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Abstract

Biological systems live in dynamic environments and thus need to adapt to changes in that envi-
ronment. However, adapting costs time, so the system needs to predict its future environment based
on past environments. Therefore, the system needs to store some information about this history
from which it is possible to make this prediction. What information is optimal to extract from the
signal history depends on the covariance function of the signal. The information bottleneck provides
a framework to determine what information is relevant for this prediction.

We look at a system that predicts the value of a signal generated by the generalized Langevin
equation at one specific future time. The generalized Langevin equation provides a non-Markovian
signal with a non-trivial memory function. We analyze two specific types of memory functions; an
exponential decay, and a combination between an exponential decay and a Dirac delta function.
These memory functions can generate a wide variety of signals. However, we find that the optimal
response for each memory function does not vary strongly with parameter changes. The information
bottleneck method requires discretization of the input signal. This discretization induces information
loss, which masks what information is necessary to perform the prediction.

A vector autoregressive model is constructed, which generates a discrete signal. This eliminates
the information loss by the information bottleneck. As such, we find the information required to
predict the future signal value for both signal types. For the exponential decay memory function, the
future is predicted optimally from the most recent three signal values. The prediction seems based
on determining the signal’s instantaneous position, velocity and acceleration.

For the combined exponential decay and Dirac delta function memory function, the future cannot
be predicted optimally from a limited set of past signal values. If the exponential decay is the more
important memory function, the response mirrors the previous case but is enhanced by a strongly
decaying exponential tail. This tail seems to elucidate the effect of the instantaneous Dirac delta
function. On the other hand, if the Dirac delta function is the more important memory function,
the response mirrors the result of the information bottleneck for the stochastic damped harmonic
oscillator (Lotte Slim, 2020). However, it is enhanced by a slowly decaying exponential tail. The tail
seems to elucidate the effect of the history-dependent exponential decay memory function.
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1 INTRODUCTION 1

1 Introduction

Biological systems exist in a dynamic environment. The system might rely on different machinery depend-
ing on the state of the environment. Several strategies are available to select what machinery is active.
The simplest strategy is to keep everything active. In that case, the system needs to spend more energy
on the building and upkeep of all the machinery, but it will be ready for any environment. On the other
hand, the system might statistically switch from one set of machinery to another one. In this case, the
system spends less energy on maintaining all the machinery, but it might not have the correct machinery
ready at the right time. Finally, the system might use some sensing mechanism to gather information
about the environment and choose what machinery to activate to adapt to changes in the environment.
For this strategy to be viable, the system needs to be able to predict its future environment based on
the information it gathered in the past. This is needed because activating the correct machinery takes
some finite length of time. In this case, the system spends less energy maintaining the machinery and
instead uses some energy to sense the environment and predict the future environment. Which of these
strategies is the best strategy in any specific case depends on the energy costs and accuracy required.

The last strategy is relevant in gene expression [1,2], vision [3], and the chemotaxis network [4]. In these
systems, prediction plays a part in the optimal survival strategy. However, a trade-off exists between the
prediction’s accuracy and the prediction system’s resource cost. In general, the information a system has
about the past limits the amount it has about the future. A system can make the best possible prediction
about the future environment if everything about the past environments is known. However, storing all
this information would be highly resource-intensive. We assume that a cell has limited resources for
prediction. Therefore, the system must store a compressed representation of past environments to limit
resource costs.

How should the signal be compressed? An ideal system would only sense relevant information for pre-
diction, discarding irrelevant information. Given that many biological systems have existed for a long
time, evolution suggests that we might expect these systems to be nearly ideal [5]. We need a definition
of relevant information to determine if these systems are indeed ideal.

For this, we will use the information bottleneck method. This framework has been used to study biological
systems in several contexts before. For example, in determining optimal sensing networks for transcription
factors in fly-embryo development [2], prediction of output in neurons in the retina and visual cortex
[3, 6, 7], allele frequencies in different generations [7] and evaluating the performances of the push-pull
network and chemotaxis network as cellular sensing devices [8, 9].

The information bottleneck framework builds on information theory. This theory, originally introduced by
C. Shannon, provides a mathematical framework for considering information transmission [10]. However,
it does not distinguish between information and relevant information, which is what the information
bottleneck adds [11].

The information bottleneck establishes a method to find the optimal compression of information to do a
certain task. For example, a task could be to determine the value of a variable y. If a second variable, x,
is correlated with y, then knowing x can aid in determining the value of y; there is mutual information
between x and y I(x; y) > 0. If x must be compressed to x̃, then the mutual information between that
compression and y is reduced relative to the uncompressed representation x; I(x; y) >= I(x̃; y). An
optimal compression would maximise I(x̃; y) while minimising I(x̃;x). We return to the information
bottleneck in more detail in section 3. This framework is powerful for defining relevant information and
considering the trade-off between prediction accuracy and resource costs.

In this work, we consider the task of predicting a signal value at some specific future time. As input
we consider the signal values at discretized times in the past. The compression variable is a scalar that
is a linear function of the past signal values. In other words, this is a weighted average of the input.
The information bottleneck in this context requires us to find the correlation function of the signal. This
allows us to determine the optimal weights for each of these historical signal values to determine the
compression variable such that the compression has a maximal correlation with the future signal value.
We call these optimal weights the information bottleneck kernel. This information bottleneck kernel thus
shows what past signal values are most important in predicting the future of the signal. In one previous
work, this analysis was performed for a Markovian signal in the form of the Ornstein-Uhlenbeck model [8].
In another previous work, the analysis was done for a non-Markovian signal in the form of the stochastic
damped harmonic oscillator [9]. For the Markovian signal, the optimal prediction network should only
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remember the current signal value, which is also the best prediction for the signal value [8]. Meanwhile,
the two most recent measurements are important for the stochastic damped harmonic oscillator. The
weights of these measurements are such that the best prediction is the current signal value added to
the best guess of the instantaneous derivative, which is determined from the difference between the two
measurements [9]. In this work, we will extend the framework to fully non-Markovian signals with non-
trivial memory functions, which we generate using the generalized Langevin equation. Studying these
signals will allow us to investigate whether more complex compressions of the past trajectory are required
to predict signals with more complex correlation structures.

In the first part of the report, we will introduce the generalized Langevin equation and, in particular,
the form of several non-trivial memory functions. We will examine signal trajectories generated by
the generalized Langevin equation to aid in understanding the behaviour of these signals. Next, we will
introduce the information bottleneck method in detail and show how the autocovariance of a signal is used
to determine the optimal compression. Subsequently, we will find the autocovariance of the generalized
Langevin signal for our non-trivial memory functions and use this to find the optimal compression. We
will find that the discretization of the continuous signal introduces artefacts in the information bottleneck
kernel, so it is more useful to consider a truly discrete signal. To this end, we will introduce a vector
autoregressive model that models the generalized Langevin equations and determine its autocovariance.
This discrete model allows us to eliminate the artefacts in the information bottleneck kernel and show
the optimal compression of a generalized Langevin system.

2 Memory kernels

The Langevin equation was introduced by Paul Langevin as a theoretical description of Brownian motion
[12, 13]. The equation describes the movement of a particle in a fluid, which exerts a viscous resistance
force on the particle. The equation for the coordinate x at time t of a particle of mass m that experiences,
on average, a friction force of magnitude −λdx

dt is written as [12]

m
d2x

dt2
= −λ

dx

dt
+ η, (1)

where η is a random force due to the irregularity of collisions with solvent molecules. Both the friction
force and the random force stem from collisions with solvent molecules. It can be shown that the
magnitudes of both forces are intimately related as a manifestation of the broader fluctuation-dissipation
theorem [14]. The Langevin equation has proven to be a powerful tool to describe the Brownian motion
process. Moreover, it has established new physics and mathematics, being one of the first stochastic
differential equations [13]. An important assumption needed for the Langevin equation is the assumption
that the particle performing the Brownian motion is much heavier than the solvent molecules. As such, the
molecular relaxation time is very fast compared to the timescales of the Brownian particles and collisions
of the solvent molecules with the Brownian particle are not correlated to each other [14, 15]. While this
assumption is mathematically convenient, it breaks down for short times or light-weight particles [14].
In those cases, the relaxation times in the solvent are important, so collisions with solvent molecules
have to be considered correlated in time. The generalized Langevin equation is a method to include this
correlation in the model of Brownian motion. Instead of an instantaneous friction force and uncorrelated
noise, the equation assumes that the noise is correlated with itself at different times, and the resistance
force is based on the history of the velocity, as enforced by the fluctuation-dissipation theorem. The
generalized Langevin equation in one coordinate x for a particle with mass m, in a harmonic potential
with force constant κ for t ≥ 0 is written as [16]

mẍ(t) = −
∫ t

tm

dt′ Γ(t− t′)ẋ(t′)− κx(t) + η(t), (2)

where we write ẋ for the time derivative, and Γ(t) is the memory kernel that defines a corrective force
based on the past trajectory between tm < 0 and 0, x(t) where tm ≤ t < 0. The memory kernel
prioritizes some aspects of this past trajectory over others. The fluctuation-dissipation theorem in this
case stipulates ⟨η(t)η(t′)⟩ = kBTΓ(|t− t′|).

Only after choosing the memory function Γ(t) is the system fully specified. In this report, we consider
several memory kernels in depth. We first introduce a selection of memory kernels to consider as input
statistics for a biological system and comment on their behavior. For this section, we will interpret the
generalized Langevin equation as an equation of motion.
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2.1 Dirac delta function

In the case that the kernel is a Dirac delta function, only the current value of the velocity influences the
corrective force on the system. In this case, this corrective force is exactly a friction force. Here, the
original Langevin equation of a damped harmonic oscillator with stochastic driving is recovered. The
Langevin equation in one dimension x for a particle with mass m is given as

mẍ = −2ζ
√
κmẋ(t)− κx(t) + η(t), (3)

where ζ sets the magnitude of the friction force. This equation of motion includes three forces, the
friction force −ζ

√
κmẋ(t), the harmonic potential −κx(t), and the random white noise force η(t). The

damping parameter ζ tunes the system into one of three distinct regimes [17]. For ζ < 1, the friction
force is small compared to the harmonic potential. Here, x(t) traces a decaying oscillation around the
equilibrium position at x = 0. In this case, the system is in the underdamped regime. For ζ > 1, the
friction is high compared to the potential and x(t) slowly decays to equilibrium without oscillating. In
this case, the system is in the overdamped regime. Finally, the system is in the critical damping regime
for ζ = 1. In this regime, the particle reaches and stays in the equilibrium position the fastest (assuming
m and κ are fixed). The stochastic damped harmonic oscillator (SDHO) model is well known, so we use
this as a reference case for comparison to the other memory kernels.

2.2 Exponential

One set of commonly used memory kernels is a sum over several exponential decays [18–20]. In these
kernels, the most recent time point is prioritized, but the past trajectory’s behaviour influences the force
on the system in the present. Memory kernels of this type are used to model turbulent hydrodynamics [20]
and the behavior of tracer particles in viscoelastic liquids [19,21]. We will be studying a single exponential
decay to get a feel for how this memory kernel behaves. We define the memory kernel

Γ(t) =
B

τ
e−t/τ , (4)

where B is the strength of the memory effect, and τ is the timescale over which the memory decays.
From Equation (2), we find the generalized Langevin equation for this case

mẍ = −B

τ

t∫
tm

dt′ e−(t−t′)/τ ẋ(t′)− κx(t) + η(t). (5)

While for the SDHO we have some intuition for what to expect, this memory term adds significant
complexities. In Figures 1, 2 and 3, we plot deterministic trajectories for three sets of parameters and
compare these to trajectories for the SDHO. The trajectories were generated by discretizing the equation
using an Euler method and assuming starting conditions x(t < 0) = 7. To recover a value for ζ that

yields a fair comparison we equate 2ζ
√
κm = B

τ

t∫
−∞

dt′ e−(t−t′) = B. With this choice, the corrective

force experienced by a particle with constant velocity is the same using either equation. In Figure 1, both
trajectories look like an underdamped harmonic oscillator but with different parameters. Indeed, in this
case, the corrective force is small compared to the potential.

Furthermore, in Figure 2, both trajectories look similar to an overdamped harmonic oscillator. Here the
corrective force is large compared to the potential, and τ is small, so the memory function highly favors
the most recent velocities. Indeed, in the limit τ → 0, the exponential memory kernel recovers the delta
function, such that for sufficiently small values for τ , this kernel will yield similar results to the Langevin
equation.

Finally, in Figure 3, we see a distinctly different behavior between the two trajectories. Here the corrective
force is again large. In the SDHO system, this means the system is overdamped and does not oscillate.
However, in the exponential kernel case, where now τ is large, the system oscillates, but not around zero.
Here, we see the consequences of the memory kernel prioritizing velocities in the past. Consider the point
labelled with the green dot at t = 1.36. Here the current velocity is zero. Thus if the corrective force
were a simple frictional force, the corrective force would also be zero. However, the corrective force is
influenced by the past for a system with an exponential memory kernel. At all recent points in the past
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m = 1, κ = 1

Deterministic GLE (B = 1, τ = 1, kBT = 0)

Deterministic DHO (ζ = 1/2, kBT = 0)

5 10 15 20
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2
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6

x

Figure 1: A trajectory of the general Langevin equation with an exponential memory kernel at low cor-
rective force and a trajectory of an underdamped harmonic oscillator. The friction force in the harmonic
oscillator was chosen so that the corrective force in both cases is equal for a constant velocity. Trajectories
were calculated by discretizing the (generalized) Langevin equation with an Euler method and time steps
δt = 0.02. The starting conditions were taken as x(t < 0) = 7.

m = 3/4, κ = 2

Deterministic GLE (B = 11/2, τ = 1/5, kBT = 0)

Deterministic DHO (ζ = 11/(2 6 ), kBT = 0)
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4

5

6
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x

Figure 2: A trajectory of the general Langevin equation with an exponential memory kernel at high
corrective force and short memory decay length, and a trajectory of an overdamped harmonic oscillator.
The friction force in the harmonic oscillator was chosen so that the corrective force in both cases is equal
for a constant velocity. Trajectories were calculated by discretizing the (generalized) Langevin equation
with an Euler method and time steps δt = 0.02. The starting conditions were taken as x(t < 0) = 7.
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m = 3/4, κ = 2

Deterministic GLE (B = 11/2, τ = 4/3, kBT = 0)

Deterministic DHO (ζ = 11/(2 6 ), kBT = 0)
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Figure 3: A trajectory of the general Langevin equation with an exponential memory kernel at high
corrective force and long memory decay length, and a trajectory of an overdamped harmonic oscillator.
The friction force in the harmonic oscillator was chosen so that the corrective force in both cases is equal
for a constant velocity. Trajectories were calculated by discretizing the (generalized) Langevin equation
with an Euler method and time steps δt = 0.02. The starting conditions were taken as x(t < 0) = 7.

