 references. Well under 
the number of references of the other pollutants. These consist of genes with at least ten 
references for the tenth most referenced gene. The set of 33 genes were displayed in a 
relation map (Supplementary File 2 Figure 6), to illustrate possible associations between the 
genes from the same set. The relations in Supplementary File 2 Figure 6 revealed that a total 
of nine genes exhibited no direct link with at least one other gene from this gene dataset. 
Next, a relation map was created to visualize the relations between the obtained genes and 
the five health outcomes of interest (AMI, asthma, CVA, COPD and T2DM) (Supplementary 
File 2 Figure 7 and 8). The following genes failed to show any relation with at least one of the 
different health outcomes: DBP, IMPACT and GSTT1 (Supplementary File 2 Figure 7). These 
will be discussed later. As can be seen in Supplementary File 2 Figure 8a, the figure is packed 
with mainly lines representing the ‘is associated with’ relation. To give a better overview of 
the pathways, the ‘is associated with’ relation is removed. This relation type is the least 
defined type, it represents a possible association without further depth. There is no clear 
evidence for a possible interaction (f.e. the relation type: forms protein complex with) nor an 
indication for a positive or negative indirect relation (f.e. the relation type: gene product is 
biomarker). Therefore, with the removal of this relation type, the better defined relation will 
be more outstanding. The more in-depth relations can be identified from Supplementary File 
2 Figure 8b. Indicating some genes with a considerable impact. The TNF gen, for example, is 
linked to four out of five health outcomes. The complete list of the relations between the 
genes and the various health outcomes are displayed in Supplementary Table 3. 

Essentially the same relations maps were created to visualize the relations between the 
TOP10 genes and a list of different types and synonyms of air pollution. In addition to the 
previous selection of air pollutants, the concepts: air pollution, air pollutant and ambient 
particulate matter where added to the concept set. According to this relation map, the 
majority of the complete set of air pollution related concepts were not associated with the 
TOP10 genes. Data in Supplementary File 2 Figure 9 indicates the associations of the MPO, 
HMOX1 and HMOX2 gens with the production of nitrogen dioxide for MPO and the 
production of carbon monoxide for HMOX1 and 2. 



Discussion 
This study provides some evidence for a possible implementation of the Euretos Knowledge 
Platform in environmental epidemiology research. We observed an useful application of the 
enrichment and relation analysis functions of the programme. These functions operate 
optimal when using data sets consisting of both reasonable quality and quantity. In addition 
to this, more environmental epidemiology, curated database annotated information is 
necessary for Euretos to work.  

The cohort and candidate gene sets of Mostafavi (2017) were used as positive control. These 
gene sets, especially the candidate genes, showed us a fraction of the possibilities and 
opportunities of the EKP. The pathway enrichment of the genes from the candidate gene set 
resulted in pathways related to oxidation/reduction, detoxification and metabolism of anti-
oxidants (glutathione). Genes clusters of this pathways can be identified from later analysis 
of Supplementary File 2 Figure 2 and 6. However, no significant relations were observed 
between the candidate set genes and the air pollution concepts. Which indicate that the 
programme does not association the genes with air pollution. Doubts can be drawn about 
this, because these genes were selected by Mostafavi (2017) because of their known 
relationship with air pollution. The pathway analysis was not performed on the cohort gene 
set, because the set consist of 11 concepts. Which did not resulted in a significant analysis. 
The quality of the analytical functions of the programme seems related with the quality and 
quantity of the data sets, to a certain degree. More concepts leads to a better analyses.  

