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Abstract

I analyze and implement state-of-the-art natural language processing models
for open text understanding to improve the matching of open text input in a
serious game that uses custom scenarios created for training communication
skills, called Communicate. Previous work in matching open text input in this
serious game used a scenario specific corpus, a corpus containing all the words
used in the particular scenario, to match open text input to a scripted statement.
This scenario-specific corpus contains mathematical representations for each
word appearing in the scenario. The goal of this thesis is to expand on this
previous work by exploring state-of-the-art word embeddings and implementing
relevant models that use scenario specific information to try to improve the open
text matching process.
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1 Introduction

A serious game is an application used for training, education, or research and
has other purposes than only entertainment. Alvarez et al. [10] define serious
games as applications created with the intention of combining aspects of teach-
ing, learning, and communication with entertaining elements found in modern
video games. Serious games have a larger scope than simple entertainment,
becoming a tool for teaching or raising awareness on a certain subject. These
tools, compared to traditional learning mediums, might employ gamification
techniques to improve the attention of the users, and to make the learning ex-
perience more entertaining as a whole. Hamari et al. [27] describe the process
of gamification as ”a process of enhancing a service with affordances for game-
ful experiences in order to support user’s overall value creation”. They argue
that the goal of gamification is to improve the experience provided by a service
by making it more entertaining. Gamification is not clearly defined as a set of
methods or steps, but rather as a broad concept that increases the likelihood
that gameful experiences might emerge in an application.

Alvarez et al. [10] classify serious games by three criteria: gameplay, which
provides information on the type of interactions used between the user and an
application, purpose, which describes the ulterior scope of the application, such
as the learning goal, and sector, the public a serious game is aimed for, or
the domain in which it aims to bring improvements. By using these criteria,
designers can reflect on the ”playful” and ”serious” dimensions when creating
a serious game. However, games can be used for other purposes than the ones
intended by their designers, and players can also use a game designed purely for
entertainment as a serious game.

Goh et al. [26] attribute the positive associations with video games to the fact
that serious games offer covert learning, bypassing the psychological aversion to
traditional educational methods.

The positive attitude users have towards games and the fact that players feel
much more in control when playing a game have made serious games a much
more accepted platform for learning [34] [16]. Prensky [55] notes that fun added
to the learning process creates relaxation, which in turn enables students to put
in effort without resentment.

Michael & Chen [48] state that serious games put the player in a more ac-
tive situation than conventional training or educational methods. Michael &
Chen also describe the importance of measuring the results or effects of a se-
rious game. Serious games used for science education are very important since
they enhance the learning process [17]. Many serious games that tackle inter-
personal communication, such as TLCTS [33], or VECTOR [47], allow learners
to explore foreign towns and practice speaking Arabic and English respectively
while learning culturally appropriate gestures. Other serious games focus on
cultural social conventions [41] or facilitate interpersonal communication, such
as SimParc [14] or DeLaryous [63].

Laamarti et al. [35] state that serious games with the learning goal of train-
ing communication allow the player to experiment and make mistakes without
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having to fear the consequences of not having experience handling some situa-
tions.

Communicate [31] is a serious game created by Utrecht University to train
students in communication skills. Afterward Communicate was rebranded as
DialogueTrainer and used more widely, offering clients online professional com-
munication training.

The goal of Communicate is to simulate specific scenarios that can be used to
teach important interpersonal communication skills between a healthcare pro-
fessional and a patient or between an employer and their employee. The game
provides a player with prewritten statement options from which they can choose,
leading to a conversation between them and a digital agent. A teacher can use a
scenario editor to create their own personalized scenarios for players to practice
communication skills on. This offers a platform for experiencing communication
scenarios tailored specifically to the needs of a player. Lala et al. [39] describe a
scenario as ’a series of interactions between a player and a virtual character for
one-to-one communication skills training, where at each step a player is faced
with a choice between statements’ and specifically, in the serious game Com-
municate, as a directed acyclic graph of statements. These graphs can be easily
created by a teacher, who can have fine control over the form and structure
of the scenario and annotate each prewritten statement option in the scenario
with scores on the desired learning goals, emotional effect on the player, and
player feedback. This allows a teacher to easily create scenarios without need-
ing programming skills to implement them in the game. Engström et al. [23]
discuss the importance of tools for designing stories in video games. The au-
thors present software used for this kind of development, however, state that
often times these tools restrict the expressiveness of the designers. These tools
should prioritize expressive freedom while offering very easy-to-use interfaces
that reduce the overhead of such work. The scenario editor in Communicate
follows this, providing a simple-to-use UI while offering a teacher all the freedom
needed to create the scenarios.

The importance of open text input option comes from a study by Krathwohl,
cognitive process taxonomy [12]. Here, 6 cognitive process dimensions are de-
fined: remember, understand, apply, analyze, evaluate and create. Prewritten
statement options test the first five of these cognitive process dimensions, but
not the sixth. While the prewritten statement options of a scenario are easy to
score, they do not demonstrate that a player can use elements from a scenario
to create new structures. On the other hand, open text input is harder to score
but requires complex thinking, something that is desired from a serious game.

The process of creation is defined as ’putting elements together to form a
novel coherent whole or make an original product’. This process is tested with
the introduction of open text input. A learner is required to analyze the in-
formation that is given to them, and create a coherent answer that furthers
conversation and adds to it, rather than choosing between prewritten state-
ments.

In previous work Lala et al. [32] added an open text input option in Commu-
nicate so that a player can input open text instead of selecting one of the prewrit-

5



ten statement options. To achieve this Lala et al. introduced the scenario-
specific corpus method (SSCM) to match a player’s open-text input to available
prewritten statement options. SSCM takes an open text input and returns a
match-score for each prewritten statement at a step of the scenario. The match-
score determines how similar the open text input is to each of the prewritten
statement options. In case all of the match-scores fall below a certain threshold,
the input utterance is considered unmatched.

In order to find the ideal threshold and compare the SSCM to other match-
ing methods, a dataset is created [32]. Open text statements are gathered
from students in communication workshops using a scenario named ”Samen-
werkenOT”. At each step in the scenario, students are given a sentence by the
digital agent and are tasked to give an open text input, instead of choosing
one of the scripted statement choices. After providing an open text input the
available scripted statement choices at that step are displayed and the students
are tasked to select the statement most similar to their open text input. In case
none of the prewritten statement choices match the open text input, the stu-
dent may select an option indicating there is no similar scripted statement. The
students do this for every step of the scenario ”SamenwerkenOT”. These pairs
of open text input and scripted statement choices, as well as the annotation of
the students, are used to create the dataset.

Each sample of this dataset is a pair of player open text input, and scripted
statement options, as well as annotations from the student who wrote the input
and communication experts, indicating which prewritten statement option is
most similar to the open text input. If the majority of annotations of a sample
agree on the same prewritten statement option as being the most similar to the
open text input, the sample receives a label, called the goldenMatch, indicating
to which of the prewritten statement options the open text input is most simi-
lar, and the sample is called matched. If the majority of annotations agree that
none of the prewritten statement options are similar to the open text input,
the goldenMatch is Null, and the open text input of the sample is considered
not being matched to any of the statement options, the sample being called un-
matched. If there is no majority decision regarding which prewritten statement
option is most similar to the open text input, the sample is discarded.