(those prioritized by the kernel), the velocity has been negative. Thus the corrective force, which opposes
velocity, will be positive even though the current velocity is zero. This effect is sometimes known as a
delay oscillation.

The same effect occurs for the low B case (Figure 1). Here, the period of oscillations is lower, but the
amplitude is larger than for the system with delta memory. We explain this because while the velocity is
slowing (before the minima in the trajectory), the corrective force is larger. After all, it includes larger
velocity contributions from the recent past. Thus it decelerates faster. However, at v = 0 and shortly
thereafter, the acceleration is still positive, meaning that the amplitude of the next oscillation remains
high.

To illustrate this, we calculate the force due to the potential and the corrective force separately so that we
can compare the behavior of the velocity and corrective acceleration. For the deterministic trajectories
from Figure 1 and Figure 3 this is visualized in, respectively, Figure 4 and Figure 5.

For the system with exponential memory, we see that the corrective acceleration is not in phase with the
velocity but lags behind it, which is in contrast with the corrective acceleration for the SDHO system,
which is always opposite to the velocity.

It is instructive to compare the location of the extrema in velocity. In Figure 4, the extremum is earlier
in the period of the velocity than in Figure 5. This difference is because of the relative time it takes for
velocity to go to zero in both cases. In figure 4, B is small, so the corrective force is small. Hence the
system oscillated around zero. Here the period of the oscillation is approximately 5. The decay time
of the memory kernel is 1. Since the memory kernel is smaller than half the period of the oscillation,
the extremum in the corrective force will come shortly after the extremum in velocity. In figure 5, B is
large, so the corrective force is larger. In this case, the system does not oscillate around zero but around
a decaying exponential. The period of these oscillations is approximately 2.5. The decay time of the
memory kernel is 4/3, larger than half the period of the oscillation. The contributions of the opposing
sign part of the velocity have a larger effect when the decay time of the memory kernel is long compared
to the period of the oscillations. Thus, the extremum in velocity will move further from the preceding
velocity sign change as memory kernel decay time increases relative to the oscillation period.
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Corrective force GLE

Velocity GLE

Friction force DHO

Velocity DHO

5 10 15 20
t

-4
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Figure 4: The velocity and corrective acceleration of the deterministic trajectories in Figure 1. We note
that the corrective force and the velocity of the generalized Langevin equation are not in phase.

Corrective force GLE

Velocity GLE

Friction force DHO

Velocity DHO

5 10 15 20
t

-5

5

10

Figure 5: The velocity and corrective acceleration of the deterministic trajectories in Figure 3. We note
that the corrective force and the velocity of the generalized Langevin equation are not in phase.
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m = 1, κ = 1

Deterministic GLE (ζ = 1/5, B = 2, τ = 1, kBT = 0)

Deterministic DHO (ζ = 6/5, kBT = 0)
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Figure 6: Comparison of trajectories of the general Langevin equation with a combined delta and expo-
nential memory kernel to the general Langevin equation with exponential memory kernel and the SDHO.
The corrective force magnitudes were chosen so that the corrective force in each case is equal at a constant
velocity. Trajectories were calculated by discretizing the (generalized) Langevin equation with an Euler
method and time steps δt = 0.02. The starting conditions were taken as x(t < 0) = 7.

2.3 Combined delta function and exponential

An alternative extension of the Langevin equation is realized by combining the delta function in the
memory with an exponential decay, such that the relative importance of the current time point and the
past in determining the corrective force can be straightforwardly adjusted. The history kernel is taken
to be

Γ(t) = 4ζ
√
κmδ(t) +

B

τ
e−t/τ . (6)

We use the Stratonovich convention to integrate a delta function at the boundary of the integral domain.
The generalized Langevin equation is

mẍ = −2ζ
√
κmẋ(t)− B

τ

t∫
tm

dt′ e−(t−t′)/τ ẋ(t′)− κx(t) + η(t). (7)

Tuning the ratio of 2ζ
√
κm with B tunes the importance between the instantaneous friction and the

history-dependent corrective force. Some example trajectories are plotted in Figures 6 and 7, together
with an equivalent SDHO trajectory and an equivalent generalized Langevin equation with exponential
memory kernel trajectory. Again, the total corrective force for a particle at constant velocity is kept
constant to compare the trajectories.

The features of these trajectories look similar to either the exponential memory kernel discussed before or
the SDHO. For the exponential memory kernel, we argued that the period of oscillations was shorter and
the amplitude higher than in the SDHO case. Here the period and amplitude are in between these two
extremes. This tuning between the importance of both corrective forces allows for a distinctive feature
that is present specifically with the combined memory kernel, shown in Figure 7. Here the first through
of the oscillation is at x < 0, while subsequent ones are at x > 0.
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m = 3/10, κ = 1/2

Deterministic GLE (ζ = 1/4, B = 11/5, τ = 8/3, kBT = 0)

Deterministic DHO (ζ = 1/4 + 11/ 15 , kBT = 0)

Deterministic GLE (ζ = 0, B = 11/5+( 15 )/20, τ = 8/3, kBT = 0)
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Figure 7: Comparison of trajectories of the general Langevin equation with a combined delta and expo-
nential memory kernel to the general Langevin equation with exponential memory kernel and the SDHO.
The corrective force magnitudes were chosen so that the corrective force in each case is equal at a constant
velocity. Trajectories were calculated by discretizing the (generalized) Langevin equation with an Euler
method and time steps δt = 0.02. The starting conditions were taken as x(t < 0) = 7.

3 Gaussian information bottleneck

As discussed in the introduction, this report aims to determine the optimal compression or representation
of an input signal to determine the future value of that signal. We will use the Gaussian information
bottleneck method to determine the kernel that achieves this optimal compression. The Gaussian in-
formation bottleneck is a framework in information theory developed by Tishby et al. [11, 22]. In this
section, we will first present some needed background on information theory, then present the information
bottleneck method, in particular the Gaussian information bottleneck method, and finally, develop how
the framework is used in this work.

3.1 Information theory

Information theory provides useful tools to talk about information quantitatively. In particular, the
extension of the concept of entropy to non-physical systems is a powerful tool in this context. The
Shannon entropy of the probability distribution p(x) of event X, which takes a discrete value x ∈ X is
given as [10,23]

H(X) =
∑
x∈X

−p(x) log(p(x)). (8)

This entropy is a measure of the uncertainty in the outcome ofX, such that abroad probability distribution
p(x) has high entropy. In contrast, a probability distribution that is sharply peaked has low entropy. In
the limit where the outcome of X is completely determined, the entropy will be 0, while it will be positive
in every other case.

For a set of two events X and Y the joint probability distribution p(x, y) sets the probabilities of finding
the outcomes x ∈ X and y ∈ Y. The joint entropy is then defined as

H(X,Y ) =
∑

x∈X,y∈Y
−p(x, y) log(p(x, y)). (9)

If the two events are independent, such as when rolling two dice, the joint probability factorizes as
p(x, y) = p(x) · p(y), such that the joint entropy can be rewritten as H(X,Y ) = H(X) + H(Y ). On
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the other hand, if the events are not independent, such as if two cards are drawn from a deck without
replacement, the joint probability distribution does not factorize. In fact, since the card that is drawn first
cannot be drawn again, the probability distribution is more peaked than if the events were independent,
such that H(X,Y ) < H(X)+H(Y ). In this report, we are interested in events that are not independent.

In that case, determining X yields information about Y , such that we can define a conditional probability
p(y|x), such that p(x)p(y|x) = p(x, y). This is the probability that Y = y given that X = x. The
uncertainty that now is left is found using Equation (8), H(Y |x) =

∑
y∈Y

−p(y) log(p(y|x)). In general, we

know that X contains information about Y , but we do not know the value of X. In this case we average
H(Y |x) over all possible x giving the conditional entropy:

H(Y |X) =
∑
x∈X

−p(x)H(Y |x) =
∑
x∈X

−p(x)
∑
y∈Y

p(y|x) log(p(y|x)) =
∑

y∈Y,x∈X
−p(x, y) log(p(y|x)). (10)

Finally, we define the mutual information,

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X), (11)

which is a measure of how much information one variable contains about the other variable. As implicitly
shown in the above definition, the mutual information is symmetric, i.e. X contains the same amount of
information about Y as Y does about X.

In this work, we will consider Gaussian variables and thus want to determine the entropy, the joint and
conditional entropies and the mutual information for Gaussian variables. However, Gaussian variables are
continuous, so we need to consider an extension of entropy to continuous probability density functions.
For a continuous variable X with probability density function p(x) the differential entropy is defined [23]

h(X) = −
∫ ∞

−∞
dx p(x) log(p(x)). (12)

Where we take 0 log 0 = 0, such that regions where p(x) = 0 will not influence the result. The definitions
for conditional entropies, joint entropies, and mutual information extend similarly to continuous variables.
We note that differential entropy is not a mathematically rigorous extension of the entropy of a discrete
variable to a continuous variable [23]. However, it is similar enough in the context we are interested
in [22]. The probability density function for a Gaussian a d dimensional Gaussian variable X with mean
µ and covariance matrix Σx is given as [23]

p(x) =
1

√
2π

d√|Σx|
e−

1
2 (x−µ)TΣ−1

x (x−µ), (13)

where |A| is the determinant and A−1 the inverse of matrix A, and vT is the transpose of vector v. We
find the differential entropy [23]

h(X) = −
∫

dx p(x) log

(
1

√
2π

d√|Σx|
e−

1
2 (x−µ)TΣ−1

x (x−µ)

)

=
1

2
log
(
2dπd|Σx|

) ∫
dx p(x) +

1

2

∫
dx p(x)(x− µ)TΣ−1

x (x− µ)

=
1

2
log
(
2dπd|Σx|

)
+

1

2

∑
i,j

(Σ−1
x )i,j

∫
dx p(x)(xi − µi)(xj − µj)

=
1

2
log
(
2dπd|Σx|

)
+

1

2

∑
i,j

(Σ−1
x )i,j(Σx)j,i

=
1

2
log
(
2dπd|Σx|

)
+

d

2
=

1

2
log
(
(2πe)d|Σx|

)
. (14)

Here we use the definition of the covariance matrix, (Σx)j,i = (Σx)i,j =
∫
dx p(x)(xi − µi)(xj − µj), and

we note that
∑
j

(Σ−1
x )i,j(Σx)j,i = Ii,i. Specifically, this shows that the differential entropy for a Gaussian

variable is found directly from its covariance and number of dimensions.
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3.2 Information bottleneck

The information bottleneck is used to find the optimal compression X̃ of some input X while preserv-
ing as much information about the variable Y as possible. This is achieved by comparing the mutual
information between X̃ and X, I(X̃;X), with the mutual information between X̃ and Y , I(X̃;Y ) [11].

The optimal compression thus has two goals, maximizing I(X̃;Y ) while minimizing I(X̃;X). In doing
so, the compressed variable is as informative as possible about the task, while the input is maximally
compressed.

In this work, the only task we consider is determining the signal value some time in the future tfut > 0.
As input we consider a Gaussian signal x(t) discretized in N timesteps ∆, such that the input is a vector
of signal values at times t = −n ·∆ where n ∈ {0, 1, 2, ..., N − 1}. Explicitly, the input variable sp is a
vector that collects these signal values,

sp =
(
x(0), x(−∆), x(−2∆), ..., x(−(N − 1)∆)

)T
. (15)

The task variable sf is the signal value at t = tfut, sf = x(tfut). Since the task is to predict exactly
one value, the best compression strategy is calculating some scalar related to the best prediction by
some bijective function. So that each value that the compression variable can take maps to a unique
prediction. As such, we will be considering a scalar compression variable x̃, which is found as a linear
transformation [22]

x̃ = Ax+ ξ, (16)

where A is the transformation matrix and ξ is the noise introduced by the compression mechanism, which
is a Gaussian variable with mean 0 and covariance σξ. We note that the noise ξ is independent from
both sp and sf , such that the correlations are zero, ⟨ξsp⟩ = ⟨ξsf ⟩ = 0. A compression is then found by
specifying A and σξ. In particular, the ideal compression is found by minimizing the functional [22]

min
A,σξ

L[A, σξ] = I(x̃; sp)− βI(x̃; sf ), (17)

where β is a parameter indicating the relative importance of compression compared to information reten-
tion. We find for β ≤ 0 a trivial solution to Equation (17), which is I(x̃; sp) = I(x̃; sf ) = 0. In this case,
the need for compression is greater than the need to retain information, so it is better not to store any
information. On the other hand, when β is large, the retention of some information will be preferred.

