
Utrecht University
Faculty of Science

Artificial Intelligence Master Thesis

Interpretable and explainable vision and video
vision transformers for pain detection

Project Supervisor:
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Abstract

Automatic detection of facial indicators of pain has many useful applications
in the healthcare domain. Vision transformers are a top-performing architecture
in computer vision, with little research on their use for pain assessment. In this
thesis, we propose the first fully-attentive automated pain assessment pipeline
that achieves state-of-the-art performance on direct and indirect pain detec-
tion from facial expressions. The models are trained on the UNBC-McMaster
dataset, after faces are 3D-registered and rotated to the canonical frontal view.
In our direct pain detection experiments we identify important areas of the
hyperparameter space and their interaction with vision and video vision trans-
formers, obtaining three noteworthy models. We also test these models on
indirect pain detection and direct and indirect pain intensity estimation. Our
indirect pain detection models underperform compared to their direct coun-
terparts, but still outperform previous works while providing explanations for
their predictions. We analyze the attention maps of one of our direct pain de-
tection models, finding reasonable interpretations for its predictions. We find
the models to perform much worse on pain intensity estimation, showing the
limits of the simple approach chosen. We also evaluate Mixup, an augmentation
technique, and Sharpness-Aware Minimization, an optimizer, with no success.
Our presented models for direct pain detection, ViT-1-D (F1 score 0.55 ± 0.15),
ViViT-1-D (F1 score 0.55 ± 0.13), and ViViT-2-D (F1 score 0.49 ± 0.04), all
outperform earlier works, showing the potential of vision transformers for pain
detection.
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1 Introduction

The International Association for the Study of Pain defines pain as “An un-
pleasant sensory and emotional experience associated with or resembling that
associated with, actual or potential tissue damage” [1]. In Europe, one adult
in five suffers from moderate to severe chronic pain, with major consequences
for their lives and well-being. 20% of them suffer from depression or have
lost their job because of pain. 40% are unsatisfied with their treatment, and
30% are not being treated at all. Their ability to sleep, walk, do chores, have
sexual relations, live independently, and function normally feels limited or re-
stricted [2]. Pain is a major healthcare problem that medical care needs to
overcome.

Pain is a ubiquitous problem for hospital care as well, with a great deal
of research dedicated to pain analysis, quantification, and understanding. To
quantify pain, visual analogue scales (VAS) [3] and similar metrics are usually
employed due to their convenience and simplicity. To measure pain with VAS,
the patient has to point at its pain level on a horizontal scale ranging from
absence to maximum pain. Unfortunately, this technique has the drawback
of being subjective and easily influenced, therefore leaving much to be desired
as the gold standard of pain assessment.

Furthermore, under many circumstances patients are unable to report their
pain levels, due to their mental or physical condition, making self-reporting
techniques unreliable and widely inapplicable [4–6]. On the other hand, in
intensive care units, nursing staff can manually check each patient individ-
ually, adjusting pain medication on a case-by-case basis, achieving excellent
but time-consuming results, although the large amount of staff, time, and
money needed to implement this solution render its scope and applicability
limited to a small scale [7]. In order to overcome the limitations of VAS and
individual checks, automation alongside new metrics have to be employed. In
this regard, facial expressions can be an important means of communication
for the emotional state of a person, including their pain levels [8].

Facial expressions play an important role in communicating pain. The
facial action coding system (FACS) [8] is a framework based on the anatomy
of the facial muscles, and divides facial expression into 34 atomic components
defined as action units (AU) with scores ranging from A to E depending on
their intensity. While by itself this system contains no apparent information
on the pain levels of the subject, the Prkachin and Solomon Pain Intensity
(PSPI) score [9], identifies six AUs, grouped into four actions, that contain
most of the information on pain.
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Figure 1: Example frames from the UNBC-McMaster dataset and their PSPI
score labels (Fiorentini et al.) [17].

These actions are brow-lowering (AU4), orbital tightening (AU6 and AU7),
levator tightening (AU9 and AU10), and eye closure (AU43) [9]. The PSPI
score, visible in Figure 1, is computed by taking the highest intensity AU
component of each action and summing the numerical equivalent of their in-
tensities (ranging from 0 to 5). As AU43 (eye closure) has only one possible
intensity value, PSPI is therefore a 16-point pain scale.

PSPI = AU4 + max(AU6, AU7) + max(AU9, AU10) + AU43 (1)

While the PSPI metric, shown in Figure 1, does not rely on self-reporting,
eliminating one of the aforementioned limitations, FACS coding requires an
average training time of three months, with each trained expert taking on
average over two hours to code a single minute of video [10]. In order to over-
come this challenging drawback, automation is needed to predict the PSPI
scores directly [11]. Desirable properties for such automated pain detection
models are spatiotemporal reasoning [12], robustness to occlusion and changes
in the environment [13, 14], explainability [15], interpretability [15], and ac-
curacy [16]. Transformer models meet many of these requirements, making
them good candidates for pain assessment pipelines.

Transformers are a recently developed deep learning model with roots in
natural language processing (NLP) [18], entirely based on attention mecha-
nisms, without convolutions or sequence-aligned recurrent neural networks.
These models quickly achieved state-of-the-art performance in the NLP do-
main and have become its gold standard for many tasks, both thanks to their
ability to draw global dependencies within their input and compute most of
their operations in parallel, allowing for the training of massive models with
over 100 billion parameters [19]. Shortly after its success in the NLP domain,
research began to evaluate the use of transformer models for computer vision,
obtaining excellent results when trained on large datasets [19].

4



Transformers have achieved state-of-the-art performances in multiple tasks,
but only a few studies have researched their performance for pain detec-
tion [20]. The possibility to analyze spatiotemporal relations through video
transformers [21], to extract attention maps and generate interpretations in-
trinsic to the model [22, 23], the ability to fine-tune these models on smaller
datasets with good results [24], and their state-of-the-art performance on other
computer vision tasks [25], are promising for their application towards pain
assessment.

In this thesis, we evaluate the performance of vision transformers (ViT)
and video vision transformers (ViViT) for pain detection and pain intensity
estimation from facial features using a fully-attentive pipeline. The first part
of this research, focusing on direct pain detection and interpretability, was
published by Neurips for the VTTA2022 workshop [17]. Training is carried
out on the UNBC-McMaster dataset using PSPI and AU labels under a va-
riety of configurations, pinpointing regions of interest in the hyperparameter
space during direct pain detection training. Techniques that have been shown
to boost transformer performance are evaluated and adapted to the task,
attempting to maximize model performance on direct pain detection. The
best-performing configurations are then employed for indirect pain detection
and direct and indirect pain intensity estimation. We extract attention maps
and evaluate them, finding plausible interpretations for the prediction of the
tested model. Attention maps and indirect pain assessment make our models
achieve interpretability and explainability. We achieve state-of-the-art per-
formance on the task of pain detection for the F1 score metric, even on our
explainable models, demonstrating the potential of transformer models for
pain assessment, and building foundations for future transformer research on
this task.

1.1 Research questions

The main research question is:

• How do vision transformers perform on facial pain assessment?

In order to evaluate the performance of vision transformers on facial pain
assessment we carry out four sets of experiments, on a variety of metrics, and
compare the results obtained with previous work on the same task. The four
tasks considered are direct pain detection, indirect pain detection, direct pain
intensity estimation, and indirect pain intensity estimation.

During the overarching process, other important aspects will be evaluated
through further analysis and ablation studies. This process will help estimate
the impact of various design choices on the model’s overall performance and
explain its inner workings. Therefore, the sub-research questions are:
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• What are the regions of interest in the hyperparameters space for vision
transformers?

We evaluate the performance of our pipeline on the task of direct pain
detection over a variety of hyperparameters, finding regions of interest
and employing the best-performing models found for successive experi-
ments.

• How does indirect pain assessment, with an interim AU layer prediction,
affect the performance of the model?

We evaluate the performance of our pipeline when predicting AUs and
then computing the PSPI formula rather than predicting the PSPI score
directly. The former approach makes our models explainable, an impor-
tant feature in the medical field. We evaluate this approach in two
experiments, one on pain detection and the other on pain intensity es-
timation.

• How do vision transformers perform on facial pain intensity estimation?

We evaluate the performance of our pipeline when attempting to predict
not only the presence of pain but also its intensity. Quantification of
pain is an important aspect of pain assessment, allowing a more complete
understanding of the subject’s pain levels. We test our approach in two
experiments, one with direct PSPI score intensity predictions and the
other employing an interim AU layer, predicting the intensity of each AU
individually, and then summing them according to the PSPI formula.

• How do vision transformers and video vision transformers compare in
performance?

Facial pain assessment literature strongly supports the use of videos
over individual frames to capture pain-related facial dynamics and trans-
former literature offers many approaches to integrating temporal analy-
sis into its architecture. We choose to employ one of ViViT’s proposed
architectures and test its performance in all our experiments, comparing
its results to ViT’s.

• Can attention maps be used to generate plausible interpretations of the
outputs?

