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Abstract

It is shown that every holomorphic vector field that vanishes at a point where its derivative
is invertible has a Riemann surface such that the vector field is tangent to the Riemann
surface and such that the Riemann surface contains the point. In fact, we give a precise
finite lower bound on the number of (germs of) such Riemann surfaces depending on the
derivative of the vector field at such a point. We use for this a differentiable version of the
Grobman-Hartman theorem. Additionally, we conjecture an upper bound on the number
of independent integrals a vector field may have near an equilibrium. In the presentation,
a newly developed notional system is used.
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CHAPTER 1

Introduction

Given a holomorphic vector field with an equilibrium1, a natural question to ask is whether
there exist invariant submanifolds (or more general, analytic subspaces) that contain the
equilibrium. We restrict here to the case of Riemann surfaces. The major result on this
so far seems to be that from Camacho and Sad [CS82], which states that for a vector
field on C2 there always exists one. In contrast to them, in this thesis we found a result
that applies not only to dimension two but to any (finite) dimension. Moreover, we show
that there is not only one Riemann surface, but in fact we show that there are at least
as many as the number eigenvalues of the derivative of the vector field at the equilibrium
that are extremal points of the convex hull of the set of eigenvalues. However, we do
have the restriction that the derivative of the vector field at the equilibrium should be
invertible. The differences in these kinds of results reflect somewhat the differences in the
methods being used. While Camacho and Sad used tools as blow ups of manifolds, and
Chern classes, on a differentiable version of the Grobman-Hartman theorem is relied. 2.
This differentiable version is a recent result, and gives criteria under which a real C∞-
vector field with an equilibrium is C1-equivalent to its linearization at the equilibrium.
An outline of the proof is in section 6 of chapter 3.

The original aim was to prove a non-integrability criterion for Hamiltonian systems
near equilibria of vector fields. The idea was to apply a theory of Morales-Ruiz and
Ramis[Rui99]. Before this could be done, it was needed to show the existence of invari-
ant analytic curves through the equilibrium. This approach did not work. Instead, a
non-integrability criterion is conjectured, the proof of which the author is still working.

Then, there is another purpose this thesis serves, other than the study of holomorphic
vector fields. In the process of writing, a new notional system has been developed. This
system has the ability to denote logical statements in a systematic and at the same time
human readable way - the motivation for its development. This thesis has been taken as
opportunity to both present and test this notational system.

1Often called a singularity.
2The seemingly incompatible conditions on the eigenvalues of the Grobman-Hartman theorem and in-
vertibility is not a problem
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CHAPTER 2

Notation

A proof should not be great
literature; it should be beautiful
mathematics. Its beauty lies in its
logical structure, not in its prose.

Leslie Lamport

As mentioned in the introduction, we use a new notational system. Here we will point out
how it works. We are not giving here any more arguments in favor or against it. Since
the reader is not ought to be familiar with it yet, all statements are also written down in
the usual prosaic form and the proofs are provided with prosaic proof sketches.

Let A,B be logical statements. From these one can form with the usual operators from
propositional logic new statements, e.g., A ∧B or A =⇒ B or A ⇐⇒ B. When A and
B are long satements, then in the new notation A ∧B will be written as
2 A
1 ∧
2 B
The numberings at the start of the sentence are called structure numbers, and indicate
what the arguments of the operators are. Precisely those statement are the arguments
of a binary logical operator that have one lower structure number on either side of the
operator. Since
2 A
1 ∧
2 B
is itself a logical statement, it also has its own structure. That is given by the structure
number of its operator, in this case 1. In this way one can form any composition of logical
statements without having the need for brackets. Let us at look at one more example.
(A ∧B) =⇒ C can be written as
3 A
2 ∧
3 B
1 =⇒
2 C
Here A∧B has structure 2, hence A∧B is the first argument of =⇒ , and similarly for C.

3



4 2. NOTATION

Since sequences of implications and equivalences such as (A =⇒ B) ∧ (B ⇐⇒ C) are
common, we write this down in an abbreviated way:
2 A
1 =⇒
2 B
1 ⇐⇒
2 C
Here, one notes that is necessary to use read the structure numbers to distinghuish this
from A =⇒ (B ⇐⇒ C).

We also have a shorthand notation for sequences as A∧B∧C∧D∧E1 or A∨B∨C∨D∨E.
In case of ∧, we do this by indicating the start of the sequence by ∧∗ and the end by ∧∗,
and the arguments again have a structure number 1 higher than their arguments. With
this, A ∧B ∧ C ∧D ∧ E becomes
1 ∧∗
2 A
2 B
2 C
2 D
2 E
1 ∧∗

Combining this with notion one has also has the meaning of

1 =⇒ ∗
2 A
2 B
2 C
1 =⇒ ∗

We also allow extensions from this of the following form
1 A ∧
2 B
which means A ∧ B. Here A ∧ can be seen as an operator with one argument, which
should written after it, since ∧ is on the left of A. This notation can be again extended
to quantifications ∀ and ∃. Namely, let a be a term, and P a predicate symbol, then we
could write (∀a)(P (a)) as
1 ∀a
2 P (a)
Often in mathematics, we show the existence of objects with a desired property and after
that we go on with, ’for each object with such properties...’. Something similar here is
also done:

1These kind of expressions are well defined since the operator here is associative.



2. NOTATION 5

3 [some proof of existence]
2 =⇒
3 ∃a: P (a)
1 ∧
2 ∀a: as such
3 ...
’as such’ now refers to P (a). The rule is that when one reads ”as such” after a quantifica-
tion, then one should look up latest occurrence of the quantification of a variable with the
same symbol and interpret ”as such” as the properties that required given at this latest
quantification.

Another typical situation is as follows: Suppose we know A1, A2 and A3 are true and B1
and B2 are unknown statements and we know the implications (A1 ∧ A2) =⇒ B1 and
(B1 ∧ A3) =⇒ B2, then usually the proof of B2 is written down as
2 B2
1 ⇐=
4 A1 ∧ A2
3 =⇒
4 B1
2 ∧
4 B1 ∧ A3
3 =⇒
4 B2

or

2 B2
1 ⇐=
2 B1 ∧ A3
1 ∧
3 B1
2 ⇐=
4 A1 ∧ A2

Of course, there also the variations with the arrows in the opposite direction. B1 ∧ A3 is
a very long statement, then to improve readability We could ”4 B1 ∧ A3” expand as:
5 B1
4 ∧
5 A3

Suppose we know C ⇐= (A ∧ B) and A ⇐= [very long proof of A] and B ⇐= [very
long proof of B], then typically the proof of C is written down as
2 C
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1 ⇐=
3 A
2 ∧
3 B
1 ⇐=
4 A
3 ⇐=
4 [very long proof of A]
2 ∧
4 B
3 ⇐=
4 [very long proof of B]
Then there is one last variation of proof writing which deserves mentioning. This is one
frequently used in the proof of main last theorem. Suppose we have A ⇐= [very long
proof of A] and B ⇐= [very long proof of B using A]. Then a proof of B can be written as

2 A
1 ∧
3 A
2 ⇐=
3 [very long proof of A]
1 ∧
3 A
2 =⇒
4 B
3 ⇐=
4 [very long proof of B using A]

Some explanation: A written down first as claim that A is true, then after ”1 ∧” A is
proven, and after the next 1 ∧ A is assumed, since it is needed in the proof of B. If this
proof continued with 1 ∧ then apparently, the assumption of A would not be used after it.

Other comments on used conventions
We always quantify over ZFC-sets (ZF+choice). So when there is written ∀S without
other assumptions, then it should be read as ’let S be a ZFC-set’.

In most mathematical texts, a map from a set A to a set B is defined as a triple (A,B,R)
where R is a subset of A × B that needs to have the properties the reader is familiar
with. Here, however, R itself would be called a map from A to B. It could be seen as a
drawback that in this way the notion of ’the codomain of a map’ is lost; instead we can
talk about ’a codomain of R’ as set that contains the image of R.



CHAPTER 3

The proof

The aim of this chapter is to prove the main theorem 37 and its corollary, which is what
we mean with the title of this thesis. Just after the statement of 37, and before its proof,
we give a sketch or outline of the whole proof. It is advisable to read this first before going
into detail. In the sections before the statement and proof of theorem 37, the necessary
definitions and results are collected.

1. Polygons in C

Some basic definitions and results are recalled about convex sets in vector spaces.
Definition 1 (convex).
1 ∀V : a vector space over R
2 ∀C ⊂ V
4 C is convex
3 :⇐⇒
4 ∀x1, x2 ∈ C
5 ∀t ∈ [0, 1]
6 x1t+ x2(1− t) ∈ C
Definition 2 (extreme point, ext(Λ)).
1 ∀V : a vector space over R
1 ∀Λ ⊂ V : Λ is finite
3 ∀λ ∈ Λ
6 λ is an extreme point of Λ in V
5 :⇐⇒
6 ∀λ̃ : Λ→ [0, 1]
8 ∑

µ∈Λ λ̃(µ) = 1 and ∑
λ∈µ λ̃(µ)µ = λ

7 =⇒ λ̃(λ) = 1
4 ∧
5 ext(Λ, V ) or for short ext(Λ) is the set of extreme points of Λ in V

Definition 3 (convex hull, co(Λ)).
1 ∀V : a vector space over R
2 ∀Λ ⊂ V
3 ∀λ ∈ V
6 λ ∈ the convex hull of Λ
5 :⇐⇒

7



8 3. THE PROOF

6 ∀Λ′ ⊂ Λ : Λ′ is finite
7 ∃λ̃ : Λ′ → [0, 1]
8 ∑

µ∈Λ′ λ̃(µ) = 1 and ∑
λ′∈µ λ̃(µ)µ = λ

4 ∧ co(Λ) = the convex hull of Λ

Proposition 4.
1 ∀V : a normed vector space over R
2 ∀Λ ⊂ V : Λ is finite
5 P4,a(Λ) :⇐⇒ co(Λ) is convex and compact wrt the norm topology
4 ∧
5 P4,b(Λ) :⇐⇒ ext Λ = ext co Λ
3 =⇒
4 P4,a(Λ) ∧ P4,b(Λ)

Prosaic form of the statement. Let V a normed vector space over R and let Λ ⊂ V such
that Λ is finite. Then co(Λ) is convex and compact wrt the norm topology Λ = ext co Λ

Proof.
See [Con07].

This definition is made to reference to the result of 6 in a precise manner.

Definition 5.
1 ∀Λ ⊂ C : Λ is finite
2 ∀λ ∈ Λ
3 λ is an extreme point of Λ in C =⇒
5 P6(Λ, λ)
4 :⇐⇒
5 ∃α ∈ C: |α| = 1
6 ∀µ ∈ Λ\{λ}
7 re αµ < re αλ

The following statement looks innocent, but its proof is quite some work.

Proposition 6.
1 ∀Λ ⊂ C : Λ is finite
2 ∀λ ∈ Λ
3 λ is an extreme point of Λ in C =⇒
4 P6(Λ, λ)

Prosaic form of the statement. Let Λ ⊂ C such that Λ is finite; let λ ∈ Λ and λ is an
extreme point of Λ in C. Then P6(Λ, λ) is true.

In the proof, the first 5 lines of the statement of the proposition are taken as assumptions.



1. POLYGONS IN C 9

Proof sketch. First we show there does not exist a line through λ that intersects the
convex hull of Λ at two other points than λ on both sides of λ in this line by contra-
diction (P (not both)). Then we show that there exists a line through λ that does not
intersect the convex hull at any other point than λ (P (nonintersecting line)) by combining
P (not both) and that the set of angles for which there exists a nonintersecting half line
is compact and connected. This latter fact is achieved by showing that we only we have
to look at the angles for which there exists a half line that intersects the convex hull of Λ
is the same as of Λ\{λ}, and the latter is compact and connected in C\{λ} - in contrast
to the former. After this, we take a complex number α̃ that on multiplying makes the
non-intersecting line vertical in the complex plane. Then by showing that α̃(Λ\{λ}) is
connected, it should be at either the left or the right side of this line. If on the right side
then we take α̃ = α, otherwise α̃ = −α.

Proof.
2 P (not both) :⇐⇒
3 @ϕ ∈ R
4 ∃t1, t2 ∈ R>0
5 λ+ t1e

iϕ ∈ co(Λ) ∧ λ+ t2e
iϕ+iπ ∈ co(Λ)

1 =⇒
4 P (not both)
3 ⇐=
4 ∃ϕ ∈ R
5 ∃t1, t2 ∈ R>0
7 λ+ t1e

iϕ ∈ co(Λ) ∧ λ+ t2e
iϕ+iπ ∈ co(Λ)

6 =⇒
8 t2
t1+t2 ∈ (0, 1) ⇐= t2

t1+t2 <
t1+t2
t1+t2 = 1

7 ∧
8 t2
t1+t2 (λ+ t1e

iϕ) + (1− t2
t1+t2 )(λ+ t2e

iϕ+iπ) = λ
6 =⇒
7 λ /∈ ext co (Λ) ∧ P4,b
6 =⇒
7 λ /∈ ext (Λ) =⇒ E
2 ∧
4 ẽ := {(ϕ̃, {teiϕ : t ∈ R>0}) : ϕ̃ ∈ R/2πZ ∧ ϕ ∈ R ∧ [ϕ] = ϕ̃}
3 =⇒
5 ẽ is a map R/2πZ→ C\{0}/R>0
4 ∧
6 S := ẽ−1([co (Λ)− λ]\{0}/R>0)
5 =⇒
7 P (characterization of S) :⇐⇒
9 ∀ϕ ∈ R
10 ∃t ∈ R>0
11 λ+ teiϕ ∈ co(Λ)



10 3. THE PROOF

8 ⇐⇒
9 [ϕ] ∈ S
6 =⇒
8 P (characterization of S) ⇐=
9 ∀ϕ ∈ R
10 ∃t ∈ R>0
11 λ+ teiϕ ∈ co (Λ)\{λ}
10 ⇐⇒
11 teiϕ ∈ [co (Λ)− λ]\{0}
10 ⇐⇒
11 [ϕ] ∈ ẽ−1([co (Λ)− λ]\{0}/R>0)
10 ⇐⇒
11 [ϕ] ∈ S
7 ∧
The next step is to show that S is compact and connected.
9 S is compact and connected
8 ⇐=
10 ẽ−1(co ((Λ− λ)\{0})/R>0) is compact and connected ∧ ẽ−1([co (Λ)− λ]\{0}/R>0) =
ẽ−1(co ((Λ− λ)\{0})/R>0)
9 ∧
11 ẽ−1(co ((Λ− λ)\{0})/R>0) is compact and connected
10 ⇐=
12 P4,a =⇒ co ((Λ − λ)\{0}) is compact and connected =⇒ co ((Λ − λ)\{0})/R>0 is
compact and connected
11 ∧
13 co ((Λ− λ)\{0})/R>0 is compact and connected ∧ ẽ is a homeomorphism
12 =⇒
13 ẽ−1(co ((Λ− λ)\{0})/R>0) is compact and connected
9 ∧
10 [co (Λ)− λ]\{0}/R>0 = co ((Λ− λ)\{0})/R>0
11 ⇐=
10 [co (Λ)− λ]\{0}/R>0 = co ((Λ− λ)\{0})\{0}/R>0 ∧ 0 /∈ co ((Λ− λ)\{0})/R>0
11 ⇐=
12 ∧∗
13 [co (Λ)− λ]\{0}/R>0 ⊂ co ((Λ− λ)\{0})\{0}/R>0
13 [co (Λ)− λ]\{0}/R>0 ⊃ co ((Λ− λ)\{0})\{0}/R>0
13 0 /∈ co ((Λ− λ)\{0})/R>0
12 ∧∗
9 ∧
11 [co (Λ)− λ]\{0}/R>0 ⊂ co ((Λ− λ)\{0})\{0}/R>0
10 ⇐=
11 ∀x ∈ C
12 ∀t ∈ R>0: xt ∈ [co (Λ)− λ]\{0}
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13 ∀λ̃1 : Λ→ [0, 1]: ∑
µ∈Λ λ̃1(µ) = 1

14 =⇒ *
15 xt = ∑

µ∈Λ(λ̃1(µ)µ)− λ
15 xt = ∑

µ∈Λ λ̃1(µ)(µ− λ)
15 xt = ∑

µ∈Λ\{λ} λ̃1(µ)(µ− λ)
15 xt∑

µ∈Λ\{λ} λ̃1(µ)
= 1∑

µ∈Λ\{λ} λ̃1(µ)
∑
µ∈Λ\{λ} λ̃1(µ)(µ− λ)

19 t′ := t∑
µ∈Λ\{λ} λ̃1(µ)

16 ∧
17 λ2 := {(µ, λ1(µ+ λ)) : µ ∈ (Λ− λ)\{0}}
15 =⇒
16 xt′ = ∑

µ∈(Λ−λ)\{0} λ̃2(µ)µ and ∑
µ∈(Λ−λ)\{0} λ̃2(µ) = 1 and xt′ 6= 0

15 =⇒
16 [x] ∈ co ((Λ− λ)\{0})\{0}/R>0
14 =⇒ *

9 ∧
11 [co (Λ)− λ]\{0}/R>0 ⊃ co ((Λ− λ)\{0})\{0}/R>0
10 ⇐=
11 ∀x ∈ C
12 ∀t ∈ R>0: xt ∈ co ((Λ− λ)\{0})\{0}
13 ∀λ̃1 : (Λ− λ)\{0} → [0, 1]: ∑

µ∈Λ λ̃1(µ) = 1
15 xt = ∑

µ∈(Λ−λ)\{0}(λ̃1(µ)µ)
14 =⇒
16 λ̃2 := {(λ, 0)} ∪ {(µ, λ̃1(µ− λ)) : µ ∈ Λ\{λ}}
15 =⇒ xt = ∑

µ∈Λ λ̃2(µ)µ− λ and ∑
µ∈Λ λ̃2(µ) = 1 and xt 6= 0

15 =⇒ [x] ∈ [co (Λ)− λ]\{0}/R>0
9 ∧
11 0 /∈ co ((Λ− λ)\{0})/R>0
This proof is done by defining a statement P, then showing it is true, and then showing
that 0 ∈ co ((Λ− λ)\{0}) causes the negation of P, which results in contradiction.
10 ⇐=
12 P :⇐⇒
13 ∀λ̃1: (Λ− λ)→ [0, 1]: ∑

µ∈Λ−λ λ̃1(µ) = 1 and ∑
µ∈Λ−λ λ̃1(µ)µ = 0

14 λ̃1(0) = 1
11 =⇒
14 λ ∈ ext (Λ)
13 =⇒
14 0 ∈ ext (Λ− λ)
13 =⇒ P
12 ∧
14 0 ∈ co ((Λ− λ)\{0})
13 =⇒
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15 0 ∈ co ((Λ− λ)\{0}) =⇒
16 ∃λ̃2: (Λ− λ)\{0} → [0, 1]: ∑

