
MSc Thesis

Improving Robustness For Stochastic
Parallel Machine Scheduling With

Robustness Measures

Author:
Loriana Pascual
5888646

Supervisors:
Marjan van den Akker

Roel van den Broek

Department of Information and Computing Sciences

November 2022

Abstract

In this thesis we look at the stochastic parallel machine scheduling problem with precedence
constraints, release dates and a deadline. To deal with uncertainty in the job processing
times, it is desirable to create robust schedules. Because many machine scheduling problems
are complex, they are often solved with local search methods. To include robustness into
the objective of a local search approach, an efficient way to quantify the robustness of a
solution is required. Since exact computation of the robustness of a schedule is complex and
simulation is computationally expensive, the need for surrogate robustness measures arises.
Therefore, we evaluated several existing and new proposed robustness measures on their
ability to estimate the true robustness, with the aim of creating stable baseline schedules
bounded by a deadline. We compared the estimates of the robustness measures with the
results of a Monte Carlo simulation by reporting their Spearman’s rank correlation coeffi-
cients for various notions of robustness and several processing time probability distributions.
Furthermore, we implemented a local search algorithm which uses the robustness measures
to evaluate the quality of the schedule. We showed the effectiveness of robustness measures
as indicators of true robustness and their practical application in generating stable baseline
schedules.

Acknowledgements

First of all, I would like to thank my supervisors Marjan van den Akker and Roel van den
Broek for their excellent guidance, enthusiasm and time investment in the past months. I
enjoyed our weekly meetings and their feedback and insights were very valuable to me. I
would also like to thank Han Hoogeveen as the second reader of this thesis. The enthusiasm
of Marjan van den Akker and Han Hoogeveen during their lectures was very inspiring to
me and led me to develop an interest in operations research. Furthermore, I want to thank
Laurens Stoop for helping me set up a computer to run the experiments. Finally, I want to
express my gratitude towards my family and friends for their support and encouragement.

Contents

1 Introduction 3
1.1 Stochastic parallel machine scheduling . 3
1.2 Robust scheduling . 4
1.3 Defining Slack . 5
1.4 Research objectives . 5

2 Literature overview 6
2.1 Robustness measures . 6

2.1.1 Slack-based robustness measures . 6
2.1.2 Robustness measures based on probability distribution 9

2.2 Simulation studies on robustness measure quality 10
2.2.1 Robustness for the RCPSP . 10
2.2.2 Robustness for parallel machine scheduling 11

2.3 Algorithms for stable baseline schedules . 12
2.4 Conclusion . 13

3 Robustness Measures 14
3.1 Slack based measures . 14
3.2 Normal approximation . 16
3.3 Measures based on predecessor slack . 17

4 Robustness Measure Evaluation 18
4.1 Experimental Setup . 18

4.1.1 Problem instances . 18
4.1.2 Setting the Deadline . 18
4.1.3 Schedule Generation . 19
4.1.4 Simulation . 21
4.1.5 Processing time distributions . 21
4.1.6 Realizing start times . 21
4.1.7 Steps of experiments . 22

4.2 Initial evaluation of all RMs . 23
4.2.1 Results . 23
4.2.2 Conclusion . 27

4.3 Evaluating Best RMs . 28
4.3.1 Results Correlations . 28
4.3.2 Computational efficiency . 31
4.3.3 Conclusion . 32

4.4 Conclusion Robustness Measure Evaluation 32

1

5 Local search for robust scheduling 34
5.1 Algorithm Outline . 34

5.1.1 Assigning jobs to machines . 34
5.1.2 Inserting buffers . 35
5.1.3 Objective Function . 35
5.1.4 Local Search Algorithm For Solution Robustness 36

5.2 Experimental Setup . 37
5.2.1 Objectives and penalties . 37
5.2.2 Parameters . 39
5.2.3 General Setup . 39

5.3 Results . 39
5.3.1 Makespan minimization . 40
5.3.2 Penalties . 40
5.3.3 Objectives . 40

5.4 Conclusion . 47

6 Conclusion 48
6.1 Summary . 48
6.2 Conclusion . 48
6.3 Future research . 49

6.3.1 Other sources of uncertainty . 49
6.3.2 Normal approximation for buffered schedules 49
6.3.3 Local search improvements . 49

References 50

A RM Evaluation Results 52

B Local Search Results 57

2

Chapter 1

Introduction

Scheduling is a widely researched topic, as it has many applications in real-world problems
such as public transportation, production, manufacturing, logistics, healthcare and many
more. Scheduling can generally be described as optimally allocating limited resources to
certain tasks. A special case of scheduling is parallel machine scheduling, where jobs have
to be scheduled for processing on one of several parallel machines. In traditional machine
scheduling, it is often assumed that the environment is deterministic and that all information
is known in advance. However, this is not always the case in practice. In reality, the
environment is subject to uncertainty which can cause the schedule not to be carried out
as planned. Therefore, it is desirable to create schedules that are robust in the face of
uncertainty.

Many deterministic machine scheduling problems are hard to solve. Considering a
stochastic environment makes the problem even more complex. Therefore, these prob-
lems are often solved with local search methods. To include robustness into the objective
of a local search approach, we need an efficient way to quantify the robustness of a solu-
tion. Computing the exact value for a certain characterization of robustness is hard because
the distribution of the uncertainty is not always known, and the interdependencies of the
jobs makes it computationally expensive. A way to estimate the robustness of a schedule
is to simulate it by taking many samples from the assumed distributions of the uncertain
elements (van den Akker, van Blokland, & Hoogeveen, 2013). If a sufficient number of sam-
ples is used, this will give an accurate estimate of the true robustness. However, running
many simulations is computationally expensive. If we have to evaluate many schedules to
determine the most optimal one in a local search procedure, simulation can become infea-
sible. Consequently, we need an efficient way to estimate the true robustness of a schedule.
Therefore, several robustness measures have been developed. Robustness measures are an-
alytical functions that use characteristics of the schedule structure to estimate robustness.
The ability of a robustness measure to correctly reflect robustness depends strongly on the
definition of true robustness and on the problem. Therefore, we will evaluate and compare
several robustness measures on their ability to estimate various aspects of robustness, with
the goal of creating robust schedules for the stochastic parallel machine scheduling problem.

1.1 Stochastic parallel machine scheduling

We study a stochastic parallel machine scheduling problem which we define as follows.
We are given n jobs that must be processed by one of m identical machines that work in
parallel. In the deterministic problem, each job j has a processing time pj . We consider a
stochastic variant of this problem, where the processing times are stochastic variables that
follow a probability distribution Dj with average pj . Each job j has a release date rj . We
consider a global deadline constraint, where all jobs have to be completed before a deadline
d. Additionally, there are precedence constraints that state a partial ordering in which jobs

3

must be executed. A precedence constraint i ≺ j denotes that job i must be finished before
job j can start. Finding a feasible schedule can be done with the following three steps. First,
each job gets assigned to a machine. Secondly, we have to order the jobs on the machines.
Finally, we have to assign start times to jobs.

A solution to the first two steps can be represented as a graph. In this graph, the nodes
represent the jobs and each arc correspond to a precedence relation. An arc represents either
a precedence constraint that is part of the problem, or an ordering on jobs assigned to the
same machine. From this graph, we can compute for each job the time window in which
it should be processed. The earliest start time (EST) of job j is defined as the maximum
of its release date rj and the earliest time at which all its predecessors are completed. The
latest completion time (LCT) of a job is the latest time the job can finish such that the
deadline is met. From the EST we can compute the earliest completion time (ECT) by
adding the processing time pj . We can compute the latest start time (LST) by subtracting
the processing time pj from the LCT .

1.2 Robust scheduling

There appears to be no consensus about a definition for robustness in literature. In general,
the robustness of a schedule can be characterized as its ability to withstand disruptions. We
can distinguish two types of robustness. Quality robustness represents a schedules ability
to prevent a significant degradation in the objective when facing uncertainty. A common
objective for parallel machine scheduling is makespan minimization. The makespan is the
time at which all jobs are completed. When dealing with a stochastic environment, the
objective function is not deterministic. Therefore, a common objective for quality robust
scheduling is minimizing the expected or average makespan. Another type of robustness is
solution robustness. A schedule is called solution robust if the schedule itself is unlikely to
degrade under uncertainty. An example of a solution robust schedule is a schedule where
there is little deviation from planned start times, regardless of uncertainty.

In literature, robust scheduling is mostly about minimizing the expected makespan (qual-
ity robustness) of a schedule subject to uncertainties. In some cases, however, one might
not be interested in finding the shortest schedule, but rather in finding a schedule that
has a high probability to respect the planned start times (solution robustness). Having a
schedule that is likely the follow the planned start times has the benefit that the execution
will remain reasonably predicable, regardless of variations in job durations. This can be
useful to minimize waiting times of patients in hospitals or delays in public transportation,
for example.

A way to increase the solution robustness is by inserting buffers between jobs (Herroelen
& Leus, 2004). Buffers can serve as a way to absorb delays so that it will not propagate
further into the schedule. Enforcing buffers is achieved by assigning specific start times to
jobs, instead of using an Earliest Start Schedule ESS. An ESS means that no explicit start
times are assigned to jobs, but that the jobs are started as soon as possible. This is used
for makespan minimization.

Inserting maximal buffers such that the deadline will not be exceeded might make the
schedule infeasible with respect to the deadline during execution, as the processing times
are not deterministic. Therefore, we also need to ensure that we have a high probability
that the schedule will be completed within the deadline (quality robustness). Since inserting
buffers will increase the expected makespan, we might have two conflicting objectives.

In this thesis, we aim to optimize the adherence of planned start times while meeting
the deadline. Therefore, we adopt the following definitions of robustness:

Definition 1.2.1 (Quality robustness). A schedule is said to be quality robust if it has a
high probability of finishing within the deadline.

Definition 1.2.2 (Solution robustness). A schedule is said to be solution robust if the jobs
have a high probability to start at their planned start time.

4

1.3 Defining Slack

Many robustness measures are based on slack. Slack is idle time between jobs where the
machine is not being used. Slack is closely related to the robustness of a schedule, as slack
makes it possible to delay a job without causing problems. We can define two different types
of slack: total slack and free slack. Total slack is closely related to the quality robustness,
while free slack is closely related to the solution robustness. Common definitions of total
slack and free slack in literature assume the use of an earliest start schedule. As our approach
includes assigning specific start times to jobs, we have to reformulate these definitions to
consider the planned start time (PST) instead of the earliest start time (EST). We adopt
the following definitions of total slack and free slack:

Definition 1.3.1 (Total slack). The total slack of a job is the maximum amount of time
that we can delay a job without exceeding the deadline.

TSj = LSTj − PSTj (1.1)

Definition 1.3.2 (Free slack). The free slack of a job is the amount of time by which we
can delay the job without delaying any other job in the schedule.

FSj = min
j≺i

PSTi − PSTj − pj (1.2)

1.4 Research objectives

The goal of this thesis is to research the following: How can we efficiently find solution
robust schedules for the stochastic parallel machine scheduling problem using robustness
measures?

In order to investigate this, we will answer the following questions:

1. What robustness measures are able to make a good distinction between schedules in
terms of solution robustness?

2. What robustness measures are able estimate well if a schedule will respect its deadline?

3. How efficient can these robustness measures be computed?

4. How can we divide the available slack in such a way that the solution robustness is
maximal?

5. What is the effect of using these robustness measures in a local search procedure on
the schedule solution and quality robustness?

5

Chapter 2

Literature overview

In this chapter we discuss literature about robust scheduling. We look into literature on
robustness measures and on simulation studies performed to examine the quality of robust-
ness measures. Additionally, we address literature on algorithms designed to generate stable
baseline schedules to improve solution robustness.

2.1 Robustness measures

In this section, we discuss literature on several slack-based robustness measures and robust-
ness measures that are based on the processing times probability distributions.

2.1.1 Slack-based robustness measures

Total slack

Jorge Leon, David Wu, and Storer (1994) study the robustness of job shop schedules. They
define the schedule delay as the difference between the deterministic makespan and the
realized makespan after execution with disruptions. The expected delay is then defined as the
difference between the deterministic makespan and the expected makespan. The expected
delay is an important measure if we want to minimize the actual makespan. However,
Jorge Leon et al. argue that the expected delay by itself has little meaning, as it can be
decreased easily by inserting a lot of idle time in the schedule. In contrast to the expected
delay, the expected makespan also contains information about the makespan itself. The
expected makespan can therefore be an important performance characteristic of a schedule.
That is why Jorge Leon et al. state that a robust schedule should have a high performance
regarding both the expected delay and the expected makespan. Therefore, they define the
schedule robustness as a linear combination of the two.

Jorge Leon et al. develop procedures based on the graph representation of the schedule
to compute the expected delay and the expected makespan assuming only one disruption
occurs. However, these procedures are not computationally feasible if more than one disrup-
tion occurs, since the effect of disruptions depend on the outcome of all previous disruptions.
Therefore, Jorge Leon et al. develop several robustness measures to approximate the true
robustness, that are easy to compute.

They base a robustness measure on the assumption that the expected delay caused by
the first disruption is a good indicator of the expected delay after multiple disruptions.
With this assumption, they compute the robustness for the single disruption case, for each
machine, and then taking the average. Another robustness measure is based on taking the
integral of a function that calculates the delay in makespan caused by one disruption for a
given arrival time and duration of the disruption. The robustness measure is computed by
taking that integral for each machine, and then average over all machines. Jorge Leon et al.

6

argue that a schedule with a larger amount of slack will have less delays after a disruption.
Therefore, they propose the average of the total slacks of all jobs as a robustness measure.

To determine the correlation between the proposed measures and the makespan and
the delay after the disruptions, Jorge Leon et al. perform a simulation study on many job
shop schedules. The results show that the three measures have a higher correlation with
the expected delay than the deterministic makespan does. This means that their proposed
measures provide additional information about the expected delay that is not captured in
the deterministic makespan. They show that the average total slack is a good estimator
of the expected delay. Therefore, they develop a genetic algorithm based on this measure
to generate robust schedules. Experiments show that these generated schedules are less
sensitive to disruptions than schedules that are made to minimize the makespan.

Hazır, Haouari, and Erel (2010) investigate several robustness measures for the discrete
time/cost trade-off problem (DTCTP). These robustness measures are mainly based on
total slack, as they aim to generate quality robust schedules. They perform a monte carlo
simulation to asses the quality of the measures. They evaluate the effect of disruptions
with two performance metrics: The fraction of samples where the deadline is met, and the
average delay in the makespan as percentage of the deadline. With the simulation results
they compute the correlation between the performance metrics and the robustness measures.

Hazır et al. show that their measure of the project buffer size has the highest correlation
with both performance metrics. They define the project buffer as the time that the com-
pletion time of the project can be delayed without exceeding the deadline. The robustness
measure is then defined as the project buffer as a percentage of the deadline.

Following this, they propose a two-stage algorithm for finding robust schedules. In the
first phase, they assume the job durations are deterministic, and determine the minimum
required budget. This budget is then used as a threshold in the next step. In the second
phase, they maximize the project buffer while keeping into account the budget threshold.
They show that this two-stage approach produces quality robust schedules.

Sum of free slacks

Al-Fawzan and Haouari (2005) introduce the concept of robustness for the resource-constrained
project scheduling problem (RCPSP). They define the Bi-objective Resource Constrained
Project Scheduling Problem (BRCPSP), in which the objective is to find a feasible schedule
that minimizes the makespan while also maximizing the robustness. They define robustness
as the ability of a schedule to handle (small) increases in the job processing times. They
propose to measure the robustness of a schedule as the sum of the free slack of all jobs.

Using this robustness measure, Al-Fawzan and Haouari design a multi-objective tabu
search algorithm. Since the problem has two objectives, there may be multiple efficient
solutions. That is why they propose an adaptation of tabu search to find an approximate
set of non-dominated schedules. A schedule is called non-dominated (efficient) if it is not
possible to improve all objectives without violating constraints.

In their tabu search procedure, they compute the makespan and the robustness for each
schedule in the neighbourhood. They select the new current solution based on an aggregation
function that combines the values for the makespan and the robustness. The aggregation
function uses an importance weight to set a balance between makespan minimization and
robustness maximization by making a linear combination of the two objectives. Al-Fawzan
and Haouari observe that the robustness value is often much larger than the makespan value,
which causes the robustness to strongly dominate the makespan. To avoid this, they define
a variant of the aggregation function, that only considers the relative improvement of the
makespan and the relative improvement of the robustness.

Al-Fawzan and Haouari perform experiments with several variants of their algorithm.
They show that if the best variant of their algorithm (which is based on the relative im-
provement of the makespan and the robustness) is used to minimize the makespan only,
it performs comparable to tabu search algorithms specifically designed for single objective

7

makespan minimization.

Minimum free slack

Kobylański and Kuchta (2007) critique that Al-Fawzan and Haouari do not research if
their proposed robustness measure of the sum of free slacks is actually related to the true
robustness. Kobylański and Kuchta show with an example that maximizing the sum of free
slacks can result in schedules that are absolutely not robust. Therefore, Kobylański and
Kuchta propose two other robustness measures.

They argue that maximizing the minimum of free slacks will protect the solution robust-
ness as well as the quality robustness and they show that this measure is better than the
sum of free slacks as proposed by Al-Fawzan and Haouari. The second robustness measure
is based on the idea that in many cases, the longer the processing time of a job, the higher
the probability of a longer delay. Therefore, they propose to use the minimum of the ratios
free slack/processing time as a robustness measure. They show that this measure is better
then the sum of free slacks and can be better than their first robustness measures in some
cases. Additionally, Kobylański and Kuchta argue that for practical applications, it is better
to fix the makespan and determine a robust schedule for that makespan, then it is to use
weights to give importance to the makespan and the robustness.

Weighted free slack

To avoid the dilemma of choosing between minimizing the makespan and maximizing quality
robustness, Chtourou and Haouari (2008) develop a two-stage-priority-rule-based approach
for the RCPSP. They first solve the problem for minimizing the makespan. From the found
schedules with a small makespan, they then maximize the quality robustness.

To estimate the robustness of a schedule, they use 12 robustness measures that are
based on the sum of free slacks, as defined by Al-Fawzan and Haouari (2005). Chtourou
and Haouari argue that an increase in the processing time of a job that has a large number
of successors is more likely to affect the makespan than when a job has only a few successors.
That is why they propose the sum of the free slacks weighted by the number of successors
as a robustness measure. Furthermore, they indicate that increase in the processing time of
a job that requires a lot of resources is more likely to increase the makespan, as the delay
will cause more unplanned resource unavailability. Therefore, they propose to weigh the
free slacks of all jobs by their resource requirements. Additionally, they define a robustness
measure that combines the two weights, to account for the number of successors and the
resource requirements.

Chtourou and Haouari argue that if a job has a small free slack, it will already be
sufficient to absorb a small increase in processing time. They reason that summing up large
free slacks results in a disproportional measure of the ability of a schedule to deal with small
increases in processing times. Therefore, they define alternatives of their measures, where
they replace the free slack by a binary variable indicating if the job has free slack or not.
This way, the measures only consider is a job has free slack, and give no importance to its
length. Another variant they propose is replacing the free slack by the minimum of the
free slack and a fraction of the processing time. They set the fraction equal to the average
percentage of increase in processing time. This way, they only consider the part of the free
slack that would potentially be useful.