Interpretability is important to build trust in a model and would allow
our model to justify its predictions comparably to a PSPI coding expert.
We extract attention maps from one of our direct pain detection models
to generate interpretations of its results and qualitatively evaluate their
plausibility.
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1.2 Outline

In this section, we have introduced the problem of pain, the facial action cod-
ing system, the Prkachin and Solomon Pain Intensity score, transformers, and
the research questions. Next is Section 2, which thoroughly discusses previous
literature on automated pain assessment, transformers, AU detection, facial
dynamics, face frontalization, and facial pain dataset balancing. Then, in
Section 3, we analyse in-depth the dataset, its label distribution, and outline
our pre-processing steps. In Section 4 we discuss the technical aspects of the
transformer architecture, our pipeline, and the experiments that will be car-
ried out to answer our research questions. The results of the experiments are
reported in Section 5 and compared to previous literature. Finally, in Section
6 we discuss the results and answer the research questions, and summarize
our conclusions in Section 7.

2 Related work

Automated pain assessment Recent work has shown that direct pain as-
sessment from facial expressions is a feasible goal, both with shallow and deep
learning approaches. Zafar and Khan [26] train k-Nearest Neighbour (kNN)
models on 22 facial landmarks, succeeding both in pain intensity estimation
and AU detection, proving both to be achievable.

Hammal and Cohn [27] train support vector machines (SVM) on CAPP
features extracted from the facial landmarks included in the UNBC dataset for
pain intensity estimation. In its conclusion, the paper mentions indirect pain
assessment as an untested approach, which we explore in this research. Werner
et al. [28] also employ SVM models, focusing however on what they call
”activity descriptors”, sequence-level feature signals captured through facial
landmarks and head pose. Both papers highlight the benefits of temporal
integration, which we test with our ViViT model.

Before transformer models, attention could be included in models through
long short-term memories (LSTM) and similar techniques. In the paper by
Rodriguez et al. [29], the task of pain assessment is approached with a two-
model pipeline: the first component is a deep convolutional neural network
(DCNN) taking raw images as input, while the second component is an LSTM
model, necessary to exploit the spatiotemporal relationship between input im-
ages. The authors note that while the DCNN performed well by itself, the
introduction of the LSTM model improved the area under the curve (AUC)
by almost 4%, reiterating once again the importance of spatiotemporal anal-
ysis for performance in facial expression recognition tasks. In this thesis, we
compare the performance of ViT and ViViT models to evaluate the benefits
of introducing temporal features in transformers.
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Previous works have also successfully achieved indirect pain assessment
[11, 30] by training models on AU labels rather than PSPI scores. Kaltwang
et al. [11] employ three sets of features for the purpose of direct and indirect
pain intensity estimation. The first set contains facial landmark points in-
cluded in the dataset and extracted with an active appearance model (AAM),
the second set contains features extracted from aligned facial images by ap-
plying the Discrete Cosine Transform, and the third set contains Local Binary
Pattern features also extracted from the aligned images, with the best result
obtained through late fusion of all these features. The paper claims that error
propagation can be a key issue in indirect pain detection, as errors in AU
detection compound into poor PSPI score predictions, a possible problem for
our research as well.

However, AU predictions can also be employed as middle steps of longer
pain assessment pipelines, a major departure from the approach of human
experts. In the work of Xu et al. [30], statistical features are extracted
from the interim AU predictions and then further processed before finally
outputting a VAS score prediction, achieving great performance with indirect
AU detection.

In our work, the model is trained on end-to-end pain-related AU detec-
tion and indicates both the AUs detected and the result of the PSPI formula
applied to them, producing explainable results, in line with facial pain assess-
ment literature, similarly the paper by Kaltwang et al. [11], and comparably
to a human expert. In our experiments, we compare the results of indirect
pain assessment with direct pain assessment to determine how our approach
is affected by this variable.

Vision transformers After their success in neural machine translation [18],
transformers have been used as standard in several NLP tasks. Yet, their
application to vision-related tasks is relatively new. Dostovitskiy et al. have
proposed vision transformers (ViT) and have shown that ViT outperforms
CNN once it is trained on very large databases [19]. In comparison, earlier
approaches to purely-attentive pipelines by Prajit et al. and Wang et al. failed
to outperform CNNs, proving the effectiveness of this new architecture.

Specifically, Prajit et al. substitute all convolutions within a ResNet
model with self-attention modules, outperforming the original ResNet im-
plementation while remaining more computationally efficient, proving that
self-attention can be an effective primary primitive for neural networks even
in the complete absence of convolutions.
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Wang et al. instead achieve competitive performance while factorizing 2D
attention into vertical and horizontal 1D attentions, reducing computational
complexity and allowing the model to compute attention globally rather than
locally. Both approaches however are surpassed by ViT, which applies min-
imal modifications to the original NLP implementation, and remains one of
the most generic and simple approaches to transformers for computer vision,
making it our model of choice. Furthermore, video sequences can easily be
processed by ViT models by making some simple adjustments to the tokeniza-
tion process [21].

Recently, video vision transformers (ViViT) have been proposed to model
spatiotemporal information and have been shown to achieve state-of-the-art
performance on activity recognition in several settings. ViViT has outper-
formed earlier approaches that model spatiotemporal information [31, 32] and
other temporal extensions of ViT [21]. ViViT is therefore not only the natural
extension of ViT, requiring minimal changes to the positional embeddings to
capture the temporal dimension, but also outperforms earlier works on mul-
tiple tasks, including the TimeSformer transformer model, which employs a
similar architecture with variations in attention computation [33]. However,
in the vision transformer domain, the architectures chosen are not state-of-
the-art. Soon after their release, new models introduced convolutions [34],
different types of attention [35], and alternative spatiotemporal embeddings
[36], often surpassing the performance of the originals.

Wu et al. [34] introduce convolutions to transformer models for token
embedding and before multi-headed attention on a reshaped 2d token map,
outperforming ViT and achieving state-of-the-art performance on a variety
of datasets for image classification. Ali et al. [35] replace self-attention with
transposed attention, which operates across the feature dimension, achieving
complexity linear to the number of tokens rather than quadratic and obtaining
competitive performance on multiple tasks while remaining computationally
efficient. Wang et al. [36] employ overlapping patch embedding alongside con-
volutions to improve the modelling of local context, surpassing their previous
model with these improvements [37] and performing competitively compared
to other works. ViT and ViViT however, are purely-attentive and repre-
sent the most general implementations of vision and video vision transform-
ers, suitable to demonstrate the potential of purely-attentive architectures on
end-to-end pain assessment under a variety of setups.

9



Transformers for pain detection Several works have shown the success
of using vision transformers for facial expression recognition [38], and facial
action unit detection [39]. However, their application in automated pain as-
sessment is very scarce. To the best of our knowledge, the only existing work
based on transformer technology for pain intensity estimation is by Xu and
Liu [20].

The pipeline presented in this work focuses on end-to-end pain intensity
estimation and includes both a CNN and a transformer. Pain-related features
are first identified and extracted from the input images by a ResNet archi-
tecture with bottleneck attention modules, then processed by a transformer
model that predicts pain intensity. The successful performance of our model
on a similar task, while only fine-tuning a pre-trained transformer, contradicts
their finding that a transformer alone does not work for pain assessment.

Transformers for AU detection As previously mentioned, recent works
have begun exploring the potential of vision transformers for AU detection.
Wang and Wang [39] propose a pipeline composed of a ResNet-based convo-
lutional neural network and a two-branched transformer. A CNN is employed
to extract feature maps of both fine and coarse resolution, each to be fed
to a different branch of the transformer component. The results of the two
branches are then recombined in the multi-layer perceptron head for AU pre-
diction. Performance is tracked through the F1 score, and the BP4D and
DISFA datasets are used for training. In comparison, our research on AU
detection will be the first to show the potential of a purely-attentive pipeline
for AU detection.

Facial pain dynamics Modeling temporal information has been shown to
be crucial as a static approach based on Relevance Vector Regression [11]
could not distinguish between eye blinks and eye closures, which are piv-
otal for pain intensity estimation. Recurrent convolutional neural networks
(RCNN) [40] and a combination of CNNs with a long short-term memory
(LSTM) networks [29] have been used to model spatiotemporal relationship
among successive frames. They have shown superior performance compared
to the static approaches. Feature engineering can also be used to introduce
the temporal dimension directly to the dataset, by transforming the features
into signals as Werner et al. have done [28]. Inspired by these findings, we
compare the performance of ViT and ViViT on automated pain detection.
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Face frontalization Face frontalization consists in tracking facial land-
marks across a variety of subjects, poses, and environments, and aligning
them to a frontal mask. Many earlier works employ no frontalization [29, 41]
or 2D frontalization [42], which treats faces as 2D objects for the purposes of
registration and alignment. The performance of these models however rapidly
degrades with variations in pose due to self-occlusion [43]. In order to avoid
this drawback, in this paper we employ 3D frontalization, a technique which
treats faces as 3D objects to be fit into a 3D mask.