µ∈(Λ−λ)\{0} λ̃2(µ) = 1 and ∑
µ∈(Λ−λ)\{0} λ̃2(µ)µ = 0

14 ∧
15 ∀λ̃2: (Λ− λ)\{0} → [0, 1]: ∑

µ∈(Λ−λ)\{0} λ̃2(µ) = 1 and ∑
µ∈(Λ−λ)\{0} λ̃2(µ)µ = 0

16 λ̃1 := {0, 0} ∪ {(µ, λ2) : µ ∈ (Λ− λ)\{0}} =⇒
17 λ̃1 : Λ− λ→ [0, 1] and ∑

µ∈Λ−λ λ̃1(µ) = 1 and ∑
µ∈Λ−λ λ̃1(µ)µ = 0 and λ̃1(0) 6= 1

13 =⇒ ¬P
Now we have proven that S is compact and connected. We continue with showing there
exists a line through λ that does intersect co (Λ) at no other point.
7 ∧
9 P (nonintersecting line) :⇐⇒
10 ∃ϕ ∈ R
11 ∀t ∈ R
12 λ+ teiϕ /∈ co (Λ)\{λ}
8 =⇒
11 P (characterization of S) ∧ (∃∀¬ ⇔ ¬∀∃)
10 =⇒
12 P (nonintersecting line)
11 ⇐⇒
12 ∃ϕ ∈ R : [ϕ] ∈ SC and [ϕ+ π] ∈ SC
9 ∧
11 S is compact and connected
10 =⇒
11 ∃ϕ1, ϕ2 ∈ R: ϕ1 ≤ ϕ2 and S = [ϕ1, ϕ2]/2πZ
9 ∧
10 ∀ϕ1, ϕ2: as such
12 P (not both) ∧ P (characterization of S) =⇒ ϕ2 < ϕ1 + π
11 ∧
12 SC = (ϕ2, ϕ1 + 2π)/2πZ
11 ∧
13 ϕ1 + π > ϕ2 ∧ SC = (ϕ2, ϕ1 + 2π)/2πZ
12 =⇒
14 ∀ϕ ∈ (ϕ2, ϕ1 + π)
[ϕ] ∈ SC ∧ [ϕ+ π] ∈ SC
13 ∧
14 ∃ϕ ∈ (ϕ2, ϕ1 + π)
9 ∧
12 ∃ϕ1, ϕ2, ϕ: as such
11 ∧
12 ∀ϕ1, ϕ2, ϕ: as such
13 [ϕ] ∈ SC and [ϕ+ π] ∈ SC
10 =⇒
11 ∃ϕ ∈ R : [ϕ] ∈ SC and [ϕ+ π] ∈ SC
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Remember that we have already proven this equivalence.
10 ⇐⇒
11 P (nonintersecting line)
Now we use that P (nonintersecting line) is true to just do what is promised in the proof
sketch: ”we take a complex number α̃ that on multiplying makes the nonintersecting line
vertical in the complex plane. Then by showing α̃(Λ\{λ}) is connected, it should be at
either the left or the right side of this line. If on the right side then we take α̃ = α,
otherwise α̃ = −α”
9 ∧
10 P (nonintersecting line) ∧
11 ∀ϕ ∈ R
13 ∀t ∈ R
14 λ+ teiϕ /∈ co (Λ)\{λ}
12 =⇒
15 α̃ := ie−iϕ

14 ∧
15 l := {λ+ teiϕ : t ∈ R>0}
13 =⇒
15 ⇐= *
16 (α̃l)C is the disjoint union of {x ∈ C : re(x) > re(α̃λ)} and {x ∈ C : re(x) < re(α̃λ)}
16 α̃l = {x ∈ C : re(x) = re(α̃λ)}
16 α̃eiϕ = i
15 ⇐= *

14 ∧
15 ⇐= *
16 α̃(co (Λ)\{λ}) is connected
16 co (Λ)\{λ} is connected ∧ multiplying on C by a nonzero complex number is a home-
omorphism
16 co (Λ)\{λ} is connected
16 co (Λ)\{λ} is convex
16 ∀x, y ∈ co(Λ)\{λ}
17 ∀t ∈ [0, 1]
20 co(Λ) is convex and x, y ∈ co(Λ)
19 =⇒
20 xt+ (1− t)y ∈ co(Λ)
19 =⇒
20 xt+ (1− t)y ∈ co(Λ)\{λ} ∨ xt+ (1− t)y = λ
18 ∧
19 P4,b =⇒ λ ∈ ext co(Λ)
18 ∧
20 xt+ (1− t)y = λ ∧ λ ∈ ext co(Λ)
19 =⇒
20 x = λ ∨ y = λ
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15 ⇐= *

14 ∧
15 α̃(co (Λ)\{λ}) ⊂ (α̃l)C ⇐= co (Λ)\{λ} ∩ l = ∅
14 ∧
16 ∧∗
17 α̃(co (Λ)\{λ}) ⊂ (α̃l)C
17 (α̃l)C = {x ∈ C : re(x) > re(α̃λ)} t {x ∈ C : re(x) < re(α̃λ)}
17 α̃(co (Λ)\{λ}) is connected
16 ∧∗
15 =⇒
16 α̃(co (Λ)\{λ}) ⊂ {x ∈ C : re(x) > re(α̃λ)} or α̃(co (Λ)\{λ}) ⊂ {x ∈ C : re(x) <
re(α̃λ)}
15 =⇒
17 α := α̃/|α̃|
18 ∀µ ∈ Λ\{λ}
19 re αµ < re αλ and |α| = 1
16 ∨
17 α := −α̃/|α̃|
18 ∀µ ∈ Λ\{λ}
19 re αµ < re αλ and |α| = 1
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2. Integral curves, flows and limits

The following shorthand notation is useful now.
Definition 7.
1 ∀V : a vector space over C or R
2 VR is the underlying real vector space of V , i.e. we restrict the field of scalars to R
To be able to distinguish clearly between complex differentiable and real differentiable,
we use the following notation.
Definition 8.
1 ∀V1, V2: vector spaces over C
2 ∀U : an open subset of V1
3 ∀f
5 f ∈ C1(U |R, V1,R) ⇐⇒ f is real differentiable map from U to V2 with respect to the
vector space structures of V1,R and V2,R
4 ∧
5 f ∈ Hol(U, V ) ⇐⇒ f is a holomorphic map from U to V
Apart from distinguishing between the complex and real case, these definitions are also
here to emphasize that the domain of an integral curve needs to be connected.
Definition 9 (real integral curve).
1 ∀V : a vector space over R or C
2 ∀U ⊂ V : U is open
3 ∀ξ ∈ C1(UR, VR)
4 ∀γ
6 γ is a real integral curve of ξ
5 ⇐⇒
6 ∃I: an open interval of R
8 γ ∈ C1(I, UR)
7 ∧
8 Dγ = ξ ◦ γ
Definition 10 (complex integral curve).
1 ∀V : a vector space over C
2 ∀U ⊂ V : U is open
3 ∀ξ ∈ Hol(U, V )
4 ∀γ
6 γ is a complex integral curve of ξ
5 ⇐⇒
6 ∃Ũ : an open connected set of C
8 γ ∈ Hol(Ũ , V )
7 ∧
8 Dγ(−)(1) = ξ ◦ γ
This proposition is a not so surprising result, and the proof is trivial if use the ’right’
definition of real differentiability. The point of this proposition that a real differentiable
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function that commutes with multiplication with i at only one point behaves for some
limits to this point the same as functions that are holomorphic on a neighborhood of this
point.

Proposition 11.
1 ∀V : a vector space over C
2 ∀U ⊂ V : U is a neighborhood of 0
3 ∀f ∈ C1(UR, VR): f(0) = 0
4 ∀γ
7 ∃x0 ∈ R
8 γ ∈ C((−∞, x0),C\{0})
6 ∧
7 limt→−∞ γ(t) = 0
5 =⇒
7 ∀v ∈ V
8 Df(0)(iv) = iDf(0)(v)
6 =⇒
7 limt→−∞

1
γ(t)f(γ(t)v) = Df(0)(v)

Prosaic form of the statement. Let V is a finite dimensional vector space over C; U is a
neighborhood of 0; f ∈ C1(UR, VR) such that f(0) = 0; let γ be such that there exists a
x0 ∈ R γ ∈ C((−∞, x0),C\{0}) and limt→−∞ γ(t) = 0, then, if for each v ∈ V such that
Df(0)(iv) = iDf(0)(v) holds, then limt→−∞

1
γ(t)f(γ(t)v) = Df(0)(v).

In the proof, the lines of the statement of the proposition up to ”5 =⇒ ” are used as
assumptions.

Proof sketch. Only elementary analysis is used.

Proof.
1 ∀|| − ||: a norm on V
4 f is continuously differentiable
3 =⇒
4 ∃h : U → V
6 limx→0 h(x) = 0
5 ∧
6 ∀x ∈ U
7 f(x) = Df(0)(x) + ||x||h(x)
2 ∧
3 ∀h: as such
5 ∀t ∈ dom(γ): γ(t) ∈ dom(f)
6 =⇒ ∗
7 f(γ(t)v) = Df(0)(γ(t)v) + ||γ(t)v||h(γ(t)v)
7 1
γ(t)f(γ(t)v)− 1

γ(t)Df(0)(γ(t)v) = 1
γ(t) ||γ(t)v||h(γ(t)v)
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7 1
γ(t)f(γ(t)v)−Df(0)(v) = 1

γ(t) ||γ(t)v||h(γ(t)v)
7 || 1

γ(t)f(γ(t)v)−Df(0)(v)|| = ||v|| ||h(γ(t)v)||
6 =⇒ ∗

4 ∧
7 ∀t ∈ dom(γ): γ(t) ∈ dom(f)
8 || 1

γ(t)f(γ(t)v)−Df(0)(v)|| = ||v|| ||h(γ(t)v)||
6 ∧
7 limt→−∞ ||v|| ||h(γ(t)v)|| = 0
5 =⇒
7 limt→−∞ || 1

γ(t)f(γ(t)v)−Df(0)(v)|| = 0
6 =⇒
7 limt→−∞

1
γ(t)f(γ(t)v) = Df(0)(v)

The following definition makes the proof of the next proposition more readable.

Definition 12.
1 ∀n,m ∈ N: n > m
2 {n, ...,m} := ∅

This is another proposition concerning limits.

Proposition 13.
1 ∀t0 ∈ R
2 ∀n ∈ N
3 ∀c : {1, ..., n} → C
4 ∀f : {1, ..., n} → ((−∞, t0)→ C)
5 ∀C ∈ C
8 limt→−∞

∑n
m=1 c(m)f(m)(t) = C ∧ limt→−∞ f(1)(t) 6= 0

7 ∧
8 ∀m ∈ {1, ..., n− 1}
9 limt→−∞

f(m)(t)
f(m+1)(t) = 0

6 =⇒
8 c(1) = C

limt→−∞ f(1)(t)
7 ∧
8 ∀m ∈ {2, ..., n}
9 c(m) = 0

Prosaic form of the statement. Let t0 ∈ R; n ∈ N; c : {1, ..., n} → C; f : {1, ..., n} →
((−∞, t0)→ C); C ∈ C. Then if limt→−∞

∑n
m=1 c(m)f(m)(t) = C and limt→−∞ f(1)(t) 6=

0 and for each m ∈ {1, ..., n − 1} limt→−∞
f(m)(t)
f(m+1)(t) = 0 hold, then c(1) = C

limt→−∞ f(1)(t)
holds and for each m ∈ {2, ..., n} c(m) = 0 holds.

The first 5 lines of the statement of the proposition are taken as assumptions in the proof.
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In the proof, the lines up to ”6 =⇒ ” are taken as assumptions.

Proof sketch. First (∀m ∈ {2, ..., n})(c(m) = 0) is shown, from which c(1) = C
limt→−∞ f(1)(t)

easily follows. (∀m ∈ {2, ..., n})(c(m) = 0) is shown using induction, and the induction
base and step are proven by first showing (∀m1,m2 ∈ {1, ..., n})(m2 > m1

9 limt→−∞
f(m1)(t)
f(m2)(t) = 0 ∧ limt→−∞

1
f(m2)(t) = 0).

Proof.
3 (∀m ∈ {2, ..., n})(c(m) = 0)
2 ∧
4 (∀m ∈ {2, ..., n})(c(m) = 0)
3 =⇒
4 c(1) = C

limt→−∞ f(1)(t)
1 ⇐=
4 (∀m ∈ {2, ..., n})(c(m) = 0)
3 ⇐=
5 induction
4 ∧
This second argument of the ”4 ∧” contains both the base case as the induction step. For
the base case, note that if m = n, then {m+ 1, ..., n} = ∅.
5 ∀m ∈ {2, ..., n}
7 (∀k ∈ {m+ 1, ..., n})(c(k) = 0)
6 =⇒
7 (∀k ∈ {m, ..., n})(c(k) = 0)
4 ∧
6 ∀m ∈ {2, ..., n}
8 (∀k ∈ {m+ 1, ..., n})(c(k) = 0)
7 =⇒
8 (∀k ∈ {m, ..., n})(c(k) = 0)
5 ⇐=
7 ∀m1,m2 ∈ {1, ..., n}: m2 > m1

8 limt→−∞
f(m1)(t)
f(m2)(t) = 0 ∧ limt→−∞

1
f(m2)(t) = 0

6 ∧
8 ∀m1,m2 ∈ {1, ..., n}: m2 > m1

9 limt→−∞
f(m1)(t)
f(m2)(t) = 0 ∧ limt→−∞

1
f(m2)(t) = 0

7 =⇒
8 ∀m ∈ {2, ..., n}
10 (∀k ∈ {m+ 1, ..., n})(c(k) = 0)
9 =⇒
10 (∀k ∈ {m, ..., n})(c(k) = 0)
5 ⇐=
8 ∀m1,m2 ∈ {1, ..., n}: m2 > m1

9 limt→−∞
f(m1)(t)
f(m2)(t) = 0 ∧ limt→−∞

1
f(m2)(t) = 0
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7 ⇐=
11 (∀m ∈ {2, ..., n})(limt→−∞

f(m)(t)
f(m+1)(t) = 0)

10 ∧
11 (∀m1,m2 ∈ {1, ..., n}: m2 > m1)(limt→−∞

f(m1)(t)
f(m2)(t) = limt→−∞

∏m2−1
m=m1

f(m)(t)
f(m+1)(t))

9 =⇒
10 (∀m1,m2 ∈ {1, ..., n}: m2 > m1)(limt→−∞

f(m1)(t)
f(m2)(t) = 0)

9 =⇒
10 limt→−∞

f(1)(t)
f(m2)(t) = 0

8 ∧
10 limt→−∞

f(1)(t)
f(m2)(t) = 0 ∧ limt→−∞ f(1)(t) 6= 0

9 =⇒
10 limt→−∞

1
f(m2)(t) = 0

6 ∧
9 ∀m1,m2 ∈ {1, ..., n}: m2 > m1

10 limt→−∞
f(m1)(t)
f(m2)(t) = 0 ∧ limt→−∞

1
f(m2)(t) = 0

8 =⇒
9 ∀m ∈ {2, ..., n}
11 (∀k ∈ {m+ 1, ..., n})(c(k) = 0)
10 =⇒
11 (∀k ∈ {m, ..., n})(c(k) = 0)
7 ⇐=
8 ∀m ∈ {2, ..., n}
12 (∀k ∈ {m+ 1, ..., n})(c(k) = 0)
11 ∧
12 limt→−∞

∑n
m′=1 c(m′)f(m′)(t) = C

10 =⇒
11 limt→−∞

∑m
m′=1 c(m′)f(m′)(t) = C

10 =⇒
11 limt→−∞

1
f(m)(t) limt→−∞

∑m
m′=1 c(m′)f(m′)(t) = limt→−∞

1
f(m)(t) · C

9 ∧
12 limt→−∞

1
f(m)(t) limt→−∞

∑m
m′=1 c(m′)f(m′)(t) = limt→−∞

1
f(m)(t) · C

11 ∧
12 ∀m1,m2 ∈ {1, ..., n}: m2 > m1

13 limt→−∞
f(m1)(t)
f(m2)(t) = 0 ∧ limt→−∞

1
f(m2)(t) = 0

10 =⇒
11 c(m) = 0
2 ∧
5 (∀m ∈ {2, ..., n})(c(m) = 0)
4 =⇒
5 c(1) = C

limt→−∞ f(1)(t)
3 ⇐=
6 (∀m ∈ {2, ..., n})(c(m) = 0)
5 ∧
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6 limt→−∞
∑n
m′=1 c(m′)f(m′)(t) = C

4 =⇒
5 limt→−∞ c(1)f(1)(t) = C
4 =⇒
5 c(1) = C

limt→−∞ f(1)(t)

Definition 14 (maximal real integral curve).
1 ∀V, U : V is a finite dimensional vector space over R and U ⊂ V and is open
2 ξ ∈ C1(U, V )
3 ∀γ
5 γ is a maximal real integral curve of ξ
4 :⇐⇒
6 γ is a real integral curve of ξ
5 ∧
6 @γ̃: γ̃ is a real integral curve of ξ ∧ γ̃ ) γ

Theorem 15 ((Part of) fundamental theorem on flows).
1 ∀V, U : V is a finite dimensional vector space over R and U ⊂ V and is open
2 ξ ∈ C1(U, V )
4 ∃!Dξ ⊂ R× U : Dξ is open
5 ∃!Fξ ∈ C1(Dξ, U)
6 ∀x ∈ U : {(t, Fξ(t, x)) : t ∈ pr1(Dξ ∩R×{x})} is a maximal real integral curve of ξ and
at 0 this integral curve is x

Prosaic form of the statement. Let V is a finite dimensional vector space over R and U ⊂ V
an open set and let ξ ∈ C1(U, V ). Then There exists a unique Dξ ⊂ R×U that is open and
a unique Fξ ∈ C1(Dξ, U) such that for each x ∈ U {(t, Fξ(t, x)) : t ∈ pr1(Dξ ∩ R× {x})}
is a maximal real integral curve of ξ and at 0 this integral curve is x.

Proof.
See [Lee12], 9.12.

Definition 16 (maximal flow domain, maximal flow, Dξ, Fξ).
1 ∀V, U : V is a finite dimensional vector space over R and U ⊂ V and is open
2 ξ ∈ C1(U, V )
4 Dξ and Fξ are as in theorem 15
3 ∧
4 the maximal flow domain of ξ is Dξ, and the maximal flow of ξ is Fξ
From a maximal flow, all other integral curves can be obtained.

Proposition 17.
1 ∀V : a vector space over R or C
2 ∀U ⊂ V : U is open
3 ∀ξ ∈ C1(UR, VR)
4 ∀I: an open interval of R
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5 ∀γ : I → U
6 γ is a real integral curve of ξ
5 ⇐⇒
6 ∀t′ ∈ I
7 γ = {(t, Fξ(t− t′, γ(t′))) : t ∈ I}

Prosaic form of the statement. Let V a vector space over R or C; U ⊂ V such that U is
open; ξ ∈ C1(UR, VR); I an open interval of R; γ a map I → U . Then γ is a real integral
curve of ξ if and only if for each t′ ∈ I γ = {(t, Fξ(t− t′, γ(t′))) : t ∈ I} holds.

The first 5 lines of the statement of the proposition are taken as assumptions in the proof.