Chtourou and Haouari develop a method that is based on a priority-rule heuristic. The
heuristic is run multiple times with the objective of minimizing the makespan. The makespan
found in this stage as then used as a threshold for the second stage. The heuristic is run
again multiple times to maximize the robustness as defined by the robustness measures,
while keeping the makespan equal to or smaller than the threshold.

Chtourou and Haouari show with a simulation study that schedules created with their
method perform better than non-robust schedules in terms of quality robustness. The
following robustness measures give the best results: sum of free slacks, sum of free slacks

8

weighted by number of successors, sum of binary value indicating if free slack exists and
sum of binary value indicating if free slack exists weighted by amount of resources needed.

2.1.2 Robustness measures based on probability distribution

Canon and Jeannot (2009) perform an experimental study of different robustness measures
and they propose several heuristics to minimize the makespan while maximizing quality
robustness. Canon and Jeannot define the robustness of a schedule as its ability to absorb
some increases in job processing times while maintaining a stable solution. They give a
method to compute the makespan distribution. With this, they aim to schedule the jobs
such that the average makespan is minimized and the stability of the makespan is maximized.
They investigate the correlation between several robustness measures and the stability of
the makespan.

An intuitive measure is the makespan standard deviation. Canon and Jeannot reason
that this measure is related to the robustness because the standard deviation indicates how
likely it is that the realized makespan is close to the average makespan. Bölöni and Marinescu
(2002) define the makespan differential entropy, which is a way to assess the uncertainty
of the distribution. Canon and Jeannot argue that the uncertainty of the makespan could
be a good indicator of the robustness as less uncertainty indicates a higher probability of
realizing the average makespan. They also consider the slack mean, which is the expected
value of the sum of the free slacks. Shestak, Smith, Siegel, and Maciejewski (2006) define
the probability that the makespan is between two bounds. Canon and Jeannot propose two
variants as robustness measures, where they choose the bounds as the absolute or relative
differences to the average makespan. Shi, Jeannot, and Dongarra (2006) define the lateness
likelihood as the probability that the makespan exceeds a given target. Canon and Jeannot
investigate this measure with the average makespan as the target. Finally, they consider the
makespan 0.99-quantile. This measure indicates what the worst makespan will be in 99%
of the cases.

Canon and Jeannot perform a simulation study with these robustness measures to de-
termine the relationship between them. They show that almost all measures are equivalent.
Therefore, Canon and Jeannot argue that the simplest measure, the makespan standard
deviation, will be sufficient for most real cases. The outlier is the slack mean, which they
show has a low and a negative correlation with the other measures. Canon and Jeannot
explain this by the observation that minimizing makespan and maximizing the slack mean
are conflicting objectives.

Simulation as robustness measure

van den Akker et al. (2013) use a combination of local search and simulation to find good
quality robust solutions for the job shop scheduling problem. Their local search method is
based on simulated annealing. In this local search method, they compare candidate solutions
based on the results of a discrete event simulation. They introduce two variants of applying
simulation to approximate the expected makespan.

The first variant is called result sampling. They run a discrete event simulation for a
number of times to find a realization of a schedule. The results of these simulation runs are
then averaged. In the second variant, called cut-off sampling, they do not use the results of
all the simulation runs. van den Akker et al. argue that it is very hard to be robust against
realizations of schedules where the processing times of jobs are very far from the mean.
Therefore, they ignore the realizations with the smallest and largest makespan obtained
from the simulations and use the remaining schedules to compute the average.

van den Akker et al. perform several experiments to compare their methods to classical
methods. These classical methods use a deterministic algorithm where the stochastic vari-
ables are replaced by a percentile of the mean or by multiplying the mean with a certain
factor. They show that their methods outperform classical methods.

9

Approximating the makespan distribution

Passage, van den Akker, and Hoogeveen (2016) present an iterated local search approach
for the deterministic parallel machine scheduling problem to minimize the makespan. To
apply this algorithm to the problem with stochastic processing times, they aim to minimize
the expected makespan (quality robustness). They present several methods to estimate the
makespan to compare candidate solutions of their local search.

Passage et al. adapt the result sampling approach of van den Akker et al. (2013) for the
parallel machine scheduling problem and their local search algorithm. However, they show
that it requires many samples to get an accurate estimate. As the local search approach
evaluates many candidate solutions, they need a faster method. Therefore, Passage et al.
present two algorithms to approximate the distribution of the makespan. In the first method,
they start by approximating the makespan without precedence relations. Then, they add
the approximated delay that will be caused by the precedence relations.

In their second method, Passage et al. consider the precedence constraints directly. They
use dynamic programming to estimate the start time distributions of jobs by computing the
maximum over the completion time distributions of all predecessors. To do this, they use the
work of Nadarajah and Kotz (2008) to compute the maximum of two normal distributions.

Passage et al. perform several computational experiments and show that their approach
of approximating the makespan with dynamic programming, performs as good as estimating
the makespan with 300 simulation runs, while being much faster.

2.2 Simulation studies on robustness measure quality

In this section, we discuss simulation studies performed to investigate the correlation be-
tween several robustness measures and several definitions of true robustness.

2.2.1 Robustness for the RCPSP

Khemakhem and Chtourou (2013) provide an extensive study of several existing and newly
proposed robustness measures for the RCPSP. They review the measures proposed by Al-
Fawzan and Haouari (2005), Kobylański and Kuchta (2007), Lambrechts, Demeulemeester,
and Herroelen (2008) and Chtourou and Haouari (2008). Additionally, Khemakhem and
Chtourou propose several new robustness measures. These measures are mostly weighted
slack functions based on slack sufficiency. The slack sufficiency is a way to measure if the
slack of a job is sufficient to absorb a delay of a percentage of its duration. They extend
this idea by also including the possible delays of direct predecessors or all preceding jobs.

Khemakhem and Chtourou test the robustness measures with a five-stage approach.
First, they compute a threshold makespan for a problem instance with a priority-rule-based
heuristic. Then they generate a set of schedules that have a makespan equal to the makespan
found in step one and compute the robustness measures of each of those schedules. They
then run a simulation on the schedules with increased job duration of µ% and compute
the probability that the realized makespan of the schedule exceeds the threshold makespan.
Finally, they evaluate the correlation between the robustness measures and the performance
measures by comping the coefficient of determination R2.

Khemakhem and Chtourou show that their newly proposed robustness measures outper-
form the others. The robustness measure with highest correlation is the slack sufficiency
that takes into account the possible delay of the job itself and all its predecessors.

Robustness of shunting plans

van den Broek, Hoogeveen, and van den Akker (2018) investigate robustness measures to
estimate the robustness of schedules for shunting yards. Scheduling problems for shunting

10

yards can be modelled as a RCPSP with deadlines. Shunting schedules are subject to
uncertainties such as a delayed train arrivals or service activities taking longer than expected.

They compare several existing robustness measures, based on the work of Jorge Leon et
al. (1994), Al-Fawzan and Haouari (2005), Kobylański and Kuchta (2007), Khemakhem and
Chtourou (2013), Wilson, Klos, Witteveen, and Huisman (2014) and Passage et al. (2016).
Additionally, they propose new robustness measures based on the slack of a path of jobs
in the schedule. van den Broek et al. define the slack of a path as the maximal amount of
time the jobs on the path can be delayed without exceeding the deadline of the last job on
the path. They argue that it is more likely that a path will have a disruption, the more
jobs there are on that path. Therefore, they define a robustness measure as the minimum of
the path slacks divided by the number of jobs on the path. Additionally, they estimate the
duration of a path with the assumption that the duration of each job is normally distributed.
With this, they define a robustness measure as the minimum probability that a path can be
completed within the deadline, over all paths.

To investigate the quality of the robustness measures, van den Broek et al. generate a
large number of schedules for two real-world instances of shunting yards problems. They
perform a simulation to approximate the robustness of the schedules with two performance
metrics: the fraction of delayed schedules, and the average lateness of the schedules. They
model the disturbances in the arrival time of a trains with a uniform distribution with the
scheduled arrival time as the mean, and an interval size of 10 minutes. The service activities
are modelled as a log-normal distribution with the nominal activity duration as the mean,
and a standard deviation of 10% of the nominal duration.

van den Broek et al. show that the robustness measures that are based on normal approx-
imations have a strong correlation with the robustness performance metrics. Additionally,
they show that the minimum total slack, which is equivalent to the deterministic makespan
of a schedule, is also highly correlated with the performance metrics. Furthermore, their
results show that the free slack is poorly correlated with the robustness of shunting plans,
contrary to previous results for schedules without deadlines.

2.2.2 Robustness for parallel machine scheduling

Hessey, van den Akker, and Hoogeveen (2019) study the stochastic parallel machine schedul-
ing problem with precedence constraints. They perform a computational study to determine
the quality and relations of several robustness measures. They investigate several slack-based
robustness measures that combine certain slack properties by summing them, taking the
average or taking the minimum. Furthermore, they investigate the normal approximation
method from Passage et al. (2016).

Hessey et al. use simulation to measure several quantitive definitions of robustness. To
asses the quality robustness, they estimate the following from the simulation: the aver-
age makespan, the 95-th percentile of the makespan and the coefficient of variation of the
makespan. To assess solution robustness, they use the following performance metrics for
the simulation: the total deviation from the planned start times of jobs and the percentage
of jobs that start on their planned start time.

Hessey et al. consider two distributions for the job processing times: a normal distri-
bution and an exponential distribution, with means pj . Using a multi-start hill-climbing
local search procedure with the objective of minimizing the deterministic makespan, they
generate schedules to perform the experiments with. To determine the correlation between
the robustness measures and the performance metrics from the simulation, they compute
the Spearman’s rank correlation coefficient.

They show that the deterministic makespan and the normal approximated makespan
have a strong correlation with the expected makespan and the 95-th percentile of the
makespan. Additionally, they show that there is no strong correlation between the total
start delays of jobs and any of the robustness measures they investigated. Similarly, there
also seems to be no strong correlation between the percentage of on time jobs and any of

11

the robustness measures. Hessey et al. argue that it is hard to estimate the total start delay
and the the percentage of on time jobs, as they vary a lot in each simulation run. Following
these results, they conclude that solution robustness is hard to estimate, even when using
simulation.

In their model, the slack based measures are not good estimators for any of their defini-
tions of robustness. Hessey et al. argue that this can be due to the fact that their testcases
have no deadline and are all earliest start schedules. This causes the slack in the schedules
only to be due to release dates and precedence constraints. Inserting additional slack is not
considered. Slack based measures can be more effective if a deadline is considered and the
goal is to distribute the jobs, given a certain machine assignment. From this, they conclude
that slack based measures are not suitable to be optimized on by themselves without bounds
on the makespan.

2.3 Algorithms for stable baseline schedules

Herroelen and Leus (2004) present a mathematical programming model that aims at con-
structing stable baseline schedules for the project scheduling problem with a due date. Their
objective is to minimize the expected weighted deviation of the start times of the activities
from the planned start times. In their model, they assume that exactly one disruption in
an activity duration will take place. This follows the approach of Jorge Leon et al. (1994).
Additionally, they assume that activities will not start before their planned start time.

Herroelen and Leus compare their model to three additional heuristics adapted to their
problem by simulating the resulting schedules and computing the weighted deviation from
the baseline schedule. The experiments show that their proposed mathematical program-
ming model results in less deviation than the three other heuristics, for any number of
disruptions in the activity durations.

Lambrechts et al. (2008) present a tabu search approach for the RCPSP with the aim
of maximizing the schedule’s stability considering uncertainty in the resource availabilities.
The objective function in the tabu search procedure is a surrogate robustness measure that
consists of an instability weight for each job and a free slack utility function that gives
decreasing returns per extra unit of free slack allocated to a job. This objective function
is penalized by the the amount that the deadline is exceeded, weighted by the number
of iterations that no improvement was found. The procedure uses two neighbourhoods.
The first neighbourhood operator is the of swapping two jobs. The second neighbourhood
operator consists of increasing a job’s buffer with a discrete value between −∆ and ∆. ∆
varies during the operation of the algorithm, starting with a lower value and increasing it
when no improvements can be found. For each neighbourhoods they use a different iteration
type, which are applied in an alternating way. Lambrechts et al. show with a simulation
experiment the their procedure performs better than traditional approaches that do not
allow insertion of buffers, and approaches that use simpler buffering heuristics.

Van de Vonder, Demeulemeester, and Herroelen (2008) develop several heuristic proce-
dures to generate stable baseline schedules for the RCPSP subject to a project due date.
They adopt a two-stage approach in which the problem is first solved without “protection”,
and buffers are added afterwards in the second stage. They propose three buffer alloca-
tion algorithms. Their first heuristic, virtual activity duration extension (VADE), computes
modified durations of the activities based on their standard deviation. These adjusted du-
rations are then used to construct the baseline schedules. Secondly, their starting time
criticality (STC) heuristic combines information about the processing time variability and
the activity weights. Finally, they propose a tabu-search procedure that starts with the
schedule obtained with the STC-heuristic. They perform a simulation study and determine
that the STC heuristic generally performs the best.

Liang, Cui, Hu, and Demeulemeester (2020) present a bi-objective optimization model
for the RCPSP with the objectives of minimizing the makespan while maximizing the stabil-

12

ity of a schedule subject to processing time variability. The objective function consists of the
normalized combination of the STC and the makespan. They propose two-stage algorithm
in which they generate robust resource allocations in the first stage, and use a simulated
annealing algorithm to optimally insert buffers in the second stage. In this simulated an-
nealing algorithm, the neighbourhood operator increases the buffer of a job with a value
between −∆ and ∆, following the work of Lambrechts et al. (2008). Liang et al. perform
several experiments and show that their proposed two-stage algorithm is effective to create
schedules that are both quality and solution robust.

2.4 Conclusion

In this chapter we looked into literature on several robustness measures. There does not
seem to be consensus on the definition of true robustness and on which robustness measures
are good estimators of the true robustness. Some of the measures are purely slack-based,
meaning that they don’t require information about the job processing time distribution.
These measures base their approximation on the total slack or free slack of a schedule with
a certain slack function such as taking the sum, weighted sum, or minimum. Other measures
use information about the uncertainty to approximate the true robustness. Even though
these measures may provide a more accurate estimate of the robustness, their assumption
that information about the probability distribution of the processing times is know may
limit their use in real life applications.

Furthermore, we discussed several studies performed to examine the quality of robustness
measures. The results of these studies were inconsistent, demonstrating the difference in
performance of robustness measures for different scheduling problems and definitions of
robustness. Therefore, we will investigate the quality of the robustness measures for buffered
schedules for the stochastic parallel machine scheduling problem with a global deadline
constraint, with the aim of creating solution robust schedules that respect their deadline.

13

Chapter 3

Robustness Measures

In this chapter we define the robustness measures that we will evaluate. These measures
are based on the literature reviewed in Chapter 2. Additionally, we propose new robustness
measures.

3.1 Slack based measures

Sum of slacks

Jorge Leon et al. (1994) define the average total slack as a robustness measure. Since we
are interested in comparing the robustness of schedules of the same instance, the number of
jobs is a constant. Therefore, we compute the sum of total slacks for schedule S.

RM1(S) =
∑
j

TSS
j (3.1)

Similarly, Al-Fawzan and Haouari (2005) define the sum of free slacks as a robustness
measure.

RM2(S) =
∑
j

FSS
j (3.2)

Minimum slack

Kobylański and Kuchta (2007) argue that maximizing the minimum slack will ensure that
the slack of all jobs will be maximized, which means all jobs are protected against delays.

We compute the minimum total slack. This measure is equivalent to the deterministic
makespan, as the minimum total slack is the total slack of the critical path. This is equal
to the difference between the deterministic makespan and the deadline.

RM3(S) = min
j
{TSS

j } (3.3)

Kobylański and Kuchta (2007) define the minimum of the free slack/processing time ratios
as a robustness measure.

RM4(S) = min
j
{FSS

j /pj} (3.4)

Bounded free slack

Chtourou and Haouari (2008) argue that summing all free slacks will wrongfully inflate the
usefulness of additional slack. Therefore, they propose to use the sum of the minimum over

14

the free slacks and a fraction of the processing time.

RM5(S) =
∑
j

min{FSS
j , λpj} (3.5)

where 0 < λ < 1. Chtourou and Haouari suggest to set λ to the expected percentage
increase in the processing time of the job.

Alternatively, they propose summing a binary value indicating if free slack exists.

RM6(S) =
∑
j

αj where

{
αj = 1 if FSS

j > 0

αj = 0 otherwise
(3.6)

Weighted free slack

Chtourou and Haouari (2008) define several robustness measures by weighing the free slack
of a job in various ways. They look at the RCPSP and weigh the free slack of a job
with its resource requirements. Since we do not consider resource requirements, we use the
processing time of the jobs as the weight instead. A job that has a long processing time
is more likely to face a (longer) delay. When such jobs have a larger free slack, it is more
likely that the delay can be absorbed. Therefore, we sum the free slacks weighted by the
processing time of a job.

RM7(S) =
∑
j

FSS
j × pj (3.7)

A job that has a large number of predecessors is more likely to experience a delayed start
time caused by a delayed preceding job. When such jobs have a larger free slack, it is more
likely that the start delay can be absorbed and will not propagate further. Therefore, we
define a measure that sums the free slacks weighted by the number of direct predecessors.

RM8(S) =
∑
j

FSS
j ×NDPS

j (3.8)

where NDPS
j is the number of direct predecessors of job j in schedule S.

Chtourou and Haouari (2008) define a measure as the sum of the free slacks weighted
by the number of direct successors. When a job that has a large number of successors is
delayed, it will influence the start time of more succeeding jobs. When such jobs have a
larger free slack, it is more likely that the delay can be absorbed and succeeding jobs can
still start on time.

RM9(S) =
∑
j

FSS
j ×NDSS

j (3.9)

where NDSS
j is the number of direct successors of job j in schedule S.

Chtourou and Haouari (2008) combine weighing the free slack with the resource require-
ments and the number of direct successors. Therefore, we propose a measure where we
combine RM7 and RM9 and weigh the free slack by the processing time and the number of
direct successors.

RM10(S) =
∑
j

FSS
j × pj ×NDSS

j (3.10)

Slack sufficiency

One variant of the slack sufficiency measure proposed by Khemakhem and Chtourou (2013)
is defined as the capacity of jobs to absorb the possible delay in the job itself or in one of

15

the jobs that precede it. For each job j, we count how many times the free slack of job j is
at least a fraction λ of the processing time of the job itself or one of the jobs that precede
it:

RM11(S) =
∑
j

|{i | i ∈ precSj ∪ {j}, FSS
j ≥ λpi}| (3.11)

where precSj are all jobs preceding job j in schedule S, i.e job i must be finished before job
j can start. This includes the machine predecessors. Khemakhem and Chtourou suggest
that λ should be set to the expected percentage increase in the processing time of the job.

If a job i has no given precedence constraint to job j, and i is assigned before j on
the same machine, an additional predecessor i ∈ precSj is introduced. Counter-intuitively,
schedules with more precedence relations may get higher robustness values from RM11.
This can stimulate placing jobs with precedence constraints on different machines, so that
additional precedence relations are introduced. To combat this, we define the complement
of RM11, counting how many times the free slack is not sufficient. As this will give a higher
value for less robust schedules, this can be seen as the costs for being non-robust.