A variety of approaches were evaluated before choosing PRnet [44]. For
2D frontalization, dougsouza’s face-frontalization software [45] was tested, but
it rapidly proved to perform poorly on self-occluded images, in line with face
frontalization literature. Then, OSTeC [46] was employed as the first attempt
at 3D frontalization, but the generative process was both very computationally
expensive and failed to preserve subject identity, a very important feature in
facial pain assessment. Cleardusk’s 3DDFA V2 performed the most similarly
to PRnet, however, we perceived the images to be less robust to self-occlusion,
with large texture artifacts appearing on the 3D model compared to the results
of the latter model.

PRnet [44] in comparison with the aforementioned methods is fast, robust
to self-occlusion, and preserves subject identity making it our 3D registra-
tion software of choice for this research. Therefore, we employ PRnet to
align facial components, and establish semantic correspondence between vi-
sual words across frames and subjects for our vision transformer model. Our
approach improves on previous works by requiring no subject-specific training
[47], achieving good results on unseen data.

Pain dataset imbalance Due to the delicate nature of the task and the
high costs associated with PSPI coding, images containing painful facial ex-
pressions labelled with PSPI scores are very scarce. In order to overcome this
obstacle, previous works successfully employed undersampling of the majority
class [29, 48]. In our work, we instead begin by employing oversampling of
the minority class for direct pain detection and, given the rapid convergence
of our model, proceed to undersample the majority class for the remaining
tasks.

Issues with dataset imbalance are under-reported and tackled without con-
sistent standards across works. Due to the lower number of pain samples,
especially for the most extreme pain score, earlier works employed 4 levels
[27, 48–50], 6 levels [20, 29], 7 levels of pain [51], and 16 levels of pain [11, 30,
40], rarely justifying the rationale behind the choice. While it may seem that
4 pain levels are more common overall, the pain scores within those 4 levels
are not standardized, even for works from the same authors [48, 49]. This
problem further extends to binary classification, with works not using only
PSPI scores of 0 as no pain [52], a departure from PSPI literature.
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Our models employ PSPI scores of 0 as no pain labels, following many
of the earlier works on literature, and employ 16 pain levels due to the lack
of concrete grouping standards, enabling comparisons with earlier works that
employ the same approach. Nevertheless, the lack of standards in pain assess-
ment research remains an unsolved issue.

To the best of our knowledge, no work has reported on the effect of long
sequence lengths on the dataset distribution and the metrics used, despite the
impact that dataset imbalance can have on some metrics, such as the F1 score
[53]. Previous works by Rezaei et al. [13] and Xu et al. [20] reported their best
results on sequences of 40 frames or more, however, due to pain samples most
often appearing in the middle of sequences in the UNBC-McMaster dataset,
long sub-sequence lengths naturally remove from the dataset many no pain
samples, altering the distribution of the test set significantly. In our work
we employ single-frame and four-frame sequences, affecting the distribution
of the dataset minimally and reducing the bias of sub-sequence length on our
metrics.

Metrics In order to determine the overall performance of video transformers
for pain assessment a variety of metrics will be employed, including F1 score,
area under curve (AUC), mean square error (MSE), and mean absolute error
(MAE). The choice of using a variety of metrics was dictated by the lack of a
distinctly superior metric in current literature [53] and due to the large variety
of metrics used by previous studies in the same domain, therefore maximizing
the possible comparisons with previous research.

F1 =
2TP

2TP + FP + FN
(2)

For direct and indirect pain detection we employ the F1 score and AUC,
both on the overall pain predictions and the individual AU detection experi-
ments. We compute the F1 score metric as twice the number of true positive
samples, divided by twice the number of positive samples plus the number
of false positive and false negative samples, where the positive class is the
pain class. We employ the F1 score to demonstrate the ability of the model
to predict pain presence, despite the imbalanced number of no pain frames
in the dataset, to test our model on the harder task of pain detection. We
employ a threshold of 0 on the output of the transformer head to determine
the predicted label for AU detection, a balanced value which might have a
significant effect on this metric. The AUC metric measures the ability of a
model to correctly rank two randomly sampled frames, one of each class, and
is not affected by dataset imbalance [53], making it a valuable metric on this
dataset.
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For direct and indirect pain intensity estimation we employ MSE and
MAE. The former is computed as the summation of the square of the difference
between the predicted intensity value and the real label. This metric is highly
sensitive to outliers, unlike MAE, which is computed as the summation of the
absolute difference between the predicted intensity value and the real label.
Both provide important information on the performance of the model, either
penalizing more the mistakes made on outliers with MSE, or focusing more
on average samples with MAE.

MSE =
1

n

n∑
i=0

(yi − y)2 (3)

MAE =
1

n

n∑
i=0

|yi − y| (4)

3 Dataset

The models are trained on the UNBC-McMaster dataset [7], one of the most
commonly used datasets for facial pain assessment. It consists of 200 video
sequences and 48398 video frames, from 25 patients suffering from shoulder-
related pain, captured as the patients performed active and passive range-
of-motion tests with each of their limbs. The sizes of each frame vary, with
15838 having a resolution of 320x240 and 32560 having 352x240 instead. The
dataset contains 12 male and 13 female subjects, resulting balanced in this
regard.

Table 1: Grouped PSPI score frequency

PSPI score 0 1-2 3-4 5-6 7-8 9-10 11-12 13-14 15-16

Frequency 40029 5260 2214 512 132 99 124 23 5

Label distribution Reported in Table 1 are the statistics of the PSPI labels
in the dataset; the distribution of the labels is clearly heavily imbalanced
towards lower scores, with the no pain label taking up 83% of the total samples.
In Table 2 are instead reported the frequencies of the relevant AU labels in
the dataset; their distribution is heavily imbalanced with AU9 and AU10
appearing in less than 2% of the total samples present in the database, while
AU6 is comparably far more common, appearing in 11% of the frames. Clearly,
to avoid the model overfitting, biased sampling of the classes is necessary, as
previous works have done [29, 48].
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Table 2: Frequency of AUs relevant for the PSPI score

AUs AU4 AU6 AU7 AU9 AU10 AU43

Frequency 2.21% 11.48% 6.95% 0.87% 1.08% 5.02%

Label preprocessing For the purposes of binary classification, we divide
the dataset into two categories, 0 (no pain) and 1 (pain), the latter category
including images with a PSPI score above 0. During training, the pain class
is over-sampled to prevent overfitting on the majority class. For the purposes
of AU detection, pain intensity estimation, and AU intensity estimation, we
instead employ under-sampling of the no pain class.

Earlier works have at times grouped certain pain levels together to reduce
the extreme unbalance between classes, however, due to the lack of standards
in literature, groupings are inconsistent and varied between studies, and we
have therefore decided not to combine any pain levels. During training, labels
for regressions tasks are normalized between 0 and 1, while their metrics are
computed on the non-normalized scores, allowing us to compare our results
with previous works.

Video preprocessing The use of multiple subsequent frames aims to cap-
ture the dynamics of the facial expressions, enabling the model to distinguish
between the subject shutting their eyes due to pain (AU43) and blinking and
other critical dynamics of facial pain. Delving deeper into the analysis of the
dataset, we computed the minimum, maximum and median length of consec-
utive identical AUs in order to estimate how long a sub-sequence would have
to be to effectively capture AUs. Reported in Table 3 are the values recorded.
As can be seen in the first column of Table 3, the minimum length of the AUs
is between one and four frames, sub-sequence lengths of 4 and above should
therefore be able to capture the entirety of the dynamics of the shorter AU
sequences.

Table 3: Analysis of continuous AU frames length

Length

AUs Minimum Maximum Median

AU4 4 191 41
AU6 2 278 51
AU7 1 290 47
AU9 1 27 7
AU10 1 14 5
AU43 1 135 27

14



As can be seen in column 2 and 3 of Table 3, the median and maximum
lengths are often rather large and would have a significant impact on the
number of samples and the distribution of the dataset if employed as sub-
sequence lengths e.g. in order to generate sub-sequences with a length of 41,
the median value for AU4, 40 samples from the beginning of each sequence
would be lost. Due to the dataset having 200 sequences, in total, this would
be a loss of 8000 samples or around 17% of the dataset. Furthermore, due to
pain samples being mostly distributed towards the middle of the sequences,
the distribution of the labels is also significantly affected, which might in turn
bias the results on certain metrics [53]. We therefore process the dataset
for the purposes of video vision transformer training - grouping subsequent
images in 2 × 2 grids and labelling according to the label of the last image of
the 4-frame sequence.

Data augmentation Another important aspect of the dataset is the use of
data augmentation. Previous work by Steiner et al. [54] on the topic of data
augmentation for transformers tested a variety of setups combining Mixup
[55] and RandAugment [56], achieving results akin to increasing the dataset
size tenfold. However, thanks to our pre-processing steps, faces in the samples
are frontalized and positioned centrally within our images across all frames,
making RandAugment unfit for our dataset.

Figure 2: An example of mixup, the frames are mixed with a blending value
of 0.5 and their resulting label is [0.5, 0.5].

