
Faculty of Science

On the Fixed Parameter Tractability of
Minimum Temporal Connectivity

Master Thesis

Jens Heuseveldt

Computing Science

Supervisors:

Prof. dr. Hans Bodlaender

dr. Johan van Rooij

November 14, 2022

1 OVERVIEW AND INTRODUCTION 1

Abstract

Temporal graphs allow encoding time-dependent information in graphs.
However, problems on temporal graphs tend to be more complex than
their counterparts on static graphs. The Minimum Temporal Connec-
tivity and Maximum Temporal Matching problems are both NP-hard.
In this thesis we provide an algorithm that proves that the Minimum
Temporal Connectivity problem is fixed parameter tractable, using the
graph lifetime and treewidth as combined parameter.

1 Overview and introduction

Many real-world problems, like assigning tasks to people, finding your way home or
building an energy network, can be modelled as graph problems. Graphs, however,
are static, and it can be difficult to incorporate a time-element into the model. One
possible solution to this is to use temporal graphs. As all edges of a temporal graph
have a timestamp, we can encode time-dependent information in it. This can include
roads being built or demolished, a flow through a graph that can wait at locations
during travel, or evolving social networks.

There exist many problems on static graphs where the temporal counterparts appear
to be more complex. We will study the (maximum) temporal matching (TM) and
minimum temporal connectivity (MTC) problems, which are the temporal counter-
parts of the maximum matching and minimum spanning tree problems respectively.

Where a path from one vertex to another implies a path the other way around in nor-
mal, undirected graphs, this is not the case for temporal graphs. The MTC problem
is therefore split in two general variants, one requires only one vertex to be connected
to all others, where the other variant requires all pairs of vertices to be mutually
connected. We denote the single-source variant as r-MTC and the all-pairs variant
as MTC.

Both these problems are NP-hard. Unless P = NP , we need to put extra constraints
on the problem in order to solve it in polynomial time. One technique to do that is
fixed parameter tractability [7], FPT for short. We also denote the class of problems
that are fixed parameter tractable as FPT. For a problem to be FPT with respect
to a parameter, there must be an algorithm that can solve instances of the prob-
lem in polynomial time, given that the chosen parameter remains constant and the
polynomial is independent of the parameter.

Axiotis et al.[1] have shown that the MTC problem on a tree is in FPT when
parametrized by only the lifetime of the graph, usually denoted by τ , and it is 2-
approximable on a cycle. They also proved that the general MTC problem is APX-
hard. Additionally, they gave us an FPT algorithm for r-MTC, parametrized by
treewidth+τ , a polynomial time algorithm for r-MTC on unweighted graphs and
have shown that the MTC problem is APX-hard, even in the unweighted case. For
the general r-MTC problem, Kempe et al.[3] proved that the underlying graph of a
solution always is a tree.

For temporal matching, we require the solution to have as many (timestamped) edges
as possible. No vertex may be incident to a selected edge twice within a given cooldown
period.

2 PRELIMINARIES 2

Molter[6] worked on many temporal graph problems and proved that TM is NP-hard.
Mertzios et al.[5] extended this result to graphs with limited cooldown and lifetime.
In particular, TM is NP-hard even with a cooldown of 2 and a lifetime of 3, or with
a path as underlying graph with a cooldown of 2. The former result also holds when
the underlying graph is complete and the graph has a lifetime of 5.

An FPT algorithm parametrized by the cooldown and maximum matching size of the
underlying graph was also given by Mertzios et al[5]. Later Zschoche[8] improved that
algorithm to be exponentially faster in terms of the cooldown peroid.

In this thesis I present an algorithm to solve MTC in linear time for graphs of bounded
treewidth and lifetime. For that, we first extend the notion of a nice tree decom-
position and introduce the Activation Propagation problem, which we will use as
subproblem in the algorithm for Minimum Temporal Connectivity.

2 Preliminaries

A graph is a tuple G = (VG, EG) with VG the set of vertices and EG the set of
edges. Each edge is an unordered pair of two vertices of VG. The subscript G may
be omitted if the corresponding graph is clear from the context. Unless otherwise
specified, n is the number of vertices |V | and m the number of edges |E|.

A temporal graph is a tuple G = (VG, EG, τG). Again, we will omit the subscript

G if that does not introduce ambiguity. All edges ei ∈ E are a tuple ((vi,1, vi,2), ti)
with vi,1, vi,2 ∈ V and 1 ≤ ti ≤ τ , meaning that vertices vi,1 and vi,2 are adjacent at
time ti. Unless stated otherwise, edges are undirected, which means that we consider
((v1, v2), t) and ((v2, v1), t) as equal. Figure 1 shows an example of a temporal graph.

v1

v2

v3

v4

t = {1, 3}

t = {2, 3} t = {1, 2}

t = {3, 4}

Figure 1: Example of a temporal graph.

The weight (or cost) of an edge e is denoted as w(e) (or c(e)). For unweighted
graphs, w(e) = 1 for all edges. The set with all edges at a given time t is denoted by
EtG = {e | (e, t) ∈ EG}. For a temporal graph G, we have a snapshot Gt = (VG, E

t
G),

as shown in Figure 2. The underlying graph G↓ is the graph where all edges have
their time parameter removed: G↓ = (VG, EG↓) where EG↓ =

⋃
1≤t≤τ E

t
G. Note that

both a snapshot and the underlying graph are normal graphs, rather than temporal
graphs.

The TM problem is defined as follows. Given a temporal graph G and a cooldown
period c, find a set M ⊆ E of maximum cardinality such that for any two different
(e1, t1), (e2, t2) ∈ M we either have that |t1 − t2| ≥ c or e1 and e2 do not share a
vertex. An example can be found in Figure 3.

