
Faculty of Science

Exploring Change Impact Analysis in
Low-Code Development Platforms

Master Thesis

Niels van der Wal

n.e.wal@students.uu.nl

5762499

Business Informatics

Supervisors:

dr. S. Jansen. First Supervisor
Utrecht University

dr. F.J. Castor de Lima Filho. Second Supervisor
Utrecht University

dr. M. Overeem. External Supervisor
AFAS Software

December 10, 2022

Acknowledgements

I want to thank my supervisors Slinger Jansen, Fernando Castor Lima de Filho for their
assistance during writing my thesis. I would like to thank Michiel Overeem for his many
hours of discussions and assistance in the last months in which I learned a lot of this domain.
Furthermore I would like to thank AFAS for letting me do my thesis project at their company.
I was able to effectively work on my project and get a better understanding of how LCDPs
work. At last I want to thank my parents, friends and my girlfriend for supporting me in the
past year.

i

Abstract

Low-Code Development Platforms (LCDPs) are being increasingly used in various
domains. These platforms accelerate the development of applications by letting devel-
opers build models in a higher abstraction. They also provide deployment and life-cycle
management functionality. As these platforms evolve, problems can arise. For exam-
ple, when metamodels and models do not conform to each other, the built software
will malfunction, and users of the application might not have the desired interactions.
Therefore the right decisions need to be taken. Change Impact Analysis (CIA) can
be done in order to assist developers of these platforms to support the evolution of
the platform. There is not much known about CIA in the context of LCDPs. There-
fore we conduct a literature review on the currently available approaches. We found
that almost no publications mention CIA in an LCDP context. There are however
various papers that present interesting directions for CIA within Model-Driven Engi-
neering which could be applied within LCDPs. Some of these techniques can be used
for general-purpose modeling languages such as UML, but some are only applicable to
domain-specific languages. These approaches generally made use of techniques such as
explicit rules and traceability in order to analyze changes. There are also several other
techniques that are more suitable for more advanced approaches. Recommendations
are given about how an LCDP supplier should build up their CIA for their platform.
With this knowledge, several directions are presented which researchers can explore to
improve this domain. Some of these gather more grounding of the current approaches,
provide users with improved feedback, or make their approach more correct and com-
plete. At last, recommendations are given to bring the found approaches closer to the
LCDP domain by suggesting case studies with other LCDPs.

ii

CONTENTS iii

Contents

1 Introduction 1

2 Problem statement 2

3 Literature Background 3
3.1 Low-Code Development Platforms . 3

3.1.1 Compared to Model-Driven technologies 3
3.2 Change Impact Analysis . 9
3.3 Definitions within research on CIA for LCDPs 11
3.4 Systematic Literature Reviews in Software Engineering 13
3.5 Tool Support for Systematic Literature Reviews 14

4 Research Questions 20

5 Research Approach 21
5.1 Identify purpose . 21
5.2 Draft Protocol . 23

5.2.1 Research Questions and Research Protocol 23
5.3 Literature Search and Apply Practical Screen 27
5.4 Extract Data . 29
5.5 Appraise Quality . 30
5.6 Synthesize Studies and Writing the Review 30
5.7 Metamodel tables . 32

6 Papers found 34
6.1 Approaches . 36

7 Results 41
7.1 Scope . 41
7.2 Techniques . 41

7.2.1 Unmentioned techniques . 46
7.3 Style of analysis . 47
7.4 Granularity . 47
7.5 Supported languages . 48
7.6 Tool support . 48
7.7 Future work . 49

8 Analysis and Recommendations 53

9 Discussion 56
9.1 Limitations . 56
9.2 Opportunities . 57

10 Conclusion 57

CONTENTS iv

References VII

11 Appendix VIII

1 INTRODUCTION 1

1 Introduction

Low-Code Development Platforms (LCDPs) are a recent type of software development plat-
forms (Di Ruscio et al., 2021). These LCDPs let developers build models that are transformed
into applications. Through the high abstraction used in these platforms, developers using
these platforms can focus on the business logic of the application instead of spending time on
building the underlying infrastructure that is needed to support the application (Sahay et al.,
2020). Some examples of low-code techniques that can help with building these applications
are template-based frameworks or the creation of workflows using connectors (Cabot, 2020).
There has been increased interest in these platforms because they enable a large group of
non-coding developers to build applications without the need of writing a significant amount
of code. In their evaluation of Low-Code Development Platforms, research firm Vincent et al.
(2019) claims that LCDPs will be used in over 50% of all medium to large enterprises by
2023. This means that the software development industry cannot ignore this technology.
In these platforms, business logic, workflows, or additional input fields can be added with-
out the need for code. This is especially useful for companies without an IT department.
There are a growing number of domains in which these platforms can be used. For example
the manufacturing industry (Sanchis et al., 2020; Waszkowski, 2019) and Internet of Things
(Ihirwe et al., 2020). In addition to companies, individuals can also make use of LCDPs to
build applications. Examples are WordPress and Shopify (Lethbridge, 2021; Dushnitsky and
Stroube, 2021) that make it easy to build websites and web shops without writing codes.
Throughout an LCDP, changes in different parts of the system by one group of professionals
can lead to inconvenience for others. This has historically been called the Ripple Effect (Yau
et al., 1978; Arvanitou et al., 2015). For example, when a field is removed in the model, a
function in another part of the system depending on that field will malfunction. These kinds
of changes need to be actively communicated between development teams. Unanticipated
changes can cause various problems with respect to the functionality and stability of the
platform. It also takes a lot of valuable time to trace back the changes that caused these
interactions. Therefore, measures should be taken to determine what impact changes have
on an evolving system. This is called Change Impact Analysis (CIA). According to Bohner
and Arnold (1996), CIA is “the process of identifying the potential consequences of a change
or estimate what needs to be modified to accomplish a change”.
By performing CIA, professionals involved in the development, maintenance, and use of
LCDPs can make better engineering decisions that ensure the quality of the platform and
applications developed using the platform. The use of LCDP will become more widespread
in the coming years (Vincent et al., 2019). It will be used in more domains and applications
are becoming more complex. This means more groups of professionals will be developing,
maintaining, and using these platforms. To keep these platforms available and upgradeable,
the industry can use an overview of available approaches for Change Impact Analysis in their
platforms.

2 PROBLEM STATEMENT 2

2 Problem statement

In traditional software development projects, developers can do CIA to see what impact their
code changes have on other parts of the system. Various techniques and tools are available
for this purpose (Li et al., 2013; Lehnert, 2011a). These techniques are for example mining
software repositories, doing dependency analysis, and measuring coupling between entities
in an application. Most of these techniques have been developed initially for code-based
software development.

There is no clear overview of which approaches can be applied to provide CIA
for LCDPs. The industry and research field can be improved when more
information on applicable techniques and tools are known. Therefore, the

current knowledge of these topics should be synthesized.

There has been one research project in which CIA has been researched in the context of
LCDPs (Overeem and Jansen, 2021). This project resulted in a framework to discuss CIA in
LCDPs. The authors developed a framework and applied that framework to their platform
to show how CIA is implemented in the development of this platform and an application that
was built using that platform. This gave an overview of the used techniques and practices
that were used for this platform. These were, for example, using message dependency graphs,
traceability links, and analysis of model difference results. Since only one platform was used
as a case study to validate the framework, it is currently unknown which other applications
of CIA exist in the research community and industry.
To get a better understanding of the research progress on this topic, a Systematic Literature
Review will be conducted. The different approaches that are presented in the literature
are categorized and presented as solutions for CIA problems. Additionally, the relevant
beneficiaries of these solutions are presented.
The aim of conducting this SLR will be to create an overview of the currently available
approaches to facilitate CIA in LCDPs. Therefore, we will collect available approaches and
find which are applicable. The output of the Systematic Literature Review will present
gaps in the literature from which research directions can be explored. This can facilitate a
starting point for new research in this field. Additionally, the output of this SLR will present
a set of recommendations for developers of LCDPs, concerning the techniques they can use
to facilitate impact analysis of their platform. Working with these recommendations can
assist the relevant stakeholders of an LCDP to make better choices and develop a timeline
of how they want to evolve their platform over time. This will hopefully lead to more stable
platforms and the development of better applications.

3 LITERATURE BACKGROUND 3

3 Literature Background

3.1 Low-Code Development Platforms

According to Sahay et al. (2020) LCDPs are development platforms that make use of vi-
sual interfaces to configure the data schema of the application that is developed. In these
interfaces, a developer can create entities, establish relationships between entities, define con-
straints, and create dependencies between these entities. These platforms are provided in the
cloud. Users of these platforms have a subscription-based on Platform-as-a-Service (PaaS)
model to get access to the platform and start developing and deploying applications. The
main goal of these platforms is to reduce the amount of hand-written code and decrease the
time for the development and maintenance of applications. Removing these routine tasks can
save developers time that can be used for other tasks. This improves the speed of develop-
ment. The developers make these applications by building models. Historically models have
been used for several activities during the development of software. An example is doing
software maintenance (Fernández-Sáez et al., 2018). Modeling languages such as UML make
it possible to create an overview of software design. The graphical notation employed in these
diagrams can achieve more uniformity in documentation than using textual documentation.
Developers can communicate their thoughts and ideas before building the application.
According to Waszkowski (2019), these platforms combine several approaches: (1) Model-
driven software development, (2) Rapid application development, (3) Automatic code gener-
ation, and (4) Visual programming. These platforms are getting increasingly popular among
major IT players. Due to requiring less development experience, people without traditional
software development (primarily programming) experience can develop software easier than
before these platforms were introduced. As these platforms often still allow developers to
run their custom code in the platforms, it is still important that the use of code does not
result in complecations (Lethbridge, 2021). Therefore, it is important that features exist that
improve the maintainability and understandability of these applications. Lethbridge has the
assumption that developers often use too much custom code. Developers of LCDPs should
therefore keep in mind that many end-users will continue doing that and adequate support
for these practices should be employed in these platforms. Examples would be enabling doc-
umentability, automated testing, and improving re-use and collaboration when using these
platforms. Another idea is to create multi-vendor open standards for low-code languages.
There is a wide range of LCDPs with each their own features and qualities. Therefore it is
important to choose a platform that suits the goals of the end-users. Farshidi et al. (2021)
developed a model to improve decision making when settling for an LCDP. It was validated
through four industry case studies and was proven to support decision makers to make better
decisions.

3.1.1 Compared to Model-Driven technologies

By several authors low-code is seen as a synonym for model-driven development (Cabot, 2020;
Bock and Frank, 2021). Cabot (2020) sees it as a restrictive view of model-driven development
(Atkinson and Kuhne, 2003), in which developers only target a concrete type of application.
These applications are data-intensive applications that are accessible using web browsers and

3 LITERATURE BACKGROUND 4

mobile phone applications. According to Cabot, there are some small differences. In LCDPs,
platforms make use of a fixed-language solution. The language itself is not exposed to the
user of the platform and can’t be changed. In MDD solutions, there is some flexibility for
languages to be defined and adapted. There are, for example, several standards, such as
UML and BPMN, that can be used in model-driven approaches. This means that there is
some flexibility available for adopters of model-driven adopters, but not for those in low-code.
Two critical papers seek to determine what differences there are between LCDPs and related
technologies such as model-driven development. One was written by Di Ruscio et al. (2022)
and the other by Bock and Frank (2021).

Di Ruscio et al. (2022) researched how Low-Code Development and Model-Driven En-
gineering (MDE) are related to each other. According to their paper, MDE includes a wide
range of software paradigms focusing on the use of models as primary artifacts during the
development cycle of applications. In MDE, models are used for various processes such as
testing, simulating, verifying, and generating code for the system. Although the models
do not always have to be used for code generation. However, this is the case for low-code
development.
Di Ruscio et al. (2022) state that the goal of MDE is: “to increase productivity by automat-
ing different steps in software development employing models while augmenting the overall
quality”. This does not mean that Model-Driven approaches always aim at reducing code.
MDE makes use of domain-specific languages (DSLs) for their specific domain. This can be
more effective than writing code in industry programming languages because descriptions
using a DSL can be made more intentional and requires fewer workarounds to cater the code
to the domain. This results in easier creation, verification, and maintenance of models. This
shares many similarities with LCDPs as they also aim to increase productivity with the use
of models instead of writing code. On the contrary to MDE, LCDPs actively work on re-
ducing complexity for end-users (citizen developers) during the installation and operation
of the platform. LCDP developers generally do not have to install the modeling software
and are assisted by the platform to host, analyze, and allocate resources for the developed
applications. Often this is done by working in cloud-based development environments. In
MDE reducing this type of complexity of lifecycle management is not one of the key points.

Figure 1: A Venn diagram showing commonalities between model-driven and low-code de-
velopment approaches (Di Ruscio et al., 2022).

3 LITERATURE BACKGROUND 5

As there are commonalities between both MDE and LCDPs, it is possible to show which ap-
proaches are entirely model-driven and which are low-code (Di Ruscio et al., 2021). There are
also approaches that make use of a combination. Figure 1 shows the Venn diagram developed
by the authors. It shows five categories of approaches that can fall under MDE or low-code
Platforms. Areas 2 and 3 are part of both MDE and Low Code Software Development. The
approaches in region 1 of this diagram are not focused on reducing the amount of code used
to implement the system, whereas the approaches in region 5 aim to reduce the amount
of code used to implement a system. These platforms can’t be considered model-driven by
Di Ruscio et al.. In this region, approaches contain platforms that facilitate the development
of applications with reduced code. These platforms also provide users with lifecycle manage-
ment and deployment facilities. These platforms do not use models that conform to defined
language/metamodels. Instead, a relational database or schemaless documents such as XML
or JSON are used.
In region 3 (the area colored red), the LCDPs that are discussed in this project are located.
The platforms in this area of the diagram use models to facilitate the development of software
applications. They do this while reducing the required code and by offering deployment and
lifecycle management facilities. Examples of these platforms are Mendix, OutSystems, and
PegaSystems.
The main differences between the model-driven and low-code approaches are summarized in
Table 1.

Model-driven approaches Low Code
Models used for Not always to generate applica-

tions. They are used to improve
development.

Always to generate applications.

Access Generally on-premise. Generally cloud-based platform
accessed using a browser.

End-users Typically professional software
developers.

Developer with generally no soft-
ware development background.

Domain Applied in many domains. Can
target very technical and domain
specific areas.

Mostly business domain. But
more domains specific platforms
are introduced.

Table 1: The main differences of the Model-Driven and Low-Code approaches based on
(Di Ruscio et al., 2022).

There are more differences between Model-Driven and Low-Code approaches. Di Ruscio et al.
(2022) state that most MDE solutions are based on desktop solutions. Software such as the
Eclipse Modelling Framework and MetaEdit+ do not run in the cloud. While most LCDPs
are cloud-based. Since these platforms are generally cloud-based, it makes it easier for new
users to start working with these platforms. There is no long installation and customization
procedure required to start building and deploying applications.
As mentioned earlier, the target users for LCDPs are the so-called “citizen developers”. They
generally lack knowledge of coding and other software development skills. Therefore, these
platforms need to be catered towards those with a non-technical background. There are

3 LITERATURE BACKGROUND 6

however exceptions where these platforms are used by software architects and programmers.
MDE solutions are generally used by professional software developers during development
processes. This makes them less useful for the purpose for which LCDPs have been intro-
duced.
Model-Driven Engineering solutions have been used for various domains. The domains can be
mostly software focused. Examples are chatbots or IoT appplications. But these domains can
also be focused on physical systems, which requires domain experts for the specific technology.
This could be for example automotive or aviation engineering. The optimized Domain-
Specific Languages can be adapted specifically for the domain which improves engagement
with domain experts. Low-code tools have been mostly used to create business applications to
automate business processes. There are proposals for platforms specifically for other domains
than business applications, but they are not widespread in the industry.

Bock and Frank (2021) analyzed a similar problem. Although their approach was more
systematic and led to a model in which they presented which features were present in LCDPs
and how frequent they were found while examining a set of LCDPs. From initial research on
definitions for LCDPs, they suggest two conclusions when looking at the characterization of
LCDPs. (1) LCDPs are intended to help achieve objectives that have been the core of the
information systems research domain. Among these are increasing productivity and reducing
development and maintenance costs. LCDPs also improve the organization’s capabilities to
adapt systems to requirements that can change during development. In addition, they also
help empower users. (2) It is unclear in what way LCDPs are different from existing software
development facilities.
The authors studied ten LCDPs during a previous project (Frank et al., 2021) which led to a
set of features that can be identified within these LCDPs. The identified characteristics were
classified into five perspectives. These were the Static, Functional, Dynamic, and Interaction.
And at last, they had a category for other aspects of an LCDP. For each feature in these cat-
egories, a score was given based on the frequency of being included in the platforms studied.
The commonly shared features were mainly found in the Static perspective. Examples were
the features about having a data modeling component, having components for data structure
specification and having an internal database management system. The feature of providing
a GUI designer was also found in the studied platforms. In these GUI designers, developers
can create graphical user interfaces to input data that can be integrated with other imple-
mentation artifacts. Less commonly included features are domain-specific reference functions
and reusable artifacts. Only one of the platforms provided the reuse of specific ready-made
functions from the vendor. Other systems had catalogs with reusable functions and examples
that were very generic or rather limited.
Their observations lead to an assessment of the low-code trend. The outcome of this study
(Bock and Frank, 2021) was as follows:

• LCDPs integrate various classical development components in one environment : The
authors say that an LCDP is an environment that includes several already known
components. This results in less need for switching between systems and having to put
less effort into integrating the artifacts to other components outside of the environment.

• Reuse is addressed at a generic architectural level, not at a domain-specific level : the

3 LITERATURE BACKGROUND 7

studied platforms rarely offer artifacts that can be reused at a domain-specific level.
The parts that can be used are often very generic and not suitable for specific contexts.

• Productivity gains mainly ensue from reducing the efforts of routine tasks : A lot of
time and effort is saved by providing good integrations within the system. There is less
need for synchronizing the artifacts that used to be produced by separate components.

• No new technology : No new technologies are used within LCDPs. They are merely a
combination of components. It is not radically new or innovative. Some LCDPs have
been used for years but haven’t been called ”LCDPs”. They adopted the name LCDP
to make it more interesting for customers.

• Conceptual modeling is not at the core of marketing, but at the core of the platforms :
Conceptual modeling components in the platform are the most important components.
They reduce the need for traditional code. This matches well with MDD. The modeling
languages that are used for this purpose are too simplistic for the authors. They do
not keep up with the state of the art in conceptual modeling research.

• Incomplete account of related research: The research field of this domain draws inspi-
ration from the field of Model-Driven Development. Although exact technical concepts
and procedures are not usually adopted. Some of those constructs such as visual pro-
gramming, weaving reusable services into customized services, and on-the-fly computing
have been investigated in this context. The authors think that some of these con-
structs have been ignored during their research but could be a welcome addition to this
field. For example, using reference models, and, working on domain specific modelling
languages.

• Risk of lock-in effects : When businesses dedicate themselves to one platform, they
depend on that platform to offer them support. When a platform decides to stop
supporting its platform. There are almost no ways to export built applications and
other artifacts to other platforms.