Proof sketch. Two proof is done in two independent parts, which are written down before
”1 ⇐= ”, and which are the =⇒ and the ⇐= -implications. After ”1 ⇐= ” they are
proven straightforwardly.

Proof.
4 γ is a real integral curve of ξ
3 =⇒
4 ∀t′ ∈ I
5 γ = {(t, Fξ(t− t′, γ(t′))) : t ∈ I}
2 ∧
4 γ is a real integral curve of ξ
3 ⇐=
4 ∀t′ ∈ I
5 γ = {(t, Fξ(t− t′, γ(t′))) : t ∈ I}
1 ⇐=
5 γ is a real integral curve of ξ
4 =⇒
5 ∀t′ ∈ I
6 γ = {(t, Fξ(t− t′, γ(t′))) : t ∈ I}
3 ⇐=
7 D{(t, γ(t+t′)) : t ∈ (I−t′)} = D{(t,Dγ(t+t′)·D{(t′′, t′+t′′) : t′′ ∈ (I−t′)}) : t ∈ (I−t′)}
6 ∧
7 γ is a real integral curve of ξ
6 ∧
7 D{(t′′, t′ + t′′) : t′′ ∈ (I − t′)} = 1
5 =⇒
6 D{(t, γ(t+ t′)) : t ∈ (I − t′)} = D{(t, ξ(γ(t+ t′))) : t ∈ (I − t′)}
5 =⇒
6 {(t, γ(t+ t′)) : t ∈ (I − t′)} is a real integral curve of ξ
4 ∧
7 {(t, γ(t+ t′)) : t ∈ (I − t′)} is a real integral curve of ξ
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6 ∧
7 Fξ(−, γ(t′)) is a real integral curve of ξ
6 ∧
7 {(t, γ(t+ t′)) : t ∈ (I − t′)}(0) = Fξ(0, γ(t′))
6 ∧
7 uniqueness of solutions of ODEs
5 =⇒
7 {(t, γ(t+ t′)) : t ∈ (I − t′)}|(I−t′)∩pr1((R×{x})∩Dξ) = Fξ(−, γ(t′))|(I−t′)∩pr1((R×{x})∩Dξ)
6 ∧
7 {(t, γ(t+ t′)) : t ∈ (I − t′)} is a real integral curve of ξ
6 ∧
7 Fξ(−, γ(t′)) is a real integral curve of ξ
5 =⇒
6 {(t, γ(t+ t′)) : t ∈ (I − t′)} ∪ Fξ(−, γ(t′)) is a real integral curve of ξ
4 ∧
7 {(t, γ(t+ t′)) : t ∈ (I − t′)} ∪ Fξ(−, γ(t′)) is a real integral curve of ξ
6 ∧
7 Fξ(−, γ(t′)) is a maximal real integral curve of ξ
5 =⇒
6 ¬
7 {(t, γ(t+ t′)) : t ∈ (I − t′)} ∪ Fξ(−, γ(t′)) ) Fξ(−, γ(t′))
4 ∧
7 ¬
8 {(t, γ(t+ t′)) : t ∈ (I − t′)} ∪ Fξ(−, γ(t′)) ) Fξ(−, γ(t′))
6 ∧
7 {(t, γ(t+ t′)) : t ∈ (I − t′)} ∪ Fξ(−, γ(t′)) ⊃ Fξ(−, γ(t′))
5 =⇒
6 {(t, γ(t+ t′)) : t ∈ (I − t′)} = Fξ(−, γ(t′))
5 =⇒
6 {(t, γ(t)) : t ∈ I} = {(t, Fξ(t− t′, γ(t′))) : t ∈ I}
2 ∧
5 ∀t′ ∈ I
6 γ = {(t, Fξ(t− t′, γ(t′))) : t ∈ I}
4 =⇒
5 γ is a real integral curve of ξ
3 ⇐=
6 D{(t, Fξ(t−t′, γ(t′))) : t ∈ I} = {(t,D1Fξ(t−t′, γ(t′))·D{(t′′, t′′−t′) : t′′ ∈ I}(t)) : t ∈ I}
5 ∧
6 ∀t ∈ I
7 D{(t′′, t′′ − t′) : t′′ ∈ I}(t) = 1
5 ∧
6 ∀x ∈ U
7 Fξ(−, x) is a real integral curve of ξ
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4 =⇒
5 D{(t, Fξ(t− t′, γ(t′))) : t ∈ I} = {(t, ξ(Fξ(t− t′, γ(t′)))) : t ∈ I}
4 =⇒
5 {(t, Fξ(t− t′, γ(t′))) : t ∈ I} is a real integral curve of ξ
Readers familiar with the definition of a Lie bracket of vector fields can skip this definition.
Definition 18 (Lie bracket, [ξ, η]).
1 ∀V : V a vector space over C or R
2 ∀U ⊂ V : U is a neighborhood of 0
3 ∀ξ, η ∈ C1(UR, V )
5 [ξ, η] = {( x, Dη(x)(ξ(x))−Dξ(x)(η(x)) ), x ∈ U}
4 ∧
5 The Lie bracket of ξ and η is [ξ, η]
Theorem 19 (commuting flows ⇐⇒ commuting vector fields).
1 ∀V : V a vector space over C or R
2 ∀U ⊂ V : U is a neighborhood of 0
3 ∀ξ, η ∈ C1(UR, V )
5 [ξ, η] = 0
4 ⇐⇒
5 ∀t, s, x: (s, x) ∈ Dη
7 ∀s′ ∈ [0, s]
8 (t, Fη(s′, x)) ∈ Dξ
6 =⇒
8 (t, x) ∈ Dξ and (s, Fξ(t, x)) ∈ Dη
7 ∧
8 Fξ(t, Fη(s, x)) = Fη(s, Fξ(t, x))

Prosaic form of the statement. Let V be a vector space over C or R; U a neighborhood
of 0; ξ, η ∈ C1(UR, V ). Then [ξ, η] = 0 if and if only if for each (s, x) ∈ Dη such that
for each s′ ∈ [0, s] (t, Fη(s′, x)) ∈ Dξ, then both (t, x) ∈ Dξ and (s, Fξ(t, x)) ∈ Dη and
Fξ(t, Fη(s, x)) = Fη(s, Fξ(t, x)) hold.
Proof.
See [Lee12], 9.44.
Proposition 20 (Lie brackets and holomorphic maps).
1 ∀V : V a vector space over C
2 ∀U ⊂ V : U is a neighborhood of 0
3 ∀ξ ∈ Hol(U, V )
4 ∀α ∈ C
5 [αξ, ξ] = 0

Prosaic form of the statement. Let V a vector space over C; U is a neighborhood of 0;
ξ ∈ Hol(U, V ); α ∈ C. Then [αξ, ξ] = 0.
In the proof the first 4 lines of the statement of the proposition are taken as assumptions.



24 3. THE PROOF

Proof.
1 ∀x ∈ U
2 [αξ, ξ](x) = D(αξ)(x)(ξ(x))−Dξ(x)((αξ)(x)) = (Dα ◦Dξ)(x)(ξ(x))− αDξ(x)(ξ(x)) =
= αDξ(x)(ξ(x))− αDξ(x)(ξ(x)) = 0



3. PERIODICITY 25

3. Periodicity

Definition 21 (T -periodic).
1 ∀V : V is a finite dimensional vector space over C or R
2 ∀U ⊂ C
3 ∀γ : U → V
4 ∀T ∈ C
6 γ is T -periodic
5 ⇐⇒ :
6 ∀k ∈ Z
7 ∀t ∈ U : t+ kT ∈ U
8 γ(t) = γ(t+ kT )

A non-injective real integral curve is periodic.

Proposition 22.
1 ∀V, U : V is a finite dimensional vector space over C or R and U ⊂ V and is open
2 ∀ξ ∈ C1(UR, VR)
3 ∀T ∈ R\{0}
4 ∀x ∈ U
6 (T, x) ∈ Dξ ∧ Fξ(T, x) = x
5 =⇒
6 Dξ ⊃ R× {x} ∧ {(t, Fξ(t, x)) : (t, x) ∈ Dξ} is T -periodic

Prosaic form of the statement. Let V is a finite dimensional vector space over C or R and
U ⊂ V and is open; ξ ∈ C1(UR, VR); T ∈ R\{0} and x ∈ U such that (T, x) ∈ Dξ and
Fξ(T, x) = x then Dξ ⊃ R× {x} and {(t, Fξ(t, x)) : (t, x) ∈ Dξ} is T -periodic

In the proof of the statement of the proposition, everything of the statement up to ”5
=⇒ ” is taken as assumption.

Proof sketch. First γ is defined as the maximal integral curve that starts at x, and γ̃.
Then it is shown that γ̃ is a T -periodic real integral curve. Since it also has domain R
and γ is ’maximal’, they should be equal, whence γ is also T -periodic and has domain R.

Proof.
3 γ := {(t, Fξ(t, x)) : (t, x) ∈ Dξ}
2 ∧
3 γ̃ := {(t, Fξ(t+ kT, x)) : t+ kT ∈ [0, T ] ∧ k ∈ Z ∧ t ∈ R}
1 =⇒
4 γ̃ is a T -periodic real integral curve of ξ
3 ⇐=
6 γ̃ is a T -periodic real map from R
5 ⇐=
6 ∀t, k, k1, k2: t ∈ R ∧ k1, k2 ∈ Z
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9 t+ k1T ∈ [0, T ] ∧ t+ kT + k2T ∈ [0, T ]
8 =⇒
9 t+ k1T = t+ kT + k2T ∨ t+ k1T, t+ kT + k2T ∈ {0, T}
7 ∧
8 t+ k1T = t+ kT + k2T =⇒ γ(t+ k1T ) = γ(t+ kT + k2T )
7 ∧
9 t+ k1T, t+ kT + k2T ∈ {0, T} ∧ γ(0) = γ(T )
8 =⇒ γ(t+ k1T ) = γ(t+ kT + k2T )
4 ∧
6 ∀k ∈ Z
7 ∀t ∈ [0, T ]
8 γ̃(t+ kT ) = γ(t)
5 ⇐=
6 t+ kT − (kT ) ∈ [0, T ]
4 ∧
6 γ̃ is continuous
5 ⇐=
9 ∀k ∈ Z
10 ∀t ∈ [0, T ]
11 γ̃(t+ kT ) = γ(t)
8 ∧
9 γ is continuous
7 =⇒
8 ∀k ∈ Z
9 γ̃|[Tk,T (k+1)] is continuous
6 ∧
9 ∀k ∈ Z
10 γ̃|[Tk,T (k+1)] is continuous ∧ [Tk, T (k + 1)] is closed
8 ∧
9 R = ⋃

k∈Z[Tk, T (k + 1)]
7 =⇒
8 γ̃ is continuous
4 ∧
6 γ̃ is differentiable and a real integral curve of ξ
5 ⇐=
9 ∀k ∈ Z
10 ∀t ∈ [0, T ]
11 γ̃(t+ kT ) = γ(t)
8 ∧
9 γ is C1 and Dγ = ξ ◦ γ
7 =⇒
8 ∀k ∈ Z
9 γ̃|(Tk,T (k+1)) is C1 and Dγ̃|(Tk,T (k+1)) = ξ ◦ γ̃|(Tk,T (k+1))
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6 ∧
9 ∀k ∈ Z
10 γ̃|(Tk,T (k+1)) is C1 and Dγ̃|(Tk,T (k+1)) = ξ ◦ γ̃|(Tk,T (k+1))
8 ∧
9 ξ and γ̃ are continuous
7 =⇒
8 γ̃ is C1 and Dγ̃ = ξ ◦ γ̃
2 ∧
4 ∧∗
5 γ(0) = x = γ̃(0)
5 γ and γ̃ are real integral curves ξ
5 uniqueness of integral curves of ODEs
4 ∧∗
3 =⇒
4 γ|dom(γ)∩dom(γ̃) = γ̃|dom(γ)∩dom(γ̃)
2 ∧
4 dom(γ̃) = R ∧ dom(γ) ⊂ R
3 =⇒
4 dom(γ) ∩ dom(γ̃) = dom(γ)
2 ∧
4 γ|dom(γ)∩dom(γ̃) = γ̃|dom(γ)∩dom(γ̃) ∧ dom(γ) ∩ dom(γ̃) = dom(γ)
3 =⇒
4 γ̃ ⊃ γ
2 ∧
4 γ is a maximal real integral curve of ξ ∧ γ̃ is a real integral curve of ξ
3 =⇒
¬ is used to denote negation
4 ¬ γ̃ ) γ
2 ∧
4 γ̃ ⊃ γ ∧ ¬ γ̃ ) γ
3 =⇒
4 γ̃ = γ
2 ∧
4 γ̃ is T -periodic ∧ dom(γ̃) = R ∧ γ̃ = γ
3 =⇒
4 γ is T -periodic ∧ dom(γ) = R

Proposition 23 (pullback of periodic function).
1 ∀V : V is a finite dimensional vector space over C
2 ∀U ⊂ C: open
3 ∀T ∈ C\{0}
4 ∀f ∈ Hol(U, V ): f is T -periodic
5 f̃ := {(z, f(w)) : w ∈ U ∧ z = exp(2πiw

T
)} =⇒

7 f̃ ∈ Hol(exp(U 2πi
T

), V )
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6 ∧
7 ∀w ∈ U
8 z := exp(2πiw

T
) =⇒ Df(w) = 2πiz

T
Df̃(z)

Prosaic form of the statement. Let V is a finite dimensional vector space over C; U ⊂ C
open; T ∈ C\{0}; f ∈ Hol(U, V ) such that f is T -periodic, and let f̃ := {(z, f(w)) : w ∈
U ∧ z = exp(2πiw

T
)}. Then f̃ ∈ Hol(exp(U 2πi

T
), V ) and (∀w ∈ U)(z := exp(2πiw

T
) =⇒

Df(w) = 2πiz
T
Df̃(z)).

In the proof of the statement of the proposition, the first 5 lines are taken as assumptions.

Proof sketch. Up to ”1 ⇐= ” the steps in which the proof is done are written down,
namely, showing f̃ is a map, them that this implies it is a holomorphic map, and that
from this follows that the derivative identity - at the last two lines of the proposition -
follows. After ”1 ⇐= ”, these three steps are shown to be true.

Proof.
3 f̃ is a map from exp(U 2πi

T
)

2 ∧
3 f̃ is a map from exp(U 2πi

T
) =⇒ f̃ ∈ Hol(exp(U 2πi

T
), V )

2 ∧
3 f̃ ∈ Hol(exp(U 2πi

T
), V ) =⇒

4 ∀w ∈ U
5 z := exp(2πiw

T
) =⇒ Df(w) = 2πiz

T
Df̃(z)

1 ⇐=
4 f̃ is a map from exp(U 2πi

T
)

3 ⇐=
4 ∀z ∈ exp(U 2πi

T
)

5 ∀v1, v2 ∈ V
6 (z, v1), (z, v2) ∈ f̃ =⇒ v1 = v2
3 ⇐=
4 ∀z ∈ exp(U 2πi

T
)

5 ∀v1, v2 ∈ V
6 (z, v1), (z, v2) ∈ f̃ =⇒
8 ∃w1, w2 ∈ U : z = exp(2πiw1

T
) ∧ z = exp(2πiw2

T
)

9 v1 = f(w1) ∧ v2 = f(w2)
7 ∧
8 ∀w1, w2: as such
10 exp(2πiw1

T
) = exp(2πiw2

T
) =⇒

11 ∃k ∈ Z: 2πiw1
T

+ k · 2πi = 2πiw2
T

9 ∧
10 ∀k: as such
12 w1 + kT = w2
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11 ∧
13 w1 + kT = w2 ∧ f is T -periodic
12 =⇒
13 f(w1) = f(w2)
12 =⇒
13 v1 = v2
2 ∧
4 f̃ is a map from exp(U 2πi

T
) =⇒ f̃ ∈ Hol(exp(U 2πi

T
), V )

3 ⇐=
4 ∀z ∈ exp(2πiw

T
)

5 ∃U1 ⊂ exp(2πiw
T

): U1 is open in C ∧ z ∈ U1

6 f̃ ∈ Hol(U1, V )
3 ⇐=
4 ∀z ∈ exp(2πiw

T
)

5 ∀w ∈ U : z = exp(2πiw
T

)
8 D{(u, exp(2πiu

T
)) : u ∈ U}(w) 6= 0 ∧ inverse function theorem for the holomorphic case

7 =⇒
8 ∃U2 ⊂ U : open in C ∧ w ∈ U2
9 exp(2πi

T
U2) is open ∧ {(u, exp(2πiu

T
)) : u ∈ U2} has a holomorphic inverse (w.r.t. its

image)
6 ∧
7 ∀U2: as such
9 f̃ |exp( 2πi

T
U2) = f ◦ {(u, exp(2πiu

T
)) : u ∈ U2}−1 ∧ f ◦ (exp |U2)−1 ∈ Hol(U2, V )

10 =⇒ f̃ |exp( 2πi
T
U2) ∈ Hol(exp(2πi

T
U2), V )

8 ∧
9 w ∈ U2 =⇒ z ∈ exp(2πi

T
U2)

2 ∧
4 f̃ ∈ Hol(exp(U 2πi

T
), V ) =⇒

5 ∀w ∈ U
6 z := exp(2πiw

T
) =⇒ Df(w) = 2πiz

T
Df̃(z)

3 ⇐=
5 f̃ ◦ exp |exp(U 2πi

T
) = f

4 ∧
6 f̃ ◦ exp |exp(U 2πi

T
) = f ∧ f̃ ∈ Hol(exp(U 2πi

T
), V )

5 =⇒
6 {(w, exp(2πiw

T
) ·Df̃(exp(2πiw

T
))) : w ∈ U} = {(w,Df(w)) : w ∈ U}
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4. Flow of a linear vector field

The definition below gives a shorthand notation for stating whether a vector field is near
some equilibrium equivalent to its linear part - in some specific way.
Definition 24.
1 ∀V, U : V is a finite dimensional vector space over R and U a neighborhood of 0
2 ∀ξ ∈ C∞(U, V ) : ξ(0) = 0
4 P24(V, U, ξ)
3 :⇐⇒
4 ∃U1, U2 ⊂ U : neighborhoods of 0
5 ∃ϕ ∈ Diff1(U1, U2): ϕ(0) = 0 and Dϕ(0) = idV
6 ∀a, b ∈ [−∞,∞]: a < b
7 ∀γ ∈ C1((a, b), U1): Dγ = Dξ(0) ◦ γ
8 D(ϕ ◦ γ) = ξ ◦ ϕ ◦ γ

The main and most non-elementary tool we use, is the differentiable version of the
Grobman-Hartman theorem.
Theorem 25 (Differentiable version Grobman-Hartman theorem for vector fields).
1 ∀V, U : V is a finite dimensional vector space over R and U a neighborhood of 0
2 ∀ξ ∈ C∞(U, V ) : ξ(0) = 0
4 Each eigenvalue of idC ⊗R Dξ(0) has nonzero real part (i.e. ξ is hyperbolic at 0)
3 =⇒
4 P24(V, U, ξ)

Prosaic form of the statement. Let V is a finite dimensional vector space over R and U a
neighborhood of 0; ξ ∈ C∞(U, V ) such that ξ(0) = 0. If each eigenvalue of idC ⊗R Dξ(0)
has nonzero real part (i.e. ξ is hyperbolic at 0) then P24(V, U, ξ) holds.