2 PRELIMINARIES 3

t = 1 t = 2

t = 3 t = 4

Figure 2: All snapshots of the graph in Figure 1

t = 1

t = 1

t = 4

Figure 3: Optimal solution for TM on the graph in Figure 1, for both cooldown period
2 and 3.

A temporal path is a series of alternating vertices and timestamps {v1, t1, v2, t2, . . . ,
vk, tk, vk+1} such that ((vi, vi+1), ti) ∈ E for all 1 ≤ i ≤ k and t1 ≤ t2 ≤ . . . ≤
tk. If all timestamps are unique, the temporal path is strict. When there exists a
(strict) temporal path from vertex v1 to v2, we say that there is a (strict) temporal
connection from v1 to v2. The vertex v2 is then temporally connected to v1. If v1
is connected to v2 and vice versa, v1 and v2 have a mutual temporal connection.

The (weighted) r-MTC problem is defined as follows. Given a temporal graph G
and a vertex r ∈ V , find a set M ⊆ E of minimum cardinality (or total weight)
such that every vertex v ∈ V is temporally connected to r in (V,M, τ). The MTC
problem is defined similarly, but requires all pairs of vertices to be mutually temporally
connected. Figure 4 shows an example for both problems.

t = {1, 3}
t = 2 t = 2 t = 2 t = 1

t = 3

r

Figure 4: Optimal solutions for MTC (left) and r-MTC (right) on the graph in Figure
1.

2 PRELIMINARIES 4

2.1 Tree decompositions

A tree decomposition H of a graph G = (V,E) is a graph with a number of useful
properties. The graph H is a tree and we will call its vertices nodes in order to
prevent confusion with the vertices of G. Every node Xi of H, is a subset of V and
every vertex of G occurs in at least one node of H. When we refer to Xi specifically
for its vertices, we usually refer to it as bag. For every edge (v1, v2) ∈ E, there is
at least one node of H that contains both v1 and v2. Finally, for every v ∈ V , the
induced subgraph of H of the nodes that contain v is connected. The width of such
a decomposition is maxi |Xi| − 1. The treewidth of a graph is the smallest width
among all possible tree decompositions.

When we select one of the leaves as root node, we have a rooted tree decomposi-
tion. A nice tree decomposition [4, Definition 13.1.5] is a rooted tree decomposi-
tion where each node Xi is one of four types:

• Join node: Xi has two child nodes that both have the same vertex set as Xi.

• Introduce node: Xi has one child node Xj where Xi has the same vertex set as
Xj , but with one vertex added to it (Xi ⊇ Xj and |Xi| = |Xj |+ 1).

• Forget node: Xi has one child node Xj that has the same vertex set, but with
one additional vertex (Xi ⊆ Xj and |Xi|+ 1 = |Xj |).

• Leaf node: Xi has no child nodes and consists of only one vertex.

Any tree decomposition can be turned into a nice tree decomposition with the same
width and at most 4n nodes (see [4, Lemma 13.1.3]). In addition to these nodes, we
add a new type of node, the introduce edge node, similar to the one described by
Cygan et al.[2, Definition 2.3]. Every (temporal) edge is associated with exactly one
introduce edge node, and at every introduce edge node, exactly one (temporal) edge
is introduced. Every introduce edge node has exactly one child node with the same
vertex set. Both endpoints of the (temporal) edge associated with the introduce edge
node must be in the vertex set of the node. As in [2], we add a special root node
which is a forget node and the only node i for which Xi = ∅.

For every graph we can trivially construct a tree decomposition of width |V | − 1:
From the single leaf node with an arbitrary vertex, we introduce add all vertices,
then all edges and finally forget all vertices one-by-one until we have an empty root
node. Multiple nice tree decompositions may exist for a single graph. Figure 5 shows
a non-trivial tree decomposition of the graph in Figure 1.

For any given node Xi, the vertices in that bag are called the active vertices.
Vertices for which the corresponding forget node is in the subtree rooted at i are
forgotten vertices, which, together with the active vertices, form the discovered
vertices. The undiscovered vertices are precisely the vertices that do not occur in
the subtree rooted at i. Due to the separator property of tree decompositions, nodes
cannot contain both a forgotten and an undiscovered vertex of another node.

2 PRELIMINARIES 5

Forget v1 (root node)

Forget v3

Edge (v1, v3, 3)

Join

Edge (v1, v3, 2)

Introduce v1

Forget v4

Edge (v3, v4, 1)

Edge (v3, v4, 2)

Introduce v4

Leaf: v3

Forget v2

Edge (v2, v3, 3)

Edge (v2, v3, 4)

Introduce v3

Edge (v1, v2, 1)

Edge (v1, v2, 3)

Introduce v2

Leaf: v1

Figure 5: A tree decomposition for the graph in Figure 1.

2.2 Activation Propagation

In this section we will define the activation propagation problem, which we will
use in our algorithm for MTC. It is defined as follows:

Let L and R be two sets of vertices and G = (L ∪ R,E) be a bipartite graph with
each edge in E connecting a vertex in L with a vertex in R. Both vertex sets are
partitioned into groups. Select a number of edges E′ ⊆ E such that the following
holds: for every possible selection of one vertex in every group in L, which we call the
activated vertices, there must be one group in R in which all vertices are connected
(through E′) to an activated vertex in L.

Figure 6 shows all possible ways to activate vertices in L for one solution to the
problem. Even though we only require a specific kind connection from L to R, this
implies that a similar kind of connection exists from R to L. The following lemma
shows that any solution is also a solution to the reverse problem, that is, with the
roles of L and R switched.