Solving this minimization problem comes down to finding the information bottleneck kernel A∗ and noise
level σ∗

ξ that minimize L. To do so, we by rewriting L in terms of (differential) entropies

L[A, σξ] = h(x̃)− h(x̃|sp)− β (h(x̃)− h(x̃|sf )) = (1− β)h(x̃)− h(x̃|sp) + βh(x̃|sf ). (18)

As in Equation (14), the entropy of a Gaussian variable is found directly from its covariance and dimen-
sion. We note that the dimension for all three variables is the same, such that the problem of minimizing
L requires us to find Σx̃, Σx̃|sp

, and Σx̃|sf .

We find for Σx̃, remembering the definition in Equation (16) and noting ⟨ξ⟩ = 0,

Σx̃ = ⟨[x̃− ⟨x̃⟩][x̃− ⟨x̃⟩]⟩ =
〈
[Asp + ξ − ⟨Asp + ξ⟩][Asp + ξ − ⟨Asp + ξ⟩]T

〉
=
〈
[A(sp − ⟨sp⟩) + ξ][(sp − ⟨sp⟩)TAT + ξ]

〉
= A⟨(sp − ⟨sp⟩)(sp − ⟨sp⟩)T ⟩AT + ⟨ξ(sp − ⟨sp⟩)T ⟩AT +A⟨(sp − ⟨sp⟩)ξ⟩+ ⟨ξξ⟩
= AΣsp

AT + 0 + 0 + σξ = AΣsp
AT + σξ. (19)

For Σx̃|sp
we note that once sp is determined the variance of x̃ is fully determined by the variance of ξ,

such that Σx̃|sp
= σξ.

For Σx̃|sf we use the Schur complement formula [22] to write

Σx̃|sf = Σx̃ − Σx̃sfΣ
−1
sf

Σsf x̃.

The covariance Σsf x̃ = ΣT
x̃sf

is found as

Σsf x̃ = ⟨sf x̃T ⟩ = ⟨sf (Asp + ξ)T ⟩ = ⟨sfsTp AT ⟩+ ⟨sfξT ⟩ = ⟨sfsTp ⟩AT = Σsfsp
AT =

(
AΣspsf

)T
.
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We thus find, using the result from Equation (19) for Σx̃,

Σx̃|sf = AΣsp
AT + σξ −AΣspsfΣ

−1
sf

Σsfsp
AT = A(Σsp

− ΣspsfΣ
−1
sf

Σsfsp
)AT + σξ = AΣsp|sfA

T + σξ.

(20)

Here we use the Schur complement formula again in the last step, but backwards this time.

The minimization problem is now written as

L[A, σξ] =
(1− β)

2
log(|AΣsp

AT + σξ|)−
1

2
log(|σξ|) +

β

2
log(|AΣsp|sfA

T + σξ|).

The minima of L[A, σξ] can only be found at those points where both of its first derivatives are 0. We
first consider ∂L

∂A , and come back to σξ later. Using the identity ∂
∂A log(|ACAT |) = 2(ACAT )−1AC [22]

we differentiate L with respect to A

∂L
∂A

=
1− β

2

2AΣsp

AΣspA
T + σξ

+
β

2

2AΣsp|sf
AΣsp|sfA

T + σξ
.

We find the extrema by equating the above to 0. After rearranging we find

β − 1

β

AΣsp|sfA
T + σξ

AΣsp
AT + σξ

A = AΣsp|sfΣ
−1
sp

= A
(
IN − ΣspsfΣ

−1
sf

Σsfsp
Σ−1

sp

)
. (21)

This we recognize as an eigenvalue problem for the left eigenvectors of Σsp|sfΣ
−1
sp

, which can, as before,
be rewritten using the Schur complement formula. We note that the eigenvalues of this matrix are all
real and satisfy 0 ≤ λ ≤ 1 [22]. By finding these eigenvectors, we can partially solve the minimization
problem by determining the information bottleneck kernel A as function of the noise level σξ.

We note that in eigenvalue problems the eigenvectors have a remaining degree of freedom in their norm.

However, in this case the eigenvalue is written as λ = β−1
β

AΣsp|sf AT+σξ

AΣspA
T+σξ

, such that we might express the

norm of A using the eigenvalue. We solve for the norm by splitting A into its normalised vector ν and
its norm ∥A∥, such that A = ∥A∥ν. We have

λ =
β − 1

β

∥A∥νΣsp|sf ∥A∥νT + σξ

∥A∥νΣsp
∥A∥νT + σξ

λβ
(
∥A∥2νΣsp

νT + σξ

)
= (β − 1)

(
∥A∥2νΣsp|sf ν

T + σξ

)
∥A∥2

(
λβνΣsp

νT − (β − 1)νΣsp|sf ν
T
)
= σξ ((β − 1)− λβ)

∥A∥ =

√
σξ (β − λβ − 1)

λβνΣsp
νT − (β − 1)νΣsp|sf ν

T
.

To simplify we note that νΣsp|sf ν
T = νΣsp|sfΣ

−1
sp

Σsp
νT = νΣsp|sfΣ

−1
sp

νT νΣsp
νT = λνΣsp

νT , where we

use that Σ−1
sp

Σsp
= Id and νT ν = ∥ν∥2 = 1. Plugging this in, we find

∥A∥ =

√
σξ (β − λβ − 1)

βλνΣsp
νT − βλνΣsp

νT + λνΣsp
νT

=

√
σξ (β − λβ − 1)

λνΣsp
νT

. (22)

We note that this equation provides a constraint on β and λ, as the argument of the square root cannot
be negative. It can be shown that νΣsp

νT is positive [22] and the covariance of ξ is by definition positive.
As such, the sign of the square root argument is fully decided by the rest of the numerator. Thus we
find from β(1 − λ) − 1 ≥ 0 either λ ≤ β−1

β or β ≥ 1
1−λ [22]. This criterion can be used to determine

which eigenvalue and eigenvector is the one that minimizes L. However, this criterion might be satisfied
by more than one eigenvalue for certain values of β. To decide which eigenvalue we should choose, we
plug our result into the optimization problem of Equation (17) and determine a strategy to choose an
appropriate eigenvalue from the result [22]. To do this, we first determine the mutual information between
the compression x̃ and the signal sp,

I(x̃; sp) = h(x̃)− h(x̃|sp) =
1

2
log
(
(2πe)|AΣsp

AT + σξ|
)
− 1

2
log(2πeσξ)

=
1

2
log
∣∣∥A∥2νΣsp

νT + σξ

∣∣− 1

2
log(σξ) =

1

2
log

∣∣∣∣σξ (β − λβ − 1)

λνΣsp
νT

νΣsp
νT + σξ

∣∣∣∣− 1

2
log(σξ)

=
1

2
log

∣∣∣∣ (β − λβ − 1) + λ

λ

∣∣∣∣ = 1

2
log

∣∣∣∣ (β − 1)(1− λ)

λ

∣∣∣∣ , (23)
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and the mutual information between x̃ and sf ,

I(x̃; sf ) = h(x̃)− h(x̃|sf ) =
1

2
log
(
2πe|AΣsp

AT + σξ|
)
− 1

2
log(2πe|AΣsp|sfA

T + σξ|)

=
1

2
log

∣∣∣∣σξ (β − λβ − 1)

λνΣsp
νT

νΣsp
νT + σξ

∣∣∣∣− 1

2
log

∣∣∣∣σξ (β − λβ − 1)

λνΣsp
νT

νΣsp|sf ν
T + σξ

∣∣∣∣
=

1

2
log

∣∣∣∣ (β − λβ − 1)

λ
+ 1

∣∣∣∣− 1

2
log

∣∣∣∣ (β − λβ − 1)

λνΣsp
νT

λνΣsp
νT + 1

∣∣∣∣
=

1

2
log

∣∣∣∣ (β − 1)(1− λ)

λ

∣∣∣∣− 1

2
log |β − λβ| = 1

2
log

∣∣∣∣ (β − 1)(1− λ)

λ(β − λβ)

∣∣∣∣
=

1

2
log

∣∣∣∣ (β − 1)(1− λ)

λβ(1− λ)

∣∣∣∣ = 1

2
log

∣∣∣∣β − 1

λβ

∣∣∣∣ . (24)

By plugging these results into Equation (17), we have

L = I(X̃;X)− βI(X̃;Y ) =
1

2
log

∣∣∣∣ (β − 1)(1− λ)

λ

∣∣∣∣− β

(
1

2
log

∣∣∣∣ (β − 1)(1− λ)

λ

∣∣∣∣− 1

2
log |β − λβ|

)
=

1− β

2
log

∣∣∣∣ (β − 1)(1− λ)

λ

∣∣∣∣+ β

2
log |β − λβ| .

We consider the derivative d
dλL on the domain β ≥ 1

1−λ . We find

d

dλ
L =

d

dλ

(
1− β

2
log

∣∣∣∣ (β − 1)(1− λ)

λ

∣∣∣∣+ β

2
log |β − λβ|

)
=

1− β

2

λ

1− λ

d

dλ

(
1

λ
− 1

)
+

β

2

1

β − λβ
(−β)

= −1− β

2

λ

1− λ

1

λ2
− β

2

1

1− λ
=

1

2

(
1− β

λ(λ− 1)
+

βλ

λ(λ− 1)

)
=

1 + β(λ− 1)

2λ(λ− 1)
(25)

≥
1 + 1

1−λ (λ− 1)

2λ(λ− 1)
=

1− 1

2λ(λ− 1)
= 0. (26)

As this derivative is non-negative in this domain, the function L becomes bigger for bigger λ. The minimal
value for L is thus found for the smallest eigenvalue.

We also note that the variance of the noise, σξ, disappears from L once the transformation matrix A is
determined. Since the variance of the noise does also not influence the relative weights in the normalized
transformation matrix ν, as this is one of the left eigenvectors of the matrix IN − ΣspsfΣ

−1
sf

Σsfsp
Σ−1

sp
.

This shows that the variance of the noise is not specified by the information bottleneck method, such that
this is a free variable that needs to be specified as part of the system under consideration. The choice of
variance then sets the scale for the problem. For this work we will choose σξ = 1.

3.3 This work

In conclusion, we find the optimal mapping of our incoming signal sp, which is a vector with the N most
recent discretized signal values, onto a scalar x̃ = A∗sp + ξ, given that we want to predict the future
signal value sf . To find this information bottleneck kernel A∗ we need to determine the left eigenvectors
of Σsp|sfΣ

−1
sp

= IN − ΣspsfΣ
−1
sf

Σsfsp
Σ−1

sp
. If, for a given value of the trade-off parameter β, the smallest

eigenvalue λ satisfies λ ≤ β−1
β , the kernel A∗ should be A∗ =

√
β−λβ−1
λνΣspν

T ν, where ν is the normalised

eigenvector. In this case, the information retention has a large enough weight to be incorporated. On
the other hand, if the smallest eigenvalue is bigger than β−1

β , compression is much more important than
information retention, and the trivial solution A = 0 should be used. In that case, one can easily see that
all the information is mapped into the same point (or more accurately same region, as the white noise
process ξ will make the compression spread out a little bit around x̃ = 0).

In the following, we present a general method of solving the generalized Langevin equation, which allows
us to determine the autocovariance of the signal once the memory function is specified. Subsequently, we
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look at the different memory functions introduced in the previous section and the resulting information
bottleneck kernels these memory functions induce.

4 Continuous Signals

To determine the information bottleneck kernels for the memory kernels presented in Section 2, we thus
need to find the autocorrelation function of the generalized Langevin equation. The formal solution
to the generalized Langevin equation has been known for some time [16, 24]. The solution is found in
Laplace space and subsequently transformed back into real space. First, we present the general form of
the autocorrelation function, and subsequently, we find the particular solutions for the presented kernels.

4.1 General solution

The full solution for the generalized Langevin equation without specifying a memory function, following
a paper from Di Terlizzi et al. in 2020 [16], is presented in appendix B. Here we present the main results
needed to find the correlation functions, which we need to solve the information bottleneck.

The Laplace transform of a function f(t) is found as

Ls {f(t)} =

∞∫
0

dt e−stf(t) = F̂ (s), (27)

while the inverse Laplace transform of a function F̂ (s) is found either by inspection or by the complex
integral

L−1
t {F (s)} =

1

2πi

α+i∞∫
α−i∞

ds estF̂ (s), (28)

where α is chosen such that all the singularities of F̂ (s) are to the left of the contour.