Proof sketch.
In [GHR03], it is proven that a C∞-map on a vector space that has a hyperbolic fixed
point is C1 equivalent to its linear part. One can use the existence of this ’conjugating’
diffeomorphism to produce ϕ, in exactly the same way as is done in [PM82]. Here, it
is done for the topological (not differentiable) case, but in this process (i.e. going from
the case fixed points of maps to case the equilibria of vector fields) differentiability is
preserved.
This definition gives us a concise way to choose generalized eigenvectors for a linear
endomorphism.
Definition 26 (eigensystem).
1 ∀V : a finite dimensional vector space over C
2 ∀A ∈ L(V, V )
3 ∀λE, E, vE, v∗E
5 (λE, E, vE, v∗E) is an eigensystem for A
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4 :⇐⇒
5 ∧∗
6 λE = {(W, the eigenvalue of A|W ): W a generalized eigenspace of A}
6 E = {(W,n): W a generalized eigenspace of A, n ∈ N≥1 and n ≤ dim(W )}
6 vE : E → generalized eigenvectors of A
6 ∀W,m : (W,m) ∈ E
8 AvE(W, 1) = λE(W )vE(W, 1)
7 ∧
8 AvE(W,m+ 1) = λE(W )vE(W,m+ 1) + vE(W,m)
6 v∗E : E → generalized eigenvectors of A
6 ∀W,W ′,m,m′ : (W,m), (W ′,m′) ∈ E
8 (W,m) 6= (W ′,m′) =⇒ v∗E(W,n)(v(W ′, n′)) = 0
7 ∧
8 (W,m) = (W ′,m′) =⇒ v∗E(W,n)(v(W ′, n′)) = 1
5 ∧∗

Proposition 27 (existence eigensystem).
1 ∀V : a finite dimensional vector space over C
2 ∀A ∈ L(V, V )
3 ∃λE, E, vE, v∗E
4 (λE, E, vE, v∗E) is an eigensystem for A

Prosaic form of the statement. Let V a finite dimensional vector space over C; A ∈
L(V, V ); then there exists an eigensystem (λE, E, vE, v∗E) for A.

In the proof, the first 2 lines are taken as assumptions.

Proof sketch. E are λE defined in the only way possible. For the existence of vE, Jordan
normal form theorem is used. By this same theorem, the image of such a vE forms a basis
for V , from which the existence of v∗E follows.

Proof.
3 E := {(W,n): W a generalized eigenspace of A, n ∈ N≥1 and n ≤ dim(W )}
2 ∧
3 λE := {(W, the eigenvalue of A|W ): W a generalized eigenspace of A}
1 =⇒
4 Jordan normal form theorem
3 =⇒
4 ∃vE : E → generalized eigenvectors of A
4 ∀W,m : (W,m) ∈ E
6 AvE(W, 1) = λE(W )vE(W, 1)
5 ∧
6 AvE(W,m+ 1) = λE(W )vE(W,m+ 1) + vE(W,m)
2 ∧
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4 Jordan normal form theorem
3 =⇒
4 ∀vE: as such
5 {vE(W,m)}(W,m)∈E is a basis of V
3 =⇒
4 ∀vE: as such
5 ∃v∗E : E → generalized eigenvectors of A
6 ∀W,W ′,m,m′ : (W,m), (W ′,m′) ∈ E
8 (W,m) 6= (W ′,m′) =⇒ v∗E(W,n)(v(W ′, n′)) = 0
7 ∧
8 (W,m) = (W ′,m′) =⇒ v∗E(W,n)(v(W ′, n′)) = 1
The following lemma gives an expression for solutions of linear ODEs with constant coef-
ficients in terms of generalized eigenvectors, exponentials and polynomials. It was harder
to find a reference, than to figure out the proof itself.1

Lemma 28 (solutions of linear system of differential equations with constant coefficients).
1 ∀V : a finite dimensional vector space over C
2 ∀A ∈ L(V, V )
3 ∀I: an open interval of R
4 ∀γ : I → V : Dγ = A ◦ γ
5 ∀λE, E, vE, v∗E: (λE, E, vE, v∗E) is an eigensystem for A
6 γ ∈ spanC{{t,

∑n
n′=1 e

λ(W )tv(W,n′) tn−n
′

(n−n′)! : t ∈ I}, (W,n) ∈ E}

Prosaic form of the statement. V is a finite dimensional vector space over C; A ∈ L(V, V );
I an open interval of R; γ : I → V such that Dγ = A◦γ; (λE, E, vE, v∗E) is an eigensystem
for A. Then γ ∈ spanC{{t,

∑n
n′=1 e

λ(W )tv(W,n′) tn−n
′

(n−n′)! : t ∈ I}, (W,n) ∈ E}.

In the proof of the statement of the lemma, the first 5 lines are used as assumptions.

Proof sketch. The proof consists of three parts. In the proof, these are the arguments of
the two 1∧-connectives. The first can be seen as a sufficient condition for being a real
integral curve of the respective ODE. The second part shows that the real integral curves
found in this way span V for every instant. The second part uses the first part. The third
and last part uses the two previous parts and uniqueness of solutions of ODEs and thus
that the ’sufficient condition’ is also necessary.

Proof.
3 ∀γ̃ ∈ spanC{{(t,

∑n
n′=1 e

λ(W )tv(W,n′) tn−n
′

(n−n′)!) : t ∈ R} : (W,n) ∈ E}
4 Dγ̃ = A ◦ γ̃
2 ⇐=
5 ∀W,n: (W,n) ∈ E
1Allegedly, the reader can find also a proof in the first edition of Smale’s and Hirsch’s Differential equa-
tions, dynamical systems, and an introduction to chaos.



4. FLOW OF A LINEAR VECTOR FIELD 33

6 ∀γ̃ ∈ {{(t,∑n
n′=1 e

λ(W )tv(W,n′) tn−n
′

(n−n′)!) : t ∈ R} : (W,n) ∈ E}
7 v∗(W,n)(Dγ̃) = v∗(W,n)(A ◦ γ̃)
4 ⇐=
5 ∀W1, n1,W2, n2: (W1, n1), (W2, n2) ∈ E
7 (W1 6= W2 ∨ n1 > n2) =⇒
9 v∗(W1, n1)(D{(t,∑n2

n′=1 e
λ(W2)tv(W2, n

′) tn2−n
′

(n2−n′)!) : t ∈ R}) = 0
8 ∧
9 v∗(W1, n1)(A{(t,∑n2

n′=1 e
λ(W2)tv(W2, n

′) tn2−n
′

(n2−n′)!) : t ∈ R}) = 0
6 ∧
7 (W1 = W2 ∧ n1 ≤ n2) =⇒
9 v∗(W1, n1)D{(t,∑n2

n′=1 e
λ(W2)tv(W2, n

′) tn2−n
′

(n2−n′)!) : t ∈ R} = D{(t, eλ(W1)t tn2−n1
(n2−n1)!) : t ∈

R} =n1 = n2 : λ(W2)eλ(W2)t

n1 6= n2 : λ(W2)eλ(W2)t tn2−n1
(n2−n1)! + eλ(W2)t tn2−n1−1

(n2−n1−1)!
8 ∧
9 v∗(W1, n1)(A{(t,∑n2

n′=1 e
λ(W2)tv(W2, n

′) tn2−n
′

(n2−n′)!) : t ∈ R}) =
v∗(W1, n1)({(t,∑n2
n′=1 λ(W2)eλ(W2)tv(W2, n

′) tn2−n
′

(n2−n′)! + ∑n2
n′=2 e

λ(W2)tv(W2, n
′ − 1) tn2−n

′

(n2−n′)!) : t ∈ R}) =n1 = n2 : λ(W2)eλ(W2)t

n1 6= n2 : λ(W2)eλ(W2)t tn2−n1
(n2−n1)! + eλ(W2)t tn2−n1−1

(n2−n1−1)!
3 ∧
6 ∀W,n: (W,n) ∈ E
7 ∀γ̃ ∈ {{(t,∑n

n′=1 e
λ(W )tv(W,n′) tn−n

′

(n−n′)!) : t ∈ R} : (W,n) ∈ E}
8 v∗(W,n)(Dγ̃) = v∗(W,n)(A ◦ γ̃)
5 ∧
6 {v∗(W,n) : (W,n) ∈ E} is a basis of V ∗ ⇐= Jordan normal form theorem
4 =⇒
5 ∀γ̃ ∈ {{(t,∑n

n′=1 e
λ(W )tv(W,n′) tn−n

′

(n−n′)!) : t ∈ R} : (W,n) ∈ E}
6 Dγ̃ = A ◦ γ̃
3 ∧
6 ∀γ̃ ∈ {{(t,∑n

n′=1 e
λ(W )tv(W,n′) tn−n

′

(n−n′)!) : t ∈ R} : (W,n) ∈ E}
7 Dγ̃ = A ◦ γ̃
5 ∧
6 the set of solutions is a vector space over C ⇐= the ODE is C-linear
4 =⇒
5 ∀γ̃ ∈ spanC{{(t,

∑n
n′=1 e

λ(W )tv(W,n′) tn−n
′

(n−n′)!) : t ∈ R} : (W,n) ∈ E}
6 Dγ̃ = A ◦ γ̃
1 ∧
3 ∀t0 ∈ R
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4 V = spanC{
∑n
n′=1 e

λ(W )t0v(W,n′) tn−n
′

0
(n−n′)! : (W,n) ∈ E}

2 ⇐=
3 S := {{(t,∑n

n′=1 e
λ(W )tv(W,n′) tn−n

′

(n−n′)!) : t ∈ R},
W a generalized eigenspace of A, n ∈ N≥1 and n ≤ dim(W )} =⇒
4 ∀t0 ∈ I
6 |{γS(t0) : γS ∈ S}| = dim V
5 ∧
6 {γS(t0) : γS ∈ S} is linear independent ⇐=
7 ∀c : S → C: ∑

γS∈S c(γS)γS(t0) = 0
10 ∧∗
11 ∑

γS∈S c(γS)γS(t0) = 0
11 0 is an equilibrium for A as vector field
11 ∑

γS∈S c(γS)γS is a real integral curve of A as vector field
10 ∧∗
9 =⇒
10 ∑

γS∈S c(γS)γS = 0
9 =⇒
10 ∑

γS∈S c(γS)γS(0) = 0
8 ∧
10 ∑

γS∈S c(γS)γS(0) = 0 ∧ {γS(0) : γS ∈ S} is a set of independent generalized eigen-
vectors
9 =⇒
10 ∀γS ∈ S: c(γS) = 0
1 ∧
4 ∀γ̃ ∈ spanC{{(t,

∑n
n′=1 e

λ(W )tv(W,n′) tn−n
′

(n−n′)!) : t ∈ R} : (W,n) ∈ E}
5 Dγ̃ = A ◦ γ̃
3 ∧
4 ∀t0 ∈ R
5 V = spanC{

∑n
n′=1 e

λ(W )t0v(W,n′) tn−n
′

0
(n−n′)! : (W,n) ∈ E}

2 =⇒
3 ∀t0 ∈ I
4 ∃γ̃ ∈ spanC{{(t,

∑n
n′=1 e

λ(W )tv(W,n′) tn−n
′

(n−n′)!) : t ∈ R} : (W,n) ∈ E}
5 γ̃(t0) = γ(t0) ∧ Dγ̃ = A ◦ γ̃
1 ∧
4 ∀t0 ∈ I
5 ∃γ̃ ∈ spanC{{(t,

∑n
n′=1 e

λ(W )tv(W,n′) tn−n
′

(n−n′)!) : t ∈ R} : (W,n) ∈ E}
6 γ̃(t0) = γ(t0) ∧ Dγ̃ = A ◦ γ̃
3 ∧
4 γ is a real integral curve of Dγ̃ = A ◦ γ̃
3 ∧
4 uniqueness of solutions of ODEs
2 =⇒
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3 ∃γ̃ ∈ spanC{{(t,
∑n
n′=1 e

λ(W )tv(W,n′) tn−n
′

(n−n′)!) : t ∈ R} : (W,n) ∈ E}
4 γ̃|I = γ

One could describe the following proposition in fancy way as ’taking (space) derivative
and taking flow of a vector vector field commute’.

Proposition 29.
1 ∀V : a vector space over C or R
2 ∀U ⊂ V : a neighborhood of 0
3 ∀ξ ∈ C1(UR, VR): ξ(0) = 0
4 ∀t ∈ R
6 D2Fξ(t, 0) and FDξ(0)(t,−) are defined
5 ∧
6 D2Fξ(t, 0) = FDξ(0)(t,−)

Prosaic form of the statement. Let V a vector space over C or R; U a neighborhood of 0
in V ; ξ ∈ C1(UR, VR) such that ξ(0) = 0. Then for each t ∈ R D2Fξ(t, 0) and FDξ(0)(t,−)
are defined and D2Fξ(t, 0) = FDξ(0)(t,−).

In the proof, the first three lines of the statement of the proposition are used as assump-
tions.

Proof sketch. First the statement about the domain is proved using the previous propo-
sition. The tools used for proving the equality are commutation of derivatives and the
fundamental theorem of calculus.

Proof.
3 proposition 28
2 =⇒
3 ∀t ∈ R
4 FDξ(0)(t,−) is defined
1 ∧
2 proposition 15 =⇒ Dξ is open
1 ∧
3 R× {0} ⊂ Dξ and Dξ is open
2 =⇒
3 ∀t ∈ R
4 D2Fξ(t, 0) is defined
1 ∧
3 D2Fξ(t, 0) = FDξ(0)(t,−)
2 ⇐=
3 ∧∗
4 ∀t ∈ R
5 FDξ(0)(t,−) = FDξ(0)(0,−)+

∫ t
0 D1FDξ(0)(t′,−)dt′ andD2Fξ(t, 0) = D2Fξ(0, 0)+

∫ t
0 D1D2Fξ(t′, 0)dt′
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4 FDξ(0)(0,−) = D2Fξ(0, 0)
4 ∀t ∈ R
5 D1FDξ(0)(t′,−) = D1D2Fξ(t′, 0)
3 ∧∗
2 ⇐=
3 ∧∗
5 ∀t ∈ R
6 FDξ(0)(t,−) = FDξ(0)(0,−)+

∫ t
0 D1FDξ(0)(t′,−)dt′ andD2Fξ(t, 0) = D2Fξ(0, 0)+

∫ t
0 D1D2Fξ(t′, 0)dt′

4 ⇐=
5 fundamental theorem of calculus
5 FDξ(0)(0,−) = D2Fξ(0, 0)
4 ⇐=
6 definition 16 =⇒ FDξ(0)(0, 0) = idV
5 ∧
6 definition 16 =⇒ (∀x ∈ U)(Fξ(0, x) = x) =⇒ D2Fξ(0, 0) = idV
5 ∀t ∈ R
6 D1FDξ(0)(t,−) = D1D2Fξ(t, 0)
4 ⇐=
5 ∀t ∈ R
7 D1FDξ(0)(t,−) = Dξ(0)
6 ∧
7 D1D2Fξ(t, 0) = D2D1Fξ(t, 0) = D2{((t, x), ξ(x)), (t, x) ∈ Dξ}(t, 0) = Dξ(0)
3 ∧∗

This notation is convenient in the proof of the proposition after it.
Definition 30 (im and re on C⊗R V ).
1 ∀V : a vector space over C or R
3 im, re ∈ L((C⊗R V )R, VR)
2 ∧
3 ∀α ∈ C
4 ∀v ∈ V
5 im(α⊗ v) = im(α)v and re(α⊗ v) = re(α)v
When a complex linear map is tensored over C with the identity, the spectrum does not
change. However, when the tensoring is done over R it can change, and this proposition
gives a restriction on this change.
Proposition 31.
1 ∀V : a vector space over C
2 ∀A ∈ L(V, V )
3 ∀λ ∈ C
5 ker(idC ⊗R A− λ⊗R idV ) 6= {0}
4 =⇒
5 ker(A− λ idV ) 6= {0} or ker(A− λ̄ idV ) 6= {0}
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Prosaic form of the statement. Let V be a vector space over C; A ∈ L(V, V ) such that
ker(idC ⊗R A− λ⊗R idV ) 6= {0}. Then ker(A− λ idV ) 6= {0} or ker(A− λ̄ idV ) 6= {0}.

In the proof, the first four lines are taken as assumptions.

Proof sketch.
For each v ∈ ker(idC ⊗R A− λ⊗R idV )\{0} it shown that this gives rise to an element in
ker(A − λ idV ) 6= {0} or ker(A − λ̄ idV ) 6= {0}. First some equations are proven. With
this, the cases that {re(v), im(v)} is independent and dependent are treated separately.
In the dependent case, the proof branches in four different cases in total.

Proof.
1 ∀v ∈ ker(idC ⊗R A− λ⊗R idV )\{0}
2 ∀u,w ∈ V : re(v) = u ∧ im(v) = w
5 P (equations)
4 :⇐⇒
5 Au = re(λ)u− im(λ)w ∧ Aw = im(λ)u+ re(λ)w
3 =⇒
6 P (equations)
5 ⇐=
7 (idC ⊗R A− λ⊗R idV )v = 0
6 =⇒
7 im((idC ⊗R A− λ⊗R idV )v) = 0 and re((idC ⊗R A− λ⊗R idV )v) = 0
6 =⇒
7 Au = re(λ)u− im(λ)w ∧ Aw = im(λ)u+ re(λ)w
4 ∧
5 P (equations) =⇒
8 {u,w} linear dependent =⇒ ker(A− λ idV ) 6= {0} or ker(A− λ̄ idV ) 6= {0}
7 ∧
8 {u,w} linear independent =⇒ ker(A− λ idV ) 6= {0}
6 ⇐=
9 {u,w} linear dependent =⇒ ker(A− λ idV ) 6= {0} or ker(A− λ̄ idV ) 6= {0}
8 ⇐=
10 w = 0 ∨ w 6= 0
9 ∧
10 w = 0 =⇒
13 v 6= 0 ∧ w = 0
12 =⇒
13 u 6= 0
11 ∧
12 P (equations) =⇒
13 Au = re(λ)u ∧ 0 = im(λ)u
11 ∧
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13 Au = re(λ)u ∧ 0 = im(λ)u ∧ u 6= 0
12 =⇒
13 Au = λu ∧ u 6= 0
9 ∧
10 w 6= 0 =⇒
12 u = iw ∨ u = −iw ∨ im(λ) = 0
11 ∧
13 u = iw ∨ u = −iw ∨ im(λ) = 0
12 ⇐=
15 {u,w} linear dependent ∧ w 6= 0
14 =⇒
15 ∃β ∈ C: u = βw
13 ∧
14 ∀β ∈ C: u = βw
16 P (equations)
15 =⇒
16 βAw = (βre(λ)− im(λ))w ∧ βAw = (β2im(λ) + βre(λ))w
15 =⇒
16 βre(λ)− im(λ) = β2im(λ) + βre(λ)
15 =⇒
16 β = i ∨ β = −i ∨ im(λ) = 0
11 ∧
13 u = iw ∧ P (equations)
12 =⇒
13 Aw = λw
12 =⇒
13 w ∈ ker(A− λ idV )\{0}
11 ∧
13 u = −iw ∧ P (equations)
12 =⇒
13 Aw = λ̄w
12 =⇒
13 w ∈ ker(A− λ̄ idV )\{0}
11 ∧
13 im(λ) = 0 ∧ P (equations)
12 =⇒
13 Au = re(λ)u = λu
12 =⇒
13 u ∈ ker(A− λ idV )\{0}
7 ∧
9 {u,w} linear independent =⇒ ker(A− λ idV ) 6= {0}
8 ⇐=
10 {u, v} linear independent ∧ P (equations)
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9 =⇒
10 ∀µ ∈ C
12 det(A|span(u,v) − µ · idspan(u,v)) = (re(λ)− µ)2 − im(λ)2

11 ∧
13 det(A|span(u,v) − µ · idspan(u,v)) = (re(λ)− µ)2 − im(λ)2

12 =⇒
13 µ = λ =⇒ det(A|span(u,v) − µ · idspan(u,v)) = 0
12 =⇒
13 ker(A− λ idV ) 6= {0}
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5. Some miscellaneous topology

Proposition 32.
1 ∀X, Y, τX , τY : (X, τX) and (Y, τY ) are topological spaces
2 ∀K ⊂ X: K is τX-compact
3 ∀p ∈ Y
4 ∀U1 ⊂ X × Y : open in the product topology of τX and τY and U1 ⊃ K × {p}
5 ∃U2 : U2 ∈ τY ∧ p ∈ U2 ∧ K × U2 ⊂ U1

Proof sketch. The first four lines in the statement of the proposition are taken as assump-
tions, and then a U2 is constructed.