Lemma 2.1. The activation propagation problem is reversible: for any solution,
when one vertex of every group in R is activated, there is one group in L in which all
vertices are connected to an activated vertex in R.

2 PRELIMINARIES 6

L

R

L

R

Figure 6: When one vertex is every group of L is activated (indicated by a circle),
there is a group in R that is fully activated (doubly circled).

Proof. Let E∗ be a solution to the activation propagation problem. Suppose we
can choose one vertex of every group in R such that there is at least one vertex in
every group of L that is not connected to an activated vertex by E∗, and denote that
set by R∗. That means we can choose one vertex of every group in L, not connected
to any vertex in R∗, and let that set be L∗. Since E∗ is a valid solution to the
activation propagation problem, there is one group in R in which all vertices are
connected to at least one vertex in L∗, contradicting that no vertex in R∗ is connected
to a vertex in L∗.

The activation propagation problem is therefore symmetric in L and R. Figure 7
shows all minimal solutions for a complete bipartite graph where both L and R consist
of two groups of two vertices each, up to symmetry. Determining the complexity class
of this problem is beyond the scope of this thesis.

L

R

L

R

Figure 7: Six solutions to the activation propagation problem.

3 FIXED PARAMETER TRACTABILITY OF MTC 7

3 Fixed parameter tractability of MTC

In this section we will show that the minimum temporal connectivity problem is fixed
parameter tractable when parameterized by the treewidth and lifetime of the graph.
Some simpler variants are already known to be FPT and are therefore only listed
without proof.

Theorem 3.1 ([1]). The r-MTC problem is fixed parameter tractable.

The algorithms for r-MTC on a path, tree and on a general graph can be found in
A.1, A.2 and A.3 respectively.

Theorem 3.2 ([1]). The MTC problem is fixed parameter tractable on trees.

An algorithm for MTC on a tree can be found in A.4.

Theorem 3.3. The MTC problem is fixed parameter tractable for general graphs with
treewidth and lifetime as combined parameter.

For this algorithm we will rely on the separator property of tree decompositions. By
recording what temporal paths start and end in the vertices of a node, and which of
those paths must be connected together, we can solve MTC using dynamic program-
ming on a nice tree decomposition with arbitrary root. For ease of explanation, we
add an extra forget node with X1 = ∅ as root node. This node always has index 1.

At every node of the tree decomposition, we keep a list of all possible partial solutions
using only the edges introduced in the subtree rooted at that node. Some partial
solutions may appear multiple times because we sometimes need to decide beforehand
how certain vertices will be connected later on. Of this partial solution, we keep a
summary on the active vertices using a graph descriptor, which we will discuss in
more detail below. Since some information is lost in the transformation to a graph
descriptor, we also keep track of which active vertices still need to be connected to
each other within a specified timeframe. In addition, we also keep track of how an
undiscovered vertex, when discovering it, would need to be connected to the active
vertices in order to be connected to all discovered vertices.

A graph descriptor D on X is a set of quadruples (v1, t1, v2, t2) that describe which
vertices in X are connected to each other, including the start and end times of the
paths. An example can be found in Figure 8. When discussing node i in a tree
decomposition, we usually have X = Xi. Note that a graph descriptor is equivalent
to a directed multigraph where each edge has a start time and duration.

v1

v2

v3

v4

v5

v6

t = 3

t = 5
t = 2

t = 4

t = 1

v1

v3

v4

v6
(v1, 3, v3, 5)

(v6, 1, v1, 3)

(v6, 1, v3, 5)

(v6, 1, v4, 4)

Figure 8: A temporal graph (left) with a corresponding graph descriptor on four of
its vertices (right).

We define T in and T out as a set of k-tuples containing timestamps, so each can take

on O(2τ
k

) different values. We define a cost function f(i, C,D, T in, T out) that returns

3 FIXED PARAMETER TRACTABILITY OF MTC 8

the minimum total cost such that the connections in graph descriptor D on Xi are
achieved (’done’) and all discovered vertices are mutually connected if we add the
connections in graph descriptor C on Xi (the ’coming’ edges). In addition, for every
discovered vertex v and every set of times in T in, there is, for at least one value of
j, a temporal path from vij to v starting no sooner than tinj , and vice versa for tout

instead of tin. A visualization of this can be found in Figure 9.

Active vertices

Xi

Forgotten vertices

Undiscovered vertices

Direct connection impossible
due to separator property, but

requirements are in T in and T out

Already done

C or D

Not in this subtree

T out

T in

C

D

Figure 9: Visualization of the general idea of the algorithm for MTC. Annotations of
edges indicate in which part of the cost function guarantees that there is (or will be)
a path between the two vertices.

We will only discuss cases where the value of f is finite. Whenever the value of f is
undefined, we consider it as ∞. For ease of discussion, we will describe the algorithm
as if we had a set Ai of quintuples (C,D, T in, T out, w) such that f(i, C,D, T in, T out) =
w.

Domination

When two tuples in the same Ai differ in only their value of w, we keep the tuple
with the lowest w and discard the rest.

This leads us to another issue: many tuples are strictly worse than other tuples, even
if they differ in something other than their cost. We will formalize that now through
the concept of domination, often used in game theory. When a dominates b, we will
denote that as a � b. If a � b but not b � a, a strictly dominates b.

In a graph descriptor, an edge (v1, t1, v2, t2) is dominated if there is a path from v1
to v2 that does not use that edge, starts no sooner than t1 and arrives no later than
t2. For two graph descriptors A and B, A � B if every edge in B is dominated by a
path in A.