To find the formal solution for a generalized Langevin equation,

mẍ = −
t∫

tm

dt′ Γ(t− t′)ẋ(t′)− κx(t) + η(t), (29)

where the noise η obeys the fluctuation-dissipation theorem ⟨η(t)η(t′)⟩ = kBTΓ(|t − t′|), we determine
the Laplace transform of both sides. This allows us to define the Laplace transform of a quantity called
the position susceptibility χx(t),

χ̂x(s) =
1

ms2 + Γ̂(s)s+ κ
, (30)

where Γ̂(s) is the Laplace transform of the memory kernel in the generalized Langevin equation. Deter-
mining the inverse Laplace transform of this position susceptibility will turn out to be the most important
step in finding correlation functions for the signals under consideration. In fact, the formal solution for
x(t) of Equation (29) is found in terms of the position susceptibility and an anti-derivative of it,

χ(t) =

∫ t

0

χx(τ)dτ or, equivalently in Laplace space χ̂(s) =
χ̂x(s)

s
. (31)

The formal solution is

x(t) = x(tm) (1− κχ(t− tm)) +mẋ(tm)χx(t− tm) +

t∫
tm

dτ χx(t− τ)η(τ). (32)

To find the autocorrelation function, we determine ⟨x(t)x(t′)⟩. This expression contains nine different
correlations. Specifically, we have
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〈
x(t)x(t′)

〉
=
〈
x(tm)x(tm)

〉
(1− κχ(t− tm)) (1− κχ(t′ − tm)) (33)

+m2
〈
ẋ(tm)ẋ(tm)

〉
χx(t− tm)χx(t

′ − tm) (34)

+m
〈
x(tm)ẋ(tm)

〉(
χx(t

′ − tm) [1− κχ(t− tm)] + χx(t− tm) [1− κχ(t′ − tm)]
)

(35)

+

t∫
tm

dτ χx(t− τ)
(
[1− κχ(t′ − tm)] ⟨x(tm)η(τ)⟩+mχx(t

′ − tm)⟨ẋ(tm)η(τ)⟩
)

(36)

+

t′∫
tm

dτ ′ χx(t
′ − τ ′)

(
[1− κχ(t− tm)] ⟨x(tm)η(τ ′)⟩+mχx(t− tm)⟨ẋ(tm)η(τ ′)⟩

)
(37)

+

t∫
tm

dτ

t′∫
tm

dτ ′ χx(t− τ)χx(t
′ − τ ′)

〈
η(τ)η(τ ′)

〉
. (38)

The four terms on lines (36) and (37) contain the correlation between the noise at times t > tm and the
initial conditions. These are not correlated, so the integrals evaluate to 0. The four terms on lines (33),
(34), and (35) contain the initial condition correlations and do not simplify further without assuming
anything about these initial conditions. The final term, the double integral over the correlations in the
noise, is calculated using the fluctuation-dissipation theorem, ⟨η(t)η(t′)⟩ = kBTΓ(|t−t′|). This calculation
is shown in Section B.3. The resulting autocorrelation function is

⟨x(t)x(t′)⟩ =
〈
x(tm)x(tm)

〉
(1− κχ(t− tm)) (1− κχ(t′ − tm)) +m2

〈
ẋ(tm)ẋ(tm)

〉
χx(t− tm)χx(t

′ − tm)

+m
〈
x(tm)ẋ(tm)

〉(
χx(t

′ − tm) [1− κχ(t− tm)] + χx(t− tm) [1− κχ(t′ − tm)]
)

+ kBT
(
χ(t− tm) + χ(t′ − tm)− χ(|t− t′|)− κχ(t− tm)χ(t′ − tm)−mχx(t− tm)χx(t

′ − tm)
)
.

(39)

Since we are interested in the equilibrium properties of the signals, we take the limit tm → −∞, such
that we find for the position

x(t) =

t∫
−∞

dτ χx(t− τ)η(τ), (40)

and for the autocorrelation

⟨x(t)x(t′)⟩ = kBT

(
1

κ
− χ (|t− t′|)

)
. (41)

Given this, we will determine the position susceptibility and, subsequently, the autocorrelation function
for the generalized Langevin equations introduced in Section 2. Each time we will compare the results
to the stochastic harmonic oscillator results from Reference [9].

4.2 Exponential kernel

4.2.1 Autocorrelation function

Let us first take a look at the exponential memory kernel. The Laplace transform of the memory kernel
is

Γ(s) = Ls {Γ(t)} =
B

τ

∞∫
0

dt e−ste−t/τ =
B

τ

[
e−t(s+1/τ)

−(s+ 1/τ)

]∞
0

=
B

τs+ 1
. (42)

We thus find the Laplace transform of the position susceptibility,

χ̂x(s) =
1

ms2 + B
τs+1s+ κ

=
τs+ 1

mτs3 +ms2 + (B + κτ)s+ κ
. (43)

To determine the position susceptibility in real space, we must evaluate the complex integral of Equation
(28). This is done using the Cauchy residue theorem, where we note that extending the contour in
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infinity around the left half plane adds 0 to the integral. Thus, evaluating the complex integral is
equivalent to determining the poles of the Laplace transform of the position susceptibility and summing
their residues. The poles of the Laplace transform of the position susceptibility are located at the points
where the denominator becomes 0, such that finding them is equivalent to solving the third order equation
mτs3 + ms2 + (B + κτ)s + κ = 0. If the equation has three non-equal solutions c1, c2, c3 the position
susceptibility would be

χx(t) =

3∑
n=1

(τcn + 1)etcn

3mτc2n + 2mcn +B + κτ
. (44)

If two or three of the solutions are equal, the residues cannot be expressed in the same manner. In that
case, the position susceptibility can be expressed as either

χx(t) = A1e
tc1 + etc2(A2 +A3t), or χx(t) = etc1(A1 +A2t+A3t

2), (45)

where A1, A2, and A3 are constants that are found by calculating the residues at the solution(s).

Thus, we note that it is not possible to get an exact symbolic solution for χx(t) in terms of m, κ, B and
τ . Instead, we choose a, c1, c2 and c3, which correspond to exact values of m, κ, B and τ . These are
found by setting mτs3 +ms2 + (B + κτ)s+ κ = a(s+ c1)(s+ c2)(s+ c3) giving

m = a(c1 + c2 + c3)

κ = ac1c2c3

B = a
(c1 + c2)(c1 + c3)(c2 + c3)

c1 + c2 + c3

τ =
1

c1 + c2 + c3
.

We always choose a = 1
c1c2c3

, such that κ = 1 and the autocorrelation in Equation 41 at t = t′ equals
kBT . This makes sure that all the autocorrelations have the same scaling. Using these identifications,
we can write the position susceptibilities using either Equation (44) or one of the options in Equation
(45). We then determine the autocorrelation function of the signal using Equations (31) and (41).

So, while the position susceptibility and autocorrelation function can be analytically calculated for every
choice of parameters, we will not be able to find a common symbolic expression for it. This is, for our
purposes, not a great loss, as in the process of calculating the information bottleneck a matrix inversion
needs to be performed that cannot easily be performed symbolically either. As such, let us continue with
the knowledge that we have a recipe for calculating the correlation function but cannot write it down
symbolically.

4.2.2 Information bottleneck

Now that we have the statistics for our signal, we can use this to determine the important information
in the signal using the information bottleneck method. For that, we need to discretize the signal. We
define the past signal as the column vector

sp = (x(0), x(−∆), x(−2∆), ..., x(−(N − 1)∆))
T
, (46)

where ∆ is the discretization timestep and (N − 1)∆ the length of the signal. The future signal value at
time tfut, the object which we seek to predict, is

sf = x(tfut). (47)

We analytically calculate the autocorrelation function at the requisite time lags and subsequently con-
struct the matrix Id−ΣspsfΣ

−1
sf

ΣsfspΣ
−1
sp

. The left eigenvectors and corresponding eigenvalues are found
as the eigensystem of the transpose of said matrix. The normalized eigenvector corresponding to the
smallest eigenvalue is the information bottleneck kernel indicating the relative importance of the corre-
sponding past signal values in predicting the future signal value.

We plot the normalized information bottleneck kernels for several combinations of parameters in Figure
8. We see that the kernels have many non-zero components and that the kernels for different signals are
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Figure 8: Normalized information bottleneck kernels and correlation functions for several different choices
of parameters for the generalized Langevin equation with exponential memory. The information bottle-
neck kernels were calculated for discretization timesteps of ∆ = 0.1, with a signal length (N −1)∆ = 1.9,
and to predict the signal value a time tfut = 1/2 into the future.
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Figure 9: Future information as a function of past information for the signal with the same parameters
as the green curve in Figure 8 for several values of the vector length.
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similar, even for distinctly different covariance functions. These observations are similar to the kernels
found for the continuous signal for the Langevin equation in Reference [9].

In Reference [9], the authors note that, in the SDHO case, the information bottleneck kernel contains
artifacts when discretizing a continuous signal. This might also be the case in our system. To check this,
we plot the future information as a function of the past information for different lengths of the vector
A⃗. This is shown in figure 9. We see that the curves for a vector length of 3 and a vector length of
20 almost overlap and that the curve for a vector length of 4 is indistinguishable from the curve for a
vector length of 20. This suggests that the most recent 4 components contain by far the most relevant
information. In the SDHO case, a similar plot shows that a vector of just two entries contains almost
all the information [9]. In that case, it seems that the kernel needs to approximate the instantaneous
velocity at the current time, and the best approximation of this can be found by including more than
just the two most recent values of the discretized signal. We believe that the clearest way to separate
these two effects is to have a truly discrete version of the signal, which we will discuss in Section 5.

4.3 Combined delta and exponential kernel

4.3.1 Autocorrelation function

For the combined memory kernel, the Laplace transform is, again using the Stratonovich convention for
the integral of the delta function at the domain boundary,

Γ(s) = Ls {Γ(t)} =

∞∫
0

dt e−st

(
4ζ

√
κmδ(t) +

B

τ
e−t/τ

)
= 4ζ

√
κm

∞∫
0

dt e−st δ(t) +
B

τ

∞∫
0

dt e−ste−t/τ

= 2ζ
√
κm+

B

τs+ 1
. (48)

We thus find the Laplace transform of the position susceptibility,

χ̂x(s) =
1

ms2 +
(
2ζ

√
κm+ B

τs+1

)
s+ κ

=
τs+ 1

mτs3 + (m+ 2τζ
√
κm) s2 + (B + κτ + 2ζ

√
κm)s+ κ

. (49)

This leads us to a similar place as for the exponential memory kernel in the previous section. To find
the autocorrelation function for the signal, we have to determine the complex integral from Equation
(28), for which we can use the Cauchy integration theorem to change it into a sum over the poles of the
position susceptibility. To find these, we have to solve a cubic equation. Depending on the number of
distinct poles, this yields different forms for the residues at those poles, so finding a closed form of the
autocorrelation function is impossible. In the case of the exponential memory kernel, we argued that
choosing a scaling factor and three solutions to the cubic equation (i.e. fixing 4 degrees of freedom) was
able to fix all the parameters. As such, the scaling factor and solutions fully determine the correlation
function’s behavior. In this case, however, the introduction of the additional parameter ζ means that
we cannot fix all the parameters based on the scaling factor and solutions of the cubic equation alone.
Indeed, we fix the overall magnitude of the correlation function, which fixes κ. However, we can now still
vary the importance of the two corrective forces for a fixed set of solutions to the cubic equation.

4.3.2 Information bottleneck

We determine the information bottleneck kernel using the same discretization and calculation methods
from the exponential memory kernel case. In figure 10, normalized information bottleneck kernels and
corresponding autocovariance functions are shown. Similarly, as in the previous case, with a purely
exponential memory function, we see that the information bottleneck kernels for different autocovariance
functions have similar shapes. Moreover, also similar to the exponential memory kernel, many entries are
close to 0 but not actually 0.

To get some intuition about how many entries contain information in this case, let us once again plot the
future information as a function of the past information for different lengths of the vector A⃗ in Figure
11. In this case, we see a distinct difference between the curves for N = 4 and N = 20, while the curve
for N = 3 is almost indistinguishable from the former. This suggests that information about more than
4 distinct measurements is needed. However, this might again be influenced by the discretization we
perform to go from the continuous signal to the discrete information bottleneck. So, let us now turn to
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Figure 10: Normalized information bottleneck kernels and correlation functions for several different
choices of parameters for the generalized Langevin equation with combined delta function and exponen-
tial memory. The information bottleneck kernels were calculated for discretization timesteps of ∆ = 0.1,
with a signal length (N − 1)∆ = 1.9, and to predict the signal value a time tfut = 1/2 into the future.
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a discrete model such that this discretization-induced error cannot be the reason for the extension of the
information bottleneck kernel.

5 Autoregressive models

Since, in the continuous models that we discussed, the discretization of the signal might introduce errors
in the kernel, let us consider a method to create a discrete signal from the start. Autoregressive models
are discrete-time models that determine the new output value as a linear combination of past outputs
and a stochastic term. These models are useful when working with a discrete version of the information
bottleneck since the output of these models is discrete. As such, we expect that the model will be able to
show whether certain patterns in the (information bottleneck) kernel are discretization errors or actual
effects based on the type of signal. In previous work on the information bottleneck, for signals generated
by the SDHO, discretization effects fully disappeared when transitioning to an autoregressive signal [9].
We will first set out some basics on time series in general and autoregressive models in particular.

5.1 Time series and autoregressive models

A time series yt, t ∈ Z is a series of numbers describing something at discrete times t [25, 26]. Examples
of time series include the daily price of a plate of food in the canteen or the daily temperature at noon
in Amsterdam. For certain applications, it is useful to consider multiple time series simultaneously, such
that we could think of a time series that includes the daily temperature, humidity, wind direction and
wind speed at noon in Amsterdam. The number of combined variables d is the dimensionality of the time
series. Autoregressive models are a specific type of time series in which the future value can be expressed
based on the past values, some constant and a noise term. In particular, a (vector) autoregressive model
of order p, (V)AR(p), depends on the p past output values of the model, such that we can write the
current state of the model, yn, as a linear combination of the past states of the model yn−1, yn−2, ...yn−p.
We write [26]

yn = ϕ0 +

p∑
j=1

Ajyn−j + ϵn−1. (50)

Here yn is a d-dimensional vector which includes one entry for each of the included variables, the linear
transformation matrices A1, A2, ...Ap are d×d matrices, and ϵn−1 is a d-dimensional white noise process,
which might be called an innovation process in literature [26], such that ⟨ϵn⟩ = 0 and ⟨ϵn1ϵTn2⟩ = Σϵδn1,n2.
We note that Σϵ here is the d by d same-time covariance matrix of the noises, not some correlation across
different time points, for which we used the symbol Σ in section 3. In our case, we are only interested in a
process with mean value 0, which is achieved by equating ϕ0 = 0. By repeatedly evaluating Equation (50)
we find that yn is uniquely determined by y0, y1, ..., yp, ϵ0, ϵ1, ..., ϵn−1, such that an order p autoregressive
model needs p initial conditions to determine the dynamics.

To determine the autocovariance of vector autoregressive models we need an equivalent vector autore-
gressive model of order 1, as these models are more convenient to work with. As such, we define a
d · p-dimensional VAR(1) model that is equivalent to the d-dimensional VAR(p) model from Equation
(50) [26]

Yn = AYn−1 + En−1, (51)

where we define

Yn =


yn

yn−1

...
yn−p+1

 , En−1 =


ϵn−1

0d
...
0d

 , and A =


A1 A2 · · · Ap−1 Ap

Id 0d,d · · · 0d,d 0d,d
0d,d Id 0d,d 0d,d
...