Prosaic form of the statement. Let (X, τX) and (Y, τY ) are topological spaces; K ⊂ X
and K is τX-compact; p ∈ X; U1 ⊂ X × Y : open in the product topology of τX and τY
and U1 ⊃ K × {p}. Then there exists U2 such that U2 ∈ τY ∧ p ∈ U2 ∧ K × U2 ⊂ U1.

Proof.
4 {U3 × U4 : U3 ∈ τX ∧ U4 ∈ τY } is a basis for the product topology of τX and τY
3 ∧
4 U1 is open in the product topology of τX and τY
3 ∧
4 K × {p} ⊂ U2
2 =⇒
3 ∃U : a map K → τX × τY
4 ∀x ∈ K
6 U(x)[1]× U(x)[2] ⊂ U1
5 ∧
6 x ∈ U(x)[1] ∧ p ∈ U(x)[2]
1 ∧
2 ∀U : as such
5 K is τX-compact
4 =⇒
5 ∃K ′ ⊂ K: K ′ is finite
6 ⋃
x∈K′
U(x)[1] ⊃ K

3 ∧
4 ∀K ′: as such
5 U2 := ( ⋂

x∈K′
U(x)[2]) =⇒

6 U2 ∈ τY ∧ p ∈ U2 ∧ K × U2 ⊂ U1
5 ⇐=
7 U2 ∈ τY ⇐= U2 is a finite intersection of τY -opens
6 ∧
7 p ∈ U2 ⇐=
8 ∀x ∈ K
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9 p ∈ U(x)[2]
6 ∧
7 K × U2 ⊂ U1 ⇐=
8 ∀x, y: (x, y) ∈ K × U2
10 ∃x′ : x′ ∈ K ′ ∧ x ∈ U(x′)[1]
9 ∧
10 ∀x′: as such
11 (x, y) ∈ U(x′)[1]× U(x′)[2] ⊂ U =⇒
12 (x, y) ∈ U

The following three definitions are to handle the situation that there appear multiple
possible topologies. These definitions are needed in the proof of theorem 37, but they are
referred to from the place where they are used.

Definition 33.
1 ∀V : a finite dimensional vector space over R or C
2 τnormV := the norm topology on V

Definition 34.
1 ∀X, τ : (X, τ) a topological space
2 ∀Y ⊂ X
3 τ |Y is subspace topology on Y from X

Definition 35.
1 ∀X, τ : (X, τ) a topological space
2 ∀xN: a map N→ X and xN converges with respect to τ
3 limτ

n→∞ xN := the limit of xN with respect to τ
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6. The statement and proof of the main result

This section starts with one small definition, and has as core the proof of the main the-
orem. At the end there is also a corollary, which is states what is meant by the title of
this thesis. Also there is a remark on normal modes of Hamiltonian systems.

This is more precise notation for the complement of a set with respect to a set that
contains it. It is used in the beginning of the proof of theorem 37.

Definition 36 (SC(S1)
2 ).

1 ∀S1
2 ∀S2 ⊂ S1
3 SC(S1)

2 := S1\S2

Theorem 37.
1 ∀V : V is a finite dimensional vector space over C
2 ∀U ⊂ V : U is a neighborhood of 0 in V
3 ∀ξ ∈ Hol(U, V ): ξ(0) = 0 and Dξ(0) is invertible
4 ∀λ: λ is an extreme point of the union of {0} and the eigenvalues of Dξ(0)
5 ∀v ∈ ker(Dξ(0)− λ · idV )\{0}
6 ∃j : j is a holomorphic injective immersion of a disc centered at 0 in C to U
8 ∃γ : a complex integral curve of ξ
9 im(j) = im(γ) ∪ {0} ∧ j(0) = 0 ∧ Dj(0)(1) = v
7 ∧
8 ∀z ∈ dom(j)
9 λzDj(z)(1) = ξ(j(z))

Prosaic form of the statement. Let V be a finite dimensional vector space over C; U is
a neighborhood of 0 in V ; ξ ∈ Hol(U, V ) such that ξ(0) = 0 and Dξ(0) is invertible; λ
is an extreme point of the union of {0} and the eigenvalues of Dξ(0); v ∈ ker(Dξ(0) −
λ · idV )\{0}. Then there exists j and γ such that j is a holomorphic injective immersion
of a disc centered at 0 in C to U and γ is complex integral curve of ξ and the idenities
im(j) = im(γ)∪{0} ∧ j(0) = 0 ∧ Dj(0)(1) = v and (∀z ∈ dom(j))(λzDj(z)(1) = ξ(j(z)))
hold.

In the proof, the first 5 lines of the statement of the theorem are used as assumptions.

Proof sketch. (This is an outline, within the proof more specific and detailed comments
are also given.) First it is shown that there exists an α ∈ C such that αλ has a positive real
part strictly greater than the other eigenvalues of αDξ(0), and such that the αξ satisfies
the condition of the Grobman-Hartman theorem. Then for each s ∈ R, an open interval is
defined, and is shown to be unbounded in the negative direction and open. After that, for
each s ∈ R, γs is defined as some map from Is to V and shown to be a real integral curve
of αξ. Then, it is shown that γ0 and γ2π agree on their common domain. To proof this
statement, we look at their ”linearized version” obtained by applying the diffeomorphism
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from the differentiable Grobman-Hartman theorem. From this linearized version we can
compute a certain limit by looking at the ”infinitesimal flow” of i

λ
ξ near 0. Using the

lemma on solutions of linear (time independent) ODEs, and that α is chosen such that
αλ has a positive real part strictly greater than the other eigenvalues of αDξ(0), and
this already computed limit, it is shown that γ0 and γ2π agree on their common domain.
After that, γ is defined and by ”pasting together” γs for each s. Periodicity of γs follows
easily from the fact that γ0 and γ2π agree on their common domain and this also has
an implication for the domain of γ since real periodic integrals can be extended to the
whole real number line. The fact that for each s γs is a real integral curve is used another
time, and now to show that γ is a complex integral curve (this includes by the definition
made in this thesis that γ is holomorphic). Using holomorphy and periodicity of γ we can
pullback γ to a holomorphic map that is called γ̃. γ̃ is shown to be defined on a punctured
disc, which is quite easy, and shown that it can be continuously be extended to its center,
which is more work, although the arguments are all elementary. Being holomorphic on
a punctured disc and continuously extendable on a disc implies that this extension is
holomorphic on the disc, and we call this extension j. Then using holomorphy of j the
identity Dj(0)(1) = v is proven. (∀z ∈ dom(j))(λzDj(z)(1) = ξ(j(z))) has a very short
proof. At last we show that j is an injective immersion: We could at this point also take
a new j restricted to a smaller disc and simply using Dj(0)(1) = v and the rank theorem
from analysis, but it pleased the author to show that this restriction is not necessary, i.e.
that the ”original” j is also an injective immersion.

Proof.
Here we define some objects, among which are A1 and A2. After these definitions we
show that ∃α ∈ A1 ∩ A2.
2 Λ := (the set of eigenvalues of Dξ(0))
1 =⇒
4 ∀µ ∈ Λ ∪ {0}
5 A1,µ := {α ∈ C : |α| = 1 ∧ re(αµ) < re(αλ)}
3 ∧
4 A1 := ⋂

µ∈Λ∪{0}
A1,µ

3 ∧
4 ∀µ ∈ Λ
5 A2,µ := {α ∈ C : |α| = 1 ∧ re(αµ) 6= 0}
3 ∧
4 A2 := ⋂

µ∈Λ
A2,µ

2 =⇒
5 ∃α ∈ A1 ∩ A2
4 ⇐=
5 A1 ∩ A2 6= ∅
4 ⇐=
5 A1 is open in {α ∈ C : |α| = 1} ∧ A1 6= ∅ ∧ A2 is dense in {α ∈ C : |α| = 1}
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4 ⇐=
7 A1 is open
6 ⇐=
9 ∀µ ∈ Λ ∪ {0}
10 {(α, re(αµ− αλ)) : α ∈ C and |α| = 1} is a continuous map
8 =⇒
9 ∀µ ∈ Λ ∪ {0}
10 A1,µ is open in {α ∈ C : |α| = 1}
7 ∧
10 ∀µ ∈ Λ ∪ {0}
11 A1,µ is open in {α ∈ C : |α| = 1}
9 ∧
10 Λ ∪ {0} is finite
8 =⇒
9 ⋂
µ∈Λ∪{0}

A1,µ is open in {α ∈ C : |α| = 1}

8 =⇒
9 A1 is open
5 ∧
6 A1 6= ∅ ⇐= P6(Λ ∪ {0}, λ) ⇐= (proposition 6 ∧ λ ∈ ext(Λ ∪ {0}) )
5 ∧
7 A2 is dense
6 ⇐=
8 ∀µ ∈ Λ
9 ∀α ∈ C: |α| = 1
The upper C with an argument is defined in 36.
11 α ∈ AC({α′∈C:|α′|=1})

2,µ
10 ⇐⇒
11 re(αµ) = 0
10 ⇐⇒
11 αµ = i|α||µ| ∨ αµ = −i|α||µ|
10 ⇐⇒
11 α = i µ|µ| ∨ α = −i µ|µ|
7 ∧
12 ∀µ ∈ Λ
13 ∀α ∈ C: |α| = 1
15 α ∈ AC({α′∈C:|α′|=1})

2,µ
14 ⇐⇒
15 α = i µ|µ| ∨ α = −i µ|µ|
11 =⇒
12 ∀µ ∈ Λ
13 AC({α∈C:|α|=1})

2,µ is finite
11 =⇒
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12 ⋃
µ∈Λ

A
C({α∈C:|α|=1})
2,µ is finite

11 =⇒
12 ( ⋂

µ∈Λ
A2,µ)C({α∈C:|α|=1}) is finite

11 =⇒
12 A2 is dense in {α ∈ C : |α| = 1}
3 ∧
4 ∀α ∈ A1 ∩ A2
7 D(αξ)(0) has no eigenvalues with zero real part ∧ proposition 31
6 =⇒
7 idC ⊗R D(αξ)(0) has no eigenvalues with zero real part
5 ∧
7 idC ⊗R D(αξ)(0) has no eigenvalues with zero real part and theorem 25
6 =⇒
7 P24(VR, U, αξ)
6 =⇒
7 ∃U1, U2 ⊂ U : neighborhoods of 0
8 ∃ϕ ∈ Diff1(U1, U2): ϕ(0) = 0 and Dϕ(0) = idV
9 ∀a, b ∈ [−∞,∞]: a < b
10 ∀γ ∈ C1((a, b), U1): Dγ = D(αξ)(0) ◦ γ
11 D(ϕ ◦ γ) = (αξ) ◦ ϕ ◦ γ
5 ∧
6 ∀U1, U2, ϕ: as such
Now define for each s ∈ R, and show that is a nonempty open interval that is unbounded
in the negative direction, which is important because we will use as the domain of a real
integral curve. For the definition of D i

λ
ξ see definition 16

8 ∀s ∈ R
9 Is := (−∞, sup{ts : (∀t ∈ R≤ts)(veλαt ∈ U1 ∧ (s, ϕ(veλαt)) ∈ D i

λ
ξ)} )

7 =⇒
10 ∀s ∈ R
11 Is = (−∞, sup(Is)) ∧ sup(Is) > −∞
9 ⇐=
11 Is = (−∞, sup(Is)) ⇐=
12 Is = (−∞, sup{ts : (∀t ∈ R≤ts)(veλαt ∈ U1 ∧ (s, ϕ(veλαt)) ∈ D i

λ
ξ)} )

10 ∧
11 sup(Is) > −∞ ⇐=
14 limt→−∞ ve

λαt = 0 ∧ U1 is a neighborhood of 0 in V
13 =⇒
14 ∃t′ ∈ R
15 ∀t ∈ R : t < t′

16 veλαt ∈ U1
12 ∧
13 ∀t′ : as such
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14 ∀s ∈ R
16 i

λ
ξ(0) = 0 =⇒ R× {0} ⊂ D i

λ
ξ =⇒ {s} × {0} ⊂ D i

λ
ξ

15 ∧
17 lim

t<t′∧t→−∞
(s, ϕ(veλαt)) = (s, 0) ∧ D i

λ
ξ is open ∧ {s} × {0} ⊂ D i

λ
ξ

16 =⇒
17 ∃ts ∈ R
18 ∀t ∈ R : t < ts
19 veλαt ∈ U1 ∧ (s, ϕ(veλαt)) ∈ D i

λ
ξ

8 ∧
10 ∀s ∈ R
11 Is = (−∞, sup(Is)) ∧ sup(Is) > −∞
9 =⇒
Now we define for every s a map γs, and show that it is a real integral curve. The idea
of the proof is: The assumptions on ϕ imply γ0 is a real integral curve, and this and the
commutation of the flows of αξ and i

λ
ξ that for every s γs is a real integral curve. For

the definition of F i
λ
ξ see definition 16

11 ∀s ∈ R
12 γs := {(t, F i

λ
ξ(s, ϕ(veλαt))) : t ∈ Is}

10 =⇒
12 (∀s ∈ R)(γs is a real integral curve of αξ)
11 ∧
13 (∀s ∈ R)(γs is a real integral curve of αξ)
12 ⇐=
13 ∀s ∈ R
14 ∀t′ ∈ Is
17 γs = F i

λ
ξ(s,−) ◦ γ0

16 ∧
17 γs = F i

λ
ξ(s,−) ◦ γ0 =⇒ γs = {(t, F i

λ
ξ(s, (Fαξ(t− t′, γ0(t′))))) : t ∈ Is}

16 ∧
17 γs = {(t, F i

λ
ξ(s, (Fαξ(t−t′, γ0(t′))))) : t ∈ Is} =⇒ γs = {(t, Fαξ(t−t′, (F i

λ
ξ(s, γ0(t′))))) :

t ∈ Is}
16 ∧
18 γs = {(t, Fαξ(t− t′, (F i

λ
ξ(s, γ0(t′))))) : t ∈ Is} =⇒ γs is a real integral curve of αξ

15 ⇐=
17 γs = F i

λ
ξ(s,−) ◦ γ0

16 ∧
18 γs = F i

λ
ξ(s,−) ◦ γ0 =⇒ γs = {(t, F i

λ
ξ(s, (Fαξ(t− t′, γ0(t′))))) : t ∈ Is}

17 ⇐=
21 {(t, veλαt) : t ∈ I0} is a real integral curve of αDξ(0)
20 ∧
21 ∀a, b ∈ [−∞,∞]: a < b
22 ∀γ ∈ C1((a, b), U1): Dγ = D(αξ)(0) ◦ γ
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23 D(ϕ ◦ γ) = (αξ) ◦ ϕ ◦ γ
19 =⇒
20 γ0 is a real integral curve of αξ
18 ∧
20 γ0 is a real integral curve of αξ and proposition 17
19 =⇒
20 γ0 = {(t, Fαξ(t− t′, γ0(t′))) : t ∈ Is}
18 ∧
20 γ0 = {(t, Fαξ(t− t′, γ0(t′))) : t ∈ Is} ∧ γs = F i

λ
ξ(s,−) ◦ γ0

19 =⇒
20 γs = {(t, F i

λ
ξ(s, (Fαξ(t− t′, γ0(t′))))) : t ∈ Is}

16 ∧
18 γs = {(t, F i

λ
ξ(s, (Fαξ(t−t′, γ0(t′))))) : t ∈ Is} =⇒ γs = {(t, Fαξ(t−t′, (F i

λ
ξ(s, γ0(t′))))) :

t ∈ Is}
17 ⇐=
20 ξ is holomorphic and proposition 20
19 =⇒ i

λ
ξ and αξ commute

18 ∧
20 i

λ
ξ and αξ commute and proposition 19

19 =⇒
20 F i

λ
ξ and Fαξ commute

19 =⇒
20 {(t, F i

λ
ξ(s, (Fαξ(t− t′, γ0(t′))))) : t ∈ Is} = {(t, Fαξ(t− t′, (F i

λ
ξ(s, γ0(t′))))) : t ∈ Is}

18 ∧
20 {(t, F i

λ
ξ(s, (Fαξ(t − t′, γ0(t′))))) : t ∈ Is} = {(t, Fαξ(t − t′, (F i

λ
ξ(s, γ0(t′))))) : t ∈ Is} ∧

γs = {(t, F i
λ
ξ(s, (Fαξ(t− t′, γ0(t′))))) : t ∈ Is}

19 =⇒
20 γs = {(t, Fαξ(t− t′, (F i

λ
ξ(s, γ0(t′))))) : t ∈ Is}

16 ∧
18 γs = {(t, Fαξ(t− t′, (F i

λ
ξ(s, γ0(t′))))) : t ∈ Is} =⇒ γs is a real integral curve of αξ

17 ⇐=
19 proposition 17
18 =⇒
19 {(t, Fαξ(t− t′, (F i

λ
ξ(s, γ0(t′))))) : t ∈ Is} is a real integral curve of αξ

17 ∧
19 {(t, Fαξ(t − t′, (F i

λ
ξ(s, γ0(t′))))) : t ∈ Is} is a real integral curve of αξ and γs =

{(t, Fαξ(t− t′, (F i
λ
ξ(s, γ0(t′))))) : t ∈ Is}

18 =⇒
19 γs is a real integral curve of αξ
Now we have proven the stament ”(∀s ∈ R)(γs is a real integral curve of αξ)”, we use it
to proof γ2π = γ0|I2π . The proof is lengthy and the idea as follows: for different values
of s, the γs are by definition related by the flow of i