RM12(S) =
∑
j

|{i | i ∈ precSj ∪ {j}, FSS
j < λpi}| (3.12)

Interval schedule

Wilson et al. (2014) propose a measure to determine the flexibility of a Simple Temporal
Network. In this measure we want to assign an interval to each job. The goal is to find the
assignment of intervals to activities in such a way that each job can be started within its
interval, and the total length of the intervals is maximal. We adapt it to use the planned
start time PST instead of the earliest start time EST . The intervals can be computed with
this linear program.

RM13(S) =max
∑
j

(lj − ej)

s.t. PSTS
j ≤ ej ≤ lj ≤ LSTS

j ∀j
lj + pj ≤ ei ∀j ≺ i

(3.13)

van den Broek et al. (2018) change the objective of the linear program to maximize the
minimum interval. This will make the interval schedule more evenly distributed. Again, we
adapt it to use the planned start time PST instead of the earliest start time EST .

RM14(S) =max min
j

(lj − ej)

s.t. PSTS
j ≤ ej ≤ lj ≤ LSTS

j ∀j
lj + pj ≤ ei ∀j ≺ i

(3.14)

3.2 Normal approximation

Passage et al. (2016) present a method to approximate the schedule makespan distribution
based on the work of Nadarajah and Kotz (2008) for calculating the maximum of two
normal distributions. To do this efficiently, we can use dynamic programming by evaluating
the jobs in topological order, and computing the distribution of the start time STj and the
completion time CTj of job j. We compute STj as the maximum over the planned start time
PSTj and the maximum of the completion time distribution over all direct predecessors.

STj = max{PSTj ,max
i≺j

CTi} (3.15)

16

From this, we can compute the completion time distribution CTj of job j. This computed
by adding the processing time distribution Dj to the start time distribution STj .

CTj = STj +Dj (3.16)

van den Broek et al. (2018) then define a robustness measure as the probability that the
last job is finished before the deadline.

RM15(S) = P (max
j

CTj ≤ d) (3.17)

Following this work, we define a new robustness measure based on the start time distri-
butions STj of the jobs. We sum over each job the probability that the job will be started
on time, considering its planned starting time.

RM16(S) =
∑
j

P (STj ≤ PSTS
j) (3.18)

3.3 Measures based on predecessor slack

The free slack of a job has no influence on its own probability to start on time. A job may
be delayed if its predecessors take longer then expected. To measure solution robustness,
we therefore need to consider the slack of the predecessors of a job.

We define a robustness measure that computes for each job the fraction of its predecessors
that have enough free slack to absorb their expected delays.

RM17(S) =
∑
j

αj where

αj =
|{i | FSS

i ≥ λpi, i ∈ dprecSj }|
NDPS

j

if NDPS
j > 0

αj = 1 otherwise

(3.19)

where dprecSj are all direct predecessors of job j in schedule S and λ is the expected per-
centage increase in the processing time.

Alternatively, we can estimate how much start delay we expect for each job based on
the free slack of its direct predecessors. For each job j we compute its expected start delay
ESDj by evaluating the jobs in topological order.

ESDS
j = max

i≺j
{max{λpi + ESDS

i − FSS
i , 0}} (3.20)

where i ≺ j indicates that i is a direct predecessor of j. The robustness measure is then
defined as the sum of all estimated start delays.

RM18(S) =
∑
j

ESDS
j (3.21)

17

Chapter 4

Robustness Measure Evaluation

In this chapter we perform experiments to determine the quality of the robustness measures
presented in Chapter 3. The goal of these experiments is to determine how well each
robustness measure is able to approximate the quality and solution robustness of schedules
with buffers and a deadline. We assess the quality of the estimations by computing the
correlation between the robustness measures and the results of a Monte Carlo simulation
on a large set of instances and various performance metrics.

4.1 Experimental Setup

4.1.1 Problem instances

The difficulty in evaluating robustness measures is that they are only suitable for comparing
schedules for the same problem instance. However, the experiment must be representative
for the problem in general, not just for one problem instance. Therefore, we repeat the
experiments for various instances.

We use the same problem instances as Passage et al. (2016). These are 12 instances,
titled nJ-rR-mM where n is the number of jobs, r is the number of precedence constraints
and m is the number of machines. Additionally, we generate a second set of 12 problem
instances, titled nJ-rR-mM-2, for the same combinations of n, r and m as the first set of
instances. This is to test the robustness measures more extensively, as instances with the
same parameters can still give different results. We generate these problem instances in
the same way as Passage et al.: Processing times of the jobs are randomly chosen in the
interval [1, 20]. Release dates are chosen randomly from the interval ⌊0, n/2⌋. We select p
precedence relations at random but such that no cycle occurs.

4.1.2 Setting the Deadline

The instances of as Passage et al. (2016) do not have a deadline. Since we consider the
problem with a global deadline constraint, we have to set a certain deadline for each instance.
This deadline needs to be at least the minimal makespan for the instance, otherwise it would
never be possible to find a feasible schedule. Therefore, we need a lower bound on the
makespan.

Summing processing times A simple lower bound on the makespan is to take the sum
of processing times divided by the number of machines. To account for the release dates,
we add the m smallest release dates. This gives us:

minimalLength =

∑
j{pj}+m smallest rj

m

18

Van de Vonder, Demeulemeester, Herroelen*, and Leus (2006) showed that a due date
setting of 1.3× Cmax is suitable for a stable schedule. Therefore, we scale minimalLength
with 1.3 to account for the uncertain processing times.

Critical path Another lower bound on the makespan is the critical path length cpLength.
A common way to account for the uncertainty is by increasing the length with 50% (Van de
Vonder et al., 2006). However, the standard deviation of the critical path length depends
on the number of jobs on the path cpJobs. The more jobs on the critical path, the lower
the standard deviation becomes. Therefore, we scale this 50% by dividing by

√
cpJobs.

Deadline setting If the critical path is long, the makespan is more likely to be deter-
mined by cpLength. If it is short, the makespan is more likely to be determined by the
minimalLength. Therefore, we set the deadline d to the maximum of the two:

d = max

{
cpLength×

(
1 +

0.5√
cpJobs

)
,minimalLength× 1.3

}

4.1.3 Schedule Generation

Since robustness measures will be used to evaluate the robustness of a variety of schedules,
robust and non-robust, we also need to test them on a diverse set of schedules for a given
problem instance. Therefore, we follow the approach of Hessey et al. (2019) of using a
local search procedure with random elements to ensure that we get diverse assignments of
jobs to machines. This is done by generating schedules with the objective of minimizing the
makespan, assuming that all processing times are deterministic. We use a simple multi-start
local search algorithm in which we run a hill-climbing local search multiple times to obtain
s unique schedules (Algorithm 1). The local search is intentionally not very advanced, since
the goal is to find a diversity of schedules, not the best possible schedule. However, we do
not accept solutions that have a makespan larger than the deadline.

Algorithm 1 For a given schedule problem instance P , find s schedules

1: procedure MultiStartLS(P , s)
2: schedules← ∅
3: for i← 0 to s do
4: repeat
5: S ← GetInitialSolution(P)
6: S ← HillClimbing(S)
7: until Cmax(S) ≤ d and schedules does not contain S
8: Add S to schedules
9: return Schedules

The hill-climbing procedure (Algorithm 2) is based on the work of Hessey et al. (2019). In
this procedure, we consider neighbour solutions that are obtained by swapping jobs with its
machine predecessor (N0), and by moving jobs to any feasible position (N1). When exploring
a neighbourhood, the first improving neighbour is accepted as the new schedule. Therefore,
the neighbours from a neighbourhood are explored in a random order. Neighbourhoods are
explored in an alternating way, starting with N0. When no improvement can be found with
any of the neighbourhood operators, the schedule is returned.

19

Algorithm 2 For a given initial solution S, iteratively improve the solution by swapping
or moving jobs

1: procedure HillClimbing(S)
2: k ← 0
3: repeat
4: S′ ← first improving neighbour from exploring Nk in random order
5: if S′ exists then
6: S ← S′

7: else
8: k ← (k + 1) mod 2 ▷ go to next neighbourhood

9: until no improvement exists

An initial solution is obtained with a greedy algorithm (Algorithm 3) by repeatedly
selecting the job that can start the earliest from all jobs without unassigned predecessors
and scheduling it on the machine with the earliest completion time. If there are multiple
candidate jobs or machines that fulfil these criteria, we choose a random job or machine
from the candidates.

Algorithm 3 For a given problem instance P , greedily create a feasible schedule

1: procedure GetInitialSolution(P)
2: while unassigend job exists do ▷ Random tie-breaking
3: j ← job without unassigned predecessors that can start earliest
4: m← machine with earliest completion time
5: schedule job j on machine m

Inserting buffers

Schedules generated by the local search approach will be earliest start schedules, as the
algorithm aims to minimize the makespan. Since our final goal is to assign specific start
times to jobs by inserting buffers into the schedule, we also need testcases with varying
buffers between jobs.

When inserting buffers we need to consider the deadline, because the testcases will not
be interesting in terms of quality robustness if they all cannot finish within the deadline.
Therefore, we use the LP from RM14 (equation 3.14) to compute maximum intervals for
jobs. As this LP maximizes the minimum interval, the intervals for jobs will be evenly
distributed. This will give us the maximum amount of buffer we can assign to each job.

To insert buffers in a diverse way for a given schedule, we randomly choose buffers
between a lower bound and an upper bound and repeat this r times. These lower and upper
bounds are percentages of the computed maximum buffers. We start with a lower bound
of 0 and a upper bound of 0.1, and continue to increase the upper bound with 0.1 until it
is 1. Then, we start increasing the lower bound with 0.1 until it is 0.9. This gives us 19
different intervals. Additionally, we include the schedule without buffers and the schedule
with maximal buffers. This way, we get 19r + 2 different buffer assignments for a given
schedule.

20

Algorithm 4 For a given earliest start schedule S, generate different schedules by allocating
varying buffers

1: procedure Insert buffers(S, r)
2: schedules← {S} ▷ Include schedule without buffers
3: maxBuffers← getMaxIntervals(S) ▷ from LP (equation 3.14)
4: intervals← {(0, 0.1), (0, 0.2), ..., (0, 1)} ∪ {(0.1, 1), (0.2, 1), ..., (0.9, 1)}
5: for all (min,max) ∈ intervals do
6: repeat r times
7: for all jobs j do
8: buffersj ← random(min×maxBuffersj ,max×maxBuffersj)

9: S′ ← insertBuffers(S, buffers)
10: add S′ to schedules
11: S′ ← insertBuffers(S,maxBuffers) ▷ include schedule with maximal buffers
12: add S′ to schedules
13: return schedules

4.1.4 Simulation

We perform a Monte Carlo simulation to accurately estimate the true robustness. A schedule
is simulated by visiting the jobs in topological order and computing the realized start times
based on the processing times drawn from the given probability distribution Dj .

To determine the robustness of a schedule based on the simulation, we record the fol-
lowing performance metrics:

� The average realized makespan (quality robustness).

� The fraction of samples that was completed within the deadline (quality robustness).

� The average fraction of jobs that started on time (solution robustness).

� The average sum of job delays (solution robustness).

4.1.5 Processing time distributions

We use the following distributions Dj for the job processing times:

� Normal distribution with mean = pj and standard deviation = α× pj
(N25 denotes α = 0.25)

� Log-normal distribution with mean = pj and standard deviation = α× pj
(LN25 denotes α = 0.25)

� Exponential distribution with mean = pj (Exp)

Some of the robustness measures use a parameter λ. Chtourou and Haouari (2008) and
Khemakhem and Chtourou (2013) suggest that λ should be set to the expected percentage
increase of the processing time. A way to estimate this is by taking a certain percentile of
processing time distribution. In the experiments of van den Akker et al. (2013), taking the
70th percentile gave the best result. Therefore, we set the expected increase to F−1(0.7)−pj ,
where F−1(x) is the inverse cumulative distribution function for a given distribution Dj .

4.1.6 Realizing start times

Since the processing times are stochastic, a job may not be able to start on its planned start
time due to delayed predecessors. In that case, we use a policy where the job will be delayed
as much as necessary while remaining on the same machine and in the specified order.

21

On the other hand, a job may be able to start earlier than planned because it predeces-
sors were finished earlier than expected. In this case, we can either allow the job to start
earlier than its planned start time (shift to the left), or let the job wait until its planned
start time. Starting earlier is only useful for earliest start schedules with the goal of min-
imizing the makespan. Starting earlier in schedules with buffers will defeat the purpose
of assigning specific start times. The buffers are inserted to improve the stability of the
schedule execution. Letting a job start earlier will make the schedule deviate more from the
original schedule, decreasing solution robustness. Therefore, we will not allow jobs to start
earlier, and treat the planned start times equivalent to release dates for the computation of
the robustness measures and for the simulation.

4.1.7 Steps of experiments

To determine the quality of the robustness measures, we execute the following 4 steps for
each problem instance:

1. We generate 10 earliest start schedules using the multi-start local search approach
(Algorithm 1 with s = 10). We then insert buffers into each ESS using the buffer
insertion approach (Algorithm 4) with r = 5, which will result in 19 × 5 + 2 = 97
schedules per ESS (see Section 4.1.3). Therefore, we obtain 10 × 97 = 970 schedules
in total for each problem instance.

2. Compute each robustness measure for the generated schedules.

3. Perform 1000 simulation runs and compute performance metrics for each processing
time distribution.

4. Compute Spearman’s rank correlation coefficients (Spearman’s ρ) between the robust-
ness measures and the performance metrics.

22

4.2 Initial evaluation of all RMs

To narrow down the selection of robustness measures and rule out bad performing measures
for the rest of the experiments, we perform an initial investigation. In this first phase,
we test all robustness measures with limited instances and probability distributions. We
perform the experiment on the 12 instances by Passage et al. (2016) (excluding our own
generated instances). These consist of:

� 6 small instances with n = 30, r ∈ {15, 30, 75} and m ∈ {4, 8}

� 6 large instances with n = 100, r ∈ {50, 100, 250} and m ∈ {6, 12}

The following probability distributions for Dj are used: N25, LN25, Exp. Next to the
defined robustness measures, we consider the deterministic makespan Cmax as a measure.

4.2.1 Results

In this section we discuss our initial findings of the correlation between the robustness
measures and quality and solution robustness. A Spearman’s ρ value close to -1 or 1 indicates
a good correlation between the RM and the performance metric, whereas a value close to 0
indicates a poor correlation. The figures in this section show for each RM and probability
distribution, a boxplot of the absolute values of the Spearman’s ρ. The green highlighted
boxes indicate a mean value of at least 0.9. The complete result tables can be found in
Appendix A.

Results Quality Robustness

Figures 4.1 and 4.2 show the results for the average makespan and the fraction within
deadline, respectively. It appears that the correlations when using N25 or LN25 are nearly
identical. When using Exp, the performance of most robustness measures becomes worse.
Furthermore, the results for estimating the average makespan and the fraction within dead-
line are similar.

Cmax, RM1, RM3 and RM15 have the best overall performance on estimating both
the average makespan and the fraction within deadline. Cmax and RM3 have identical
correlations, as these are equivalent measures. RM6, the sum of binary values indicating
if free slack exists, shows a correlation of close to zero with both performance metrics and
all distributions. This is because the test schedules we used are mostly schedules where
we inserted buffers for all jobs, giving all jobs free slack. Only 10 out of 970 schedules per
instance are schedules where no buffers are inserted. This means that RM6 will only be
able to make a distinction between the 10 schedules and the 960 others, which results in a
poor correlation.

The rest of the measures show a high variability in correlation, as the range in correla-
tions over the instances is large for both performance metrics and each distribution. RM9

and RM10 show a high median correlation with both performance metrics, but have some
outlier instances where the correlation is very poor. RM2, RM7 and RM13 show overall
low correlations. RM4, RM5, RM8, RM11, RM12, RM14, RM16, RM17 and RM18 have a
better median value but a low minimum value.

23

Average makespan, Exp

Average makespan, LN25

Average makespan, N25

Cmax RM1 RM2 RM3 RM4 RM5 RM6 RM7 RM8 RM9 RM10 RM11 RM12 RM13 RM14 RM15 RM16 RM17 RM18

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Robustness measure

ρ
(a

bs
ol

ut
e)

Figure 4.1: Spearman’s ρ (absolute) for average makespan. Green highlight indicates mean
≥ 0.9.

24

Fraction within deadline, Exp

Fraction within deadline, LN25

Fraction within deadline, N25

Cmax RM1 RM2 RM3 RM4 RM5 RM6 RM7 RM8 RM9 RM10 RM11 RM12 RM13 RM14 RM15 RM16 RM17 RM18

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Robustness measure

ρ
(a

bs
ol

ut
e)

Figure 4.2: Spearman’s ρ (absolute) for fraction within deadline. Green highlight indicates
mean ≥ 0.9.

Results Solution Robustness

Figures 4.3 and 4.4 show the results for estimating the fraction on time jobs and the total
job delay, respectively. Similar to the results for quality robustness, the correlations when
using N25 or LN25 are nearly identical and the performance of most robustness measures
becomes worse when using Exp. Additionally, the results for estimating the fraction on
time jobs and the total job delay are very similar.

The figures indicate that RM5, RM9, RM10, RM12, RM16, RM17 and RM18 have the
best overall correlations (mean ≥ 0.9) with both the fraction on time jobs and the total job
delay. Especially RM16, RM17 and RM18 show a very high correlation for both performance
metrics. RM4 shows a relatively high overall correlation, but the maximal value does not go
above 0.9. RM11 has a high median correlation with both performance metrics when using
N25 and LN25, but when using Exp the minimal correlation is low. Again, RM6 shows a
correlation of close to zero with both performance metrics and all distributions. The rest of
the measures show a high variability in correlation for both performance metrics and each
distribution. Cmax, RM1 and RM3 show a high median correlation with both performance
metrics, but have some outlier instances where the correlation is low. RM2, RM7, RM13

and RM14 show overall low correlations. RM8 and RM15 have a better median value but a

25

low minimum value.

Fraction on time jobs, Exp

Fraction on time jobs, LN25

Fraction on time jobs, N25

Cmax RM1 RM2 RM3 RM4 RM5 RM6 RM7 RM8 RM9 RM10 RM11 RM12 RM13 RM14 RM15 RM16 RM17 RM18

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Robustness measure

ρ
(a

bs
ol

ut
e)

Figure 4.3: Spearman’s ρ (absolute) for fraction on time jobs. Green highlight indicates
mean ≥ 0.9.

26

Total job delay, Exp

Total job delay, LN25

Total job delay, N25

Cmax RM1 RM2 RM3 RM4 RM5 RM6 RM7 RM8 RM9 RM10 RM11 RM12 RM13 RM14 RM15 RM16 RM17 RM18

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Robustness measure

ρ
(a

bs
ol

ut
e)

Figure 4.4: Spearman’s ρ (absolute) for total job delay. Green highlight indicates mean ≥
0.9.

4.2.2 Conclusion

In this section we performed initial experiments on the correlation between all robustness
measures and quality and solution robustness. The high correlations of normal approxima-
tion methods RM15 and RM16 and slack-based measures RM5, RM12, RM17 and RM18,
which are based on the expected increase in processing time, showed the advantages of
taking into account information about the processing time probability distributions.