Comparison of both papers Both articles have a different outlook on the domain of
LCDPs. Di Ruscio et al. (2022) see potential in LCDPs and are under the impression that
this is a new type of platform that combines Model-Driven and low-code approaches to have
the best of both worlds. Low-code and Model-Driven Engineering are not the same and use
different technologies and philosophies. In both approaches, software engineering is improved
by increasing abstraction and hiding details regarding the implementation of the software. In
model-driven approaches, it is not always the goal to reduce the amount of user code. And
low-code does not mean that something is model-driven. These are areas 4 and 5 in Figure
1. Examples are software packages such as WordPress and Shopify (in area 4). When using
WordPress and Shopify users can build websites and webshops, respectively without writing
a significant amount of code (Lethbridge, 2021). But unlike model-driven approaches, they
do not use models conforming to meta models to build these websites. Instead, these services
solely provide deployment and lifecycle development of the websites that they create. There
are also low-code approaches which do not use models and don’t have built in functionality for

3 LITERATURE BACKGROUND 8

deployment and lifecycle management. These are found in area 5 of aforementioned figure. Di
Ruscio et al. mention database-schema-driven generators as examples for these approaches.
Bock and Frank (2021) however argue that the components of LCDPs are no innovations.
LCDPs reuse components from older technologies but do a lot of effort to integrate these
components into one environment. This reduces the amount of time users must spend on
routine tasks. However, this can only be achieved if the used framework can be used for
developing that kind of application and fulfills other technical and economical conditions. In
the future, these conditions can be carefully assessed in research. They see the potential for
the revival of conceptual modeling, which is one of the central LCDP components. Cabot
(2020) shares the ideas of Bock and Frank. He says that challenges in model-driven can
be transferred to low-code as the technologies these types of approach used are the same.
Low-code however has the potential for bringing modeling to more domains and attracting
more experts in the domain.
Both studies have their concerns about the generality of LCDPs. They are often too general
and do not cater to the needs of a specific industry. Only general business and communication
concepts are provided by these platforms as reusable artifacts. Di Ruscio et al. (2022) think
that domain specific LCDPs could be developed to cater to these requirements from the
industry. In there they could for example provide more specific data reference models for
that domain. The study by Bock and Frank (2021) sees this as a welcome addition to LCDPs
because it can improve the reusability of artifacts.
Both studies are also in agreement that there is not enough reusability, import, and inter-
pretation of artifacts possible between different platforms. If there are no good approaches
to transfer artifacts, this results in a vendor lock-in for developers of those platforms. This
thought is shared by Sahay et al. (2020). They also think that not enough effort is taken
to support the reusability of already developed low-code artifacts. In addition, more generic
mechanisms should be developed that can enable interoperability between LCDPs. Di Ruscio
et al. (2022) mention that the MDE community supports this by providing standards. For
example they have standards for modelling languages (UML, BPMN) and meta modelling
languages (MOF, Ecore). They mention that more research should be done if using a set of
standards would improve interoperability and therefore prevent vendor lock-in.

Thoughts on the MDE vs LCDP discussion As mentioned in the previous section,
various authors voiced their ideas on the differences and similarities between the terms MDE
and LCDP. Authors such as Di Ruscio et al. (2021) think that LCDPs are something else
and should be treated as such. While Bock and Frank (2021) see both terms as the same
concepts.
We personally think that these terms can not be interchangeably used due to the technical
differences. While many concepts within LCDPs are certainly model-driven. There are still
differences in terms of abstraction. This makes it difficult to generalize MDE solutions to
the LCDP domain. When looking at available information on mature LCDPs (Mendix and
Outsystems) we noticed that the analysis and validations of models were much more advanced
than were seen within currently available approaches (Mendix, 2021; OutSystems, n.d.). As
we do not have knowledge of the underlying architecture and supporting technology, we still
need to find a way to connect the available MDE CIA approaches to LCDPs. Therefore, it
is important to closely look at currently available MDE CIA approaches and look whether

3 LITERATURE BACKGROUND 9

they have potential. Additionally performing case studies with mature LCDPs could validate
existing thoughts and ideas on applicable approaches for this purpose.

3.2 Change Impact Analysis

According to Bohner and Arnold (1996), Change Impact Analysis (CIA) is “the process of
identifying the potential consequences of a change or estimate what needs to be modified
to accomplish a change”. Rolfsnes et al. (2016) specify this by mentioning that CIA aims
to find the artifacts that are potentially affected by a change. With the knowledge gained,
direct feedback can be given to the developer, tests can be performed, and prioritization
can be done. As Low-Code Development Platforms (LCDPs) make use of various models,
CIA should be applicable in this domain. A common way to do CIA is to perform static
or dynamic dependence analysis (Rolfsnes et al., 2016). This identifies methods that call a
changed method. It is a relatively safe approach that finds potentially affected artifacts when
a change happens.
Historically, the effect of changes happening in one part of the system, resulting in problems in
the other parts of the system, has been called the “ripple effect” (Yau et al., 1978). This effect
has been researched during various projects. As a result of these projects, tools have been
developed such as the “Ripple Effect and Stability Tool” to compute this effect for programs
written in C (Black, 2001). The probability that this effect occurs can be measured with the
Ripple Effect Measure (Arvanitou et al., 2015).
CIA is sometimes also referred to as Change Propagation (Hassan and Holt, 2004). Although
this term seems to be more common within engineering communities such as mechanical
design. Hassan and Holt explain Change Propagation as the process of “Ensuring other
entities in a system are updated to be consistent when modifications are done to a system”.
Several reviews of Software Change Impact Analysis have been done (Lehnert, 2011a; Li
et al., 2013). These reviews were focused on Change Impact Analysis in traditional software
development. The review by Lehnert (2011a) summarized 150 approaches and classified
them. The found approaches were classified using a set of criteria. 65% of the approaches
found appear to focus on code changes. 13% of the approaches combine artifacts to do
analysis. A taxonomy (Lehnert, 2011b) for these approaches was also introduced. With
this taxonomy, a reviewer can improve their classification and comparison of Change Impact
Analysis approaches. Several criteria found in the literature were included in the taxonomy.
Some of these criteria are Tool support, Granularity of entities, Utilized techniques, and Style
of Analysis.
Li et al. (2013) found 23 different code-based CIA techniques and evaluated them. They
identified four perspectives in which these 23 techniques could be grouped. These perspectives
are (1) Software repositories mining (2) Coupling measurement (3) Execution information
collection and (4) Traditional dependency analysis. The different techniques could also be
grouped into the way their code is analyzed and whether the analysis would give a list
of priority. Another categorization that is mentioned is the difference between static and
dynamic CIA. Static CIA techniques look at possible behavior and inputs of the application.
This results in less precision. Dynamic CIA techniques look at specific inputs and do analysis
on information collected during the execution of the program. Examples of information that
can be analysed after execution of the program are execution traces, coverage information,

3 LITERATURE BACKGROUND 10

and execution relation information. When doing this, the impact set can be calculated.
In LCDP there are many layers that are affected when a change is made in another layer.
This is not explicitly found in the works of Li et al. (2013) and Lehnert (2011a). This makes
these reviews less applicable in the domain of low-code development and related technologies.
They can however be used as a source of inspiration. Some of the criteria that were used in
these works can be transfered to the model-driven and low-code domain.
There have been studies that researched Change Impact Analysis within Model-Driven De-
velopment Systems (Tekinerdogan and Er, 2009). This study makes use of Evolution Scenario
Templates which can be used to describe evolution scenarios of models. With the templates,
concrete evolution scenarios can be presented using evolution transformation patterns. They
define what the impact required for this scenario is. It could therefore be useful to use these
templates.
A master thesis project was conducted on Change Impact Analysis in Model-Driven Software
Engineering Ecosystems (Jongeling, 2016). In this project, a tool for impact analysis in
MDSE ecosystems was implemented and its performance was evaluated. By using this tool,
the author achieved to correctly identify implicit and explicit relations between metamodels
and model transformations (and their included elements). The tool can also predict that
additional changes are caused by a metamodel change. This is unfortunately not very precise
and it’s only applicable within a limited part of this ecosystem.
In Overeem and Jansen (2021) the authors mention several model-driven CIA approaches that
have been used in an industry LCDP. One of those techniques was to use traceability. Galvao
and Goknil (2007) present a survey with traceability approaches in Model-Driven Engineering
(MDE). 12 approaches were found, and they were compared based on the given criteria for
traceability. One of the criteria was providing Change Impact Analysis mechanisms. Out
of these approaches, Five can determine the effect of a change on the entire system. They
individual approaches had different ways of implementing CIA in their traceability approach.
Another approach that is mentioned to improve CIA is to make use of recommender systems
(Overeem and Jansen, 2021). A recommender system could use rules to analyze change
results. By doing this, alternative solutions for the model can be provided that have lower
impact on the run-time. This however requires that the system can link model changes
to run-time model changes. Almonte et al. (2021) looked at various recommender systems
that can be used for different parts of MDE solutions. Examples are metamodels, models
and transformations. These are important artifacts that could be affected after a change.
The approaches that were found were used for model-driven development. However, the
authors see many opportunities for these approaches when applied in the low-code domain.
Recommender systems make use of information from best practices and provides users the
recommendations that can be given based on these practices. LCDPs make use of repositories
that store data of the models. With this information, recommender systems have many
sources to improve their effectiveness. Therefore, the authors see much potential in the use
of recommender systems in LCDPs.

Beneficiaries of Low-Code Development Platforms In their project, Overeem and
Jansen (2021) identified multiple professionals who are stakeholders when improving CIA in
LCDPs. There were Citizen developers who made use of the platform to build applications.
These developers generally lack traditional software development skills but do know the do-

3 LITERATURE BACKGROUND 11

main for which they are developing an application. This could be, for example, accounting
and business applications. Citizen developers make changes to a model using a model de-
signer. These changes can affect customer data. Therefore, the citizen developers need to
make sure that no unintended operations take place when making changes that impact cus-
tomer data. For them, it would be a valuable addition to their development experience when
they receive feedback on their models. Platform developers are involved in building the plat-
form that citizen developers use to build and change their models. For this, they develop and
maintain multiple subsystems within the platform. With proper feedback, they can improve
the development and maintenance experience for citizen developers and operations engineers,
respectively. By analyzing changes in the model, platform developers can identify popular
and neglected features in the platform. This will allow them to prioritize preferred addi-
tions to the metamodel and designer application for the citizen developer. Analysis of the
metamodel will give them an overview of how the model designer is impacted after changes.
Better decisions on changing the model designer can be made with this information. The
last group of professionals involved in the development and operation of applications that
are developed using LCDP are the operations engineers. According to the authors, there
are two groups of these operations engineers. The first group of operations engineers are in
charge of the upkeep of the model designer, the model transformations, and the runtime of
the platform. They are employed within the company that provides an LCDP. With impact
observations, these engineers can help them plan upgrades to the platform. There are also
operations engineers for companies that make use of LCDPs to develop applications. Their
responsibilities are different, as they have to guarantee the upkeep and performance of the
applications that are developed with the platform. For them the impact observations can
assist them with planning upgrades of the application.
In this paper, the authors did not indicate which of the presented groups profit most from
doing CIA. The impression is now that citizen developers who interact with models that
impact customer data have the greatest benefit from better CIA in the platform that they
are using to build their applications.

3.3 Definitions within research on CIA for LCDPs

Software evolution and maintenance Software evolution is a term that has been re-
searched for a long period. Software evolution and maintenance are often seen as something
similar. But there are differences between both concepts. Rajlich (2014) sees software lifes-
pan as a staged model which starts with the initial development of an application. In this
stage the first version of the application is delivered. Following this first evolution will take
place. The developers will add new features and correct their previous mistakes to make the
product more suitable towards the needs of the users. This is the phase most LCDPs are in
as they keep adding new features to improve their software. After this stage the maintenance
stage takes place in which developers do not make significant changes in the software but
focus on repairing the software to keep it usable for end-users. Software in this stage is also
known as “legacy software”. After these stages, software can be phased-out which means
service is withdrawn from the developers and finally the software can be closed-down.
The International Organisation for Standardization thinks of software maintenance as “the
totality of activities required to provide cost-effective support to a software system.” (IEEE,

3 LITERATURE BACKGROUND 12

2006) which is different from the ideas Rajlich (2014) stated about software evolution being
a stage of the software lifespan.
Chapin et al. (2001) have more comprehensive definitions of software evolution and software
maintenance. They define software evolution as “the application of software maintenance
activities and processes that generate a new operational software version with a changed
customer-experienced functionality or properties from a prior operational version, where the
time period between versions may last from less than a minute to decades, together with
the associated quality assurance activities and processes, and with the management of the
activities and processes; sometimes used narrowly as a synonym for software maintenance,
and sometimes used broadly as the sequence of states and the transitions between them of
software from its initial creation to its eventual retirement or abandonment”. They define
Software maintenance as “the deliberate application of activities and processes, whether or
not completed, to existing software that modify either the way the software directs hardware
of the system, or the way the system (of which the software is a part) contributes to the
business of the system’s stakeholders, together with the associated quality assurance activities
and processes, and with the management of the activities and processes, and often done in
the context of software evolution”.
The main difference between these two concepts is that maintenance is a deliberate choice,
and evolution happens in the course of making changes to the software (for example during
maintenance). In the context of this research project, we use the definition by Chapin et al.
(2001).
Evolution is a topic that is widely researched within software development. Figueiredo et al.
(2008) look at the evolution of Software Product Lines using several aspects. They mention
that the evolution brings concerns to software engineers due to the frequent changes that
happen during evolution. Examples are the introduction and removal of features, but also
the transformation of mandatory features. Mens et al. (2005) mention that co-evolution
between different types of software artifacts will be an important challenge in the upcoming
years. This is also one of the problems CIA tries to tackle.

LCDP Change There are different locations in which professionals can make LCDP-
changes. Overeem and Jansen (2021) mention multiple changes such as model (primary
artifacts in LCDPs), metamodel, transformation, run-time model, and platform changes.
There are specific CIA approaches for the aforementioned changes that can be made while
interacting with an LCDP. Lehnert (2011b) mentions these in his taxonomy as the scope an
LCDP approach can focus on. As previously mentioned, for LCDP-Evolution, the software
evolution definition by Chapin et al. (2001) will be used. As the activity of making changes
is highly comparable to software maintenance, we will use their definition for the concept of
LCDP-Change within the metamodel.

Analysis methods Lehnert (2011a) did a review of Software Change Impact Analysis
activities. Within this project a definition was constructed from the works of Bohner and
Arnold (1996). Lehnert defines it as “Identifying the potential consequences of a change,
or estimating what needs to be modified to accomplish a change”. The concept of Analysis
Methods within the metamodel represents the methods that are concerned with the definition
by Lehnert. They are supplemented with concepts from his taxonomy (Lehnert, 2011b)

3 LITERATURE BACKGROUND 13

Impact Within the project by Overeem and Jansen (2021), the concept of Impact is being
used to define the effects that the changes made by professionals have on the performance of
the LCDP. Arnold and Bohner (1993) found in earlier literature that impact has also been
defined as “The effect or result of making a change to a system or its software”. They define
it themselves as “a part determined to be affected, and therefore worthy of inspection”.

Feedback In Overeem and Jansen (2021) the authors mention that impact analysis methods
provide feedback. This feedback can assist the involved professionals in the LCDP with an
analysis of how the changes they make have an impact on other parts in the system. The
professionals can use this feedback to make well supported engineering decisions to improve
the platform.

3.4 Systematic Literature Reviews in Software Engineering

In the past twenty years researchers have been discussing the quality of Systematic Litera-
ture Review in the information systems domain (Brereton et al., 2007). One of the major
criticisms of authors in this field is that researchers did not take inspiration from meth-
ods and experience in other domains with more experience in doing SLR. Therefore various
researchers aimed to combine best practices from other domains and applied them in the
information systems domain. Three attempts and results from doing SLR following these
procedures are discussed in this subsection.
Kitchenham (2004) introduced her Procedures for Performing Systematic Reviews. This has
become one of the major sets of guidelines for conducting a systematic literature review
in software engineering research. In her guidelines, she used three existing guidelines for
doing research in the medical field and adapted them to apply to the problems in software
engineering research.
The various procedures to conduct Systematic Literature Review Kitchenham (2004) have
been used in various studies in the domain of software engineering. This can lead to different
types of contributions to the scientific community. A common output of an SLR is to provide
an overview of the relevant literature found (Hall et al., 2011; Costa et al., 2022). Researchers
can combine answers to their research questions into a set of requirements or guidelines
(Azadani and Boukerche, 2021; Alhirabi et al., 2021). Another possible artifact created by
doing SLR is creating models that comprise the findings in the literature. An example is a
maturity model that can be used to find the current stage a software producing business is
in (Overeem et al., 2022).
Wohlin (2014) presented the snowball approach. In this approach, a starting set is used
from which the reviewer searches forward and backward with the set of references that are
included in the starting set papers. By applying inclusion and exclusion criteria, the final
set of included papers will be applicable to answer the research question. This approach is
suitable when using keywords that yield too many results to manually examine due to noise
from general keywords. This can happen in a widely covered research area. With a set of
picked starting set papers that fit the topic, snowballing can result in a better set of papers
suited to the topic.
The snowballing approach was used in various studies. For example, in the paper by Overeem
and Jansen (2017) on generative and interpretive Model-Driven Development. Their system-

3 LITERATURE BACKGROUND 14

atic review of the literature resulted in an overview of which paper favored generation or
interpretation for characteristics for software quality.
Okoli (2015) saw other problems concerning SLR in information systems research. Guidelines
that were previously published on doing SLR in this domain were generally incomplete. Only
several parts of the entire process were explained, while other important aspects were not
mentioned in these SLR protocols. Therefore Okoli combined best practices from multiple
guides to develop a rigorous standardized methodology for systematic literature review in
this domain. For this, he used guides from multiple disciplines such as health sciences and
adapted them to the information systems domain. The guide can be used for the entire
process of doing SLR, and provides many examples of guides that give proper explanation of
an aspect of each step of doing SLR.
To improve the field of software engineering research Ralph et al. (2021) affiliated with ACM
SIGSOFT released their set of Empirical Standards. With these standards, researchers can
design better studies, fix peer reviews, and educate graduate students. The authors released
these standards for different types of research and show what kinds of attributes should
be and what other desirable attributes could be included when doing research. Based on
previous expert experience, specific standards were developed for research methods such as
conducting case studies, questionnaires, and systematic reviews. Throughout this project, the
systemic reviews empirical standards, as well as the supplements on Inter-Rater Reliability
and Agreement are consulted while working on the proposal, searching the literature, and
reporting the results.
In this master thesis research project, the output consists of an overview of the available
approaches for Change Impact Analysis in Low-Code Development Platforms which will be
complemented with recommendations on which techniques can be used for challenges that
exist in the domain for which CIA can provide a solution. Similar guides on how to deal
with specific situations have also previously been an outcome of SLR (Marinho et al., 2014;
Sancar Gozukara et al., 2022; do Carmo Machado et al., 2014). Problems are elicited and
studies mentioning solutions are presented for specific problems and challenges.

3.5 Tool Support for Systematic Literature Reviews

To conduct Systematic Literature Review, a reviewer can make use of a wide range of tools to
streamline their reviewing process. Some tools can help manage references and generate cita-
tions, coding information, and more tasks that are part of conducting Systematic Literature
Review. There have been academic and various commercial initiatives to develop these kinds
of tools. The academically developed tools are generally open-source and those developed by
commercial software vendors often require subscriptions to make use of the features included
in the tools.
During a study, desirable features for SLR tooling were discussed and prioritized (Hassler
et al., 2016). It appears that currently available tools do not provide enough functionality
for integrated searching of papers. In addition, the collaboration functionalities that allow
SLR teams to work together on one project are not well supported. For integrated tool sets,
several features must be provided: (1) A tool should make it possible to collaborate with other
authors in a team. (2) Tasks and processes must be automated. (3) It must include data-
sharing features. (4) Imported and exported data need to be preserved to access previous

3 LITERATURE BACKGROUND 15

projects. (5) Forward and backward traceability must be present to link goals, actions, and
results. This improves the standardization, verification and validation of the project.

Reference management Managing reference is an intensive task when doing it manually.
Several reference management tools can be used to track found resources and easily use these
references in SLRs. Over the years, these tools have been adapted to work in browsers, where
they can easily import details from studies and include them in the list of references. These
references can be presented in various reference styles such as APA, MLA, and Chicago.
There are many citation management tools available (Ivey and Crum, 2018). Most of them
have a similar feature set, as they can be used with browsers and provide integration with
text processors such as Microsoft Word and Google Docs. There are however reasons to do or
do not choose for a specific tool. Some platforms provide collaborative functionalities while
some don’t. Of the four tools that were analyzed, three of them required a fee or subscription
to access the tool. This could be a reason for reviewers to use a free alternative such as the
mentioned tool Zotero that offers similar functionalities.