. . .
...

0d,d 0d,d · · · Id 0d,d

 . (52)

Here Id is the d dimensional identity matrix, 0d a vector of d zeros, and 0d,d a d× d matrix of zeros. We
note that as each of the ys in Y has d entries, the vectors are both dp entries long. Similarly, each of the
matrices in A is a d×d matrix, so that A has dp×dp entries. We note that in writing out the expression
for yn from Equation (51) we recover Equation (50), while the expression for yn−1 from Equation (51) is
simply yn−1 = Id · yn−1 + 0d. We effectively keep copies of the most recent p entries of the time series to
be able to calculate the next entry in just one step.
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5.1.1 Autocovariance for autoregressive models

This section extracts the most relevant parts of section 2.1.4 of Reference [26], writing them in the
form explicitly useful for our work. The autocovariance of an autoregressive model with mean value
0 is found as Kyy(h) = ⟨ynyTn−h⟩, where h ≥ 0 is the time-lag of the autocovariance. We note that

for this autocovariance we have Kyy(h)
T = Kyy(−h). Returning to the d dimensional order p process

from Equation (50), we calculate the autocovariance by postmultiplication with yTn−h and finding the
expectation value;

Kyy(h) =
〈
yny

T
n−h

〉
=

p∑
j=1

Aj

〈
yn−jy

T
n−h

〉
+
〈
ϵn−1y

T
n−h

〉
=

p∑
j=1

AjKyy(h− j) +

〈
ϵn−1

(
p∑

l=1

Alyn−h−l + ϵn−h

)T〉

=

p∑
j=1

AjKyy(h− j) +
〈
ϵn−1ϵ

T
n−h

〉
. (53)

Here we use that the noise is not correlated with the previous signal values,
〈
ϵny

T
n′≤n

〉
= 0, such that all

terms

〈
ϵn−1

(
p∑

l=1

Alyn−h−l

)〉
are equal to 0, no matter what time-lag we choose for h. We note that ϵn

is a white noise process, such that ⟨ϵn1ϵTn2⟩ = Σϵδn1,n2. Thus, after separating the cases h = 0 and h > 0,
we find the so-called Yule-Walker equations,

Kyy(0) =

p∑
j=1

AjKyy(0− j) + Σϵ =

p∑
j=1

AjKyy(j)
T +Σϵ, (54)

Kyy(h) =

p∑
j=1

AjKyy(h− j). (55)

Where we use that Kyy(−h) = Kyy(h)
T . The second of these equations (Equation (55)) looks very

similar to the original autoregressive model. Indeed, if the autocovariances Kyy(0),Kyy(1), ...,Kyy(p−1)
are known, we can use that equation to calculate the higher time-lag autocovariances iteratively. To
be able to determine those low time-lag autocovariances we need to consider the dp dimensional order 1
autoregressive model corresponding to this model using Equation (52). We can express the autocovariance
of that model, KY Y (h), in terms of the autocovariances of the original model as

KY Y (h) =
〈
YnY

T
n−h

〉
=

〈
yn

yn−1

...
yn−p+1

(yTn−h yTn−h−1 · · · yTn−h−p+1

)〉

=



〈
yny

T
n−h

〉 〈
yn−1y

T
n−h−1

〉
· · ·

〈
yny

T
n−h−p+1

〉
〈
yn−1y

T
n−h

〉 〈
yn−1y

T
n−1−h

〉
· · ·

〈
yn−1y

T
n−h−p+1)

〉
...

...
. . .

...〈
yn−p+1y

T
n−h

〉 〈
yn−p+1y

T
n−h−1

〉
· · ·

〈
yn−p+1y

T
n−p+1−h

〉



=


Kyy(h) Kyy(h+ 1) · · · Kyy(h+ p− 1)

Kyy(h− 1) Kyy(h) · · · Kyy(h+ p− 2)
...

...
. . .

...
Kyy(h− p+ 1) Kyy(h− p+ 2) · · · Kyy(h)

 , (56)

such that for h = 0, we find the autocovariances Kyy(0),Kyy(1), ...,Kyy(p − 1) as the first d rows of
KY Y (0), which is the first row in the visualization in Equation (56). For this VAR(1) model the Yule-
Walker equations from Equation (54) and Equation (55) simplify to

KY Y (0) = AKY Y (1)
T +Σϵ and KY Y (h) = AKY Y (h− 1).



5 AUTOREGRESSIVE MODELS 21

We can plugKY Y (1) = AKY Y (0) into the first Yule-Walker equation and find an equation only depending
on KY Y (0),

KY Y (0) = AKY Y (0)
TAT +Σϵ = AKY Y (0)A

T +Σϵ. (57)

To solve this equation for KY Y (0), we recast it by unraveling the covariance matrices into vectors. We
define the operator vec, which stacks the columns of a matrix on top of each other to form a vector.
Equation (57) can be rewritten to

vec (KY Y (0)) = (A⊗A) vec (KY Y (0)) + vec (Σϵ) , (58)

where ⊗ denotes the Kronecker product, which multiplies each entry in the first matrix with the second
matrix. This equation can be solved to find the autocovariance “vector.”

vec (KY Y (0)) =
(
I(Kp)2 −A⊗A

)−1
vec (Σϵ) . (59)

Finally, we can reshape the autocovariance vector into the autocovariance matrix and extract the p
autocovariance matrices for the original d dimensional VAR(p) model, Kyy(0),Kyy(1), ...,Kyy(p − 1).
These can then be used in the second Yule-Walker equation (Equation (55)) to iteratively find the
autocovariance matrix of the original model for arbitrary time lags. Using this information, we can look
at a vector autoregressive model to model the generalized Langevin equation.

5.2 Application to the generalized Langevin equation

To model the generalized Langevin equation using such a vector autoregressive model, we follow the
ideas presented in Reference [20]. There, an autoregressive model is constructed to study turbulence
in fluids. For this purpose, a non-Markovian process is considered that is equivalent to the generalized
Langevin equation with a combined delta function and exponential memory kernel, but without an
external potential. Let us consider this as the starting point to build our autoregressive model. The
process under consideration is

mv̇ = −2ζ
√
κmv(t)−

t∫
−∞

dt′
B

τ
e−(t−t′)/τv(t′) + F1(t) + F2(t), (60)

where the noise is split into two parts; F1 ∼ N (0, 4kBTζ
√
κm) is a Gaussian white noise and F2 ∼

N (0, kBT
B
τ (1− e−2t/τ )) is a colored noise generated by an Ornstein-Uhlenbeck process.

We now discretize the time in steps of length δt by defining tn = n δt and vn = v(tn). We use the Euler
method, such that, for the left-hand side of the equation, we have v̇ ≈ (vn − vn−1)/δt. Meanwhile, we
evaluate the right-hand side of the equation at t = tn−1, and we replace the integral by a sum with the
integrand evaluated at times tn−1, tn−2, tn−3, .... We then find

m(vn − vn−1)/δt = −2ζ
√
κmvn−1 −

∞∑
j=1

Bδt

τ
e−(j−1)δt/τvn−j + ηn−1 + wn−1 (61)

vn =

(
1− 2δtζ

√
κ/m− Bδt2

τm

)
vn−1 −

Bδt2

τm

∞∑
j=2

e−(j−1)δt/τvn−j +
δt

m
ηn−1 +

δt

m
wn−1,

(62)

where η ∼ N (0, 4kBTζ
√
κm) is the white noise and wn−1 is noise generated by an Ornstein-Uhlenbeck

process;

wn = e−δt/τwn−1 + η′n−1, η′ ∼ N
(
0,

BkBT

τ
(1− e−2δt/τ )

)
. (63)

A problem with this process is that we need an infinite number of previous outputs to calculate it. As this
is not feasible, we choose an order for our model by calculating a finite number of terms and using that
result. We note that this makes it so that our model describes a different integro-differential equation,
one where the lower limit of the integral is equal to t − pδt instead of the fixed value tm. However, if
pδt is sufficiently big compared to the decay rate of the memory kernel τ , this should not make a large
difference, as the exponential memory function will be small at that point. Finally, to add an overall
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harmonic potential to the process, we introduce a third variable x, such that ẋ(t) = v(t). Discretizing this,
adding a −δt κ

mxn−1 term into equation (62), and combining everything into one vector autoregressive
model we havevn

xn

wn

=
1− 2ζδt

√
κ
m − Bδt2

τm −κδt
m

δt
m

δt 1 0

0 0 e−
δt
τ

vn−1

xn−1

wn−1

− p∑
j=2

Bδt2

τm e−(j−1) δt
τ 0 0

0 0 0
0 0 0

vn−j

xn−j

wn−j

+
ηn−1

0
η′n−1

.
(64)

This discrete model does converge to the continuous case for the combined limits δt → 0 and p → ∞.
However, for finite δt, the model introduces errors of order δt2 with the continuous case. As such,
quantitative comparisons between the autoregressive model and the generalized Langevin equation will
not be possible. However, we will show that the autoregressive model exhibits qualitatively similar
behaviour to the continuous model.

Using the previous result for the autocovariance, we can determine the covariance matrix of this model,
and thus, in particular, find the covariance

〈
x(tn)x(tn−k)

〉
. To do so, we construct the corresponding

vector autoregressive model of order 1;

vn
xn

wn

vn−1

xn−1

wn−1

vn−2

...
wn−p+1


= A3p,3p



vn−1

xn−1

wn−1

vn−2

...

wn−p


+



ηn−1

0
η′n−1

0
0
0
...

0


, (65)

where A3p,3p is a square matrix with 3p columns and 3p rows and is given as



1− 2ζδt
√

κ
m

− Bδt2

τm
−κδt

m
δt
m

Bδt2

τm
e−1 δt

τ 0 0 Bδt2

τm
e−(p−1) δt

τ 0 0
δt 1 0 0 0 0 · · · 0 0 0

0 0 e−
δt
τ 0 0 0 0 0 0

I3 03,3 · · · 03,3

. . .

03,3 I3
...

...
. . .

. . .

03,3 · · · I3 03,3



.

As a reminder, here, I3 denotes the identity matrix of size 3 and 03,3 stands for the square zero matrix
of size 3.

Now, following Equation (59), we find the covariance matrix at time-lag 0 for this model, KGLE(0), as

vec (KGLE(0)) =
(
I(3p)2 −A3p,3p ⊗A3p,3p

)−1
vec (Ση) , (66)

where Ση is the covariance matrix of the noise processes in Equation (65). Since the two noise processes
are independent this is a 3p× 3p matrix that is empty except for the (1, 1) and (3, 3) components, which
are ⟨ηnηn⟩ and ⟨η′nη′n⟩, respectively.

However, as finding the inverse of the sparse matrix
(
I(3p)2 −A3p,3p ⊗A3p,3p

)
is very inefficient, even

numerically, a more practical solution allows for numerically solving(
I(3p)2 −A3p,3p ⊗A3p,3p

)
vec (KGLE(0)) = vec (Ση) , (67)
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Figure 12: Correlation functions for the discretized signal with parameters that are the same as in Figure
8. The discretization timestep δt = 1/20 and the autoregressive model order p = 60. We note that the
correlation functions show the same qualitative behavior in both the discrete and continuous signals.

for the unknown KGLE(0). From this covariance matrix we find the p 3 by 3 covariance matrices for the
original model Kgle(h) with 0 ≤ h < p. The second Yule-Walker equation for the original model now
allows us to find the longer time-lag covariance matrices

Kgle(h) =

1− 2ζδt
√

κ
m − Bδt2

τm −κδt
m

δt
m

δt 1 0

0 0 e−
δt
τ

Kgle(h− 1)−
p∑

j=2

Bδt2

τm e−(j−1) δt
τ 0 0

0 0 0
0 0 0

Kgle(h− j).

(68)

In particular, the autocovariance of the x variable,
〈
x(tn)x(tn−h)

〉
, is important as the input for the

Information Bottleneck. This is found as the middle entry in Kgle(h).

5.3 Results

Using the above method, we determine the covariance for both the purely exponential and mixed delta-
exponential memory cases. We can compare these to the continuous case and use them in the information
bottleneck framework.

5.3.1 Exponential memory kernel

To get the purely exponential memory kernel, we use ζ = 0 in the derived autoregressive model. Using
the same parameter values as for the continuous model and choosing discretization timestep δt = 1/20
and autoregressive model order p = 60, we find qualitatively similar covariances as for the continuous
case, as shown in Figure 12. In comparison with the correlation functions from Figure 8 we see that the
qualitative behavior of the correlation functions is the same. However, quantitatively some differences
show up. These arise due to discretization and are an expected effect.

Since we find qualitatively similar behavior we will interpret this autoregressive model as a good dis-
cretization of the generalized Langevin equation with an exponential memory term. We use the gener-
ated covariance functions in the information bottleneck framework to find the respective kernels, shown
in Figure 13. Once again, the information bottleneck kernels are similar for different covariance functions.
The kernel’s first and last three components are non-zero, while the rest are zero.

We suspect that the last three components are non-zero is due to the history not extending to −∞ in
the discrete model. To estimate the length of the history, the kernel incorporates information from as far
back as possible. Indeed, we see that the future information as a function of the past information slightly
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Figure 13: Information bottleneck kernels for the discretized signal with parameters that are the same
as in Figure 8. We use a discretization timestep δt = 1/20, an autoregressive model order p = 60 and an
information bottleneck signal length of N = 20.
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Figure 14: Future information as a function of past information for the signal with the same parameters
as the yellow signal in Figures 12 and 13 for several values of the vector length.
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Figure 15: Information bottleneck kernels for the discretized signal with parameters that are the same as
in Figure 13, but using a different discretization timestep for the autoregressive model and the information
bottleneck. We use an autoregressive model discretization timestep δt = 1/20, an autoregressive model
order p = 60, and an information bottleneck discretization timestep ∆ = 1/10.

increases with increasing kernel/vector length, but only up to a kernel length of N = 62, after which
this information bound stays the same. However, this effect is very small compared to the information
bound changes we see between a kernel length of 1 and 3. The information bound for a selected number
of values for N is shown in Figure 14.