Furthermore, the total slack-based measures RM1, RM3 are highly correlated with the
quality robustness. Total slack is closely related to quality robustness, as total slack indicates
how much room there is in the schedule for jobs to be delayed without exceeding the deadline.
Free slack is more related to solution robustness, as free slack serves a way to absorb delays
of jobs and therefore avoiding the start delay of succeeding jobs. Out of the free slack-based
measures without information about the processing time variability, RM9 and RM10 showed
the highest correlation with solution robustness. Finally, we showed that the complement
measure RM12 is more correlated with solution robustness than the original measure RM11.

Concluding, the results showed that Cmax, RM1, RM3 and RM15 have the highest
correlation with the average makespan and the fraction on time jobs. Because Cmax and
RM3 are equivalent measures, the correlations are identical. Therefore, we only consider

27

RM1, RM3 and RM15 and not Cmax in the next experiments on quality robustness. RM5,
RM9, RM10, RM12, RM16, RM17 and RM18 are the highest correlating with the fraction
on time jobs and the total job delay. Therefore, we will consider these robustness measures
for the following experiments on solution robustness.

4.3 Evaluating Best RMs

We perform more elaborate experiments to investigate the quality of the measures that
showed the best performance in the initial investigation. For these experiments we use the
full set of 24 instances. These are:

� 12 small instances with n = 30, r ∈ {15, 30, 75} and m ∈ {4, 8}

� 12 large instances with n = 100, r ∈ {50, 100, 250} and m ∈ {6, 12}

Additionally, we introduce more variability in the processing times by also considering
distributions N50 and LN50 for Dj . Finally, we record the computation time for each
robustness measure to compare their computational efficiency.

4.3.1 Results Correlations

In this section we discuss the results of the correlation between the best robustness measures
and quality and solution robustness. A Spearman’s ρ value close to -1 or 1 indicates a good
correlation between the RM and the performance metric, whereas a value close to 0 indicates
a poor correlation. The figures in this section show for each RM and probability distribution,
a boxplot of the absolute values of the Spearman’s ρ. The colours of the boxes indicate the
instance size.

Results quality robustness

We consider the following measures to approximate the quality robustness: RM1 (sum of
total slack), RM3 (minimum total slack) and RM15 (normally approximated probability
of makespan within deadline). Figures 4.5 and 4.6 show the correlations of the robustness
measures with the average makespan and the fraction within deadline, respectively.

Looking at Figure 4.5, RM15 generally has the highest correlations with the average
makespan out of the three measures. RM1 and RM3 have a better performance than RM15

for the large instances when using distributions N25, LN25. All three measures have a lower
minimal correlation with the large instances, for almost every distribution. The correlations
of RM1 and RM3 with the average makespan decline as we introduce more variability in
processing times with distributions N50, LN50 and Exp, especially for the large instances.
The correlations of RM15 shows similar results for N25, LN25, N50 and LN50, but are worse
with distribution Exp.

Figure 4.6 suggests that RM15 generally has the highest correlations with the fraction
within deadline out of the three measures as well. The results for the fraction within deadline
shows less difference in correlations between the measures, distributions and the instance
size. In general, all measures have similar correlations for N25, LN25, N50 and LN50, but
worse results with distribution Exp. However, RM3 also shows some low outlier values
with N50 and LN50 on the large instances. Overall, the performance of RM1 and RM3 is
better for fraction within deadline than for the average makespan, especially for the large
instances.

28

RM1 RM3 RM15

N25 N50 LN25 LN50 Exp N25 N50 LN25 LN50 Exp N25 N50 LN25 LN50 Exp

0.4

0.6

0.8

1.0

ρ
(a

bs
ol

ut
e)

Jobs 30 100

Figure 4.5: Spearman’s ρ (absolute) for average makespan.

RM1 RM3 RM15

N25 N50 LN25 LN50 Exp N25 N50 LN25 LN50 Exp N25 N50 LN25 LN50 Exp

0.4

0.6

0.8

1.0

ρ
(a

bs
ol

ut
e)

Jobs 30 100

Figure 4.6: Spearman’s ρ (absolute) for fraction within deadline.

Results solution robustness

To approximate the solution robustness, we consider the following measures: RM5 (sum
of minimum free slack/processing time ratio), RM9 (sum of free slack scaled by number of
successors), RM10 (sum of free slack scaled by processing time and number of successors),
RM12 (slack sufficiency inverse), RM16 (sum of normally approximated probability of job
starting on time), RM17 (sum of fraction of predecessors with free slack at least fraction of
its duration) and RM18 (sum of expected delay based on free slack of predecessors). Figures
4.7 and 4.8 show the results for the fraction on time jobs and the total job delay, respectively.

The figures indicate very similar results for the two performance metrics. RM16 is
highly correlated with both performance metrics for all distributions and instances. RM17

and RM18 also show high correlations, but have some lower outlier values. Similarly, RM5,
RM9 and RM10 overall have good correlations with both performance metrics, but have
outlier instances with worse values. RM12 has a varying performance, with high maximum
values and low minimum values.

All measures show a higher median correlation value with the large instances for both
performance metrics and all distributions. However, the lowest outliers of the large instances
are mostly worse than the small instances. Additionally, the probability distribution is less
influencing on the correlations than with the quality robustness measures.

29

RM18

RM12 RM16 RM17

RM5 RM9 RM10

N25 N50 LN25 LN50 Exp

N25 N50 LN25 LN50 Exp N25 N50 LN25 LN50 Exp

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

ρ
(a

bs
ol

ut
e)

Jobs 30 100

Figure 4.7: Spearman’s ρ (absolute) for fraction on time jobs.

30

RM18

RM12 RM16 RM17

RM5 RM9 RM10

N25 N50 LN25 LN50 Exp

N25 N50 LN25 LN50 Exp N25 N50 LN25 LN50 Exp

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

ρ
(a

bs
ol

ut
e)

Jobs 30 100

Figure 4.8: Spearman’s ρ (absolute) for total job delay.

4.3.2 Computational efficiency

To compare the computational efficiency of the robustness measures, we record the total time
it takes to evaluate the 970 generated schedules for the smallest and the largest instance.
We repeat this 100 times and report the average total time. As a comparison, we also record
the time of evaluating the 970 schedules by performing 100 simulation runs and computing
Cmax. For this experiment a laptop with an Intel® CoreTM i7-4750HQ @ 2.00GHz processor
was used.

The results can be seen in Table 4.1. It shows that Cmax and slack-based measures
RM1, RM3, RM5, RM9, RM10 are similar in terms of computation time. To compute
them, the schedule has to be traversed once. RM17 and RM18 are slack based measures
that take more time because the schedule has to be traversed twice to compute them.
Additionally, we can see that normal approximation methods RM15 and RM16 are less
computationally efficient than the simpler slack-based measures. Furthermore, the more
complex slack-based measure RM12 has a bad efficiency in comparison to the other measures.
Finally, the robustness measures all show a significantly better computational efficiency than
performing 100 simulations. This is as expected, since running 100 simulations requires
traversal through the graph 100 times.

31

30j-15r-4m 100j-250r-12m

Cmax 3.17 13.38
RM1 4.30 19.40
RM3 2.78 17.54
RM5 4.28 18.80
RM9 2.22 13.19
RM10 2.13 12.48
RM12 18.74 228.77
RM15 15.17 83.46
RM16 13.88 90.65
RM17 4.94 39.20
RM18 5.02 42.82
100Sim 362.39 1483.82

Table 4.1: Computation time in milliseconds of evaluating 970 schedules

4.3.3 Conclusion

In this section we performed more elaborate experiments to investigate the correlation of the
best robustness measures with the quality and solution robustness. For these experiments
we used the full set of 24 instances and introduced more variability in the processing times.
Additionally, we reported the computational efficiency of the measures.

We have shown that RM1, RM3 and RM15 have high correlations with quality ro-
bustness. RM15 generally gives the best results. This is as expected, as this measure is
formulated to approximate the probability that the makespan is within the deadline, which
is exactly what the performance metric fraction within deadline computes. To give an accu-
rate approximation, RM15 uses information on the processing time probability distributions.
If this information is not known, the total slack-based measures RM1 and RM3 are good
alternatives. RM3, the minimum total slack, is equivalent to the makespan of a schedule for
problems with a deadline. Since the makespan can be computed more efficiently than the
normal approximation, it seems likely that using the deterministic makespan is sufficient to
obtain quality robust schedules for problems with buffers and a deadline.

Furthermore, we have shown that the normal approximation method RM16 has excep-
tionally high correlations with solution robustness. Analogous to RM15, the high perfor-
mance of RM16 is expected since it approximates the probability that a job can start on
time, which is precisely what the performance metric fraction on time jobs computes. Mea-
sures RM5, RM17 and RM18 show high correlations as well, but for some instances the
performance is not optimal. These four measures depend on information about the job pro-
cessing time probability distributions. RM16 normally approximates job start times based
on the processing time distribution. RM5, RM17 and RM18 are based on the expected
increase in job processing times. If we have no information about the distributions, free
slack-based measures RM9 and RM10 provide an alternative. These measures show overall
good correlations with solution robustness, but depending on the instance, these measures
could provide poor estimates.

4.4 Conclusion Robustness Measure Evaluation

In this chapter, we have studied the ability of several robustness measures to estimate the
quality and solution robustness of schedules with buffers and a deadline. To this end, we
compared the robustness measures with the results of a Monte Carlo simulation and reported
their correlation.

We have shown that robustness measures based on the normal approximations of the job
processing times are strongly correlated with robustness of the schedules, but do require more

32

computation time than most slack-based measures. Additionally, slack-based measures that
are based on the expected increase of the processing times appeared promising as well. This
shows us the advantages of having information about the variance in processing times. If
this information is not know, several purely slack-based measures provide a good alternative
and require less computation time, but will generally give less accurate results.

Finally, we have shown that computing the robustness measures only takes a fraction of
the time of performing a sufficient number of simulation runs, illustrating the computational
advantage of using robustness measures over simulation.

33

Chapter 5

Local search for robust
scheduling

Based on the results of the simulation study, we have determined which robustness measures
have the highest correlation with quality and solution robustness performance metrics. In
this chapter, we present a local search algorithm in which we use a combination of these
best robustness measures to determine the quality of a solution. This allows us to examine
the performance of the robustness measures in a practical setting.

5.1 Algorithm Outline

In this section, we discuss our local search approach that generates buffered schedules. Our
algorithm is an adaption of the local search method of Passage et al. (2016).

5.1.1 Assigning jobs to machines

Passage et al. (2016) present a local search approach for parallel machine scheduling with
precedence constrains and release dates. This approach consists of an iterated local search
algorithm with a variable neighbourhood descent subroutine.

Neighbourhoods

Local search is a procedure where we iteratively try to find a better solution by making
(small) changes to the current solution. A new solution found by making a modification
with a certain operator is called a neighbour solution. A neighbourhood is the set of all
neighbours that can be found by applying a certain neighbourhood operator. Passage et al.
(2016) define the following neighbourhood operators:

k-swap The swap operator selects two jobs and swaps them in the schedule. The k-swap
operator selects a chain of k jobs and moves each job in the chain to the position of the
next job in the chain. More formally, k jobs j1, j2, . . . , jk are selected, and ji is put at the
position of ji+1 for i < k and jk is put at the position of j1.

k-move The move operator selects a job and inserts it at a position different than its cur-
rent position in the schedule. The k-move operator performs k successive move operations.

The neighbour solutions created by these operations may violate the precedence relations
of the schedule. Therefore, only feasible neighbours are considered. A neighbour solution is
regarded as feasible if all precedence relations are respected (no cycles in the schedule).

34

Variable Neighbourhood Descent

To combine the neighbourhood operators in one procedure, Passage et al. use a variable
neighbourhood descent (VND) algorithm. In this algorithm, a sequence of neighbourhood
operators N1, . . . , Nkmax

is defined, which are alternated throughout the search process.
A subroutine of the algorithm repeatedly selects the first improving neighbour from the
current neighbourhood Nk, while investigating at most l neighbours in a random order. If
an improving solution is found, we continue with the first neighbourhood N1. Otherwise,
we continue with the next neighbourhood in the sequence Nk+1. The algorithm stops when
all neighbourhoods are exhausted.

Iterated Local Search

To improve the local optimum found by the VND algorithm, Passage et al. apply the
VND procedure as a subroutine in an iterated local search (ILS) approach. ILS is based
on the principle that a better local optimum can be found by making small modifications
(perturbations) to the current solution and starting the local search subroutine again with
the perturbed solution as the initial solution. Passage et al. perturb the current solution
by applying the k-swap operator to swap k random jobs. After the perturbation, the VND
subroutine is applied again and returns a new solution. If that is better than the current
solution, the ILS continues with the new solution. This is repeated for a specified number
of times.

5.1.2 Inserting buffers

The local search approach described in Section 5.1.1 creates earliest start schedules: no
buffers are inserted between jobs. To insert buffer into these schedules, we use a hill-
climbing (HC) procedure. We adopt the neighbourhood operator from Lambrechts et al.
(2008), in which the buffer of a job is increased or decreased by a discrete value between
[−∆,∆]. The neighbourhood consists of all feasible buffer changes of all jobs. A neighbour
solution is considered feasible if the resulting buffer of the job is larger than or equal to
zero, and at most the available total slack of the job. In each iteration, we select the best
improving neighbour as the current solution. The algorithm stops when no improvement
can be found any more.

5.1.3 Objective Function

Solution robustness and quality robustness are two conflicting objectives, as inserting buffers
into the schedule will increase the makespan. There are several ways to deal with this
conflict. A bi-objective model can be defined which makes a trade-off between solution and
quality robustness (Al-Fawzan and Haouari (2005), Liang et al. (2020)). Another approach
is to set a lower bound on one of the robustness objectives, while maximizing the other
objective (Chtourou and Haouari (2008), Lambrechts et al. (2008)).

We adopt the last approach, in which we aim to maximize the solution robustness, while
having a lower bound on the quality robustness. However, setting the lower bound as a
constraint will restrict the search space too much. Therefore, we relax the constraint and
use a penalty term to represent the lower bound on quality robustness. This gives us the
following objective function f to evaluate the quality of a solution:

f(S, pw) = O(S)− pw × P (S) (5.1)

in which O(S) is an objective function that determines the solution robustness, and P (S)
is a penalty function that determines the violation of the constraint on quality robustness.
pw serves as a penalty weight, which indicates the importance of the penalty value.

35

Adaptive penalty

Using a static penalty weight can be difficult, because it requires extensive fine-tuning to
find the right value, and even then it is possible that an infeasible solution will be found.
To overcome this difficulty, a dynamic penalty can be used. A dynamic penalty evolves as
the search process progresses. This allows the algorithm to explore the search space at first,
and as the penalty is gradually increased, the algorithm is guided towards a search space
that is more likely to contain a feasible solution.

Joines, Houck, et al. (1994) propose a penalty function in the form of pw = (βi)α, in
which i is the current iteration. To control the starting value, we introduce a fourth param-
eter γ, resulting in the following penalty update function:

UpdatePenalty(α, β, γ, i) = (β × (i+ γ))α

5.1.4 Local Search Algorithm For Solution Robustness

We adapt the ILS algorithm of Passage et al. to include the buffer insertion HC procedure
described in Section 5.1.2, and incorporate the concept of a dynamic penalty.

To combine the VND with the buffer insertion HC, we insert buffers into the resulting
VND (earliest start) schedules after each execution of the VND subroutine. For each ILS
iteration, all buffers are reset to zero to start with an easiest start schedule again in the
perturbation step and the VND.

To apply a dynamic penalty scheme in the ILS algorithm, we follow the approach of
Thomas and Manni (2014). In this approach, the penalty weight is updated before every
perturbation step. This updated penalty weight is then used in the VND and HC subroutines
to evaluate the objective function.

Combining these concepts results in ILS Algorithm 5, with VND (Algorithm 6) and HC
(Algorithm 7) subroutines. As an initial solution for the ILS algorithm, we use the greedy
algorithm (Algorithm 3) described in Section 4.1.3, which returns an unbuffered schedule.

Algorithm 5 Iterative Local Search

Input Problem instance P , perturbation amount pa, perturbation size k, objective
function f , penalty parameters α, β, γ

1: procedure ILS(P , pa, k, f , α, β, γ)
2: S ← GetInitialSolution(P) ▷ Algorithm 3 (Section 4.1.3)
3: i← 0
4: pw ← UpdatePenalty(α, β, γ, i)
5: S∗ ← VND(S, f, pw) ▷ Obtain schedule without buffers
6: S∗ ← HcBuffers(S∗, f, pw) ▷ Insert buffers into schedule
7: while i < pa do
8: i← i+ 1
9: pw ← UpdatePenalty(α, β, γ, i)

10: S′ ← ResetBuffers(S∗) ▷ Reset all buffers to zero
11: S′ ← SwapRandomK(S′, k) ▷ Perturb solution
12: S′∗ ← VND(S′, f, pw)
13: S′∗ ← HcBuffers(S′∗, f, pw)
14: if f(S′∗, pw) > f(S∗, pw) then
15: S∗ ← S′∗

16: return S∗

36

Algorithm 6 Variable Neighbourhood Descent

Input schedule S, objective function f , penalty weight pw

1: procedure VND(S, f , pw)
2: k ← 1
3: while k < kmax do
4: S′ ← first improving neighbour in Nk(S) from exploring at most l neighbours in
5: random order.
6: if S′ exists then
7: S ← S′

8: k ← 1
9: else

10: k ← k + 1

11: return S

Algorithm 7 Hill-climbing for buffers

Input schedule S, objective function f , penalty weight pw

1: procedure HcBuffers(S, f , pw)
2: while improvement exists do
3: S′ ← best neighbour from neighbourhood generated by increasing the buffer size
4: of a job by a discrete value between [−∆,+∆]
5: if f(S′, pw) > f(S, pw) then
6: S ← S′

7: return S

5.2 Experimental Setup

5.2.1 Objectives and penalties

We want to examine the performance of the robustness measures as estimators of the sched-
ule quality in the local search procedure. Therefore, we use the highest correlating robustness
measures for solution robustness as the objective function O(S) and adapt the robustness
measures with highest correlation with quality robustness to serve as a penalty P (S).

Objectives

Since we are maximizing the objective function, we need to negate the measures that have a
negative correlation with robustness. Additionally, we normalize the values of the robustness
measures, such that the values are independent of the problem instance. This is done by
dividing by the maximal value the measure can take in an unbuffered schedule. This results
in the following objectives:

ORM5
(S) =

RM5(S)∑
j λpj

(5.2)

ORM9
(S) =

RM9(S)∑
j pj ×

∑
j NDSS

j

(5.3)

ORM10
(S) =

RM10(S)∑
j pj ×

∑
j NDSS

j × pj
(5.4)

ORM16
(S) =

RM16(S)

n
(5.5)

37

ORM17(S) =
RM17(S)

n
(5.6)

ORM18(S) = −
RM18(S)∑n−1
i=0 λpJi

× i
(5.7)

where J is the set of jobs in ascending order of duration.

Penalties

As penalties we consider the deterministic makespan and the normal approximation measure
RM15. To use the makespan to set a lower bound on quality robustness, we define a penalty
that penalizes the solution when the deterministic makespan exceeds the deadline d. Since
the realized makespan will most likely be larger than the deterministic makespan, having
a deterministic makespan that is exactly (or very close to) the deadline will not result in
schedules that can be finished before the deadline. Therefore, we define another variant
where we set a bound on the makespan of 0.9 times the deadline. This factor can be
decreased further to ensure a more quality robust schedule, but we perform the experiments
with these two variants to demonstrate their difference.

