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For 30% of the women, their daily life is influenced by heavy menstrual bleeding,
meaning that their energy level, mood, work productivity, social interaction, family
life, and sexual functioning alternate due to their menstruation cycle. Endometrial
ablation, like the Novasure surgery, can be used as definitive surgical treatment. En-
dometrial tissue is vaporised during this process, preventing the flow possibility.
Such surgery has failed when tissue grows back, flow continues or complaints re-
occur. Current medical research has found multiple prognostic factors associated
with the failure of the Novasure surgery. While these factors are purely focused
on the patient’s characteristics, the question arises whether process features as well
point at the failure of the Novasure surgery. This research investigates in the use of
historical data of Novasure patients to provide evidence-based insights into current
treatments and their impacts on the outcome of the Novasure surgery per patient.
Using six machine learning algorithms in four experiments with patient characteris-
tics and process features as potential prognostics factors, the most important features
are predicted and the most effective algorithms is determined. Adenomyosis, age,
BMI, cavity length, and cavity width are the patient characteristics which have the
most influence on the outcome of the Novasure surgery. The addition of process
features led to the awareness that investigating in care activities and appointments
brings new insights in predicting reinterventions. Random forest, extreme gradient
boosting and neural network are the algorithms which can be used best for predict-
ing which patients are likely to undergo a reintervention.
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Chapter 1

Introduction

Over the years, data science technologies have brought new opportunities which
enabled breakthroughs (Dhar, 2013), also in the medical domain. By using the med-
ical data of many patients, knowledge can be extracted to improve people’s health
(Abedjan et al., 2019). This knowledge is addressed from different perspectives, like
the descriptive, diagnostic, predictive, and prescriptive perspective. Where the de-
scriptive and diagnostic perspective focus on the declaring and explaining parts of
the current process, the predictive and prescriptive perspectives focus more on the
future of the process, intending to predict the outcome and describe what is going
to happen.

Advances in machine learning have created improving possibilities in patient-
level prediction. The ongoing development in machine learning offers the poten-
tial to move beyond average treatment and to take personal features into clinical
decision-making (Reps et al., 2018). Patient-level decision making can be applied to
patients undergoing a surgery with the chance of requiring a reintervention. One of
these trajectories to apply patient-level decision making is on patients who choose
to undergo a Novasure surgery, with different result outcomes.

1.1 NovaSure

Nowadays, a women’s menstruation cycle is still seen as taboo. Despite the fact
that it is not a subject spoken about very loud and maybe therefore not many peo-
ple are aware of, approximately 30% of women are affected in their daily life by
heavy menstrual bleeding (HMB) or abnormal uterine bleeding (AUB) (Fraser et al.,
2015). HMB is defined either as losing at least 80 millilitres of blood per cycle (Hall-
berg et al., 1966), or as “excessive menstrual blood loss leading to interference with
the physical, emotional, social, and material quality of life of a woman”1. In other
terms, women are affected in their energy level, mood, work productivity, social in-
teraction, family life, and sexual functioning due to their menstruation cycle (Fraser
et al., 2015; Matteson et al., 2009; Lukes et al., 2012; Liu et al., 2007; Fraser, Langham,
and Uhl-Hochgraeber, 2009; Coulter, Peto, and Jenkinson, 1994; Warner et al., 2001).
The definition of AUB depends on the age of the woman. For women of childbearing
age, any change in menstrual period frequency or duration, or amount of flow, as
well as bleeding in between cycles is seen as AUB (Livingstone and Fraser, 2002). For
postmenopausal women, AUB is defined as vaginal bleeding 12 months or more af-
ter the cessation of menses, or when suffering from unpredictable bleeding (Lethaby
et al., 2004).

1https://www.nice.org.uk/guidance/ng88
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While hysterectomy remains the definitive surgical treatment for HMB and AUB,
the Novasure surgery can be a uterine sparing alternative. This is a minimally inva-
sive procedure that aims to destroy or remove endometrial tissue and can be used
when intracavitary abnormalities are absent (Beelen et al., 2019). Other advantages
of endometrial ablation compared to hysterectomy are that the surgery is less inva-
sive, it does not require hysteroscopic visualisation, it can be performed more often
under local rather than general anaesthesia, and it has a shorter recovery period
(Rodriguez et al., 2019). The Novasure consists of a single-use device and a radio-
frequency controller (Bongers, 2007). It includes a conformable bipolar electrode
array which is placed on an expandable frame that can create a confluent lesion on
the entire interior surface area of the uterine cavity. The device is inserted transcervi-
cally into the uterine cavity, and the sheath is retracted to allow the bipolar electrode
array to be deployed and conform to the uterine cavity. For 120 seconds at most,
an automatically calculated optimal power with a maximum of 180 W is applied
to the inside of the uterus. Tissue is vaporised and/or coagulated during this pro-
cess, hopefully resolving HMB complaints2. A thicker endometrial layer results in
increasing treatment time of up to 120 seconds at most. The treatment is finished
when all of the endometrial tissue is vaporised or when the ablation duration of 120
seconds is reached.

Multiple retrospective population-based trials and randomised control trials have
shown that success rates are not 100%. Percentages ranging from 10% to 34% were
found as the number of patients requiring further surgery after endometrial abla-
tion, due to persistent or returned complaints after the Novasure (Bongers, 2015;
Daniels, 2013; Smith, Malick, and Clark, 2014; Penninx et al., 2011). These surgeries
can include another endometrial ablation or hysterectomy.

In the medical domain, research on prognostic factors associated with the fail-
ure of the Novasure surgery has been carried out. Bongers (2015) evaluated the
factors sterilisation, age, BMI, cavity length, uterine fibroids, smoking, parity, and
preoperative dysmenorrhoea. The main conclusion was that the chance of failure
decreases as the age of the patient increases and that having dysmenorrhoea con-
tributes negatively to the Novasure surgery outcome. Beelen et al. (2019) provided
a systematic literature review on 990 studies carried out from 1998 until February
2019 and concluded is that the following factors are associated with the failure of
endometrial ablation: a younger age, prior tubal ligation, and preexisting dysmen-
orrhea. More research is needed to conclude whether obesity and the presence of
large sub-mucous uterine fibroids may be associated with failure.

1.2 Data science for patient-level decision making

Given the relatively high reintervention rate of the Novasure surgery (i.e., 10%-34%),
there is a desire to improve the expectations of patients on the effect the Novasure
surgery has on their uterus and complaint reduction. Ultimately, the gynaecologist
can provide the patient with the right expectations. By comparing the current pa-
tient to previous cases, the outcome of the surgery can be predicted. This creates
better expectations for both the patient and the gynaecologist department. There-
fore, research is done on which data science methods give the best result in predict-
ing the surgery outcome. For this prediction, prognostic factors defined by previous
literature which may contribute to the Novasure surgery succeeding or failing are

2From NovaSure® Instructions for Use and Controller Operator’s Manual:
https://www.hologic.com/hologic-products/gynecologic-health/novasure-endometrial-ablation
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used. Later in the research, appointment and care activities prior to the surgery are
included.

Data science is a broad term for methodology that utilises algorithms for predic-
tion typically with large, complex datasets involving an extensive number of vari-
ables (Suchting et al., 2018). Within data science, there are different techniques and
technologies which can be used to analyse cases based on similar previous cases.
For example, in classification a class label is predicted for the analysis object and in
clustering, analysis objects are placed in a group to which the set of objects is more
similar than to another group. Decision trees can be used to discover features and
extract patterns from data, in order of predictive modelling (Myles et al., 2004). For
many years, machine learning is used for a variety of classification tasks and ex-
tended with deep learning. By using multiple computational layers that allow an
algorithm to learn the appropriate predictive features on the basis of examples, in-
stead of engineering features by hand, predictions become more accurate (Poplin et
al., 2018). Progress in machine learning used on datasets has created opportunities
in applying patient-level prediction. This offers potential for medical practice to let
go of average treatment effects and consider personalised features and risks as part
of clinical decision making (Reps et al., 2018).

Not only predictive machine learning, but also process monitoring techniques
are interesting to use in healthcare processes. Van der Aalst (2016) defines process
mining as the missing link between data-oriented analysis and model-based pro-
cess analysis techniques. With process mining techniques, process models can be
extracted from event data. Three techniques are differentiated. The first, process
discovery, aims to automatically construct a model based on observed events. The
second is checking conformance. The modelled behaviour and the observed be-
haviour are compared to each other. Last, the discovered process model can be ex-
tended or improved using the event log, using enhancement (Van der Aalst, 2012).
Process mining has been used in healthcare before. While the healthcare domain is
known for its complexity, another characteristic is that many autonomous, indepen-
dently developed applications are found (Lenz et al., 2002), instead of an integration
between the applications. Mans et al. (2015) uses process mining in order to find out
what happens in a healthcare process for a group of patients with the same diagnosis
and paths. The focus level is on paths followed by individual patients.