Using this dataset, called the golden dataset, the ideal threshold for the
SSCM is determined by running the method on a training split of the dataset
and comparing which prewritten statement option the SSCM considers most
similar to the input text with the goldenMatch. The ideal threshold is found
starting from the value of 0.0 and incrementing it by 0.025, calculating the
number of correct matched and unmatched predictions made using the SSCM.
Afterward, the SSCM is evaluated against other NLP methods using a testing
split of this dataset. The results show that SSCM outperforms generic word
embedding methods for matched text but underperforms for unmatched text.

In an experiment [37], Lala et al. take steps to improve the open text input
of the game by introducing scaffolding, as presented by Realdon et al. [57].
Scaffolding is used to handle matched and unmatched input by highlighting
matched open text input and giving hints for unmatched input. They show
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that this method has a limited effect in Communicate and the results can be
generalized to any serious game that uses a dialogue graph, has no extensive
dataset, and uses open text input.

The serious game Communicate is separated into two main components.
The first component, named the client service, contains the scenario editor,
where a communication skills expert or scenario writer creates scenarios, and the
scenario player, where the actual ”gameplay” takes place. The scenario player
is where the player interacts with the scenario, going through the scenario and
providing open text input that determines the outcome of the scenario. The
second component of Communicate is the matching service. Following the work
of Lala et al. [32] the matching service uses the scenario specific corpus method
(SSCM) to compute a list of similarity scores between each prewritten statement
option and the input text from a player. This matching method can be replaced
with a different matching method, as long as the matching service receives the
same input information from the client service, and outputs the same list of
scores back to the client service, in order to keep the working pipeline of the
application.

In order for computers to understand and perform various tasks using hu-
man language, words need to be represented in a mathematical way. A word
embedding is a representation of text that can be used in a meaningful way in
various natural language processing algorithms. Almeida et al. [8] define word
embeddings as ”dense, distributed, fixed-length word vectors, built using word
co-occurrence statistics as per the distributional hypothesis”. The distributional
hypothesis was suggested by Harris [28] as long ago as 1954 and it is the assump-
tion that words with similar contexts tend to have similar meanings. Turian et
al. [62] state that word embedding methods provide vector representations of
words. Generally, a word representation is a vector that is mathematically as-
sociated with a word, such that the word keeps contextual information. The
relationship between two vectors produced by a word embedding model should
mirror the relationship between the two represented words on a linguistic level.
The vector representations of the words are multi-dimensional, each dimension
representing a hidden feature of the original word. In this manner, useful syn-
tactic and semantic properties are captured, to be used in various NLP tasks.
While most vector representations were used together with Neural Network
Language Models, by first projecting the embedding onto an input layer of the
network, called the embedding layer, researchers realized that word embeddings
can be used on their own for solving many NLP tasks.

The simplest word embedding model that can be used as an example for
understanding the underlying logic behind how they function is called One-hot
encoding. The general idea of the algorithm is converting each unique word
from a set dictionary or corpus into a binary vector. The length of these vectors
is equal to the size of the vocabulary. All the elements of the vector are equal
to 0, except for the position of the word in the vocabulary. For example, for the
sentence: ”This is the corpus”, I create the following table:
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This Is The Corpus
This 1 0 0 0
Is 0 1 0 0
The 0 0 1 0
Corpus 0 0 0 1

From this table we can see the vector representation of each word: ”This” =
[1,0,0,0], ”Is” = [0,1,0,0], ”The” = [0,0,1,0], ”Corpus” = [0,0,0,1]. In practice,
when the original sentence is transformed into the corpus, duplicate words are
removed, and sometimes even intermediary words, such as ”the” or ”a”. These
words do not contain useful information and can be removed. The algorithm
assigns a unique vector representation to each unique word. It is important to
remove duplicate words since the same word appearing in multiple locations in
the corpus would have different representations after embedding, making the
representation nonunique. One-hot encoding is a useful representation of data
but does not retain any contextual relationship between words. More recent
word embedding models such as GloVe [53] use word-context matrices to gener-
ate the vector representations of words. In section 4 I further describe the GloVe
model and the way it generates word embeddings. These advanced methods of
creating word vectors produce numerical representations that capture contex-
tual information. With this information, language models can perform tasks
such as determining the similarity between two words or sentences, or senti-
ment analysis.

In the field of NLP noise is considered a complex concept and is hard to de-
fine [60]. It is mostly used when describing a dataset containing non-standard
samples. Sharou et al. [7] categorize noise as harmful, such as incorrect punctua-
tion in translation tasks, and useful noise, like punctuation patterns in sentiment
analysis tasks. In our application, noise can be defined as the matching of open
text input to an answer variant when there should have not been a match.

The aim of this MSc. thesis is to introduce contextualized word represen-
tations combined with a scenario specific corpus for a scenario in the serious
game Communicate [31], improving the matching of open text inputs and re-
ducing noise. I aim to find the combination of techniques that offers the best
accuracy for open text matching in the application. This study will improve on
the already existing framework, and further its performance.

Main research question

The final goal of this work is to improve the serious game Communicate by
implementing state-of-the-art NLP methods that are relevant to solving the
given task, that produce better results than previously implemented methods,
and that integrate seamlessly into the existing framework of the application. I
want to use the current architecture of the application as a starting point for
improving it. This architecture is the client and matching service structure.

I elaborate on the constraints of the application and the proposed implemen-
tation in Section 6. Furthermore, the previous matching method, SSCM, used
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scenario specific information to create word vectors used for matching. This in-
formation is available from the moment the scenario is authored. It is relevant
to determine if this information might be useful in increasing the accuracy of
other matching methods as well. Considering this, I propose the following main
research question:

How can we improve the matching service in the application Com-
municate using word embeddings and scenario specific information?

The main research contribution of this thesis is applying word embeddings
in a new context, specifically a scenario driven serious game with an open text
input option. I break down the main research question into smaller individual
research questions that will be tackled in the Method section, with the results
later being presented in the Results section. The research questions are:

• Which word embedding methods are suitable for sentence similarity in
an application for training communication skills with an open text input
option?

• What is the performance of the selected word embedding models on match-
ing open text input to prescripted statements?

• Can the implemented matching service of the application be improved
with scenario specific information?

In the following section, I present some related work in the field to better un-
derstand the context of the thesis. Section 3 contains the research approach for
each of the research questions. In Section 4 I chose a set of suitable embedding
models for the task based on a literature review. In Section 5 I test the chosen
embedding methods on the same metrics as the previous paper concerning open
text input in the game Communicate, and, based on the results, choose one
model to implement in the matching service of the application. Section 6 de-
scribes the implementation of the model into the matching service, the testing
of the model on a test scenario, and the usage of scenario specific information
to improve the model. Section 7 presents a discussion of the results and finally,
Section 8 contains the conclusions of this thesis and future work.

2 Related work

In this section, I introduce some papers that describe various serious game
applications used for training communication skills. All of these applications use
virtual environments and agents to simulate conversation scenarios and task the
user in navigating through them, similar to Communicate. While their learning
goals might be different, the approach and results are similar.

While most of the related work does not describe the technical details of the
technologies used for handling NLP tasks, it shows the pedagogical benefits of
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open text input understanding. Westera et al. [65], state that the usage of NLP
techniques in games is scarce because of the large amount of preprocessing and
postprocessing, as well as the expertise in implementing these NLP methods.