RM15 approximates the probability that the schedule will finish within the deadline. To
use RM15 to set a lower bound on quality robustness, we can define a minimal probability
for the schedule to finish within the deadline according to RM15. However, we found that
this approach does not always guide the algorithm towards a feasible solution. This can
be illustrated as follows. Usually, the makespan of the initial schedule in the local search
exceeds the deadline by a significant amount such that the approximated probability of
finishing within the deadline is zero. The defined neighbourhood operators can decrease
the makespan by some amount, but since the deadline is exceeded by a large amount,
the decrease in makespan will not be enough to improve the approximated probability of
finishing within the deadline. Therefore the neighbour solution will not be accepted. This
will leave the algorithm stuck at schedules with approximated probability zero of finishing
with the deadline. Therefore, we reformulate the penalty of RM15 to take into account
the makespan value itself. This is done by taking a certain percentile of the normally
approximated makespan distribution, and penalizing the amount this percentile exceeds the
deadline. The percentile value chosen represents the amount of safety we want to consider.
For our experiments, we chose a percentile of 0.8.

We scale the penalties such that they are independent of the instance. This results in
the following penalty functions:

PCmax(S) =
max(0, Cmax − d)

d
(5.8)

PCmax0.9(S) =
max(0, Cmax − 0.9d)

0.9d
(5.9)

PRM15
(S) =

max(0, RM ′
15(S, 0.8)− d)

d
(5.10)

where RM ′
15(S, p) returns the p-th percentile of the normal

approximated makespan distribution max
j

CTj of schedule S.

Baseline values

To see the influence of using the robustness measures as objectives and penalties, we also
run the algorithm with the objective of deterministic makespan minimization (OCmax),
without a penalty (P−). Additionally, we run the algorithm where the objective function
is determined by 100 simulation runs. The objective (O100Sim) is the simulated fraction on
time jobs, and the 80th percentile of the simulated makespan serves as a penalty (P100Sim)

38

similarly to the RM15 penalty. This way, we obtain an approximation of the optimal objec-
tive function, which we can use as a baseline to compare the results of the other objective
functions to.

5.2.2 Parameters

The parameters for the VND and ILS are set in accordance with the results of Passage et
al. (2016):

� Perturbation amount pa = 20

� Perturbation size k = 5

� Number of explored neighbours l = 1000

� Neighbourhoods in order: { 1-move, 2-swap, 2-move }

After experimenting with several configurations for the penalty parameters, we concluded
the following values to be appropriate for our problem: α = 2, β = 1, γ = 1. We set the
buffer change parameter ∆ to 3, in accordance with Liang et al. (2020).

5.2.3 General Setup

For our experiments we use the same 24 instances from Chapter 4. The local search algo-
rithm is run for all combinations of objectives and penalties defined in Section 5.2.1. To
approximate the robustness of the resulting schedules, we simulate the schedules using 1000
samples and compute the following performance metrics:

� The deterministic makespan.

� The average realized makespan (quality robustness).

� The 95th percentile of the makespan (quality robustness).

� The fraction of samples that was completed within the deadline (quality robustness).

� The average fraction of jobs that started on time (solution robustness).

� The average sum of job delays (solution robustness).

The following processing time distributions are used: N25, N50, LN25, LN50, Exp. To
account for the stochasticity of the local search, we repeat the experiments 10 times and
report the average values.

5.3 Results

In this section we present the results of the local search experiments. Figures 5.1, 5.2, 5.3,
5.4 and 5.5 show the results for distributions N25, N50, LN25, LN50 and Exp, respectively.
Since the makespan and the total delay is dependent of the problem instance, we need some
sort of normalization to be able to average the results over all instances. Therefore, we
use the results of the 100 simulations objective function as a baseline value, and report the
relative difference with the baseline. The figures show for each objective function a boxplot
over all instances. Large outliers for fraction within deadline are left out, as they give a
skewed image of the true performance when the absolute values are very low (almost zero).
Since normalization is not required for the performance metrics fraction within deadline and
fraction in time jobs as the values are between 0 and 1 for all instances, we also report the
absolute values in Figure 5.6. Full result tables for instances 30j-15r-4m and 100j-250r-
12m can be found in Appendix B.

39

5.3.1 Makespan minimization

The results show that the deterministic makespan is lowest if deterministic makespan mini-
mization OCmax is applied. This also results in the highest fraction within deadline and the
lowest average and 95th percentile makespan when distributions N25 and LN25 are used.
However, deterministic makespan minimization leads to low solution robustness in general.

5.3.2 Penalties

Quality robustness

PRM15 results in the lowest 95th percentile makespan for distributions N50, LN50 and Exp,
even when the deterministic makespan is higher than OCmax and P100Sim. This indicates
that RM15 is able to account for the stochasticity better than an approximation of 100
simulations and makespan minimization when the job processing time variability is high.

Additionally, PRM15
always gives better results than PCmax in terms of the average and

95th percentile makespan and the fraction within deadline, for all distributions and objec-
tives. PRM15 generally also results in higher quality robustness than PCmax0.9, especially
for the distributions with high variability. Furthermore, when PCmax0.9 is used, the qual-
ity robustness is always better than for PCmax. This is as expected, since putting more
restriction on the makespan will leave more room to absorb delays.

Solution robustness

One might expect than since the fraction within deadline is higher for PRM15
, the fraction on

time jobs is lower, as these can be conflicting objectives. However, PRM15 also seems to have
a positive effect on the fraction on time jobs and the total job delay with all distributions.
In most cases, using PRM15

gives the highest solution robustness out of all penalties. Only
with the objectives ORM16

and ORM18
, PCmax gives a slightly better solution robustness.

However, in that case the quality robustness is significantly worse, therefore making it a
poor trade-off.

5.3.3 Objectives

Solution robustness

The results show that ORM9 and ORM10 do not have an improving effect on the fraction on
time jobs and the total job delay with penalty PCmax or PCmax0.9. The solution robustness
is worse than for the other objectives aiming to optimize solution robustness. Moreover, in
some cases ORM9

and ORM10
perform even worse than deterministic makespan minimization

OCmax, which has no incentive to optimize solution robustness.
ORM5 , ORM16 , ORM17 and ORM18 all result in a higher fraction on time jobs and lower

total job delay than makespan minimization, for every distribution and penalty. In most
cases, these measures also result in a better solution robustness than the simulation ob-
jective. ORM16

and ORM18
give the highest solution robustness out of all objectives, with

ORM16
being the best overall.

Quality robustness

Comparing the RM objectives, the quality robustness seems highest with ORM18 and the
worst with ORM9 and ORM10 . The difference is clearer with penalties PCmax and PCmax0.9.
However, the quality robustness is in general more dependant on the penalty than on the
objective.

40

Fraction on time jobs Total job delay

95th−percentile makespan Fraction within deadline

Deterministic makespan Average makespan

Cmax RM5 RM9 RM10 RM16 RM17 RM18 Cmax RM5 RM9 RM10 RM16 RM17 RM18

0.9

1.0

1.1

1.2

0.0

0.5

1.0

0

1

2

3

4

0.9

1.0

1.1

0.9

1.0

1.1

1.2

0.5

1.0

1.5

2.0

2.5

Objective

R
el

at
iv

e
va

lu
e

 100 simulation runs Penalty: − RM15 Cmax0.9 Cmax

Figure 5.1: Results for distribution N25. Values are relative to the results of 100 simulation
runs in the objective function.

41

Fraction on time jobs Total job delay

95th−percentile makespan Fraction within deadline

Deterministic makespan Average makespan

Cmax RM5 RM9 RM10 RM16 RM17 RM18 Cmax RM5 RM9 RM10 RM16 RM17 RM18

0.9

1.0

1.1

1.2

1.3

0

1

2

0.5

1.0

0.9

1.0

1.1

1.2

0.9

1.0

1.1

1.2

1.0

1.5

2.0

2.5

3.0

Objective

R
el

at
iv

e
va

lu
e

 100 simulation runs Penalty: − RM15 Cmax0.9 Cmax

Figure 5.2: Results for distribution N50. Values are relative to the results of 100 simulation
runs in the objective function.

42

Fraction on time jobs Total job delay

95th−percentile makespan Fraction within deadline

Deterministic makespan Average makespan

Cmax RM5 RM9 RM10 RM16 RM17 RM18 Cmax RM5 RM9 RM10 RM16 RM17 RM18

0.9

1.0

1.1

1.2

0.0

0.5

1.0

1.5

0

1

2

3

0.9

1.0

1.1

0.9

1.0

1.1

1.2

1.0

1.5

2.0

2.5

Objective

R
el

at
iv

e
va

lu
e

 100 simulation runs Penalty: − RM15 Cmax0.9 Cmax

Figure 5.3: Results for distribution LN25. Values are relative to the results of 100 simulation
runs in the objective function.

43

Fraction on time jobs Total job delay

95th−percentile makespan Fraction within deadline

Deterministic makespan Average makespan

Cmax RM5 RM9 RM10 RM16 RM17 RM18 Cmax RM5 RM9 RM10 RM16 RM17 RM18

0.8

0.9

1.0

1.1

1.2

1.3

0

1

2

3

0.5

1.0

1.5

0.8

0.9

1.0

1.1

1.2

0.8

0.9

1.0

1.1

1.2

1.0

1.5

2.0

2.5

Objective

R
el

at
iv

e
va

lu
e

 100 simulation runs Penalty: − RM15 Cmax0.9 Cmax

Figure 5.4: Results for distribution LN50. Values are relative to the results of 100 simulation
runs in the objective function.

44

Fraction on time jobs Total job delay

95th−percentile makespan Fraction within deadline

Deterministic makespan Average makespan

Cmax RM5 RM9 RM10 RM16 RM17 RM18 Cmax RM5 RM9 RM10 RM16 RM17 RM18

0.8

0.9

1.0

1.1

1.2

0

5

10

15

20

0.25

0.50

0.75

1.00

1.25

0.7

0.8

0.9

1.0

1.1

1.2

0.8

0.9

1.0

1.1

1.2

1.2

1.6

2.0

2.4

Objective

R
el

at
iv

e
va

lu
e

 100 simulation runs Penalty: − RM15 Cmax0.9 Cmax

Figure 5.5: Results for distribution Exp. Values are relative to the results of 100 simulation
runs in the objective function.

45

Fraction within deadline Fraction on time jobs

N
25

N
50

LN
25

LN
50

E
xp

100Sim Cmax RM5 RM9 RM10 RM16 RM17 RM18 100Sim Cmax RM5 RM9 RM10 RM16 RM17 RM18

0.2

0.4

0.6

0.8

0.25

0.50

0.75

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.3

0.5

0.7

0.00

0.25

0.50

0.75

1.00

0.0

0.2

0.4

0.6

0.8

0.00

0.25

0.50

0.75

1.00

0.0

0.2

0.4

0.6

0.0

0.1

0.2

0.3

Objective

V
al

ue

Penalty 100Sim − RM15 Cmax0.9 Cmax

Figure 5.6: Absolute values for fraction within deadline and fraction on time jobs for all
distributions and objective functions.

46

5.4 Conclusion

In this chapter we presented a local search procedure which allowed us to test the perfor-
mance of the robustness measures in a practical setting. We compared several combinations
of robustness measure based objectives and penalties to deterministic makespan minimiza-
tion and a simulation based objective function.

The results showed that the schedule with the lowest deterministic makespan will not
necessarily have the lowest average or 95th percentile makespan or the highest fraction on
time jobs. This highlights the importance of taking into account the stochasticity of the job
processing times when optimizing quality robustness. Additionally, deterministic makespan
minimization will result in a low solution robustness, as it create schedules without buffers.

Furthermore, the results showed the difficulty in using the deterministic makespan as a
lower bound for quality robustness. As illustrated, restricting the deterministic makespan
to the deadline does not mean the realized makespan will also be within the deadline. In
fact, this results in a poor fraction within deadline. This is as expected, since the jobs are
likely to take longer than their deterministic processing time. Constraining the makespan
to a lower percentage of the deadline will increase the quality robustness, but the difficulty
on how to choose this percentage remains.

Subsequently, the results showed the advantages of the normal approximation methods.
Not only does using RM15 as a penalty result in a high quality robustness, it also increases
solution robustness, despite the fact that they may be conflicting objectives. It is likely that
penalizing a high expected makespan with RM15 results in more stable schedules overall,
leading to a better fraction on time jobs and lower total job delay. For high processing
time variability, RM15 even outperforms 100 simulation runs in both quality and solution
robustness, regardless of the solution robustness objective. Additionally, optimizing normal
approximation measure RM16 results in the most solution robust schedules overall. Along-
side the improved robustness, the normal approximation has a much lower computation time
then 100 simulation runs, as shown in Section 4.3.2. Therefore, optimizing RM16 combined
with RM15 as a penalty results in a superior objective function, but this requires knowledge
about the variance of the processing times.

Next to normal approximation objective RM16, slack-based measures RM5, RM17 and
RM18 also take into account the processing time variability. The results showed that using
these measures as an objective resulted in solution robust schedules, outperforming deter-
ministic makespan minimization and generally the simulation as well. It is as expected
that optimizing these measures will result in a better solution robustness than deterministic
makespan minimization, as the measures encourage to increase the amount of free slack by
inserting buffers.

RM9 and RM10 have the advantage that they do not need information about the pro-
cessing time distribution. However, they can result in poor schedules when combined with
makespan-based penalties. The bad performance can be explained by the combination of
our algorithm and the aim of these measures to assign large free slack to jobs with a lot of
successors (and a large processing time). Our algorithm first assigns jobs to machines, and
then inserts buffer. RM9 and RM10 encourage the increase of free slack for certain jobs
in both steps of the algorithm. Increasing free slack in an earliest start schedule without
explicitly inserting buffers can only be achieved by assigning the jobs to machines in such
a way that the precedence relations cause gaps in the schedule. This results in problematic
schedules with an overly complex structure, which is not robust at all. Therefore, RM9 and
RM10 do not seem suitable in the approach where jobs are first assigned to machines, and
buffers are inserted afterwards.

47

Chapter 6

Conclusion

6.1 Summary

In this thesis we looked at the stochastic parallel machine scheduling problem with prece-
dence constraints, release dates and a deadline. In this problem, the processing times of
the jobs are not deterministic, but stochastic variables. Our aim was to investigate how
we can efficiently find solution robust schedules bounded by a deadline. Since repeatedly
simulating the schedule to accurately approximate the true robustness is computationally
expensive, surrogate robustness measures can provide a more efficient alternative.

Therefore, we evaluated several robustness measures on their ability to estimate the
quality and solution robustness of schedules with buffers and a deadline. To that end, we
generated numerous schedules for several instances. Using a multi-start hill-climbing ap-
proach we obtained various assignments of jobs to machines. Buffers were inserted into
these schedules by repeatedly choosing random buffers from different intervals, while taking
into account the schedule deadline. This resulted in the variety of schedules with different
solution and quality robustness. We compared the estimates of the robustness measures
with the results of a Monte Carlo simulation by reporting their Spearman’s rank correla-
tion coefficients for various notions of robustness and several processing time probability
distributions.

Furthermore, we implemented a local search algorithm which uses the robustness mea-
sures to evaluate the quality of the schedule. This allowed us to investigate the performance
of the robustness measures in a practical setting. We applied an iterated local search pro-
cedure with a variable neighbourhood descent subroutine to assign jobs to machines, and
a hill-climbing subroutine to insert buffers into the earliest start schedules. The highest
correlating robustness measures for solution robustness were used as an objective. Penalties
based on the highest correlating quality robustness measures were used to set a lower bound
on quality robustness. An adaptive penalty function was applied to guide the algorithm
towards a feasible solution, while not restricting the search space too much. The results
were compared to deterministic makespan minimization and a simulation based objective
function.

6.2 Conclusion

The results of our simulation study and the local search experiments have shown the advan-
tages of having information about the variance in processing times. The robustness measures
based on the normal approximations of the job processing times showed high correlations
with the quality and solution robustness, and mostly outperformed the simulation based
objective function in the local search procedure.

Additionally, slack-based measures that are based on the expected increase of the pro-

48

cessing times showed high correlations with solution robustness as well. In the local search
procedure, combining these measures with the normal approximation method resulted in
high quality and solution robust schedules.

Furthermore, if no information about the job processing time distribution is known,
purely slack-based measures could provide an alternative. Several of these measures showed
good correlations with solution robustness, but their behaviour in our local search procedure
showed some drawbacks. In a local search approach where the machine assignments and
the buffers are changed simultaneously, the performance might be better. Despite the high
correlation of the deterministic makespan with quality robustness, it is difficult to include
it in a local search approach to obtain quality robust schedules.

Finally, we showed that the robustness measures are significantly more computationally
efficient then estimating robustness with simulation. Concluding, we have found that ro-
bustness measures can provide a good alternative to simulation for generating solution and
quality robust schedules bounded by a deadline.

6.3 Future research

6.3.1 Other sources of uncertainty

In this thesis, we have looked at stochastic processing times. Further research can be
done on the quality of robustness measures for estimating robustness when other sources of
uncertainty are considered. For example, machine breakdowns or stochastic release dates.

6.3.2 Normal approximation for buffered schedules

The normal approximation method by Passage et al. (2016) was developed for expected
makespan minimization and computes the job start and completion time distributions with
the assumption they are normally distributed. Having a normal distribution as the job
start time indicates that the job can also start earlier than the mean. This makes sense
in the case of earliest start schedules, for expected makespan minimization for example.
However, we investigated buffered schedules where jobs are not allowed to start earlier than
their planned start time. This could be represented by a truncated distribution. Using
the normal approximation with the assumption that the job start and completion times
are normally distributed, can give an underestimation of the makespan distribution in the
case of buffered schedules. To address this problem, it could be investigated if the normal
approximation method can be used with a truncated normal distribution.

6.3.3 Local search improvements

In our local search approach, we set a lower bound on quality robustness by applying a
penalty. Other approaches can be to use a weighted objective function or to generate the
Pareto front. Further research can be done to examine how the robustness measures behave
in such cases.

Additionally, the buffer allocation can be optimized by running an LP, instead of using
the hill-climbing procedure. The resulting schedules with have an optimal start time of the
jobs according to the robustness measures. This will make the algorithm less computation-
ally efficient, but it can provide additional insight into the ability of robustness measures to
serve as objective functions.

Finally, research can be done with an algorithm that determines the machine assignments
and buffer allocation in one step, instead of using a two step approach. This will make the
search space more complex, but could provide better solutions in some cases, especially for
RM9 and RM10.