In predictive process monitoring, finished cases in the process are analysed and
based on these case outcomes, predictions are made about the future state of the on-
going cases (Teinemaa et al., 2019). Verenich et al. (2019) define predictive (business)
process monitoring as "a family of online process monitoring techniques that seek to predict
the future state or properties of ongoing cases of a process based on models extracted from his-
torical (completed) cases recorded in event logs”. With the focus on predictive monitoring
of (categorical) case outcomes, in particular, it becomes outcome-oriented predictive
process modelling. The techniques usually have an offline stage which exists of four
actions: extracting prefixes, clustering or dividing the cases into buckets, encoding
features, and training classifiers. Then during the online stage, the outcome of an
ongoing case is predicted according to the developed model (Wang et al., 2019). Ac-
cording to Teinemaa et al. (2019) and Verenich et al. (2019), no unified approach is
evaluated for predictive (business) process monitoring methods.

To my knowledge, little research has been done on combining predictive ma-
chine learning techniques and process monitoring techniques to predict surgery out-
comes before, more specific, Novasure surgery. Previous work does include examin-
ing Novasure surgery outcomes utilising one machine learning algorithm for predic-
tion. This research (Stevens et al., 2021) compares one machine learning algorithm to
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logistic regression and focuses on static patient characteristics from electronic health
record (EHR) data, without taking notice of process features. Therefore, we wish
to research which features patients have influence on the outcome of the Novasure
surgery, using predictive machine learning and thereby include process features.
In this thesis, a database including 1029 patients who have undergone a Novasure
surgery at the Maxima Medisch Centrum (MMC) is analysed.

1.3 Research questions

The goal of this research is to investigate the use of historical data of Novasure pa-
tients to provide evidence-based insights into current treatments and their impacts
on the Novasure surgery outcome per patient. That results in the following main
research question:

MRQ Given patient characteristics and process features, which machine
learning algorithm(s) can predict the outcome of Novasure surgery with
highest accuracy?

In order to answer the main research question, first the accuracy of the prognos-
tic features from literature are explored. While prognostic factors include patient-
specific variables and no process-specific information, these are called patient char-
acteristics. The first sub question addresses these features.

RQ1 To what extent do patient characteristics have an influence on the
outcome of a Novasure surgery?

With this question, the goal is to find out which patient characteristics at first
seem to have the heaviest influence on the outcome of the surgery. Combined with
this knowledge, an exploration is done on whether certain process patterns con-
tribute to the surgery success outcome. Process activities are added as input vari-
ables to the earlier done machine learning algorithms.

RQ2 How are predicting results of the Novasure success outcome influ-
enced by including process features?

Then, to create the best-combined performing model, exploration is done on how
different machine learning techniques perform with respect to the other machine
learning techniques. Previous studies have shown the potential of using predictive
machine learning (Suchting et al., 2018; Stevens et al., 2021) and process monitoring
techniques to analyse healthcare processes (Mans et al., 2015; Teinemaa et al., 2019;
Verenich et al., 2019; Pijnenborg et al., 2021) on the patient-level decision making.
Based on their findings, predictive machine learning techniques are chosen to be
compared. This study aims to improve the analysis of these predictive machine
learning techniques, by including more techniques than done in previous studies.

RQ3 How do the following predictive machine learning techniques per-
form compared to each other?

• Decision trees
• Random forests
• Logistic regression
• Gradient boosting
• Neural networks
• K-nearest neighbour
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1.4 Contributions

With this research, we want to deliver an empirical and a methodological contri-
bution. While analysing a dataset in retrospect, my goal is to provide insights on
which patient characteristics influence the Novasure surgery. Also, we want to con-
tribute to the knowledge on which machine learning algorithms are suitable to use
for patient-level predicting.

1.5 Outline

The structure of the proposal is as follows. Chapter 2 provides background informa-
tion on predictive modelling techniques. Also, the use of this technique in healthcare
is presented in this chapter. Chapter 3 is on the approach of the following research.
With the help of cross industry standard process for data mining (CRISP-DM) usage
in other domains, the use of CRISP-DM in this research is formulated. The data on
which this research is applied is explained in chapter 4. An overview of the dataset
is given, the patient flow is described, the data processing is presented, as well as
the data analytic strategy. Chapter 5 presents the results from the four experiments,
with its discussion in chapter 6. This thesis is concluded in chapter 7.
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Chapter 2

Predictive Machine Learning and
Process Monitoring techniques in
Healthcare

This chapter includes the related work on predictive machine learning and process
monitoring techniques. First, general information on these subjects is provided, after
which relevant researches on applying both techniques in the medical sector and on
patient-level are described.

2.1 Predictive machine learning

Kuhn, Johnson, et al. (2013) define predictive modelling as “the process of developing
a mathematical tool or model that generates an accurate prediction”. Krause, Perer, and
Bertini (2016) then state that often, data scientists turn to machine learning. Machine
learning is used to solve “big data” problems across a wide range of phenomena. Big
data problems are able to include complex data sets involving an extensive number
of variables (Suchting et al., 2018). With machine learning, it is possible to create
predictive models based on data with ground truth, which is automatically learnt
into useful information. The machine learning tools are connected with providing
programs with the ability to learn and adopt. The field of machine learning has
been branched into several sub fields, standing for different types of learning tasks.
Shalev-Shwartz and Ben-David (2014) describe four parameters along which learn-
ing paradigms can be classified. For each of the parameters, this research is classified
under the explanation, in order to create some perspective.

• Supervised versus Unsupervised In supervised learning, the training data
contains extra information. The outcome of the the sample is known, called
the label. In unsupervised learning, both the training and the test data have no
label containing information about the outcome.

For each of the patients in the dataset, the outcome variable is known: the
patient had undergone a reintervention or not. Therefore, this dataset includes
supervised data.

• Active versus Passive Learners In active learning, the learner interacts with
the environment at learning time. During passive learning, the learner only
observes information provided by the environment.

The learning performed during this research is passive, since the data in-
cludes the environment as it was between 2008 and 2018 and no further inter-
action in the form of posing queries or performing experiments is present.
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• Helpfulness of the Teacher In science, the environment takes the form of the
teacher, which can be best thought of as passive. Passive learning scenarios are
modelled by postulating training data that is generated by random processes.

The helpfulness of the teacher is no binary variable, so this research cannot
be put in one of the two classes. The learning is more passive than active, since
no adversarial teacher is present. Like in most scientific cases, training data is
observed.

• Online versus Batch Learning Protocol With the use of the batch learning
protocol, the learner is set to respond throughout the learning process. During
batch learning protocol, the learner is set to engaging the acquired expertise
only after having a chance to process large amounts of data.

The data used in this research is gathered before the research had started.
This forms a batch of training data with which experiments can be done before
delivering conclusions as output.

Excluding decisions tree, most machine learning techniques are black boxes and
chosen for their performance metrics, such as high accuracy scores (Krause, Perer,
and Bertini, 2016). In this section seven machine learning techniques are explained
with the focus on predicting future outcomes of unfinished cases.

2.1.1 Decision tree

For a long time, decision tree (DT) was the most popular machine learning technique
(Myles et al., 2004), mainly caused by their intuitively simple classifier. A decision
tree is a recursive split of input data, based on a value belonging to a certain class
or the value being higher or lower than a certain threshold (Maxwell, Warner, and
Fang, 2018). The pattern of repeated splits is formed by branches representing a
path through splits and the leaves forming the ultimate target values. In the case
of classification, the leafs represent the classes. The method can be used for both
classification and feature selection, and feature reduction purposes (Borak, 1999; Pal
and Mather, 2003). Decision trees have several advantages. The trees are able to
work with data represented on different measurement scales and visualisation is
possible using a set of if-then rules. Also, once the total model is developed, fast
classification is possible (Gahegan and West, 2001). Decision tree is added to this
research’s method mainly to give a first exploration, in the form of visualisation,
of how the feature compare to each other. Disadvantages are that it is possible to
find a non-optimal solution and there is a chance of overfitting. Overfitting can be
prevented by pruning the tree, resulting in a decrease in classified data accuracy, and
an increase in dealing with the accuracy of the unknowns.

2.1.2 Random forest

While creating a decision tree can still be successful, an improved version has made
its entrance: random forests (RF). RF is a classifier consisting of a collection of deci-
sion trees to overcome the weaknesses of decision trees. Each tree is constructed by
applying an algorithm A on a training set S, with adding an independent and iden-
tically distributed sampled vector θ (Shalev-Shwartz and Ben-David, 2014) and each
tree is trained with a randomly generated subset of the training data. By using the
majority ‘vote’ of all trees, the final class for the unknowns is assigned. Using this
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global optimum, the non-optimality weakness of the decision tree is solved and sig-
nificant improvements in classification accuracy are created (Breiman, 2001). Each
tree individually gets less accurate due to the reduced training data and the reduced
number of variables, but the trees are also less correlated, causing the ensemble to be
more reliable (Maxwell, Warner, and Fang, 2018). No individual pruning is needed
anymore. One disadvantage is that by creating a forest, the ability to visualise the
model is lost. Random forest can take the same input as decision tree and create
higher accuracy in classification and regression. Therefore, the technique is added
to the method.