λ
ξ. This is implies that for different
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values of s limt→−∞ e
−αλtϕ−1(γs(t)) are related by the infinitesimal flow of i

λ
ξ, which for

s = 2π fixes v. Hence limt→−∞ e
−αλtϕ−1(γ2π(t)) = v. ϕ−1 ◦ γ2π is a real integral curve of

the linear ODE induced by D(αξ)(0) and by assumption on ϕ and because γ2π is a real
integral curve. Using α ∈ A2, this ”limit property” and being solution of the linear ODE
induced by D(αξ)(0) uniquely determine ϕ−1 ◦ γ2π, and this yields that γ2π and γ0 are
equal on their common domain.
11 ∧
13 (∀s ∈ R)(γs is a real integral curve of αξ)
12 =⇒
14 γ2π = γ0|I2π
13 ∧
15 γ2π = γ0|I2π
14 ⇐=
16 limt→−∞ e

−αλtϕ−1(γ2π(t)) = v
15 ∧
17 limt→−∞ e

−αλtϕ−1(γ2π(t)) = v
16 ⇐=
18 DF i

λ
ξ(2π,−)(0) is C linear

17 ∧
18DF i

λ
ξ(2π,−)(0) is C linear =⇒ limt→−∞ e

−αλtϕ−1(F i
λ
ξ(2π, ϕ(veλαt)) = DF i

λ
ξ(2π, v)(0)

17 ∧
18 limt→−∞ e

−αλtϕ−1(F i
λ
ξ(2π, ϕ(veλαt)) = DF i

λ
ξ(2π, v)(0) =⇒

19 limt→−∞ e
−αλtϕ−1(γ2π(t)) = v

16 ⇐=
19 DF i

λ
ξ(2π,−)(0) is C linear

18 ⇐=
19 i

λ
ξ is holomorphic =⇒ F i

λ
ξ(2π,−) is holomorphic =⇒ DF i

λ
(2π,−)(0) is C

17 ∧
19DF i

λ
ξ(2π,−)(0) is C linear =⇒ limt→−∞ e

−αλtϕ−1(F i
λ
ξ(2π, ϕ(veλαt)) = DF i

λ
ξ(2π, v)(0)

18 ⇐=
20 limt→−∞ e

αλt = 0 ⇐= α ∈ A1
19 ∧
21 ∧∗
22 {(t, eαλt) : t ∈ I2π} ∈ C1(I2π,C\{0}) and limt→−∞ e

αλt = 0
22 DF i

λ
ξ(2π,−)(0) is C linear

22 Dϕ(0) = idV
22 proposition 11
21 ∧∗
20 =⇒
21 limt→−∞ e

−αλtϕ−1(F i
λ
ξ(2π, ϕ(veλαt)) = DF i

λ
ξ(2π, v)(0)

17 ∧
19 limt→−∞ e

−αλtϕ−1(F i
λ
ξ(2π, ϕ(veλαt)) = DF i

λ
ξ(2π, v)(0) =⇒
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20 limt→−∞ e
−αλtϕ−1(γ2π(t)) = v

18 ⇐=
22 D({(t, veit) : t ∈ R}) = i{(t, veit) : t ∈ R}
21 ∧
22 ∀t ∈ R
23 D( i

λ
ξ)(0)(veit) = iveit

20 =⇒
21 D({(t, veit) : t ∈ R}) = D( i

λ
ξ)(0)({(t, veit) : t ∈ R})

20 =⇒
21 ∀t ∈ R
22 FD i

λ
ξ(0)(t, v) = veit

20 =⇒
21 FD i

λ
ξ(0)(2π, v) = v

19 ∧
21 FD i

λ
ξ(0)(2π, v) = v and proposition 29

20 =⇒
21 DF i

λ
ξ(2π, v)(0) = v

19 ∧
21 limt→−∞ e

−αλtϕ−1(F i
λ
ξ(2π, ϕ(veλαt)) = DF i

λ
ξ(2π, v)(0) and DF i

λ
ξ(2π, v)(0) = v

20 =⇒
21 limt→−∞ e

−αλtϕ−1(F i
λ
ξ(2π, ϕ(veλαt)) = v

20 =⇒
21 limt→−∞ e

−αλtϕ−1(γ2π(t)) = v
15 ∧
17 limt→−∞ e

−αλtϕ−1(γ2π(t)) = v
16 =⇒
18 Ĩ2π := (−∞, sup{t ∈ I2π : (∀t′ ∈ R<t)(γ2π(t′) ∈ U2)})
17 =⇒
19 (∀t ∈ Ĩ2π)(e−αλtϕ−1(γ2π(t)) = v)
18 ∧
20 (∀t ∈ Ĩ2π)(e−αλtϕ−1(γ2π(t)) = v)
19 ⇐=
Now an eigensystem (see definition 26) is picked. This is to be able write down solutions
of a linear ODE nicely.
22 proposition 27
21 =⇒
22 ∃λE, E, vE, v∗E: (λE, E, vE, v∗E) is an eigensystem for Dξ(0)
20 ∧
21 ∀λE, E, vE, v∗E: as such
23 (∀t ∈ Ĩ2π)(e−αλtϕ−1(γ2π(t)) = v)
22 ⇐=
24 {v∗E(W,n) : (W,n) ∈ E} is a basis of V ∗ ⇐= Jordan normal form theorem
23 ∧
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24 ∀W,n: (W,n) ∈ E
25 (∀t ∈ Ĩ2π)(v∗E(W,n)(e−αλtϕ−1(γ2π(t))) = v∗E(W,n)(v))
23 ∧
25 ∀W,n: (W,n) ∈ E
26 (∀t ∈ Ĩ2π)(v∗E(W,n)(e−αλtϕ−1(γ2π(t))) = v∗E(W,n)(v))
24 ⇐=
25 ∀W,n: (W,n) ∈ E
27 Wv := the generalized eigenspace of Dξ(0) containing v
26 =⇒
28 (W,n) 6= (Wv, 1) =⇒ v∗E(W,n)(v) = 0
27 ∧
29 (W,n) 6= (Wv, 1) =⇒ v∗E(W,n)(v) = 0
28 ⇐=
31 vE(Wv, 1) 6= 0 ∧ vE(Wv, 1), v ∈ {eigenvectors of Dξ(0)|Wv} ∧
{eigenvectors of Dξ(0)|Wv} is a 1-dimensional subspace of V
30 =⇒
31 ∃b ∈ C\{0}: v = bvE(Wv, 1)
29 ∧
30 ∀b: as such
32 (W,n) 6= (Wv, 1)
31 =⇒
32 v∗E(W,n)(v) = v∗E(W,n)(bvE(Wv, 1)) = bv∗E(W,n)(vE(Wv, 1)) = b · 0 = 0
27 ∧
29 (W,n) 6= (Wv, 1) =⇒ v∗E(W,n)(v) = 0
28 =⇒
32 ∀a, b ∈ [−∞,∞]: a < b
33 ∀γ ∈ C1((a, b), U1): Dγ = D(αξ)(0) ◦ γ
34 D(ϕ ◦ γ) = (αξ) ◦ ϕ ◦ γ
31 ∧
32 γ2π is a real integral curve of αξ
30 =⇒
31 ϕ−1 ◦ (γ2π|Ĩ2π) is a real integral curve of D(αξ)(0)
29 ∧
31 proposition 28 ∧ ϕ−1 ◦ (γ2π|Ĩ2π) is a real integral curve of D(αξ)(0) ∧
(αλE, E, vE, v∗E) is an eigensystem for D(αξ)(0)
30 =⇒
31 ∃c: {1, ..., n} → C
32 ∀t ∈ Ĩ2π
33 v∗E(W,n)(e−αλtϕ−1(γ2π(t))) = e−α(λ−λ(W ))t ∑dim(W )−n+1

m=1 c(m)tm−1

29 ∧
30 ∀c: as such
33 limt∈Ĩ2π ; t→−∞ e

−αλtϕ−1(γ2π(t)) = v
32 =⇒
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33 limt∈Ĩ2π ; t→−∞ v
∗
E(W,n)(e−αλtϕ−1(γ2π(t))) = v∗E(W,n)(v)

32 =⇒
33 limt∈Ĩ2π ; t→−∞ e

−α(λ−λ(W ))t ∑dim(W )−n+1
m=1 c(m)tm−1 = v∗E(W,n)(v)

32 ∧
33 ∧∗
34 limt∈Ĩ2π ; t→−∞ e

−α(λ−λ(W ))t ∑dim(W )−n+1
m=1 c(m)tm−1 = v∗E(W,n)(v)

34 limt∈Ĩ2π ; t→−∞ e
−α(λ−λ(W ))t 6= 0 ⇐= re(αλ) ≥ re(αλ(W )) ⇐= α ∈ A1

34 ∀m ∈ N≥2

35 limt∈Ĩ2π ; t→−∞
e−α(λ−λ(W ))ttm

e−α(λ−λ(W ))ttm+1 = limt∈Ĩ2π ; t→−∞ t
m/tm+1 = 0

34 proposition 13
33 ∧∗
32 =⇒
34 c(1) = v∗E(W,n)(v)/(limt∈Ĩ2π ; t→−∞ e

−α(λ−λ(W ))t)
33 ∧
34 ∀m ∈ {2, ..., dim(W )− n+ 1}
35 c(m) = 0
32 =⇒
36 (W,n) 6= (Wv, 1) =⇒ v∗E(W,n)(v) = 0
35 ∧
36 c(1) = v∗E(W,n)(v)/(limt∈Ĩ2π ; t→−∞ e

−α(λ−λ(W ))t)
34 =⇒
36 (W,n) = (Wv, 1) =⇒ c(1) = v∗E(W,n)(v)
35 ∧
36 (W,n) 6= (Wv, 1) =⇒ c(1) = 0
33 ∧
35 ∧∗
36 ∀t ∈ Ĩ2π
37 v∗E(W,n)(e−αλtϕ−1(γ2π(t))) = e−α(λ−λ(W ))t ∑dim(W )−n+1

m=1 c(m)tm−1

36 (W,n) = (Wv, 1) =⇒ c(1) = v∗E(W,n)(v)
36 (W,n) 6= (Wv, 1) =⇒ c(1) = 0
36 ∀m ∈ {2, ..., dim(W )− n+ 1}
37 c(m) = 0
35 ∧∗
34 =⇒
35 ∀t ∈ Ĩ2π
37 (W,n) = (Wv, 1) =⇒ v∗E(W,n)(e−αλtϕ−1(γ2π(t))) = v∗E(W,n)(v)
36 ∧
37 (W,n) 6= (Wv, 1) =⇒ v∗E(W,n)(e−αλtϕ−1(γ2π(t))) = 0
33 ∧
34 ∀t ∈ Ĩ2π
36 ∧∗
37 (W,n) = (Wv, 1) =⇒ v∗E(W,n)(e−αλtϕ−1(γ2π(t))) = v∗E(W,n)(v)
37 (W,n) 6= (Wv, 1) =⇒ v∗E(W,n)(e−αλtϕ−1(γ2π(t))) = 0
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37 (W,n) 6= (Wv, 1) =⇒ v∗E(W,n)(v) = 0
36 ∧∗
35 =⇒
36 v∗E(W,n)(e−αλtϕ−1(γ2π(t))) = v∗E(W,n)(v)
18 ∧
20 (∀t ∈ Ĩ2π)(e−αλtϕ−1(γ2π(t)) = v)
Now this is done, it only has to be shown that they agree on their whole common domain,
for which uniqueness of solutions of ODEs is used.
19 =⇒
21 Ĩ2π 6= ∅
20 ∧
22 Ĩ2π 6= ∅
21 ⇐=
22 ∧∗
23 Ĩ2π = (−∞, sup{t ∈ I2π : (∀t′ ∈ R<t)(γ2π(t′) ∈ U2)})
23 limt∈I2π ; t→−∞ γ2π(t) = 0
23 U2 is a neighborhood of 0 in V
23 I2π = (−∞, sup(I2π))
22 ∧∗
20 ∧
22 Ĩ2π 6= ∅
21 =⇒
24 (∀t ∈ Ĩ2π)(e−αλtϕ−1(γ2π(t)) = v)
23 =⇒
24 {(t, e−αλtϕ−1(γ2π(t))) : t ∈ Ĩ2π} = {(t, v) : t ∈ Ĩ2π}
23 =⇒
24 {(t, ϕ−1(γ2π(t))) : t ∈ Ĩ2π} = {(t, veαλt) : t ∈ Ĩ2π}
23 =⇒
24 {(t, γ2π(t)) : t ∈ Ĩ2π} = {(t, ϕ(veαλt)) : t ∈ Ĩ2π}
23 =⇒
24 γ2π|Ĩ2π = γ0|Ĩ2π
22 ∧
24 ∧∗
25 γ2π|Ĩ2π = γ0|Ĩ2π
25 uniqueness of solutions of ODEs
25 γ2π and γ0|I2π are real integral curves of αξ
25 Ĩ2π 6= ∅
25 Ĩ2π ⊂ I2π
24 ∧∗
23 =⇒
24 γ2π = γ0|I2π
13 ∧
15 γ2π = γ0|I2π
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14 =⇒
Here γ is defined. In the rest a the proof it will be shown that satisfies the conditions on
the γ from the statement of the theorem.
16 γ := {(αt+ i

λ
s, F i

λ
ξ(s, ϕ(veλαt))) : (s, ϕ(veλαt)) ∈ D i

λ
ξ and t ∈ I2π}

15 =⇒
17 ∧∗
18 γ is a complex integral curve of ξ
18 γ is 2πi

λ
-periodic

18 dom(γ) = {αt+ i
λ
s : s ∈ R ∧ t ∈ I2π}

17 ∧∗
16 ∧
18 ∧∗
19 γ is a complex integral curve of ξ
19 γ is 2πi

λ
-periodic

19 dom(γ) = {αt+ i
λ
s : s ∈ R ∧ t ∈ I2π}

18 ∧∗
17 ⇐=
What happens now is that first ”α and i

λ
are linear independent over R ” is proven and

then ”γ is a map”.
19 α and i

λ
are linear independent over R ∧ γ is a map

18 ∧
20 α and i

λ
are linear independent over R ∧ γ is a map

19 ⇐=
21 α and i

λ
are linear independent over R

20 ∧
22 α and i

λ
are linear independent over R

21 ⇐=
22 ∀c1, c2 ∈ R: c1α = c2

i
λ

23 c1αλ = ic2 =⇒
25 c1 6= 0 =⇒ re(αλ) = 0 =⇒ (¬)(α ∈ A1) =⇒ E
24 ∧
25 c1 = 0 =⇒ c2 = 0
20 ∧
22 α and i

λ
are linear independent over R

21 =⇒
23 γ is a map
22 ⇐=
23 ∀z, v1, v2: (z, v1) ∈ γ ∧ (z, v2) ∈ γ
24 v1 = v2
22 ⇐=
23 ∀z, v1, v2: (z, v1) ∈ γ ∧ (z, v2) ∈ γ
25 ∃t1, s1, t2, s2
27 z = αt1 + i

λ
s1 and (s1, ϕ(veλαt1)) ∈ D i

λ
ξ and t1 ∈ I2π and v1 = F i

λ
ξ(s1, ϕ(veλαt1))
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26 ∧
27 z = αt2 + i

λ
s2 and (s2, ϕ(veλαt2)) ∈ D i

λ
ξ and t2 ∈ I2π and v2 = F i

λ
ξ(s2, ϕ(veλαt2))

24 ∧
25 ∀t1, s1, t2, s2: as such
28 α and i

λ
are linear independent over R ∧ z = αt1 + i

λ
s1 ∧ z = αt2 + i

λ
s2

27 =⇒
28 t1 = t2 ∧ s1 = s2
26 ∧
28 t1 = t2 ∧ s1 = s2 ∧ v1 = F i

λ
ξ(s1, ϕ(veλαt1)) ∧ v2 = F i

λ
ξ(s2, ϕ(veλαt2))

27 =⇒
28 v1 = v2
18 ∧
20 α and i

λ
are linear independent over R ∧ γ is a map

19 =⇒
21 dom(γ) = {αt+ i

λ
s : s ∈ R ∧ t ∈ I2π} ∧ γ is 2πi

λ
-periodic

20 ∧
22 dom(γ) = {αt+ i

λ
s : s ∈ R ∧ t ∈ I2π} ∧ γ is 2πi

λ
-periodic

21 ⇐=
23 ∀t ∈ I2π
25 γ0|I2π = γ2π =⇒ γ0(t) = γ2π(t)
24 ∧
26 γ0(t) = γ2π(t) ∧ γ0(t) = γ(αt) ∧ γ2π(t) = γ(αt+ 2πi

λ
)

25 =⇒ γ(αt) = γ(αt+ 2πi
λ

) =⇒ ϕ(veλαt) = F i
λ
ξ(2π, ϕ(veλαt))

24 ∧
27 ϕ(veλαt) = F i

λ
ξ(2π, ϕ(veλαt))

26 ∧
27 proposition 22
25 =⇒
26 D i

λ
ξ ⊃ R× {ϕ(veλαt)} ∧ {(s, F i

λ
ξ(s, ϕ(veλαt))) : (s, ϕ(veλαt)) ∈ D i

λ
ξ} is 2π-periodic

20 ∧
23 dom(γ) = {αt+ i

λ
s : s ∈ R ∧ t ∈ I2π}

22 ∧
23 α and i

λ
are linear independent over R

21 =⇒
22 dom(γ) is open and connected in C
21 =⇒
23 γ is a complex integral curve of ξ
22 ⇐=
24 dom(γ) is open and connected in C
23 ∧
The intuition of the proof of the following statement is that it is first proven that γ satisfies
the complex ODE corresponding to ξ in directions of α and i

λ
and then the rest follows by

R linearity.
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24 γ is holomorphic and Dγ(−)(1) = (ξ ◦ γ)(−)
22 ∧
24 γ is holomorphic and Dγ(−)(1) = (ξ ◦ γ)(−)
23 ⇐=
24 (∀s′ ∈ R)(∀t′ ∈ I2π)
26 Dγ(αt′ + i

λ
s′)(α) = αξ(γ(αt′ + i

λ
s′))

25 ∧
27 Dγ(αt′ + i

λ
s′)(α) = αξ(γ(αt′ + i

λ
s′))

26 ⇐=
29 γ ◦ {(t, αt+ i

λ
s′) : t ∈ I2π} = {(t, γ(αt+ i

λ
s′)) : t ∈ I2π} = γs′

28 =⇒
29 Dγ(αt′ + i

λ
s′) ◦D{(t, αt+ i

λ
s′) : t ∈ I2π} = Dγs′(t′)

28 =⇒
29 Dγ(αt′ + i

λ
s′)(α) = Dγs′(t′)

27 ∧
30 Dγ(αt′ + i

λ
s′)(α) = Dγs′(t′)

29 ∧
30 Dγs′(t′) = αξ(γs′(t′)) ⇐= γs′ is a real integral curve of ξ
28 =⇒
29 Dγ(αt′ + i

λ
s′)(α) = αξ(γs′(t′))