3 LITERATURE BACKGROUND 16

Tool Advantages Disadvantages Collaboration Costs

EndNote A large range of
output and cita-
tion formats are
supported.

The costs for us-
ing this tool are
high.

Library sharing to
up to 100 others.

One time fee.

Zotero All references
are stored online
and are accessible
from different op-
erating systems
and browsers.
A large range
of output and
citation formats
are supported.

Some features
aren’t provided
out-of-the-box
and require exter-
nal plugins.

Libraries can be
shared between
authors.

Free (open
source).

Citavi A large range of
output and cita-
tion formats are
supported. Espe-
cially for several
LaTeX editors.

The costs for us-
ing this tool are
high.

Team projects
can be made in
order to collabo-
rate.

Subscription-
based access.

Excel and
comparable
tools

These tools are
versatile, and
can be used for
various actions
depending on
the set up of
the workbook.
Can be accessed
online.

Requires time
and effort to
create workbook
with the required
features that
are needed for a
project. Several
actions need to be
done manually.
Such as down-
loading references
and placing them
in the workbook.

Collaboration is
possible using
shared work-
books.

Paid or free to
use.

Table 2: Tool support for reference management.

EndNote1 can be used to manage bibliographies and references. Users can store their found
references, and the tool can find PDF files for the found references, making it easier to access,
read, review, and annotate these papers. The tool works from the cloud and makes it easy for
reviewers to continue their work from anywhere. Reviewers can make shared libraries with
their peers and track each other’s changes. This increases collaboration between authors.
The references found can be exported to various output reference styles. To use EndNote,
users need to buy the software with a one-time purchase.
Zotero2 can also be used to manage references. Like EndNote, it can be used to store and

1https://endnote.com/
2https://www.zotero.org/

3 LITERATURE BACKGROUND 17

organize references. There are integrations for various text editors (including Google Docs)
that make it easy to include citations in the text when reporting results. All of the supported
data can be synced in the cloud which allows users to switch between devices when needed.
The reference libraries created can be shared among multiple users. Zotero is an open-source
initiative. Therefore, no subscription or product fees must be paid to use this tool.
Citavi3 is another tool to manage references when performing SLR. The tool can help a
reviewer with database searches from a wide range of sources. Papers in PDF file extension
can be annotated inside the software, and integration with text processors such as Microsoft
Word and LaTeX is provided to the user.
Excel and similar spreadsheet solutions by other vendors are versatile tools that can be
used for various business tasks. It can also be tweaked to be used to perform tasks that
support conducting Systematic Literature Review. Excel is especially useful for tracking
literature that is collected. Using Excel, a reviewer can assign labels to references and then
find them using filters. This makes it easy to keep track of different references that are
collected throughout the project. Unfortunately, Excel lacks the functionalities to import
references from databases. This can however be done manually or with help from other
tools such as Harzing’s Publish or Perish4. As there are various vendors with cloud-based
spreadsheets with support for multiple users contributing to the same workbook, it is possible
to easily collaborate with other reviewers by simply sharing a link to a workbook. With a
well-designed workbook, references can easily be recorded, and relevant codes can be given
to relevant papers. These codes can be found using user-defined filters.

Screening A feature that has been included in several tools is the screening. During the
screening activity, a reviewer looks at the search results of their query and rates the titles
and abstracts of the found references to include or exclude a paper from the set of papers
that are used in the SLR. As SLRs often use database searches with keywords, this can yield
many results; reviewers must spend a long time checking these references and indicating
whether they match the topic of interest well enough. This process can be optimized to
take less time and be more efficient. Therefore, tools have been developed to improve this.
When performing keyword searches on “SLR Tooling” AND “Snowballing””, it appears that
there are no available tools that simplify the snowballing process. However, it is possible to
manually insert reference lists from the paper into some of the screening tools mentioned in
this paragraph.
A set of these tools were included in a study that looked at the screening procedure for
doing SLR in the healthcare domain (Harrison et al., 2020). Fifteen tools were analyzed
based on their features. Since not all desired features were found in these tools, only six
tools were included in the final survey which was answered by healthcare researchers. The
tools Covidence and Rayyan were recommended as the best solutions for researchers to use.
The authors found that these tools aligned well with the user requirements for these types
of tools. Other researched tools during the project might lack in usability but compensate
for that by including specialist features which could be a valuable addition during specific
projects.

3https://www.citavi.com/en
4https://harzing.com/resources/publish-or-perish

3 LITERATURE BACKGROUND 18

Several industry tools were inspected to see features. The main characteristics, information
about collaboration support, and pricing can be found in Table 3.

Screening

Tool Special features Collaboration Costs

SLR tool CrossRef API support. Analysis
with PowerBI.

No support for collaboration with
other reviewers in a team.

Free

ASReview Makes use of machine learning
to automatically screen references
based on a sample set of relevant ref-
erences.

No support for collaboration with
other reviewers in a team.

Free

CADIMA Uses steps from Kitchenham to sys-
tematically do the screening process
of found papers

There is support for collaboration
with other reviewers.

Free

Covidence Support for screening abstracts, ti-
tles, and full text. Highlighting of
keywords. Can use metrics on in-
clusion and exclusion to generate
PRISMA diagrams.

Reviewers can work together on one
project. There is also a feature that
can help with achieving consensus
when doing practical screen

Paid

Table 3: Tool support for screening

Hinderks et al. (2020) present a tool for SLR. The tool assists in creating and managing
SLR projects. Features are supported to import search results and manage search results by
including and excluding papers. Another interesting feature is that the CrossRef API can
be called to update the references to be more complete. The tool makes it easy to screen
references based on the title, keywords, and abstract. The reviewer can then decide whether
to include or exclude it. All of the choices that were mede by the authors are documented
for a good overview of the number of papers that are included or excluded based on specific
criteria. These metrics can be used to create a PRISMA diagram.
Researchers of Utrecht University developed a free open-source tool that can assist in sys-
tematic reviewing (van de Schoot et al., 2021). Using RefWorks files, this tool ASReview5

can import large sets of references. With these references, reviewers can filter titles and
abstracts. The tool supports machine learning to select relevant and irrelevant papers based
on these segments of a paper. A reviewer can first manually review a small set of papers
and afterward let the software use an active learning algorithm to perform this task with
high-quality performance. Unfortunately, the tool does not support users to collaborate with
others when sharing a set of papers. The tool can be installed locally on a device but can
also run on a server.
CADIMA6 is a freely accessible webtool that can be used for various steps in conducting a
systematic review of the literature. Its main purpose is to improve the screening step while
performing SLR. Unfortunately, CADIMA does not provide search functionality. To insert
references into CADIMA, a user needs to import a RIS file. The webtool was originally
developed for the agriculture domain. The tool can facilitate the conduct of systematic

5https://asreview.nl/
6https://www.cadima.info/index.php

3 LITERATURE BACKGROUND 19

reviews and maps on agricultural and environmental issues. The tool can however also be
used in other domains. CADIMA supports the collaboration with other reviewers. This
means that multiple users can be appointed to one project which can speed up the screening
process.
Another tool that is used for screening is Covidence7. This is another paid tool that
promises to import citations, screen abstracts and titles, screen full text, extract data, and
export data. Unfortunately, the tool lacks integration with search engines. Users need to
manually search using search engines and export the results to one of the supported reference
storage extensions such as PubMed and RIS text formats. In the screening environment, a
reviewer can easily indicate if they want to include or exclude a paper. Keyword-highlighting
features can also be found to make this process easier. As papers are included or excluded
for a specific reason, they are automatically collected by the PRISMA diagram generator.
This allows us to easily trace back how many papers were removed during each step of the
process.

7https://www.covidence.org/

4 RESEARCH QUESTIONS 20

4 Research Questions

In this project we aim to find out what kind of best practices and open challenges exist for
Change Impact Analysis in Low-Code Development Platforms. To systematically find an
answer to this problem, a main question and four sub questions are proposed to achieve the
objectives and goals of the research project. These questions will be answered by conducting
systematic literature review which will be mentioned in section 5.
As mentioned in section , there are many similarities between Model-Driven Engineering and
Low-Code Development. Therefore we assume that approaches for MDE are also applicable
within Low-Code. The findings for MDE are therefore generalizable for LCDPs.

• Research Question 1: What are the current best practices for Change Impact Anal-
ysis in Low-Code Development Platforms?

The best practices in this domain have not yet been collected and synthesized. The outcome
of doing this will benefits two groups. As current best practices are identified, companies
that are developing or planning to develop a Low-Code Development Platform can receive
advice and guidelines on what to use on their platforms.

• Sub Question 1.1: Which challenges and solutions for Change Impact Analysis in
Low-Code Development Platforms exist?

Using the available knowledge of what is known about CIA in this domain and the solutions
that are being used, an overview of the challenges and approaches can be given for this
purpose. It must provide distinctive categories of these challenges and applicable solutions.

• Sub Question 1.2: What kind of technology-agnostic processes and tools exist for
Change Impact Analysis in Low-Code Development Platforms?

This sub question will be answered to find out what kind of processes and tools are known in
research or currently applied in the industry for CIA in LCDPs. Since the question revolves
around technology-agnostic processes and tools, many solutions will be included. They don’t
have to be restricted to Low-Code Development Platforms but can also have their grounding
in other similar approaches such as Model-Driven technologies.

• Sub Question 1.3: What are the open challenges for Change Impact Analysis in
Low-Code Development Platforms?

In this sub question we will find out what kind of open challenges can be identified in
the domain of CIA for LCDPs. Opposed to sub question 1.1, this research question aims to
present open challenges for which no solutions exist yet. An example is using countermeasures
to tackle negative impact as a result from evolution. An overview of these open challenges
can serve as a starting point for a roadmap for low-code CIA research.

5 RESEARCH APPROACH 21

5 Research Approach

To gather information on current best practices and open challenges in the domain of Change
Impact Analysis of Low-Code Development Platform, research needs to be done. There are
various ways to conduct research on this topic. Interviews with domain experts who work
on these platforms could be a potential research method. This however requires enough
knowledge of the domain, in order to have interviews that will result in interesting answers
that can give enough information to contribute to the body of knowledge (Hadar et al., 2014).
As the prerequisite knowledge is not available yet in the current literature, we first need to
create a body of knowledge covering the topics that will be discussed in a potential interview.
To do this, we propose conducting Systematic Literature Review. In the future, the authors
can decide to use the SLR results to conduct interviews with experts or to conduct further
research on the SLR results by conducting case studies with industry professionals.
Performing Systematic Literature Review is one of the main ways to synthesize evidence
and come to a joint understanding of the status of research on a topic (Wohlin, 2014).
Kitchenham (2004) defines systematic reviews as “a means of evaluating and interpreting
all available research relevant to a particular research question, topic area, or phenomenon
of interest. Systematic reviews aim to present an evaluation of a research topic using a
reliable, rigorous, and auditable methodology”. When doing Systematic Literature Review,
the author should ensure that their research can contribute to the scientific community. A set
of attributes that contribute to a good systematic review was presented by ACM SIGSOFT
and will be used to validate whether essential and desirable attributes are included while
performing research (Ralph et al., 2021).
For this project, the Standalone Systematic Literature Review method by Okoli (2015) will be
used as an inspiration. This method is used because this method was developed specifically
for information systems research. Research into these information systems has different
needs and Okoli tailored his method toward this. As this is one of the more recent methods,
Okoli combined the best practices of different authors of SLR methods. In this method,
Okoli describes the relevant steps that should be taken to do a comprehensive Systematic
Literature Review. The steps were used as inspiration and transformed into the steps that
will be taken during this project. These steps can be found in Figure 2. Not all of these steps
are followed according to Okoli’s guidelines. Some activities have been done prior to choosing
this method and are therefore not needed to be performed again. Also, the “Practical Screen”
and “Search for Literature” steps are combined, as they are intertwined due to the use of the
snowballing approach (Wohlin, 2014). In the following sections, the activities and how they
are included or excluded during this project are presented.

5.1 Identify purpose

The first step Okoli (2015) introduces is to identify the purpose of conducting a systematic
review of the literature. A researcher needs to show that a Systematic Literature Review is
an appropriate means to do their research. Additionally, the intended goals of the project
are elicited.
For this project, the purpose of conducting Systematic Literature Review is to get a bet-
ter understanding of what kind of best practices there are for Change Impact Analysis in

5 RESEARCH APPROACH 22

Identify Purpose

Draft Protocol

Research Protocol

Train the Team

Search Literature Apply Practical
Screen

Extract Data

Appraise Quality

Synthesize Studies
Write the Review

Figure 2: The steps that will be followed in this research project. Inspired by Okoli (2015)

Low-Code Development Platforms. As there has not been much prior research into this
combination of topics, searching for academic sources is required to create an overview of
the current state-of-the-art. Therefore, performing a systematic review of the literature is a
suitable way to gather the literature and analyze the information that can be found in this
literature. With the knowledge gained by doing this, the reader will have a better overview
of what kinds of approaches are currently applicable in this domain. In addition, the open
challenges in this domain are presented. These challenges can show what research in the fu-
ture might interest the research community. The results of this SLR will therefore be useful
to both researchers and practitioners in the LCDP industry. The scientific community can
use the conclusions of this SLR to form new research directions. The results of this project
can be used as a starting point for more specialized research on one of the aspects of Change
Impact Analysis of Low-Code Development Platforms. Platform providers will also benefit
from the output of performing SLR. The output will be an overview of the best practices and
the available solutions (such as tools) that correspond to these practices. With the result-
ing recommendations for using solutions for challenges, platform providers can make better
choices on what to implement in their platform to improve its capabilities for Change Impact
Analysis. This will lead to an improvement in the development experience of stakeholders
who interact with LCDPs.

5 RESEARCH APPROACH 23

5.2 Draft Protocol

5.2.1 Research Questions and Research Protocol

Following Okoli’s SLR protocol (Okoli, 2015), the research questions are defined in this step.
As research questions have previously been decided on before choosing an SLR protocol, this
step is skipped in this project. The main question and its subquestions are stated in Section
4.
The next step is to write a research protocol and train the research team. As this project has
a significantly large workload, the main author will be assisted by others during the literature
search. Therefore, instruction on how the assisting researchers have to perform their tasks
will be included.
During the development of a research protocol, a strategy is chosen to carry out the literature
search. To mitigate sampling and publication bias, we will use a combination of search
methods. The main search method is snowballing (Wohlin, 2014). This is an appropriate
literature search method for this project because it is currently unknown which synonyms
are being used to express Change Impact Analysis in the Low-Code domain. There could
be multiple terms used for similar approaches and techniques. An additional advantage of
snowballing is that while doing backward snowballing, we can find more papers from obscure
journals that cannot be found when completely depending on search engines. During forward
snowballing, the reviewers will use search engines as they provide functionality for showing
which papers refer to a prior published study.
There are several steps to perform the snowball approach (Wohlin, 2014). A visual description
of the steps of this approach is found in Figure 3.

Figure 3: The snowballing procedure by Wohlin (2014)

In this method, the first step is to find starting set of papers. This is done by doing a keyword
search on scientific search engines. To reduce bias and create a diverse set, Wohlin (2014)
says that this set of papers should:

5 RESEARCH APPROACH 24

• Come from different communities. Using starting set papers in the same research
community might result in clusters that mention each other.

• Not be too small. It should depend on the breadth of the studied area.

• In case of many papers found with the search terms used, identify several relevant and
highly cited papers to use as an alternative.

• Include publications of different publishers. The papers should be published in different
years and written by different authors. This will improve the diversity of found papers.

• Use the keywords of the research question to search for starter set papers. Make use of
different synonyms that could be used.

Using the starting set, backward and forward snowballing are applied. A set of criteria is set
up to see what will be included from the references. With backward snowballing we look at
a paper’s list of references. From this list, we remove the papers that don’t meet the basic
criteria which are the language, publication year, and whether the paper was peer-reviewed.
Next, we remove duplicates already included in the list of included papers. For forward
snowballing, we use papers that were referenced in more recent publications. Using Google
Scholar we generate the citations of the paper. We apply the inclusion and exclusion criteria
to this list and remove duplicates.
Next, the remaining references are then reviewed using another set of criteria. These are
related to the title, topic, and authors. If the paper meets these criteria, we can examine the
context in which the paper was referenced in the source document. We can then proceed to
find the paper itself using a scientific research engine.
When the paper is collected we proceed to read the paper’s abstract and conclusion. On the
basis of this information, we can decide to include them in the collection of papers. These
can be found in Section 5.3.
After choosing papers as inclusion candidates, we start again by examining references of
another paper in the starting set and repeating the process. After the starter set has been
checked for references. We iterate to the set of found papers and repeat the process at this
stage. This continues until we can’t find any more papers that apply to our inclusion and
exclusion criteria (as mentioned in Section 5.3). The papers that are decided to include are
later extracted to find relevant passages that can be reported.
As the papers should be selected with care, the author has the assistance of other researchers
who will also do snowballing with the starting set papers and their iterations. After snow-
balling on one set, they can compare which papers they include and which they do not. This
will make sure that everyone is on the same page and that the quality of chosen papers is
assured before doing further iterations of snowballing. This will improve the quality of the
set of articles included. This is called Inter-rater Reliability (Ralph et al., 2021).

Searching Literature In the literature research protocol, a researcher should explicitly
describe how they will find the literature that they will use to answer their research ques-
tions (Okoli, 2015). They also have to explain and justify how they ensured the search’s
comprehensiveness.

5 RESEARCH APPROACH 25

Before choosing a starter set, preliminary research was done by reading relevant papers on
the topics of Low-Code Development Platforms and Change Impact Analysis. By doing this,
criteria were developed for the starting set. For the starting set, we aimed to use papers
published after 2018 and before the moment of starting the search for this set (February
2022). The starting papers must come from leading journals in the areas that are relevant to
the research topics. The starting set papers are related to Low-Code Development Platforms
or related technologies such as Model-Driven Development and Model-Driven Engineering.
Google Scholar was used to find the papers. Google Scholar is a freely available scientific
search engine. It indexes papers from various sources such as academic journals and con-
ferences. Most of the publications from leading publishers are included in Google Scholar,
making it a suitable library for this project.
We have found the starting set papers by entering these search terms on Google Scholar:

• ”Model-Driven” AND ”Change Impact Analysis”

• ”Low-Code” AND ”Change Impact Analysis”

These search terms were decided after doing initial research on the topic. This resulted in
456 papers for the first pair of keywords. And 26 for the second pair. By exporting the search
results using an application 8, a list of papers was created in a spreadsheet application. On
this list, an initial screening was performed. First, the entries which had titles unrelated to
our keywords were removed from the list. An unrelated title would be a paper with a topic
that is an entirely different domain than the domain of information systems. Some keywords
led to unrelated results. For example, ”Change” and ”Model” led to several papers focused
on developing climate change models or risk analysis of climate change. They were, therefore,
unsuitable to include in the starting set for this research project. Next, the papers whose titles
were written in another language than English were removed. At last, we removed entries
containing theses, Ph.D. dissertations, websites, and complete books. For the remaining list,
we looked at the title of the paper. If the title was highly relevant to the research topic, the
reviewer reviewed the abstract and the conclusion of the paper. By doing this, the reviewer
was able to give each paper a score and an explanation of why the paper is suitable or
unsuitable as a starting paper. The highest five ranking papers from this exploration are
used as a starting set to do snowballing.
The papers in the starting set are:

1. The paper by Overeem and Jansen (2021) proposes a framework to discuss Change
Impact Analysis in Low-Code Development Platforms. The paper discusses an LCDP
that is currently used in the industry. It shows what kind of techniques are embedded
to perform CIA on this platform.