2.1.3 Support vector machines

Support vector machine (SVM) is developed for binary classification problems (Cortes
and Vapnik, 1995). Linear predictions are learnt in high dimensional feature spaces,
resulting in high sample complexity. To overcome this high sample complexity, op-
timal boundaries with the support vectors being maximally separate are searched
(Myles et al., 2004; Maxwell, Warner, and Fang, 2018). This causes the data points
to be separated far from the hyperplane, leading the sample complexity to decrease.
The SVM classifier is a binary classifier that can only identify a single boundary be-
tween two classes. To overcome this constraint, the classifier is repeatedly applied to
multiple combinations of classes, leading to an exponentially increased processing
time, but also creating the possibility to find more boundaries. As already men-
tioned, SVM are originally designed for linear class boundaries. Using the kernel
trick, this restriction is bypassed. Under the assumption that linear boundaries do
exist in higher-dimension feature spaces, the projection of feature space is set to a
higher dimension. There is a difference between hard-SVM and soft-SVM. When it
is not possible to completely separate the classes with the largest possible margin,
like in a hard-SVM, the decision boundary becomes a soft margin. Parts of the train-
ing classes are allowed to be on the wrong side of the decision boundary and are
supplied with a cost C, creating a soft-SVM. The higher the cost gets, the more com-
plex the decision boundary gets and the lower the ability to generalise becomes. Due
to poor performance in earlier research on patient outcome prediction (Teinemaa et
al., 2019) and the main focus on image classification and image retrieval (Chapelle,
Haffner, and Vapnik, 1999; Mercier and Lennon, 2003; Hong, Tian, and Huang, 2000;
Foody and Mathur, 2004), SVM are not included in the method of this research.

2.1.4 Logistic regression

Logistic regression is a technique used for classification tasks, partly due to its fol-
lowing characteristics. In logistic regression, a family of functions is learnt on the
interval [0, 1], with the goal to predict the probability that the label of a case is 0 or 1
(Shalev-Shwartz and Ben-David, 2014). In the field of gynaecology, many prediction
models are developed utilising logistic regression (Stevens et al., 2021). One advan-
tage is that logistic regression can take both continuous data and discrete data as in-
put. For this specific research it means that, for example, age and BMI as continuous
data can be taken into account, as well as discrete data like whether the patient has
had a cesarean section or suffers from endometriosis. Also, logistic regression brings
the possibility to identify whether a variable is useful for predicting the outcome by
testing whether the variable’s effect on predicting the outcome is significantly dif-
ferent from 0. This contributes to finding which features are important to take into
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account and which features are less important. However, the method cannot auto-
matically estimate the interconnection between these features, which can result in
overestimating the influence of an individual feature. Still, it is useful to include lo-
gistic regression in this research, since it has been used many times in gynaecology
and therefore can function as an anchor to compare to other methods with.

2.1.5 Gradient boosting

The main idea of gradient boosting is that by adding new models, to the ensem-
ble sequentially, the trained model gets more accurate. With each iteration, a weak,
base learner (function) is added to the main gradient boosting model (GBM), and the
model gets trained with respect to the error of the whole ensemble so far (Natekin
and Knoll, 2013). Most of the time, these base learners are tree models, which means
that their input data can be both categorical and continuous and GBMs are suit-
able for classification. The main goal is to provide a more accurate estimate of the
response variable. It rests on the principle that the algorithm constructs new base
learners which are maximally correlated with the negative gradient of the loss func-
tion associated with the whole ensemble. This loss function can be arbitrary, but it
can also be a classic square loss, for example. This would give a better intuition. The
researcher has great freedom in choosing the loss function, which brings high flexi-
bility, and thereby makes the technique a highly customisable to fit any data-driven
task. Successes are considerably high in not only practical applications but also in
machine learning and data mining challenges. Gradient boosting came out as the
best technique in sort-like researches (Teinemaa et al., 2019; Pijnenborg et al., 2021)
and is therefore added.

2.1.6 Neural networks

Inspired by the most complex organ in the body, neural networks are designed to
carry out high complex computations. In simplified models, the human brain is pre-
sented as a large number of computing devices, called neurons, forming a complex
communication network. Here, a neural network is conceptualised as a mathemat-
ical analogue of animal brain axons and interactions through synapses (Maxwell,
Warner, and Fang, 2018). Simply said, a directed graph is presented, where nodes
represent the neurons, and edges form the links between the neurons. Each neuron
processes a weighted sum of outputs from the neuron directing to it. The network
is organised into layers. A set of nodes can be decomposed into a union of disjoint
subsets so that every edge connects one node to another node forming layers. The
neural network is trained by randomly guessing values for the weights in the input
of the neurons in the different layers iteratively while observing the effect of the out-
comes. Each adjustment that improves the classification is kept and reinforced. Each
adjustment that worsens the classification is discarded. The technique is improved
by increasing the number of neurons in the hidden layer and adding more hidden
layers, which together cause an increase in the potential for describing complex de-
cision boundaries. Although, it did not perform the best compared to other methods
(Suchting et al., 2018), neural networks are included in this research’s method for its
potential and ability to apply one or more non-linear layers.
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2.1.7 K-Nearest Neighbour

The k-nearest neighbour (k-nn) classifier is different than the previously mentioned
machine learning techniques. The technique is a local version of a univariate location
estimator (Altman, 1992), based on the assumption that features are used to describe
the domain points relevant to their label, in such a way that close-by points are
alike (Shalev-Shwartz and Ben-David, 2014). Instead of producing a trained model,
the training set is memorised and the label of each sample is predicted based on
its direct neighbours from the original training data. The direct neighbours form the
most common class of k training samples in the near feature space, all equally spread
on either side of the point of estimation. The lower k is chosen, the more complex
the decision boundary gets. Using a class with a high number of k training samples
improves generalisation. Due to the fact that there is no model, the resources require
to become greater when the amount of training samples increases (Maxwell, Warner,
and Fang, 2018). K-nn is added to the method for its simplicity in finding a suitable
class for each data point.

2.1.8 Inclusion of algorithms

For each of the machine learning techniques has been considered whether or not
to include them in the research. Decision trees are added to this research’s method
mainly to give a first exploration, in the form of visualisation, of how the features
compare to each other. Random forest can take the same input as decision tree and
create higher accuracy in classification and regression. Support vector machines de-
livered poor performance in earlier research on patient prediction outcome (Teine-
maa et al., 2019) and their main focus is on image classification and image retrieval
(Chapelle, Haffner, and Vapnik, 1999). Due to its extensive use in the field of ge-
nealogy in developing prediction models (Stevens et al., 2021), logistic regression
is added to the research method as baseline. In researches comparable to this one,
gradient boosting came out as the best technique(Teinemaa et al., 2019; Pijnenborg
et al., 2021), which is why the technique is added. Neural network is included for its
potential and ability to apply one or more non-linear layers and k-nearest neighbour
is added for its simplicity in finding a suitable class for each data point.

Table 2.1 compares the techniques on several points to each other. The table is
based on the characteristics of different models discussed and found in the individ-
ual model sections. All techniques are suitable for classification, which was a crite-
rion for finding techniques in the first place. Class prediction is the desired outcome
of this research. Second, due to the variety in scales of the features, the technique
should be able to handle both discrete and continuous input data at the same time.
For the techniques not being able to handle both at the same time, categorical data
had to be made binary or numerical. Finding the contribution which each feature
delivers to the predicted outcome is wishful, but not obligated. The last characteris-
tic treats the speed, performance, memory usage, and overall time taken for model
training, based on Tatsat, Puri, and Lookabaugh (2020).

2.2 Use of predictive modelling techniques and process min-
ing in healthcare

Concerning predictive machine learning on patient-level and outcome-oriented pro-
cess monitoring, the researches worth mentioning are described in this section. The
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TABLE 2.1: Comparison of machine learning techniques

Machine learn-
ing technique

Classification Discrete and
continuous
input data

Training
time

Used in
method

Decision tree
Random forest
Support vector
machine
Logistic regres-
sion
Gradient boost-
ing
Neural network
K-nearest neigh-
bour

researches are divided based on their main method. First, researches with the fo-
cus on machine learning related outcome prediction are discussed, and then process
mining related outcome prediction. This section ends with a discussion on how the
papers differ from this research and what makes the researches worth mentioning.