Relations in Fig. 2 suggest that a few clusters on genes are present in the candidate gene 
lists. According to this figure, NFE2L2, AFT4 and AHR play a major role in the control of 
expression the genes. The candidate gene set contains clusters for both detoxification 
(SOD1, SOD2, GCLC, GCLM GPX1 and CAT) (Klusek et al., 2018) and metabolism of 
xenobiotics (GSTP1, GSTM1, CYP1B1, GCLC and GCLM) (Saghaeian Jazi et al., 2021). Genes 
related to inflammatory responses are marked as candidate gene as well (IL1B, IL6, IL6R and 
CXCL8). This indicates the possible mechanisms of air pollution exposure. Which is in line 
with performed studies (Fuertes et al., 2020; Hahad et al., 2020). The same candidate genes 
did not show many relations towards the different health outcomes. Besides the 
interleukins, remaining genes with a possible relation were not included in any of the 
possible clusters in the candidate gene list. The KLF2 (Kruppel like factor) is associated with 
cardiovascular diseases (Hu et al., 2018) and according to Euretos is the variant gene product 
of KLF2 related to asthma. SRGAP2 showed a gene product variant for asthma as well. Next 
to this, was the SRGAP2 gene in the same way related to T2DM. The exposure to air 
pollution is related to cardiovascular diseases (Fiordelisi et al., 2017; Lederer et al., 2021; 
Mannucci et al., 2019), despite the absence of relations from the clusters of the candidate 
lists towards the different health outcomes. The reason why the associations between the 
exposure to air pollution and cardiovascular diseases are missing is unclear. The cohort set 
from Mostafavi (2017) consist of only 11 concepts. This cause some standalone, individual 
genes without relations to other genes and disease or air pollution concepts. More research 
is needed to fill in the potential missing links and underlying processes of this effect. 
Mostafavi’s cohort findings are currently not supported by the information already present 
in the system of Euretos. 



The relation maps representing relations among the TOP10 genes illustrated complex 
networks between several genes and concepts. In common application of the programme, in 
drugs and disease research, the use of database annotation is favoured over the text-mining. 
Unfortunately, there is no curated database for environmental epidemiological research 
data implemented in the system. Therefore, the relations between pollutants and genes are 
purely based on simple text-mining. After formation of the relations maps (Fig. 6-9), the 
‘pollutant to gene’ relations were looked into in more depth. A significant number of genes 
were linked incorrectly to the different types of pollutants. The thorough analysis of the 
genes were performed on the genes with at least 3 references to maximise the efficient use 
of time. However, it is reasonable to assume that there were more false positive results. 
These incorrect links, caused by text-mining, can be explained differently per gene. Firstly, 
some of the genes were abbreviations of other terms applied in the research. One example 
of these false positive abbreviations was the PAH gene. This gene was marked as related to 
the pollutants because of the abbreviation for polycyclic aromatic hydrocarbons, PAH. The 
gene PAH was not mentioned in the full article. Secondly, the name of the gene is commonly 
used in general writing (the gene IMPACT or TANK) or a part of a longer word (the gene SRI, 
used in Sri Lanka). Lastly, some of the genes have various aliases, another name for the same 
gene. These aliases sometimes resulted in a false positive result due to one of the previously 
mentioned reasons. The complete list of (partly) false positive genes are mentioned in 
Supplementary Table 4. Despite some false-positive results in the TOP10 gene sets, the 
remaining true-positive genes displays a useful network consisting of systems related to anti-
oxidation, detoxification genes (GSTP1, GSTT1, GSTM1), xenobiotic-metabolizing genes 
(CYP1A1, AHR, CYP1A2, CYP1B1), different interleukins (IL6, IL1B, CXCL8) and other curated 
genes with multiple interactions (TNF, NFHB1 and EGFR). In combination with the relations 
found in Figure 2, several key players in detoxification, oxidation (Fuertes et al., 2020) and 
other genes related to redox and regulation are observed. This shows the potential 
application to enhance all different types of gene related research. As already mentioned, 
sets containing more concepts can expose more systems and pathways. Both the candidate 
genes and the TOP10 genes illustrated considerable associations between the genes and 
health outcomes. This includes the less descriptive ‘is associated with’ relation and more in-
depth relations. Firstly, Asthma is related to several interleukins and SRGAP2 (homo 
sapiens), where variants of the gene product are resulting in abnormal phenotypes. 
Secondly, some gene products from IL6 and HMOX1 are biomarkers for respectively DMT2 
and COPD. Last, genetic changes in the MB (homo sapiens) gen can predispose AMI, whereas 
CVA could be the result of a specific changes in the TNF gen. The relation map function of 
the programme can provide new and fast insights with these different relations.  