On the other hand, Mixup is an augmentation technique that takes a
percentage of the dataset and generates hybrid images by blending frames
with distinct labels. e.g. A painful frame labelled [1,0] is combined with a
painless frame labelled [0,1], with a blending value of 0.2. The resulting frame
is labelled [0.8, 0.2], and consists of the sum of the pixel intensity values from
the painful and painless picture, the former at 80% opacity, and the latter
at 20%. The hybridity of the images is controlled by the parameter α, with
higher values providing images that borrow information equally from the two
samples, and lower values causing most images to have mostly data from a
single frame. An example of Mixup augmentation can be seen in Figure 2.
Ultimately, we find Mixup to offer data augmentation suitable for our task,
and employ it on 20% of the dataset in some of our experiments.
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4 Method

4.1 Technical description

Before describing how our pipeline processes its inputs, we first explain the
inner workings of ViT and NLP transformers. The approach used for NLP
transformers can be implemented with little changes for vision transformers
as well, granting the ViT architecture the same scalability and efficiency as
the original one.

Figure 3: The architecture of a transformer encoder within the transformer
model (Dosovitskiy et al.) [19].

Tokenization In order to process an image, it is first split into patches
of fixed size by the feature extractor, then, the patches are flattened into a
1-dimensional sequence of tokens, the ”visual word” equivalent of the vision
transformer. Due to self-attention being computed globally inside transform-
ers and the lack of other strong local biases within the architecture, 1D po-
sitional embeddings are used to capture local context. The embeddings are
trained as part of the original ViT model and at initialization contain no in-
formation on their position on the 2D grid. Local context is therefore learnt
as part of transformer pre-training, and the positional embedding weights are
frozen and unchanged for the entirety of the experiments. Finally, transformer
models can add a classifier token to its inputs or compute the mean of all to-
ken outputs as input for the transformer head, with our paper employing the
former approach.
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A series of Transformer encoders, visible in Figure 3, are then succes-
sively applied to the token input, each consisting of layer normalization, multi-
headed attention, residual connections, layer normalization, a multi-layer per-
ceptron, and another layer of residual connections. We will now introduce
each of these components and their role in encoding.

Figure 4: Self-attention computation (Vaswani et al.) [18].

Self-attention While not an explicit component of transformer models, un-
derstanding self-attention is necessary to understand multi-headed attention,
so it will be introduced here. The type of self-attention employed by trans-
formers is known as ”scaled dot-product attention” and employs an input
vector and three trained matrices to generate the Query, Key, and Value ma-
trices, which are then used to compute the output of the self-attention layer.

The three matrices are computed by multiplying the input vector and the
three trained matrices, while the output is computed by applying a softmax
function to the product of the Query and Key matrices, scaled by the root of
their length dk, and then by multiplying by the Value matrix. The process is
visible in Figure 4.

Q = Input ∗Qtrained

K = Input ∗Ktrained

V = Input ∗ Vtrained

Attention(Q,K, V ) = softmax(
Q ∗K√

dk
) ∗ V

(5)
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Multi-headed attention Multi-headed attention is the core of transformer
models and where self-attention takes place. Multi-headed attention functions
by applying a number of parallel self-attention layers, each with its own trained
matrices, concatenating the results and multiplying the resulting matrix to an
additional trained matrix, obtaining the final output. The main advantage of
the multi-headed approach is having access to multiple representation sub-
spaces as shown in Figure 5.

Figure 5: Multi-head attention and its multiple representation sub-spaces
(Vaswani et al.) [18].

Layer normalization Layer normalization is a process introduced by Wang
et al. [57] for efficient learning of deep encoding transformers, it functions by
normalizing the input sample, thus avoiding normalizing the entire batch.

Residual connections Residual connections are the sum of the output of
a layer with its input, with the overall structure of residual connections and
layer normalization being credited to the work by Baevski and Auli [58].

Multi-layer perceptron The multi-layer perceptron (MLP) inside the trans-
former is composed of two layers with a Gaussian Error Linear Units (GELU)
non-linearity, while last the multi-layer perceptron, also called the head of the
transformer model, has a hidden layer when training the model, and a single
linear layer when fine-tuning it during pre-training. NLP transformers have
two branches of transformers instead, with the first encoding the input and
the second decoding the output. The latter branch similarly employs an MLP
with a linear output head.
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Figure 6: Combined spatiotemporal tokenization (Arnab et al.) [21].

Spatiotemporal attention ViViT transformers work identically to ViT
transformers, except patches are extracted from each individual frame and
then concatenated, enabling the computation of temporal attention. Variants
of the model can compute spatial and temporal attention either together (Fig-
ure 6 and Figure 7a), spatially per frame then combined temporally (Figure
7b), sequentially (Figure 7c), or in parallel (Figure 7d). The former approach
has been initially explored in the ViViT paper [21] and suffers from quadratic
complexity. Despite this drawback, it is by far the most straightforward and
general video vision transformer approach and has the best results among the
models presented, making it our approach of choice.

Figure 7: Attention types described in the ViViT paper (Arnab et al.) [21].
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4.2 Pipeline

Pre-trained model The base transformer model is pre-trained on ImageNet-
21k [59] and fine-tuned on ImageNet [60] at a resolution of 224x224 by Hug-
gingFace [61]. It consists of 12 attention and 12 fully-connected layers, and
employs 12 attention heads, for a total of 86 million parameters. At runtime
all fully connected layers are frozen, massively reducing the training time re-
quired. Next, we describe the steps taken by our pipelines to make a prediction
on an unprocessed image from the dataset.

Figure 8: An example of frame frontalization.

Face frontalization The first step in our pipeline is 3D frontalization, visi-
ble in Figure 8. We perform 3D registration using PRNet [44], which gets a 2D
face image as input, performs 3D registration without requiring person-specific
training, and outputs a dense 3D mesh of the face. The result is achieved by
regressing the UV position map, a structure that records 3D coordinates of
a complete facial point cloud, from the input image. We then use the face3d
tool [62] to rasterize 2D image from frontalized 3D facial structure generated
by PRNet as shown in Figure 10a. After this step, semantic correspondence
is established across frames and subjects. Consequently, visual words used in
vision transformers are aligned as given in Figure 10b. This step produces a
dataset of frontalized facial images of size 256x256 for each frame.

Figure 9: The same sample in the single-frame and four-frame datasets, they
share the same label.
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Sub-sequence generation Images are further pre-processed for the pur-
pose of training and testing video vision transformers on the task of pain
prediction. Images are concatenated in 2 × 2 grids with their immediately
preceding frames, creating a video sub-sequence frame with a resolution of
512x512 as visible in Figure 9 . This step generates a second distinct dataset,
employed exclusively for video vision transformers.

Figure 10: Data transformations through the pre-processing and transformer
pipeline (Fiorentini et al.) [17].

Tokenization At runtime, the frontalized images are resized to 224x224, or
448x448 in the case of ViViT, the original size the transformer was trained
on and then split into 14x14 patches, or 28x28 in the case of ViViT, of 16x16
pixels each as visible in Figure 10b. When the patches are combined with their
corresponding pre-trained positional embedding, they become transformer-
ready tokens. Finally, an additional classifier token to be interpreted by the
MLP head of the transformer is added to the input tokens as visible in Figure
10c. When Mixup augmentation is active, the images and their respective
output labels are mixed before tokenization at training time.

In order to process the 2× 2 image grid for video vision transformers, the
original pre-trained embeddings are joined with themselves into 2 × 2 grids.
This approach processes each patch according to its original position within
the sample and not the resulting one in the grid, leaving temporal reasoning
solely to the attention mechanism. By the end of this step, the input is ready
to be processed by the transformer model.

Encoding The transformer model processes the token input through 12
encoder transformers, each having 12 attention heads. The output of each
layer has exactly the same size as the original input due to the linear ViT
architecture. At training time, the weights of the MLPs within the transformer
encoders are frozen, leaving the multi-headed attention layers to be fine-tuned
and a 10% dropout is applied before the decoding step. The output of this
step is 14x14 tokens, or 28x28 in the case of ViViT, and one classifier token
to be interpreted.
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Figure 11: The architecture of our direct pain detection ViT model. (Doso-
vitskiy et al.) [19].

Decoding As our model does not employ mean pooling of the output tokens
and instead uses a classifier token, all tokens except the latter are discarded.
The MLP head consists of a single linear layer and interprets the classifier
token to generate the predicted output.

In the case of direct pain detection, the output is a one-hot encoding of the
pain/no pain prediction and the label with the largest value is considered the
predicted output. The probability of the pain prediction is computed with the
softmax function for AUC computation purposes. A summary of our direct
pain detection model can be found in Figure 11.

In the case of direct pain intensity estimation, the output is a single value.
The mean squared error and mean absolute error are computed on the differ-
ence between the predicted value and the PSPI label.

In the case of indirect pain detection, the output of the six models, each
predicting one AU, is a single value. If any of the model outputs is above
0, then it is considered a pain label prediction, and no pain otherwise. The
probability of the AU prediction of each individual model is computed with
the sigmoid function for AUC computation purposes.