2.2.1 Machine learning related outcome prediction on patient-level

Suchting et al. (2018) used four different machine learning techniques to predict
whether or not patients would perform aggressive event against staff or other pa-
tients. To their knowledge, there is limited previous work examining patient aggres-
sion in mental health facilities utilising machine learning algorithms for prediction
based on available EHR data. They provide a retrospective study utilising 29, 841
EHRs from a psychiatric centre. Based on 328 predictors, including patient’s full
demographic profiles, vitals and comprehensive psycho social assessments, a pre-
diction model was made to predict the one outcome measure: an aggressive event
or not. They split the data in 80% training set and 20% test set and applied GLM, RF,
GBM and Deep Neural Networks (DNN). Validation was done using 5-cross fold
validation and the model performance is measured by the highest area under the
receiver operating characteristic curve (AUC). GLM was the best performing tech-
nique with an AUC of 0.7794 on training data and an AUC of 0.7801 on the test
data. These results surpass three previous machine learning efforts (Wu, Roy, and
Stewart, 2010; Gowin et al., 2015; Passos et al., 2016) in behavioural sciences.

Currently, the study closest to this research is done by Stevens et al. (2021). Their
goal was to develop a prediction model to predict surgical reintervention within two
years after endometrial ablation. The retrospective cohort study analysed EHRs of
446 patients of the Catharina Hospital in Eindhoven and the Elkerliek Hospital in
Helmond. The authors compared their earlier developed logistic regression model
to RF, which they first trained on the patient characteristics age, duration of men-
struation, dysmenorrhea, parity and previous cesarean section. Where their final
logistic regression model achieved an AUC of 0.71 after correcting by the shrinkage
factor, their RF model first achieved an AUC of 0.63 and 0.65 after optimising. This
leads them to the conclusion that machine learning models do not perform better
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than predicting with logistic regression models, but this difference is not significant
due to overlapping confidence intervals.

2.2.2 Process mining related outcome prediction

Koorn et al. (2019) also took aggressive events under patients into account. They
used a process mining approach to analyse patterns of aggressive behaviour using
records from 1115 patients in Dutch residential care facilities over three years. They
created an event log in which each case had a unique case identifier, an activity de-
scription and a timestamp and applied process mining using Disco. They found a
clear distinction in cases using exclusively a certain type of aggression and cases con-
taining a mix of aggressive behaviour types. Later, Koorn et al. (2020) continued this
research in proposing and formalising a technique to discover action-response-effect
patterns. They tried to provide processes to organisations that are appropriately rep-
resented and effectively filtered to show meaningful relations. In this paper a causal
mining algorithm is presented which can be used as a discovery technique. It in-
cludes statistical tests to uncover potential dependency relations between responses
and their effects on the cases. The technique can be used to support decision making
process. Defining this in the medical domain, it can help with decisions consider-
ing multiple treatment options. After that, Koorn et al. (2022) proposed a novel and
generic process mining approach with the goal of producing insights into statisti-
cal relations in patient pathways. From an event log, they created a state action log
on which statistical tests were used to discover significant relations. After that, a
graph was created with the help of a heuristic selection miner in order to visualise
uncovered statistical relations from the analysis step. While validating their novel
approach, they came to the conclusions that domain knowledge is required to define
actions and states and that their approach cannot confirm that relations are causal
relations.

Teinemaa et al. (2019) had as goal to train a model which could accurately and
efficiently predict outcomes given a prefix only. They did that by comparing the per-
formance of different outcome-oriented monitoring methods for business processes.
The models were trained on a given event log of completed business process execu-
tion cases with a final outcome class. Then, the prefix traces in the historical log were
divided into several buckets and different classifiers were trained for each bucket.
These classifiers were single bucketing, k-nearest neighbour, state, clustering, prefix
length and domain knowledge. At run-time, the most suitable bucket for the ongo-
ing case was determined. Depending on the bucket, decision tree, random forest,
gradient boosting model and support vector machine were utilised, after which the
sequence of classifiers was encoded. Mentionable results are that XGBoosting per-
formed best wist the highest AUC in 15 of the 24 cases and the highest f1 score in 11
cases. Support vector machine did in general not meet the same level of accuracy as
the other used methods.

Also in the medical field, Pijnenborg et al. (2021) investigated the application of
process mining techniques on palliative care pathways to obtain an evidence-based
understanding of which palliative treatments are commonly carried out and how
they are associated with the patients’ survival time. Using an event log of completed
treatments and the patients’ survival time, they trained a model that can predict the
life expectancy of patients currently under treatment. In the offline phase they ex-
tracted prefixes and created buckets, after which sequence encoding techniques were
applied, like in Teinemaa et al. (2019). The prediction models used were random
forest, gradient boosting model and decision tree. Then, they used a local process
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model (LPM) miner (ProM 6.9 framework)1 to extract common practices of the pal-
liative process and used the earlier found metrics to rank the obtained models. In 14
of the 23 cases, extreme gradient boosting performed best, with once reaching a f1
score of 0.87 and an accuracy of 0.8.

2.2.3 Medical specific domain

One main difference between the in this section described researches and the re-
search which is going to be carried out, is how data science techniques are used.
For example Suchting et al. (2018), who predicted whether or not patients would
undergo an aggressive event based on the patients’ available EHR data including
predictors like their demographic profile, vitals and comprehensive psycho social
assessments. The results included outcome events. In contrast to this research, they
do not use event data which could have revealed triggers or patterns through time.

The main focus of Koorn et al. (2019), Koorn et al. (2020), and Koorn et al. (2022)
and Pijnenborg et al. (2021) analysed and found patterns, based on event data. One
factor left unpractised is the use of personal patient features. The influence of these
features is not researched in finding patterns. Where Suchting et al. (2018) purely
focused on patient features, and where Koorn et al. (2019), Koorn et al. (2020), and
Koorn et al. (2022) and Pijnenborg et al. (2021) only used process features, we are
combining these two to create more comprehensive models.

When it comes to comparing machine learning techniques on patient-level out-
come prediction, only four machine learning techniques are compared at most in
earlier research (Suchting et al., 2018; Teinemaa et al., 2019; Pijnenborg et al., 2021).

The research done by Stevens et al. (2021), the one most alike to this research, dif-
fers on multiple characteristics. The differences which are likely to lead to a different
conclusion are:

• The follow-up period of Stevens et al. (2021) is ended on the day of hysterec-
tomy, in case of death or on April 15, 2015, whereas we keep the follow-up
period on three years after the Novasure surgery.

• Stevens et al. (2021) compare one machine learning technique, RF, to their lo-
gistic regression model. In this research multiple machine learning techniques
are compared to each other, and combined with process mining.

• The amount of patients (446 vs. 1029) and the amount of variables (5 vs. 18)
differ significantly. Machine learning is known to work better with more data
and variables (Myles et al., 2004; Suchting et al., 2018; Maxwell, Warner, and
Fang, 2018).

• While Stevens et al. (2021) only look at patient characteristics, this research
also included appointments and care activities in the two years prior to the
Novasure surgery. The total amount of features taken into account increases to
276 features with these appointments and care activities.

Also, they concluded that their results were not significant due to overlapping
confidence intervals. By comparing six, instead of two or four, data science tech-
niques, including process features and by using a relatively wide dataset, the expec-
tation is to create better performing prediction models with, for example, a higher
AUC.

1https://www.promtools.org/doku.php
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Research method

The methodology used in this study is based on CRISP-DM. CRISP-DM is originally
developed to help translate business problems into data mining tasks, with the aim
of making these large data mining projects less costly, more reliable, more repeatable,
more manageable and faster (Wirth and Hipp, 2000). This research is not a data
science project with the focus on making the business more efficient in terms of time
and money. Therefore, two adjustments on the CRISP-DM lifecycle are adopted.
In this chapter, first, a look is taken at how CRISP-DM is used in other domains.
Then, the adjustments done to create a fitting CRISP-DM lifecycle for this research
are discussed in section 3.2. This chapter concludes with the CRISP-DM lifecycle as
it is used in this research.

3.1 CRISP-DM in other domains

In this section, we briefly discuss the CRISP-DM methodology and its application
in other domains, to justify the use of CRISP-DM for this research project. CRISP-
DM can be used to extract useful knowledge from data by systematically following
a process with reasonably well-defined stages (Provost and Fawcett, 2013). The six
stages of the life cycle include business understanding, data understanding, data
preparation, modelling, evaluation and deployment. Although CRISP-DM is pre-
sented as a life cycle, the sequence of the stages is not rigid and moving back and
forth between the phases is always required (Chapman et al., 2000). CRISP-DM is
originally designed to address business problems, but other fields have adopted the
method and applied extensions and adjustments make the method fit their specific
field of research:

• Venter, de Waal, and Willers (2007) argue that forensic analysis can benefit
from research knowledge in discovery that data mining and adjusted the life
cycle so that crimes can be “re-enacted” by analysing electronic evidence left
behind by subject’s actions.

• Niaksu (2015) created the CRISP-MED-DM, which addresses specific challenges
of data mining in the medical domain, by introducing generic and specialised
tasks to the original CRISP-DM cycle to resolve five well-known challenges in
medical data mining.