Van der Lubbe et al. [44] introduce speech analysis to a serious game for
training against doorstep scams. Unfortunately, elderly people are at a high
risk of being victims of such scams and require a tool for training against them.
Verbal skills are very important in preventing them, but without the necessary
education, people lack the assertiveness needed to refuse potential scammers.
The paper introduces a serious game that focuses on what to say to a scammer
and how users should use their voices in an assertive way. In the game, the
player, representing the person getting scammed, has to audibly utter a cho-
sen response. The assertiveness of the response is analyzed and it is classified
as either dominant or submissive. The simulated character offers a prewritten
answer depending on the classification. Participants that performed an experi-
ment on the application stated that the voice analysis clearly had added value
in the context.

Ochs et al. [51] propose using serious games for training doctors to break
bad news to patients. This is relevant because the delivery of bad news has
important psychological effects on patients, as well as effects on the doctor-
patient relationship. The player assumes the role of the doctor in the virtual
reality simulation. The speech input from the player is analyzed and matched
to one of the prewritten verbal and non-verbal responses. This response is
given to the player as an answer from the patient. After an initial experiment
with experts and naive participants, the users were asked different questions
that were meant to measure their sense of presence and copresence. Results
show that the experts tend to be more involved than the naive participants.
The experiment shows that the virtual reality room and headset are the most
appropriate virtual reality tools for training doctors in such a scenario.

Façade [46] is a real-time simulation of a marital conflict. The player can
input responses to the presented conflict. These open text responses determine
the reactions of the simulated characters. The application uses author intensive
techniques to understand natural language typed by the player, meaning that a
large number of rules are hardcoded. If the system still does not understand the
utterance, failsafe behaviors are triggered, such as deflection-type responses, or
an abrupt change of subject. The system might also misunderstand utterances,
giving a false positive.

Anderson et al. [11] develop the TARDIS project, a serious game intended to
simulate interview situations for young people not in employment, education,
or training. The players interact with virtual recruiters, in order to experi-
ence real-life interviews without the risk of failure. The application detects its
users’ emotions and attitudes through voice and facial expression recognition.
With this information, it is able to better adapt the conversation to individual
users. Furthermore, it allows experts in the field to design specific scenarios and
meaningfully measure a user’s emotional regulation and social skill acquisition.
This information is useful for furthering research in the field and creating more
specific testing scenarios.
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My Automated Conversation coacH, MACH [29] is an application for train-
ing social skills. It displays a conversation with a virtual agent that reads the
facial expressions, speech, and prosody of a user and responds with verbal and
nonverbal behaviors in real time. The application then provides visual feedback
on the user’s performance. The interview data is provided by real-life interview
sessions, such as seeking employment or counseling. The user’s face is tracked
by the application which detects smiles and head movements in every frame.
Pauses, loudness, and pitch variations are also tracked in order to assess the
expressivity of the user. The application recreates the entire transcript of the
conversation, however, it does not perform any natural language understanding,
the main focus being nonverbal training. An experimental study was performed
with 90 students and two professionals to validate the effectiveness and usabil-
ity of the application in an interview scenario. Results show that participants
learned something new about their behaviors and were inclined to use the ap-
plication in the future.

Tartaro et al. [61] present an application for children with social and com-
munication deficits in which they engage in a collaborative conversation with
a virtual character. Collaborative conversations require the children to work
together in order to create a story. In this study, children engage in conversa-
tions with human and virtual characters using this application, and the use of
contingent conversation is compared between the two cases. The authors find
that contingent conversations increased over the course of interaction with the
virtual character, while with the human character they did not. Moreover, in-
troducing new topics or maintaining the current topic was more common in the
conversations with the virtual character.

Serious game applications for training communication skills often use open
text input from a player to increase immersion. However, these open text ut-
terances are gathered together with other information, such as facial expres-
sions [11] or speech samples [29] to better understand the emotions of a player.
Moreover, applications that only gather open text utterances do not use state-
of-the-art embedding models to analyze the text, and rely on worse-performing
methods, or hardcoding rules for understanding [46].

3 Research Approach

In this section, I describe the solution for each research question presented
previously. The research questions follow each other so I present the results of
each method after stating it. Each subsection in this chapter follows the results
of the previous one.

Firstly I need to determine what kind of NLP task is the current version
of the matching service of Communicate trying to solve. Possible NLP tasks
range from annotation, text classification, and text summarizing to question and
answering or text generation. This can be determined by studying the input and
output of the current application and choosing the task that provides the most
similar results. Next, having the NLP task selected, I look at the state-of-the-
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art models that are used for solving this task. This is done through a literature
review of relevant papers in the field. Then, I apply the new method to the
existing framework and test it using the same metrics as the previous paper
that tackled the open text input in Communicate. This means using the same
datasets to determine a threshold for cosine similarity, and computing the same
metrics. Finally, after determining if there was an improvement to the original
paper just by implementing a state-of-the-art pretrained model, I determine
if using scenario specific information can improve the matching service of the
serious game Communicate.

4 RQ1: Word embedding models

The starting point of this thesis is choosing a set of word embedding models
that perform best on the language task that the matching service is solving.
The task is a sentence similarity problem since an input sentence is provided
by the user and the service needs to match it to the most similar prewritten
statement option. Sentence similarity is a measure of how similar the meaning
of two sentences is. This is a hard problem in the NLP field since the meaning
of utterances is given by the context they are in as well as the lexical informa-
tion [45]. In our case, after each sentence is converted into a word vector by an
embedding model, their similarity is measured by the cosine similarity of the
two vectors.

In this section, I describe the method of choosing this set, the resulting set
as well as the reasoning behind the choices. By the end of the section, I have
gathered the embedding models needed for testing in the next section.

4.1 RQ1 Method

In order to better understand the evolution of word embeddings and natural
language processing models I conduct a literature review of relevant papers in
the field that describe word embedding models, their use, and implementation.
I use these papers to determine what models are relevant and how they evolved
since the original Communicate paper [31] has been published. Since the frame-
work in which I am implementing the models is a serious game, computation
time is also an important factor to keep in mind.

4.2 RQ1 Results

Literature review

In this section, I conduct a literature review on state-of-the-art NLP models.
By doing this I aim to gain a better understanding of what models are relevant
and which ones I can use to improve open text input understanding. I choose
the papers discussed in the following literature review based on the popularity
of the NLP methods, making sure that they are as recent as possible. I use
snowballing [66] as a way to search for relevant literature by finding other useful
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material. Snowballing is the process of finding related papers by using the
reference list and the citations of papers in a certain start set.

The start set I used for this literature review is composed of state-of-the-
art NLP models such as Glove [53], Bert [22], and Elmo [54]. These models
are important in the field of NLP because they introduce contextualized word
embeddings, representations that retain the context of the sentence they ap-
pear in. This increased the performance on many NLP tasks such as question
answering, language inference, and similarity tasks, and future developments
of word embedding models refer back to these models. From these I perform
backward snowballing in order to gather papers that explain the evolution of
an NLP model, to gain a better understanding of why it is state-of-the-art. I
also perform forward snowballing to gather works that expand on the model
and improve its performance.