Given two k-tuples tina and tinb on the same vertex set, we say that tina � tinb if

3 FIXED PARAMETER TRACTABILITY OF MTC 9

tina,i ≥ tinb,i for all values of i. That is, a tink-tuple can be dominated by another tink-

tuple that allows you to enter at the same time or later. Similarly, we have touta � toutb

if touta,i ≤ toutb,i for all i because touta would allow more time to reach the undiscovered
vertices.

For the cost value w, we have w1 � w2 if w1 ≤ w2.

The set of all tuples which are not strictly dominated by another tuple is a so-called
Pareto-optimal set or Pareto-front. All other tuples can be discarded without influ-
encing the final result of the algorithm.

Leaf node

In a leaf node there is only one discovered vertex of which we have not seen any edges
yet. The graph descriptors are therefore empty. Furthermore, every undiscovered
vertex must reach vi1 in τ time and must be reachable from vi1 starting at time 1. We
thus have Ai = {(∅, ∅, {(τ)}, {(1)}, 0)}.

Introduce vertex node

For ease of notation, we define the . operator to add an element to a tuple, so
(x1, . . . , xn) . x equals (x1, . . . , xn, x). To make . work when the left hand side is a
set of tuples, we apply .x to all elements of that set.
Assume without loss of generality that vertex vik is introduced and k is the high-
est index of all vertices in bag i. For every tuple j in Ac(i) and every pair of
tuples (tin, tout) in T inj × T outj , we add (Cj ∪ {(vik, 1, vl, tinl), (vl, t

out
l , vik, τ) | vl ∈

Xc(i)}, Dj , T
in . τ, T out . 1, wj) to Ai.

In the example in Figure 5, at the introduce vertex node for v4, we get

Ai = {({(v3, 1, v4, 4), (v4, 1, v3, 4)}, ∅, {(4, 4)}, {(1, 1)}, 0)} .

Introduce edge node

Assume wlog that e = (vi1, v
i
2, t) is introduced. For every tuple j in Ac(i), we add

(Cj , Dj , T
in
j , T outj , wj) and (Cj , Dj ∪ {(vi1, t, vi2, t), (vi2, t, vi1, t)}, T inj , T outj , wj + w(e))

to Ai. The former corresponds to not using the edge, while the latter includes the
edge and updates the done-graph descriptor and total weight values accordingly.

In the example in Figure 5, at the introduce edge node for (v3, v4, 1) we get

Ai = {({(v3, 1, v4, 4), (v4, 1, v3, 4)}, ∅, {(4, 4)}, {(1, 1)}, 0),

(∅, {(v3, 1, v4, 1), (v4, 1, v3, 1)}, {(4, 4)}, {(1, 1)}, 1),

(∅, {(v3, 2, v4, 2), (v4, 2, v3, 2)}, {(4, 4)}, {(1, 1)}, 1),

(∅, {(v3, 1, v4, 1), (v4, 1, v3, 1), (v3, 2, v4, 2), (v4, 2, v3, 2)}, {(4, 4)}, {(1, 1)}, 2)}.

Note that the algorithm does not explicitly remove any edges from C, but they might
be dominated by new edges added to D.

3 FIXED PARAMETER TRACTABILITY OF MTC 10

Forget vertex node

In forget vertex nodes we have to make sure all required connections of the forgotten
node are established or will be established later.

Assume wlog that vertex p = vi|Xc(i)| is removed. We do the following for every tuple

j in Ac(i):

First we will take care of T in and T out. For every tuple tin in T inj and every edge

(v1, t1, v2, t2) in Dj with v2 = p and t2 ≤ tinp , we add tin, in which we replace tinv1 with

min(tinv1 , tp) and remove tinp , to T ′in. The construction of T ′out is analogous.

We contract the graph Dj at p to form D′j . This means that for any two edges
(v1, t1, v2, t2) and (v3, t3, v4, t4) with v2 = p = v3 and t2 ≤ t3, we add (v1, t1, v4, t4) to
D′j and remove all edges incident to p.

Let C ′j be Cj with all edges incident to p removed.

For every edge el = (v1, t1, v2, t2) to (or from) p in Cj that is not dominated by a
path in Dj ∪C ′j , we create a set Yl in the following way: for every edge (v3, t3, v4, t4)
in D with v4 = v2 = p and t2 ≥ t4 (or v3 = v1 = p and t1 ≤ t3), we add (v1, t1, v3, t3)
(or (v4, t4, v2, t2)) to Yl. If this fails for any el (such that Yl = ∅), that connection can
no longer be established and we have to discard j. Let Y be the cartesian product of
all Yl. Then, for every (y1, y2, . . .) in Y , we add

(C ′j ∪ y1 ∪ y2 ∪ . . . , D′j , T ′in, T ′out, wj)

to Ai.

Let us have a look at the forget v4 node in our example (Figure 5). We have already
described Ac(i) above. We find

Ai = {(∅, ∅, {(1)}, {(1)}, 1),

(∅, ∅, {(2)}, {(2)}, 1),

(∅, ∅, {(2)}, {(1)}, 2)}.