49

References

Al-Fawzan, M. A., & Haouari, M. (2005). A bi-objective model for robust resource-
constrained project scheduling. International Journal of production economics, 96 (2),
175–187. doi: 10.1016/j.ijpe.2004.04.002

Bölöni, L., & Marinescu, D. C. (2002). Robust scheduling of metaprograms. Journal of
Scheduling , 5 (5), 395–412. doi: 10.1002/jos.115

Canon, L.-C., & Jeannot, E. (2009). Evaluation and optimization of the robustness of
dag schedules in heterogeneous environments. IEEE Transactions on Parallel and
Distributed Systems, 21 (4), 532–546. doi: 10.1109/TPDS.2009.84

Chtourou, H., & Haouari, M. (2008). A two-stage-priority-rule-based algorithm for robust
resource-constrained project scheduling. Computers & industrial engineering , 55 (1),
183–194. doi: 10.1016/j.cie.2007.11.017

Hazır, Ö., Haouari, M., & Erel, E. (2010). Robust scheduling and robustness measures for
the discrete time/cost trade-off problem. European Journal of Operational Research,
207 (2), 633–643. doi: 10.1016/j.ejor.2010.05.046

Herroelen, W., & Leus, R. (2004). The construction of stable project baseline sched-
ules. European journal of operational research, 156 (3), 550–565. doi: 10.1016/
S0377-2217(03)00130-9

Hessey, M. S., van den Akker, J. M., & Hoogeveen, J. A. (2019). Solving stochastic parallel
machine scheduling using a metaheuristic approach with efficient robustness estimation
(Master’s thesis). Retrieved from https://studenttheses.uu.nl/handle/20.500

.12932/33652

Joines, J. A., Houck, C. R., et al. (1994). On the use of non-stationary penalty func-
tions to solve nonlinear constrained optimization problems with ga’s. In International
conference on evolutionary computation (pp. 579–584).

Jorge Leon, V., David Wu, S., & Storer, R. H. (1994). Robustness measures and
robust scheduling for job shops. IIE transactions, 26 (5), 32–43. doi: 10.1080/
07408179408966626

Khemakhem, M. A., & Chtourou, H. (2013). Efficient robustness measures for the resource-
constrained project scheduling problem. International Journal of Industrial and Sys-
tems Engineering , 14 (2), 245–267. doi: 10.1504/IJISE.2013.053738

Kobylański, P., & Kuchta, D. (2007). A note on the paper by M. A. Al-Fawzan and
M. Haouari about a bi-objective problem for robust resource-constrained project
scheduling. International Journal of Production Economics, 107 (2), 496–501. doi:
10.1016/j.ijpe.2006.07.012

Lambrechts, O., Demeulemeester, E., & Herroelen, W. (2008). A tabu search procedure for
developing robust predictive project schedules. International Journal of Production
Economics, 111 (2), 493–508. doi: 10.1016/j.ijpe.2007.02.003

Liang, Y., Cui, N., Hu, X., & Demeulemeester, E. (2020). The integration of resource
allocation and time buffering for bi-objective robust project scheduling. International
Journal of Production Research, 58 (13), 3839–3854.

Nadarajah, S., & Kotz, S. (2008). Exact distribution of the max/min of two gaussian
random variables. IEEE Transactions on very large scale integration (VLSI) systems,
16 (2), 210–212. doi: 10.1109/TVLSI.2007.912191

50

Passage, G., van den Akker, J. M., & Hoogeveen, J. A. (2016). Combining local search and
heuristics for solving robust parallel machine scheduling (Master’s thesis). Retrieved
from https://studenttheses.uu.nl/handle/20.500.12932/22475

Shestak, V., Smith, J., Siegel, H. J., & Maciejewski, A. A. (2006). A stochastic approach
to measuring the robustness of resource allocations in distributed systems. In 2006
international conference on parallel processing (icpp’06) (pp. 459–470). doi: 10.1109/
ICPP.2006.14

Shi, Z., Jeannot, E., & Dongarra, J. J. (2006). Robust task scheduling in non-deterministic
heterogeneous computing systems. In 2006 ieee international conference on cluster
computing (pp. 1–10). doi: 10.1109/CLUSTR.2006.311868

Thomas, B. W., & Manni, E. (2014). Scheduled penalty variable neighborhood search.
Computers & operations research, 52 , 170–180.

van den Akker, M., van Blokland, K., & Hoogeveen, H. (2013). Finding robust solutions
for the stochastic job shop scheduling problem by including simulation in local search.
In International symposium on experimental algorithms (pp. 402–413). doi: 10.1007/
978-3-642-38527-8 35

van den Broek, R., Hoogeveen, H., & van den Akker, M. (2018). How to Measure the Robust-
ness of Shunting Plans. In 18th workshop on algorithmic approaches for transportation
modelling, optimization, and systems (atmos 2018) (Vol. 65, pp. 3:1–3:13). Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi: 10.4230/OASIcs.ATMOS.2018.3

Van de Vonder, S., Demeulemeester, E., & Herroelen, W. (2008). Proactive heuristic
procedures for robust project scheduling: An experimental analysis. European Journal
of Operational Research, 189 (3), 723–733.

Van de Vonder, S., Demeulemeester, E., Herroelen*, W., & Leus, R. (2006). The trade-off
between stability and makespan in resource-constrained project scheduling. Interna-
tional Journal of Production Research, 44 (2), 215–236.

Wilson, M., Klos, T., Witteveen, C., & Huisman, B. (2014). Flexibility and decoupling in
Simple Temporal Networks. Artificial Intelligence, 214 , 26–44. doi: https://doi.org/
10.1016/j.artint.2014.05.003

51

Appendix A

RM Evaluation Results

The following tables show the result for the initial robustness measure evaluation described
in Section 4.2. Tables A.1, A.2, A.3, A.4 show the correlations with the average makespan,
fraction within deadline, fraction on time jobs and total job delay, respectively.

52

Cmax RM1 RM2 RM3 RM4 RM5 RM6 RM7 RM8 RM9 RM10 RM11 RM12 RM13 RM14 RM15 RM16 RM17 RM18

N25 30j-15r-4m 0.98 −0.96 −0.11 −0.98 0.74 0.79 −0.03 −0.77 −0.93 0.89 0.80 0.73 −0.66 −0.13 −0.59 −0.99 0.83 0.83 −0.84
30j-30r-4m 0.98 −0.97 −0.18 −0.98 0.74 0.85 −0.03 −0.16 −0.02 0.93 0.96 0.84 −0.76 −0.27 −0.55 −0.97 0.79 0.85 −0.84
30j-75r-4m 0.80 −0.92 −0.13 −0.80 0.09 −0.25 −0.02 −0.55 −0.12 −0.04 −0.25 −0.35 0.37 0.00 −0.90 −0.98 −0.26 −0.32 0.25
30j-15r-8m 0.93 −0.92 −0.19 −0.93 0.51 0.50 −0.03 −0.40 −0.91 0.85 0.76 0.29 −0.39 −0.45 −0.76 −0.99 0.71 0.75 −0.72
30j-30r-8m 0.98 −0.96 0.02 −0.98 0.69 0.78 −0.01 −0.33 −0.83 0.91 0.88 0.57 −0.60 −0.38 −0.68 −0.98 0.90 0.85 −0.87
30j-75r-8m 0.97 −0.84 0.46 −0.97 0.78 0.92 0.00 0.09 −0.24 0.93 0.90 0.90 −0.90 −0.31 −0.60 −0.98 0.94 0.92 −0.95
100j-50r-6m 0.99 −0.99 −0.06 −0.99 0.83 0.96 −0.02 −0.45 −0.95 0.99 0.98 0.96 −0.93 −0.03 −0.30 −0.87 0.95 0.96 −0.95
100j-100r-6m 0.99 −0.98 0.24 −0.99 0.84 0.95 −0.02 −0.48 −0.77 0.97 0.95 0.92 −0.93 −0.23 −0.27 −0.93 0.95 0.94 −0.95
100j-250r-6m 0.96 −0.99 −0.04 −0.96 0.73 0.79 −0.03 −0.20 −0.73 0.87 0.87 0.78 −0.78 −0.15 −0.36 −0.89 0.81 0.80 −0.79
100j-50r-12m 0.92 −0.90 −0.59 −0.92 0.48 0.38 −0.04 −0.82 −0.05 0.66 0.63 0.38 −0.36 −0.59 −0.76 −0.98 0.46 0.40 −0.37
100j-100r-12m 0.98 −0.94 0.41 −0.98 0.81 0.95 −0.01 0.05 −0.71 0.94 0.93 0.93 −0.92 −0.18 −0.38 −0.97 0.97 0.94 −0.96
100j-250r-12m 0.88 −0.97 0.12 −0.88 0.52 0.56 −0.03 −0.15 −0.21 0.85 0.79 0.56 −0.46 −0.33 −0.62 −0.93 0.56 0.51 −0.51

Average 0.95 −0.94 0.00 −0.95 0.65 0.68 −0.02 −0.35 −0.54 0.81 0.77 0.63 −0.61 −0.25 −0.56 −0.96 0.72 0.70 −0.71

LN25 30j-15r-4m 0.98 −0.96 −0.11 −0.98 0.74 0.80 −0.03 −0.78 −0.93 0.89 0.80 0.78 −0.72 −0.13 −0.59 −0.99 0.83 0.84 −0.85
30j-30r-4m 0.98 −0.97 −0.18 −0.98 0.74 0.84 −0.03 −0.16 −0.03 0.93 0.96 0.84 −0.78 −0.27 −0.55 −0.97 0.79 0.86 −0.86
30j-75r-4m 0.81 −0.93 −0.13 −0.81 0.11 −0.19 −0.02 −0.54 −0.14 −0.01 −0.23 −0.28 0.28 −0.01 −0.90 −0.98 −0.24 −0.30 0.20
30j-15r-8m 0.93 −0.93 −0.19 −0.93 0.52 0.55 −0.03 −0.41 −0.92 0.86 0.77 0.36 −0.46 −0.46 −0.76 −0.99 0.72 0.75 −0.74
30j-30r-8m 0.98 −0.96 0.02 −0.98 0.69 0.78 −0.01 −0.33 −0.83 0.91 0.88 0.59 −0.62 −0.38 −0.68 −0.97 0.90 0.86 −0.87
30j-75r-8m 0.97 −0.85 0.46 −0.97 0.78 0.91 0.00 0.09 −0.24 0.93 0.90 0.88 −0.88 −0.32 −0.60 −0.98 0.94 0.93 −0.95
100j-50r-6m 0.99 −0.99 −0.06 −0.99 0.83 0.96 −0.02 −0.45 −0.95 0.99 0.98 0.95 −0.94 −0.03 −0.30 −0.87 0.95 0.96 −0.95
100j-100r-6m 0.99 −0.98 0.24 −0.99 0.84 0.95 −0.02 −0.48 −0.77 0.97 0.95 0.94 −0.95 −0.23 −0.27 −0.93 0.96 0.95 −0.95
100j-250r-6m 0.97 −0.99 −0.05 −0.97 0.74 0.80 −0.03 −0.20 −0.74 0.87 0.87 0.79 −0.79 −0.15 −0.35 −0.89 0.82 0.80 −0.80
100j-50r-12m 0.93 −0.91 −0.59 −0.93 0.50 0.40 −0.05 −0.81 −0.07 0.68 0.65 0.41 −0.39 −0.59 −0.75 −0.98 0.48 0.40 −0.40
100j-100r-12m 0.98 −0.94 0.41 −0.98 0.81 0.94 −0.01 0.04 −0.71 0.94 0.93 0.93 −0.93 −0.17 −0.38 −0.97 0.97 0.95 −0.96
100j-250r-12m 0.89 −0.97 0.12 −0.89 0.53 0.56 −0.03 −0.15 −0.20 0.85 0.79 0.59 −0.50 −0.33 −0.61 −0.93 0.57 0.53 −0.53

Average 0.95 −0.95 0.00 −0.95 0.65 0.69 −0.02 −0.35 −0.54 0.82 0.77 0.65 −0.64 −0.26 −0.56 −0.95 0.72 0.71 −0.72

Exp 30j-15r-4m 0.76 −0.89 −0.20 −0.76 0.52 0.47 −0.02 −0.72 −0.80 0.66 0.58 0.53 −0.19 −0.19 −0.66 −0.83 0.54 0.59 −0.53
30j-30r-4m 0.72 −0.88 −0.34 −0.72 0.46 0.55 −0.02 −0.21 −0.35 0.68 0.72 0.55 −0.29 −0.46 −0.66 −0.78 0.38 0.54 −0.42
30j-75r-4m 0.49 −0.64 −0.08 −0.49 0.07 −0.29 0.03 −0.48 −0.14 −0.09 −0.24 −0.51 0.55 0.06 −0.62 −0.77 −0.21 −0.30 0.24
30j-15r-8m 0.73 −0.81 −0.34 −0.73 0.42 0.26 0.00 −0.50 −0.76 0.65 0.57 −0.11 0.07 −0.55 −0.62 −0.80 0.50 0.51 −0.51
30j-30r-8m 0.89 −0.95 −0.08 −0.89 0.65 0.67 −0.02 −0.48 −0.79 0.85 0.79 0.42 −0.43 −0.42 −0.66 −0.90 0.80 0.74 −0.80
30j-75r-8m 0.66 −0.85 0.08 −0.66 0.53 0.63 −0.02 −0.36 −0.33 0.67 0.57 0.63 −0.55 −0.61 −0.53 −0.76 0.65 0.56 −0.64
100j-50r-6m 0.74 −0.81 −0.17 −0.74 0.60 0.66 −0.02 −0.45 −0.74 0.73 0.73 0.73 −0.50 −0.21 −0.56 −0.74 0.62 0.65 −0.61
100j-100r-6m 0.79 −0.82 0.36 −0.79 0.66 0.73 −0.02 −0.24 −0.60 0.75 0.73 0.73 −0.64 −0.10 −0.40 −0.75 0.71 0.70 −0.71
100j-250r-6m 0.64 −0.76 −0.30 −0.64 0.41 0.43 −0.02 −0.07 −0.65 0.55 0.60 0.38 −0.34 −0.31 −0.52 −0.66 0.41 0.45 −0.38
100j-50r-12m 0.69 −0.71 −0.65 −0.69 0.26 0.15 −0.01 −0.76 0.19 0.39 0.38 0.21 −0.15 −0.64 −0.72 −0.80 0.19 0.23 −0.11
100j-100r-12m 0.81 −0.87 0.34 −0.81 0.69 0.78 −0.02 0.05 −0.76 0.81 0.77 0.72 −0.61 −0.06 −0.37 −0.80 0.81 0.77 −0.80
100j-250r-12m 0.47 −0.69 −0.29 −0.47 0.14 0.11 −0.02 −0.37 −0.37 0.43 0.39 0.08 0.09 −0.42 −0.61 −0.72 0.10 0.08 −0.04

Average 0.70 −0.81 −0.14 −0.70 0.45 0.43 −0.01 −0.38 −0.51 0.59 0.55 0.36 −0.25 −0.33 −0.58 −0.78 0.46 0.46 −0.44

Table A.1: Spearman’s rank correlation coefficients for average makespan

53

Cmax RM1 RM2 RM3 RM4 RM5 RM6 RM7 RM8 RM9 RM10 RM11 RM12 RM13 RM14 RM15 RM16 RM17 RM18

N25 30j-15r-4m −0.94 0.96 0.14 0.94 −0.70 −0.72 0.04 0.78 0.93 −0.84 −0.75 −0.68 0.58 0.17 0.64 0.99 −0.76 −0.77 0.78
30j-30r-4m −0.93 0.95 0.23 0.93 −0.67 −0.78 0.04 0.22 0.07 −0.88 −0.91 −0.76 0.67 0.31 0.59 0.99 −0.70 −0.78 0.77
30j-75r-4m −0.88 0.94 0.14 0.88 −0.21 0.11 0.05 0.48 0.22 −0.10 0.11 0.29 −0.31 0.06 0.86 0.96 0.10 0.18 −0.10
30j-15r-8m −0.95 0.94 0.14 0.95 −0.55 −0.56 0.03 0.34 0.92 −0.89 −0.81 −0.33 0.42 0.41 0.77 1.00 −0.76 −0.79 0.77
30j-30r-8m −0.94 0.94 0.01 0.94 −0.66 −0.73 0.03 0.34 0.82 −0.89 −0.85 −0.52 0.55 0.37 0.69 0.99 −0.86 −0.81 0.83
30j-75r-8m −0.95 0.84 −0.44 0.95 −0.76 −0.90 0.03 −0.07 0.26 −0.90 −0.88 −0.86 0.87 0.33 0.63 0.97 −0.92 −0.90 0.93
100j-50r-6m −0.85 0.87 0.05 0.85 −0.73 −0.80 0.07 0.44 0.82 −0.85 −0.84 −0.80 0.77 0.03 0.38 0.88 −0.78 −0.79 0.78
100j-100r-6m −0.91 0.93 −0.19 0.91 −0.77 −0.84 0.05 0.49 0.74 −0.87 −0.85 −0.80 0.82 0.25 0.37 0.93 −0.84 −0.82 0.83
100j-250r-6m −0.88 0.95 0.00 0.88 −0.64 −0.66 0.06 0.13 0.65 −0.76 −0.77 −0.65 0.65 0.16 0.44 0.95 −0.69 −0.68 0.66
100j-50r-12m −0.93 0.91 0.55 0.93 −0.52 −0.42 0.06 0.77 0.09 −0.68 −0.66 −0.41 0.37 0.56 0.75 1.00 −0.50 −0.43 0.41
100j-100r-12m −0.96 0.92 −0.35 0.96 −0.79 −0.90 0.03 0.03 0.67 −0.89 −0.88 −0.90 0.88 0.20 0.45 0.98 −0.93 −0.90 0.93
100j-250r-12m −0.86 0.94 −0.08 0.86 −0.52 −0.54 0.06 0.19 0.22 −0.81 −0.75 −0.53 0.43 0.37 0.62 0.96 −0.56 −0.50 0.51

Average −0.91 0.92 0.02 0.91 −0.63 −0.64 0.05 0.35 0.53 −0.78 −0.74 −0.58 0.56 0.27 0.60 0.97 −0.68 −0.67 0.68

LN25 30j-15r-4m −0.95 0.96 0.13 0.95 −0.71 −0.75 0.04 0.79 0.93 −0.86 −0.76 −0.74 0.67 0.16 0.63 1.00 −0.78 −0.79 0.81
30j-30r-4m −0.94 0.96 0.22 0.94 −0.69 −0.78 0.04 0.20 0.07 −0.89 −0.92 −0.78 0.70 0.31 0.59 0.99 −0.71 −0.81 0.79
30j-75r-4m −0.88 0.94 0.14 0.88 −0.21 0.06 0.05 0.47 0.23 −0.12 0.11 0.22 −0.21 0.06 0.86 0.96 0.10 0.16 −0.06
30j-15r-8m −0.95 0.94 0.14 0.95 −0.55 −0.59 0.03 0.34 0.93 −0.90 −0.82 −0.40 0.48 0.40 0.76 1.00 −0.76 −0.79 0.78
30j-30r-8m −0.95 0.95 0.01 0.95 −0.67 −0.74 0.02 0.35 0.82 −0.90 −0.86 −0.54 0.58 0.38 0.69 0.98 −0.87 −0.83 0.84
30j-75r-8m −0.95 0.86 −0.43 0.95 −0.76 −0.88 0.02 −0.05 0.25 −0.91 −0.87 −0.85 0.85 0.35 0.63 0.98 −0.92 −0.90 0.92
100j-50r-6m −0.90 0.92 0.06 0.90 −0.76 −0.84 0.06 0.46 0.87 −0.90 −0.89 −0.84 0.82 0.05 0.40 0.92 −0.82 −0.84 0.83
100j-100r-6m −0.94 0.96 −0.21 0.94 −0.80 −0.89 0.05 0.50 0.76 −0.91 −0.89 −0.86 0.88 0.25 0.35 0.95 −0.89 −0.88 0.88
100j-250r-6m −0.91 0.97 0.02 0.91 −0.67 −0.71 0.05 0.15 0.69 −0.80 −0.81 −0.69 0.70 0.15 0.41 0.94 −0.73 −0.72 0.71
100j-50r-12m −0.94 0.93 0.55 0.94 −0.54 −0.46 0.06 0.76 0.12 −0.71 −0.69 −0.46 0.43 0.55 0.73 0.99 −0.53 −0.45 0.46
100j-100r-12m −0.96 0.93 −0.36 0.96 −0.80 −0.91 0.02 0.01 0.67 −0.90 −0.88 −0.91 0.90 0.19 0.44 0.98 −0.94 −0.92 0.93
100j-250r-12m −0.88 0.95 −0.09 0.88 −0.54 −0.57 0.06 0.19 0.21 −0.83 −0.77 −0.58 0.50 0.38 0.60 0.96 −0.58 −0.54 0.55