28 =⇒
29 Dγ(αt′ + i

λ
s′)(α) = αξ(γ(αt′ + i

λ
s′))

25 ∧
27 Dγ(αt′ + i

λ
s′)(α) = αξ(γ(αt′ + i

λ
s′))

26 =⇒
28 Dγ(αt′ + i

λ
s′)( i

λ
) = i

λ
ξ(γ(αt′ + i

λ
s′))

27 ∧
29 Dγ(αt′ + i

λ
s′)( i

λ
) = i

λ
ξ(γ(αt′ + i

λ
s′))

28 ⇐=
31 γ ◦{(s, αt′+ i

λ
s) : s ∈ R} = {(s, γ(αt′+ i

λ
s)) : s ∈ R} = {(s, F i

λ
ξ(s, ϕ(veλαt′))) : s ∈ R}

28 =⇒
31 Dγ(αt′ + i

λ
s′) ◦D{(s, αt′ + i

λ
s) : s ∈ R}(s′) = D{(s, F i

λ
ξ(s, ϕ(veλαt′))) : s ∈ R}(s′)

30 =⇒
31 Dγ(αt′ + i

λ
s′)( i

λ
) = D{(s, F i

λ
ξ(s, ϕ(veλαt′))) : s ∈ R}(s′)

29 ∧
32 Dγ(αt′ + i

λ
s′)( i

λ
) = D{(s, F i

λ
ξ(s, ϕ(veλαt′))) : s ∈ R}(s′)

31 ∧
32 D{(s, F i

λ
ξ(s, ϕ(veλαt′))) : s ∈ R}(s′) = i

λ
ξ(F i

λ
ξ(s′, ϕ(veλαt′))) ⇐= definition flow (16)

31 ∧
32 i

λ
ξ(F i

λ
ξ(s′, ϕ(veλαt′))) = i

λ
ξ(γ(αt′ + i

λ
s′))

30 =⇒
31 Dγ(αt′ + i

λ
s′)( i

λ
) = i

λ
ξ(γ(αt′ + i

λ
s′))

27 ∧
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29 Dγ(αt′ + i
λ
s′)( i

λ
) = i

λ
ξ(γ(αt′ + i

λ
s′))

28 =⇒
30 γ is holomorphic and Dγ(−)(1) = (ξ ◦ γ)(−)
29 ⇐=
30 (∀z ∈ C)(Dγ(αt′ + i

λ
s′)(z) = zξ(γ(αt′ + i

λ
s′)))

29 ⇐=
30 ∀z ∈ C
33 α and i

λ
are linear independent over R

32 =⇒
33 ∃c1, c2 ∈ R: z = c1α + c2

i
λ

31 ∧
32 ∀c1, c2: as such
34 ∧∗
35 Dγ(αt′ + i

λ
s′)(z) = Dγ(αt′ + i

λ
s′)(c1α + c2

i
λ
)

35 Dγ(αt′ + i
λ
s′)( i

λ
) = i

λ
ξ(γ(αt′ + i

λ
s′))

35 Dγ(αt′ + i
λ
s′)(α) = αξ(γ(αt′ + i

λ
s′))

35 Dγ(αt′ + i
λ
s′) is R-linear

34 ∧∗
33 =⇒
34 Dγ(αt′ + i

λ
s′)(z) = zξ(γ(αt′ + i

λ
s′))

16 ∧
18 ∧∗
19 γ is a complex integral curve of ξ
19 γ is 2πi

λ
-periodic

19 dom(γ) = {αt+ i
λ
s : s ∈ R ∧ t ∈ I2π}

18 ∧∗
17 =⇒
20 γ̃ := {(z, γ(w)) : w ∈ dom(γ) ∧ z = exp(λw)}
19 ∧
20 j := γ̃ ∪ {(0, 0) ∈ C× V }
18 =⇒
20 proposition 23 ∧ γ is 2πi

λ
-periodic ∧ γ is holomorphic

19 =⇒
20 γ̃ ∈ Hol(exp(λ · dom(γ)), V )
19 =⇒
When the statements up to the first 20 ⇐= from here are proven, then everything is
proven, since ”γ is complex integral curve” is already done, and im(j) = im(γ)∪ {0} and
j(0) = 0 are trivial from the definitions. After the 20 ⇐= the statements are proven in
the same order.
22 limz→0 γ̃(z) = 0
21 ∧
22 limz→0 γ̃(z) = 0 =⇒ j is a holomorphic map from a disc in C centered at 0 to V
21 ∧
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22 j is holomorphic =⇒ Dj(0)(1) = v
21 ∧
22 j is holomorphic =⇒
23 ∀z ∈ dom(j)
24 λzDj(z)(1) = ξ(j(z))
21 ∧
22 (j is holomorphic ∧ Dj(0)(1) = v) =⇒ j is an injective immersion
20 ⇐=
23 limz→0 γ̃(z) = 0
22 ⇐=
23 ∀zN : a map N→ exp(λ · dom(γ)) ∧ limn→∞ zN(n) = 0
24 limn→∞ γ̃(zN(n)) = 0
22 ⇐=
23 ∀zN : a map N→ exp(λ · dom(γ)) ∧ limn→∞ zN(n) = 0
25 ∃tN, sN
26 ∀n ∈ N
27 exp(λαtN(n) + isN(n)) = zN(n)
24 ∧
25 ∀tN, sN: as such
28 limn→∞ γ(αtN(n) + i

λ
sN(n)) = 0

27 ∧
28 limn→∞ γ(αtN(n) + i

λ
sN(n)) = 0 =⇒ limn→∞ γ̃(zN(n)) = 0

26 ⇐=
29 limn→∞ γ(αtN(n) + i

λ
sN(n)) = 0

28 ⇐=
31 X := {(s, ϕ(veλαt)) : s ∈ R and t ∈ I2π} ∪ (R× {0})
30 ∧
31 g := F i

λ
ξ|X

29 =⇒
31 limn→∞ γ(αtN(n) + i

λ
sN(n)) = 0

30 ⇐=
31 limn→∞ g(sN(n), ϕ(eλαtN(n))) = 0
30 ⇐=
31 ∀U3 ∈ τnorm

V ∧ 0 ∈ U3
32 ∃m ∈ N
33 ∀n ∈ N : n ≥ m
34 g(sN(n), ϕ(eλαtN(n))) ∈ U3
30 ⇐=
31 ∀U3 ∈ τnorm

V ∧ 0 ∈ U3
For the meaning of τnorm

V , τnorm
V |X and limτnorm

V
n→∞, see the definitions 33, 34, 35.

33 g−1(U3) ∈ τnorm
R×V |X ⇐= g is a continuous map (X, τnorm

R×V |X) → (V, τnorm
V ) ⇐= F i

λ
ξ is

a continuous map (X, τnorm
R×V |D i

λ
ξ
)→ (V, τnorm

V )
32 ∧
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34 [0, 2π]× {0} ⊂ g−1(U3) ∧ g−1(U3) ∈ τnorm
R×V |X ∧ [0, 2π] is compact ∧ proposition 32

33 =⇒
34 ∃U4 ∈ τnorm

V |X
35 0 ∈ U4 ∧ [0, 2π]× U4 ⊂ g−1(U3)
32 ∧
33 ∀U4: as such
35 limn→∞ zN(n) = 0 =⇒ limn→∞ |zN(n)| = 0 =⇒ limn→∞ | exp(λαtN(n) + isN(n))| = 0
34 ∧
36 limn→∞ | exp(λαtN(n)+isN(n))| = 0 ∧ (∀n ∈ N)(| exp(λαtN(n)+isN(n))| = | exp(λαtN(n))|)
35 =⇒
36 limn→∞ | exp(λαtN(n)| = 0
35 =⇒
36 limn→∞ exp(λαtN(n)) = 0
34 ∧
36 ϕ(0) = 0 ∧ ϕ is continuous ∧ limn→∞ exp(λαtN(n)) = 0
35 =⇒ limτnorm

V
n→∞ ϕ(eλαtN(n)) = 0

34 ∧
37 (∀n ∈ N)(ϕ(eλαtN(n)) ∈ X) ∧ limτnorm

V
n→∞ ϕ(eλαtN(n)) = 0

35 =⇒ limτnorm
V |X
n→∞ ϕ(eλαtN(n)) = 0

36 ∧
37 U4 ∈ τnorm

V |X ∧ 0 ∈ U4 ∧ limτnorm
V |X
n→∞ ϕ(eλαtN(n)) = 0

35 =⇒
36 ∃m ∈ N
37 ∀n ∈ N : n ≥ m
38 ϕ(eλαtN(n)) ∈ U4
34 ∧
35 ∀m: as such
38 γ has period 2πi

λ
∧ 0 is an equilibrium of ξ i

λ

37 =⇒
38 g is 2π-periodic in its first factor
36 ∧
38 g is 2π-periodic in its first factor ∧ [0, 2π]× U4 ⊂ g−1(U3)
37 =⇒ R× U4 ⊂ g−1(U3)
36 ∧
39 R× U4 ⊂ g−1(U3)
38 ∧
39 ∀n ∈ N : n ≥ m
40 ϕ(eλαtN(n)) ∈ U4
37 =⇒
38 ∀n ∈ N : n ≥ m
39 g(sN(n), ϕ(eλαtN(n))) ∈ U3
27 ∧
29 limn→∞ γ(αtN(n) + i

λ
sN(n)) = 0 =⇒ limn→∞ γ̃(zN(n)) = 0
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28 ⇐=
30 proposition 23
29 =⇒
30 ∀n ∈ N
31 γ(αtN(n) + i

λ
sN(n)) = γ̃(eαtN(n)+ i

λ
sN(n))

29 =⇒
30 ∀n ∈ N
31 γ(αtN(n) + i

λ
sN(n)) = γ̃(zN(n))

29 =⇒
30 limn→∞ γ(αtN(n) + i

λ
sN(n)) = limn→∞ γ̃(zN(n))

29 =⇒
30 limn→∞ γ̃(zN(n)) = 0
21 ∧
The idea of the following proof is using that a holomorphic map from a punctured disc in C
can be holomorphically extended to the disc if it can be extended continuously. Remember
that we have already proven that γ̃ is holomorphic (right after its definition).
23 limz→0 γ̃(z) = 0 =⇒ j is a holomorphic map from a disc in C centered at 0 to V
22 ⇐=
24 γ̃ is a map from a punctured disc in C centered at 0 to V
23 ∧
24 (γ̃ is a map from a punctured disc in C centered at 0 to V ∧ limz→0 γ̃(z) = 0) =⇒
j is a holomorphic map from a disc in C centered at 0 to V
22 ⇐=
25 γ̃ is a map from a punctured disc in C centered at 0 to V
24 ⇐=
25 exp(λ · dom(γ)) is a punctured disc in C centered at 0
24 ⇐=
27 dom(γ) = {αt+ i

λ
s : s ∈ R ∧ t ∈ I2π}

26 =⇒
27 exp(λ · dom(γ)) = {exp(re(αλ)t+ iim(αλ)t+ is) : s ∈ R ∧ t ∈ I2π}
26 =⇒
27 exp(λ · dom(γ)) = {z : |z| = exp(re(αλ)t) : t ∈ I2π}
25 ∧
27 exp |R is a monotone increasing map from (R, >) to (R, >) ∧ re (αλ) > 0
26 =⇒
27 {(t, exp(re(αλ)t) : t ∈ I2π} is a monotone increasing map from (I2π, >) to (R, >)
25 ∧
28 exp(λ · dom(γ)) = {z : |z| = exp(re(αλ)t) : t ∈ I2π}
27 ∧
28 {(t, exp(re(αλ)t) : t ∈ I2π} is a monotone increasing map from (I2π, >) to (R, >)
27 ∧
28 I2π = (−∞, sup I2π) ∧ sup I2π > −∞
26 =⇒
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27 exp(λ · dom(γ)) is a punctured disc in C centered at 0 of radius exp(re(αλ) · sup I2π)
23 ∧
25 (γ̃ is a map from punctured a disc in C centered at 0 to V ∧ limz→0 γ̃(z) = 0) =⇒
j is a holomorphic map from a disc in C centered at 0 to V
24 ⇐=
26 ∧∗
27 γ̃ is a map from a punctured disc in C centered at 0 to V
27 γ̃ is holomorphic
27 limz→0 γ̃(z) = 0
27 theorem on removable singularities
26 ∧∗
25 =⇒
26 γ̃ ∪ {0} is a holomorphic map from a disc in C centered at 0 to V
25 =⇒
26 j is a holomorphic map from a disc in C centered at 0 to V
21 ∧
In this proof, Dj(0)(1) is computed by computing limz→0Dj(z)(1) and using holomorphy
of j.
23 j is holomorphic =⇒ Dj(0)(1) = v
22 ⇐=
24 Dj(0)(1) = v
23 ⇐=
25 j is holomorphic
24 ∧
25 ∃zN: a map N→ dom(j) ∧ limn→∞ zN(n) = 0 ∧ limn→∞Di(zN(n))(1) = v
24 ∧
26 ∃zN: a map N→ dom(j) ∧ limn→∞ zN(n) = 0 ∧ limn→∞Di(zN(n))(1) = v
25 ⇐=
26 ∃zN: a map N→ dom(γ̃) ∧ limn→∞ zN(n) = 0 ∧ limn→∞Dγ̃(zN(n))(1) = v
25 ⇐=
27 re (λα) > 0 ∧ dom(γ̃) = exp(λ · dom(γ))
28 =⇒
29 ∃zN: a map N→ dom(γ̃) ∧ limn→∞ zN(n) = 0
30 ∃tN: a map N→ R ∧ (∀n ∈ N)(eαλtN(n) = zN(n))
26 ∧
27 ∀zN, tN: as such
The proof of the following statement has two parts, the statements of which are written
down below and its proofs after that.
28 limn→∞Dγ̃(zN(n))(1) = v ⇐=
30 ∀n ∈ N
31 Dγ̃(zN(n))(1) = 1

zN(n)λαDϕ(zN(n)v)(zN(n)λαv)
29 ∧
30 limn→∞

1
zN(n)λαDϕ(zN(n)v)(zN(n)λαv) = v
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28 ⇐=
31 ∀n ∈ N
32 Dγ̃(zN(n))(1) = 1

zN(n)λαDϕ(zN(n)v)(zN(n)λαv)
30 ⇐=
31 ∀n ∈ N
34 Dγ̃(zN(n))(1) = 1

zN(n)λDγ(αtN(n))(1)
33 ∧
34 Dγ(αtN(n))(1) = 1

α
Dϕ(zN(n)v)(zN(n)λαv)

32 ⇐=
35 Dγ̃(zN(n))(1) = 1

zN(n)λDγ(αtN(n))(1)
34 ⇐=
35 zN(n) = eλ(αtN(n)) ∧ proposition 23
34 ∧
35 Dγ(αtN(n))(1) = 1

α
Dϕ(zN(n)v)(zN(n)λαv)

34 ⇐=
36 Dγ(αtN(n))(1) = 1

α
Dγ(αtN(n))(α) ⇐= γ is holomorphic

35 ∧
36 Dγ(αtN(n))(α) = Dϕ(zN(n)v)(zN(n)λαv)
35 ∧
37 Dγ(αtN(n))(α) = Dϕ(zN(n)v)(zN(n)λαv)
36 ⇐=
40 Dγ(αtN(n))(α) = D{((s, t), F i

λ
ξ(s, ϕ(veλαt))) : t ∈ I2π}(0, t)◦D{((s, t), αt+ i

λ
s) : s, t ∈

R}−1(α)(αtN(n))
39 ∧
40 D{((s, t), αt+ i

λ
s) : s, t ∈ R}−1(α)(αtN(n)) = (0, 1)

38 =⇒
39 Dγ(αtN(n))(α) = D{((s, t), F i

λ
ξ(s, ϕ(veλαt))) : t ∈ I2π}(0, tN(n))(0, 1)

37 ∧
40 Dγ(αtN(n))(α) = D{((s, t), F i

λ
ξ(s, ϕ(veλαt))) : t ∈ I2π}(0, tN(n))(0, 1)

39 ∧
40 D{((s, t), F i

λ
ξ(s, ϕ(veλαt))) : t ∈ I2π}(0, tN(n))(0, 1) =

= D2F i
λ
ξ(0, ϕ(veλαtN(n)))(Dϕ(veλαtN(n))(λαveλαtN(n)))

38 =⇒
39 Dγ(αtN(n))(α) = D2F i

λ
ξ(0, ϕ(veλαtN(n)))(Dϕ(veλαtN(n))(λαveλαtN(n)))

37 ∧
40 Dγ(αtN(n))(α) = D2F i

λ
ξ(0, ϕ(veλαtN(n)))(Dϕ(veλαtN(n))(λαveλαtN(n)))

39 ∧
40 D2F i

λ
ξ(0, ϕ(veλαt)) = idV ⇐= {F i

λ
ξ(0, x) : x ∈ U} = idU

38 =⇒
39 Dγ(αtN(n))(α) = Dϕ(veλαtN(n))(λαveλαtN(n))
38 =⇒
39 Dγ(αtN(n))(α) = Dϕ(zN(n)v)(zN(n)λαv)
29 ∧
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31 limn→∞
1

zN(n)λαDϕ(zN(n)v)(zN(n)λαv) = v
30 ⇐=
31 {(x, ||x||) : x ∈ V } is a norm on V =⇒
32 ∀r ∈ R>0
33 ∃m ∈ N
34 ∀n ∈ N: n ≥ m
35 || 1

zN(m)λα(Dϕ(zN(m)v)(zN(m)λαv))− v|| < r
30 ⇐=
31 {(x, ||x||) : x ∈ V } is a norm on V =⇒
32 ∀r ∈ R>0
35 ϕ is continuously differentiable ∧ Dϕ(0) = idV ∧ limn→∞ zN(n) = 0
34 =⇒
35 ∃m ∈ N
36 ∀n ∈ N: n ≥ m
37 ||Dϕ(zN(m)v)− idV || < r

||v||
33 ∧
34 ∀m,n: as such
36 || 1

zN(m)λα(Dϕ(zN(m)v)(zN(m)λαv))−v|| = || 1
zN(m)λα(Dϕ(zN(m)v)−idV )(zN(m)λαv)|| <

| 1
zN(m)λα |

r
||v|| ||zN(m)λαv|| = r

35 =⇒ || 1
zN(m)λα(Dϕ(zN(m)v)(zN(m)λαv))− v|| < r

21 ∧
23 j is holomorphic =⇒
24 ∀z ∈ dom(j)
25 λzDj(z)(1) = ξ(j(z))
22 ⇐=
25 j(0) = 0 ∧ ξ(0) = 0
24 =⇒
25 z = 0 =⇒ λzDj(z)(1) = ξ(j(z))
23 ∧
25 proposition 23 ∧ γ is 2πi