FLAIR

Without experimental data, it is hard to determine the best combinations of
embedding models and language model layers for a specific application. The
implementation of these embedding models often requires a rework of the entire
language model used for solving the NLP task. Since testing the performance
of all the combinations of embedding models and language models becomes ex-
ponentially difficult with the increasing number of embedding models, Akbik
et al. [6] introduce a novel method of mixing and matching various embed-
ding models with language models easily. With the help of this framework, a
researcher can focus solely on finding the optimal embedding model and lan-
guage model combinations. Language models often have parameters that can
be tuned by users such as the learning rate in optimization algorithms or the
number of epochs the model trains for. These ”hyperparameters” need to be
chosen experimentally and are specific to the problem the model is designed to
solve. The framework also allows easy hyperparameter tuning directly in the
interface. The framework also allows easy fetching of public NLP datasets that
can be used for setting up experiments. The framework automatically reads
them into data structures that can be used for training or testing purposes.
Finally, Akbik et al. are working on introducing more embedding approaches
into the framework, word embeddings such as transformer embeddings [56, 19],
InferSent representations [18] and LASER embeddings [13]. This paper provides
a useful framework that can be used to quickly compare embedding models. As
an example of how the framework simplifies the process of testing NLP models,
to use BERT embeddings to embed a sentence the user has to instantiate the
embedding with one line of code and embed the sentence with another single
line of code:
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Transformers

Many embedding transformation models use recurrent or convolutional neural
networks including an encoder and decoder. The encoder maps an input se-
quence of symbol representations to a sequence of continuous representations,
while the decoder generates an output sequence of symbols one element at a
time. At each time step in this process, the model uses the previously gener-
ated symbols for the generation of the next. In the best performing models,
these encoder and decoder elements are also connected through an attention
mechanism. This allows the modeling of dependencies without regard to their
distance in the input or output sequences. Vaswani et al. [64] propose a new
network architecture that uses only this attention mechanism, getting rid of the
recurrence and convolutions. Vaswani et al. show that the Transformer can
be trained significantly faster than architectures based on recurrent or convo-
lutional layers. Many embedding models discussed further are based on the
transformer architecture such as BERT [22] or GPT [15], and the paper is im-
portant for understanding how they work, and how they can be implemented in
our specific application.

Wor2Vec

Mikolov et al. [49] present a method for creating vector representations of words
from a corpus. This vector is placed in a vector space, where similar words are
placed closer together. The model uses a neural network architecture. Mikolov
et al. present two learning models, Continuous Bag-of-Words, which uses the
context words to predict a target word, and Continuous Skip-gram being the
opposite, using the target word to predict the context words. Context words
are the words closest to the target word and are gathered by having a mov-
ing window over the corpus of text. By having this moving window, training
pairs are created, consisting of target words as well as context words. The one
layer neural network is then trained on these pairs of words. By using back-
propagation and gradient descent, the model tunes weights that are the vector
representation of words. In a follow-up paper [59] Xin Rong explains the use of
weight tuning.

GLoVe

Pennington et al. [53] present a new method of creating vector spaces for words
by using not only local information about the words, such as local context
information but also global statistics, such as word co-occurrence. By using
global and local statistics of a corpus, GLoVe captures some of the semantic
relationships between words. The model uses a word-word co-occurrence count,
whose entries note the number of times a word occurs in the context of another
word. The GloVe model performs significantly better than other baselines, often
with smaller vector sizes and smaller corpora.

14



LSA

Latent semantic analysis (LSA) [40] is a natural language processing technique
used to create representations of text data in terms of some hidden features. LSA
relies on the fact that once words are embedded into a vectorial space, terms
with similar meanings are closer to each other. And as such, words with similar
meanings usually are present in similar contexts. The way LSA works is that
input is gathered from a training corpus and a word-by-document co-occurrence
matrix is constructed. This matrix contains the occurrences of each word in each
document. The authors perform a dimensionality reduction by using a method
called Singular Value Decomposition (SVD) [25]. The method is similar to
principal component analysis [67], projecting every word in a subspace with
a predefined number of dimensions. Finally, the semantic similarity between
words that have been embedded in such a vectorial space can be obtained by
the cosine angle between them. Altszyler et al. [9] compare LSA, a counter-
based model, and Word2Vec, a prediction-based model, performances on a small
corpus. They argue that often there are situations where embeddings have to
be created with only scarce data. Altszyler et al. compare the capability of the
models to represent semantic categories, as well as analyze and disambiguate
the content of dreams. The results of the paper show that Word2Vec performs
better when there is substantial training data, however, when this is reduced,
LSA becomes the more viable model.

ELMO

Previous word embedding models such as Word2Vec and GLoVe would gener-
ate a single embedding vector for each word. Because of this, it is impossible
to determine context just from the word embeddings. Peters et al. [54] in-
troduce a deep contextualized word representation, able to capture context as
well as syntax and semantics, called ELMo (Embeddings from Language Mod-
els). Essentially, ELMo is a function that provides a contextualized embedding
for words, getting a sentence as input and outputting the embedding vector.
Elmo uses all the internal states of a bidirectional language model to generate
these embeddings. Language modeling (LM) is the use of various techniques to
determine the probability of words occurring in a sentence. Language models
determine word probability by analyzing text data. Bidirectional models(biLM)
analyze text in both directions, backwards and forwards. The main advantage
of using language modeling for an NLP model is you don’t need additional la-
bels for training data, and just a sufficiently large dataset to predict previous
and future words. When ELMo is being trained, the LM predicts future words,
having been given previous words, while the backward LM is trained to predict
previous words given future words. This helps to generate more accurate word
embeddings, by capturing context information from multiple passes through the
given text. While other state-of-the-art embedding models at the time use only
the last layers for output, ELMo uses all of the internal states of the biLM. The
authors found that the higher layer outputs capture more context information,
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while the lower layer outputs capture information about syntax in the gener-
ated word vector. When training, the LM is given as input a sentence. Each
word is converted into a character embedding, and it is given to the first Long
Short-term Memory (LSTM) cell of the model. The authors use character em-
beddings because the initial layer embeddings should be context independent.
Furthermore, to be able to compare the proposed method with pretrained word
embeddings, these could not be used in the training of ELMo. Deeper layers of
the LSTM start outputting context dependent embeddings. In order to combine
the features of the forward LM and backward LM, Elmo concatenates vectors
between each internal state. Afterward, each vector is multiplied with a weight,
which is tuned in the training process. Finally, all vectors from all the layers
are summed up and represent the final word embeddings. Peters et al. prove
that summing up all the layers resulted in better scores.

BERT

Devlin et al. [22] describe a new method of embedding words that builds on the
advantages of previously used methods. At the time of publishing this paper,
there have been two main strategies for applying pretrained language represen-
tations: feature-based and fine-tuning. For feature-based language representa-
tions, I present ELMO, which uses task-specific architectures that include the
pretrained representations as additional features. Fine-tuning language repre-
sentation, such as the Generative Pretrained Transformer (OpenAI GPT) [56]
use minimal task-specific parameters, and are trained on the downstream tasks
by simply fine-tuning all pretrained parameters. The BERT language represen-
tation presented by Devlin et al. [22] combines these two strategies to achieve a
model that can solve many NLP tasks with much lower training times. There
are two steps in the framework: pretraining where the model understands the
general semantics of the language and context, and fine-tuning, where the model
learns to solve a specific task. BERT: Bidirectional Encoder Representations
from Transformers is pretrained by using a “masked language model” (MLM)
which masks some of the tokens from the input, and the objective is to pre-
dict the original vocabulary ID of the masked word based only on its context.
Each token is converted into a word embedding using pretrained embeddings.
This helps the model understand bidirectional context within sentences. For
pretraining, the model also uses a “next sentence prediction” task that jointly
pretrains text-pair representations. Given two sentences, the model determines
whether the second sentence follows the first, and helps the model understand
the context across different sentences. For the fine-tuning phase of the model,
the output layer is replaced with a specific set depending on the task, and only
that layer is retrained. That is what makes the training of BERT fast, indepen-
dent of the NLP task. BERT’s model architecture is a multi-layer bidirectional
Transformer encoder based on the previously discussed transformer architec-
ture [64]. The BERT Transformer uses bidirectional self-attention, while the
GPT Transformer uses constrained self-attention where every token can only
attend to the context to its left. The BERT model is a combination of the
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state-of-the-art language representation methods at the time. It offers the ad-
vantages of both feature-based architectures and models based on fine-tuning.
It is also a precursor of XLNet [69] and useful for understanding the evolution
of language models.