In the case of indirect pain intensity estimation, the output of the six
models predicting each individual AU is a single value. The mean squared
error and mean absolute error are computed on the difference between the
result of the PSPI formula applied to the predicted values and the true PSPI
label.
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4.3 Experiments

To determine the performance of vision and video vision transformers in au-
tomated pain assessment, we conduct four sets of experiments.

Direct pain detection The first set of experiments evaluates the perfor-
mance of ViT and ViViT on the task of direct pain detection. It consists
in tuning a single hyperparameter and saving its best-performing value to be
used while tuning the next parameter. The hyperparameters tuned are the
number of attention layers trained, the learning rate, the use of Mixup, and
the use of SAM. The pipeline employed is visible in Figure 11.

Due to the extreme imbalance of the labels, we evaluate the performance of
the model using the F1 score on the minority class while oversampling it on the
training set. This way, we ensure that the model prioritizes performance on
the more difficult task of pain detection and is trained on a balanced number
of samples per class. Furthermore, earlier studies carried out on this task used
the F1 score metric, making it possible to compare results.

We have tested 14 possible configurations, the first six seek the optimal
number of unfrozen attention layers for the transformer model, then four to
determine the optimal learning rate of the Adam optimizer, one to quantify
the effects of the Sharpness-Aware Minimization in combination with Adam,
and three for the impact of the Mixup augmentation [63] on the performance
of the transformer. All 14 configurations have been tested separately for
the single-image and the 2 × 2 grid datasets, with the rationale that the use
of vision or video vision transformers is unlikely to be independent of each
individual hyperparameter.

First, all the fully-connected layers are frozen, leaving 12 attention layers
to be fine-tuned. However, while too few attention layers cannot be effectively
fine-tuned on a specific task, a higher number does not necessarily lead to a
better performance [64], necessitating the model to be evaluated with varying
amounts of unfrozen layers. Next, the learning rate of the Adam optimizer is
tuned, ahead of the introduction of the Sharpness-Aware Minimization (SAM)
optimizer.

Transformer models work best with large amounts of data, nevertheless,
this weakness might be mitigated with techniques such as SAM [65] and
Mixup [63]. The SAM optimizer works in conjunction with the original opti-
mizer, in our case Adam, to prevent the model from converging to sharp local
minima. While it could potentially reduce overfitting on the small UNBC-
McMaster dataset, it also requires a second forward-backwards pass, almost
doubling the training time required.
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Figure 12: The architecture of our indirect pain detection ViT model. The
six action unit detection models and their MLP heads are condensed into a
single unit for ease of presentation. (Dosovitskiy et al.) [19].

As previously mentioned, we employ Mixup as an augmentation technique
for our dataset. To better integrate Mixup with the pre-processed UNBC-
McMaster dataset, one further restriction is applied, allowing only images
from the same patient to be combined for the experiment. The intensity
of Mixup can be adjusted through its α parameter, causing images to be
increasingly hybrid, and has been configured according to previous research
on Mixup and transformers [66]. Although these samples could allow for a
more nuanced and linear function of pain for the model to learn from, they
might also result too noisy and unnatural compared to other samples, further
degrading the already limited data available.

Indirect pain detection The second set of experiments exploits the knowl-
edge of the hyperparameter space obtained during the first experiment by
testing its best-performing models on indirect pain detection. Indirect pain
detection is achieved by training six models, one per AU relevant to the PSPI
score, and testing their ability to detect a specific AU. The results of the de-
tection are then aggregated and used to generate an F1 score prediction on
the minority class. The pipeline is visible in Figure 12.
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There are works in literature [11] that claim that an interim layer reduces
the performance of pain detection models, following the general trend that
explainability and performance are at odds. There are also others that em-
ploy interim AU layers, for example as part of a larger pipeline, achieving
competitive results instead [30]. Clearly, there is no consensus in facial pain
assessment literature on the superiority of direct or indirect pain detection,
however, indirect pain measurements enable the model to explain its pain
prediction through the AUs detected, similarly to how a human expert would
justify the PSPI score label they choose for a given frame.

This type of model therefore can offer human-like explanations and focuses
on providing the exact data that a human FACS-coder could use in order to
justify its predictions. Work by Amann et al. [67] identifies textual and
visual explanations as useful tools to assist medical staff in evaluating the
predictions of a model and earning their trust, making it an important aspect
of this research. Another work on the topic underlines [68] the importance of
”why” explanations for medical predictions and describes them as a balancing
act between promoting trust in the model while avoiding over-reliance on it.
Our goal in this regard is for the model to produce results comparable to those
of a human coder and promote a similar level of trust. We therefore employ
indirect pain detection due to the importance of explainability in the context
of medical care.

Direct pain intensity estimation The third set of experiments also ex-
ploits the knowledge of the hyperparameter space obtained during the first
experiment by testing its best-performing models on direct pain intensity es-
timation. Direct pain intensity estimation is achieved by training the model
on the original 16 levels of the PSPI score and outputting a single prediction
to be compared with the original label using the MSE and MAE metrics.

The task is far more complex than the one described in the first two sets
of experiments, as not only the positive samples are a lower percentage of the
total dataset, but they are now further split into 15 smaller pain levels and
distributed unevenly across them, while pain levels must be understood and
predicted more accurately than the broader pain vs no pain labelling.

The main advantage of this approach is the quantification of pain itself.
In a hospital context, the mere presence of pain might not be sufficient to
alarm medical staff, who might be more interested in spikes in pain levels
or continuous medium levels of pain. It is therefore important to test the
capabilities of the model on the task of pain intensity estimation rather than
solely on pain detection.
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Indirect pain intensity estimation The fourth and final set of experi-
ments also exploits the knowledge of the hyperparameter space obtained dur-
ing the first experiment by testing its best-performing models on indirect pain
intensity estimation. Our approach starts by training six models, one per AU
relevant to the PSPI score, and testing their ability to assess the intensity of
a specific AU. The results of the detection are then summed according to the
PSPI formula and used to compute the MAE and MSE metrics on the test
set.

This task is also far more difficult than the one described in the first two
sets, however, due to the intensity level of AUs being distributed across 6
levels rather than 16, it could result simpler to train on in comparison with
predicting the PSPI score directly. Furthermore, as was mentioned earlier,
AU prediction enables the model to justify its prediction akin to a human
expert, making this model the most complete of all the previous ones, able to
quantify pain and justify its predictions. However, the distribution of the AUs,
especially in their intensity, is still quite skewed, making it a difficult challenge
for the transformer model. Furthermore, previous works in literature warn of
AU intensity assessment mistakes compounding into even larger errors when
computing PSPI intensity [11], a problem which our approach might encounter
as well.

Cross-validation During training, for all but the preliminary experiments,
the frames are divided into five folds, each containing samples from exactly
five patients. The splits are generated with the aim of maintaining a similar
number of pain samples across folds, achieved by pairing patients with the
fewest and most pain samples and shuffling four patients between folds to
further balance them, ensuring that each has a reasonable number of samples
for the minority class. Five-fold cross-validation guarantees that the models
learn to generalize painful features rather than overfitting on specific patients.

Loss functions Cross-entropy loss is employed in the direct and indirect
pain detection experiments, while Huber loss [69] with δ equivalent to the
difference between normalized categories was used for direct and indirect pain
intensity estimation. Huber loss behaves similarly to mean squared error
for prediction errors greater than δ and similarly to mean absolute error for
smaller ones, and was therefore chosen to mitigate the impact of samples with
outlier values on the overall training of the model.

Huber loss =

{
0.5 ∗ (xn − yn)2 if |xn − yn| < δ

δ ∗ (|xn − yn| − 0.5 ∗ δ) otherwise
(6)
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5 Results

5.1 Direct pain detection

Preliminary experiments have shown reasonable values for various parameters
such as the learning rate (2E-04), the batch size (16), and the number of
epochs (1). Other important parameters for the initial training of the model
are the drop-out rate before the classification head (0.10), the β values (0.9,
0.999) and ϵ (1e-08) of the Adam optimizer, weight decay (0), and the ρ
(0.05) of the SAM optimizer. Finally, on this task, we employ oversampling
and Cross Entropy loss.

Number of unfrozen attention layers The first step consists in iden-
tifying the optimal number of unfrozen layers. The results can be seen in
Figure 13. In total, 12 models are trained for the vision and video vision
transformer with multiples of two as the number of layers, from 2 to 12. For
ViT, fine-tuning 12 layers performs best (F1 score 0.47) while fine-tuning
6 layers achieves the second-best performance (F1 score 0.45). For ViViT,
fine-tuning 6 layers performs best (F1 score 0.55), while fine-tuning 12 layers
achieves the second-best performance (F1 score 0.53).

Figure 13: Performance (F1 score) of ViT and ViViT models with different
numbers of unfrozen (fine-tuned) attention layers (Fiorentini et al.) [17].

Learning Rate For the second step, a large range of learning rates is tested
to identify regions of interest in the hyperparameter space. The initial learn-
ing rate of 0.0002 is both increased and decreased tenfold and hundredfold.
Performances of the resulting models can be seen in Figure 14.
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Figure 14: Performance (F1 score) of ViT and ViViT models with different
learning rates (Fiorentini et al.) [17].