2. Tröls et al. (2019) present an approach to check the consistency of collaborative en-
gineering artifacts. As the models in these platforms are used by various developers.
Achieving better consistency between these artifacts during the development process
would improve analyzing the impact this has.

8https://harzing.com/resources/publish-or-perish

5 RESEARCH APPROACH 26

3. (Cho et al. (2011) introduces model-driven impact analysis that combines domain-
specific modeling, constraint-based analysis, and software testing. These techniques are
used to make traceable relations between artifacts that are used in software product
lines.

4. Keller et al. (2009) present an approach that supports designers of applications to
which extent their changes impact the software they are designing. The approach
they introduce is a decision support tool that can help software designers to resolve
inconsistencies between models and metamodels.

5. Butting et al. (2018) shows a method that can determine the impact of model evolution
on generated and handcrafted code. Using a language workbench, it enables users of
this method to identify the effect of model changes.

With this selection of papers, there is a broad search area that can be narrowed down using
inclusion and exclusion criteria to find a suitable group of papers that can be used to extract
data. This is mentioned in section 5.3. Unfortunately not all of the found papers fulfilled
the year of publication criterion. Therefore one paper from 2009 and one from 2011 were
included in the starting set.

Reviewer training As the snowball approach can be very time-consuming for one re-
searcher, multiple reviewers are involved in this process. To make it easier to read the list of
references that are found during the starter set and future iteration analysis, the workload is
shared.
The involved reviewers receive an explanation on how to review the reference list. Reviewers
must follow the inclusion and exclusion criteria, as mentioned in the following subsection.
When reviewers follow the guidelines established, the references and the papers found when
snowballing should strongly overlap each other. Comparing the found papers will keep re-
searchers on the same page. By discussing which papers should and should not be included,
changes can be made to the inclusion and exclusion criteria. ACM SIGSOFT developed
empirical standards for conducting Systematic Literature Review, here they mention the
necessity of Inter-Rater Reliability and Agreement (Ralph et al., 2021). Inter-Rater Reli-
ability and Agreement are especially useful when there are cases of controversial content,
practicality, and philosophy. In this project, there could be a controversial choice of rele-
vance. Specifically, in deciding which papers should and should not be included. Therefore,
comparing sets of found papers is highly recommended during this project.
After the first stage of the snowballing procedure (snowballing using the starting set), the
reviewers will meet and discuss whether the sets of articles found to correspond to each other.
They will also discuss whether important papers have been overlooked in this process. In
this stage, the reviewers will essentially do double work. This is justified as this will lead the
main reviewer in the right direction which will save time and effort later on in the project
due to having a better overview.

5 RESEARCH APPROACH 27

5.3 Literature Search and Apply Practical Screen

The next steps Okoli (2015) integrates into his method are to apply criteria to decide which
studies are relevant enough to be included in the review. This is called ”practical screen”.
Following this step, the reviewer needs to search for literature. As the snowballing approach
is an interaction between searching the literature and applying practical screen, we will treat
this as one step instead of two separate steps during this research project.
During the practical screen, this criteria check is only done on a small number of criteria to
dispose of unrelated papers. During the snowballing procedure, many papers will appear.
Not all of these papers will be relevant. To perform this activity, several tools are available
that improve this process. But in this project, it will be done manually and recorded in
Google Sheets as the reviewer prefers this. This set of papers can be narrowed down using
the inclusion and exclusion criteria to find a suitable group of papers that can be used to
extract data. This means that papers that do not meet these criteria will not be included in
the final set.
When doing snowballing with the starting set of papers, the reviewer will first remove the
papers from the reference list of the paper that is already included in the collected set of
papers. The reviewer will then remove papers that do not meet the basic criteria. Wohlin
(2014) provided a set of criteria for this. These criteria were adapted for this project. The
criteria used are as follows:

• Title: Is the paper’s title related to the keywords ”Change Impact Analysis” AND
”Model-Driven” OR ”Low-Code”?

• Publication venue: Is the paper published in a location where relevant other papers on
the research topics are published? Examples are journals and conferences concerned
with Model-Driven software development.

• Authors: Are the authors of the paper familiar with this research area and have they
previously published on these topics?

In addition three extra basic criteria improve the quality of the set of inclusion candi-
dates.

• Moment of publication: Was the paper published after 2005?

• Language: Is the paper written in English?

• Quality: Was the paper peer-reviewed to be published?

By answering these questions, papers can be excluded from the list based on their titles. This
will give a list of candidates for inclusion. For the remaining list, more strict inclusion and
exclusion criteria can be applied to have a definitive set. The reviewer will skim through the
paper’s title and abstract to make the decision.
One criterium was used to include or exclude the remaining papers based on their title and
abstract. This criterium is:

• The paper presents an approach for Change Impact Analysis in Low-Code Development
and related technologies.

5 RESEARCH APPROACH 28

There are also exclusion criteria in this step. We do this because some papers go beyond
the scope of this project. These papers could be interesting in further research where these
techniques, tools, and methods can be applied. These exclusion criteria are:

• The paper explicitly discusses an approach only applicable for code-based development.

• The paper discusses the implementation of a tool, technique, or method on a level that
is beyond the scope of this research project.

The papers that meet these criteria are collected. In these papers, the relevant sections (such
as the results and conclusion) are read to find out whether the papers consist of relevant
information for this project. When a paper cannot be accessed using academic search engines
with an academic account, it will be excluded from the search. The content of these papers
should be applied within the domain of Change Impact Analysis in Low-Code Development
Platforms. The papers that meet these criteria will be part of the final set.
The included papers are entered into a Google Spreadsheets document where the reviewers
can easily find and trace back which papers are included, where they were found, and why
they are relevant for this project. This allows for better collaboration between reviewers.
When no other papers that meet these criteria can be found through references the snow-
balling procedure ends.
The next step described by Okoli (2015) is to perform the actual search. In the previous
steps, we explained that we are applying the snowballing technique by Wohlin (2014) and
include the practical screen while applying this technique. The literature search is visualized
as a simplified PRISMA flow diagram. It can be found in Figure 4. We started with a set
of 456 papers with our first query and an additional 26 for the second query. Using this set
of papers, the papers most relevant to the research topic were chosen as starting set papers.
This set of five starting papers will be included in the final review. This set of included
papers will be supplemented with additional papers that will be found with backward and
forwards snowballing. The collection of the papers using snowballing will be documented by
following the PRISMA 2020 checklist 2021. As a result, a flow chart will be presented that
shows how many papers are included and excluded at each stage of the literature search.
When snowballing is applied, we increase our set of papers and decrease them based on our
search criteria. After each iteration (first, the starting set and then using the papers that
were found using the starting set), we see if more relevant papers are found based on our
criteria. If no valuable additions are found the search process ends. Throughout this process,
the literature found is collected in an Excel spreadsheet. A list of tools was collected and
synthesized on the basis of their characteristics. This is found in Section 3.5. In the end, for
this project, Excel and similar worksheet tools such as Google Sheets were chosen. These
tools are very versatile and can be used to store the necessary data in an organized manner.
When changes need to be made to codes, research questions, and/or collected information,
these worksheets are easily adaptable. As the literature and the application of the Practical
Screen are intertwined, the process looks a bit different than it would normally look when
applying the steps by Okoli (2015).

5 RESEARCH APPROACH 29

References from
keyword search set 1

(n = 456)

References from
keyword search 2

(n = 26)

Pr
e-

Li
te

ra
tu

re
 S

ea
rc

h
Papers used for

snowballing
(n = 5)

References excluded
(n = 477)

Li
te

ra
tu

re
 S

ea
rc

h
+

Sc
re

en
in

g

References excluded
based on criteria

References found
through snowballing

Papers selected to
code

In
cl

ud
ed

Papers coded Papers excluded
during coding

Unique studies
included in review

Figure 4: Simplified PRISMA 2000 chart (Page et al., 2021) of the literature search, and
synthesis.

5.4 Extract Data

When the full set of relevant papers is collected during the Search for Literature step, we
continue to the Extract Data step. During the Extract Data step, a reviewer systematically
takes information from the selected papers that can be used to synthesize this information.
Okoli (2015) advises reviewers to make use of a form of data extraction that supports storing
details and commenting on segments. NVivo is a tool that supports this and can be used for
this purpose. Wolfswinkel et al. (2013) developed a grounded-theory method to review the
literature. As previously described, there are already specific search terms, research fields,
and inclusion/exclusion criteria. Therefore only the Analyze and Present stages in their
method are applicable in this project.
During the Analyze step in the method by Wolfwinkel et al., the reviewer will apply codes
to the studies that were decided to be included in the review. Three coding activities are

5 RESEARCH APPROACH 30

done; Open coding, Axial coding, and Selective coding. During open coding, the hidden
aspects that were missed during the prior search are conceptualized. These segments can
be incorporated into concepts and insights for which labels/codes can be made. During
the axial coding step, the interrelations between categories and subcategories are defined.
When creating categories and derived subcategories can become the main themes in the
review. Finally, selective coding is done to find the relations between the main categories.
The categories are then integrated and refined to be more complete and applicable for the
segments in the studies. This will lead to an overview of the selected categories and how
they can be presented in the review.

5.5 Appraise Quality

During the appraise quality step, Okoli (2015) suggests researchers to evaluate the quality of
the extracted information during the previous step. If the papers and the knowledge found
inside those papers end up being of low quality, they can be removed from the set of papers.
Due to the prior application of the inclusion and exclusion criteria during the ”practical
screen” step, we only have to do quality appraisals based on the type of studies within the
papers that could be included. In the Qualitative appraisal, studies that have been imple-
mented in real-world situations are preferred over those in controlled environments. In this
project studies that are tightly connected to Low-Code Development Platforms are priori-
tized over those in related technologies such as Model-Driven Engineering. As in (Di Ruscio
et al., 2022; Bock and Frank, 2021), there can be an overlap of low-code and model-driven
techniques within the approaches. Therefore, many Model-Driven approaches are applicable
in LCDPs and therefore inclusion candidates. Studies related to traditional software devel-
opment will be included when alternatives are not available in the aforementioned context.

5.6 Synthesize Studies and Writing the Review

The last two steps included in Okoli (2015) are to synthesize the studies and to write a review
of the literature. With the codes that are made and placed into various categories and sub-
categories (Wolfswinkel et al., 2013), it is possible to synthesize the found information to
answer the research question. These categories provide a structure in which the relevant
passages can be placed. These can be written down as such in the literature review. The
(sub-)categories and their contents can be used as input for data visualizations such as tables,
graphs, and images. They can also be used to convey knowledge to the reader. An example
would be a tree structure using the papers that are included in the review based on the
snowballing approach. This can show the relations between papers and what the process has
been during the literature search. An example can be found in the paper by (Overeem and
Jansen, 2017).
For this project, a metamodel for the to-be-developed artifacts is proposed. In this metamodel
5, there are several aspects that play a role in Change Impact Analysis approaches for LCDPs.
The blue rectangles are the concepts for which tables are going to be developed.

5 RESEARCH APPROACH 31

Evolving
system

results in

is observed by

Is performed

Practice (classified
by Lehnert)

analyzed

changes made

no
Can

countermeasures
be performed

composed of other practices

no

Is something
measured

stop

change

External forces

Impact

Countermeasure

start

use

Figure 5: Metamodel of the collected information in relation to CIA for LCDPs

LCDPs are continuously evolving systems. Due to deliberate and accidental changes, new
versions of a platform are created. There are internal and external forces that must be
taken into account. To find out what changes are made and how they influence aspects of
the system or the system as a whole, CIA practices can be implemented. There are many
practices/approaches available for this purpose. They can be categorized using the taxonomy
by Lehnert (2011b) which offers various criteria to compare and classify approaches. As this
taxonomy is not developed especially for MDE/LCDP approaches, some adaptations might
have to be made in order to be compliant with aspects that play a more significant role
in these development methods that have some different characteristics compared to code-
based development. These practices can work independently or could be dependent on other
practices in order to perform their intended activities to analyze what is impacted within an
evolving system.
There are also circumstances in which no negative impact is detected. This ends the process
untill external forces make new changes. If an impact can be detected, some practices will
provide countermeasures. These countermeasures could be restoring the changes made in
order to make a system function as intended, or suggesting alternative changes in order to
get to the intended state of the system. This leads to the system evolving again and restarting
the entire process.
Within this project, the LCDP CIA practices are collected using the taxonomy by Lehnert

5 RESEARCH APPROACH 32

(2011b). Next to this, we also collect the challenges the authors describe and the future work
that is proposed. This will make it possible to give a better overview of the current state of
the art within this domain. Coding papers based on predetermined codes is called deductive
coding. When other interesting segments in the papers appear that do not match one of the
predefined codes, inductive coding is used. New codes are created to give these text segment
a place.

5.7 Metamodel tables

To structurally synthesize the findings in the found approaches, a metamodel was developed
that shows which artifacts can be made to answer our research questions. The main artifact
will be a table containing the found relevant approaches (Table 4). The found approaches
have characteristics that can be collected. The characteristics used, come from the taxonomy
of Lehnert (2011b). This taxonomy was developed to classify CIA approaches. Using this
taxonomy can classify and compare the approaches found. As the taxonomy is used for a
multitude of CIA approaches, and not specifically for LCDP/MDD CIA approaches, there
might be a need to adapt the taxonomy and the collected characteristics in order to comply
with specific aspects of these approaches.
In their taxonomy (Lehnert, 2011b), the author collects a multitude of characteristics an
approach can have. In this table, not all of these characteristics will be presented. Some of
the characteristics will be excluded because they are less relevant to the goals of this project.
The collected characteristics in the table are:

• Description A short description of the approach and whether it is being used. This
is not mentioned in the taxonomy by Lehnert (2011b).

• Scope of analysis: Does the approach work in a specific part of the information sys-
tem. In our case, it will be focused on LCDPs and mainly on the model and metamodel.
Lehnert puts these under the Models - Requirements and Models - Architecture criteria.
Lehnert presents also code-based criteria which are relevant for the interpreter side of
the LCDPs that are analyzed using the approaches. There are three distinct types of
source code analysis scopes. These are Static, Dynamic, and Online approaches.

• Technique: Lehnert identified ten different techniques to which his found approaches
could be compared. Examples are Program Slicing, Message Dependency Graphs, and
Tracability : Some of these ten techniques were found during initial snowballing research.

• Style: Lehnert defines three styles for CIA. (1) Global Analysis : which looks at the
whole system. Independently of the current task that is performed. (2) Search based :
when the strategy operates on-demand to find more about a specific change request (3)
Exploratory : when an approach step-by-step goes to the system and presents the user
possibly impacted elements in the application.

• Granularity: Which level of granularity does this approach support. This is shown
for the artifacts, the changes, and the results (which are reported by making use of the
approach).

5 RESEARCH APPROACH 33

• Independent: Is the approach independent, or does it make us of other approaches
to perform its activities. This is not found within Lehnert’s taxonomy.

ID Description Scope Technique Style Granularity Independent

Artifacts Results Changes

Table 4: Collected characteristics of found approaches

In the final step, the findings of the literature review are highlighted to present the contribu-
tion to the research domain. This way, the readers will be able to extract what was written
in the previous chapters. A structure based on the metamodel and filled-in tables will be
used to present the found results and artifacts created by conducting SLR. Additionally, the
steps that are taken to conduct the research are presented so that other researchers will be
able to replicate the results when following the same steps.

6 PAPERS FOUND 34

6 Papers found

By executing the protocol, a set of 23 papers was collected. The papers within this set
present approaches for Change Impact Analysis that are applicable in systems that make use
of Model-Driven Engineering and related techniques.
The process of the literature search and an overview of the number of selected papers is
visualized in a simplified Prisma diagram (Page et al., 2021). This can be found in Figure
6. Throughout the process, more than 1500 references were examined and 23 papers were
selected to be included in the literature review after coding.

References from
keyword search set 1

(n = 456)

References from
keyword search 2

(n = 26)

Pr
e-

Li
te

ra
tu

re
 S

ea
rc

h

Papers used for
snowballing and code

start set
(n = 5)

References excluded
(n = 477)

G
en

 1

References excluded
based on criteria

(n = 194)

References found
through snowballing

start set
(n = 209)

Papers selected to
code from gen 1

(n = 15)

In
cl

ud
ed

Papers coded
(n = 32)

Papers excluded
during coding

(n = 9)

Unique studies
included in review

(n = 23)

G
en

 2

References excluded
based on criteria

(n = 1201)

References found
through snowballing

gen 1
(n = 1213)

Papers selected to
code from gen 2

(n = 12)

G
en

 3

References excluded
based on criteria

(n = 357)

References found
through snowballing

gen 2
(n = 357)

Papers selected to
code from gen 3

(n = 0)

Figure 6: Simplified Prisma diagram of the literature search (Page et al., 2021)

The papers and their sources can be found in Figure 7. Each oval represents a paper, and
each line is a reference from a paper to a referenced paper. The starting set of papers is
highlighted in yellow.

6 PAPERS FOUND 35

Overeem and
Jansen (2021)

Tröls et al.
(2019)

Cho et al.
(2011)

Keller et
al. (2009)

Butting et al.
(2018)

Kögel (2017)

Popescu et
al. (2012)

Demuth et
al. (2016)

Gruschko et
al. (2007)

Cicchetti et al.
(2008)

Iovino et al.
(2012)

Salay et al.
(2016)

Briand et al.
(2006)

Lehnert et al.
(2013)

Rechau et al.
(2017)

Vieira and
Ramalho

(2016)

Khelladi et al.
(2018)

Lehnert et al.
(2014)

Müller et al.
(2014)

Jongeling
(2016)

Iovino et al.
(2019)

Agirre et al.
(2013)

Di Rocco et al.
(2013)

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

Figure 7: Graph of papers found through snowballing

It was noticeable that the paper by Overeem and Jansen (2021) led to many interesting
backward sources, as this project was mainly inspired by this paper. The papers found led
to more interesting sources as can be seen in Cicchetti et al. (2008) and Iovino et al. (2012).
And these papers both referred to many other interesting sources that were highly relevant.
The starting set papers of Tröls et al. (2019), Cho et al. (2011), Keller et al. (2009), and
Butting et al. (2018) only led to a small number of papers when doing backward and forward
snowballing. It appears that these papers lacked some relevancy to this topic and referred
to other papers that were in other domains than the papers found by snowballing with the
paper by Overeem and Jansen (2021). In this paper, the authors mention several approaches
that are already known to be effective and were therefore an easy and trustworthy source to
use in the start set. It might have been a better choice to only use this paper in the starting
set. This would have saved time that was now spent on finding other relevant papers that
ended up not giving the results that we wanted to achieve with this set. Limiting ourselves
to only include papers published within the time frame of 2018 and 2022 might have been a
limiting factor as this domain of research is not very active.
During the execution of our practical screen using snowballing, we came across some papers

6 PAPERS FOUND 36

that were relevant to the topic of CIA within LCDPs and other MDE techniques were ex-
cluded because they did not satisfy the criteria. The systematic review by Alam et al. (2015)
is a good example of this. Even though no approach is presented by the authors, the paper
presents more background information to discuss other found approaches. It is therefore
excluded from the found approaches in the main list of papers but can be included in an
extra set of papers.
Some of the approaches found were removed from the set of included papers at a later
stage of the process. During the coding of the papers, several of them appeared to not
present the information that we were looking for. An example of such a paper is Di Rocco
et al. (2018). This paper did not present an approach but gave an overview of the impact
certain metamodel changes have in a specific Eclipse editor (Sirius9) that supports graphic
modeling. These papers could have been omitted at an earlier stage. But due to a lack of
domain knowledge and a relevant title, we kept this a candidate until the later stage of the
project where we finally decided on excluding the paper.
As the papers Gruschko et al. (2007), Cicchetti et al. (2008), and Iovino et al. (2012) were very
fruitful in leading to more papers, we tried to find out whether more papers could be found
that were initially missed. Using the website Litmaps10 we found that these three papers were
referenced by mutual other authors. The paper by Hebig et al. (2016) presents approaches
to the co-evolution of metamodels and models that can be used as background information
to describe other approaches that were found by snowballing. Using the Researchrabbit
tool11 a paper from Kessentini and Alizadeh (2022) was found that did not yet appear
when snowballing. This paper introduced a semi-automated metamodel/model co-evolution
approach. Upon examination of the paper, it appears that it would have been included if
it had been found during the process. Both papers can be used to support statements that
will be made in the following sections. As snowballing is a time-consuming and mentally
exhausting task, some people tend to overlook things. When there is limited manpower and
experience in doing the snowballing task, users might have a less complete set of selected
papers.
The following sub-section presents the included papers, where they were published, and a
brief description of the approach.