On the other hand, the relations regarding the concepts associated with air pollution are less 
impactful. Unfortunately, these exist of purely relations where the air pollution concept is a 
product of a gene (product). HMOX1 and HMOX2 produces CO (by-product) and nitrogen 
dioxide is formed after nitrite oxidation by myeloperoxidase, the gene product of MPO 
(homo sapiens). Euretos does not distinguish physiological and environmental substances. 
Which could lead to problems for both the search engine as well as analytic or relation 
related functions. The NOx compounds are physiological signalling molecules, on the other 
hand, the NOx molecules are a significantly type of air pollution. Therefore the association of 
the air pollution NOx with a type of gene is doubtful in some cases. These compounds with a 
physiological function do cause issues with the analytics as well. For example, the CO related 



to the physiological carbon monoxide instead of the air pollution variant. In addition, 
Supplementary File 2 Figure 5c identified a few relations, the abstract co-occurrence 
between AHCYL2, MTMR2 and ‘air pollutants’ and ‘nitrogen oxides’. These co-occurrences 
could be tracked back to the Mostafavi (2017) article. To prevent this type of circular 
reasoning, relation analytics could be performed before publication.  

The EKP was implemented to give new insights into the pathway and genes involved in air 
pollution exposure and different health outcomes. The AI tool can provide insights into 
systems biology to some extent. The data set creation based on curated databases allows 
the user to compare and analysis the empirical derived data. Next to this, the program 
provided additional evidence for the potential therapeutic targets for diseases such as 
Autosomal Dominant Polycystic Kidney Disease (ADPKD) (Malas et al., 2020). The (pathway) 
analysis option can provide new insights on related pathways and regulations. In addition, 
this option can rank the users selection of concepts based on expression and interaction. The 
relation map option provides the user with a visual representation of the relations and 
association of the concepts of interest. This function of Euretos is used in other studies 
(Malas et al., 2019) to integrate semantic information within a knowledge graph, which 
describes known relationships between biomedical concepts (e.g drugs, diseases or genes). 
However, the programme needs to be more optimized for environmental epidemiological 
research, to provide a first stap in consistence interpretation of empirical (gen)omics data. 
More in-depth evaluation of the technical aspects of the programme is discussed later.  

Classification of the concepts in Euretos is resulting in varied possibilities in the programme. 
The concept ‘air pollution’ on itself is classified as phenomena. This classification offers 
fewer additional filter options compared to the classification ‘genes’ or ‘molecules’. Where 
asthma, and other health outcomes, feature significantly, beneficial available filters related 
to the search option and dataset creation. For instance, regulations of proteins (Dys-, up- 
and downregulated) or gene cell type expression (Transcripts per million). Most important, 
the category gene is not available for the concept ‘air pollution’, which caused a limit for 
further search and creation options. Another variant on the concept ‘air pollution’ was used 
to search for associated genes. The concept ‘air pollutants’ was used for further set creation. 
With the use of only the concept ‘air pollutants’ in the EKP, we were doubtful about the fact 
that this concept is not related to majority of the known genes. The list with genes related to 
‘air pollutants’ was missing for example several interleukins, CAT and NOX1. Genes that were 
present in the candidate genes from Mostafavi (2017) and were observed to show relations 
with other genes in the same set (Fig. 2). Therefore we had to add detail to this concept to 
conduct a more significant experiment. These detailed concepts provided a broader 
perspective on the genes associated with air pollution in general, compared to the narrow 
approach of the single concept ‘air pollution’. With the broader approach on air pollution, 
less significant information should be missed out by the programme. Therefore a broad 
approach was the optimal way to describe the exposure side of the experiment. The health 
outcome concepts (AMI, asthma, CVA, COPD and T2DM) were sufficiently elaborate to 
function properly in the programme.  