3 FIXED PARAMETER TRACTABILITY OF MTC 11

For the forget v2 node we find

Ai = {({(v1, 3, v3, 4), (v3, 1, v1, 3)}, ∅, {(3, 4)}, {(3, 1)}, 1),

({(v1, 1, v3, 4), (v3, 1, v1, 1)}, ∅, {(1, 4)}, {(1, 1)}, 1),

({(v1, 1, v3, 4), (v3, 1, v1, 3)}, ∅, {(3, 4)}, {(1, 1)}, 2),

({(v1, 1, v3, 4), (v3, 4, v1, 4)}, ∅, {(4, 4)}, {(1, 4)}, 1),

({(v3, 1, v1, 4)}, {(v1, 3, v3, 4)}, {(4, 4)}, {(1, 4), (3, 1)}, 2),

({(v3, 1, v1, 4)}, {(v1, 1, v3, 4)}, {(4, 4)}, {(1, 1)}, 2),

({(v3, 1, v1, 4)}, {(v1, 3, v3, 4)}, {(4, 4)}, {(1, 1)}, 3),

({(v1, 1, v3, 3), (v3, 3, v1, 4)}, ∅, {(4, 3)}, {(1, 3)}, 1),

(∅, {(v1, 3, v3, 3), (v3, 3, v1, 3)}, {(4, 3), (3, 4)}, {(1, 3), (3, 1)}, 2),

({(v3, 1, v1, 4)}, {(v1, 1, v3, 3)}, {(4, 3), (1, 4)}, {(1, 1)}, 2),

(∅, {(v1, 3, v3, 3), (v3, 3, v1, 3)}, {(3, 4), (4, 3)}, {(1, 1)}, 3),

({(v1, 1, v3, 4), (v3, 1, v1, 4)}, ∅, {(4, 4)}, {(1, 3)}, 2),

(∅, {(v1, 3, v3, 3), (v3, 3, v1, 3)}, {(4, 4)}, {(1, 3), (3, 1)}, 3),

({(v3, 1, v1, 4)}, {(v1, 1, v3, 3)}, {(4, 4)}, {(1, 1)}, 3),

(∅, {(v1, 3, v3, 3), (v3, 3, v1, 3)}, {(4, 4)}, {(1, 1)}, 4)}.

Join node

For every pair (l, r) in Ac1(i) × Ac2(i) we create new tuples to add to Ai as follows:

For every pair (tin,l, tin,r) in T inl × T inr , we add (min(tin,l1 , tin,r1),min(tin,l2 , tin,r2), . . .)
to T ′in. The construction of T ′out is analogous, using max instead of min. We need
the most restrictive value here because it holds the requirements to reach forgotten
vertices. To make sure the forgotten vertices of both sides can reach each other, we
need to add some extra ’coming’ edges based on T in and T out.

First we will tie T outl to T inr . We will now consider the activation propagation
problem with all tuples in tout,l as groups in L and their elements as vertices in the
group. Similarly we take every tin,rc as a group in R with tin,rc,d as their vertices. The

available edges are (tout,la,b , tin,rc,d) for which tout,la,b ≤ tin,rc,d . For every (minimal) solution

M to this problem and every (tout,la,b , tin,rc,d) in M , we add (vib, t
out,l
a,b , vid, t

in,r
c,d) to Al,r.

The construction of Ar,l is analogous.

Finally, for every (Clr, Crl) in Alr×Arl, we add (Cl∪Cr∪Clr∪Crl, Dl∪Dr, T
′
in, T

′
out,

wl + wr) to Ai.

There is one join node in our example (Figure 5). We will assume that vi = vc1(i) =
vc2(i) = (v1, v3). We have already listed Ac1(i) above (the forget v2 node) and we have

Ac2(i) = {({(v1, 1, v3, 1), (v3, 1, v1, 4)}, ∅, {(4, 1)}, {(1, 1)}, 1),

({(v1, 1, v3, 2), (v3, 2, v1, 4)}, ∅, {(4, 2)}, {(1, 2)}, 1),

({(v1, 1, v3, 2), (v3, 1, v1, 4)}, ∅, {(4, 2)}, {(1, 1)}, 2),

({(v3, 1, v1, 1)}, {(v1, 2, v3, 2), (v3, 2, v1, 2)}, {(4, 1)}, {(1, 1)}, 2),

(∅, {(v1, 2, v3, 2), (v3, 2, v1, 2)}, {(4, 2)}, {(1, 2)}, 2),

(∅, {(v1, 2, v3, 2), (v3, 2, v1, 2)}, {(4, 2)}, {(1, 1)}, 3)}

3 FIXED PARAMETER TRACTABILITY OF MTC 12

which is up to the reader to verify. We find

Ai = {({(v1, 1, v3, 1), (v3, 1, v1, 1)}, ∅, {(1, 1)}, {(1, 1)}, 2),

({(v1, 1, v3, 1), (v3, 1, v1, 1)}, ∅, {(4, 1)}, {(1, 1)}, 3),

({(v1, 1, v3, 1), (v3, 1, v1, 1)}, {(v1, 3, v3, 3), (v3, 3, v1, 3)}, {(4, 1)}, {(1, 1)}, 4),

({(v1, 1, v3, 2), (v3, 2, v1, 4)}, ∅, {(4, 2)}, {(1, 2)}, 3),

({(v1, 1, v3, 2)}, {(v1, 3, v3, 3), (v3, 3, v1, 3)}, {(4, 2)}, {(1, 2)}, 4),

({(v1, 1, v3, 2), (v3, 1, v1, 1)}, ∅, {(1, 2)}, {(1, 1)}, 3),

({(v1, 1, v3, 2), (v3, 1, v1, 4)}, ∅, {(4, 2)}, {(1, 1)}, 4),

({(v1, 1, v3, 2)}, {(v1, 3, v3, 3), (v3, 3, v1, 3)}, {(4, 2)}, {(1, 1)}, 5),

({(v1, 1, v3, 1), (v3, 1, v1, 1)}, {(v1, 2, v3, 2), (v3, 2, v1, 2)}, {(1, 1)}, {(1, 1)}, 3),

({(v1, 1, v3, 1), (v3, 1, v1, 1)}, {(v1, 2, v3, 2), (v3, 2, v1, 2)}, {(4, 1)}, {(1, 1)}, 4),