ViT performance peaks with a learning rate of 2E-05 (F1 score 0.55, model
ViT-1-D), followed by 2E-06 (F1 score 0.50). ViViT performs the best with
a learning rate of 2E-04 (F1 score 0.55, model ViViT-1-D), and obtains its
second-best performance with a learning rate of 2E-06 (F1 score 0.49, model
ViViT-2-D). However, a peculiar trait emerges from the latter model, an ex-
tremely low standard deviation across folds of the F1 score as visible in Table 4.

The models ViT-1-D (attention layers (al) = 12, learning rate (lr) = 2E-
05) and ViViT-1-D (al = 6, lr = 2E-04) are the best-performing models of
their type across all experiments, while ViViT-2-D (al = 6, lr = 2E-06) is
the second best-performing video vision transformer and has a uniquely low
standard deviation. Visible in Figure 15 is a comparison of the best two
ViViT models, showcasing the good performance across all folds for ViViT-2-
D compared to ViViT-1-D.

Figure 15: Performance (F1 score) per fold of the two best performing ViViT
models (Fiorentini et al.) [17].
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Sharpness-Aware Minimization The third step of experimentation in-
troduces SAM to the model’s training, however, this addition not only almost
doubles the training time necessary but also worsens the performance of ViViT
(F1 score 0.40) and ViT (F1 score 0.50), as shown in Figure 16.

Figure 16: Performance (F1 score) of ViT and ViViT models optimized with
and without the Sharpness-Aware Minimization (SAM) (Fiorentini et al.) [17].

Mixup The fourth experimental step augments 20% of the dataset with the
Mixup technique, with three different α configurations. Mixup, even with the
additional restriction of combining images belonging to the same patient, fails
to contribute to the model’s performance even with its best parameter (α =
0.8) for the ViT model (F1 score 0.52) and ViViT model (F1 score 0.52), as
shown in Figure 17.

Figure 17: Performance (F1 score) of ViT and ViViT models fine-tuned with
Mixup augmentation (Fiorentini et al.) [17].
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Comparison with previous works To our knowledge, recent work by
Rudovic et al. [70] is the state-of-the-art for pain detection on the F1 score
metric. Their experimental setup uses a CNN baseline (CDL) but focuses on
federalized learning (PFDL), achieving its best-performing model with this
technique. As can be seen in Table 4 our method not only achieves better
performance on the F1 score metric with our best-performing ViT and ViViT
models, but their method is also outperformed by our ViViT-2-D model, which
trades off performance for more consistent results across folds.

Table 4: Model results on direct and indirect pain detection

Model Name F1 score AUC

CDL [70] 0.46 ± 0.18 -
PFDL [70] 0.47 ± 0.20 -
SPTS+CAPP [7] - 0.84
SPTS+SAPP+CAPP [71] - 0.85

ViT-1-D 0.55 ± 0.15 0.88
ViT-1-I 0.50 ± 0.11 -
ViViT-1-D 0.55 ± 0.13 0.86
ViViT-1-I 0.50 ± 0.07 -
ViViT-2-D 0.49 ± 0.04 0.76
ViViT-2-I 0.34 ± 0.03 -

The F1 score is affected by the skew in the labels but AUC is not [53].
Given that our labels are highly imbalanced, we also report AUC values and
compare our results with the works that also report AUC. We compare our top-
performing models ViT-1-D (AUC 0.88) and ViViT-1-D (AUC 0.86) against
SPTS + CAPP (AUC 0.84) [7] and SPTS + SAPP + CAPP (AUC 0.85) [71],
and find them to outperform previous works despite not being optimized for
this metric.

5.2 Indirect pain detection

For all remaining experiments, we train 3 sets of models using the parameters
of the ViT-1-D, ViViT-1-D, and ViViT-2-D models. We take advantage of the
exploration of the hyperparameter space of the first experiment by employ-
ing parameters of models that exhibited important qualities in the previous
task. Moreover, we employ Cross Entropy loss again while undersampling the
majority class for two epochs. The latter change is motivated by the rapid
convergence of the model noticed during the first experiment.
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In Table 4 are visible the results of the three models on indirect pain
detection. Performance is consistently lower across all models compared to
the direct approach counterparts, in particular, the ViViT-2-I (F1 score 0.34)
model clearly underperforms on this task. However, the ViT-1-I (F1 score
0.50) and ViViT-1-I (F1 score 0.50) models outperform earlier works with a
comparatively low standard deviation.

Table 5: Model results on individual AU detection.

AUC

Model Name AU4 AU6 AU7 AU9 AU10 AU43

SPTS+CAPP [7] 0.57 0.85 0.80 0.85 0.89 0.88
SPTS+SAPP+CAPP [71] 0.54 0.86 0.70 0.80 0.75 0.91

ViT-1-I 0.78 0.89 0.79 0.86 0.78 0.95
ViViT-1-I 0.87 0.88 0.86 0.86 0.84 0.96
ViViT-2-I 0.69 0.79 0.73 0.72 0.77 0.86

In Table 5 are collected the results of the models trained on individual
AU detection. ViViT-2-I slightly underperforms across the board, partially
reflecting the poor results achieved on the F1 score metric. ViT-1-I and ViViT-
1-I instead outperform or perform comparably to previous models on all AUs
except AU10. Comparing ViT-1-I and ViViT-1-I, the latter performs better,
with superior performance across half of the action units and comparable in
the others.

5.3 Direct pain intensity estimation

We will now discuss the performance of the ViT and ViViT models on the
task of direct pain intensity estimation. On this task, we employ Huber loss (δ
0.0625) and undersample the majority class across 10 epochs. The increase in
epochs is motivated by the complexity of regression compared to binary label
classification. Finally, we undersample according to the pain and no pain
classes rather than per pain level due to the extreme distribution of labels.
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The models clearly underperform on this task compared to earlier works,
both on the MSE and the MAE metric as shown in Table 6. However, the
direct models still outperform some approaches and the baseline, a model
which solely predicts the majority class 0, on the MSE metric, proving that
the task is not completely out of reach for purely-attentive models.

Table 6: Model results on direct and indirect pain intensity estimation

Model Name MSE MAE

0-Baseline 2.06 0.44
PTS-D [11] 2.59 -
PTS-I [11] 2.53 -
PTS+DCT+LBP-D [11] 1.37 -
PTS+DCT+LBP-I [11] 1.48 -
VGG-CNN-SVR-D [40] 1.70 -
RCNN-D [40] 1.54 -
VGG16-D [30] - 0.84

ViT-1-D 1.75 0.96
ViT-1-I 28.33 5.08
ViViT-1-D 1.72 0.88
ViViT-1-I 28.67 5.08
ViViT-2-D 1.99 1.11
ViViT-2-I 28.76 5.11

5.4 Indirect pain intensity estimation

Finally, we report the results of the models on indirect pain intensity estima-
tion. On this task, we employ Huber loss (δ 0.16) and undersample the major-
ity class across only 2 epochs, to reduce the massive training time required to
train one model per AU. None of the models obtain a sufficient performance
on this task, with massive error values for each of the parameters chosen.

5.5 Model interpretability

Previous works have shown that attention maps can be used to generate vi-
sual interpretations for the predictions of vision transformers [23, 39]. To
demonstrate this feature we will perform a qualitative analysis of the atten-
tion maps of ViViT-1-D given the sample visible in Figure 18, whose pain
label is correctly predicted by the model.
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Figure 18: The pain sample used to qualitatively analyze the interpretability
of ViViT-1-D. The first frame in the top-left has a PSPI score of 0, while the
remaining three have a PSPI score of 10 (Fiorentini et al.) [17].

As shown in Figure 19, the last attention layer of ViViT-1-D has dis-
entangled representations across its attention heads. These representations
partially overlap with AU43 (eyes closed, head 0), AU4 (brow-lowering, head
1) AU6 (orbital tightening, head 2), while others capture a large area of the
face (head 3).

Figure 19: Attention maps of individual heads of the final attention layer.
The activations are thresholded between 0.7 (blue) and 1 (red) (Fiorentini et
al.) [17].

In Figure 20a, the maximum value of the attention patches for the ViViT-
1-D model is shown, obtained with attention rollout [72]. Attention rollout is a
transformer technique that combines information from every attention layer,
capturing its flow through the model. In Figure 20b, we show instead the
combined maximum values of the heads of the last attention layer for ViViT-
1-D. While the strongest activations are found in the forehead and cheek
area for the final layer (b), the flow of information instead clearly originates
from the inner brow, lip corner and cheek area (a), all of which are areas of
significance according to facial pain assessment literature [8].
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Figure 20: Attention maps obtained with max rollout (a) and maximum values
of the last layer (b). Frame (b) is thresholded between 0.7 (blue) and 1 (red)
(Fiorentini et al.) [17].

The model is clearly capable of generating intrinsic and plausible interpre-
tations for its predictions. Facial regions having higher attention weights in
the attention maps are the ones that show a change in appearance and shape
during several actions that are observed during a painful expression. It shows
that the model effectively detects pain from actions of relevant facial regions.