The relations among the genes and between the health outcomes were removed on 
forehand. In our approach, the advantage of improved interpretability was chosen over the 
completeness of the figures. Preserving all the relations, lead to figures that were almost 



impossible to interpretate due to the low legibility. However, network statistics and system 
analysis could be used for the interpretation for the more complex figure. Existing studies in 
both humans and model organisms highlighted the complexity of genomic information flow, 
together with the interactive networks in biological mechanisms and the onset and 
development of diseases (Sun & Hu, 2016). Insurmountable, this lead to the loss of 
biological clusters between the genes and among the different diseases. Next to the removal 
of the relations among the concepts of the same set, the ‘is associated with’ relation was 
determined as least defined. This assumption was made because this relation type was less 
specific compared to other relation types (e.g. forms protein complex with or gene product 
variant results in abnormal). The relegation of the relation type ‘is associated with’, made it 
possible to hide this type of relation to improve the interpretation of the figures. This 
assumption limited this study, due to the fact that numerous environmental epidemiological 
studies cannot define specific relations. These studies can provide new possible association, 
however these signals are too mild and uncertain to provide a more in depth relation. 

Uploading of sets requires some manual assist of the user. The programme is very sensitive 
with regard to extra notations on the genes or very specific in the types of aliases per genes. 
In our case, this Il8 was substituted for CXCL8, an alias for the interleukin-8. The programme 
does not make use of all the aliases of genes and therefore decisions have to be made by the 
user. In our case, the Il8 was mentioned in the Mostafavi (2017) article, however is not 
recognised by the programme as gene. Therefore during uploading, an extra clarification was 
needed to be able to proceed with the data set. The CXCL8 (homo sapiens) gene was present 
in the programme and thus the substitution for the Il8 gene. Which is one off the aliases of 
Il8. Other manual adaptations could be regarding extra notations, symbols or punctuation 
marks. 

The search engine of the platform was used to create data sets containing genes. The TOP10 
test was done to run the analytics of the programme. A maximum of 10 referred genes per 
type of air pollution was selected due to a limit of concepts for some analytic options in the 
tool. The restricted maximum of 400 concepts in a relation map caused the selection criteria 
was set on the ten most referred genes per pollutant. An elevation of the numerical limit 
could enlarge the potential set size used in the relation map option of Euretos. However, in 
our study, this numerical limit could be replaced by a relative limit based on the numbers of 
references in list. This limitation caused for some debatable results. Some air pollution 
species resulted in significantly more results compared to others. Where ‘particulate matter’ 
resulted in over 500 references for some genes, ‘volatile organic compounds’, on the other 
hand, resulted in less than 10 references for the most referred genes. This could cause that 
the CYP1A1 (homo sapiens) gen, with 72 unique references (number 11 of PM references), 
was excluded from the set, while the SARS1 (homo sapiens) gen, with merely four references 
(number 6 of VOC references), was included. Perhaps, a relative limit based on the number 
of reference fitted the data set creation better. To perform analyses on the derived gene 
lists, the lists were combined into one set. The main drawback of this approach is the loss of 
magnitude. Genes that were referenced in six out of the eight species, were on the same 
level as genes that were associated for one type of air pollution. Genes that could have a 
larger impact, compared to substantially less impactful genes lost their magnitude due to 
this approach. Nevertheless, this method of set creation by making use of the search engine 
of the programme was rejected. During the process it was found out that the text-mining 



based data sets were containing several false-positive results. Clearly, the obtained search 
derived data sets should be validated before future analysis to overcome this problem. If 
these problematic concepts are fixed, literature derived gene sets can be used to test the 
analytical functions in the programme.  