({(v1, 1, v3, 1), (v3, 1, v1, 1)}, {(v1, 2, v3, 2), (v3, 2, v1, 2), (v1, 3, v3, 3), (v3, 3, v1, 3)},
{(4, 1)}, {(1, 1)}, 5),

({(v3, 1, v1, 1)}, {(v1, 2, v3, 2), (v3, 2, v1, 2)}, {(1, 2)}, {(1, 2)}, 3),

(∅, {(v1, 2, v3, 2), (v3, 2, v1, 2)}, {(4, 2)}, {(1, 2)}, 4),

(∅, {(v1, 2, v3, 2), (v3, 2, v1, 2), (v1, 3, v3, 3), (v3, 3, v1, 3)}, {(4, 2)}, {(1, 2)}, 5),

({(v3, 1, v1, 1)}, {(v1, 2, v3, 2), (v3, 2, v1, 2)}, {(1, 2)}, {(1, 1)}, 4),

(∅, {(v1, 2, v3, 2), (v3, 2, v1, 2)}, {(4, 2)}, {(1, 1)}, 5),

(∅, {(v1, 2, v3, 2), (v3, 2, v1, 2), (v1, 3, v3, 3), (v3, 3, v1, 3)}, {(4, 2)}, {(1, 1)}, 6),

Note that many tuples have been simplified or removed because of domination, or
removed because they had no solution to the activation propagation problem.

Solution and correctness

For a given node i, vertices are in one of three categories. A vertex is either forgotten,
undiscovered, or in the vertex set Xi, which we will call the active vertices.

To prove that this algorithm will find an optimal solution, we will define an invariant:
At every node i, the set Ai corresponds to all possible partial solutions consisting only
of edges for which the corresponding introduce edge node is in the subtree rooted at i.
The cost value is the total weight of all edges in the partial solution. In addition, for
every partial solution, it lists all possible (minimal) ways in which it can be extended
in order to establish all connections (sometimes in different ways for the same partial
solution), as follows:

The connections between forgotten and/or active vertices must be established by the
coming edges together with the partial solution, of which the done graph descriptor
holds a condensed representation for the active vertices. Connections to be estab-
lished between forgotten and undiscovered vertices are kept track of by T in and T out,
and applied when an undiscovered vertex becomes active (introduce vertex node) or
forgotten (join node). We do not provide guarantees for connections between two
undiscovered vertices or an undiscovered and active vertex, as that will be provided
when one vertex becomes forgotten (join or forget vertex nodes) or both become active
(introduce vertex node).

3 FIXED PARAMETER TRACTABILITY OF MTC 13

Note that this is slightly different from Figure 9, as T in and T out set requirements on
connections between active and undiscovered vertices, in order to guarantee connec-
tions between forgotten and undiscovered vertices.

For the leaf nodes, introduce vertex nodes and introduce edge nodes it is trivial to
check the invariant is kept in place.

At a forget vertex node, one vertex is moved from active to forgotten. Let p be
the vertex that is removed. We need to guarantee that connections between p and
undiscovered vertices will be established. Therefore, we might need to update up to
one value of all tin and tout tuples. Guarantees about connections between p and
discovered vertices might have been broken by removing all coming edges incident to
p. That makes it necessary to fix these broken edges using any path in the partial
solution from p to any active vertex (or vice-versa). It suffices to use only a single
done edge and add the rest of the required path as coming edge.

Finally, we take a look at the join node. Each forgotten vertex is a forgotten vertex of
one child node and an undiscovered vertex for the other child node. Let p1 and p2 be
forgotten vertices of join node i, of which p1 is forgotten in c1(i) (and undiscovered
in c2(i)) and p2 forgotten in c2(i). Let j1 be a tuple from Ac1(i) and j2 from Ac2(i).
The T out1 value guarantees that for every tout1 in T out1 , if we add a path from every
vertex vij to p2, starting at tout1,j , there is a path from p1 to p2. Similarly, by adding

a path from p1 to every vij ending no later than tin2,j we have a connection from p1 to

p2, for any tin2,j in T in2 . Combining these requirements exactly gives the activation
propagation problem, and all solutions for that thus precisely describe all feasible
ways to tie T out1 and T in2 together.

By induction on the nodes of the tree decomposition, the invariant therefore holds for
all nodes, and particular the root node. As all vertices in the root node are forgotten
and the coming graph descriptor is empty, all vertices must be connected by the
partial solution. It follows that the minimum total cost to mutually connect all pairs
of vertices is f(1, ∅, ∅, ∅, ∅), which corresponds to the only non-dominated tuple in A1.

Running time

Lemma 3.4. The MTC algorithm runs in polynomial time for fixed τ and k.

Proof. A tuple in a Ai set consists of two graph descriptors, two sets of possible times
and the cost for that tuple. A graph descriptor is a set of tuples consisting of two
vertices and two timestamps, therefore a graph descriptor is most O(k2τ2) in size.
Similarly, we can deduce that T in and T out are at most O(τk) in size. Let R be

O(2O(k2τ2)) and T be O(2τ
O(k)

). As a result, any Ai can contain at most O(RT)
tuples.

We will go over all possible types of nodes. Since Kloks [4] proposed an algorithm to
compute a nice tree decomposition with at most 4n nodes, we will assume there are
at most O(n) nodes of each type except the introduce edge node, of which there are
exactly m.

The computation for leaf nodes is trivial, yielding O(n) time for all leaf nodes.

There are at most O(n) introduce vertex nodes, each taking up O(RT 2) time to
compute each. Therefore, all introduce vertex nodes can be computed in O(nRT 2)

4 DISCUSSION 14

time.