XLNet

Yang et al. [69] present an extension to the BERT architecture discussed pre-
viously. The authors describe a model that combines two kinds of language
modeling techniques. The autoregressive approach predicts each timestep using
previous timesteps but has the limitation that even when using bidir lSTM ,
it never truly captures the entire context of the given text. The autoencoding
denoiser approach (as seen to great performances in BERT [22]) is based on
the transformer architecture and is good at understanding context from all the
text. However, the limitation of this technique is that when training with a
masked language model, masked tokens are in the input of the model and it
is possible that these tokens are interdependent. XLNet combines these two
approaches and does not use an LSTM, but is entirely based on self-attention
like the transformer [64] models. While BERT predicts all masked tokens at
once, XLNet predicts the words one at a time in order to add to the context of
the entire sentence autoregressively. XLNet uses a permutation LM instead of a
bidirectional LSTM to train on all possible permutations of a given text. It uses
a sinusoidal signal for positional encoding as seen in the transformer architec-
ture but it also integrates relative positional encoding from TransformerXL [20].
The model outperforms BERT on 18 out of 20 NLP tasks and this is why it is
relevant to research.

Comparing the performance of NLP models is very important to determine
which models are best suited for various NLP tasks, and which models can
be improved. Calculating accuracy, precision, recall, and F1 score will give
a good rough idea of how these models perform. Akbik et al. [6] provide a
framework for easy hyperparameter tuning and combining models. A study
on topic segmentation using word embeddings [50] that were state-of-the-art at
that time (LSA, Wor2Vec, and GloVe) compared the methods on two corpora
containing computer science, economy, politic, and health topics. Based on the
corpora, the authors created training and testing collections. They evaluated
the performance of these methods using WindowDiff metric that measures the
error rate by using a sliding window. This work is useful for understanding the
methodology of comparing word embedding models.

Kawin Ethayarajh [24] compares three contextual embedding methods (ELMo,
BERT, and GPT-2). Here training data is taken from the SemEval Semantic
Textual Similarity tasks from years 2012 - 2016 [3, 2, 4, 5]. The reason for
choosing these datasets is that they contain many homonyms, words that have
different meanings depending on the context they are in.

In this article [30] Horan Cathal compares BERT, ElMo, XlNet, and USE
on a sentence similarity task to determine which model is better suited. The
author stresses the fact that while some embedding models are considered in
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general better than others, on specific tasks they may perform worse. Moreover,
it is desirable to use pretrained models rather than training them from scratch,
since this takes very large datasets and a considerable amount of training time.
From the comparison, I can see that BERT is well suited for tasks that involve
determining which sentence from a given set is more similar to another sentence.

Achananuparp et al. [1] write about evaluation criteria for determining the
efficiency of sentence similarity models. They define six evaluation metrics to
use; Recall, Precision, Rejection, Accuracy, F1 Score, and f1 Score defined as
the uniform harmonic mean of rejection and recall.

In a similar study on integrating Embeddings from Language Models (ELMo)
and the Bidirectional Encoder Representations from Transformers (BERT) with
the transformer encoder, Laskar et al. [42] propose using mean average precision
(MAP) and mean reciprocal rank (MRR) to evaluate the models.

The criteria for selecting a word embedding model were ease of implementa-
tion into an existing application, having pretrained embedding models in order
to run the application while the user is playing the scenario. From the previ-
ously presented literature review, I conclude that the transformer architecture
is the most suited for open text matching in our application. The transformer
architecture offers, at the moment of writing, state-of-the-art word embedding
models. I look into libraries that offer transformer based word embedding mod-
els. Furthermore, I determine that the programming language Python offers
the fastest methods for prototyping and testing implemented word embedding
models, so the service I will develop will also use Python.

A paper [68] I came across while performing the literature review described
a state-of-the-art natural language processing library based on the transformers
architecture, called Huggingface. The library contains a large number of ready-
to-use, pretrained embedding models that are state-of-the-art in various NLP
tasks.

Another available python library that provides pretrained models is the
SpaCy library. Similarly to Huggingface, this library offers an interface for
implementing state-of-the-art models into any python application, bypassing
the time time-consuming steps of implementing and training the models. How-
ever, in a previous experiment by Lala et al. [38], matching free text inputs
with methods provided by SpaCy resulted in lower scores than the currently
implemented SSCM method.

Patel et al. [52] compare SpaCy, Huggingface, and fast.ai, a less developed
and popular library option than the other two. While SpaCy has been available
longer than Huggingface, until last year the NLP models it has offered relied
on the recurrent neural network architecture rather than the state-of-the-art
transformer-based one. Huggingface on the other hand focuses mainly on NLP
tasks with its transformer library, being optimized for speed when performing
these tasks, and has seen huge popularity and funding over the last few years.
This means that using the library might become a standard in production and
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development, an important aspect when developing an application with long-
term support.

Another advantage of Huggingface is that it offers an easy-to-use class for
finetuning the pretrained models using custom datasets. This is important for
my use case since the problem I tackle in the third research question is finetuning
the model on scenario specific information. This means a fast and easy-to-use
method of finetuning is an important criterion in choosing the library of models
to go forward with.

I decide to use the Huggingface library for the following reasons. Firstly,
the models can be used directly by importing them with code and there is no
need for reimplementing them from scratch. This is a very important criterion
since the main contribution of this thesis is to bring improvements to the open
text input understanding of a serious game. Considering this, the goal is not to
implement a model from scratch, but to find suitable models that can be used in
the matching service. Secondly, considering the online nature of the application,
the models need to be pretrained in order for the matching to be performed
relatively fast for practical use in a real-time application. The models in the
Huggingface library are already pretrained on very large datasets, something
that would not be feasible and efficient for me to do from scratch. Furthermore,
the models I want to select for testing need to be state-of-the-art in the field of
word embeddings. The goal is to use the fastest and best performing models for
the task while keeping computation times low. The Huggingface library offers
these state-of-the-art models, as well as a list of models for each task, ranked
based on their performance scores on a standard validation set.

The task I am trying to solve can be presented as a sentence similarity
task: A sentence is provided by the user and the matching service is tasked
with calculating the similarity between this provided input sentence and some
prewritten statement options. The statement with the highest score and also
above a predetermined threshold is chosen as a suitable interpretation for the
open text input. The threshold is determined by evaluating the model on the
golden dataset created previously from communication workshops using Com-
municate. This golden dataset contains multiple samples. Each sample contains
an input sentence written by a student in the workshop and one or more prewrit-
ten statement options gathered from the scenario. The sample also contains one
label determined by the user on which statement option best matches the input
sentence, as well as two other labels determined by experts. If at least two out
of the three labels are the same, the golden match of this sample is equal to that
label. If there is no majority decision on the labels, the sample is unmatched
and labeled as ’null’ in the golden match.