The major advantage from Euretos over DAVID (3) is the refresh on literature based data. 
This provides the user with recent data published on different life science and biomedical 
search engines, alongside curated data bases. While the databases of DAVID are criticized for 
being outdated (Zhou et al., 2019). Euretos integrates over 200 biomedical knowledge 
sources, which can be distinguished in: life-science databases, textual and publication 
sources, and semantic and ontological sources. The programme allows the user to search 
within the programme in which the analysis and pathway enrichment can be performed. The 
analysis and enrichment can be conducted on the obtained search results. Contrary, DAVID 
consist only of the option to upload gene sets. Based on the pathway analysis, we compared 
DAVID annotation tool with the Euretos Knowledge Platform. Besides the pathway regarding 
‘aging’, both enrichment analysis resulted in pathways concerning oxidation, signalling and 
metabolic pathways. As mentioned before, DAVID provides the user with this extra tool to 
look at the internal relationships of clustered terms and makes the biological interpretation 
more focused at a group level. In Euretos, this function can be imitated by saving the 
pathways as a set and exporting them to the relation map option of the AI tool. The different 
strategy of gene set analysis with the Euretos Knowledge Platform resulted in more visual 
appealing approach, compared to the alternative DAVID. Toonen et al. used both Euretos 
and IPA for pathway analysis and exploration of metabolite-phenotype links. They suggest 
that the Euretos platform performed a successful analysis. Taken together, both strategies 
and studies suggest that the pathway analysis of the EKP is performing well, on the condition 
that the gene sets needs a certain quality. At the end, the pathway analysis cluster tool of 
DAVID causes the programme to transcend Euretos. However, this tool can be mimic by the 
relation map option. Which by itself, provides the user with a more visual approach to look 
into genetic relations, on pathway networks and individual gene levels.  

The main drawback is the lack of environmental epidemiological data available in the 
programme. In addition, the programme operate with abstract scanning instead of using the 
full text for analysis. The way the epidemiologic articles are organized, did lead to some 
difficulties. Normally, environmental epidemiology papers do not mention all the findings in 
the abstract. The abstract is used for the results with the best evidence. Some major 
findings, which were left out of the abstract, are not referred to by the programme due to 
this abstract text-mining. Other major limits of the programme are the potential circular 
reasoning and possible false positive annotations. The circular reasoning with text co-
occurrences caused the condition in with own results can be used to reinforce the same 
results through Euretos. The obtained false positive annotations are extensively described 
already. After the completing this study, potential hand-operated solutions are applied by 
the employees of Euretos. 

During the process, other serious challenges and limitations were faced. In the search engine 
of the EKP, the terminology and incorrect relations could cause some problems, resulting in 
incorrect sets. First of all, the synonym lists of the concepts are not always complete. This 
results in concepts that are not related according to the programme, concepts that are 



related while using other search engines such as PubMed. The selection of articles obtained 
from the EKP differs from the selection obtained from PubMed, the latter consist of more 
articles corresponding to the same search terms. This is principally caused by the fact that 
abstract text-mining is resulting in less search results compared to full test scanning. Besides, 
the abbreviation for particulate matter, PM, is not recognised by Euretos as abbreviation for 
the corresponding type of air pollutant. These search issues combined resulting in 
incomplete search results in the EKP. 

It is reasonable to assume that if the curated epidemiological data bases are expended or 
the signals of empirical epidemiolocal data are amplified, the analysis of the EKP can provide 
a framework for environmental epidemiolocal research. Euretos is a powerful tool for drugs 
and disease research, however is lagging behind on the field of environmental epidemiology. 
The EKP is hindered by the lack of curated epidemiological data, frequent present of type 1 
errors and potential circular reasoning.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Conclusion 
The Euretos Knowledge Platform showed serious potential for implementation in 
environmental epidemiology research. In addition to the useability for enrichment analysis, 
the AI tool provide the user with additional other analytic features. Which can be performed 
on the same set of data. The user case showed the potential to broader the performed 
research with pathway enrichment and network analysis options. The data search 
experiment, TOP10 test, showed less encouraging results. Circular reasoning and false 
positive annotation are to major limits in the programme. 

The analytic options of the programme function optimal after uploading experimental data 
to avoid false positive results in the starting datasets. Next to this, the implementation of 
curated environmental epidemiological data bases will provide better search results 
compared to the literature search alone. Further work is planned, using research data of the 
epidemiological research group (population health sciences) of the Institute of Research 
Assessment Science (IRAS).  