• Huber et al. (2019) extended CRISP-DM with Data Mining Methodology for
Engineering applications (DMME) to provide communication and planning
foundation for data production within the production domain.

• Cazacu and Titan (2021) used CRISP-DM as a method to standardise analysing
large volumes of unstructured data and thereby generate analytical insights for
well-being and social science topics.
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These examples show that a method which is originally created with the aim
of making large data mining projects less costly, more reliable and more efficient
by helping translate business problems into data mining task can be used in other
fields. Again, this research has the aim of improving a medical problem using data
mining tasks, and not making a process more efficient and less costly. Some changes
need to be adjusted to the cycle to make it fit this master thesis project.

3.2 CRISP-DM for data science research

This research has the aim of improving a medical problem using data mining tasks,
so that efficiency increases through correcter predictions, which slightly differs from
the main goal of the original CRISP-DM. Therefore, the cycle should be slightly ad-
justed. Two main changes, which include the business understanding and evalua-
tion phases, are discussed.

3.2.1 Domain Understanding

According to Martínez-Plumed et al. (2019), data science spans both the industry
and academia, because in both domains value is extracted from data using scien-
tific methods like machine learning. The emphasis is on solving the domain-specific
problem in a data-driven way. In this case, the medical related problem is addressed
using data science techniques, like machine learning and process mining. They also
mention academic discovery being usually question-driven, rather than data-driven
or goal-driven as a difference between the industry and academia. In this research,
to get to the answer of the research questions, the focus is on a provided database.
Still, one adjustment is done to make the CRISP-DM applicable to this scientific re-
search includes the first phase of the life cycle. The adjustment addresses the aim of
understanding of the process of carrying out a research, instead of business under-
standing. The first phase is transferred into a more fitting understanding: Domain
understanding. Venter, de Waal, and Willers (2007) use the word case, because each
evidence mining project is associated with a specific case. In this research project it
is important to understand the specific domain, the gynaecology domain in which
Novasure surgeries are carried out. Medically, the Novasure surgery and the process
around it need to be well-understood.

3.2.2 Evaluation

Within process mining methodologies, there are several points where the data an-
alyst, who is carrying out the project, and the domain specialist, who is in need of
insights, have a moment of contact. First, at the start of the project. The domain
specialist and the data analyst discuss the problem, the goals and the desired out-
come. Then, during the data extraction and pre-processing phase, the data analyst
might have questions about the data. At the end of the project, the data analyst and
the domain specialist evaluate the project and its results, in order to make findings
valid. It is important to create results with actual organisational value.

According to Koorn et al. (2021), current process mining methodologies fall short
in providing evaluation on the findings of a research and this shortage is also present
in data science (Martinez, Viles, and Olaizola, 2021). Untill now, qualitative evalua-
tion methods used are case studies (Thomas, 2006; Kaufmann et al., 2017), interviews
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with experts (Baijens, Helms, and Iren, 2020), focus groups and undefined discus-
sions (Koorn et al., 2021), but this concludes to no structured evaluation method
which can be turned into actionable insights and recommendations is provided.

In quantitative research, the focus is on verifying the effectiveness of the pro-
posed techniques, using established metrics. Koorn et al. (2021) observed 80 papers
about projects with organisational partners being included in the evaluation at the
end of the projects in-depth. Based on these observations, six validation strategies
are proposed from the qualitative research perspective. Lewis (2015) recommends
that one should always follow two validation strategies at the minimum to reach
a sufficient accepting level of validation. To bridge the gap between the industry-
focused CRISP-DM and academic research requirements, four of these evaluation
strategies proposed by Koorn et al. (2021) are present in the additional evaluation
phase of this research project and are carried as follows:

• Engagement and understanding of the field Engagement and understand-
ing are achieved by visiting the hospital and observing different gynaecology
surgeries. Also, meetings with domain experts are held regularly to see if no
misinformation slips in the data and to align the interpretation of results.

• Triangulation Adequate triangulation results in completeness and consistency
of results. There are two ways to achieve this: using multiple data sources and
applying a mixed method approach to the data. In this research multiple meth-
ods are applied to the data, see section 2.1. Valuable information is retrieved
by the results provided and then cross-validate that the outcomes provided are
adequate.

• Peer review and external audit During the research presentations are given
to domain experts from both the gynaecology field and the machine learning
field. Machine learning expert peer review the methods which are used in this
research and give feedback on the whether the data is handled in a compliant
manner. Experts from the medical domain can reflect on the credibility of the
results obtained and on whether they are likely to be true. Afterwards, medical
experts are also asked to predict whether a patient is likely to need a reinter-
vention, based on patient features, process features and human knowledge, to
validate whether machine predicting is more accurate than human predicting.

• Clarify biases Biases slip in each research, especially when process mining is
combined with another domain and influences the quality of the outcomes.
Where the process analyst has no expert knowledge on the domain, which can
result in difficulties when in determining the causes of unexpected analysis re-
sults (Van Eck et al., 2015), the domain experts miss expertise in interpreting
process mining results. A researcher should always be transparent about the
results towards the expert and discuss the reliability with the expert. There-
fore, the possible biases from a qualitative perspective are reflected and de-
scribed at the end of the research project.

3.3 Research lifecycle

With the previously described adjustments, the lifecycle results in the following. The
visualisation can be found in figure 3.1. For each of the six stages, a brief description
is given and the implementation of that stage in this research is explained.
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FIGURE 3.1: CRISP-DM with adjusted stages

3.3.1 Domain understanding

In order to gain more domain knowledge on the field of HMB and the medical in-
terventions applied, several steps are taken. I was present at different gynaecology
surgeries being carried out, including the Novasure surgery, and I attended infor-
mation evenings of the gynaecology department. Then, together with the hospital
and with the use of provided background literature, the research problem is defined.
Literature research is carried out to obtain knowledge on the research gap.

3.3.2 Data understanding

Understanding the data includes studying the dataset provided. To gain full under-
standing, unclarities are discussed with a professional. While going back and forth
between the data understanding and the data preparation phases, a table describ-
ing the data and its values (table 4.1) is created, with the main goal of summarising
the dataset. Here, a clear distinction between predictive features and process-aware
features is discovered.
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3.3.3 Data preparation

During the data preparation phase, the initial raw data is transformed into a dataset
that can be used for modelling. The dataset, which is provided by the hospital, un-
dergoes multiple iterations in which the data is cleaned, missing values are extracted
from the rest of the dataset, and outliers are removed. Then, from the most impor-
tant columns a new, smaller dataset is created to work with more easily. A detailed
explanation of this can be found in section 4.4.1 and section 4.4.2.

3.3.4 Modelling

In this phase, six modelling techniques are selected and applied, and their parame-
ters are calibrated to optimal values. This is done in two sub phases, since there are
two different processes to focus on. During the first sub phase, the focus is on patient
characteristics. During the second sub phase, also appointments and care activities
per patients are involved. For both phases, the following data science algorithms
are used; decision trees, random forests, logistic regression, gradient boosting, neu-
ral networks and k-nn. A more detailed description is provided in sub section 4.6.
During the second sub phase the activity features are also taken into account and
the modelling focus is shifted to process mining. The modelling phase is going to be
carried out in three different, time-dependent iterations.

3.3.5 Evaluation

The evaluation objective is to validate and compare the applied machine learning
techniques used in the modelling phase. Like described in 3.2.2, this is achieved by
visiting the hospital to have meetings with experts, cross validation, peer review,
and with a description of all possible biases. Also, validation is done by experts in
the form of a look-over to see whether no remarkable results have occurred.

3.3.6 Deployment

Deployment is out of the scope of this project, mainly due to time constraints. In
the original CRISP-DM, the last phase is deployment, meaning that the knowledge
gained is organised and presented so that the customer can use it. Often, this in-
cludes applying “live" models within the organisation’s decision-making process.
The focus of this research is on answering the research questions. Building a live
model or dashboard which experts could use to make patient-level decisions, would
take too much time and is beyond my abilities.
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Chapter 4

Data description

This chapter describes the data which is used in this case to find out whether the
combination of predictive modelling and process mining provides more valuable
results. First, a brief description of the data and its origin is given, after which the
flow the patients can undergo is described. Then, extra information on the groups
of variables is provided. The chapter finishes with a description of how the data is
processed, the analytic strategy applied, and concludes with a presentation of the
features used.