6.1 Approaches

Overeem and Jansen (2021) MODELS-C, 2021 This paper proposes an LCDP CIA
framework. The authors also described how CIA was done within an industry LCDP. The
analysis is done on the source code and models. The approach uses some sort of explicit rules,
traceability, message dependency graphs, and differencing. The analysis is done on various
levels. For example, the OEM diff and evolution operations are done on all available levels,
while the mergelog that provides the co-evolution of model and customer data operates on
the attribute level. The change analysis results are represented as diffs. And also message
dependency graphs are used to represent the run-time model of the application. The approach
is used explicitly for the platform AFAS developed and therefore not easily transferable to

9https://www.eclipse.org/sirius/
10www.litmaps.com
11www.researchrabbit.ai

6 PAPERS FOUND 37

other applications. The mentioned techniques were implemented within their platform and
the authors presented their framework to discuss CIA for other platforms.

Tröls et al. (2019) MODELS-C, 2019 The approach by Tröls et al. is multifaceted as
many different types of artifacts can be analyzed. It focuses on code and various other
artifacts such as requirements and models. It makes use of traceability to point from the
code to a generated uniform artifact representation that is linked to an artifact such as a
UML model. A consistency checker using explicit rules is afterward used to analyze the
impact of the artifacts change. As explicit rules are used, the analysis style is search-based.
The evaluation result is stored within the Consistency Rule Evaluation Artifact that presents
relevant engineers concerned with these artifacts to take action when necessary. The approach
works with several artifact types such as UML models, Excel files, and Eplan P8 electric
models. The approach is built into an Eclipse platform application.

Cho et al. (2011) Model-Driven Domain Analysis and Software Development: Architec-
tures and Functions, 2011 This approach is concerned with CIA of Domain Specific Models
of Software Product Lines. Traceability is established and the models are transformed into an
augmented constraint network (ACN) which encompasses the assumptions and constraints
in heterogeneous software artifacts. A framework then uses the ACN to calculate metrics
about design candidates. The metrics can help engineers decide which design is least volatile
to changes. Case studies were conducted but no tool was presented by the authors.

Keller et al. (2009) Emerging Technologies for the Evolution and Maintenance of Software
Models The authors developed an algorithm that can predict the impact of inconsistency
resolutions. The approach makes use of explicit rules to check which model elements are
impacted. As a result of executing the algorithm, the inconsistency instances are presented
and the violated rules are presented. No tool was presented.

Butting et al. (2018) MOD-WS, 2018 A method is introduced for shepherding model
evolution for Model-Driven Development tool chains. The method works with MontiArc,
which is an architecture description language. The technique that is used to find the impacted
artifacts due to evolution is differencing. As a result, the developers receive the impacted
artifacts when the model evolves. The approach does not look at the performance but solely
on the syntactic changes of models. Developers can use the impacted artifact to manually
find out what the impact is on the performance.

Kögel (2017) ESEC/FSE, 2017 Kögel proposes an approach using history mining to give
recommendations for Model Driven Software Development. Ecore metamodels were used to
learn about the common model transformation. The prototype recommender system can
analyze the change history of a single model. For these transformations, recommendations
are generated and presented to the developer. The author has not yet completed the tool
as more data has to be gathered and more case studies need to be done to validate the
performance of the approach.

6 PAPERS FOUND 38

Popescu et al. (2012) DEBS, 2012 An approach for impact analysis of distributed event-
based systems is described. Using the source code of a system, message dependency graphs
(MDGs) can be created that capture inter-component and intra-component dependencies.
When comparing versions of an MDG before and after a change, the differences can be
compared which can provide developers with opportunities to check components that require
attention. These graphs can be generated for Java, C++, and C# code. The authors called
their technique Helios (Popescu, 2010).

Gruschko et al. (2007) Proc. Int. Workshop on Model-Driven Software Evolution held
with the ECSMR, 2007 Gruschko et al. state that metamodel evolution can pose a threat
to the applicability of Model-Driven Development to large-scale projects. When metamod-
els evolve, models do not conform to the metamodel anymore. The authors introduce an
approach that can find and synchronize these metamodels and models. The approach is con-
cerned with the architecture of the system and makes use of traceability and explicit rules.
The model transformations are analyzed and the relevant set of changes is collected. The
approach supports the transformations of Ecore-based M2 models. No complete tool has
been presented in the paper, only a prototype was made.

Cicchetti et al. (2008) 12th International IEEE Enterprise Distributed Object Computing
Conference, 2008 The approach by Cicchetti et al. (2008) attempts to automate co-evolution
within MDE. They focus on metamodels and models. Explicit rules and Differencing are used
to facilitate this. The input of this approach are the difference models that were gathered
by using Ecore and MOF metamodels. By performing the approach, exported traces can
be used to instantiate changes to the model-based changes in the corresponding metamodel.
Unfortunately, this only supports structural features at the moment.

Iovino et al. (2012) Journal of Object Technology, 2012 Iovino et al. proposes an
approach that allows developers to establish relationships between the metamodel and its
related artifacts. It also automatically identifies the elements within these related artifacts
that will be affected by metamodel changes. This analysis is done on modeling elements that
are impacted during metamodel evolution. The approach supports several types of artifacts
that can interact with the megamodel that is used as input. These are Petri net metamodels
and ATL transformations.

Demuth et al. (2016) IEEE ICSME, 2016 is an approach that presents an example of
Tröls et al. (2019). They also use a uniform data representation so multiple artifact types
can be supported. The analysis is done using Explicit rules and Traceability. The result of
the analysis is an overview of affected artifacts after a change and the responsible engineer.
A tool was presented as the output of the paper.

Briand et al. (2006) Journal of Systems and Software, 2006 The author presents an
approach for the analysis of UML diagrams. The approach makes use of Explicit rules to
detect changes in components of UML models. A measure of distance is calculated that
presents the distance between the changed model elements and the impacted elements. The

6 PAPERS FOUND 39

distance is calculated using the number of impact analysis rules (explicit rules) that had to
be invoked to identify the impacted element. As a result, a prototype tool called iACMTool
was presented by the authors.

Lehnert et al. (2013) Proceedings of the Euromicro Conference on Software Maintenance
and Reengineering, 2013 Lehnert presents a rule-based analysis of heterogenous software
artifacts. Explicit rules and traceability are used within the approach. Similar to Tröls
et al. (2019) and Demuth et al. (2016) they decided on using a uniform representation of the
artifacts so it supports various modeling languages. When executing the analysis, the user is
presented with the impacted elements, and also how they are impacted. So that developers
will know how they should be changed. The authors presented a tool as their main output.

Salay et al. (2016) Software and Systems Modeling, 2016 Megamodel slicing is used
within this approach. Megamodels can represent collections of interrelated models. The
approach makes use of traceability relations to assess the change impact. The analysis within
this approach is used on a megamodel of a UML diagram. As a result, the approach presents
the fragments of the megamodel that are impacted by evolution. The authors are developing
a tool for the MMINT framework (Sandro et al., 2015).

Jongeling (2016) TU Eindhoven In this master thesis, the author presents an approach
for CIA within MDE systems. It makes use of information retrieval and Explicit rules.
The artifacts that the approach supports are domain-specific languages and model-to-model
transformation. As a result, it presents the elements that are likely to co-change once the
metamodel of the system changes. A tool was presented by the author.

Rechau et al. (2017) European, Mediterranean, and Middle Eastern Conference on Infor-
mation Systems, 2017 In this approach model transformations are the main target. Explicit
rules are used to analyze the transformations of Enterprise Architecture metamodels and
models. As a result, it presents the qualitative assessment of the impacted instances. A tool
is presented for this purpose.

Iovino et al. (2019) 45th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), 2019 The main topic of this paper is the proposal of a query-based
impact analysis approach for the evolution of metamodels. The approach uses evolution
definitions to generate OCL queries that can be executed for models and transformations.
As a result, the impacted elements can be obtained. Developers can then decide whether
they should proceed with the evolution or not. The approach supports Ecore model and
metamodels, and ATL transformations.

Agirre et al. (2013) AMT@MoDELS, 2013 This approach is focused on the impact
analysis of software architecture migration. The tool that is presented by the authors can
do an automated analysis of the impact of software architecture changes that are caused by
evolution. The tool makes use of explicit rules, and traceability and uses model differencing
in order to do the analysis. The result of the analysis is a model of the adaptation goals.

6 PAPERS FOUND 40

Di Rocco et al. (2013) Proceedings of the Second Workshop on Graphical Modeling Lan-
guage Development To improve the visualization of metamodels, Di Rocco et al. propose
an approach. The approach uses traceability information and model differencing for this.
Transformation elements in relation to the changed metamodel elements are used as input
and as a result, the approach shows a visualization of these traces. For this project, they
used ATL and ECore metamodels.

Müller and Rumpe (2014) Electron. Commun. Eur. Assoc. Softw. Sci. Technol. 65,
2014 In this approach, difference models are generated that are then checked with explicit
rules who define the consequences of the changes between UML class diagrams. The approach
currently supports UML class diagrams for their artifacts. As a result, it presents checklists
with hints about development steps that can help to manage the evolution of the system.

Lehnert et al. (2014) Modiellierung, 2014 Lehnert et al. present an approach that looks
at model dependencies for rule-based regression test selection for business processes. They
support BPMN, UML, and UML testing profile models. To achieve this, explicit rules were
used. These rules were implemented within a tool called EMFTrace and have been evaluated
in this project. After analysis. The tool can present the user with the impacted test elements.

Vieira and Ramalho (2016) International Journal of Software Engineering and Knowl-
edge Engineering 26 This approach makes use of explicit rules to analyze ATL model trans-
formations. As a result, it presents an impact value of a given change and the impacted
elements. A tool for this purpose was presented.

Khelladi et al. (2018) 21th ACM/IEEE International Conference The final selected pa-
per presents an approach that looks at side effects when a model inconsistency is repaired.
The approach the authors presented can automatically detect and track the consequences of
repairs. (for example side effects). The analysis is done on transformations and explicit rules
are used as the main technique. As a result, the approach presents a ranking of possible
repairs that have the least side effects (negative impact) on the system.

7 RESULTS 41

7 Results

In the past section (Section 6.1), the found approaches were presented. The relevant infor-
mation was extracted from the papers using the codes by Lehnert (2011b). The information
is also briefly described in the Appendix within Table 9. The yellow highlighted fields show
concepts that do not occur often when looking at the other found approaches. These concepts
are explicitly mentioned when discussing the techniques, styles and scope.
In the following sub-sections we discuss the characteristics that can be found according to
taxonomy by Lehnert (2011b) .

7.1 Scope

Lehnert (2011b) first mentions the scope of the approach within his taxonomy for change
impact analysis approaches. The scope of analysis describes what kind of artifacts an ap-
proach is concerned with. Lehnert states that approaches can be applied to code, models,
miscellaneous artifacts, or a combination of these different artifacts.
Distinction between different source code level approaches were made between Static, Dy-
namic, and Online analysis. Static is based on syntactic and lexical analysis of source code,
in dynamic analysis, analysis is performed after data has been collected from program exe-
cution, and online analysis is done while the program is being executed in real-time.
Lehnert also makes a distinction between analysis that is done on models. Analysis can
be done on requirement specifications, but also on the architecture and the abstract design
of the software. The scope that was mostly used within the found approaches was the
architecture of models and their abstract design. In Lehnert (2011a), the author mentions
that architectural models such as UML component diagrams can enable the assessment of
architectural changes on a more abstract level than source code. This is especially useful
when doing impact analysis during earlier stages of development and within “model-based
development” which can be seen as MDE. This scope brings different levels of granularity such
as systems, sub-systems, components, and classes. This classification (Models - Architecture)
is also concerned with transformations between models, and are therefore the mainly found
scopes within this analysis.
As this project did not focus on code-based development, the analysis on the code level
was only found in four of the papers, which were Overeem and Jansen (2021) and Popescu
et al. (2012) for static analysis (before the code was executed). Wheras Tröls et al. (2019),
and Demuth et al. (2016) made use of analysis of code after the compiler in an IDE was
executed. The requirement specification scope was never used as no papers were included
with approaches for the impact analysis of requirement specifications. The scopes that were
used for the papers can be found back in Table 5

7.2 Techniques

In his taxonomy, Lehnert shows 10 different techniques that he identified while doing research
on CIA approaches. These 10 techniques were identified within a research project where
Lehnert combined existing taxonomies of CIA to make a more comprehensive taxonomy
(Lehnert, 2011b). These techniques were used often within the found approaches that showed

7 RESULTS 42

M
o
d
e
ls

-
A
rc
h
it
e
c
tu

re

C
o
d
e
-
D
y
n
a
m
ic

C
o
d
e
-
S
ta

ti
c

Overeem and Jansen (2021) X X

Tröls et al. (2019) X X

Cho et al. (2011) X

Keller et al. (2009) X

Butting et al. (2018) X

Kögel (2017) X

Popescu et al. (2012) X

Gruschko et al. (2007) X

Cicchetti et al. (2008) X

Iovino et al. (2012) X X

Demuth et al. (2016) X

Briand et al. (2006) X

Lehnert et al. (2013) X

Salay et al. (2016) X

Jongeling (2016) X

Rechau et al. (2017) X

Iovino et al. (2019) X

Agirre et al. (2013) X

Di Rocco et al. (2013) X

Müller and Rumpe (2014) X

Lehnert et al. (2014) X

Vieira and Ramalho (2016) X

Khelladi et al. (2018) X

Total 22 2 2

Table 5: The scope of the found approaches as described within Lehnert (2011b)

7 RESULTS 43

up in his project. Lehnert mentions that these techniques could be refined in the future.
Several of these techniques were applied within the found approaches in this project. Next to
these techniques, we found that differencing is an additional technique that facilitates CIA
for MDE. The papers and their corresponding techniques can be found in Table 6

E
x
p
li
c
it

ru
le
s

T
ra

c
e
a
b
il
it
y

D
iff
e
re

n
c
in
g

M
e
ss
a
g
e
D
e
p
e
n
d
e
n
c
y
G
ra

p
h

In
fo
rm

a
ti
o
n

R
e
tr
ie
v
a
l

H
is
to

ry
M

in
in
g

P
ro

g
ra

m
S
li
c
in
g

T
o
ta

l

Overeem and Jansen (2021) X X X X 4

Tröls et al. (2019) X X 2

Cho et al. (2011) X X 2

Keller et al. (2009) X 1

Butting et al. (2018) X 1

Kögel (2017) X 1

Popescu et al. (2012) X 1

Gruschko et al. (2007) X X 2

Cicchetti et al. (2008) X X 2

Iovino et al. (2012) X 1

Demuth et al. (2016) X X 2

Briand et al. (2006) X 1

Lehnert et al. (2013) X X 2

Salay et al. (2016) X 1

Jongeling (2016) X X 2

Rechau et al. (2017) X 1

Iovino et al. (2019) X 1

Agirre et al. (2013) X X X 3

Di Rocco et al. (2013) X X 2

Müller and Rumpe (2014) X X 2

Lehnert et al. (2014) X 1

Vieira and Ramalho (2016) X 1

Khelladi et al. (2018) X 1

Total out of 23 papers 18
(78%)

8
(35%)

7
(30%)

2
(9%)

1
(4%)

1
(4%)

1
(4%)

Table 6: All of the mentioned techniques as described by Lehnert (2011b) for each approach.
Differencing was added as this supplemented Lehnerts list

7 RESULTS 44

Explicit rules As can be found in the main table of the characteristics of the found papers
and Table 6, most (78%) of the papers are making use of explicit rules. Briand et al. (2006)
mentions that impact analysis rules can be used to determine which model elements are
directly or indirectly impacted by changes. Within Lehnert (2011b) the author mentions
that these rules are based on design and domain knowledge. Design, domain, and expert
knowledge are used to form strict impact rules. They can determine which entities should
change when a certain entity changes Lehnert (2011a). Something similar to these explicit
rules is found in Neto et al. (2013) in which the authors develop a language to specify design
rules. The design rules can be described in a declarative manner which makes it easier to
develop automatic verification mechanisms of these rules in the written code.
Müller and Rumpe (2014) mention that the main motivation for explicitly specifying impact
rules is that they allow leveraging the known dependencies and characteristics of a product.
Explicit impact rules can embody the conditions that have to be fulfilled by UML class
diagram changes in order to have an impact. But they can also contain what the actual
impact would look like. Within Overeem and Jansen (2021) the developers used explicit
rules for the co-evolution of model and customer data within their platform.
Many other papers mention these or similar rules (migration rules etc.) as a key technique
that powers their approach. In total, 17 out of 23 papers mention these rules. This makes
up 73% of the found approaches. These approaches can be found in Table 9 and 6.

Traceability IEEE (1990) defines traceability as

• The degree to which a relationship can be established between two or more products
of the development process, especially products having a predecessor–successor or mas-
ter–subordinate relationship to one another.

• The degree to which each element in a software development product establishes its
reason for existing.

This is especially useful within CIA to find out what happens with certain elements when
the operations are executed. Lehnert (2011b) say that traceability links are able to capture
the relationships between entities of different levels of abstraction. When aggregating these
links, they can be treated as a graph. With this information, the maintainer of the software
can understand the relationships and dependencies among artifacts. With this knowledge,
they can find out what part of the design, models, and code needs to be maintained in
order to work as intended (De Lucia et al., 2008). Within Overeem and Jansen (2021),
the authors use traceability links in the transformation system. Traceability links are used
to link elements in the run-time model to transformation components. Tröls et al. (2019)
and Demuth et al. (2016) use traceability links in a special way. They generate a uniform
artifact representation and place traceability links to connect the code to the artifacts with
the uniform artifact representation in the middle.

Differencing Differencing is a technique that is not mentioned within Lehnert (2011b).
Using a differencing technique it is possible to find out what the differences are between two
or more artifacts (Kolovos et al., 2009). In their analysis of approaches to model migration,

7 RESULTS 45

Rose et al. (2009) mention differencing as an activity during themetamodel matching strategy
to migrate models.
Agirre et al. (2013) uses difference models generated based on metamodel evolution. In their
approach, they use differential models of the models that represent the code in order to
establish adaptations that must be made in transformation rules. Di Rocco et al. (2013)
used differencing in their approach to make traceability visible for metamodel change impact
detection.
Within Overeem and Jansen (2021) these results of the difference between models is called
a diff. These diffs can later be analyzed with other techniques. Within this paper, diffs are
represented in a text-based way using JSON.
This evokes a short discussion as the taxonomy by Lehnert (2011b) does not mention differ-
encing as a technique for CIA. We see this technique as a supporting technique that makes
it possible to execute the analysis with the found approaches. A difference model needs to
be calculated in order to be used by an approach. Lehnert (2011a) applied his taxonomy
within a research project where he reviewed 150 approaches. In this paper, he mentions that
differencing is used as an activity that is necessary in order to create message dependency
graphs. They also mention that papers by a set of authors make use of diff tools to support
the differencing of hierarchical models. With these tools hidden evolutionary dependencies
can be extracted in the future to predict future changes.