For each introduce edge node we only need O(RT) computing time, netting O(mRT)
time for all introduce edge nodes together.

A forget vertex node takes up to O(RT (RT +R+ (kτ)kτ)) time, as there can be up
to kτ edges incident to one vertex in a graph descriptor. There is exactly one forget
vertex node per vertex, which yields a total computing time of O(nR2T 2+nRT (kτ)kτ)
for all forget vertex nodes.

The number of join nodes is at most O(n). The activation propagation problem
consists of O(T) vertices and O(T 2) edges and must be solved O(R2T 4) times. There

can be up to O(2T
2

) solutions to this problem. The total time spent in join nodes is

therefore O(nR2T 42T
2

).

After every step, we need to make sure that dominated edges are removed from
the graph descriptors (where ’done’ edges can dominated ’coming’ edges), T in and
T out have their dominated tuples removed, and, after doing so, dominated tuples are
removed as well. To achieve the calculated running time, only removing duplicates
(also discarding tuples of Ai with higher cost) is required, which takes a time linear in
the number of items. For practical purposes, extensive removal of dominated entries
is recommended, as even removing a single item from a T in or T out can save a lot of
computation time for join nodes.

The total running time is O(n(R2T 42T
2

+ RT (kτ)kτ) + mRT), which is linear in n
and m for fixed τ and k.

Proof of Theorem 3.3. Now we have proven that MTC algorithm is correct and runs
in polynomial time for graphs with bounded treewidth and lifetime (lemma 3.4), we
conclude that the MTC problem is fixed parameter tractable with treewidth and
lifetime as combined parameter.

4 Discussion

Even though the practical use cases are limited, the MTC algorithm shows that Min-
imum Temporal Connectivity belongs in FPT. The algorithm can be easily extended
to many variants of the problem by only changing the introduce edge case. These
variants include directed graphs, a combination of directed and unidirectional edges,
and strict temporal paths.

While we discussed Temporal Matching, it turned out to be out of scope for this
thesis. It is likely that a similar algorithm exists for Temporal Matching, which
would make Temporal Matching fixed parameter tractable when parameterized by
graph lifetime plus treewidth, rather than the cooldown period plus the size of a
maximum matching on the underlying graph. We defined Activation Propagation,
but did not determine its complexity class nor a solution method other than a trivial
exhaustive search. Speeding up the enumeration of all solutions would also positively
impact the running time of our MTC algorithm. The question also arises whether
finding an optimal edge set for Activation Propagation is polynomially solvable, both
for weighted and unweighted graphs.

REFERENCES 15

References

[1] Kyriakos Axiotis and Dimitris Fotakis. “On the Size and the Approximability
of Minimum Temporally Connected Subgraphs”. In: Proceedings of the 43rd In-
ternational Colloquium on Automata, Languages and Programming. 2016, 149:1–
149:14.

[2] Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Joham MM
van Rooij, and Jakub Onufry Wojtaszczyk. “Solving Connectivity Problems Pa-
rameterized by Treewidth in Single Exponential Time”. In: 2011 IEEE 52nd
Annual Symposium on Foundations of Computer Science. IEEE. 2011, pp. 150–
159.

[3] David Kempe, Jon Kleinberg, and Amit Kumar. “Connectivity and Inference
Problems for Temporal Networks”. In: Journal of Computer and System Sciences
64(4) (2002), pp. 820–842.

[4] Ton Kloks. Treewidth: Computations and Approximations. Springer, 1994.

[5] George B Mertzios, Hendrik Molter, Rolf Niedermeier, Viktor Zamaraev, and
Philipp Zschoche. “Computing Maximum Matchings in Temporal Graphs”. In:
37th International Symposium on Theoretical Aspects of Computer Science. 2020.

[6] Hendrik Molter. Classic Graph Problems Made Temporal – A Parameterized
Complexity Analysis. Universitätsverlag der TU Berlin, 2020. isbn: 978-3-7983-
3172-3.

[7] Rolf Niedermeier. Invitation to Fixed-parameter Algorithms. Vol. 31. OUP Ox-
ford, 2006.

[8] Philipp Zschoche. “A Faster Parameterized Algorithm for Temporal Matching”.
In: Information Processing Letters 174.106181 (2022).

A ALGORITHMS 16

A Algorithms

A.1 r-MTC on a path

The r-MTC problem can be solved using dynamic programming when the graph is a
path. Assume that r is one of the two endpoints. Starting at r, we traverse the graph,
keeping track of the lowest cost to reach a vertex within t timesteps for 1 ≤ t ≤ τ .
More formally, with vertices numbered from r = 1 to n = |V |, we define

f(v, t) =

0 if v = r = 1

∞ if t ≤ 0

min

{
f(v, t− 1)

f(v − 1, t) + w((v − 1, v, t))
otherwise

(1)

where w(e) = ∞ if e does not exist. The value of the solution is f(|V |, τ), where
the edges of the solution can be found by backtracking. If r is not an endpoint of
the path, we run this algorithm twice by cutting the graph through r, making r an
endpoint on both halves of the graph.

A.2 r-MTC on trees

This is an adaption of the algorithm described in section A.1. For this algorithm to
work on trees, we first need to reverse the working direction to work from the leaves
up to r, which we will use as root. We define S(v) as the set of all direct children of
node v in a tree. For any leaf node v, S(v) = ∅. We define two separate functions for
calculating the cost of connecting one child node and all child nodes. For w ∈ S(v)
we define

f(v, w, t) =

∞ if t > τ

min

{
f(v, w, t+ 1)

f(w, t) + w((v, w, t))
otherwise

(2)

where
f(v, t) =

∑
w∈S(v)

f(v, w, t). (3)

For leaf nodes, this sum is empty and thus sums to zero, as desired. The value of the
optimal solution is f(r, 0) and can be found in O(nτ) time.