4.1 Data overview

For this retrospective research, a dataset provided by the gynaecology and obstetrics
department of the MMC is provided. It covers information about all patients who
have undergone a Novasure surgery between January 1st, 2008 and December 31st,
2018 at the MMC in Eindhoven and Veldhoven, except for when they had under-
gone a previous Novasure surgery before this period. This data is extended with all
care activities belonging to the patient from two years before the Novasure surgery,
stored in different tabs. The total number of patients in the data set is 1039 patients,
of which 10 are outliers, resulting in 1029 useful patients. At the moment of writ-
ing, the MMC is one of the 94 healthcare institutions providing a Novasure in the
Netherlands1. The patients received usual care and did not have to follow any addi-
tional procedures. No additional permission is requested for the use of this medical
data because this research is part of a retrospective nWMO research with a general
purpose in which:

• the effort required to request consent is disproportionate to the purpose it
serves (>1000 women);

• at the moment the pressure on healthcare is so great that asking for permission
is considered disproportionate (Ministry of Health, Welfare and Sport);

• patients have been informed that data can be used for research (via the patient
folder and website)

• there was the possibility to lodge an objection if the patient did not want to
share its data (objection procedure or opt-out procedure); and

• we the preconditions are met: purpose limitation, data minimisation (no more
than necessary for the question) and careful handling of the datasets (coded
and within the MMC and UU environment).

1https://www.hevigbloedverlies.nl/zoek-een-ziekenhuis
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4.2 Flow description

To get a clearer view of the process, figure 4.1 is created. It describes the path that pa-
tients can undergo. Patients with different complaints (cycle disorder, benign adnexal
abnormality, or uterine fibroids) are referred to the gynaecologist. Since the inclusion
criterion of the dataset is that the patient has undergone a Novasure surgery’s, all
1029 patients visit the next phase, the Novasure surgery. After the Novasure surgery
has taken place, there are two possibilities; (1) the patient is satisfied during the three
up-following years and no reintervention takes place, or (2) the patient still has com-
plaints and undergoes a reintervention of some sort in the three up-following years.
Section 4.3 goes deeper into the patient’s preoperative and perioperative features
and explains the different categories of reintervention.

FIGURE 4.1: Graphical representation of patient flow

4.3 Variables

The dataset is divided into different variables; predictor variables and outcome vari-
able, where the predictor variables are further categorised. Predictor variables exist
of pre-existent patient characteristics, activities in the process towards the Novasure
surgery, and occurrences during the surgery. The outcome variable includes whether
a patient has undergone a reintervention or not.

4.3.1 Predictor variables

Predictor variables are the features occurring before and during the Novasure surgery,
which are highly associated with having an influence on the outcome of the surgery
(Beelen et al., 2019). They are divided into three categories:

• Patient features: include the features which apply solely to the patient. They
are asked and researched prior to the surgery, with the aim of finding out
whether the patient meets all requirements to undergo the Novasure surgery
and apply all to the patient’s body.

• Process features: include the care activities and surgeries at the same hos-
pital which took place between two years before the Novasure surgery, and
the waiting time between the surgery request and Novasure surgery in case it
takes place in the operation theatre.
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• Perioperative features: include the variables which occur during the Nova-
sure surgery. They include the form of anaesthesia applied to the patient and
the power and endurance the Novasure machine delivers during the surgery.

4.3.2 Outcome variable

The outcome variable is whether the patient undergoes a reintervention within three
years after the Novasure surgery. When the patient is satisfied, no reintervention
takes place. If the patient keeps suffering from HMB or complaints start reappearing,
different interventions belong to the solution options. An overview of the data be-
fore specifying certain categories and all possible reintervention types can be found
in Appendix A. Table 4.1 presents a summary of both the predictor variables and
outcome variables, including the values that the variables can take and the amount
of missing values in case there were.

4.4 Data processing

The dataset provided by the gynaecology department is not ready to put in a model.
According to Bose, Mans, and Van der Aalst (2013), there are four categories of prob-
lems that contribute to data quality: missing data, incorrect data, imprecise data and
irrelevant data. We do several iterations to make an input-ready dataset and discuss
them in the following sections.

4.4.1 Patient selection

Before the dataset was provided, the domain expert had taken an extensive look at
the dataset. In her opinion, it includes ten outliers. The reasons why these patients
are outliers differ per patient and can include technical difficulties, the presence of a
septum, perforation while expanding Novasure, passing out, not passing the cavity
assessment, and a registration error. The patients seem to have undergone a rein-
tervention, based on the dataset, but in reality, their first Novasure operation was
not carried out. When retrieving their EHR another time, the string format did not
match the original dataset anymore. These datapoints are imprecise and this makes
the patients inappropriate for this research. Therefore, the datapoints are removed
from the dataset which includes 1029 patients to analyse.

4.4.2 Feature selection and subtraction

The database started with 356 different features, one being more important than the
other. Based on literature study (Bongers, 2007; Beelen et al., 2019) and on expert
opinion, the most valuable and probable predictive features are chosen. For each
column in the excel dataset, the meaning of the variable name is validated by the
expert and the possible range of outcomes of the variable is investigated. After this
investigation, the consideration is made whether the features could have an influ-
ence on the total process, the Novasure surgery, or the outcome. This is done in
consultation with an expert and based on literature studies.

The rest of the data is seen as irrelevant data and is not taken into account while
modelling the data. Due to the set-up of EHRs, and the way information about the
patient is gathered, the following features have to be calculated or extracted from
other columns in the provided dataset:
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TABLE 4.1: Summary of dataset, including their feature, range, or
possible values and contingent notes.

Feature Range/Values Notes
Patient features - predictor variables Amount of missing values
Age [26, 60] -
Complaint Cycle disorder, be-

nign adnexal abnormal-
ity, uterine fibriods, or
unknown

18

BMI [15.57, 50.20] 442
Parity [0, 1, 2, 3 and more] or

unknown
238

Cesarean section 0 ∨ 1 -
Uterus position AVF, Nothing found,

RVF or Stretch
-

Endometrial thickness (mm) [1, 26] 571
Cavity length (mm) [22, 65] 453
Cavity width (mm) [25, 55] 315
Dysmenorrhea 0 ∨ 1 or unknown 678
Endometriosis 0 ∨ 1 -
Adenomyosis 0 ∨ 1 or unknown 863
Uterine fibroids 0 ∨ 1 -
Sterilisation 0 ∨ 1 -
Process features - predictor variables Notes
Appointments 2 years pre
Novasure

[0, 20] 77 additional appoint-
ments

Care activities 2 years pre No-
vasure

[0, 25] 181 additional care activi-
ties

Waiting time (days) [0,265] 313 missing values
Perioperative features - predictor variables Amount of missing values
Anaesthesia Local anaesthetic, Seda-

tion or General anaes-
thetic

-

Ablation duration (sec) [6,120] 580
Ablation power (watt) [1,180] 237
Reintervention information - outcome variable Amount of missing values
Reintervention 0 ∨ 1 -
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• Ablation duration: The ablation duration is extracted from the free text fields
with the help of a written function. It searches through the text fields for parts
of strings which indicate that the number around it provides information on
the ablation duration. Chances are that, due to inconsistent ways of notation,
not all noted duration values are found. This makes the value less reliable than
when it would would have been gathered in an obligated numerical field.

• Ablation power: The ablation power is extracted from the free text fields with
the help of a written function. It searches through the text fields for parts of
strings which indicate that the number around it provides information on the
ablation power. Chances are that, due to inconsistent ways of notation, not all
noted power values are found. This makes the value less reliable than when it
would would have been gathered in an obligated numerical field.

• Appointments: The appointments were listed in a separate file than the pa-
tient characteristics. First, the file is grouped by patients and then by appoint-
ments, after which the duplicates of appointments per patient are count. Each
appointment is added as a column to the main patient database, including the
amount of each appointment per patient.

• Care activities: The were listed in a separate file than the patient character-
istics. First, the file is grouped by patients and then by care activities, after
which the duplicates of care activities per patient are count. Each appointment
is added as a column to the main patient database, including the amount of
each care activity per patient.

• Cavity length: Cavity length is extracted from the free text fields with the help
of a written function. It searches through the text fields for parts of strings
which indicate that the number around it provides information on the cavity
length. Chances are that, due to inconsistent ways of notation, not all noted
values are found. This makes the value less reliable than when it would would
have been gathered in an obligated numerical field. To increase the reliability
of the extracted value, a controlling function has been added. It checks whether
the value is between the range of 22 and 65 mm (Canteiro et al., 2010)2.

• Cavity width: Cavity width is extracted from the free text fields with the help
of a written function. It searches through the text fields for parts of strings
which indicate that the number around it provides information on the cavity
width. Chances are that, due to inconsistent ways of notation, not all noted
values are found. This makes the value less reliable than when it would would
have been gathered in an obligated numerical field. To increase the reliability
of the extracted value, a controlling function has been added. It checks whether
the value is between the range of 7 and 55 mm (Goldstuck, 2018)2.

• Endometrium thickness: Endometrium thickness is extracted from the free
text fields with the help of a written function. This makes the value less reli-
able than when it would would have been gathered in an obligated numerical
field. Endometrial thickness can take any value (Smith-Bindman, Weiss, and
Feldstein, 2004)2.