5.6 Model explainability

According to facial pain literature, PSPI scores are not meant to be predicted
directly but instead are the result of the PSPI formula applied to the individual
AU detected within an image. An expert, therefore, can pinpoint areas of
the face in which pain-related AUs were detected to justify its overall pain
prediction, but must also declare which AUs were detected and their intensity.

As we have shown previously, quantifying pain and indicating regions of
interest within an image are feasible goals. Now, we show that generating
explanations to justify the pain predictions of our indirect pain detection
model is possible with our pipeline. Shown in Figure 21 is the sample we use
to demonstrate the explainability of our ViVIT-1-I model, which correctly
predicts the presence of AU6 and AU7 in the image and the absence of all the
other pain-related AUs.

Figure 21: The pain sample used to qualitatively analyze the explainability
of ViViT-1-I. The sample is labelled with AU6 and AU7, with an intensity of
4 and 3 respectively.
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AU6 and AU7 are part of the orbital tightening action, meaning that when
both are present, only the strongest of the two signals is considered for pain
intensity estimation. Specifically, AU6 is the ”cheek raise” action unit and
AU7 is the ”lids tightener” action unit. Both these AUs are strictly related
to the eye area, but neither cause the eye to close completely, meaning there
is a similarity and possible ambiguity between this action unit group and
AU43, the ”eye closure” action unit, another important signal for facial pain
assessment.

In total, AU6 and AU7 last for 37 consecutive frames with the same in-
tensity before suddenly ceasing, and of those 37 frames, our model correctly
predicts 32. The mistaken predictions of the model are all concentrated in
the first 6 frames of the sequence, during the onset of the action unit, which
appears to prove particularly difficult for the model to detect, perhaps due to
the fusion of spatial and temporal attention, which prevent it from correctly
identifying emerging AUs.

Nevertheless, our model also correctly predicts the immediate stop of all
action units immediately after the last frame, successfully identifying a com-
plete lack of pain-related AUs. In summary, the model has an overall strong
understanding of the temporal mechanics of the 4 frames involved despite the
initial mistakes and is capable of generating correct explanations to support
its predictions.

6 Discussion

6.1 Direct pain detection

Number of unfrozen layers The pre-trained transformer model is success-
ful across a large variety of parameters for the task of direct pain detection,
contrary to earlier findings on the topic [20]. While the models perform con-
sistently no matter the number of layers trained, the region around 6 and 12
layers stands out as the better choice both for ViT and ViViT, warranting a
deeper investigation of similar parameters and setting a precedent for future
work. Despite sharing the top two configurations, the vision and video vision
transformers perform best with different numbers of layers, distinguishing
their configurations for the following steps.

Learning rate Comparably, learning rate proves to be a far more delicate
parameter, with two of the configurations achieving the worst performance
overall across all experiments for ViT and ViViT. Learning rates lower than
2E-03 are generally high-performing, with ViT peaking around 2E-05, achiev-
ing the best model performance across all configurations, and ViViT perform-
ing best with 2E-04, a much larger learning rate.
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Furthermore, ViViT scores its second-best performance at the learning
rate of 2E-06 with an extremely low standard deviation across folds, a sign of
good generalization. Consistency is a desirable trait for all models, and even
more so for delicate tasks in the medical field. Therefore, while achieving only
the second-best performance according to the metric chosen for this experi-
ment, it possesses a desirable trait and indicates a second region of interest
for the tuning of this parameter.

Sharpness-Aware Minimization and Mixup The SAM optimizer and
Mixup augmentation fail to improve the model’s performance across a variety
of configurations for both ViT and ViViT. While SAM decreases the standard
deviation across folds for the ViViT model, it does so by affecting all folds
negatively rather than pushing their performance towards an average. Mixup
appears ineffective in generating meaningful samples for the model to learn
from despite the constraints applied, perhaps due to the delicate nature of
FACS and PSPI encoding.

ViT and ViViT ViViT fails to outperform ViT on direct pain detection de-
spite the strong case for facial dynamics in pain detection literature. Overall,
it achieves comparable performance on its best model to ViT and produces a
model with slightly lower performance but incredibly low standard deviation,
which is an important trait.

While the configurations we use may be limiting the performance of the
architecture, we believe that ViViT models which compute spatio-temporal
attention separately, such as the other ViViT implementations described in
the original paper [21], might ultimately suit this task better. Separating the
temporal and spatial attention would benefit the model by allowing larger
sequence lengths while avoiding quadratically increased computational time.

Furthermore, temporally-local attention might track better the delicate
facial dynamics necessary for pain detection. Overall, both ViT and ViViT
models achieve state-of-the-art performance on the F1 score metric for pain
detection, proving the effectiveness of transformers on this task under a variety
of hyperparameters and the potential for even better results with more pow-
erful transformer architectures. How to best employ video vision transformers
on this task and the best approaches for augmentation and optimization re-
main open questions for future research.
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6.2 Indirect pain detection

The indirect pain detection models fail to outperform their direct counter-
parts on the F1 score metric, showing that explainability comes at the cost of
performance with this approach. Furthermore, the ViViT-2-I model under-
performs on this task both on the F1 score and the AUC metric, underlining
a degree of difference between the direct and indirect hyperparameter spaces.

On the other hand, the ViT-1-I and ViViT-1-I performances still signifi-
cantly outperform earlier works, with a lower standard deviation across folds,
while maintaining explainability. Moreover, on the task of individual AU de-
tection, the models perform comparably or better on almost all AUs on the
AUC metric.

On this task, ViViT partially outperforms ViT. On individual AU detec-
tion it performs better than ViT on half the AUs, while on the others they have
comparable performance. Their ability to confidently and correctly detect the
presence of AUs is likely an important factor in their overall superior per-
formance compared to previous approaches. In fact, the great performance
on the AUC metric does not appear to be always proportionate to the F1
score metric, raising concerns regarding the thresholding value of 0 chosen for
prediction labelling.

Future work could explore different thresholds for label prediction in order
to maximize the F1 score metric. Overall, indirect pain detection remains a
competitive approach, which inherits many of the characteristics of the direct
pain detection hyperparameter space, while transformers show potential for
explainable pain assessment.

6.3 Direct pain intensity estimation

The models fail to outperform the state-of-the-art on the task of direct pain
intensity estimation, likely due to the simplicity of the architecture chosen.
However, the model successfully estimates pain and outperforms some pre-
vious works and the 0-baseline, contrary to earlier findings on transformers
for pain intensity estimation [20]. Nevertheless, we believe the visual words
of the ViT architecture to be too coarse and imprecise to effectively capture
the delicate dynamics necessary to distinguish the varying levels of pain in a
regression task, which would justify most of the gap in performance between
pain detection and pain intensity estimation.

However, there might also be other minor components such as the hyperpa-
rameters chosen, the use of 5-fold validation rather than leave-one-subject-out
validation, and other approaches that could have boosted the model’s perfor-
mance further. We are therefore not excluding the possibility of making this
model architecture competitive on this task, however, we believe that more
powerful and precise transformer architectures would easily outperform our
models under similar circumstances.
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6.4 Indirect pain intensity estimation

All three models perform terribly on this task, with massive errors on both
metrics employed. While the reduction in epochs and hyperparameter cho-
sen might one hand influence the results, it is also clear that the models
come nowhere near a working solution to the problem of indirect intensity
estimation, therefore, a change in approach is necessary. Furthermore, bad
predictions on individual AUs often compound into greater mistakes on PSPI
scores, as Kaltwang [11] had encountered in earlier works.

The delicate features necessary to detect AUs and estimate their inten-
sity are likely beyond the capabilities of the simple and coarse architecture
employed. Due to the extremely limited amount of samples, this task would
also benefit greatly from leave-one-subject-out validation, increasing the mea-
gre number of samples by 20%. Furthermore, the increase in complexity
and specialization due to the introduction of regression and indirect pain as-
sessment might benefit from model-specific parameter-tuning on a separate
validation set, a change that would work best alongside the aforementioned
cross-validation technique. Overall, we don’t believe that the current ap-
proach and architecture can work on this task without significant changes in
the approach.

6.5 Research questions

How do vision transformers perform on facial pain assessment?
Transformers perform competitively for facial pain assessment, under a va-
riety of hyperparameters, achieving state-of-the-art performance on the F1
score metric on direct and indirect pain detection. We report good results on
the AUC metric for pain detection and individual AU detection. We demon-
strate interpretability on our best-performing models and successfully achieve
explainability while maintaining competitive results, with a slight reduction
in performance. Regression results range from underperformance to insuffi-
ciency, and we have identified and reported their likely causes and possible
solutions.

What are the regions of interest in the hyperparameters space for
vision transformers? We identify 3 regions of interest in the hyperparam-
eter space, in the proximity of the three models ViT-1, ViViT-1, and ViViT-2.
Specifically, ViT models perform best with 12 fine-tuned attention layers and
2E-05 as learning rate, while ViViT models perform best when fine-tuning 6
attention layers with learning rates of 2E-04 and 2E-06.
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We note that learning rates around 2E-06 appear to impact significantly
the variance in performance across folds for the ViViT model, enabling it to
perform much more consistently overall, an especially desirable trait in the
medical field. More broadly, we identify as high-performing all models with
a number of fine-tuned attention layers of 6 and greater, and with learning
rates in the proximity of 2E-04 and lower.