Finally, since the application I am working on is mainly for Dutch language
use, the models need to either be specifically trained on Dutch datasets or be a
multilingual model that can be used for Dutch specific language tasks. Reimers
et al. [58] present a method to make sentence embedding models trained on
one language perform well in another language. This was done using multilin-
gual knowledge distillation. They show that models trained in a high-resource
language, like English, can be extended to support multiple languages. Their
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method uses a teacher model and a set of translated sentences from the source
language to the desired language. Training a student model on the translated
sentences such that the final embedding vector is similar to the vector of the
teacher model.

One of the multilingual models chosen from the Huggingface transformer li-
brary is called ”clips/mfaq” [21]. The model is based on the BERT architecture,
specifically using the RoBERTa base model. RoBERTa is a reimplementation of
BERT that focuses on the significant impact that hyperparameter tuning has.
Liu et al. [43] determine that the original BERT model was significantly un-
dertrained, and the RoBERTa implementation performs significantly better can
matching or exceeding every model published after it. The ”clips/mfaq” model
I am using for this application is pretrained on the ”MFAQ” [21] dataset, which
is a multilingual corpus of Frequently Asked Questions parsed from the Com-
mon Crawl. Common Crawl is an open-source database of web crawling data.
”Clips/mfaq” 6 million pairs of questions and answers in 21 different languages,
including Dutch and English.

Finally, considering everything mentioned previously I choose to further test
a set of 5 word embedding models. This set contains models from the Hugging-
face library. The models are ”clips/mfaq”, which is a multilingual RoBERTa
based word embedding, ”multi-qa-mpnet-base-dot-v1” a model used for seman-
tic search and ”all-mpnet-base-v2”, ”all-distilroberta-v1” and ”all-MiniLM-L12-
v2”, which were trained on all available training data and are designed as gen-
eral purpose models. These models have performed best on various NLP tasks
including sentence similarity and semantic search, and all have different archi-
tectures. They are considered the best general purpose models, however, that
does not indicate if they are best suited for our specific task. We perform
these tests to determine which one performs best. Due to the amount of data
and complexity of testing all possible threshold values for all possible models, I
choose to only perform tests on the top 4 general purpose models and the only
multilingual dutch specific model on Huggingface, ”clips/mfaq”. Further work
may include testing other models to see if they perform better. In the next
section, I describe the research approach for the second research question, test
and choose the best model for our specific task, as well as present the results of
this testing.

5 RQ2: Testing word embedding models on the
golden dataset

In this chapter, I focus on answering the second research question, specifically
which of the selected word embedding models from the previous chapter per-
forms best in my specific case.

In previous work [32], a dataset is created from open text utterances gathered
in communication workshops. Each sample in the dataset contains an open text
input from a student, prewritten statement options gathered from the scenario,
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and a value indicating which statement option is most similar to the open text
input. The value is given by the student who gave the input and two experts.
If the majority agree on the same value, the sample is considered matched. Al-
ternatively, if the majority agree that none of the statement options are similar
to the input, the sample is considered unmatched, and the value is Null. In the
samples, the value is called the goldenMatch. The dataset is split into smaller
training, testing, and validation datasets. In the previous experiments, the val-
idation dataset was used to evaluate the best performing SSCM configurations,
as well as other NLP methods used as performance comparisons. The method
proposed in this thesis does not separate testing and validation. This is because,
at this step, the word embedding models are already pretrained and do not need
further training or validation. Instead, I use the training as well as the valida-
tion set from the previously mentioned dataset to test the models chosen in the
previous section, since the increased number of samples will translate into more
accurate results when finding the threshold. For evaluation, I want to compare
the chosen word embedding method with the SSCM. Previous work [36] used
only the training dataset when comparing the SSCM to other methods. Sim-
ilarly, after finding the best model from the set, in order to fairly compare it
to the results from the previous experiment [36], I also use only the Training
dataset for evaluation.

5.1 RQ2 Method

In the context of our application, open text inputs can be either matched to a
prewritten statement option or not matched to any of the statement options,
considered unmatched. We define noise as the amount of incorrectly labeled
unmatched open text inputs.

One of the goals of this thesis is to improve the correct detection of un-
matched samples while keeping the correct detection of matched samples still
high. Lowering the threshold of matching does increase the detection of un-
matched samples, however, it also lowers the detection of matched ones, so
this method is not viable. We determined a threshold where the ratios of
matched/unmatched samples to their number of occurrences are closest to each
other. From here I need to improve the embedding model to correctly determine
samples that have no match.

In order to determine which model performs best for the use case of the
application, I use a testing bench. Here I calculate the best threshold for each
model.

In order to maximize correct labeling on both the matched and unmatched
samples, the ideal threshold should be chosen when the percentages of correctly
detected samples from both groups are the highest. This is because, in the
dataset, the total number of matched and unmatched samples are not equal. In
order to get the percentages of correctly matched and unmatched samples, we
divide the number of correctly detected samples by the total number of samples
in the dataset, for each group.

I perform this test on the combined training and validation datasets, since
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choosing a threshold does not require validation, the testing step will suffice.
To reduce the number of computations needed to perform this search, I end the
search when the absolute value between the relative number of found matched
and unmatched samples reaches a minimum. At this threshold, the two values
are both as high as possible, and while one might increase after that point, the
other one would decrease. I start the search at a low threshold value to ensure
that I do not miss the point of intersection.

Using the thresholds I find, I run the models on the testing dataset and
compare the results.

5.2 RQ2 Results

In this section, I present the results of the threshold testing and show the ideal
threshold for each model.

The following figures show the evolution of the correct matched and un-
matched results while increasing the threshold for each model. The table shows
the threshold that gives the best results for each of the tested models.
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Ideal Threshold Correct
matched
results

Correct
unmatched

results

Total
correct
results

Totals 424 326 750
Model # % # % # %
Clips/mfaq 0.77 226 53.301 173 53.067 399 53.2
multi-qa-mpnet-base-dot-v1 0.52 204 48.113 153 46.932 357 47.599
all-mpnet-base-v2 0.6 146 34.433 116 35.582 262 34.933
all-distilroberta-v1 0.57 141 33.254 106 32.515 207 27.6
all-MiniLM-L12-v2 0.43 167 39.386 128 39.263 295 39.333

Table 1: Best thresholds found evaluating on the Training + Validation dataset

Results show that the ”clips/mfaq” model had the best performance out of
all the tested embedding models. This shows that while the multilingual models
have a very wide functionality and can be used in many different languages, they
do not perform as well as the model trained specifically on the language used
in the task.

I use the ”clips/mfaq” embedding model to answer the next research ques-
tion.

6 RQ3: Implementation of the matching service

In this chapter, I present the current architecture of the serious game, the limita-
tions that need to be taken into consideration, and the method of implementing
the chosen embedding model from the previous step. Furthermore, I present
a method for fine-tuning the model on scenario specific information taken di-
rectly from the scenario editor. I show the results before and after applying this
fine-tuning.

6.1 RQ3 method

The matching service of Communicate where the SSCM is used is a C# ap-
plication running on a server. The matching service can be modified as long
as the output result and the received input data maintain the same format. A
newly created python matching server can be easily integrated into the existing
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architecture. I test the new matching method on my local machine before up-
loading it to the server. The scenario selected for testing the compatibility of
the matching service with the client service is called ’Advanced Game Merchant
Dialogue’ and is a scenario specifically created for testing the original SSCM.
It contains a dialogue tree with an end goal as well as an option to return to a
previous stage of the conversation, in order to simulate all possible interactions
that can happen in the application. When testing on my local machine, the
game client is modified slightly to send the packages to a local server, instead
of the official Communicate server. The packages contain the input that the
user has put into the open text input box and the prewritten statement options
obtained from the scenario tree. The packages also contain the scenario ID and
information about the matching method. On the local server, the sentences in
the package are separated into pairs. These pairs contain a question field, which
is the input sentence from the users, and an answers field, which contains all
the prewritten statement options. The word embedding model runs on these
pairs and computes similarity scores between each statement option and the
user input.