More research and extra changes are required for data search and desirable for the user 
case to implement Euretos directly. Changes are necessary for the programme to create an 
AI tool suitable for epidemiological applications. Minor changes could make the EKP feasible 
for widespread use in different fields of research. 
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Supplementary Table 1. Pathway analysis of the Mostafavi (2017) candidate genes. Listing 

the concept (pathway) name, number of concepts of the selected set represented in the 

relevant pathway, column for type indication (Enriched or Depleted), number of concepts in 

the category (pathway) and the corresponding Fisher’s exact test p-values. 

See additional file 

 

 

 

 

 

 

 

 

 

 



Supplementary Table 2. Overview of different relation types of Supplementary File 2 Figure 

2. 

AFT4 controls expression of AHR 

AFT4 interacts with NFE2L2 

AFT4 controls expression of CXCL8 

AFT4 controls expression of CCL2 

AHR interacts with HSPA8 

AHR controls expression of CYP1A1 

AHR binds with CYP1A1 

AHR stimulates CYP1A1 

AHR interacts with CYP1A1 

AHR interacts with CYP1B1 

AHR controls expression of CYP1B1 

AHR stimulates CYP1B1 

AHR binds with CYP1B1 

AHR interacts with NFE2L2 

AHR binds with CXCL8 

CAT interacts with SOD2 

CAT interacts with SOD1 

CXCL8 forms protein complex with IL6R 

CYP1A1 stimulates AHR 

CYP1A1 inhibits AHR 

CYP1A1 coexists with GSTM1 

CYP1B1 stimulates AHR 

CYP1B1 inhibits AHR 

CYP1B1 stimulates CYP1A1 

GCLC interacts with GCLM 

GCLC forms protein complex with GCLM 

GSTM1 coexists with GSTP1 

GSTP1 interacts with SOD1 

HSPA8 interacts with SOD1 

IL1B controls expression of IL6 

IL1B stimulates IL6 

IL1B forms protein complex with IL6R 

IL1B stimulates NOS2 

IL6 binds with IL6R 

IL6 forms protein complex with IL6R 

IL6 interacts with IL6R 

IL6 stimulates IL6R 

IL6 interacts with IL1B 

IL6R binds with IL6 

NFE2L2 controls expression of SOD2 

NFE2L2 stimulates SOD2 

NFE2L2 controls expression of SOD1 



NFE2L2 stimulates SOD1 

NFE2L2 controls expression of IL6 

NFE2L2 controls expression of CAT 

NFE2L2 stimulates CAT 

NFE2L2 binds with GCLM 

NFE2L2 binds with GCLC 

NFE2L2 controls expression of GCLC 

NFE2L2 inhibits GCLC 

NFE2L2 stimulates GCLC 

NFE2L2 controls expression of TXNRD1 

NFE2L2 controls expression of HMOX1 

NFE2L2 inhibits HMOX1 

NFE2L2 stimulates HMOX1 

NFE2L2 binds with HMOX1 

SOD1 catalysis precedes GPX1 

SOD1 interacts with SOD2 

SOD1 catalysis precedes GSTP1 

SOD1 catalysis precedes CAT 

SOD2 catalysis precedes GPX1 

SOD2 is a SOD1 

SOD2 catalysis precedes CAT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table 3. Overview of different relation types (-is associated with) of 

Supplementary File 2 Figure 8b.  