Message Dependency Graphs As mentioned by Lehnert (2011b), Message Dependency
graphs can present communication between systems and can propagate changes between
them. An example by Popescu et al. (2012) shows how message dependency graphs can
be created. These graphs are made with various levels of analysis. Within their technique,
control flow, state-based dependency analysis, and structural analysis were used in order to
create these graphs. This technique has also been used within Overeem and Jansen (2021)
in which they made use of message dependency graphs to visualize the run-time model. The
created graph shows the event-based communication between the different micro-services
involved within the platform. When a difference model is made of two versions of the run-
time model’s message dependency graphs, various observations can be made. The authors
mention that with these difference results, the developers have an overview of the nodes and
edges that are added, removed, and changes between versions.

Information Retrieval In this technique similarities between attributes of classes, meth-
ods, and other parts of the source code are used to identify impacted elements (Lehnert,
2011b). Lehnert (2011a) mention that information retrieval (IR) is a textual retrieval method
as they are concerned with natural language in order to infer a relation between similar doc-
uments. IR was only vaguely mentioned by Jongeling (2016) as one of the techniques that
he applied for the analysis of a system. The specifics of why he did that are therefore un-
known. We can however imagine a role for IR in order to find similarities between names
of entities within models and source code that are being used throughout an LCDP. Using
these similarities and combining these with history mining, better suggestions can be given
to developers.

7 RESULTS 46

History Mining By using history mining, the entities that are often changed together can
be identified. They are likely to change again during a similar action. With this knowledge,
it is also possible to make recommendations for better alternatives. Kögel (2017) makes
use of history mining for their approach. Different sources of data can be combined to
create a list of relevant model changes in real-time. This can support users in automating
repetitive tasks and prevent errors that are caused by incorrect changes. In their approach,
the recommendations were generated based on the change history of the model.

Program Slicing Salay et al. (2016) mentions Program Slicing as the technique that is
used in their metamodel slicing for the model evolution approach. Program Slicing can be
described as returning the parts of the source code that are affected by a change (Lehnert,
2011b). This subset can then be closely observed. Most research on slicing within MDE the
context is focused on particular model types and are therefore not technology agnostic.

7.2.1 Unmentioned techniques

Call Graphs A call graph visualizes the method and function calls that are extracted from
the code. When methods or procedures are changed, they can affect other parts of the source
code Lehnert (2011a,b). When the call behavior of these methods is analyzed, the impact of
method/procedure change can be assessed. The method calls are then extracted and stored
in for example a matrix or graph. This can allow developers to estimate the propagation of
an observed change.

Execution Traces Approaches that use execution traces look at methods or functions
that were called during the execution of a program (Lehnert, 2011b). By monitoring the
running software, traces are collected. With these traces, it is possible to see which methods
were called after something changed. Execution traces are an improvement over static slicing
which is expensive and uses call graphs that are seen as imprecise Lehnert (2011a).

Program Dependency Graphs Program Dependency Graphs (PDGs) are graphs that
show communication between program entities that are found in the source code of a program
Lehnert (2011b). The changes that are made within the source code can then be propagated
through the entire graph of the program. During the literature search, there were no ap-
proaches to make use of this technique. As LCDPs make use of multiple sub-systems that
communicate with each other, Message Dependency Graphs seems to be a better technique
to use instead of PDGs. PDGs are more suitable for monolith systems.

Probabilistic Models Within this technique, mathematical models and theorems are used
to model the propagation of change. The probability of an entity being impacted is calculated
Lehnert (2011a). These models make use of Markow Chains, Bayesian Belief Networks or
similar models to calculate this probabilities. To improve these calculations, they can be
combined with greedy algorithms or linear and nonlinear systems of equations.
This technique has not appeared in the approaches that were discovered in the literature re-
view. However, Breuker (2014) presents how MDE can facilitate the development of machine
learning using probabilistic models.

7 RESULTS 47

7.3 Style of analysis

Several distinct styles are mentioned by Lehnert (2011b). By style, Lehnert means how the
analysis is done. This can be done by looking at the full system (global), or by looking
at specific change operations (search-based) The most commonly found style within the set
of approaches was Search-based. There were also mentions of Global and Exploratory
analysis

Search-based 20/23 approaches Almost all of the found approaches make use of Explicit
rules. A big part of the analysis comes from checking different elements that are defined
within these rules. The rules that are configured only look for these items, and therefore
only they are analyzed. This is a cheaper option in terms of resources, as generally only
these rules and their violations are checked. And no other parts of the system that have no
relation to the targeted elements have to be analyzed.

Global analysis 2/23 approaches Only two of the approaches, the one by Overeem and
Jansen (2021) and the approach by Popescu et al. (2012) (which is mentioned within the
former) describe how the analysis is done on the whole system independently of the current
task that is executed. This is more resource intensive because it has to do analysis on
more parts of the system that have a low chance of being impacted. This unfortunately
often consumes more energy (Pinto and Castor, 2017) than the more directed (search-based)
analysis style.

Exploratory 1/23 approaches Vieira and Ramalho (2016) presents an exploratory analysis
approach. In their paper, they call the style exploratory because it provides developers with
methods to obtain the impacted elements and the impact value.

7.4 Granularity

Artifacts A distinction can be made between approaches that do analysis on difference
models, models and those that do analysis on transformations. The approach by Butting
et al. (2018) is concerned with artifact and model differencing. There the approach takes a
starting point from which the project will be further developed. The current state is then
captured. Often this can be automated. When the data is extracted, the evolution to a new
version can start. Then the generator has to be executed to generate modified models. The
artifact data of these two versions can be compared. In their approach, the abstract syntax
of models is compared in order to identify model elements that have been added, modified,
or deleted.
An example of an approach that focuses on transformations is the one by Rechau et al.
(2017).

Changes Most of the found approaches focus on atomic changes. These contain the cre-
ation, modification, and deletion of model elements. Presenting this within Table 9 would
not be interesting. This column is excluded.

7 RESULTS 48

Lehnert (2011b) also mentions unstructured changes and compound changes. The former
focuses on changes within logs and change records and the latter looks at a remove and
add operation. In a later publication, another approach (Lehnert et al., 2014) is presented
which supports atomic and composite changes. Khelladi et al. (2018) mentions atomic and
complex changes. By the term ”complex changes” the authors mean a sequence of atomic
changes. Butting et al. (2018) mentions syntactic changes as the change type that is sup-
ported. However, the addition, modification, and removal of model elements were discussed,
and therefore, we think this paper focuses on atomic changes.

Results The results of the impact analysis presented in these approaches can vary. The
results from using the approaches can be used by developers to make different engineering
decisions that will improve the platform. Message dependency graphs of the difference models
are a specific type of results (Overeem and Jansen, 2021; Popescu et al., 2012). By analyzing
the difference in these graphs, developers can observe how many components were added,
removed, changed, or new between two versions of a system
Another commonly found type of result is to present metrics on how much impact a change
will have and whether it’s a good candidate for a new version (Cho et al., 2011).
Other approaches such as Butting et al. (2018) and Demuth et al. (2016) present a list of
artifacts that may have been changed.
The approach by Iovino et al. (2012) presents a list of model elements that are impacted
by the changes in a metamodel. Jongeling (2016) and Lehnert et al. (2014) do something
similar.

7.5 Supported languages

The most commonly supported language is UML. In various approaches, UML models can
be used as an input for which difference models can be created using a tool. These differ-
ence models are then analyzed. Several other languages are supported. Examples are Domain
Specific Languages for a specific system, ECore metamodels, and ATL transformations (Khel-
ladi et al., 2018),(Vieira and Ramalho, 2016). The approach as described by Overeem and
Jansen (2021) makes use of specific models that are different from standards such as UML.
These artifacts are developed specifically for the AFAS Focus platform. It is expected that
other LCDPs such as Mendix and Outsystems make use of platform-specific artifacts as well.
Therefore, technology-agnostic approaches are an interesting research direction.

7.6 Tool support

Within the papers, various approaches were introduced. Some of the approaches presented
tools or plugins which can support the CIA activity. The following paragraphs talk about
these tools.

Briand et al. (2006) In their paper, the authors present a prototype. Which is the IACM
tool. This tool identifies change propagation rules for the change types to manage the change
between class, sequence, and state chart diagrams. A measure of distance between changed

7 RESULTS 49

elements and potentially impacted elements is then presented to let the designer prioritize
their actions.

Tröls et al. (2019) Tröls et al. made a plugin that can evaluate using consistency rules.
The plugin can work in real-time to provide live synchronization of the artifact in engineering
tools. The tool was built and developed based on evaluations during case studies (Demuth
et al., 2016).

Jongeling (2016) The author made a tool that can be integrated with Eclipse to provide
suggestions to developers. The tool can find parts of metamodels and model transformation
that are likely to co-change based on a metamodel that has been changed.

Agirre et al. (2013) To automate the analysis of difference models and transformations,
a JAVA and EMF Tool was developed. The tool is independent of the metamodel of the
design of the system. They are however only applicable models compliant with the EMF
meta-metamodel.

Di Rocco et al. (2013) A toolchain was presented that works together with TraceVis 12.
The generated artifacts through that toolchain can be used with TraceVis. TraceVis itself is
a tool that can be used to visualize interactions between classes in Java programs.

Lehnert et al. (2014) The authors developed a tool to detect dependency between dif-
ferent types of software artifacts. The tool is extended with rule-based impact analysis.

Vieira and Ramalho (2016) A tool support module was developed using a static ana-
lyzer, tool support, and metrics component in order to present developers with an impact
value of an element that is impacted after a change is made.

7.7 Future work

The papers that mention an approach, always mention future work. There are various plans
to improve their approaches. As several of the approaches were only tested on a small
scale, they want to validate their approach in different case studies or do more experiments.
In various other papers, the authors mention that they want to provide users with better
assistance for the developer in order to resolve problems in an easier way (Iovino et al., 2019;
Tröls et al., 2019; Rechau et al., 2017; Müller and Rumpe, 2014). The authors also mention
that they want to investigate how their current results can be combined to give a better
overview. None of the found approaches mention how their approach could be implemented
within LCDPs.
As can be found in Table 8 in the appendix, there are various future work directions for this
domain. The directions of future work can be divided into two distinct categories, which also
have sub-categories.

12https://www.win.tue.nl/ wstahw/tracevis/

7 RESULTS 50

Empiric grounding Synthesizing results

L
it
er
a
tu
re

C
as
e
S
tu
d
ie
s

E
x
p
er
im

en
ts

U
n
sp
ec
ifi
ed

g
ro
u
n
d
in
g

P
re
se
n
t
re
le
va
n
t
C
IA

re
su
lt
s

In
te
gr
at
e
m
u
lt
ip
le

C
IA

re
su
lt
s

Im
p
ro
ve

co
rr
ec
tn
es
s
an

d
co
m
p
le
te
n
es
s

T
ot
al

Overeem and Jansen (2021) X X 2

Tröls et al. (2019) X 1

Cho et al. (2011) X 1

Keller et al. (2009) X 1

Butting et al. (2018) X 1

Kögel (2017) X X 2

Popescu et al. (2012) X 1

Gruschko et al. (2007) X 1

Cicchetti et al. (2008) X 1

Iovino et al. (2012) X X X 3

Demuth et al. (2016) X 1

Briand et al. (2006) X X 2

Lehnert et al. (2013) X 1

Salay et al. (2016) X 1

Jongeling (2016) X X 2

Rechau et al. (2017) X 1

Iovino et al. (2019) X 1

Agirre et al. (2013) X X 2

Di Rocco et al. (2013) X 1

Müller and Rumpe (2014) X 1

Lehnert et al. (2014) X 1

Vieira and Ramalho (2016) X X 2

Khelladi et al. (2018) X 1

Total 1 (4%) 6 (26%) 2 (9%) 2 (9%) 7 (30%) 4 (17%) 9 (39%)

Table 7: Research directions that were identified within the selected papers. Unspecified
means that the authors did not explicitly mentioned how they intended to ground their
approach

7 RESULTS 51

• Empiric grounding

– Literature

– Case studies

– Experiments

– Unspecified effort into empiric grounding

• Synthesizing results

– Present relevant results

– Integrate multiple CIA results

– Improve correctness and completeness

The papers and their corresponding research directions can be found in Table 7. In the
following section

Empiric grounding 39% of the papers mention that more grounding needs to be done in
order to validate their approach. This can be done by doing a literature review, case studies,
and/or experiments. By doing these validations, the authors will know whether they are
going in the right direction and they will have a better understanding of what should be
changed in the future. In case studies and experiments, new scenarios can occur that will
trigger the developers to improve their approach. Some of the papers do mention the need of
empiric grounding, but do not suggest whether they want to do this using literature review,
case studies, or experiments. We categorize this as unspecified effort into empiric grounding.
As mentioned in Overeem and Jansen (2021), the proposed future work is to execute a
systematic literature review in order to improve the framework that was proposed. This
needs to be supplemented using case studies. Having stronger grounded literature sources
and applying the proposed framework with other LCDPs will make it possible to validate
the framework. This will allow researchers to make improvements and add detail to the
framework.
Examples of papers that propose to do more literature research are Popescu et al. (2012)
which want to gather more empirical data on their approaches performance during case
studies. Kögel (2017) wants to evaluate his tool in various case studies and experiments.
And Agirre et al. (2013) who want to apply their tool to more MDSD systems during case
studies.

Synthesizing results 74% of the papers want to synthesize the results of their paper.
There are three distinct categories.
The first category is Present relevant CIA results. An example is an approach by Tröls
et al. (2019) for which the authors mention that they want to come up with a better way
to present the results to the engineers. This feedback should be relevant and only appear
to the relevant engineer. Briand et al. (2006) wants to improve the ranking of the impacted
elements. This way the developers get to see an ordered list with the most impacted elements
after a change.

7 RESULTS 52

The second category that can be defined within synthesizing results is Integrate multiple
CIA results. Cho et al. (2011) for example wants to integrate the connection between design
and source code metrics. This will improve the transition between software lifecycle phases
when doing predictive change analysis. Vieira and Ramalho (2016) wants to incorporate
more metrics that can be calculated. This can then be integrated within Eclipse plugins to
improve the analysis of ATL transformations.
At last, a third category was identified for future work. This category is Improve cor-
rectness and completeness. Various of the found approaches only proposed a proof of
concept or a prototype. Researchers aim to improve their approaches to support more types
of artifacts within a wider range of systems, and also would like to make the analysis better.
Butting et al. (2018) mentions that in the future, the approach should support syntactic
changes that do not modify the behavior of the system. While Lehnert et al. (2013) wants
to refine and add additional dependency detection results that will make the analysis more
complete.

8 ANALYSIS AND RECOMMENDATIONS 53

8 Analysis and Recommendations

Throughout the discussion of the findings from coding the papers we found a number of
techniques being used within the approaches and some not (see Table 6). Most commonly
Explicit Rules, Traceability, and Differencing are mentioned within these papers. One ob-
servation is that 6 of the 23 papers mention the use of both explicit rules and traceability
as techniques that support their approach. Within the found approaches only 7 distinct
techniques were found. In the following list, the techniques that were found and the number
of times they were found are shown.

• Explicit rules (18)

• Traceability (8)

• Differencing (7)

• Message Dependency Graphs (2)

• Information Retrieval (1)

• History Mining (1)

• Program Slicing (1)

There were however 10 techniques mentioned in Lehnert (2011b), which are supplemented
with differencing. Techniques that can be found in the taxonomy by Lehnert, but were not
used in the approaches are:

• Call Graphs

• Execution Traces

• Program Dependency Graphs

• Probabilistic Models

Call Graphs appears to be less relevant in the MDE and LCDP domain as opposed to
code-based development. This is because they consist of method and function calls that are
extracted from code. MDE and LCDP are more concerned with models and less about code
(unless code generated from models is the target of the call graph). Execution traces are
another technique. This technique contains the methods and functions that have been called
while the program was executed. This is again too much focused on code and less on how
MDE software development works and therefore less applicable in this domain. Within Pro-
gram Dependency Graphs a similar trend can be detected. The use of source code that
is used to extract information about communication within a system makes this technique
unsuitable for MDE systems.
Opposed to the three previously mentioned techniques that were unsuitable for MDE CIA,
Probabilistic Models might be a future technique that can be used within an MDE CIA
approach. By using these models, the system can detect the probability of an entity being

8 ANALYSIS AND RECOMMENDATIONS 54

impacted due to the propagation of a change. Lehnert (2011a) mention that researchers
managed to develop models that take into account code ownership and the change history
of code. This can provide more accurate data. When adapting these probabilistic modeling
techniques to (architecture) models instead of code, they might be able to develop more
accurate metrics on change propagation that can be used within MDE systems and LCDPs.
Overeem and Jansen (2021) mentioned the use of four different techniques. As the studied
LCDP is more mature and provides more functionality, we think that it is feasible to use
more CIA techniques alongside each other. And it is recommended for other LCDPs to do
so as well to get more insight into the possible effects of change and evolution.
When starting out with an LCDP. It is recommended to start with Explicit Rules as the
first technique. This technique is less resource-intensive and can be used to describe which
entities are affected when a certain change is made. For new LCDPs that are often focused on
a specific domain, developers and other stakeholders with domain knowledge can design these
rules with their domain knowledge. Once Explicit Rules are in place, these platforms can
decide to include Traceability as a technique to provide impact analysis. Using Traceability,
different artifacts can be connected to each other in order to analyze the impact relations
between them. Differencing was often paired with Explicit Rules. We also think that
Differencing is a technique that can be included in an earlier stage. By using Differencing
it is possible to find out the differences between two or more artifacts. For example two
artifacts, one before and one after a change. The generated difference model can be linked
to an evolving metamodel. The metamodel can afterward be connected with the artifacts
(Di Rocco et al., 2013). This can provide more information.
Message Dependency Graphs can also be included if the system makes use of commu-
nication between distributed systems. They can especially play a role within distributed
event-based systems. As they are highly decoupled (Popescu et al., 2012). As Overeem and
Jansen (2021) have shown, these graphs can provide a lot of insight into the communication
that takes place in such a system. Component graphs that can be created based on Message
Dependency Graphs. And those can be used to find bugs in components and messages that
do not match each other.
Information Retrieval, History Mining and Program Slicing were found as well within
the found approaches. Information Retrieval was only mentioned in one paper and was
not clearly explained. However, we think that this technique can play an interesting role
as soon as an MDE system or LCDP increases in size. There are then more occasions of
natural language use that can be analyzed in order to infer relationships between similar
documents. These documents (models) are likely to have similar behavior which could be
the same during a change. As mentioned within Almonte et al. (2021), recommender systems
can become important in the future for MDE and LCDPs. When one wants to use these
recommender systems, they are likely to make use of History Mining. Using this technique,
the system looks at the history of changes and gives a developer suggestions based on past
best practices. This can only be used once enough quality data is available to base these
recommendations on. At last Program Slicing could be a technique that is possible to add.
This technique presents the subset of the system that is affected by a change. In the approach
that was found in this project (Salay et al., 2016). A slicing approach for heterogeneous model
collections was developed which is not specific to one type of model. Although the technique
does not provide much insight on how severe the effect of a change will be. It could be

8 ANALYSIS AND RECOMMENDATIONS 55

useful at some point. It is not a priority to include this technique. As previously mentioned.
Probabilistic Models might be an interesting technique to use during later stages of an
LCDP as they can provide more accurate metrics when they will be applied to architecture
models at some point.
The thoughts on techniques that are currently found in these approaches, and whether they
should be included within an LCDP are presented within Figure 8. We used the MoSCoW
method (Clegg and Barker, 1994) for this.

Figure 8: A diagram showing which techniques must, should and could be used within LCDPs
to provide CIA

9 DISCUSSION 56

9 Discussion

The most interesting finding in our research is that explicit rules are a technique that is very
important within CIA for LCDPs and other MDE systems. There are also various other
techniques that are less prevalent in this domain. Various tools are available, although some
are specific to a domain, or only support specific languages. This limits the reusability of
these tools. There has currently not been enough research to extend this research to the
LCDP domain. We however give recommendations on techniques that can be used during
the early stages of the development of an LCDP and provide suggestions of techniques that
are interesting additions when evolving to a larger-scale platform. There is plenty of research
going on. And there are various research directions that can be taken in order to add new
knowledge to this domain. This can be found in Section 7.7 and Table 8.