Here, the discretization timesteps of the autoregressive model δt and the information bottleneck ∆ are
equal. In the discussion for the continuous signal, we proposed that more than 3 entries in the vector are
non-zero to find better estimates of the instantaneous velocity and acceleration of the signal. If this is
the case, we should expect that if we take a different discretization for the information bottleneck for a
discrete signal, the same behavior reemerges. We indeed see that the kernel becomes extended when we
use every other signal point as the input for the information bottleneck, as shown in Figure 15.

5.3.2 Combined delta function and exponential memory kernel

To get a combined memory kernel, we use ζ > 0 in the autoregressive model. Using the same parameter
values as for the continuous model and choosing discretization timestep δt = 1/20 and autoregressive
model order p = 60, we find qualitatively similar covariances as for the continuous case, as shown in
Figure 16.

Information bottleneck kernels corresponding to the covariance functions are shown in Figure 17. Strik-
ingly, for the green and blue models, multiple values at the start of the information bottleneck kernel
are non-zero. In contrast, for the pink and yellow models, some values at the end of the information
bottleneck kernel are bigger than those in the middle. The non-zero values at the end suggest that the
information bottleneck kernel in this example is not long enough for these last kernels.

The absolute values of the entries in an information bottleneck kernel of length N = 65, such that it is
longer than the autoregressive model order p = 60, are plotted in Figure 18 with a logarithmic vertical
axis. Apart from the first two entries, we see two different behaviors. The more recent values for the
blue and green signals have a high magnitude, but the subsequent decay is fast. On the other hand, the
decay is slow for the pink and yellow signals, while the more recent entries have a low magnitude. This
suggests that the relative importance of the two types of corrective force present here plays an important
role in shaping the kernel.

To check if this is the case, let us look at the future information as a function of the past information
plot for several different information bottleneck kernel lengths. In Figures 19 and 20, this plot is shown
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Figure 16: Correlation functions for the discretized signal with parameters that are the same as in Figure
10. The discretization timestep δt = 1/20 and the autoregressive model order p = 60. We note that the
correlation functions show the same qualitative behavior in both the discrete and continuous signals.
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Figure 17: Information bottleneck kernels for the discretized signal with parameters that are the same
as in Figure 10. We use a discretization timestep δt = 1/20, an autoregressive model order p = 60, and
a information bottleneck signal length of N = 20.
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that are the same as in Figure 10. We use a discretization timestep δt = 1/20, an autoregressive model
order p = 60, and a information bottleneck signal length of N = 65 > p. Note that the vertical axis
is on a logarithmic scale. We note that not the full information bottleneck kernel is shown here, as
the interplay between the finite autoregressive model order and the finite information bottleneck kernel
length introduces artefacts, which are explained in the main text.
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Figure 19: Future information as a function of past information for the signal with the same parameters
as the green signal in Figure 16 for several values of the vector length.
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Figure 20: Future information as a function of past information for the signal with the same parameters
as the pink signal in Figure 16 for several values of the vector length.

for the green and pink signals, respectively. We choose the green signal as a case where the exponential
memory function corrective force is much more important than the instantaneous friction. On the other
hand, the pink signal has both corrective forces of similar importance.

In the case where the corrective force with exponential memory is more important (Figure 19), the most
information is found in the most recent five measurements, particularly in the first three. The high
importance of the first three components mirrors the results of the purely exponential memory function.
This suggests that the first three entries in the information bottleneck kernel perform a similar function
as the three components in the exponential memory function case. The rest of the kernel now elucidates
the correction needed for the influence of the instantaneous friction on this “baseline” prediction. Since
friction is an instantaneous effect, it seems natural that the most recent history of the signal is much
more informative of this correction than the farther past.

In the case where the instantaneous friction is more important (Figure 20), the most information is
found in the most recent two measurements, with significant additional information available with higher
information bottleneck kernel lengths. Indeed, we can clearly distinguish the curves for N = 10 and
N = 62 in this case, whereas in Figure 19 these curves are indistinguishable. The high importance of
just two components mirrors the information bottleneck kernels found in Reference [9]. So, it seems that
in contrast to the previous case, a baseline prediction is made for instantaneous friction, with the rest of
the kernel elucidating the influence of the exponential memory function. Here, the slower decay of the
magnitude suggests that the history of the signal is also informative of the correction needed, which we
rationalize by the fact that the exponential memory function does depend on the history of the signal.

This difference suggests that for regions in parameter space where both corrective forces are important
or the instantaneous friction is more important the information bottleneck kernels will be longer than in
regions where the exponential memory is more important.

6 Discussion and conclusion

In this project, we have studied the discrete-time information bottleneck for a generalized Langevin
equation. This equation yields signals that are Gaussian, stationary and non-Markovian. The generalized
Langevin equation has a memory kernel, such that the instantaneous friction force, which is present in the
stochastic damped harmonic oscillator, is replaced by a history-dependent corrective force. In particular,
we considered the cases of a memory kernel that includes a single exponential decay or a combination of
exponential decay with a Dirac delta function. We have chosen these memory kernels as they provide
an analytically tractable equation and are, in some ways, the simplest version of a generalized Langevin
equation. Other possible kernels are sums of exponential decays or (sums of) fractions. For the latter, a
first part of the analysis is given in Appendix C, which led to intractable infinite sums and thus was not
pursued further.

We considered the generation of signals in continuous time for the two memory kernels that were pursued
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in section 4. We found that the information bottleneck kernels look extended, while the majority of the
relevant information is available in the most recent past. The extension of the information bottleneck
kernels is due to the information losses introduced by the discretization in the information bottleneck
method. As such, part of the prediction that is done in this case is to recover this lost information.

We constructed a discrete version of the signal to eliminate the information loss introduced by the
discretization. In section 5 we constructed a vector autoregressive model that generates a discrete signal
which qualitatively corresponds to the continuous-time signal. The information bottleneck kernels using
this method do not suffer the same information loss. This is a better indicator of what aspects of the
signal are necessary for prediction in the absence of discretization.

We find that the information bottleneck kernel has three non-zero entries for the exponential memory
function. These are specifically the three most recent values in the signal. This is analogous to the
previous result on the stochastic harmonic oscillator, in which the two most recent signal values contain
relevant information. For this signal, it seems very likely that the optimal kernel determines the instan-
taneous position, velocity and acceleration to determine the compression. It is, in this case, possible to
write a system of equations ẋ = v, v̇ = a, and ȧ = f(a, v, x) + η with some linear function f and a
white noise process η. This follows a similar method as rewriting the deterministic generalized Langevin
equation without the memory integral, which is shown in Appendix A. In that case, the fact that these
instantaneous measures provide all the information to predict the future of the signal is rationalized
easily.

We find that the information bottleneck kernel for the combined exponential decay and Dirac delta
function memory kernel is also extended when using the autoregressive model. In this case, we distinguish
two types of information bottleneck kernels. In the first type, most information is available in two
measurements, but more information is available with an extended exponential tail. This is the case if
the instantaneous delta function memory is important relative to the exponential decay memory. It looks
like the information bottleneck kernel mimics the strategy for the stochastic damped harmonic oscillator
but needs an extended tail to incorporate the second memory effect. Alternatively, in the other type of
information bottleneck kernels found for the combined memory kernel, three measurements are needed to
find most of the information, with additional information mostly in the next two to three measurements.
This is the case if the exponential decay memory is (much) more important than the instantaneous delta
function memory. In this case, it seems that the information bottleneck kernel mimics the strategy for the
exponential memory kernel but needs slightly more information to determine the effect of the additional
instantaneous friction force.

We thus find the optimal information bottleneck kernels for the generalized Langevin equation with either
an exponential or a combined exponential and delta function memory kernel. Further research into this
subject has two distinct paths forward. On the one hand, it is interesting to consider if any known
biological networks use kernels with the same form we find in this work, such as earlier research found
that the push-pull network can approximate the optimal kernel for an Ornstein-Uhlenbeck signal and
the chemotaxis network can approximate the optimal kernel for the underdamped stochastic harmonic
oscillator [8,9]. Alternatively, if no biological candidate is obvious, we ask what kind of chemical reaction
network could implement this kernel. Additionally, it might be interesting to consider other, more
complicated, memory kernels in the generalized Langevin equation. For example, the analysis for the
fractional memory kernel could be completed, and the behavior of sums of exponential decays might
be interesting and easily accessible from the current work. Alternatively, one could consider designing
a memory kernel from a covariance function with desired properties. Specifically, in determining the
covariance functions of the signals in the current work, a characteristic cubic equation was found. It
might be interesting to consider what happens were one to construct a quartic equation instead, which
might serve as a next generalization.
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A Deterministic solution

We note that for both of the memory kernels considered in this report we can find the solution to the
deterministic problem analytically. The noise-less equation with both corrective forces is written as

mẍ = −2ζ
√
κmẋ(t)− B

τ

t∫
tm

dt′ e−(t−t′)/τ ẋ(t′)− κx(t). (69)

We differentiate both sides to find

m
...
x = −κẋ− 2ζ

√
κm ẍ− B

τ
ẋ(t)− B

τ

t∫
0

e(t−s)/τ ẋ(s)

−τ
ds. (70)

Here we notice that the integral term is the same as before differentiation, such that we can use Equation
(69) again to eliminate the integral. We find

m
...
x = −κẋ− 2ζ

√
κm ẍ− B

τ
ẋ(t)− 1

τ

(
2ζ

√
κm ẋ(t) + κx(t) +mẍ

)
, (71)

which rearranges to

...
x = − 1

m

(
κ

τ
x+

(
κ+

B

τ
+

2ζ
√
κm

τ

)
ẋ+

(
2ζ

√
κm+

m

τ

)
ẍ

)
. (72)

As such, the problem is simplified from an integro-differential equation to an ordinary differential equation,
which is much more tractable.

B Solving the GLE

The generalized Langevin equation for times t ≥ 0 with a harmonic potential well is given as

mẍ = −
t∫

tm

dt′ Γ(t− t′)ẋ(t′)− κx(t) + η(t). (73)

With m the particle mass (signal inertia), x, ẋ, and ẍ the particle position and its derivatives (signal and
its derivatives), Γ(t) the memory kernel (we note that Γ(t) = 0 for t < 0), κ the force constant for the
harmonic potential, tm ≤ 0 the time to which memory effects extend, and η(t) the random force which
is Gaussian and obeys ⟨η(t)⟩ = 0, and

⟨η(t)η(t′)⟩ = kBTΓ(|t− t′|), (74)

according to the dissipation-fluctuation theorem [14,16].

To solve this equation we will closely follow a paper from Di Terlizzi et al. from 2020 [16], which in turn
extends the treatment of Fox in 1977 [24] with an overall force.

B.1 Modified Laplace transformation

We use their definition of a modified Laplace transform

Ltm
s {g(t)} =

∞∫
tm

dt e−stg(t) = G̃tm(s), (75)

which is much alike a Laplace transform but has a different lower integration limit. For this transformation
we consider some identities
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Differentiation in time domain follows a similar rule to the normal Laplace transform, which we derive
using partial integration

Ltm
s {ġ(t)} =

∞∫
tm

dt e−stġ(t) = [e−stg(t)]∞tm +

∞∫
tm

dt se−stg(t) = sG̃tm(s)− e−stmg(tm). (76)

For the second derivative we perform a second partial integration to find

Ltm
s {g̈(t)} = s2G̃tm(s)− se−stmg(tm)− e−stm ġ(tm). (77)

Integration in time domain follows exactly like in ordinary Laplace transformation, again using partial
integration we have

Ltm
s


t∫

tm

g(τ)dτ

 =

∞∫
tm

dt e−st

t∫
tm

dτ g(τ) =

e−st

−s

t∫
tm

dτ g(τ)

∞

tm

−
∞∫

tm

dt
e−st

−s
g(t) =

G̃tm(s)

s
. (78)

Convolution of some function g(t) with some other function f(t) where f(t < 0) = 0 (we note that the

memory kernel obeys this structure). We note identity for changing order of integration
∫ b

a
dx
∫ x

a
dy =∫ b

a
dy
∫ b

y
dx and write

Ltm
s


t∫

tm

dτ f(t− τ)g(τ)

 =

∞∫
tm

dt

t∫
tm

dτ e−stf(t− τ)g(τ) =

∞∫
tm

dτ

∞∫
τ

dt e−stf(t− τ)g(τ).

Substituting u = t− τ we get

Ltm
s


t∫

tm

dτ f(t− τ)g(τ)

 =

∞∫
tm

dτ

∞∫
0

du e−s(u+τ)f(u)g(τ) =

∞∫
tm

dτ e−sτg(τ)

∞∫
0

du e−suf(u).

Where we recognize the modified Laplace transform of g(t) and the original Laplace transform of f(u),
such that

Ltm
s


t∫

tm

dτ f(t− τ)g(τ)

 = G̃tm(s)F̂ (s). (79)

Functions Some basic functions will turn out to be useful to be able to recognize to find inverse
transformations. Assuming b > tm we find

Ltm
s {a} = a

∞∫
tm

dt e−st =
ae−stm

s
, (80)

Ltm
s {δ(t− b)} =

∞∫
tm

dt δ(t− b)e−st = e−sb, (81)

Ltm
s {g(t− tm)} =

∞∫
tm

dt e−stg(t− tm) =

∞∫
0

du e−sug(u)e−stm = Ĝ(s)e−stm . (82)

Meanwhile, for the delta function at tm, δ(t− tm), we use the so-called Stratonovich convention for the

integral of the delta function, which states
∫ b

a
dxf(x)δ(x − a) = f(a)/2. We will use this convention

throughout this report. As such, we get

Ltm
s {δ(t− tm)} =

∞∫
tm

dt δ(t− tm)e−st =
e−stm

2
. (83)
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B.2 Solving the GLE

We apply this modified Laplace transform to the equation to find

mLtm
s {ẍ(t)} = −Ltm

s


t∫

tm

dt′ Γ(t− t′)ẋ(t′)

− κLtm
s {x(t)}+ Ltm

s {η(t)}

m
(
s2X̃tm(s)− sx(tm)e−stm − ẋ(tm)e−stm

)
= −Γ̂(s)

(
sX̃tm(s)− x(tm)e−stm

)
− κX̃tm(s) + H̃tm(s).