A.3 r-MTC using treewidth

This is an adaption of the algorithm discussed in section 4.3 of [1] using O(nk23k(L+
k)k+1) time. We denote the set of all forgotten vertices of bag i as Fi. Given a
(temporal) graph G, we take a nice tree decomposition H of treewidth k. Let Xi be a
bag of H, aj ∈ {0, 1}, and 1 ≤ t ≤ τ . We define f(i, a1, t1, . . . , ak, tk) as the minimum
cost it takes to connect vertices in such a way that the following holds: For all vertices
w for which w ∈ Fi or w = vij′ and aj′ = 0, there is, for some j, a temporal path from

vij to w starting no sooner than tj . The path must also end no later than tj′ in the
latter case. Some parameters of f may be undefined. The total minimal cost of the
optimal solution to r-MTC is f(1, 1, 1), as we start at the root at time 1.

A ALGORITHMS 17

A vertex vij in a specific node can be in 2 states: It is not connected (aj = 1) and
requires an entry before a specific timestep tj , or it is connected (aj = 0) through
another vertex, no later than tj . As a result, we can require that f(i, . . . , 1, tj , . . .) ≥
f(i, . . . , 1, tj+1, . . .) and f(i, . . . , 0, tj , . . .) ≤ f(i, . . . , 0, tj+1, . . .) We split cases based
on what bag i is:

Leaf node Vertices in leaf nodes are not yet connected to anything else, so f(i, 0, t1)
=∞ and f(i, 1, t1) = 0.

Introduce node Assume wlog that vip was introduced. Since the new vertex is
not yet connected to any other vertex, we can choose f(i, . . . , 0, tp, . . .) = ∞ and
f(i, . . . , ap−1, tp−1, 1, tp, ap+1, tp+1, . . .) = f(c(i), . . . , ap−1, tp−1, ap+1, tp+1, . . .).

Forget node Assume wlog that vip was removed. The vertex removed must be
connected to another vertex. We thus have f(i, . . . , ap−1, tp−1, ap+1, tp+1, . . .) =
f(c(i), . . . , ap−1, tp−1, 0, τ, ap+1, tp+1, . . .).

Join node Any vertex that is connected in a join node, must be connected in exactly
one of its child nodes. We therefore get f(i, a1, t1, . . .) = min{f(c1(i), a1,1, t1, . . .) +
f(c2(i), a1,2, t1, . . .) | aj,1 + aj,2 = aj + 1}.

Introduce edge node Let e = ((u,w), te) be the edge associated with this node.
Since both endpoints of the edge must be in the associated introduce edge node, we
can assume wlog that u = vi1 and w = vi2. The edge can be used in either direction
or not at all, and the originating vertex can be either connected or not. We therefore
split based on four cases:

f(i, 1, t1, 1, t2, . . .) = f(c(i), 1, t1, 1, t2, . . .) (4)

f(i, 1, t1, 0, t2, . . .) = min

{
f(c(i), 1, t1, 0, t2, . . .)

f(c(i), 1, t1, 1, t3, . . .) + c(e) if t1 ≤ te ≤ t2, t3
(5)

f(i, 0, t1, 1, t2, . . .) = min

{
f(c(i), 0, t1, 1, t2, . . .)

f(c(i), 1, t3, 1, t2, . . .) + c(e) if t2 ≤ te ≤ t1, t3
(6)

f(i, 0, t1, 0, t2, . . .) = min

f(c(i), 0, t1, 0, t2, . . .)

f(c(i), 1, t3, 0, t2, . . .) + c(e) if t2 ≤ te ≤ t1, t3
f(c(i), 0, t1, 1, t3, . . .) + c(e) if t1 ≤ te ≤ t2, t3.

(7)

A.4 MTC on a tree

We can adapt the algorithms from the previous sections to work for MTC as well.
The key observation is that we need a path from an arbitrary root r to all leaves
and a path from all leaves to r, with some extra constraints on the timing to make
sure all leaves are also temporally connected to each other. The value of f(v, t, t′)
represents the minimum total cost of all edges below v such that we can reach all
vertices below v starting at time t, all descendants of v can reach v within the first
t′ timesteps and all descendants of v are all mutually temporally connected. First,

A ALGORITHMS 18

we set f(. . .) = ∞ whenever one of the time parameters is out of bounds. Then, for
v ∈ V,w ∈ S(v), 1 ≤ t, t′ ≤ τ , we define

f(v, w, t, t′) = min

f(v, w, t+ 1, t′)

f(v, w, t, t′ − 1)

f(w, t, t′) + w((v, w, t)) if t = t′

f(w, t, t′) + w((v, w, t)) + w((v, w, t′)) if t 6= t′.

(8)

Combining the cost functions for each edge is a bit more complicated than simply
summing over all children with the same time parameters. This is because the de-
scendants in different branches need to be able to reach each other too. This might
fail when t < t′, but only when that happens for more than one child node.

f(v, t, t′) =

{∑
w∈S(v) f(v, w, t, t′) if t ≥ t′

minw∈S(v) f(v, w, t, t′) +
∑
w′∈S(v),w 6=w′ f(v, w′, t′, t) if t < t′.

(9)

The value of the solution is min1≤t,t′≤τ f(r, t, t′) and can be found in O(nτ2) time.

	Overview and introduction
	Preliminaries
	Tree decompositions
	Activation Propagation

	Fixed parameter tractability of MTC
	Discussion
	Algorithms
	r-MTC on a path
	r-MTC on trees
	r-MTC using treewidth
	MTC on a tree