• Reintervention: Whether a patient has undergone a reintervention, is deter-
mined by whether the cells containing information on the specific reinterven-
tion type included information or not. When the cell is empty, the column

2This range has also been checked by a MMC expert.
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Reintervention is given a 0, and when the cell contains information, the Rein-
tervention column is assigned a 1. Depending on the type of reintervention,
Invasive or Non-invasive, also these columns are assigned a 0 or 1.

• Waiting time: The waiting time for the operating theatre is calculated by ex-
tracting the surgery request date of the date the surgery is carried out. It is
possible to calculate the waiting times for operating theatre, where surgery
under the local anaesthesia takes place, and not for the treatment room. This is
due to the gynaecologists not being able to provide this information, because
such a free text field does not exist in the EHR.

Many feature values are missing. The exact numbers can be found in table 4.1.
Simply removing patients of whom information is missing, is no option. This causes
information loss, loss of accuracy and creates potential biases resulting in misinter-
pretation of results. Therefore, missing data is going to be handled in multiple ways:

For BMI, cavity length, cavity width, endometrial thickness, waiting time, ablation du-
ration, and ablation power the missing values are replaced by doing mean imputation.
This decision is based on the research by Sangra and Codina (2015). Mean imputa-
tion consists in replacing any missing data by the mean of non-missing data. In their
research, they propose better methods to estimate the BMI per patient, but these
methods are based on other patient features, like the sex, the overweight and obe-
sity index and total energy intake of their patients. For all of our patients, the sex
is the same and the rest of the variables are not included in the dataset, so missing
BMI’s are replaced by the mean BMI of the dataset.

The above-mentioned patient characteristics and process features are found in
the main sheet. The dataset also includes sheets for appointments and care activi-
ties. Per patient, every appointment and care activity is noted providing information
about the process. For each of the existing appointments and care activities, a new
column is added to the working data file and for each patient the frequency of at-
tending these appointments and care activities is counted. These columns are taken
into account when also addressing process features.

4.5 Feature exploration

The dataset exists of 1029 patients. All patients are biologically female, since Nova-
sure surgeries are only applied to uteri. In 129 of the 1029 cases, a reintervention of
any form was carried out after the first Novasure surgery, see figure 4.2. This is a
percentage of 12.54%.

FIGURE 4.2: Histogram of population based on reintervention
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The patients have an age between 26 and 60 years old, see figure 4.3. Pregnancy
is dangerous after a Novasure surgery. Therefore, it is obligated that a patient has
fulfilled the wish for children or the wish must be absent. A Novasure surgery is
offered only if the patient has not had her menopause. Both constraints certify the
range of age and the light negative skewness. The average age of patients is 43.83
years old. The line of patients having a reintervention based on age is quite flat,
especially compared to the distribution of all patients. One peak occurs around the
age of 44, the average age, and around 50 years two small peaks occur.

FIGURE 4.3: Histogram of population based on age

A big majority of patients undergoing a Novasure surgery started the whole pro-
cess due to a cycle disorder, see figure 4.4. The amount of patients suffering from be-
nign adnexal abnormality or uterine fibroids are close to zero. For 18 patients the main
complaint has not been registered by the gynaecologist. The patients undergoing
a reintervention also mostly suffer from cycle disorder in the first place, followed by
uterine fibroids and unknown complaints.

FIGURE 4.4: Histogram of population based on primary complaint

For 587 patients the BMI could be retrieved from the database. The BMI ranges
between 15.57 and 50.20 and the patient population has an average BMI of 27.11,
see figure 4.5a. The other 442 patients have been given this average BMI, which
results in the histogram as seen in figure 4.5b. A peak in reinterventions occurs at
the average BMI, but at first sight this seems well in relation with the amount of
patients given that BMI score.

Of the 791 patients for whom is known how many children they delivered, 59
have delivered none, see figure 4.6. For 238 patients it is not known whether and
how many children they delivered. This is presented by ‘-1’ in the figure. When
delivering a child, the cavity width is stretched due to the passing of the child. Also
this activity has an influence on how the bipolar electrode array places itself on the
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(A) BMI before filling NaN values (B) BMI after filling NaN values

FIGURE 4.5: Histograms of population based on BMI

interior surface area. The amount of reinterventions seems in line with the total
amount of patients.

FIGURE 4.6: Histogram of population based on parity

72 patients had at least one child born with the help of a cesarean section (figure
4.7). A cesarean section causes damage and scars to the uterine wall, which can have
an influence on how the bipolar electrode array places itself on the interior surface
area. Although, literature says that having a cesarean section increases the chance of
a reintervention, most patients undergoing a reintervention have not had a cesarean
section.

FIGURE 4.7: Histogram of population based on cesarean section

For all of the patients the uterus position has been researched and the results are
shown in figure 4.8. The majority of the patients has an anteverted uterus (AVF),
meaning that the uterus is turned a little forward. This group also holds the majority
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of patients having reintervention, (RVF). 171 patients have a uterus which is turned
a little backward, retroverted. For 35 patients, the uterus was found in a stretching
position. For 99 patients the uterus has not been registered.

FIGURE 4.8: Histogram of population based on uterus position

The endometrial thickness has been registered for 458 patients, see figure 4.9a. En-
dometrial tissue is at least 1 mm thick. As explained on forehand, the remaining
571 patients have been given the average endometrial thickness of 7.74 mm, see figure
4.9b. The distribution of reinterventions follows the overall distribution of endome-
trial thickness, even after assigning the average endometrial thickness to the remaining
patients.

(A) Endometrial thickness before filling NaN val-
ues

(B) Endometrial thickness after filling NaN values

FIGURE 4.9: Histograms of population based on endometrial thick-
ness

Cavity length can range between 2.2 and 6.5 cm. The cavity length has been reg-
istered and retrieved for 576 patients and results in the distribution presented in
figure 4.10a. Like the other float variables, the remaining patients have been given
the average, which for cavity length is 4.34 mm, see figure 4.10b. The distribution of
interventions follows the trend.
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(A) Cavity length before filling NaN values (B) Cavity length after filling NaN values

FIGURE 4.10: Histograms of population based on cavity length

The cavity width has been found for 714 patients, see figure 4.11a. It ranges be-
tween 2.5 and 5.5 mm with an average of 4.12 mm. This average has been assigned
to the rest of the patients resulting in the distribution shown in figure 4.11b and the
distribution of reinterventions seems to form a flatter, but sort-like curve.

(A) Cavity width before filling NaN values (B) Cavity width after filling NaN values

FIGURE 4.11: Histograms of population based on cavity width

The presence of dysmenorrhea has been checked for 351 patients, of which in 258
cases the presence of dysmenorrhea has been found. For all the unknown case, a
dummy value of -1 is created (figure 4.12). The trend of reinterventions follows the
main distribution of dysmenorrhea.

FIGURE 4.12: Histograms of population based on dysmenorrhea

For all of the patients, the presence of endometriosis has been notated. In total
55 patients suffer from endometriosis, of which 12 have undergone a reintervention.
Of the 857 patients not suffering from endometriosis, 117 patients have undergone
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a reintervention. The percentage of patients suffering from endometriosis is slightly
higher (21,8%) than the average (12,5%).

FIGURE 4.13: Histogram of population based on endometriosis

Adenomyosis is a condition which is hard to check, since it exists of tissue within
the uterus wall. This dataset includes 156 patients of whom is assumed based on
indications that they suffer from adenomyosis, 18 patients of whom adenomyosis is
excluded, and 855 patients for whom no indications have been found or searched
(figure 4.14). To this last group of patients the -1 dummy variable is assigned. Re-
markable is the fact that the group of patients knowing they suffer from adenomyosis
and undergoing a reintervention is approximately of the same size as the group of
patients patients not knowing whether they suffer from adenomyosis and undergo-
ing a reintervention, even though the amount of patients not knowing whether they
have adenomyosis is four times the amount of patients knowing they have adeno-
myosis.

FIGURE 4.14: Histogram of population based on adenomyosis

In this dataset, 309 patients suffer from uterine fibroids and 722 do not, see figure
4.15. The amount of patients undergoing a reintervention lay relatively close to each
other, even with the amount of patients not suffering form uterine fibroids being at
least twice as much as patients suffering from uterine fibroids.
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FIGURE 4.15: Histogram of population based on uterine fibroids

As seen in figure 4.16, 900 patients are not sterilised versus 129 patients being
sterilised, with the amount of reinterventions relatively following this distribution.

FIGURE 4.16: Histogram of population based on sterilisation

When patients undergo a general anaesthetic or sedation, the time between the re-
quest for the operation room and the Novasure surgery is tracked (figure 4.17a).
Keeping track of the waiting time to perform a local anaesthetic is not possible. All
313 patients who received this kind of anaesthesia have been assigned the average
waiting time (figure 4.17b). Most of the patients have their Novasure planned within
10 weeks after the request and most reinterventions occur when the Novasure was
within 50 days after the request.