(84)

We now collect all the X̃tm(s) terms to find the solution for the Laplace transform of x(t)

X̃tm(s) =
msx(tm)e−stm +mẋ(tm)e−stm + Γ̂(s)x(tm)e−stm + H̃(s)

ms2 + Γ̂(s)s+ κ
. (85)

To solve without stating an explicit memory kernel we define a quantity that Di Terlizzi et al. call a
position susceptibility χx(t), which Laplace transform is

χ̂x(s) =
1

ms2 + Γ̂(s)s+ κ
. (86)

We find

X̃tm(s) =

(
x(tm)e−stm

(
ms+ Γ̂(s)

)
+mẋ(tm)e−stm + H̃(s)

)
χ̂x(s)

=

(
x(tm)e−stm

s

(
ms2 + Γ̂(s)s+ κ− κ

)
+mẋ(tm)e−stm + H̃(s)

)
χ̂x(s)

=

(
x(tm)e−stm

s

(
χ̂x(s)

−1 − κ
)
+mẋ(tm)e−stm + H̃(s)

)
χ̂x(s)

=
x(tm)e−stm

s
(1− κχ̂x(s)) +mẋ(tm)e−stm χ̂x(s) + H̃(s)χ̂x(s). (87)

To find the solution for x(t) we now need to perform the inverse modified Laplace transform. The inverse
modified Laplace transform is defined as [16]

L−1,tm
t {F̃ (s)} =

1

2πi

α−i∞∫
α−i∞

dsestF̃ (s), (88)

where α is chosen such that all the singularities of F̃ (s) are on the ‘left’ of the vertical contour, i.e. the
real part of the singularities is smaller than α. However, instead of performing this inverse transformation
directly we will invert by inspection. We have

x(t) = x(tm)L−1, tm
t

{
e−stm

s

}
− κx(tm)L−1, tm

t

{
e−stm

s
χ̂x(s)

}
+ 2mẋ(tm)L−1, tm

t

{
e−stm

2
χ̂x(s)

}
+ L−1, tm

t

{
H̃tm(s)χ̂x(s)

}
,

here we recognize (in sequence) the modified Laplace transformations of a constant and the convolutions
of χx(t) with a constant, a Dirac-delta function, and η(t). Filling in the identifications we find

x(t) = x(tm)− κx(tm)

t∫
tm

dτ χx(t− τ) + 2mẋ(tm)

t∫
tm

dτχx(t− τ)δ(τ − tm) +

t∫
tm

dτ χx(t− τ)η(τ) (89)

= x(tm)− κx(tm)

t−tm∫
0

du χx(u) + 2mẋ(tm)
χx(t− tm)

2
+

t∫
tm

dτ χx(t− τ)η(τ) (90)

= x(tm) (1− κχ(t− tm)) +mẋ(tm)χx(t− tm) +

t∫
tm

dτ χx(t− τ)η(τ). (91)
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Here we change the integration variable in the first integral (u = t− τ) and flip the integration direction,
such that the minus signs cancel out. We also define

χ(t) =

t∫
0

χx(τ)dτ, (92)

the anti-derivative of χx(t) in the last line. We also note that we can use Equation (78) to find a
relationship between the Laplace transforms of χ and χx,

χ̂(s) =
χ̂x(s)

s
. (93)

From here we can find the velocity and the expectation value/average of x(t) and v(t) quite straightfor-
wardly. We note that for t ≫ tm the expectation values of both become 0, as should be expected for
stationary signals.

B.3 Correlation

For the position autocorrelation function we now get〈
x(t)x(t′)

〉
=
〈
x(tm)x(tm)

〉
(1− κχ(t− tm)) (1− κχ(t′ − tm)) (94)

+m2
〈
ẋ(tm)ẋ(tm)

〉
χx(t− tm)χx(t

′ − tm) (95)

+m
〈
x(tm)ẋ(tm)

〉(
χx(t

′ − tm) [1− κχ(t− tm)] + χx(t− tm) [1− κχ(t′ − tm)]
)

(96)

+

t∫
tm

dτ χx(t− τ)
(
[1− κχ(t′ − tm)] ⟨x(tm)η(τ)⟩+mχx(t

′ − tm)⟨ẋ(tm)η(τ)⟩
)

(97)

+

t′∫
tm

dτ ′ χx(t
′ − τ ′)

(
[1− κχ(t− tm)] ⟨x(tm)η(τ ′)⟩+mχx(t− tm)⟨ẋ(tm)η(τ ′)⟩

)
(98)

+

t∫
tm

dτ

t′∫
tm

dτ ′ χx(t− τ)χx(t
′ − τ ′)

〈
η(τ)η(τ ′)

〉
. (99)

The four terms on lines (97) and (98) contain the correlation between the noise at times t > tm and the
initial conditions. These are not correlated, so the integrals evaluate to 0. The four terms on lines (94),
(95) and (96) contain the initial condition correlations and do not simplify further without assuming
anything about these initial conditions. The remaining double integral on line (99) is the only part we
can simplify. As a shorthand, we call this term ϕ(t, t′). The autocorrelation of the random force is given
by the memory kernel due to the fluctuation dissipation theorem as in Equation (74),

⟨η(t)η(t′)⟩ = kBTΓ(|t− t′|).

To calculate the double integral we apply the modified Laplace transform twice, once to transform t into
s and once to transform t′ into s′, such that

Ltm
s′

{
Ltm
s {ϕ(t, t′)}

}
=

∞∫
tm

dt′
∞∫

tm

dt e−s′t′e−st

t∫
tm

dτ

t′∫
tm

dτ ′ χx(t− τ)χx(t
′ − τ ′)Γ(|τ − τ ′|)

=

∞∫
tm

dτ

∞∫
τ

dt

∞∫
tm

dτ ′
∞∫

τ ′

dt′ e−s′t′e−stχx(t− τ)χx(t
′ − τ ′)Γ(|τ − τ ′|).

Here we switch the order of integration twice, thus resulting in differing integration boundaries. We
substitute u = t − τ and u′ = t′ − τ ′ for the t and t′ integrals respectively to separate out the position
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susceptibilities,

Ltm
s′

{
Ltm
s {ϕ(t, t′)}

}
=

∞∫
tm

dτ

∞∫
tm

dτ ′ e−sτe−s′τ ′
Γ(|τ − τ ′|)

∞∫
0

du e−suχx(u)

∞∫
0

du′ e−s′u′
χx(u

′)

= χ̂x(s)χ̂x(s
′)

∞∫
tm

dτ

∞∫
tm

dτ ′ e−s(τ−τ ′)−τ ′(s+s′)Γ(|τ − τ ′|) (100)

= χ̂x(s)χ̂x(s
′)Φ′(s, s′). (101)

We define another shorthand for the remaining integrals

For the remaining integrals we substitute y = τ − τ ′ for τ to find

∞∫
tm

dτ

∞∫
tm

dτ ′ e−s(τ−τ ′)−τ ′(s+s′)Γ(|τ − τ ′|) =
∞∫

tm

dτ ′ e−τ ′(s+s′)

∞∫
tm−τ ′

dy e−syΓ(|y|)

=

∞∫
tm

dτ ′ e−τ ′(s+s′)

 ∞∫
0

dy e−syΓ(y) +

0∫
tm−τ ′

dy e−syΓ(−y)

 .

Here we split the y integral in two pieces, such that we may remove the absolute value signs around y.
We recognize the Laplace transformation for Γ(y) as the underlined integral and perform integration by
parts on the τ ′ integral, integrating the exponent, differentiating the part between the parentheses. We
get

=

[
e−τ ′(s+s′)

−s− s′

(
Γ̂(s) +

∫ 0

tm−τ ′
dy e−syΓ(−y)

)]∞
tm

−
∞∫

tm

dτ ′
e−τ ′(s+s′)

−s− s′
d

dτ ′

Γ̂(s) +

0∫
tm−τ ′

dy e−syΓ(−y)


=

(
e−∞(s+s′)

−s− s′

(
Γ̂(s) +

∫ 0

tm−∞
dy e−syΓ(−y)

))
−

(
e−tm(s+s′)

−s− s′

(
Γ̂(s) +

∫ 0

tm−tm

dy e−syΓ(−y)

))

−
∞∫

tm

dτ ′
e−τ ′(s+s′)

−s− s′

 d

dτ ′
Γ̂(s) +

d

dτ ′

0∫
tm−τ ′

dy e−syΓ(−y)


= 0− e−tm(s+s′)

−s− s′

(
Γ̂(s) + 0

)
−

∞∫
tm

dτ ′
e−τ ′(s+s′)

−s− s′

(
0 + e−s(tm−τ ′)Γ(−(tm − τ ′))

)

=
e−tm(s+s′)

s+ s′
Γ̂(s) +

e−stm

s+ s′

∞∫
tm

dτ ′ e−τ ′s′Γ(τ ′ − tm).

Where we use that
∫ 0

0
dxf(x) = 0 and d

dx

∫ b

a−x
dyf(y) = f(a − x). Now we substitute y′ = τ ′ − tm and

get

=
e−tm(s+s′)

s+ s′
Γ̂(s) +

e−stm

s+ s′

∞∫
0

dy′ e−tms′e−y′s′Γ(y′)

=
e−tm(s+s′)

s+ s′
Γ̂(s) +

e−tm(s+s′)

s+ s′
Γ̂(s′) =

e−tm(s+s′)

s+ s′

(
Γ̂(s) + Γ̂(s′)

)
∞∫

tm

dτ

∞∫
tm

dτ ′ e−s(τ−τ ′)−τ ′(s+s′)Γ(|τ − τ ′|) = e−tm(s+s′)

s+ s′

(
Γ̂(s) + Γ̂(s′) +

(s+ s′)(κ+mss′)

ss′
− (s+ s′)(κ+mss′)

ss′

)
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Plugging our result back into Equation (100), adding 0, and remembering the definition of χ̂x(s) we get

Ltm
s′

{
Ltm
s {ϕ(t, t′)}

}
= χ̂x(s)χ̂x(s

′)
e−tm(s+s′)

s+ s′

(
Γ̂(s) + Γ̂(s′) +

(s+ s′)(κ+mss′)

ss′
− (s+ s′)(κ+mss′)

ss′

)
=

e−tm(s+s′)

s+ s′
χ̂x(s)χ̂x(s

′)
s′(ms2 + Γ̂(s)s+ κ) + s(ms′2 + Γ̂(s′)s′ + κ)− (s+ s′)(κ+mss′)

ss′

=
e−tm(s+s′)

(s+ s′)ss′
(
s′χ̂x(s

′) + sχ̂x(s)− κ(s+ s′)χ̂x(s)χ̂x(s
′)−m(s+ s′)ss′χ̂x(s)χ̂x(s

′)
)

= e−tm(s+s′)

(
s′χ̂x(s

′)

ss′(s+ s′)
+

sχ̂x(s)

ss′(s+ s′)
− κ

χ̂x(s)

s

χ̂x(s
′)

s′
−mχ̂x(s)χ̂x(s

′)

)
.

Such that we now almost have the equation in a form in which we can recognize all the parts to do the
inverse modified Laplace transform. We first note that

b

ab(a+ b)
=

a+ b

ab(a+ b)
− a

ab(a+ b)
=

1

ab
− 1

b(a+ b)
, (102)

which we use rewrite the first two terms between the brackets. After distributing the exponent we have

Ltm
s′

{
Ltm
s {ϕ(t, t′)}

}
= −κe−tms χ̂x(s)

s
e−tms′ χ̂x(s

′)

s′

−me−tmsχ̂x(s)e
−tms′ χ̂x(s

′)

+

(
e−tms

s

e−tms′ χ̂x(s
′)

s′
− e−tm(s+s′)χ̂x(s

′)

s′(s+ s′)

)

+

(
e−tms′

s′
e−tmsχ̂x(s)

s
− e−tm(s+s′)χ̂x(s)

s(s+ s′)

)
.

We note that for the κ andm terms the two transformations work separately. For them term we recognize
Equation (82), while for the κ term we recognize a combination of Equations (78) and (82). For the first
term in both sets of brackets we recognize a combination of Equations (80), (78) and (82). For the last
term in both sets of brackets we consider the double modified Laplace transformation of θ(t− t′)χ(t− t′),
with θ(x) the Heaviside step function. We use the substitution u = t− t′ and find

Ltm
s′

{
Ltm
s {θ(t− t′)χ(t− t′)}

}
=

∞∫
tm

dt′
∞∫

tm

dt e−s′t′e−stθ(t− t′)χ(t− t′)

=

∞∫
tm

dt′
∞∫

tm−t′

du e−s′t′e−s(u+t′)θ(u)χ(u)

=

∞∫
tm

dt′ e−(s+s′)t′
∞∫
0

du e−su

∫ u

0

dτ χx(τ)

=
e−tm(s+s′)

s+ s′
χ̂x(s)

s
.