Average −0.93 0.94 0.02 0.93 −0.64 −0.67 0.04 0.35 0.55 −0.80 −0.76 −0.62 0.61 0.27 0.59 0.97 −0.70 −0.69 0.70

Exp 30j-15r-4m −0.93 0.93 0.06 0.93 −0.72 −0.74 0.01 0.69 0.87 −0.88 −0.81 −0.63 0.44 0.07 0.54 0.95 −0.81 −0.82 0.80
30j-30r-4m −0.92 0.98 0.23 0.92 −0.68 −0.80 0.02 0.16 0.14 −0.88 −0.92 −0.75 0.58 0.34 0.60 0.92 −0.69 −0.79 0.71
30j-75r-4m −0.75 0.74 0.08 0.75 −0.37 −0.05 0.01 0.25 0.30 −0.27 −0.09 0.33 −0.38 0.04 0.61 0.78 −0.13 0.00 0.08
30j-15r-8m −0.85 0.87 0.08 0.85 −0.58 −0.50 0.01 0.26 0.85 −0.85 −0.80 −0.07 0.10 0.33 0.67 0.87 −0.74 −0.72 0.74
30j-30r-8m −0.95 0.97 −0.02 0.95 −0.71 −0.77 0.01 0.33 0.84 −0.91 −0.88 −0.48 0.50 0.38 0.67 0.92 −0.90 −0.83 0.88
30j-75r-8m −0.81 0.84 −0.22 0.81 −0.65 −0.78 0.01 0.19 0.32 −0.80 −0.74 −0.72 0.66 0.49 0.56 0.88 −0.80 −0.72 0.79
100j-50r-6m −0.95 0.97 0.08 0.95 −0.81 −0.92 0.03 0.47 0.93 −0.95 −0.95 −0.92 0.81 0.07 0.36 0.88 −0.90 −0.91 0.89
100j-100r-6m −0.94 0.93 −0.33 0.94 −0.82 −0.92 0.02 0.36 0.70 −0.93 −0.92 −0.90 0.87 0.15 0.24 0.88 −0.92 −0.90 0.91
100j-250r-6m −0.89 0.87 0.13 0.89 −0.74 −0.81 0.02 0.19 0.79 −0.87 −0.88 −0.78 0.76 0.16 0.24 0.71 −0.81 −0.82 0.78
100j-50r-12m −0.81 0.82 0.38 0.81 −0.63 −0.62 0.00 0.54 0.32 −0.76 −0.75 −0.53 0.49 0.40 0.38 0.74 −0.67 −0.65 0.62
100j-100r-12m −0.92 0.91 −0.44 0.92 −0.78 −0.92 0.02 −0.12 0.81 −0.94 −0.92 −0.81 0.77 0.14 0.27 0.87 −0.94 −0.90 0.93
100j-250r-12m −0.83 0.85 −0.08 0.83 −0.56 −0.60 0.05 0.17 0.14 −0.79 −0.75 −0.49 0.39 0.34 0.49 0.78 −0.60 −0.55 0.54

Average −0.88 0.89 0.00 0.88 −0.67 −0.70 0.02 0.29 0.58 −0.82 −0.78 −0.56 0.50 0.24 0.47 0.85 −0.74 −0.72 0.72

Table A.2: Spearman’s rank correlation coefficients for fraction within deadline

54

Cmax RM1 RM2 RM3 RM4 RM5 RM6 RM7 RM8 RM9 RM10 RM11 RM12 RM13 RM14 RM15 RM16 RM17 RM18

N25 30j-15r-4m 0.89 −0.73 0.12 −0.89 0.84 0.96 0.02 −0.46 −0.75 0.92 0.89 0.79 −0.90 0.08 −0.15 −0.80 1.00 0.96 −0.98
30j-30r-4m 0.90 −0.76 0.10 −0.90 0.83 0.95 0.02 −0.02 0.32 0.92 0.92 0.92 −0.95 0.08 −0.17 −0.75 0.99 0.97 −0.98
30j-75r-4m 0.33 0.01 0.14 −0.33 0.78 0.95 0.04 0.59 −0.31 0.72 0.81 0.74 −0.76 −0.11 0.37 0.23 0.97 0.88 −0.97
30j-15r-8m 0.86 −0.75 0.32 −0.86 0.70 0.87 0.03 0.13 −0.84 0.95 0.95 0.68 −0.74 0.03 −0.49 −0.80 0.98 0.97 −0.98
30j-30r-8m 0.91 −0.85 0.27 −0.91 0.80 0.91 0.02 −0.11 −0.72 0.89 0.86 0.75 −0.78 −0.19 −0.42 −0.84 0.96 0.96 −0.97
30j-75r-8m 0.98 −0.82 0.54 −0.98 0.81 0.95 0.01 0.20 −0.20 0.96 0.94 0.92 −0.93 −0.26 −0.58 −0.93 0.97 0.96 −0.98
100j-50r-6m 0.97 −0.94 0.01 −0.97 0.86 0.99 0.01 −0.41 −0.92 0.97 0.97 0.97 −0.99 0.06 −0.08 −0.76 1.00 0.99 −0.99
100j-100r-6m 0.97 −0.92 0.32 −0.97 0.87 0.99 0.01 −0.41 −0.69 0.99 0.98 0.98 −0.99 −0.13 −0.04 −0.85 1.00 0.99 −0.99
100j-250r-6m 0.91 −0.77 0.03 −0.91 0.86 0.99 0.02 −0.22 −0.75 0.96 0.93 0.99 −0.98 0.01 0.06 −0.56 1.00 0.98 −0.99
100j-50r-12m 0.71 −0.72 −0.06 −0.71 0.84 0.99 0.03 −0.22 −0.72 0.95 0.96 0.93 −0.93 −0.09 0.09 −0.49 1.00 0.98 −0.99
100j-100r-12m 0.97 −0.91 0.43 −0.97 0.84 0.99 0.01 0.08 −0.74 0.98 0.97 0.94 −0.97 −0.16 −0.23 −0.92 0.99 0.98 −0.99
100j-250r-12m 0.85 −0.61 0.33 −0.85 0.85 0.99 0.02 −0.04 0.16 0.84 0.78 0.93 −0.94 −0.24 0.03 −0.39 1.00 0.97 −0.99

Average 0.85 −0.73 0.21 −0.85 0.82 0.96 0.02 −0.07 −0.51 0.92 0.91 0.88 −0.91 −0.08 −0.13 −0.66 0.99 0.97 −0.98

LN25 30j-15r-4m 0.89 −0.72 0.12 −0.89 0.84 0.95 0.02 −0.45 −0.74 0.92 0.89 0.81 −0.93 0.09 −0.14 −0.79 1.00 0.97 −0.98
30j-30r-4m 0.90 −0.76 0.10 −0.90 0.83 0.94 0.02 −0.02 0.33 0.92 0.91 0.89 −0.94 0.08 −0.17 −0.74 0.99 0.97 −0.97
30j-75r-4m 0.34 0.00 0.13 −0.34 0.79 0.96 0.04 0.58 −0.31 0.72 0.80 0.80 −0.84 −0.12 0.36 0.22 0.96 0.90 −0.97
30j-15r-8m 0.86 −0.75 0.31 −0.86 0.70 0.87 0.03 0.12 −0.84 0.96 0.95 0.71 −0.77 0.03 −0.50 −0.81 0.98 0.97 −0.97
30j-30r-8m 0.91 −0.85 0.28 −0.91 0.80 0.90 0.02 −0.11 −0.72 0.89 0.87 0.74 −0.78 −0.19 −0.43 −0.84 0.96 0.96 −0.96
30j-75r-8m 0.98 −0.82 0.54 −0.98 0.81 0.94 0.01 0.21 −0.20 0.96 0.95 0.90 −0.91 −0.25 −0.58 −0.93 0.97 0.96 −0.97
100j-50r-6m 0.97 −0.94 0.01 −0.97 0.86 0.98 0.01 −0.41 −0.92 0.97 0.97 0.95 −0.99 0.07 −0.07 −0.76 1.00 0.99 −0.99
100j-100r-6m 0.97 −0.92 0.32 −0.97 0.87 0.99 0.01 −0.41 −0.69 0.99 0.98 0.98 −0.99 −0.13 −0.04 −0.85 1.00 0.99 −0.99
100j-250r-6m 0.91 −0.77 0.03 −0.91 0.86 0.99 0.02 −0.23 −0.75 0.96 0.93 0.99 −0.99 0.01 0.06 −0.56 1.00 0.98 −0.99
100j-50r-12m 0.71 −0.72 −0.05 −0.71 0.84 0.99 0.03 −0.22 −0.72 0.95 0.96 0.95 −0.95 −0.09 0.08 −0.49 1.00 0.98 −0.99
100j-100r-12m 0.97 −0.91 0.44 −0.97 0.84 0.98 0.01 0.09 −0.74 0.98 0.97 0.94 −0.97 −0.16 −0.23 −0.92 0.99 0.99 −0.99
100j-250r-12m 0.85 −0.61 0.34 −0.85 0.85 0.99 0.02 −0.03 0.17 0.84 0.79 0.96 −0.97 −0.24 0.02 −0.39 1.00 0.98 −0.99

Average 0.85 −0.73 0.21 −0.85 0.82 0.95 0.02 −0.07 −0.51 0.92 0.91 0.88 −0.92 −0.08 −0.14 −0.66 0.99 0.97 −0.98

Exp 30j-15r-4m 0.76 −0.54 0.22 −0.76 0.76 0.87 0.01 −0.34 −0.60 0.79 0.75 0.47 −0.77 0.18 0.02 −0.66 0.93 0.84 −0.92
30j-30r-4m 0.77 −0.57 0.19 −0.77 0.74 0.85 0.01 0.01 0.44 0.80 0.77 0.77 −0.88 0.21 −0.05 −0.60 0.94 0.84 −0.92
30j-75r-4m 0.43 −0.24 −0.14 −0.43 0.64 0.64 0.01 0.28 −0.64 0.74 0.69 0.21 −0.29 −0.37 0.13 −0.07 0.80 0.75 −0.70
30j-15r-8m 0.85 −0.72 0.31 −0.85 0.65 0.73 0.02 0.05 −0.82 0.92 0.87 0.31 −0.45 0.04 −0.50 −0.81 0.94 0.91 −0.94
30j-30r-8m 0.90 −0.83 0.34 −0.90 0.75 0.85 0.02 −0.13 −0.71 0.92 0.90 0.60 −0.67 −0.14 −0.47 −0.81 0.96 0.90 −0.93
30j-75r-8m 0.95 −0.76 0.53 −0.95 0.80 0.95 0.01 0.22 −0.23 0.93 0.91 0.74 −0.78 −0.20 −0.52 −0.92 0.96 0.89 −0.96
100j-50r-6m 0.90 −0.86 0.12 −0.90 0.81 0.94 0.01 −0.36 −0.85 0.92 0.91 0.86 −0.97 0.19 0.06 −0.71 0.96 0.94 −0.95
100j-100r-6m 0.94 −0.91 0.27 −0.94 0.84 0.95 0.01 −0.46 −0.66 0.97 0.95 0.92 −0.97 −0.15 −0.03 −0.84 0.97 0.95 −0.96
100j-250r-6m 0.90 −0.81 0.08 −0.90 0.82 0.95 0.01 −0.24 −0.72 0.95 0.91 0.94 −0.95 0.05 0.07 −0.61 0.97 0.95 −0.94
100j-50r-12m 0.73 −0.73 −0.05 −0.73 0.83 0.94 0.02 −0.25 −0.67 0.95 0.96 0.76 −0.76 −0.08 0.02 −0.52 0.98 0.94 −0.96
100j-100r-12m 0.97 −0.90 0.46 −0.97 0.84 0.98 0.01 0.09 −0.74 0.97 0.96 0.84 −0.88 −0.18 −0.26 −0.91 0.99 0.95 −0.98
100j-250r-12m 0.86 −0.63 0.43 −0.86 0.83 0.95 0.01 0.10 0.11 0.86 0.83 0.83 −0.85 −0.20 −0.03 −0.42 0.94 0.92 −0.91

Average 0.83 −0.71 0.23 −0.83 0.77 0.88 0.01 −0.08 −0.51 0.89 0.87 0.69 −0.77 −0.05 −0.13 −0.66 0.95 0.90 −0.92

Table A.3: Spearman’s rank correlation coefficients for fraction on time jobs

55

Cmax RM1 RM2 RM3 RM4 RM5 RM6 RM7 RM8 RM9 RM10 RM11 RM12 RM13 RM14 RM15 RM16 RM17 RM18

N25 30j-15r-4m −0.88 0.71 −0.11 0.88 −0.83 −0.96 −0.02 0.43 0.73 −0.92 −0.90 −0.79 0.89 −0.08 0.13 0.78 −0.99 −0.96 0.98
30j-30r-4m −0.90 0.77 −0.09 0.90 −0.83 −0.96 −0.02 0.00 −0.31 −0.92 −0.92 −0.91 0.95 −0.07 0.18 0.75 −0.99 −0.97 0.98
30j-75r-4m −0.32 0.00 −0.09 0.32 −0.79 −0.96 −0.04 −0.57 0.30 −0.71 −0.77 −0.75 0.78 0.15 −0.39 −0.24 −0.93 −0.84 0.97
30j-15r-8m −0.81 0.70 −0.38 0.81 −0.70 −0.89 −0.03 −0.22 0.79 −0.93 −0.96 −0.72 0.76 −0.10 0.44 0.75 −0.97 −0.95 0.98
30j-30r-8m −0.91 0.86 −0.21 0.91 −0.79 −0.91 −0.02 0.11 0.72 −0.89 −0.88 −0.72 0.75 0.24 0.46 0.85 −0.96 −0.95 0.97
30j-75r-8m −0.98 0.82 −0.54 0.98 −0.81 −0.96 −0.01 −0.21 0.20 −0.96 −0.95 −0.92 0.93 0.26 0.58 0.93 −0.97 −0.96 0.98
100j-50r-6m −0.97 0.94 −0.01 0.97 −0.85 −0.99 −0.01 0.40 0.92 −0.97 −0.97 −0.97 0.99 −0.07 0.07 0.76 −1.00 −0.99 0.99
100j-100r-6m −0.97 0.92 −0.31 0.97 −0.87 −0.99 −0.01 0.40 0.69 −0.99 −0.98 −0.98 0.98 0.14 0.04 0.85 −1.00 −0.99 0.99
100j-250r-6m −0.91 0.77 −0.02 0.91 −0.86 −0.99 −0.02 0.22 0.75 −0.96 −0.93 −0.98 0.98 0.00 −0.05 0.55 −1.00 −0.98 0.99
100j-50r-12m −0.68 0.69 0.03 0.68 −0.83 −0.99 −0.03 0.18 0.73 −0.93 −0.95 −0.93 0.93 0.06 −0.12 0.45 −0.99 −0.98 0.99
100j-100r-12m −0.97 0.91 −0.44 0.97 −0.84 −0.99 −0.01 −0.09 0.74 −0.98 −0.97 −0.94 0.97 0.16 0.24 0.93 −0.99 −0.98 0.99
100j-250r-12m −0.83 0.59 −0.34 0.83 −0.85 −0.98 −0.02 0.04 −0.22 −0.81 −0.77 −0.91 0.92 0.21 −0.02 0.36 −0.99 −0.96 0.99

Average −0.84 0.72 −0.21 0.84 −0.82 −0.96 −0.02 0.06 0.50 −0.91 −0.91 −0.88 0.90 0.08 0.13 0.64 −0.98 −0.96 0.98

LN25 30j-15r-4m −0.88 0.70 −0.13 0.88 −0.83 −0.95 −0.02 0.42 0.72 −0.91 −0.89 −0.81 0.93 −0.09 0.12 0.77 −0.99 −0.96 0.98
30j-30r-4m −0.90 0.75 −0.10 0.90 −0.83 −0.94 −0.02 −0.01 −0.32 −0.91 −0.91 −0.88 0.94 −0.08 0.17 0.74 −0.99 −0.96 0.97
30j-75r-4m −0.34 0.01 −0.07 0.34 −0.78 −0.96 −0.04 −0.55 0.31 −0.70 −0.76 −0.81 0.84 0.17 −0.38 −0.24 −0.92 −0.87 0.96
30j-15r-8m −0.82 0.69 −0.38 0.82 −0.70 −0.88 −0.03 −0.22 0.79 −0.93 −0.96 −0.74 0.78 −0.10 0.44 0.75 −0.97 −0.95 0.97
30j-30r-8m −0.91 0.86 −0.21 0.91 −0.79 −0.89 −0.02 0.11 0.72 −0.89 −0.88 −0.71 0.76 0.24 0.47 0.86 −0.96 −0.95 0.96
30j-75r-8m −0.98 0.82 −0.54 0.98 −0.81 −0.94 −0.01 −0.21 0.20 −0.96 −0.95 −0.90 0.91 0.25 0.58 0.93 −0.97 −0.96 0.97
100j-50r-6m −0.96 0.94 −0.02 0.96 −0.85 −0.98 −0.01 0.40 0.92 −0.97 −0.97 −0.95 0.98 −0.08 0.07 0.75 −1.00 −0.99 0.99
100j-100r-6m −0.97 0.92 −0.30 0.97 −0.87 −0.99 −0.01 0.40 0.69 −0.99 −0.98 −0.98 0.99 0.14 0.04 0.85 −1.00 −0.99 0.99
100j-250r-6m −0.91 0.77 −0.02 0.91 −0.86 −0.99 −0.02 0.23 0.75 −0.96 −0.93 −0.98 0.99 0.01 −0.05 0.56 −1.00 −0.98 0.98
100j-50r-12m −0.68 0.69 0.03 0.68 −0.83 −0.98 −0.03 0.18 0.73 −0.94 −0.95 −0.94 0.95 0.06 −0.11 0.46 −0.99 −0.98 0.99
100j-100r-12m −0.97 0.91 −0.45 0.97 −0.84 −0.97 −0.01 −0.09 0.74 −0.98 −0.97 −0.94 0.97 0.17 0.23 0.92 −0.99 −0.98 0.99
100j-250r-12m −0.83 0.59 −0.35 0.83 −0.85 −0.98 −0.02 0.03 −0.23 −0.82 −0.77 −0.94 0.95 0.20 −0.02 0.36 −0.99 −0.97 0.99

Average −0.85 0.72 −0.21 0.85 −0.82 −0.95 −0.02 0.06 0.50 −0.91 −0.91 −0.88 0.91 0.07 0.13 0.64 −0.98 −0.96 0.98