λ
-periodic ∧ γ is holomorphic

24 =⇒
25 ∀z ∈ dom(γ̃)
26 ∀w ∈ dom(γ): z = eλw

27 Dγ̃(z) = λzDγ(w)
24 =⇒
25 ∀z ∈ dom(j)\{0}
26 ∀w ∈ dom(γ): z = eλw

27 Dγ̃(z) = λzDγ(w)
23 ∧
25 ∀z ∈ dom(j)\{0}
26 ∀w ∈ dom(γ): z = eλw

29 λzDγ̃(z) = Dγ(w) ∧ Dj(z) = Dγ̃(z)
28 =⇒
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29 λzDj(z) = Dγ(w)
27 ∧
29 λzDj(z) = Dγ(w) ∧ Dγ(w) = ξ(γ(w))
28 =⇒
29 λzDj(z) = ξ(γ(w))
28 =⇒
29 λzDj(z) = ξ(j(z))
21 ∧
23 (j is holomorphic ∧ Dj(0)(1) = v) =⇒ j is an injective immersion
Instead of the following proof, the theorem could also have been proven using an j and
γ restricted to smaller sets and using the rank theorem and Dj(0)(1) = v. However, it
seemed nice to show that the restriction is not necessary. Proof outline: first showing that
j−1({0}) = {0} and j is immersion which is done by first showing that γ is not constant.
Then injectivity is done.
22 ⇐=
25 j is an immersion
24 ∧
25 ∀z1, z2 ∈ dom(j): j(z1) = j(z2) ∧ 0 ∈ {z1, z2}
26 z1 = z2
23 ∧
26 j is an immersion
25 ∧
26 ∀z1, z2 ∈ dom(j): j(z1) = j(z2) ∧ 0 ∈ {z1, z2}
27 z1 = z2
24 ⇐=
26 γ is non-constant
25 ∧
27 γ is non-constant
26 ⇐=
27 {(αt+ i

λ
s, F i

λ
ξ(s, ϕ(veλαt))) : s ∈ R and t ∈ I2π} is non-constant

26 ⇐=
27 ∀s ∈ R
28 {(t, F i

λ
ξ(s, ϕ(veλαt))) : t ∈ I2π} is non-constant

26 ⇐=
27 ∧∗
28 |I2π| ≥ 2 ⇐= (I2π = (−∞, sup(I2π)) ∧ sup(I2π) > −∞)
28 (∀s ∈ R)(F i

λ
ξ(s,−)) is injective

28 ϕ is injective
28 {(t, veλαt) : t ∈ I2π} is injective
27 ∧∗
25 ∧
27 γ is non-constant
26 =⇒
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28 γ is a non-constant and γ is a complex integral curve
27 =⇒
28 γ is an immersion
27 =⇒
30 proposition 23 ∧ γ is 2πi

λ
-periodic ∧ γ is holomorphic

29 =⇒
30 ∀z ∈ dom(j)\{0}
31 ∀w ∈ dom(γ)
32 λzDj(z)(1) = Dγ(w)
28 ∧
32 ∀z ∈ dom(j)\{0}
33 ∀w ∈ dom(γ)
34 λzDj(z)(1) = Dγ(w)
31 ∧
32 γ is an immersion
30 =⇒
31 ∀z ∈ dom(j)\{0}
32 Dj(z)(1) 6= 0
28 ∧
31 ∀z ∈ dom(j)\{0}
32 Dj(z)(1) 6= 0
30 ∧
31 Dj(0)(1) = v 6= 0
29 =⇒
30 j is an immersion
27 ∧
29 γ is a non constant complex integral curve of ξ ∧ ξ(0) = 0
28 =⇒
29 0 /∈ im(γ)
28 =⇒
29 ∀z1, z2 ∈ dom(j): j(z1) = j(z2) ∧ 0 ∈ {z1, z2}
30 z1 = z2
24 ∧
26 ∀z1, z2 ∈ dom(j): j(z1) = j(z2) ∧ 0 ∈ {z1, z2}
27 z1 = z2
25 =⇒
The proof of injectivity is the only thing that remains. By what we have proven so far, we
can concentrate on the case that j is equal on two nonzero complex numbers. The main
ingredients are proving that j is locally injective near 0, and using that real integral curves
are either periodic or injective.
27 j is injective
26 ⇐=
28 ∀z1, z2 ∈ dom(j): j(z1) = j(z2) ∧ 0 ∈ {z1, z2}
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29 z1 = z2
27 ∧
28 ∀z1, z2 ∈ dom(j): j(z1) = j(z2) ∧ 0 /∈ {z1, z2}
29 z1 = z2
27 ∧
29 ∀z1, z2 ∈ dom(j): j(z1) = j(z2) ∧ 0 /∈ {z1, z2}
30 z1 = z2
28 ⇐=
29 ∀z1, z2 ∈ dom(j): j(z1) = j(z2) ∧ 0 /∈ {z1, z2}
32 Dj(0)(1) = v ∧ v 6= 0 ∧ rank theorem2

31 =⇒
32 ∃U3 ⊂ dom(j): a neighborhood of 0 in dom(j)
33 j|U3 is injective
30 ∧
31 ∀U3: as such
32 ∀w1, w2: eλw1 = z1 ∧ eλw2 = z2
36 re(αλ) > 0 ⇐= α ∈ A1
35 =⇒
36 limt→−∞ exp(αλt+ λw1) = 0 ∧ limt→−∞ exp(αλt+ λw2) = 0
35 =⇒
36 ∃t ∈ R: exp(αλt+ λw1), exp(αλt+ λw1) ∈ U3
34 ∧
35 ∀t ∈ R: as such
38 z1 = z2
37 ⇐=
38 exp(λw1) = exp(λw2)
37 ⇐=
38 exp(αλt+ λw1) = exp(αλt+ λw2)
37 ⇐=
38 j(exp(αλt+λw1)) = j(exp(αλt+λw2)) ∧ j|U3 is injective ∧ exp(αλt+λw1), exp(αλt+
λw1) ∈ U3
36 ∧
38 j(exp(αλt+ λw1)) = j(exp(αλt+ λw2))
37 ⇐=
38 γ(αt+ w1) = γ(αt+ w2)
37 ⇐=
38 ∀w ∈ {w1, w2}
39 {(t′, γ(αt′ + w)) : αt′ + w ∈ dom(γ)} = {(t′, Fαξ(t′, j(z1))) : αt′ + w ∈ dom(γ)}
37 ⇐=
38 ∀w ∈ {w1, w2}
41 γ is a complex integral curve of ξ
40 =⇒

2The rank theorem from analysis ([Lee12]), not from linear algebra.
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41 {(t′, γ(αt′ + w)) : αt′ + w ∈ dom(γ)} is a real integral curve of αξ
40 ∧
41 {(t′, γ(αt′ + w)) : αt′ + w ∈ dom(γ)} is a real integral curve of αξ ∧ prop. 17
40 =⇒
41 {(t′, γ(αt′ + w)) : αt′ + w ∈ dom(γ)} = {(t′, Fαξ(t′, γ(w))) : αt′ + w ∈ dom(γ)}
39 ∧
41 {(t′, γ(αt′ + w)) : αt′ + w ∈ dom(γ)} = {(t′, Fαξ(t′, γ(w))) : αt′ + w ∈ dom(γ)}
40 =⇒
43 γ(w1) = j(z1) ∧ γ(w2) = j(z2) ∧ j(z1) = j(z2)
42 =⇒
43 γ(w) = j(z1)
41 ∧
44 γ(w) = j(z1)
43 ∧
44 {(t′, γ(αt′ + w)) : αt′ + w ∈ dom(γ)} = {(t′, Fαξ(t′, γ(w))) : αt′ + w ∈ dom(γ)}
42 =⇒
43 {(t′, γ(αt′ + w)) : αt′ + w ∈ dom(γ)} = {(t′, Fαξ(t′, j(z1))) : αt′ + w ∈ dom(γ)}
Now, the hard work is done, and what is promised in the title of this thesis, is a corollary
of the above result. But to state the corollary, some definitions are needed. The reader
is expected to be familiar with the notion of a Riemann surface. While often in notation
explicit reference to a maximal holomorphic atlas is suppressed, it seemed necessary to do
here. The definitions here are not meant to be new or surprising, but they are included
so to make the statements involving them clearer. Only ”Riemann subsurface” is new,
but it just means a complex submanifold of complex dimension 1.
Definition 38.
1 ∀V : a complex vector space of finite dimension
2 AV := (the maximal holomorphic atlas on V generated by idV )
Definition 39.
1 ∀V : a complex vector space of finite dimension
2 ∀Σ,A
3 ∀j ∈ Hol((Σ,A), (V,AV ))
2 D(A,AV )(j) := (the derivative of j with respect to the maximal holomorphic atlasses
A and AV )
Definition 40 (Riemann subsurface).
1 ∀V : a complex vector space of finite dimension
2 ∀Σ,A
4 (Σ,A) is a Riemann subsurface of V
3 :⇐⇒
4 ∧∗
5 (Σ,A) is Riemann surface
5 Σ ⊂ V
5 idΣ ∈ Hol((Σ,A), (V,AV ))
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5 ∀x ∈ Σ
6 D(A,AV )(idΣ)(x) 6= 0
4 ∧∗

Definition 41 (tangent to).
1 ∀V : a complex vector space of finite dimension
2 ∀Σ,A: (Σ,A) is a Riemann subsurface of V
3 ∀U ⊂ V : U is open in V
4 ∀ξ : U → V
6 ξ is tangent to (Σ,A)
5 :⇐⇒
6 ∀x ∈ Σ ∩ U
7 ξ(x) ∈ im(D(A,AV )(idΣ)(x))
Corollary 42.
1 ∀V : V is a finite dimensional vector space over C
2 ∀U ⊂ V : U is a neighborhood of 0 in V
3 ∀ξ ∈ Hol(U, V ): ξ(0) = 0 and Dξ(0) is invertible
4 ∀λ: λ is an extreme point of the union of {0} and the eigenvalues of Dξ(0)
5 ∀v ∈ ker(Dξ(0)− λ · idV )\{0}
6 ∃Σ,A: (Σ,A) a Riemann subsurface of V and Σ ⊂ U
7 0 ∈ Σ ∧ ξ is tangent to (Σ,A)

Prosaic form of the statement. Let V is a finite dimensional vector space over C; U is a
neighborhood of 0 in V ; ξ ∈ Hol(U, V ): ξ(0) = 0 and Dξ(0) is invertible; λ is an extreme
point of the union of {0} and the eigenvalues of Dξ(0); v ∈ ker(Dξ(0) − λ · idV )\{0}.
Then there exists a (Σ,A) that is a Riemann subsurface of V and such that Σ ⊂ U and
such that 0 ∈ Σ and ξ is tangent to (Σ,A)

In the proof, the first 5 lines are taken as assumptions.

Proof sketch. It follows easily from theorem 37. If one takes j as in theorem 37, then
one can take Σ := im(j) and take the induced maximal holomorphic atlas from j. The
assertions will then easily follow from the conditions on j.

Proof.
3 theorem 37
2 =⇒
3 ∃j: j is a holomorphic injective immersion of a disc in C to U
4 ∃γ: a complex integral curve of ξ
6 im(j) = im(γ) ∪ {0} ∧ j(0) = 0 ∧ Dj(0)(1) = v
5 ∧
6 ∀z ∈ dom(j)
7 Dj(z)(1) = λzξ(j(z))
1 ∧
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2 ∀j, γ: as such
5 Σ := im(j)
4 ∧
5 A :=(the maximal holomorphic atlas on im(j) generated by j−1)
3 =⇒
6 j is a holomorphic injective immersion of a disc in C to U
5 =⇒
6 (Σ,A) is Riemann subsurface of V
4 ∧
6 im(j) = im(γ) ∪ {0} ∧ im(γ) ∪ {0} ⊂ U
5 =⇒
6 Σ ⊂ U
4 ∧
5 im(j) = im(γ) ∪ {0} =⇒ 0 ∈ Σ
4 ∧
6 ∀z ∈ dom(j)
7 λzDj(z)(1) = ξ(j(z))
5 =⇒
6 ξ is tangent to (Σ,A)

Note on normal modes
The informed reader might recall the existence of so called ’normal modes near real elliptic
Hamiltonian equilibria. Normal modes are certain periodic orbits near such an equilib-
rium. One may ask what the relation is between the embedded Riemann surfaces whose
existence we just proved, and these normal modes. The first thing to observe is that a
normal mode cannot be contained in such a Riemann surface: since we assume analyticity
a real periodic curve is of the form ∑∞

n=0(aneiωnt + āne
−iωnt). The Riemann surface in

consideration, however, tends in some complex direction to the equilibrium, whereas one
readily sees that functions of the form eiωnt and e−iωnt cannot converge simultaneously for
n ≥ 1 and for any complex direction of time. Secondly, as t goes to infinity in the negative
imaginary direction, and as long as the expression ∑∞

n=0(aneiωnt + āne
−iωnt) converges for

finite t, then ∑∞
n=0(aneiωnt + āne

−iωnt) → ∑∞
n=0 ane

iωnt. The Riemann surface through
the equilibrium has ∑∞

n=0 a
′
ne
iω′nt as expansion, so it is possible that in some cases in the

complexified space the normal mode is contained in a Riemann surface that tends to a
Riemann surface through the equilibrium.



CHAPTER 4

Obstructions for the existence of integrals

The original aim of this thesis was to give a non-integrability1 condition of Hamiltonian
systems near equilibria using the theory Morales-Ruiz and Ramis. To apply this theory to
an equilibrium, one needs theorem 37. However the author2 failed to find any obstructions
in this way. On the other hand, he noted that in this local case near an equilibrium, a
very similar theory could be built, that would fulfill the original aim. Philosophically,
the reason behind this is that this altered theory would only require formal power series
solutions of the differential equation, whereas for an analytic curve, one would also need
convergence. Hence there are more objects that give an obstruction to the existence
of integrals in this new theory. Sadly, there was not enough time left to elaborate the
whole theory sufficiently, but this will be done later and the author is optimistic about
its chances to succeeding. For now, what the author hoped to prove is written down as a
conjecture.

Definition 43.
1 ∀m,n ∈ N≥1
2 Im,n := {i : a map {1, ..,m} → {1, ..., n} ∧ ∑m

i=1 i(m) = n}

Definition 44.
1 ∀V : a complex vector space of finite dimension
2 ∀U ⊂ V : a neighborhood of 0
3 ∀ξ ∈ C∞(U, V )
4 D̃nξ := 1

n!D
nξ

Definition 45 (Taylor independent).
1 ∀V,W : a complex vector spaces of finite dimension
2 ∀U ⊂ V : a neighborhood of 0
3 ∀f ∈ C∞(U,W )
5 f is Taylor independent at 0
4 :⇐⇒
5 @g ∈ C∞(W,C)
6 ∀n ∈ N≥1
7 Dn(g ◦ f)(0) = 0

Definition 46 (Taylor integral).
1 ∀V,W : a complex vector spaces of finite dimension
1Integrability of a Hamiltonian system is roughly the existence of enough integrals that are in ’involution’.
2the author := the author of this thesis
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2 ∀U ⊂ V : a neighborhood of 0
3 ∀ξ ∈ C∞(U, V )
4 ∀f ∈ C∞(V,W )
6 f is a Taylor integral of ξ at 0
5 :⇐⇒
6 ∀n ∈ N≥0
7 Dn(Df(−)(ξ))(0) = 0
If the reader is familiar with the notion of functional independence and of an integral
then he can convince himself that in the holomorphic case, Taylor integral is the same as
integral, and Taylor independent is the same as functionally independent.
Conjecture 47.
1 ∀V : a complex vector space of finite dimension
2 ∀U ⊂ V : a neighborhood of 0
3 ∀ξ ∈ C∞(U, V ): ξ(0) = 0 ∧ Dξ(0) is invertible
4 ∀λ: an eigenvalue of Dξ(0)
6 @k ∈ N≥2
7 kλ is an eigenvalue of Dξ(0)
5 =⇒
6 ∀v ∈ V : Dξ(0)v = λv
8 γ := {(1, v)} ∪ {(n, (nλ − Dξ(0))−1(∑n

m=2
∑
i∈Im,n D̃

mξ(0)(γ(i(1)), ..., γ(i(m))))) : n ∈
N≥2}
7 =⇒
9 ∀µ ∈ C
10 ∀w ∈ V
13 µw = Dξ(0)w
12 ∧
13 ∃m ∈ N≥1
14 µ+mλ is an eigenvalue of Dξ(0)
11 =⇒
13 mµ := min{m ∈ N≥1 : µ+mλ is an eigenvalue of Dξ(0)}
12 ∧
13 yw := {(1, w)}∪{(n, (µ+(n−1)λ−Dξ(0))−1(∑n

m=2
∑
i∈Im,n D̃

mξ(0)(yw(i(1)), γ(i(2)), ..., γ(i(m)))) :
n ∈ {1, ...,mµ}}
8 =⇒
9 ∀W : a complex vector space
10 ∀f ∈ C∞(U,W ): f is Taylor independent at 0 and a Taylor integral of ξ at 0
11 dim W ≤
|{(w, µ) ∈ V ×C : µw = Dξ(0)w ∧ (∃m)(µ+mλ is an eigenvalue of Dξ(0)) ∧ y(mµ) /∈
im (µ+mµλ−Dξ(0))}|

Prosaic form of the statement. Let V be a complex vector space of finite dimension;
U ⊂ V : a neighborhood of 0; ξ ∈ C∞(U, V ) such that ξ(0) = 0 and Dξ(0) is invertible;
λ an eigenvalue of Dξ(0) such that there does not exist a k ∈ N≥2 such that kλ is an
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eigenvalue of Dξ(0); let v ∈ V such that Dξ(0)v = λv. Define γ inductively by γ :=
{(1, v)} ∪ {(n, (nλ − Dξ(0))−1(∑n

m=2
∑
i∈Im,n D̃

mξ(0)(γ(i(1)), ..., γ(i(m))))) : n ∈ N≥2}.
Then for each µ ∈ C and w ∈ V such that µw = Dξ(0)w and there existsm ∈ N≥1
such that µ + mλ is an eigenvalue of Dξ(0), define mµ := min{m ∈ N≥1 : µ + mλ is
an eigenvalue of Dξ(0)} and yw inductively by yw := {(1, w)} ∪ {(n, (µ + (n − 1)λ −
Dξ(0))−1(∑n

m=2
∑
i∈Im,n D̃

mξ(0)(yw(i(1)), γ(i(2)), ..., γ(i(m)))) : n ∈ {1, ...,mµ}}. Then
for each complex vector space W and f ∈ C∞(U,W ): f is Taylor independent at 0 and
a Taylor integral of ξ at 0, the inequality dim W ≤
|{(w, µ) ∈ V ×C : µw = Dξ(0)w ∧ (∃m)(µ+mλ is an eigenvalue of Dξ(0)) ∧ y(mµ) /∈
im (µ+mµλ−Dξ(0))}| holds.

Given a linear map of which the eigenvalues obey suitable resonance relations, then the
above conjecture would give an integer k and a map from vector fields to a vector space,
that is polynomial, and depends only on the first k derivatives of the vector field. If the
map applied to this polynomial mapping is nonzero, then this would give an upper bound
on the number of independent integrals. For example, in case that the eigenvalues are all
integers and one eigenvalue is equal to one, and the rest is negative, then the conjecture
gives an obstruction to more than one independent integrals. Another example: if the set
of eigenvalues is {−3,−2,−1, 1, 2, 3}, then the upper bound on independent integrals is
for some vector fields 2.
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