9.1 Limitations

Throughout the execution of this research project, we noticed several problems with our
research approach to studying this domain.
There are only several authors and research groups focusing on these topics. There appear
to be several leading universities that are working on model-driven engineering and its appli-
cations. Therefore, many publications are collaborations between authors with similar ideas.
Notable authors were referred to several times. These were mainly Di Ruscio and Iovino
which can be seen back in Figure 7. They are both in the same department at the University
of L’Aquila and focus on MDE, model transformation, and evolution. It was therefore very
likely to see these authors mentioned several times during the literature search.
As starting set, five papers were chosen. As our domain knowledge was limited and many
papers were found on inconsistency resolution. We decided on including various papers on
this topic in the starting set. Using some of these less relevant papers, not many interesting
snowballing papers were found. Therefore it would be advised to select the starting papers
more carefully and do exploratory research.
Snowballing might not be ideal when doing a project of this scale with only one researcher. In
the future when a similar project would be done, then it is recommended to make use of tools
such as Research Rabbit and Litmaps to have a better overview of what papers might have
mutual references and will lead in a certain direction when executing a snowball literature
search procedure. Using these tools can also give a researcher similar results as doing a manual
search using reference lists within papers and managing relations between papers. A downside
is that some of these tools do not have every publication indexed within their library. Also,
some tools require premium memberships in order to create these graphs. Additionally, using
the snowballing technique brings problems when having only one researcher. It is advised to
have another researcher to check the papers for the inclusion and exclusion criteria. At some
stages some mistakes might have been made which could have related in a lower quality set
of found papers.
The goal was to generalize MDE approaches and find out how applicable they are within
Low-Code Development Platforms. Making the comparison between how both types are
built can be difficult. The found approaches do not mention LCDPs and are often using
modeling languages that are not used within platforms such as AFAS Focus, Mendix, and

10 CONCLUSION 57

Outsystems. These platforms have their own way of doing this. Finding technology-agnostic
approaches that can be used within these platforms was therefore a hard task.

9.2 Opportunities

One big challenge was to connect and extend the knowledge of MDE CIA to LCDP CIA. This
still has some challenges. As can be seen in Table 9 and Section 7.2, many of the approaches
make use of explicit rules in order to facilitate the CIA. Many of these approaches that were
presented have been tested in small case studies where it was possible to define a number of
these explicit rules. It is shown that these can be applied within their chosen domain and
that they are sufficient. For small-scale systems with limited operations and available actions,
it is good enough. Many small-scale Model Driven Engineering (MDE) systems are catered
to a specific domain. For this domain, often domain-specific languages (DSLs) are developed
(Whittle et al., 2013). Developers can then develop a set of explicit rules that are limited
to all possible operations within this DSL. LCDPs support more functionality and provide
developers with more creativity to build solutions than small-scale MDE applications. This
unfortunately gives users more opportunities to do actions that can impact the platform.
In Overeem and Jansen (2021) the authors describe an industry LCDP and an application
developed with that LCDP. They are both far more complex and in order to facilitate CIA
within this platform, various techniques are used throughout the platform. These are explicit
rules, traceability links, message dependency graphs, and differencing. Other LCDPs such
as Mendix make use of some kind of history mining in order to compare users’ solutions
against their best practices and pinpoint anti-patterns that are being used (Mendix, n.d).
However, this requires these systems to support these techniques. For example, when using
history mining in order to present recommendations, a system will require a dataset with
the relevant source material which can be used when utilizing the technique. When working
with a specific (meta)model or transformation that does not conform to standard modeling
languages, a large dataset needs to be sourced in order to get useful results from history
mining. It would be interesting to find out how currently used platforms deal with this.
Conducting case studies with these platforms would be a good way to get an overview of how
this transition can be made.

10 Conclusion

To answer the main question and the subquestions, a literature review was conducted. By
researching the literature and extracting information from the papers we were able to answer
our sub-questions, leading to an answer to our main question.
SQ1.1: Which challenges and solutions for Change Impact Analysis in Low-Code
Development Platforms exist?
Currently, there are only a small number of papers that explicitly look into Change Impact
Analysis for Low-Code Development Platforms. As LCDPs are being used as a proxy for
Model-Driven Engineering systems, CIA in MDE approaches was explored as well. No syn-
thesis of the available literature on this topic can be found using the scientific search engine
Google Scholar. We can conclude that the research domain requires a more directed literature

10 CONCLUSION 58

review in combination with case studies should be done to collect the available approaches
that can target these applications to improve their capabilities for supporting CIA within
LCDPs.
SQ1.2: What kind of technology-agnostic processes and tools exist for Change
Impact Analysis in Low-Code Development Platforms? 23 approaches were found by
doing a literature review. The approaches were then classified using an adapted taxonomy by
Lehnert (2011b). This resulted in the commonalities and differences between the approaches.
Several of the approaches presented a tool. Some tools are able to be used individually and
some are plugins for general-purpose modeling environments such as Eclipse. The proposed
tools that can facilitate CIA in this domain were presented within section 7.6 (Tool support).
Most of the approaches that were found are dependent on a small number of CIA techniques.
Mainly Explicit rules have been used to formalize how entities are affected when changes are
made. These rules are developed by engineers who have design and domain knowledge of the
application. Additionally, Traceability and Differencing were found to be common within
MDE systems. Also, other techniques were found. Message Dependency Graphs, History
Mining, and Slicing are mentioned in papers presenting an approach. These techniques are
more appropriate for more mature systems and should be studied in the future to find out
how and where they are most suitable.
SQ1.3: What are the open challenges for Change Impact Analysis in Low-Code
Development Platforms? As a result of the literature review and coding the relevant
segments into tables, the future work (Table 7 and 8) from the found papers were identified.
This research agenda consists of two categories with both three sub-categories. These are

• Empiric grounding: The authors need to do more research to find out how applica-
ble their approach is. This can be done by conducting (1) Literature review, (2)
Experiments or by doing (3) Case studies. This will validate current approaches
and find out what can be improved to provide a better analysis of MDE systems and
LCDPs.

• Synthesizing results: Within this category we present the future work that is con-
cerned with the current approach. This category has subcategories such as (1) Present
relevant CIA results to stakeholders, in which the researcher aims to change how
and what kind of feedback is shown to those who are making a change or evolving the
system. (2) Integrate multiple CIA results, which is concerned with the integra-
tion of results and metrics in order to give users more insight into the effects of their
changes. And at last (3) Improve correctness and completeness in which the de-
veloper wants to improve their approach by adding more functionality and supporting
new artifacts and new systems.

With the answers to the sub-questions we can answer our main research question RQ1:
What are the current best practices for Change Impact Analysis in Low-Code
Development Platforms? There are several approaches available. Most of these ap-
proaches make use of explicit rules, some form of model differencing, and apply traceability
to establish relations between artifacts. These techniques seem to be a golden standard and
should be used within every LCDP. In later stages of an LCDP, other techniques and related
approaches utilizing these techniques can be used. In the found papers techniques such as

10 CONCLUSION 59

message dependency graphs, information retrieval, history mining and slicing were found.
Unfortunately most of the found approaches were not applied within LCDP context. It is
therefore hard to tell whether they are applicable within these platforms. We therefore think
that more research needs to be done within this domain. The domain has overlap with MDE
but performs on a different scale that can not be found back in many of the found approaches.
Therefore the first step that should be taken is finding out how CIA is performed within a
multitude of mature LCDPs such as OutSystems, Mendix, and Pega. With this information,
researchers can do more directed research on the approaches that are already in use within
these platforms.
For future work on this project, it would be useful to have case studies with several LCDP
suppliers as well as some of the researchers that proposed the approaches mentioned within
this research project. With directed questions on the architecture and utilized techniques, the
difference between MDE and LCDP in terms of applicable techniques, tools, and approaches
can be elicited. This literature review can serve as inspiration in order to develop these
questions.
Within the research domain, researchers are encouraged to look at how results from CIA can
be used. The feedback that is presented to users could be improved so that more effective
engineering decisions can be made. They can also research currently used metrics that can
be enhanced and combined in order to provide users with even more feedback. At last,
the approaches that currently exist can be improved by increasing their completeness and
correctness.

REFERENCES I

References

J. A. Agirre, L. Etxeberria, and G. Sagardui. Automatic impact analysis of software archi-
tecture migration on model driven software development. In AMT@ MoDELS, 2013.

K. A. Alam, R. Ahmad, A. Akhunzada, M. H. N. M. Nasir, and S. U. Khan. Impact analysis
and change propagation in service-oriented enterprises: A systematic review. Information
Systems, 54:43–73, 2015.

N. Alhirabi, O. Rana, and C. Perera. Security and privacy requirements for the internet of
things: A survey. ACM Transactions on Internet of Things, 2(1):1–37, 2021.

L. Almonte, E. Guerra, I. Cantador, and J. De Lara. Recommender systems in model-driven
engineering. Software and Systems Modeling, pages 1–32, 2021.

R. S. Arnold and S. A. Bohner. Impact analysis-towards a framework for comparison. In
1993 Conference on Software Maintenance, pages 292–301. IEEE, 1993.

E.-M. Arvanitou, A. Ampatzoglou, A. Chatzigeorgiou, and P. Avgeriou. Introducing a ripple
effect measure: a theoretical and empirical validation. In 2015 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM), pages 1–10.
IEEE, 2015.

C. Atkinson and T. Kuhne. Model-driven development: a metamodeling foundation. IEEE
software, 20(5):36–41, 2003.

M. N. Azadani and A. Boukerche. Driving behavior analysis guidelines for intelligent trans-
portation systems. IEEE Transactions on Intelligent Transportation Systems, 2021.

S. Black. Computing ripple effect for software maintenance. Journal of Software Maintenance
and Evolution: Research and Practice, 13(4):263–279, 2001.

A. C. Bock and U. Frank. Low-code platform. Business & Information Systems Engineering,
63(6):733–740, 2021.

S. A. Bohner and R. S. Arnold. Software Change Impact Analysis. Wiley-IEEE Computer
Society Pr, 1996.

P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil. Lessons from applying
the systematic literature review process within the software engineering domain. Journal
of systems and software, 80(4):571–583, 2007.

D. Breuker. Towards model-driven engineering for big data analytics–an exploratory analysis
of domain-specific languages for machine learning. In 2014 47th Hawaii International
Conference on System Sciences, pages 758–767. IEEE, 2014.

L. C. Briand, Y. Labiche, L. O’Sullivan, and M. M. Sówka. Automated impact analysis of
UML models. Journal of Systems and Software, 79(3):339–352, 2006.

REFERENCES II

A. Butting, S. Hillemacher, B. Rumpe, D. Schmalzing, and A. Wortmann. Shepherding
model evolution in model-driven development. In Modellierung (Workshops), pages 67–77,
2018.

J. Cabot. Positioning of the low-code movement within the field of model-driven engineer-
ing. In Proceedings of the 23rd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems: Companion Proceedings, pages 1–3, 2020.

N. Chapin, J. E. Hale, K. M. Khan, J. F. Ramil, and W.-G. Tan. Types of software evolution
and software maintenance. Journal of software maintenance and evolution: Research and
Practice, 13(1):3–30, 2001.

H. Cho, J. Gray, Y. Cai, S. Wong, and T. Xie. Model-driven impact analysis of software
product lines. In Model-Driven Domain Analysis and Software Development: Architectures
and Functions, pages 275–303. IGI Global, 2011.

A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio. Automating co-evolution in
model-driven engineering. In 2008 12th International IEEE Enterprise Distributed Object
Computing Conference, pages 222–231. IEEE, 2008.

D. Clegg and R. Barker. Case method fast-track: a RAD approach. Addison-Wesley Longman
Publishing Co., Inc., 1994.

I. Committee. IEEE standard glossary of software engineering terminology (IEEE Std 610.12-
1990). Los Alamitos. CA IEEE Comput. Soc, 1990.

B. Costa, J. Bachiega Jr, L. R. de Carvalho, and A. P. Araujo. Orchestration in fog comput-
ing: A comprehensive survey. ACM Computing Surveys (CSUR), 55(2):1–34, 2022.

A. De Lucia, F. Fasano, and R. Oliveto. Traceability management for impact analysis. In
2008 Frontiers of Software Maintenance, pages 21–30. IEEE, 2008.

A. Demuth, R. Kretschmer, A. Egyed, and D. Maes. Introducing traceability and consistency
checking for change impact analysis across engineering tools in an automation solution
company: an experience report. In 2016 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 529–538. IEEE, 2016.

J. Di Rocco, D. Di Ruscio, L. Iovino, and A. Pierantonio. Traceability visualization in
metamodel change impact detection. In Proceedings of the Second Workshop on Graphical
Modeling Language Development, pages 51–62, 2013.

J. Di Rocco, D. Di Ruscio, H. Narayanankutty, and A. Pierantonio. Resilience in Sirius
Editors: Understanding the Impact of Metamodel Changes. In MoDELS (Workshops),
pages 620–630, 2018.

D. Di Ruscio, D. Kolovos, J. de Lara, A. Pierantonio, M. Tisi, and M. Wimmer. Low-code
development and model-driven engineering: Two sides of the same coin? Software and
Systems Modeling, 2021.

REFERENCES III

D. Di Ruscio, D. Kolovos, J. de Lara, A. Pierantonio, M. Tisi, and M. Wimmer. Low-code
development and model-driven engineering: Two sides of the same coin? Software and
Systems Modeling, pages 1–10, 2022.

I. do Carmo Machado, J. D. McGregor, Y. C. Cavalcanti, and E. S. De Almeida. On strategies
for testing software product lines: A systematic literature review. Information and Software
Technology, 56(10):1183–1199, 2014.

G. Dushnitsky and B. K. Stroube. Low-code entrepreneurship: Shopify and the alternative
path to growth. Journal of Business Venturing Insights, 16:e00251, 2021.

S. Farshidi, S. Jansen, and S. Fortuin. Model-driven development platform selection: four
industry case studies. Software and Systems Modeling, 20(5):1525–1551, 2021.

A. M. Fernández-Sáez, M. R. Chaudron, and M. Genero. An industrial case study on the use
of uml in software maintenance and its perceived benefits and hurdles. Empirical Software
Engineering, 23(6):3281–3345, 2018.

E. Figueiredo, N. Cacho, C. Sant’Anna, M. Monteiro, U. Kulesza, A. Garcia, S. Soares,
F. Ferrari, S. Khan, F. Castor Filho, et al. Evolving software product lines with aspects.
In 2008 ACM/IEEE 30th International Conference on Software Engineering, pages 261–
270. IEEE, 2008.

U. Frank, P. Maier, and A. Bock. Low code platforms: promises, concepts and prospects. a
comparative study of ten systems. Technical report, ICB-Research Report, 2021.

I. Galvao and A. Goknil. Survey of traceability approaches in model-driven engineering.
In 11th IEEE International Enterprise Distributed Object Computing Conference (EDOC
2007), pages 313–313. IEEE, 2007.

B. Gruschko, D. Kolovos, and R. Paige. Towards synchronizing models with evolving meta-
models. In Proceedings of the International Workshop on Model-Driven Software Evolution,
page 3. Citeseer, 2007.

I. Hadar, P. Soffer, and K. Kenzi. The role of domain knowledge in requirements elicitation
via interviews: an exploratory study. Requirements Engineering, 19(2):143–159, 2014.

T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell. A systematic literature review
on fault prediction performance in software engineering. IEEE Transactions on Software
Engineering, 38(6):1276–1304, 2011.

H. Harrison, S. J. Griffin, I. Kuhn, and J. A. Usher-Smith. Software tools to support title
and abstract screening for systematic reviews in healthcare: an evaluation. BMC medical
research methodology, 20(1):1–12, 2020.

A. E. Hassan and R. C. Holt. Predicting change propagation in software systems. In 20th
IEEE International Conference on Software Maintenance, 2004. Proceedings., pages 284–
293. IEEE, 2004.

REFERENCES IV

E. Hassler, J. C. Carver, D. Hale, and A. Al-Zubidy. Identification of slr tool needs–results
of a community workshop. Information and Software Technology, 70:122–129, 2016.

R. Hebig, D. E. Khelladi, and R. Bendraou. Approaches to co-evolution of metamodels and
models: A survey. IEEE Transactions on Software Engineering, 43(5):396–414, 2016.

A. Hinderks, F. José, D. Mayo, J. Thomaschewski, and M. J. Escalona. An slr-tool: Search
process in practice: A tool to conduct and manage systematic literature review (slr). In
2020 IEEE/ACM 42nd International Conference on Software Engineering: Companion
Proceedings (ICSE-Companion), pages 81–84. IEEE, 2020.

IEEE. ISO/IEC/IEEE International Standard for Software Engineering - Software Life Cycle
Processes - Maintenance. ISO/IEC 14764:2006 (E) IEEE Std 14764-2006 Revision of IEEE
Std 1219-1998), pages 1–58, 2006. doi: 10.1109/IEEESTD.2006.235774.

F. Ihirwe, D. Di Ruscio, S. Mazzini, P. Pierini, and A. Pierantonio. Low-code engineering for
internet of things: a state of research. In Proceedings of the 23rd ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems: Companion Proceedings,
pages 1–8, 2020.

L. Iovino, A. Pierantonio, and I. Malavolta. On the impact significance of metamodel evolu-
tion in mde. J. Object Technol., 11(3):3–1, 2012.

L. Iovino, A. Rutle, A. Pierantonio, and J. Di Rocco. Query-based impact analysis of meta-
model evolutions. In 2019 45th Euromicro Conference on Software Engineering and Ad-
vanced Applications (SEAA), pages 458–465. IEEE, 2019.

C. Ivey and J. Crum. Choosing the right citation management tool: Endnote, mendeley,
refworks, or zotero. Journal of the Medical Library Association: JMLA, 106(3):399, 2018.

R. Jongeling. Change Impact Analysis in Model Driven Software Engineering Ecosystems.
PhD thesis, Master’s thesis, Eindhoven University of Technology, the Netherlands, 2016.

A. Keller, H. Schippers, and S. Demeyer. Supporting inconsistency resolution through predic-
tive change impact analysis. In Proceedings of the 6th International Workshop on Model-
Driven Engineering, Verification and Validation, pages 1–10, 2009.

W. Kessentini and V. Alizadeh. Semi-automated metamodel/model co-evolution: a multi-
level interactive approach. Software and Systems Modeling, pages 1–24, 2022.

D. E. Khelladi, R. Kretschmer, and A. Egyed. Change propagation-based and composition-
based co-evolution of transformations with evolving metamodels. In Proceedings of the
21th ACM/IEEE International Conference on Model Driven Engineering Languages and
Systems, pages 404–414, 2018.

B. Kitchenham. Procedures for performing systematic reviews. Keele, UK, Keele University,
33(2004):1–26, 2004.

S. Kögel. Recommender system for model driven software development. In Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering, pages 1026–1029, 2017.

REFERENCES V

D. S. Kolovos, D. Di Ruscio, A. Pierantonio, and R. F. Paige. Different models for model
matching: An analysis of approaches to support model differencing. In 2009 ICSE Work-
shop on Comparison and Versioning of Software Models, pages 1–6. IEEE, 2009.

S. Lehnert. A review of software change impact analysis. Citeseer, 2011a.

S. Lehnert. A taxonomy for software change impact analysis. In Proceedings of the 12th
International Workshop on Principles of Software Evolution and the 7th annual ERCIM
Workshop on Software Evolution, pages 41–50, 2011b.

S. Lehnert, M. Riebisch, et al. Rule-based impact analysis for heterogeneous software ar-
tifacts. In 2013 17th European Conference on Software Maintenance and Reengineering,
pages 209–218. IEEE, 2013.