Exp 30j-15r-4m −0.64 0.39 −0.24 0.64 −0.68 −0.81 −0.01 0.19 0.46 −0.70 −0.68 −0.39 0.74 −0.19 −0.12 0.53 −0.85 −0.74 0.85
30j-30r-4m −0.69 0.49 −0.21 0.69 −0.68 −0.79 −0.01 −0.10 −0.46 −0.70 −0.69 −0.70 0.85 −0.20 −0.01 0.51 −0.89 −0.77 0.87
30j-75r-4m −0.42 0.23 0.25 0.42 −0.59 −0.59 0.00 −0.21 0.56 −0.64 −0.57 −0.25 0.35 0.47 −0.15 0.01 −0.71 −0.67 0.66
30j-15r-8m −0.73 0.56 −0.44 0.73 −0.61 −0.76 −0.01 −0.27 0.71 −0.84 −0.84 −0.44 0.53 −0.19 0.35 0.68 −0.90 −0.86 0.93
30j-30r-8m −0.89 0.83 −0.21 0.89 −0.72 −0.83 −0.02 0.12 0.72 −0.88 −0.89 −0.55 0.62 0.24 0.51 0.82 −0.95 −0.87 0.92
30j-75r-8m −0.91 0.68 −0.53 0.91 −0.76 −0.90 0.00 −0.26 0.20 −0.89 −0.90 −0.71 0.75 0.14 0.48 0.89 −0.91 −0.85 0.92
100j-50r-6m −0.85 0.80 −0.16 0.85 −0.76 −0.90 0.00 0.30 0.80 −0.87 −0.86 −0.80 0.95 −0.24 −0.12 0.66 −0.92 −0.90 0.92
100j-100r-6m −0.91 0.88 −0.21 0.91 −0.81 −0.93 −0.01 0.44 0.67 −0.94 −0.94 −0.89 0.95 0.20 0.02 0.81 −0.95 −0.93 0.94
100j-250r-6m −0.88 0.78 −0.07 0.88 −0.80 −0.92 0.00 0.26 0.67 −0.91 −0.88 −0.92 0.94 −0.04 −0.06 0.59 −0.95 −0.92 0.91
100j-50r-12m −0.68 0.66 0.02 0.68 −0.79 −0.90 −0.01 0.21 0.68 −0.91 −0.91 −0.70 0.71 0.04 −0.05 0.47 −0.94 −0.88 0.94
100j-100r-12m −0.95 0.87 −0.46 0.95 −0.82 −0.96 −0.01 −0.10 0.71 −0.95 −0.94 −0.83 0.88 0.21 0.25 0.89 −0.97 −0.93 0.97
100j-250r-12m −0.78 0.53 −0.43 0.78 −0.82 −0.94 −0.02 −0.07 −0.24 −0.79 −0.75 −0.78 0.83 0.11 −0.06 0.29 −0.95 −0.89 0.95

Average −0.78 0.64 −0.22 0.78 −0.74 −0.85 −0.01 0.04 0.46 −0.84 −0.82 −0.66 0.76 0.05 0.09 0.60 −0.91 −0.85 0.90

Table A.4: Spearman’s rank correlation coefficients for total job delay

56

Appendix B

Local Search Results

Tables B.1 and B.2 show the results of the local search experiments described in Chapter 5
for instances 30j-15r-4m and 100j-250r-12m, respectively.

57

objective: 100Sim Cmax RM5 RM9 RM10 RM16 RM17 RM18

penalty: 100Sim - Cmax Cmax0.9 RM15 Cmax Cmax0.9 RM15 Cmax Cmax0.9 RM15 Cmax Cmax0.9 RM15 Cmax Cmax0.9 RM15 Cmax Cmax0.9 RM15

N25

Deterministic Cmax 85.30 73.00 92.60 84.00 86.30 94.00 84.00 90.80 94.00 84.00 91.00 94.00 84.00 89.10 94.00 84.00 87.70 92.50 84.00 86.30
Average Cmax 90.81 82.74 97.26 91.04 90.14 104.30 94.29 92.80 103.73 94.24 92.77 100.49 92.59 92.13 99.20 91.55 91.13 94.97 89.48 90.02
SD Cmax 4.49 4.75 3.98 4.68 3.79 5.34 5.20 2.88 5.33 5.22 2.70 4.21 4.45 3.27 4.43 4.76 3.55 3.91 3.81 3.68
95% Cmax 98.19 90.55 103.81 98.75 96.38 113.08 102.84 97.54 112.49 102.84 97.21 107.41 99.91 97.51 106.48 99.39 96.97 101.41 95.74 96.07
Within deadline (%) 0.78 0.98 0.21 0.76 0.85 0.00 0.51 0.77 0.01 0.53 0.79 0.01 0.66 0.77 0.10 0.73 0.81 0.43 0.88 0.87
On time jobs (%) 0.55 0.38 0.62 0.50 0.57 0.39 0.39 0.58 0.39 0.37 0.56 0.80 0.67 0.72 0.68 0.60 0.67 0.81 0.71 0.71
Total job delay 48.78 75.76 28.16 49.85 35.16 90.87 84.96 43.22 83.75 88.20 41.90 20.58 39.33 27.80 30.51 49.26 29.04 11.95 17.00 16.36

N50

Deterministic Cmax 77.80 73.20 91.10 84.00 88.40 94.00 84.00 88.90 94.00 84.00 88.60 94.00 84.00 88.70 93.30 84.00 88.70 94.00 84.00 88.70
Average Cmax 95.01 93.78 106.62 102.39 93.83 115.79 105.27 94.00 114.88 105.20 93.85 108.47 101.83 93.92 109.37 102.14 93.83 105.08 99.97 93.84
SD Cmax 9.63 9.65 9.59 9.94 7.01 11.23 10.41 6.78 11.01 10.36 6.88 8.29 9.02 6.77 10.02 10.02 6.80 7.41 8.51 6.74
95% Cmax 110.84 109.65 122.39 118.74 105.36 134.27 122.39 105.16 132.99 122.25 105.16 122.11 116.67 105.06 125.85 118.63 105.02 117.26 113.96 104.93
Within deadline (%) 0.49 0.54 0.07 0.21 0.64 0.00 0.13 0.64 0.00 0.14 0.64 0.00 0.20 0.64 0.04 0.22 0.64 0.05 0.25 0.64
On time jobs (%) 0.37 0.36 0.45 0.42 0.51 0.36 0.37 0.51 0.35 0.36 0.50 0.74 0.63 0.51 0.53 0.48 0.51 0.71 0.59 0.51
Total job delay 156.95 163.92 122.82 140.16 114.71 199.34 176.39 116.43 188.36 177.93 119.30 53.69 87.53 115.86 116.52 134.46 117.15 35.86 62.54 116.66

LN25

Deterministic Cmax 83.80 73.10 92.50 84.00 85.80 94.00 84.00 90.50 94.00 84.00 90.80 94.00 84.00 89.10 93.60 84.00 87.80 91.60 84.00 86.00
Average Cmax 90.19 83.73 97.79 91.25 90.74 104.43 94.91 93.23 104.33 94.69 93.25 100.87 92.86 92.64 98.58 91.57 91.94 94.98 89.88 90.23
SD Cmax 5.53 5.81 5.03 5.57 4.96 6.21 6.21 3.82 6.29 6.11 3.61 4.96 5.31 4.21 5.05 5.70 4.48 4.77 4.93 4.75
95% Cmax 99.29 93.28 106.07 100.42 98.90 114.65 105.12 99.52 114.67 104.74 99.18 109.03 101.59 99.56 106.90 100.94 99.32 102.81 97.98 98.05
Within deadline (%) 0.78 0.95 0.24 0.74 0.78 0.01 0.49 0.71 0.01 0.51 0.73 0.02 0.64 0.72 0.19 0.72 0.74 0.46 0.82 0.81
On time jobs (%) 0.56 0.40 0.62 0.54 0.60 0.43 0.41 0.58 0.40 0.40 0.57 0.82 0.69 0.73 0.71 0.60 0.68 0.80 0.71 0.73
Total job delay 53.40 81.46 33.70 48.37 37.11 86.39 85.66 46.08 91.67 85.76 43.44 20.63 38.14 29.63 29.76 50.36 34.88 16.46 23.27 20.44

LN50

Deterministic Cmax 78.90 72.90 92.00 84.00 88.70 94.00 84.00 88.70 94.00 84.00 89.30 94.00 84.00 89.00 94.00 84.00 88.60 92.50 84.00 88.50
Average Cmax 97.44 94.96 108.41 103.19 95.97 115.76 106.06 95.83 115.05 106.74 95.93 110.49 103.39 95.98 110.73 103.53 95.73 104.54 100.93 95.68
SD Cmax 13.74 13.83 13.57 13.47 10.63 14.86 14.26 10.56 14.40 14.52 9.98 12.49 12.95 10.40 13.66 14.13 10.27 11.96 12.96 10.52
95% Cmax 120.03 117.70 130.74 125.35 113.45 140.21 129.52 113.20 138.73 130.62 112.35 131.03 124.69 113.08 133.20 126.77 112.63 124.21 122.24 112.99
Within deadline (%) 0.47 0.54 0.11 0.27 0.60 0.01 0.20 0.61 0.01 0.19 0.60 0.01 0.25 0.61 0.05 0.28 0.60 0.18 0.34 0.61
On time jobs (%) 0.43 0.42 0.53 0.49 0.56 0.44 0.43 0.56 0.41 0.41 0.57 0.77 0.67 0.57 0.60 0.55 0.56 0.71 0.63 0.56
Total job delay 164.10 162.68 115.52 134.57 120.13 180.99 172.80 120.10 181.17 188.91 114.67 59.87 86.38 117.10 110.45 127.55 119.64 58.83 74.29 118.64

Exp

Deterministic Cmax 84.50 73.20 91.20 84.00 94.00 94.00 84.00 94.00 94.00 84.00 94.00 94.00 84.00 94.00 93.90 84.00 94.00 93.90 84.00 94.00
Average Cmax 123.55 119.91 133.43 130.10 116.86 140.29 131.70 117.12 140.24 131.14 117.04 131.33 124.40 117.25 136.15 127.58 117.11 128.85 125.85 116.94
SD Cmax 28.65 29.30 30.56 31.02 23.59 31.38 31.03 24.28 31.60 30.79 24.34 26.68 27.57 24.23 30.94 29.80 24.12 28.06 29.00 24.16
95% Cmax 170.67 168.11 183.69 181.12 155.66 191.90 182.74 157.06 192.21 181.80 157.08 175.21 169.75 157.11 187.04 176.60 156.79 175.01 173.56 156.68
Within deadline (%) 0.13 0.19 0.05 0.09 0.05 0.01 0.07 0.05 0.01 0.07 0.04 0.02 0.10 0.05 0.03 0.10 0.04 0.06 0.10 0.04
On time jobs (%) 0.44 0.43 0.46 0.43 0.57 0.45 0.43 0.57 0.41 0.42 0.57 0.71 0.66 0.57 0.52 0.52 0.58 0.62 0.55 0.57
Total job delay 350.65 337.41 321.14 363.70 245.18 384.48 390.21 253.19 414.69 391.00 248.26 150.91 181.51 247.97 300.46 288.99 247.03 171.79 212.11 248.65

Table B.1: Results for instance 30j-15r-4m. Deadline: 94

58

objective: 100Sim Cmax RM5 RM9 RM10 RM16 RM17 RM18

penalty: 100Sim - Cmax Cmax0.9 RM15 Cmax Cmax0.9 RM15 Cmax Cmax0.9 RM15 Cmax Cmax0.9 RM15 Cmax Cmax0.9 RM15 Cmax Cmax0.9 RM15

N25

Deterministic Cmax 149.70 144.00 162.90 146.00 158.60 163.00 146.00 159.90 163.00 146.00 159.50 163.00 146.00 157.90 163.00 146.00 158.50 163.00 146.00 156.70
Average Cmax 159.22 156.17 170.65 157.10 160.98 182.36 165.70 162.26 181.01 164.26 161.84 170.66 156.19 160.83 172.16 158.48 161.17 166.79 155.15 160.42
SD Cmax 6.14 6.83 5.79 6.38 3.32 6.85 6.60 3.18 6.91 6.59 3.24 4.77 5.32 3.92 6.00 6.38 3.66 4.00 6.30 4.17
95% Cmax 169.31 167.41 180.17 167.59 166.44 193.63 176.56 167.49 192.38 175.10 167.17 178.50 164.94 167.28 182.03 168.98 167.19 173.38 165.52 167.28
Within deadline (%) 0.75 0.83 0.05 0.82 0.80 0.00 0.37 0.73 0.00 0.46 0.76 0.01 0.89 0.78 0.02 0.77 0.77 0.14 0.88 0.78
On time jobs (%) 0.34 0.28 0.48 0.45 0.60 0.29 0.28 0.53 0.29 0.30 0.52 0.87 0.80 0.83 0.56 0.51 0.61 0.68 0.61 0.65
Total job delay 366.66 445.98 231.50 288.32 126.79 552.50 551.20 180.68 509.50 506.92 170.27 55.57 94.89 61.20 193.25 267.11 146.33 84.03 148.34 96.50

N50

Deterministic Cmax 147.30 144.00 162.90 146.00 154.10 163.00 146.00 154.50 163.00 146.00 153.80 163.00 146.00 154.40 163.00 146.00 154.40 163.00 146.00 154.40
Average Cmax 172.71 175.26 186.70 175.57 162.28 204.97 186.45 162.36 201.62 185.09 162.09 185.17 171.61 162.46 191.70 177.75 162.39 176.91 169.29 162.25
SD Cmax 12.78 13.25 13.20 12.95 10.32 13.57 12.64 10.33 13.91 12.93 10.33 10.83 10.67 10.33 13.47 13.25 10.18 10.93 12.37 10.14
95% Cmax 193.74 197.05 208.42 196.86 179.26 227.29 207.24 179.36 224.50 206.36 179.08 202.98 189.16 179.46 213.86 199.55 179.14 194.90 189.63 178.93
Within deadline (%) 0.26 0.18 0.01 0.17 0.65 0.00 0.01 0.66 0.00 0.03 0.65 0.00 0.22 0.65 0.00 0.13 0.65 0.06 0.33 0.65
On time jobs (%) 0.26 0.24 0.36 0.33 0.54 0.25 0.26 0.52 0.27 0.26 0.52 0.75 0.68 0.57 0.38 0.36 0.55 0.56 0.49 0.53
Total job delay 942.45 1046.69 743.33 823.99 345.81 1263.83 1164.94 377.06 1103.61 1133.79 378.92 220.05 303.34 330.96 777.75 850.38 358.45 295.61 437.51 355.72

LN25

Deterministic Cmax 147.60 144.00 162.80 146.00 158.40 163.00 146.10 159.10 163.00 146.00 159.90 163.00 146.00 157.90 163.00 146.00 157.90 163.00 146.00 157.30
Average Cmax 158.17 156.34 172.12 158.11 161.71 183.60 166.58 162.92 181.45 165.29 163.27 171.34 157.27 161.61 173.48 159.26 161.63 166.32 154.94 161.27
SD Cmax 7.41 7.70 6.87 7.51 4.67 7.93 7.83 4.49 7.88 7.78 4.38 5.47 6.11 4.79 7.14 7.59 4.96 4.24 6.99 4.84
95% Cmax 170.37 169.00 183.41 170.47 169.39 196.64 179.45 170.31 194.41 178.08 170.47 180.34 167.32 169.49 185.23 171.74 169.79 173.29 166.44 169.23
Within deadline (%) 0.76 0.81 0.04 0.76 0.73 0.00 0.36 0.64 0.00 0.43 0.62 0.01 0.84 0.71 0.02 0.72 0.72 0.18 0.87 0.73
On time jobs (%) 0.35 0.30 0.48 0.46 0.57 0.31 0.31 0.56 0.33 0.31 0.54 0.86 0.80 0.83 0.55 0.50 0.60 0.64 0.59 0.62
Total job delay 393.75 451.99 259.50 317.45 175.13 561.89 559.30 187.05 491.28 515.27 192.54 64.99 105.69 70.79 241.54 302.03 179.89 124.45 176.62 141.21

LN50

Deterministic Cmax 152.30 144.00 162.80 146.00 154.30 163.00 146.00 154.50 163.00 146.00 154.40 163.00 146.00 154.30 163.00 146.00 154.30 163.00 146.00 154.10
Average Cmax 184.54 178.88 192.85 181.41 165.85 208.27 191.62 165.83 205.20 189.65 165.52 188.56 175.92 165.53 194.65 182.89 165.76 180.42 172.87 165.46
SD Cmax 18.00 18.43 18.39 18.33 13.81 19.40 18.86 13.67 18.59 18.60 13.50 14.92 15.67 13.65 18.54 18.71 13.66 15.80 17.16 13.58
95% Cmax 214.15 209.20 223.10 211.55 188.56 240.18 222.64 188.32 235.78 220.25 187.73 213.10 201.69 187.99 225.16 213.67 188.23 206.40 201.10 187.80
Within deadline (%) 0.11 0.20 0.01 0.15 0.55 0.00 0.03 0.55 0.00 0.04 0.56 0.00 0.20 0.56 0.00 0.13 0.55 0.08 0.31 0.56
On time jobs (%) 0.29 0.29 0.37 0.34 0.56 0.30 0.29 0.54 0.30 0.30 0.54 0.75 0.68 0.59 0.44 0.42 0.56 0.49 0.48 0.56
Total job delay 1065.86 1113.36 936.53 1006.00 441.51 1268.73 1274.95 455.39 1153.74 1184.91 463.32 270.49 363.94 402.67 784.84 896.42 441.62 545.28 611.14 429.32

Exp

Deterministic Cmax 172.50 144.00 162.90 146.00 163.00 163.00 146.10 163.00 163.00 146.00 163.00 163.00 146.00 163.00 163.00 146.00 163.00 163.00 146.00 163.00
Average Cmax 254.00 231.08 244.35 234.33 201.78 265.31 248.77 201.57 259.15 244.27 202.10 232.38 218.26 201.79 248.54 234.13 202.25 226.91 219.01 201.98
SD Cmax 40.37 39.16 39.81 38.87 31.03 41.60 39.90 31.31 40.80 39.38 31.52 33.97 33.17 30.78 40.47 39.55 31.36 36.48 36.01 31.14
95% Cmax 320.40 295.49 309.84 298.26 252.81 333.73 314.41 253.07 326.26 309.05 253.96 288.26 272.82 252.41 315.11 299.18 253.84 286.92 278.23 253.20
Within deadline (%) 0.00 0.01 0.00 0.01 0.02 0.00 0.00 0.02 0.00 0.00 0.03 0.00 0.01 0.02 0.00 0.01 0.02 0.01 0.03 0.02
On time jobs (%) 0.27 0.26 0.29 0.29 0.49 0.26 0.27 0.47 0.28 0.27 0.48 0.60 0.55 0.49 0.34 0.32 0.50 0.37 0.36 0.47
Total job delay 2662.47 2714.57 2525.48 2552.33 1158.73 3082.40 3026.87 1189.43 2806.51 2853.47 1191.79 1058.86 1173.55 1148.97 2341.87 2425.86 1138.95 1796.93 1856.32 1204.50

Table B.2: Results for instance 100j-250r-12m. Deadline: 163

59