How does indirect pain assessment, with an interim AU layer predic-
tion, affect the performance of the model? The results of our models
trained on interim AU layers are consistently inferior to the ones predict-
ing PSPI score directly, showing that the interim AU layer overall reduces
the model’s performance with this approach. We prove that our model can
generate meaningful explanation for individual predictions, and show its con-
sistency throughout a 37-frame sub-section containing continuous AU6 and
AU7 labels, with exact AU predictions for 32 out of 37 frames, furthermore
predicting correctly the end of the AUs shown. Indirect pain intensity estima-
tion fails completely with the current approach, whereas we find that while
indirect pain detection models underperform slightly compared to direct pain
detection models, the approach is competitive and effectively provides explain-
ability.

How do vision transformers perform on facial pain intensity es-
timation? Vision transformers consistently fail to achieve state-of-the-art
performance on the task of direct pain assessment, however, it appears to be
a feasible task for our purely-attentive pipeline. contradicting earlier findings
on the topic [20]. While the model achieves sub-standard results overall, it
still manages to outperform some earlier approaches and the baseline pro-
posed, proving that the task is not beyond the employed architecture. On the
other hand, the model is completely unsuccessful on indirect pain assessment,
obtaining absolutely insufficient results.

Even though minor adjustments such as the use of leave-one-subject-out
validation and finer hyperparameter tuning could meaningfully boost the re-
sults of the direct pain intensity estimation models given their current perfor-
mance, we believe that employing more powerful transformer architectures,
capable of extracting finer details from the input images, to be a better path
going forward. We would recommend a similar approach for indirect pain
intensity estimation given the inability of the current architecture, with our
approach, to indirectly predict pain intensity.
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How do vision transformers and video vision transformers compare
in performance? Despite the importance of facial dynamics for pain assess-
ment, we fail to find large performance differences between vision transformers
and video vision transformers, finding both approaches similarly competitive,
sufficient, or insufficient, depending on the task. ViViT does nonetheless
show some interesting features, such as very low standard deviation in one
of its models for direct pain detection, and does partially outperform ViT on
the AUC metric for individual AU detection. Future work will likely benefit
from testing longer video sub-sequences and different approaches to computing
spatiotemporal attention, which might better capture the delicate temporal
dynamics of facial expressions.

Can attention maps be used to generate plausible interpretations of
the outputs? We extract attention maps from one of our best-performing
models and use them to provide plausible interpretations of our model’s predic-
tions according to our qualitative evaluation. The attention map activations
depicted are computed from high-intensity attention activations on the last
attention layer and through attention rollout, a technique which captures the
flow information across the whole transformer architecture. We find that the
activations correspond to areas of high significance according to facial pain
assessment literature, both in the flow of information and their maximal in-
tensity in the last attention layer, and therefore succeed in providing plausible
interpretability to our models.

7 Conclusion

In this thesis, we have used vision and video vision transformers trained on the
UNBC-McMaster dataset for direct and indirect pain detection and intensity
estimation.

We have achieved state-of-the-art performance using the F1 score, iden-
tified regions of interest in the transformer hyperparameter space, compared
the performance of vision and video transformers on this task, made compet-
itive and explainable facial pain detection models, evaluated the feasibility of
pain intensity estimation, and obtained plausible intrinsic interpretations for
the performance of the model.

Results show that pre-trained transformers can be applied toward pain
detection with good results, after one or two epochs of training and on a
small unbalanced dataset, while pain intensity estimation still requires further
research. Future work could include different augmentation techniques, leave-
one-patient-out validation, runtime hyperparameter tuning on a validation
set, longer video sub-sequences, and more efficient transformer architectures.

40



References

[1] SN Raja, DB Carr, M Cohen, NB Finnerup, H Flor, S Gibson, FJ Keefe,
JS Mogil, M Ringkamp, KA Sluka, et al. “The revised International
Association for the Study of Pain definition of pain: concepts, challenges,
and compromises. Pain”. In: press. doi 10 (2020).

[2] Harald Breivik, Beverly Collett, Vittorio Ventafridda, Rob Cohen, and
Derek Gallacher. “Survey of chronic pain in Europe: prevalence, impact
on daily life, and treatment”. In: European journal of pain 10.4 (2006),
pp. 287–333.

[3] MH Hayes. “Experimental developement of the graphics rating method”.
In: Physiol Bull 18 (1921), pp. 98–99.

[4] Ahmed Bilal Ashraf, Simon Lucey, Jeffrey F Cohn, Tsuhan Chen, Zara
Ambadar, Kenneth M Prkachin, and Patricia E Solomon. “The painful
face–pain expression recognition using active appearance models”. In:
Image and vision computing 27.12 (2009), pp. 1788–1796.

[5] Zakia Hammal and Jeffrey F Cohn. “Automatic, objective, and efficient
measurement of pain using automated face analysis”. In: Social and
interpersonal dynamics in pain. Springer, 2018, pp. 121–146.

[6] Amanda C de C Williams, Huw Talfryn Oakley Davies, and Yasmin
Chadury. “Simple pain rating scales hide complex idiosyncratic mean-
ings”. In: Pain 85.3 (2000), pp. 457–463.

[7] Patrick Lucey, Jeffrey F Cohn, Kenneth M Prkachin, Patricia E Solomon,
and Iain Matthews. “Painful data: The UNBC-McMaster shoulder pain
expression archive database”. In: 2011 IEEE International Conference
on Automatic Face & Gesture Recognition (FG). IEEE. 2011, pp. 57–64.

[8] Paul Ekman and Wallace V Friesen. “Facial action coding system”. In:
Environmental Psychology & Nonverbal Behavior (1978).

[9] Kenneth M Prkachin and Patricia E Solomon. “The structure, reliability
and validity of pain expression: Evidence from patients with shoulder
pain”. In: Pain 139.2 (2008), pp. 267–274.

[10] Elizabeth A Clark, J’Nai Kessinger, Susan E Duncan, Martha Ann Bell,
Jacob Lahne, Daniel L Gallagher, and Sean F O’Keefe. “The facial ac-
tion coding system for characterization of human affective response to
consumer product-based stimuli: a systematic review”. In: Frontiers in
psychology 11 (2020), p. 920.

[11] Sebastian Kaltwang, Ognjen Rudovic, and Maja Pantic. “Continuous
pain intensity estimation from facial expressions”. In: International Sym-
posium on Visual Computing. Springer. 2012, pp. 368–377.

41



[12] Zara Ambadar, Jonathan W Schooler, and Jeffrey F Cohn. “Deciphering
the enigmatic face: The importance of facial dynamics in interpreting
subtle facial expressions”. In: Psychological science 16.5 (2005), pp. 403–
410.

[13] Siavash Rezaei, Abhishek Moturu, Shun Zhao, Kenneth M Prkachin,
Thomas Hadjistavropoulos, and Babak Taati. “Unobtrusive pain mon-
itoring in older adults with dementia using pairwise and contrastive
training”. In: IEEE Journal of Biomedical and Health Informatics 25.5
(2020), pp. 1450–1462.

[14] Yue Sun, Caifeng Shan, Tao Tan, Xi Long, Arash Pourtaherian, Svit-
lana Zinger, et al. “Video-based discomfort detection for infants”. In:
Machine Vision and Applications 30.5 (2019), pp. 933–944.

[15] Sana Tonekaboni, Shalmali Joshi, Melissa D McCradden, and Anna
Goldenberg. “What clinicians want: contextualizing explainable machine
learning for clinical end use”. In: Machine learning for healthcare con-
ference. PMLR. 2019, pp. 359–380.

[16] Steffen Walter, Sascha Gruss, Stephan Frisch, Joseph Liter, Lucia Jerg-
Bretzke, Benedikt Zujalovic, and Eberhard Barth. ““What About Auto-
mated Pain Recognition for Routine Clinical Use?” A Survey of Physi-
cians and Nursing Staff on Expectations, Requirements, and Accep-
tance”. In: Frontiers in medicine (2020), p. 990.

[17] Giacomo Fiorentini, Itir Onal Ertugrul, and Albert Ali Salah. “Fully-
attentive and interpretable: vision and video vision transformers for pain
detection”. In: arXiv preprint arXiv:2210.15769 (2022).

[18] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez,  Lukasz Kaiser, and Illia Polosukhin. “Attention
is all you need”. In: Advances in neural information processing systems
30 (2017).

[19] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. “An image is worth 16x16
words: Transformers for image recognition at scale”. In: arXiv preprint
arXiv:2010.11929 (2020).

[20] Haochen Xu and Manhua Liu. “A Deep Attention Transformer Net-
work for Pain Estimation with Facial Expression Video”. In: Chinese
Conference on Biometric Recognition. Springer. 2021, pp. 112–119.

[21] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario
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