Asthma produces TNF 

CRP affects Asthma 

CRP affects COPD 

CVA is manifestation of CBS 

HMOX1 gene product is biomarker type COPD 

IL1B gene product variant results in abnormal Asthma 

IL6 gene product variant results in abnormal Asthma 

IL6 gene product is biomarker type T2DM 

MB predisposes AMI 

MPO gene product variant results in abnormal COPD 

NFKB1 gene product variant results in abnormal Asthma 

NFKB1 gene product is biomarker type COPD 

T2DM produces TNF 

TNF gene product is biomarker type Asthma 

TNF causes Asthma 

TNF affects Asthma 

TNF predisposes Asthma 

TNF predisposes CVA 

TNF affects COPD 

TNF causes COPD 

TNF causes T2DM 

TNF augments T2DM 

VEGFA gene product variant results in abnormal T2DM 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table 4. False positive results obtained during the data set creation 

(Search→ Particulate matter → Genes) (02-06-2021) 

Gene 
 

Reason of false positive result 

ABO * ABO Blood group  

ADM  * Atmospheric dispersion models 

AFM 
 

Atomic force microscopy 

AHR  * Adjusted hazard ratio 

APCS 
 

Part of PCA-APCS (principal component analysis with absolute principal 
component scores) 

ATR  
 

Part of ATR- FT-IR (attenuated total reflection Fourier transform infrared) 

BCR  
 

Bureau of reference (Road dust (trace element))  

BMF 
 

Biomass fuel 

CAMP  
 

cAMP (cyclic AMP), camp (place with tents etc)  

CAPS  
 

Concentrated ambient particles, Cooking and Pneumonia Study  

CAST  
 

Cast-iron, cast (urinary formed secretion), part of open-cast mining (type of 
mining) 

CCK  
 

Cell counting kit 

CCS  
 

Congestion Charging scheme (Daily charge if you drive, London)  

CFD  
 

Computational fluid dynamics, Chinese fine dust 

COIL  
 

Mosquito coil (mosquito repellent)  

CPM  
 

Condensable particulate matter 

DAP  
 

Dissolved aqueous phase 

DBP  
 

Diastolic blood pressure 

EBP  
 

Electrostatic-bag precipitator (removes particles from a gas) 

ECD  
 

Exceedance concentrations days  

ERAS  
 

Environmental risk assessment 

FEV 
 

Forced expiratory volume  

GAA  
 

Greater Athens Area 

HBM  
 

Hierarchical Bayesian Model 

HGF  
 

Human gingival fibroblasts 

HPD  
 

Heavily polluted days, high pollution district 

IMPACT 
 

Impact (influence) 

LPA * Low polluted area, low-PB-accumulation  

MBP * Mean blood pressure 

MMD  
 

Mass median diameter 

MMUT * Aliases: MCM→ (Bayesian) multicity multi-outcome, part of Al-MCM-
41(member of mesoporous molecular sieves family (material)) 

MOS  
 

Model outcome statistic, margin of safety 

MPI  
 

Term in air quality monitoring, multidimensional poverty index, part of 
MPI/TOF-MS (multiphoton ionization time-of-flight mass spectrometry) 

MSSD  
 

Something to do with heart rate  

MTTP  
 

Aliases: ABL→ Atmospheric boundary layer  

NHS  
 

Nurses’ Health study  

NMB  
 

Normalized median bias 



NPS  
 

Nanoparticles (NPs)  

NPY * 2-nitrogenpyrene (nitro-PAH isomer) 

NRAP  
 

Near roadway air pollution  

PAH  
 

Polycyclic aromatic hydrocarbons, pulmonary arterial hypertension 

PAM  
 

Personal air quality monitor  

PFAS  
 

Per- and polyfluoroalkyl substances 

PGF*  * 8 iso prostane (8 iso-PGF-(2a))  

POR  
 

Prevalence odds ratio  

PRAME 
 

Aliases: MAPE → Mean absolute percentage error 

PSD  
 

Particle size distribution, passive sampling device 

RPE  
 

Retinal pigment epithelial 

SRI  
 

Part of Sri Lanka 

SRM 
 

Standard reference materials (dust/diesel numbers) 

TANK  
 

Storage chamber 

TERT 
 

Part of special type of cell line, part of some chemical names (e.g. tert-butyl 
ether)  

TPR  
 

Temperature programmed reduction, total peripheral resistances, true 
prediction rate 

TRAP  
 

Traffic related air pollution  

*These gene relations are partially incorrect. For these genes there were true positive 
results, next to the false positive relations.  

 