Using the best threshold I found for the ”clips/mfaq” model in the previous
chapter, I run the model on the same dataset as the SSCM, to compare the
results and see if there is a relevant improvement. SSCM was run on the Testing
dataset.

In this context, finetuning means further training the already pretrained
model on scenario specific information. The goal is to examine whether train-
ing the model on prewritten statement options improves its performance when
evaluating it on the golden dataset.

To finetune the model I will reuse some of the code that was used for the
original training of the ”clips/mfaq” model [21]. The pretrained ”clips/mfaq”
model is available in the transformers library and can be initialized directly
in code. Instead of training the embedding model from scratch, I will load
the pretrained embedding model and train it further on the scenario ”Samen-
werkenOT”. This scenario was created for testing the SSCM and was used to
create the golden dataset. Communicate allows the download of an XML file
containing the scenario information. This XML is structured such that every
dialogue option points to a possible statement option that follows it. In this
way, a tree structure can be created, where every statement of the computer can
have one or more prewritten statement options for the player to choose from:
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Using this tree structure I create a scenario specific dataset that can be used
to finetune the embedding model. In order to reuse the training code for the
”clips/mfaq model”, I structure the data in the same format as the ”MFAQ” [21]
dataset. The scenario specific dataset is structured as a dictionary containing
pairs consisting of a question and multiple answers. For the data in the scenario
XML, I consider the statement given by the computer as being the question and
the prewritten statement options as the answers. This is because a statement
option can only follow after a computer statement, while a computer statement
can have multiple statement options following from it. The answers field of the
pair contains all of the statement options that follow from the corresponding
computer statement, separated by two newline characters.

Another configuration for this dataset could be having the pairs as single
sentences in both the question and answers fields. However, because there are
more statement options than computer statements, in order to include all of
the statement options in the dataset, some computer statements will appear in
multiple pairs, creating an imbalanced dataset, which may affect training. This
is a modification to the training algorithm that will be explored in future work.

Reusing the training structure of the ”clips/mfaq” model is not an ideal way
of finetuning the model. The structure was created for the particular ”MFAQ”
dataset, while the scenario specific dataset is much smaller. Because of this,
running the application takes a very long time and high computing power. I use
this method to determine if the accuracy of matching can be increased, however,
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future work will develop a training algorithm specific to this dataset.
To finetune the pretrained ”clips/mfaq” model I first load the pretrained

model from the Huggingface library. The same tokenizer is used as in the
original training of the dataset in order to arrange the data in a form that can
be given as input to the model. The tokenizer creates the training samples as a
touple of question, answer, and a label represented by a numerical id. The model
is finetuned by matching the question to the answer that has the same label.
After each training sample, the internal weights of the model are modified.

I first finetune the word embedding model on the scenario specific dataset
created from the ”SamenwerkenOT” scenario. To evaluate the finetuned model,
I use the same validation algorithm as in the previous chapter. Firstly I vali-
date the model on the Testing dataset, and then on the Training dataset. I only
evaluate the model for threshold values between 0.65 and 0.75, since I experi-
mentally determined that that is the range where the percentages of matched
and unmatched results are closest.

The finetuning process is done in steps, at each step inputting a training
sample into the model and changing the internal weights. Since the scenario
specific dataset contains 23 training samples, the finetuning process will be
done in 23 steps to pass through all of the data.

6.2 RQ3 Results

In this section, I first present the results of the ”clips/mfaq” model before fine-
tuning compared to the previously introduced SSCM. Afterward, I present the
results after the finetuning process.

Running the model on the Testing dataset, similarly to how SSCM was
compared to other word embedding methods, I find these results:

Matched Unmatched Total
TOTALS 147 77 224

# % # % # %

SSCM
Best Matched 74 50 36 47 110 49
Best Unmatched 35 24 67 87 102 46

Clips/mfaq

Best threshold found (0.61) 105 71.4285714 29 37.66233766 134 59.82142857
Highest F1 score (0.748) 128 87.0748299 10 12.98701299 138 61.60714286
Closest percentages 81 55.1020408 42 54.54545455 123 54.91071429
Best Matched 129 87.755102 5 6.493506494 134 59.82142857
Best Unmatched 6 4.08163265 77 100 83 37.05357143

Table 2: Comparison between SSCM and non-finetuned Clips/mfaq on Testing
dataset

As we can see, the model correctly finds more matched samples than SSCM
for the threshold found on the training+validation dataset. However, it does not
perform as well as the best unmatched SSCM on unmatched samples. Further-
more, when considering the threshold value for the closest percentages between
the number of matched and unmatched samples, ”clips/mfaq” correctly finds
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more matched and unmatched samples compared to the best matched SSCM,
however not as many unmatched samples as the best unmatched SSCM. The
conclusion I can draw from these results is that without finetuning, ”clips/mfaq”
performs slightly better on matched results, but slightly worse on unmatched
results, than SSCM. Specifically, when it is not finetuned on scenario specific
data, the method does not reduce noise in matching open text input.

Now I show the results of the model after it has been finetuned on the
scenario specific dataset created from the ”SamenwerkenOT” scenario. The
evaluation is done on the Testing and Training datasets, in order to compare the
results with the results obtained before finetuning, for threshold values between
0.65 and 0.75:

(a) Finetuned model evaluated on
Testing dataset

(b) Finetuned model evaluated on
Training dataset

After the finetuning process, the model detects fewer matched and un-
matched results overall. This shows that the finetuning process on the scenario
specific data does not reduce noise. This may be due to the fact that the scenario
specific dataset does not contain any unmatched training pairs. Specifically, all
of the training pairs are created from the scenario tree, where the question
field contains the computer statement and the answer field contains all possible
statement options. Because of this, there are no training samples for unmatched
statement options, so the model is not trained to find any unmatched results.

To alternatively test the finetuning process and determine what causes the
drop in performance, I create new datasets for finetuning from the existing
Training and Testing datasets. I call these datasets the finetuning Training
and Testing datasets respectively. The finetuning datasets contain the player
open text input, all of the prewritten statement options, and the golden match,
which determines which statement option is most similar to the open text input
provided by the player, or if none of them are.

The formatting of these finetuning datasets is similar, containing pairs with
question and answer fields. However, unlike the scenario specific dataset, here
the question field contains the player open text input, and the answer contains
the prewritten statement option closest to the player open text input, given
by the golden match. If the golden match is null, meaning that the player
open text input is not similar to any of the statement options, the answer
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field of the pair has the value None. By structuring the finetuning datasets in
this way, the embedding model should associate similar sentences together, and
learn that some sentences can be associated with a None value, if none of the
provided statement options are similar enough. If the model performs better
after being finetuned on these finetuning datasets, it shows that the scenario
specific dataset needs to contain unmatched samples as well as matched samples,
like the Training and Testing datasets. These new finetuning datasets contain
more training samples than the previously used scenario specific dataset. The
finetuning Testing dataset contains 224 samples, and the finetuning Training
dataset contains 533 samples. In order to pass through all the data, the number
of steps in the finetuning process will be this sample number.