Plugging in all the identifications we have

ϕ(t, t′) = −κχ(t− tm)χ(t′ − tm)−mχx(t− tm)χx(t
′ − tm)

+ χ(t′ − tm)− θ(t′ − t)χ(t′ − t) + χ(t− tm)− θ(t− t′)χ(t− t′). (103)

Thus, substituting Equation (103) into the position autocorrelation (at line (99)) we find

⟨x(t)x(t′)⟩ =
〈
x(tm)x(tm)

〉
(1− κχ(t− tm)) (1− κχ(t′ − tm)) +m2

〈
ẋ(tm)ẋ(tm)

〉
χx(t− tm)χx(t

′ − tm)

+m
〈
x(tm)ẋ(tm)

〉(
χx(t

′ − tm) [1− κχ(t− tm)] + χx(t− tm) [1− κχ(t′ − tm)]
)

+ kBT
(
χ(t− tm) + χ(t′ − tm)− χ(|t− t′|)− κχ(t− tm)χ(t′ − tm)−mχx(t− tm)χx(t

′ − tm)
)
.

(104)
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As a reference, χx(t) is defined by its Laplace transform

χ̂x(s) =
1

ms2 + Γ̂(s)s+ κ
, (105)

and χ(t) is defined as the integral of χx(t)

χ̂(t) =

t∫
0

χx(τ)dτ = L−1
t

{
s−1

ms2 + Γ̂(s)s+ κ

}
, (106)

B.4 Limit for equilibrium statistics

For our applications we are mostly interested in the equilibrium statistics of the signal x. As such we
remove the initial conditions by taking the limit tm → −∞. To do so we determine the limits lim

t→∞
χx(t)

and lim
t→∞

χ(t).

We note the final value theorem for Laplace transforms. This theorem states that if a function f(t) has

a Laplace transform F̂ (s) with at most one of its poles at the origin and the others in the open-left-half

plane then lim
t→∞

f(t) = lim
s→0

sF̂ (s) [27]. As such we will calculate the limits lim
s→0

sχ̂x(s) and lim
s→0

sχ̂(s),

lim
t→∞

χx(t) = lim
s→0

sχ̂x(s) = lim
s→0

s

ms2 + Γ̂(s)s+ κ
= 0, (107)

lim
t→∞

χ(t) = lim
s→0

sχ̂(s) = lim
s→0

s

s

1

ms2 + Γ̂(s)s+ κ
=

1

κ
. (108)

Where, for the χ(t) limit we assume that lim
s→0

Γ̂(s)s = lim
t→∞

Γ(t) exists and equals 0. This is a reasonable

assumption, as this essentially states that our memory cannot be infinitely long.

Using our results we can determine lim
tm→−∞

x(t),

lim
tm→−∞

x(t) = lim
tm→−∞

(x(tm))

(
1− κ lim

tm→−∞

(
χ(t− tm)

))
+m lim

tm→−∞

(
ẋ(tm)χx(t− tm)

)
+ lim

tm→−∞

 t∫
tm

dτ χx(t− τ)η(τ)


= lim

tm→−∞
(x(tm))

(
1− κ

1

κ

)
+m lim

tm→−∞
(ẋ(tm)) · 0 + lim

tm→−∞

t∫
tm

dτ χx(t− τ)η(τ)

= lim
tm→−∞

t∫
tm

dτ χx(t− τ)η(τ). (109)

For lim
tm→−∞

⟨x(t)x(t′)⟩ in Equation (104) we note that both the (1− κχ(t− tm)) terms and the χx(t− tm)

terms will go to 0 in the limit. From the rest of the terms we get

lim
tm→−∞

⟨x(t)x(t′)⟩ = kBT

(
1

κ
+

1

κ
− χ(|t− t′|)− κ

1

κ

1

κ
−m · 0 · 0

)
= kBT

(
1

κ
− χ(|t− t′|)

)
(110)

B.5 Comparison to Langevin equation

The delta function memory kernel is important, as this is the kernel that recovers the normal Langevin
equation. As such, we should make sure that here the solution found in the previous subsections cor-
responds to the solution of the stochastic damped harmonic oscillator. We define the memory kernel

Γ(t) = 4ζ
√
κmδ(t), (111)
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such that, plugging this into Equation (73) yields

mẍ = −
t∫

tm

dt′ 4ζ
√
κm δ(t− t′)ẋ(t′)− κx(t) + η(t),

= −2ζ
√
κm ẋ(t)− κx(t) + σξ(t). (112)

Here ξ(t) is a normalized white noise process, such that this is indeed the Langevin equation. The
fluctuation-dissipation theorem is obeyed if σ2 = 4ζ

√
κmkBT . In this form the solution for x(t) in the

case ζ ̸= 1 is [9, 17]

x(t) =

√
ζkBT√

κm(ζ2 − 1)

t∫
−∞

dτ ξ(τ)
(
e−

√
κ
m (ζ−

√
ζ2−1)(t−τ) − e−

√
κ
m (ζ+

√
ζ2−1)(t−τ)

)
, (113)

while the auto-correlation is found as

⟨x(t)x(t′)⟩ = kBT

2κ
√
ζ2 − 1

(
e−

√
κ
m (ζ−

√
ζ2−1)|t−t′|

ζ −
√
ζ2 − 1

− e−
√

κ
m (ζ+

√
ζ2−1)|t−t′|

ζ +
√
ζ2 − 1

)
. (114)

To use the framework established in the previous section we determine the Laplace transform of the
memory kernel

Γ̂(s) = Ls

{
4ζ

√
κmδ(t)

}
= 4ζ

√
κm

∞∫
0

dt δ(t)e−st = 2ζ
√
κm. (115)

We thus find the Laplace transform of the position susceptibility, as introduced in Equation (86), as

χ̂x(s) =
1

ms2 + 2ζ
√
κms+ κ

=
1

m(s+
√

κ
m

(
ζ −

√
ζ2 − 1

)
)(s+

√
κ
m

(
ζ +

√
ζ2 − 1

)
)
. (116)

To find the position auto-correlation function we are interested in the function χ(t), whose Laplace
transform is χ̂(s) = χ̂x(s)/s. We have

χ̂(s) =
1

ms

1

s+
√

κ
m

(
ζ −

√
ζ2 − 1

) 1

s+
√

κ
m

(
ζ +

√
ζ2 − 1

) , (117)

which is in a form that we recognize as a multiplication of the Laplace transforms of a constant (Equation
(80) for tm = 0) and two exponential decays. We find

χ(t) =

t∫
0

dt′
1

m

t′∫
0

dτe
−
√

κ
m

(
ζ−

√
ζ2−1

)
(t′−τ)

e
−
√

κ
m

(
ζ+

√
ζ2−1

)
τ

=
1

m

t∫
0

dt′ e
−
√

κ
m

(
ζ−

√
ζ2−1

)
t′

t′∫
0

dτe−2
√

κ
m

√
ζ2−1 τ

=
1

m

t∫
0

dt′ e
√

κ
m

(
−ζ+

√
ζ2−1

)
t′ e

−2
√

κ
m

√
ζ2−1 t′ − 1

−2
√

κ
m

√
ζ2 − 1

=
1

2
√
κm
√
ζ2 − 1

t∫
0

dt′ e
−
√

κ
m

(
ζ−

√
ζ2−1

)
t′ − e

−
√

κ
m

(
ζ+

√
ζ2−1

)
t′

=
1

2
√
κm
√
ζ2 − 1

e
−
√

κ
m

(
ζ−

√
ζ2−1

)
t − 1

−
√

κ
m

(
ζ −

√
ζ2 − 1

) − e
−
√

κ
m

(
ζ+

√
ζ2−1

)
t − 1

−
√

κ
m

(
ζ +

√
ζ2 − 1

)


=
1

2κ
√
ζ2 − 1

 1

ζ −
√
ζ2 − 1

− 1

ζ +
√

ζ2 − 1
− e

−
√

κ
m

(
ζ−

√
ζ2−1

)
t

ζ −
√
ζ2 − 1

+
e
−
√

κ
m

(
ζ+

√
ζ2−1

)
t

ζ +
√
ζ2 − 1


=

1

2κ
√
ζ2 − 1

2
√
ζ2 − 1 +

e
−
√

κ
m

(
ζ+

√
ζ2−1

)
t

ζ +
√
ζ2 − 1

− e
−
√

κ
m

(
ζ−

√
ζ2−1

)
t

ζ −
√
ζ2 − 1

 . (118)
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We plug this into Equation (110) and find

⟨x(t)x(t′)⟩ = kBT

 1

κ
− 1

2κ
√
ζ2 − 1

2
√
ζ2 − 1 +

e
−
√

κ
m

(
ζ+

√
ζ2−1

)
|t−t′|

ζ +
√
ζ2 − 1

− e
−
√

κ
m

(
ζ−

√
ζ2−1

)
|t−t′|

ζ −
√
ζ2 − 1


= kBT

 1

κ
− 1

κ
− 1

2κ
√
ζ2 − 1

e
−
√

κ
m

(
ζ+

√
ζ2−1

)
|t−t′|

ζ +
√
ζ2 − 1

− e
−
√

κ
m

(
ζ−

√
ζ2−1

)
|t−t′|

ζ −
√
ζ2 − 1


=

kBT

2κ
√
ζ2 − 1

e
−
√

κ
m

(
ζ−

√
ζ2−1

)
|t−t′|

ζ −
√
ζ2 − 1

− e
−
√

κ
m

(
ζ+

√
ζ2−1

)
|t−t′|

ζ +
√
ζ2 − 1

 , (119)

which is indeed exactly the same as for the normal Langevin equation in Equation (114). As such,
we conclude that the framework established in Section B allows for determining the auto-correlation
function needed to determine the Gaussian information bottleneck for generalized Langevin equations.
The information bottleneck in this context is discussed in Ref. [9].

C Fractional kernel

Memory kernels of type t−λ turn out to be rather difficult to solve, as the inverse Laplace transform of
χ(s) yields so-called Mittag-Leffler functions, which are infinite sums. Thus evaluating the solutions will
take significant amounts of time. We follow a paper by Viñales and Despósito to present the correlation
function [28]. We define a memory kernel as

Γ(t) =
B

Γ (1− λ)
t−λ, (120)

for 0 < λ < 1. Here Γ (x) is the gamma function. The fact λ cannot be an integer is due to the gamma
function not existing for non-positive integers1. The Laplace transform of the memory kernel will now be

Γ̂(s) =
B

Γ (1− λ)

∞∫
0

dt e−stt−λ =
B

Γ (1− λ)

∞∫
0

du

s
e−u

(u
s

)−λ

=
B

s1−λ

∫∞
0

du e−uu(1−λ)−1

Γ (1− λ)
= Bsλ−1,

(121)

where we use the definition of the gamma function Γ (z) =
∫∞
0

dt tz−1e−t. We then find the Laplace
transform of the position susceptibility as

χ̂x(s) =
1

ms2 +Bsλ + κ
(122)

The Laplace transform of this is found using the theory of fractional integration and differentiation.
In particular the solution to this three term equation can be found in Section 5.4 in a book by Igor
Podlubny [29]. We find

χx(t) =
1

m

∞∑
k=0

(−1)k

k!

( κ

m

)k
t2k+1E

(k)
2−λ,2+λk

(
−B

m
t2−λ

)
, (123)

where E
(k)
α,β is the kth derivative of the Mittag-Leffler function in two parameters. The Mittag-Leffler

function is defined as [29]

Eα,β(z) =

∞∑
k=0

zk

Γ (αk + β)
, α > 0, β > 0. (124)

Such that the kth derivative can be found by differentiating each term separately [29]

E
(k)
α,β(z) =

∞∑
j=0

(j + k)! zj

j!Γ (α(j + k) + β)
. (125)

1Note that we cannot get around this restriction by defining Γ(t) = Bt−λ, as in this case the Laplace transform would
introduce a factor Γ (1− λ), as shown in equation (121)
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Before inserting the definitions we first concern ourselves with integrating Equation (123). We note
an useful derivative given in Section 1.2.3 in the book by Podlubny [29], adapted for a non-fractional
derivative,

d

dt
tαk+β−1E

(k)
α,β(at

α) = tαk+β−2E
(k)
α,β−1(at

α). (126)

We identify, by comparing Equation (123) to the right-hand-side of the above, α = 2 − λ, β = 3 + λk,
and a = −B

m , such that indeed αk + β − 2 = (2 − λ)k + 3 + λk − 2 = 2k + 1. Thus, we can use the
left-hand-side as an antiderivative in Equation (92) to find

χ(t) =

t∫
0

χx(τ)dτ =
1

m

∞∑
k=0

(−1)k

k!

( κ

m

)k [
τ2k+2E

(k)
2−λ,3+λk

(
−B

m
τ2−λ

)]t
0

=
1

m

∞∑
k=0

(−1)k

k!

( κ

m

)k (
t2k+2E

(k)
2−λ,3+λk

(
−B

m
τ2−λ

)
− 0 · E(k)

2−λ,3+λk(0)

)

=
1

m

∞∑
k=0

(−1)k

k!

( κ

m

)k
t2k+2E

(k)
2−λ,3+λk

(
−B

m
τ2−λ

)
.

We thus find χ(t) as [28]

χ(t) =
1

m

∞∑
k=0

(−1)k

k!

( κ

m

)k
t2k+2

∞∑
j=0

(j + k)!
(
−B

m t2−λ
)j

j!Γ
(
(2− λ)j + 2k + 3

) , (127)

which leads to the correlation function

⟨x(t)x(t′)⟩ = kBT

 1

κ
− 1

m

∞∑
k=0

(−1)k

k!

( κ

m

)k
|t− t′|2k+2

∞∑
j=0

(j + k)!
(
−B

m |t− t′|2−λ
)j

j!Γ
(
(2− λ)j + 2k + 3

)
 . (128)

This correlation function has an unfortunate structure. While the inner infinite sum (over j) can be
written as a closed function, the same is not true for the outer sum (over k). Moreover, for this outer sum
the absolute value of the terms in the sum at first grows exponentially before shrinking exponentially.
While neighboring terms have different signs in the sum, this “bulge” does not sum to 0, such that we
need to consider a large amount of terms in that sum to a high precision to be able to find the correct
result.
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