S. Lehnert, M. Riebisch, et al. Analyzing model dependencies for rule-based regression test
selection. Modellierung 2014, 2014.

T. C. Lethbridge. Low-code is often high-code, so we must design low-code platforms to enable
proper software engineering. In International Symposium on Leveraging Applications of
Formal Methods, pages 202–212. Springer, 2021.

B. Li, X. Sun, H. Leung, and S. Zhang. A survey of code-based change impact analysis
techniques. Software Testing, Verification and Reliability, 23(8):613–646, 2013.

M. L. Marinho, S. Sampaio, T. Lima, and H. P. Moura. A guide to deal with uncertainties
in software project management. arXiv preprint arXiv:1411.1920, 2014.

Mendix. Model consistency, Jul 2021. URL https://www.mendix.com/evaluation-guide/

app-lifecycle/model-consistency/.

Mendix. MxAssist Performance bot, n.d. URL https://docs.mendix.com/refguide/

mx-assist-performance-bot/.

T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer, R. Hirschfeld, and M. Jazayeri. Chal-
lenges in software evolution. In Eighth International Workshop on Principles of Software
Evolution (IWPSE’05), pages 13–22. IEEE, 2005.

K. Müller and B. Rumpe. A model-based approach to impact analysis using model differ-
encing. arXiv preprint arXiv:1406.6834, 2014.

A. C. Neto, R. Bonifácio, M. Ribeiro, C. E. Pontual, P. Borba, and F. Castor. A design
rule language for aspect-oriented programming. Journal of Systems and Software, 86(9):
2333–2356, 2013.

C. Okoli. A guide to conducting a standalone systematic literature review. Communications
of the Association for Information Systems, 37(1):43, 2015.

OutSystems. How outsystems solves the problem: Evaluation guide, n.d. URL https:

//www.outsystems.com/evaluation-guide/how-outsystems-solves-the-problem/.

https://www.mendix.com/evaluation-guide/app-lifecycle/model-consistency/
https://www.mendix.com/evaluation-guide/app-lifecycle/model-consistency/
https://docs.mendix.com/refguide/mx-assist-performance-bot/
https://docs.mendix.com/refguide/mx-assist-performance-bot/
https://www.outsystems.com/evaluation-guide/how-outsystems-solves-the-problem/
https://www.outsystems.com/evaluation-guide/how-outsystems-solves-the-problem/

REFERENCES VI

M. Overeem and S. Jansen. An exploration of the ’it’ in ’it depends’: Generative versus
interpretive model-driven development. In MODELSWARD, pages 100–111, 2017.

M. Overeem and S. Jansen. Proposing a framework for impact analysis for low-code de-
velopment platforms. In 2021 ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems Companion (MODELS-C), pages 88–97. IEEE, 2021.

M. Overeem, M. Mathijssen, and S. Jansen. Api-m-famm: A focus area maturity model for
api management. Information and Software Technology, page 106890, 2022.

M. J. Page, J. E. McKenzie, P. M. Bossuyt, I. Boutron, T. C. Hoffmann, C. D. Mulrow,
L. Shamseer, J. M. Tetzlaff, E. A. Akl, S. E. Brennan, et al. The prisma 2020 statement:
an updated guideline for reporting systematic reviews. International Journal of Surgery,
88:105906, 2021.

G. Pinto and F. Castor. Energy efficiency: a new concern for application software developers.
Communications of the ACM, 60(12):68–75, 2017.

D. Popescu. Helios: impact analysis for event-based components and systems. In Proceedings
of the 32nd ACM/IEEE International Conference on Software Engineering-Volume 2 (pp.
531-532)., pages 531–532, 01 2010. doi: 10.1145/1810295.1810466.

D. Popescu, J. Garcia, K. Bierhoff, and N. Medvidovic. Impact analysis for distributed event-
based systems. In Proceedings of the 6th ACM International Conference on Distributed
Event-Based Systems, pages 241–251, 2012.

V. Rajlich. Software evolution and maintenance. In Future of Software Engineering Proceed-
ings, pages 133–144. Association for Computing Machinery, 2014.

P. Ralph et al. Empirical standards for software engineering research. arXiv preprint
arXiv:2010.03525, 2021.

T. Rechau, N. Silva, M. M. d. Silva, and P. Sousa. A tool for managing the evolution of
enterprise architecture meta-model and models. In European, Mediterranean, and Middle
Eastern Conference on Information Systems, pages 68–81. Springer, 2017.

T. Rolfsnes, S. Di Alesio, R. Behjati, L. Moonen, and D. W. Binkley. Generalizing the
analysis of evolutionary coupling for software change impact analysis. In 2016 IEEE 23rd
International Conference on Software Analysis, Evolution, and Reengineering (SANER),
volume 1, pages 201–212. IEEE, 2016.

L. M. Rose, R. F. Paige, D. S. Kolovos, and F. A. Polack. An analysis of approaches to
model migration. In Proc. Joint MoDSE-MCCM Workshop, pages 6–15, 2009.

A. Sahay, A. Indamutsa, D. Di Ruscio, and A. Pierantonio. Supporting the understanding
and comparison of low-code development platforms. In 2020 46th Euromicro Conference
on Software Engineering and Advanced Applications (SEAA), pages 171–178. IEEE, 2020.

R. Salay, S. Kokaly, M. Chechik, and T. Maibaum. Heterogeneous megamodel slicing for
model evolution. In ME@ MoDELS, pages 50–59, 2016.

REFERENCES VII

S. Sancar Gozukara, B. Tekinerdogan, and C. Catal. Obstacles of on-premise enterprise
resource planning systems and solution directions. Journal of Computer Information Sys-
tems, 62(1):141–152, 2022.

R. Sanchis, Ó. Garćıa-Perales, F. Fraile, and R. Poler. Low-code as enabler of digital trans-
formation in manufacturing industry. Applied Sciences, 10(1):12, 2020.

A. D. Sandro, R. Salay, M. Famelis, S. Kokaly, and M. Chechik. Mmint: A graphical tool
for interactive model management. In P&D@MoDELS, 2015.

B. Tekinerdogan and E. Er. Change impact analysis of model-driven development systems
using evolution scenario templates. Models and Evolution, page 111, 2009.

M. A. Tröls, A. Mashkoor, and A. Egyed. Multifaceted consistency checking of collabora-
tive engineering artifacts. In 2019 ACM/IEEE 22nd International Conference on Model
Driven Engineering Languages and Systems Companion (MODELS-C), pages 278–287.
IEEE, 2019.

R. van de Schoot, J. de Bruin, R. Schram, P. Zahedi, J. de Boer, F. Weijdema, B. Kramer,
M. Huijts, M. Hoogerwerf, G. Ferdinands, et al. An open source machine learning frame-
work for efficient and transparent systematic reviews. Nature Machine Intelligence, 3(2):
125–133, 2021.

A. Vieira and F. Ramalho. Towards measuring the change impact in atl model transforma-
tions. International Journal of Software Engineering and Knowledge Engineering, 26(02):
153–181, 2016.

P. Vincent, K. Iijima, M. Driver, J. Wong, and Y. Natis. Magic quadrant for enterprise
low-code application platforms. Gartner report, 2019.

R. Waszkowski. Low-code platform for automating business processes in manufacturing.
IFAC-PapersOnLine, 52(10):376–381, 2019.

J. Whittle, J. Hutchinson, and M. Rouncefield. The state of practice in model-driven engi-
neering. IEEE software, 31(3):79–85, 2013.

C. Wohlin. Guidelines for snowballing in systematic literature studies and a replication in
software engineering. In Proceedings of the 18th international conference on evaluation and
assessment in software engineering, pages 1–10, 2014.

J. F. Wolfswinkel, E. Furtmueller, and C. P. Wilderom. Using grounded theory as a method
for rigorously reviewing literature. European journal of information systems, 22(1):45–55,
2013.

S. S. Yau, J. S. Collofello, and T. MacGregor. Ripple effect analysis of software mainte-
nance. In The IEEE Computer Society’s Second International Computer Software and
Applications Conference, 1978. COMPSAC’78., pages 60–65. IEEE, 1978.

11 APPENDIX VIII

11 Appendix

Paper Mentioned future work

Overeem and Jansen
(2021)

The authors propose doing systematic literature review and to validate
framework with other LCDP providers as future research directions.

Tröls et al. (2019) The authors would like to expand on their mechanism for distributing
consistency feedback. This is currently often not interesting to engineers.
In the future they only want to provide relevant information relevant to
the engineers’ focus.

Cho et al. (2011) The authors want to increase the connection between design metrics and
the source code metrics. This can improve the transition between lifecy-
cle phases as related to analysis of predictive change. If lifecycle metrics
are combined, then many new areas of research can be investigaed. The
authors also want to explore the extention of the traceability relation
functionality to provide more query-specific opportunities.

Keller et al. (2009) They want to refine the algorithm. Improvements could be to assign
weights to modification operations. Also the extend of the distance of
an impacted element can be examined better. The authors also want
their approach to be validated by doing more experiments with different
and more inconsistencies.

Butting et al. (2018) Future work would be to let the approach support syntactic changes
that do not modify the behavior. This can be done using semantic
differencing.

Kögel (2017) Developing the tool as it is proposed. Various phases are described for
evaluations and integrations.

Popescu et al. (2012) Gathering more empirical data with different applications to increase
the confidence in the approaches utility. Assess the applicability to dis-
tributed systems that use varying filtering mechanisms beyond type-
based.

Gruschko et al. (2007) Investigating the possibility of embedding manual migration steps.

Cicchetti et al. (2008) Their future work includes the implementation of the power model con-
struction the difference refinement depends on. Additionally, more sys-
tematic validation of the approach is necessarily to encompass a larger
population of models and metamodels. They also plan to investigate how
the works related to change impact analysis can be adapted and used
in MDE to support the co-evolution of metamodels and corresponding
models.

Iovino et al. (2012) As future work, the authors want to investigate how to increase the
degree of automation in the adaptation by using the outcome of the
process. They also want to investigate how to parametrize current mod-
elling platforms so that the modeller can have user-defined relationships.
At last they want to evaluate the graphical user interface of their ap-
proach and visualize traceability links

11 APPENDIX IX

Demuth et al. (2016) For future work, the authors plan to investigate possibilities of making
the integration of such tools easier so that the effort for establishing
traceability and consistency checking technologies can be reduced and
the acceptance and application of these technogies increases.

Briand et al. (2006) Future work includes performing additional case studies. This will also
be used in an attempt to associate probabilities with impact analysis
rules based on empirical data. This would allow us to further refine our
ranking of impacted elements according to their likelihood of actually
requiring change.

Lehnert et al. (2013) The authors want a more systematic investigation of dependency types.
They also want to refine and add additional dependency detection rules
to elicitate further, yet missing dependencies, as revealed by their case
study. At last, they want to extend the dependency analysis of Java
source code to the level of program statements, to allow for more fine-
grained couplings with dynamic UML models.

Salay et al. (2016) The authors want to develop tooling for the algorithm using the Model
Management INTeractive (MMINT) framework and plan to use it to
conduct more extensive case studies to better understand the strengths
and weaknesses of the approach.

Jongeling (2016) As future work, the author proposes supporting other co-evolving ar-
tifacts that can be found in graphical and textual editors. As well as
model-to-text transformations and M1 models. Other potential future
work could be to allow developers to indicate suggestions as correct or
incorrect so that the suggestions can be improved.

Rechau et al. (2017) Being an ongoing research, a final and fully functional version of the
tool is currently being developed. The authors consider as future effort
the possibility of implementing an interactive help feature to offer the
user proper guidance and more visual refinements regarding the change
impact analysis.

Iovino et al. (2019) The proposed future work is to extend the approach by including ex-
tra artifact types (next to models and transformations) such as code
generators

Agirre et al. (2013) They want to apply the tool to other MDSD systems. They also want to
extend the tool to deal with more difference types. When more types of
software evolution and architecture migration situations are analyzed,
new refinements operations and transformation rules patterns can be
used.

Di Rocco et al. (2013) The authors plan on live monitoring of change impact. As soon as
a change is made, impact information on the related artifacts in the
ecosystem shold be displayed. This requires an operation recorder to
register model differences.

11 APPENDIX X

Müller and Rumpe
(2014)

For future work, they plan to investigate for which checklist hints the
authors can check automatically whether the user really implemented
the particular change. They also want to extend their approach by
giving more detailed checklists with additional explanations and a brief
checklist. The checklist can also be optimized by supporting ticking off
the checklist and connecting it with issue tracking systems such as JIRA.

Lehnert et al. (2014) Their future work targets an extension of their impact rules to cover
the concrete test scripts. Furthermore, they plan to analyze how risk,
cost, and fault severity-based approaches can be integrated with their
approach for further test prioritization.

Vieira and Ramalho
(2016)

Incorporating more metrics in the calcChangeImpactValue() function.
Look at CIA in a chain of information. Support more than one atomic
change at a time and integrate the approach with currently used Eclipse
plugins for ATL transformations.

Khelladi et al. (2018) As future work, the authors plan to explore further the composition of
resolutions and investigate what is the minimum set of resolutions that
can be sufficient for a wide range of compositions. They further plan to
use meta-heuristic algorithms to search for possible useful compositions
of resolutions.

Table 8: A description of the future work as mentioned in the found approaches.

XI

ID Paper Scope Technique Style Granularity Ar-
tifacts

Granularity Re-
sults

Supported
languages

Output

1 Overeem and
Jansen (2021)

Code - Static,
Models - Architec-
ture

Traceability,
Differencing, Mes-
sage Dependency
Graphs, Explicit
rules

Global OEM diff all
levels, Mergelog
attributes, trace-
ability links on
generator compo-
nents, component
graph on architec-
tural components

Diffs, message de-
pendency graphs

Built to be
specifically
for AFAS’
metamodel and
architecture

Implemented
in LCDP

2 Tröls et al.
(2019)

Code - Dynamic,
Models - Architec-
ture

Traceability, Ex-
plicit rules

Search-based Uniform data rep-
resentation

Results within
Consistency Rule
Evaluation Arti-
fact.

UML, Excel,
Eclipse, Eplan
P8, Creo

Plugin

3 Cho et al.
(2011)

Models - Architec-
ture

Explicit rules,
Traceability

Search-based DSL Design perfor-
mance metrics

UML, Trace-
ability links
(XML)

4 Keller et al.
(2009)

Models - Architec-
ture

Explicit rules Search-based Model-elements Graphs showing re-
sults of actions

UML2 meta-
model

Algorithm

5 Butting et al.
(2018)

Models - Architec-
ture

Differencing Search-based Specific mod-
els to Models-
architectural

A list of generated
artifacts that may
have been changed

Monticore soft-
ware architec-
ture models

6 Kögel (2017) Models - Architec-
ture

History mining Search-based Model transforma-
tions

Recommendations Ecore meta-
models

Tool in-
progress

7 Popescu et al.
(2012)

Code - Static Message Depen-
dency Graphs

Global Source code A message depen-
dence graph

Java, C++ or
C#

Technique

8 Gruschko et al.
(2007)

Models - Architec-
ture

Traceability, Ex-
plicit rules

Search-based Model transforma-
tions

The set of changes ECore meta-
models

Prototype tool

9 Cicchetti et al.
(2008)

Models - Architec-
ture

Explicit rules, Dif-
ferencing

Search-based Difference models KM3 meta-
models

Prototype tool

10 Iovino et al.
(2012)

Models - Architec-
ture

Explicit rules Search-based EMFText syntax
specifications

Set of elements
that may be im-
pacted by changes.

AM3 meg-
amodels

Implementation
within AMMA
platform

11 Demuth et al.
(2016)

Code - Dynamic,
Models - Architec-
ture

Explicit rules,
Traceability

Search-based Sheet data, electri-
cal models, source
code, and compo-
nents

Overview of af-
fected artifacts

Excel, EEP8
models, Eclipse
with Java

Tool

12 Briand et al.
(2006)

Models - Architec-
ture

Explicit rules Search-based Components of
UML models

Measure of dis-
tance

UML Tool

13 Lehnert et al.
(2013)

Models - Architec-
ture

Explicit rules,
Traceability

Search-based Component,
Package,
Class/Interface,
Method, Method-
parameter, At-
tribute, Use case

Impacted elements UML models,
Java source
code, JUnit
tests. Com-
bined into
EMF meta-
model

Tool.

XII

14 Salay et al.
(2016)

Models - Architec-
ture

Slicing, Differenc-
ing, Traceability

Components Megamodel frag-
ments showing
what is impacted

UML Diagram Algorithm

15 Jongeling
(2016)

Models - Architec-
ture

Information re-
trieval, Explicit
rules

Search-based DSL, Model-to-
model transforma-
tions

The elements
that are likely to
co-change based
on changed meta-
model

DSL Tool

16 Rechau et al.
(2017)

Models - Architec-
ture

Explicit rules Search-based Transformations of
EA metamodel and
models

Quantitative
assessment of in-
stances impacted

EA metamod-
els

Tool

17 Iovino et al.
(2019)

Models - Architec-
ture

Explicit rules Search-based Models + Transfor-
mations

List of impacted in-
stances

Ecore meta-
models, ATL
transformation
language

18 Agirre et al.
(2013)

Models - Architec-
ture

Differencing,
Traceability, Ex-
plicit Rules

Search-based Traceability model,
output differences
model, weaving
model, UML de-
sign and Simplec
model

Adaptation goal
model

EMF and ATL Tool

19 Di Rocco et al.
(2013)

Models - Architec-
ture

Traceability, Dif-
ferencing

Search-based Transformation
elements in rela-
tion with changed
metamodel ele-
ments

Visualization of de-
pendencies

ECore meta-
models, ATL

Extended an-
other Tool13

20 Müller and
Rumpe (2014)

Models - Architec-
ture

Explicit rules, Dif-
ferencing

Search-based Difference model
of UML class dia-
grams

Checklists with im-
pacted properties

UML class dia-
grams

Tool

21 Lehnert et al.
(2014)

Models - Architec-
ture

Explicit rules Search-based BPMN/UML
models on which
changes have been
applied

Impacted test ele-
ments.

BPMN, UML,
UML Testing
Profile.

Tool

22 Vieira and Ra-
malho (2016)

Models - Architec-
ture

Explicit rules Exploratory ATL model trans-
formation elements

An impact value of
a given change and
the impacted ele-
ments of that spe-
cific change

ATL model
transformation
language

Tool

23 Khelladi et al.
(2018)

Models - Architec-
ture

Explicit Rules Search-based ETL AST classes Sorted repair sug-
gestions

Ecore/EMF
metamodels,
ETL Epsilon
transforma-
tions

Tool

13https://www.win.tue.nl/~wstahw/tracevis/

https://www.win.tue.nl/~wstahw/tracevis/

XIII

Table 9: The characteristics of the approaches that were found using the snowballing technique (Wohlin, 2014). The charac-
teristics were inspired by the Taxonomy of Lehnert (2011b). The yellow annotations present papers the characteristics that are
less commonly found compared to other papers.

	Introduction
	Problem statement
	Literature Background
	Low-Code Development Platforms
	Compared to Model-Driven technologies

	Change Impact Analysis
	Definitions within research on CIA for LCDPs
	Systematic Literature Reviews in Software Engineering
	Tool Support for Systematic Literature Reviews

	Research Questions
	Research Approach
	Identify purpose
	Draft Protocol
	Research Questions and Research Protocol

	Literature Search and Apply Practical Screen
	Extract Data
	Appraise Quality
	Synthesize Studies and Writing the Review
	Metamodel tables

	Papers found
	Approaches

	Results
	Scope
	Techniques
	Unmentioned techniques

	Style of analysis
	Granularity
	Supported languages
	Tool support
	Future work

	Analysis and Recommendations
	Discussion
	Limitations
	Opportunities

	Conclusion
	References
	Appendix