(c) Model finetuned on the finetuning
Training dataset, evaluated on the

Testing dataset

(d) Model finetuned on the finetuning
Testing dataset, evaluated on the

Training dataset

In the context of evaluating the word embedding model, I consider a true
positive when the model correctly labels a matched sample, a true negative
when the model correctly labels an unmatched sample as unmatched, a false
positive when the model labels an unmatched sample as matched, and a false
negative when the model labels a matched sample as unmatched.

As a final comparison, I will show the values of the true positives, true
negatives, false positives, and false negatives in the following cases:

Firstly, when the model is evaluated on the Testing dataset, comparing being
finetuned on the scenario specific dataset and the finetuning Training dataset:

Threshold True Positives True Negatives False Positives False Negatives
Finetuning Dataset Scenario Training Scenario Training Scenario Training Scenario Training
0.65 78 83 31 32 72 63 43 46
0.66 80 81 27 32 72 60 45 51
0.67 79 82 37 34 59 61 49 47
0.68 85 74 35 34 56 64 48 52
0.69 77 72 35 32 57 65 55 55
0.7 65 71 34 38 66 60 59 55
0.71 74 76 40 35 53 57 57 56
0.72 66 69 37 39 60 52 61 64
0.73 58 62 37 36 59 56 70 70
0.74 64 61 42 43 53 50 65 70

Table 3: Model evaluated on the Testing dataset
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As we can see, for a threshold value of 0.7, where the percentages of matched
and unmatched samples are the closest, there are slightly more correctly labeled
matched and unmatched samples for the case where the model was finetuned
on the finetuning Training dataset. This can be attributed to the fact that the
finetuning Training dataset has 533 samples to train, while the scenario specific
dataset only has 23 samples. Furthermore, the finetuning Training dataset
contains unmatched samples for the model to train on, while the scenario specific
dataset does not.

Finally, I show the comparison between the evaluation of the model on the
Training dataset, when it is finetuned on the scenario specific dataset and the
finetuning Testing dataset:

Threshold True Positives True Negatives False Positives False Negatives
Finetuning Dataset Scenario Testing Scenario Testing Scenario Testing Scenario Testing
0.65 181 169 64 78 264 261 24 25
0.66 165 166 80 72 250 264 38 31
0.67 169 167 83 87 254 250 27 29
0.68 161 171 84 90 251 234 37 38
0.69 168 161 104 102 215 227 46 43
0.7 157 160 100 101 225 225 51 47
0.71 160 157 108 108 215 216 50 52
0.72 159 159 110 111 207 208 57 55
0.73 150 158 116 116 206 197 61 62
0.74 161 161 124 117 186 194 62 61

Table 4: Model evaluated on the Training dataset

In this case, the unmatched results are slightly higher when the model is
finetuned on the scenario specific dataset, while the number of correctly labeled
matched samples remains the same. However, the differences are too small to
be considered significant.

7 Discussion

In this section, I consolidate all of the findings from the previous chapters and
discuss the results.

I was able to modify the matching service of the serious game Communicate
to use a state-of-the-art word embedding model in the process of matching
open text input to prewritten statement options. This word embedding model
is called ”clips/mfaq”, and it is a RoBerta based word embedding model trained
on a Dutch dataset. Comparing the results of this matching method with the
previously introduced SSCM showed a slight increase in the number of correctly
labeled matched samples, but a decrease in the number of correctly labeled
unmatched samples, showing that noise was not reduced in this way. Future
work for this section includes testing other state-of-the-art word embeddings
that were not covered in the initial set. Word embeddings trained specifically
on Dutch corpora are scarce, or the corpora are not large enough for good
performance. Unfortunately, the method of finetuning the word embedding

29



model with scenario specific information was not successful. This was most likely
caused by the fact that the finetuning process was adapted from the original
training method of the ”clips/mfaq” model, formatting the scenario specific
dataset to resemble the original ”MFAQ” dataset used for training. Instead
of this, in future work, the finetuning method should be created from scratch,
and tailored to the scenario specific data. This would reduce computation time,
since the scenario specific dataset is much smaller than the original ”MFAQ”
dataset, and requires a much less complex method of finetuning.

Furthermore, the lack of noise reduction after the finetuning process might
be attributed to the training dataset not having unmatched samples. This
trains the model only on matched samples and does not leave an option for
unmatched samples. There might be two possible solutions to this problem. The
first solution is creating synthetic data for the finetuning process, that contains
only unmatched samples to balance out the existing dataset. However, creating
this data is not straightforward, since the sentences in the question part of the
sample need to make sense in the context of the scenario, but should not be
similar to any other sentences, to avoid unwanted matching. This is a complex
task by itself and requires further research. Another solution for the problem
is restructuring the data samples, so that an additional answer, an unmatched
variant, is added to every sample. This means that the embedding model will
always have the option to assess the similarity of a sentence to a null entry.
However, this is problematic because in order to match with the null answer,
the other answers in the sample need to be very dissimilar to the sentence, which
is not always the case in the training data. This is also a complex process that
needs further research.

8 Conclusion

In this section, I will state the conclusion of the findings of previous chapters,
and I will elaborate on the future work that can be derived from taking this
thesis as a starting point.

At the moment, state-of-the-art word embedding models can be integrated
into the serious game Communicate, with comparable results to the previous
methods, depending on the chosen similarity threshold. However, finetuning
the models with scenario specific information requires further development, and
possibly a rework of the format in which the data is preprocessed.

In answering the first research question, Which word embedding methods
are suitable for sentence similarity in an application for training communication
skills with open text input, after a literature review I chose a subset of 5 state-of-
the-art word embedding models for further testing. Future work could include
more models for testing on this particular NLP task, because, as discussed in
Section 4, the general performance of word embedding models does not always
correlate to their performance on a particular task. This means that while some
other word embedding models are considered to generally perform worse, they
might perform better on this particular sentence similarity task than the chosen
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set of 5. This process of testing a larger set of word embedding models from
the Huggingface library could be automated, finding if other models have a
better detection accuracy of matched and unmatched samples from the golden
datasets.

Furthermore, instead of using the ”clips/mfaq” model as a pretrained model,
it is possible to retrain the model from scratch. Future work should explore this
possibility. The serious game Communicate has a large number of authored
scenarios that can be used as samples for a training process of the word embed-
ding model. However, it is worth exploring if the model would perform better
if it is trained on samples that contain, in addition to the prewritten statement
options, an extra empty statement option. In this way, the model would be
trained to match any samples that should be unmatched, to the null statement
option. This would reduce the weight the threshold has in determining matched
and unmatched samples.

I present a method of finetuning the pretrained word embedding model using
scenario specific information. This method reuses code that has been used for
the initial training of the model on the ”MFAQ” dataset. Future work should
focus on developing a new method of finetuning, rewriting code from scratch
specifically for the format of the scenario specific information.

Furthermore, when evaluating the model after it has been finetuned on vari-
ous datasets, I conclude that using datasets that contain unmatched samples for
finetuning leads to a decrease in noise compared to evaluating the model after
it has been finetuned on datasets without unmatched samples. Future work
should focus on formatting scenario specific data so that unmatched samples
are also contained in the scenario specific dataset. This teaches the model that
there is always the option that the input text might not be similar to any of the
prewritten statement options.

Materials

This section is dedicated to the link to the git repository where you can find all
the code used in this thesis. Besides the python files, I also include the datasets
mentioned in this thesis.

Git repository link: https://github.com/Alias939/master_thesis_code.
git
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