(A) Waiting time before filling NaN values (B) Waiting time after filling NaN values

FIGURE 4.17: Histograms of population based on waiting time

While most patients choose for a general anaesthetic, others choose for a local anaes-
thetic or sedation with their own reasons. The amount of reinterventions is also the
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highest for the general anaesthetic (figure 4.18). The number of reinterventions after
a sedation, is remarkably close to the number of reinterventions after local anaesthetic,
despite their difference in amount of patients undergoing both the anaesthetics.

FIGURE 4.18: Histogram of population based on anaesthesia

The ablation duration seems like a slightly growing curve, until it reaches the
amount of 120 seconds (figure 4.20a). For approximately 160 patients the maximum
amount of time is needed by the Novasure device. Remarkable is that before the
nan-values have been filled in, no patients with an average duration of 100 seconds
undergo a reintervention, but the part of patients of whom the power duration is
unclear, deliver a great share in reinterventions (figure 4.20b).

(A) Ablation duration before filling NaN values (B) Ablation duration after filling NaN values

FIGURE 4.19: Histograms of population based on ablation duration

The ablation power is automatically determined by the Novasure device based
on the endometrial thickness it finds. A slight likeliness can be found in the form
of both distributions. The amount of reinterventions follow the same curve as the
distribution on no reintervention (figure 4.20a), and again, the missing values have
been replaced by the average (figure 4.20b). Like with the ablation duration, the share
of reinterventions is large in the group of patients of whom the power duration is
not clear.
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(A) Power duration before filling NaN values (B) Power duration after filling NaN values

FIGURE 4.20: Histograms of population based on ablation duration

4.6 Data analytic strategy

After the data is preprocessed, it is used to train different models and transform it
into valuable information. As one can see in figure 4.2, the data is imbalanced. There
are 900 samples in the class of no reintervention and 129 in the class of reinterven-
tion. This can cause bias towards the more popular class, patients not undergoing
a reintervention. To prevent this, the minority is upsampled. Using Synthetic Mi-
nority Oversampling Technique (SMOTE) (Chawla et al., 2002), a technique which
acts like a data transform object, new samples are synthesised from existing sam-
ples. The minority class reintervention is oversampled to 900 samples, equalling
the no reintervention class. To find out whether upsampling has impact on the out-
come and taking the influence on of process features into account, this results in four
experiments with different input data:

• The original set of patients with only patient characteristics

• The original set of patients with patient characteristics, appointments and care
activities

• A sampled set of patients with only patient characteristics

• A sampled set of patients with patient characteristics, appointments and care
activities

The dataflow of the four experiments is presented in figure 4.21. At first, the
data is split into a training set of 80% and a test set of 20%. Then, the training set is
sampled, after which all experiments follow equal paths. The first two experiments
use the original training set. For each algorithms used, the algorithms are tuned
and cross-validated using sklearn’s model_selection technique GridSearchCV. In the
training set, further partitions are done, to tune model parameters. Tuning these pa-
rameters is done utilising 5-fold cross-validation. The training set is used to tune
algorithms, after which the test set is used to evaluate the algorithms. The lower
part of the figure represents this path. For the second two experiments the training
data is sampled so that both classes hold an even amount of patients. In this case
there are 720 patients for each class. Then, like the other two experiments, the al-
gorithms are tuned and cross-validated using sklearn’s model_selection technique
GridSearchCV. The following machine learning algorithms are included; decision
trees, random forests, logistic regression, gradient boosting, neural networks, and
k-nearest neighbour. Information on what these techniques include and why they
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are chosen can be found in section 2.1. Model performance is determined by AUC
and accuracy. The conclusion focuses on a comparison of the performance of the
algorithms.

FIGURE 4.21: Tuning algorithms done for dataset including patient
features and for dataset including patient features and process fea-

tures - based on Suchting et al. (2018)

For each of the algorithms, we tried to find a best-fitting range. This was done
during earlier experiments using trial and error. The resulting ranges are presented
in table 5.1. For decision tree, all possible options for the maximum number of fea-
tures are taken into account. The range of maximal tree depth is set wider to 25,
when a depth of 10 did frequently not seem enough during trial and error exper-
iments. Also the minimum number of samples required to split an internal node
and the minimal samples required to be at a leaf node are found while doing trial
and error experiments by broadening the range. For random forests, the number of
estimators is set quite broad from 10 to 500. The maximal depth of a tree is a bit less
than with decision tree. A depth of 19 seems good enough. Logistic regression is
tuned taking in to account all possibilities of norm of penalty and on the maximal
number of iterations. While running the algorithm with default options, the maxi-
mal number of iterations was reached before the optimisation had converged. This
was not the case with 500 iterations. During later experiments was found that if this
error did not occur, less iterations had a positive influence on the scoring metric.
That is why the range on maximum number of iterations is between 100 and 1000
with steps of 100. Extreme gradient boosting is tuned with a range for number of es-
timators partly influenced by random forest and a maximum tree depth influenced
by decision tree. The MLPclassifier for neural network is tuned on the hidden layer
sizes, batch sizes, the maximum number of iterations. The hidden layer sizes have
been kept small. From earlier experiments a hidden layer size of lower than four
never seemed to satisfy, this is why the range if from 4 to 10. The batch sizes range is
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somewhat bigger, being over the total number of samples with a step of 100. While
the default number of iterations, 200, seems fine during the default run, the number
has to increase during tuning. The range is extended to 1300 iterations with a step
of 100. The maximum number of neighbours for k-nearest neighbour is based on
Teinemaa et al. (2019) and Pijnenborg et al. (2021).

TABLE 4.2: Hyperparameters for algorithmic tuning per model, with
n = number of features

Prediction Hyperparameter Range
model
DT Max features [1,

√
n , log2 n]

DT Max tree depth [None, 1, 5, 10, 15, 20, 25]
DT Min samples split [2, 6, 10, 14, 16, 20, 24]
DT Min samples leaf [1, 7, 13, 19, 25, 31, 37, 43]
RF #estimators [10, 50 , 100, 150, 200, 250, 300, 350, 400, 450, 500]
RF Max tree depth [None, 1, 3, 5, 6, 7, 9, 11, 13, 15, 17, 19]
LR Penalty [L1, L2, Elastic-Net]
LR Max iterations [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]
XGBoost #estimators [1, 10, 50, 100, 150, 200, 250, 300, 350, 400, 450]
XGBoost Max depth [None, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26]
NN Hidden layer sizes [4, 5, 6, 7, 8, 9, 10]
NN Batch sizes [1, 50, 100, 200, 250, 300]
NN Max iterations [400, 500, 600, 700, 800, 900, 1000. 1100, 1200, 1300]
NN Early stopping [True, False]
kNN #neighbours [2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60]

The ranges are validated during the first experiment with the original data set as
input data and only focusing on patient characteristics. In case the hyperparameter
tuning shows that the range should be adjusted, the adjusted range is used in the
three remaining experiments.

The best parameters which result from this cross-validated model are imple-
mented in the classifier to create the optimal model. All models are compared on
their AUC, accuracy, f1 score, precision and recall. The AUC is used as strategy to
evaluate the performance of the cross-validated model on the test set. The reason
behind this, is that focusing on accuracy creates misleading results for this data set.
The data is so imbalanced, that when every case would be labelled as ‘no reinterven-
tion’, the accuracy would be 0.87.

The f1 score is the harmonic mean of the precision and recall. When using f1
score as scoring metric, the focus on obtaining as many true positives as possible,
instead of as many true values as possible.

From the optimal models, rankings with feature importances are obtained in or-
der to help answer the research questions.
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Chapter 5

Results

In this chapter, the results are discussed. Algorithm performance is presented for the
original dataset and the sampled dataset, each only having patient characteristics as
input data and later also having patient characteristics and process features as input
data. Then, rankings are presented for features.

5.1 Hyperparameters

This section presents the tuning of at least one of the hyperparameters for each of the
algorithms. Due to time restrictions, only the tuning process of the hyperparameter
per algorithm for the first experiment (original data, only patient characteristics) is
shown. For the sake of time, it is assumed that these ranges also fit for the other three
experiments, including (1) original data set with patient characteristics and process
features, (2) sampled data set with patient characteristics and (3) sampled data set
with patient characteristics and process features.

5.1.1 Decision tree

Decision tree is tuned on the maximum number of features, the maximal tree depth,
the minimal sample needed to for a split and the minimum samples need to create a
leaf. All four hyperparameters are discussed.

FIGURE 5.1: Decision tree algorithm tuned on maximum tree depth



36 Chapter 5. Results

Figure 5.1 shows the tuning of the maximum tree depth. The AUC increases from
a maximum tree depth of one to ten, after which the curve flattens for both training
data and test data. The AUC does not seem to differ much with a tree depth between
10 and 25, but to stay safe, the range is kept as [1, 5, 10, 15, 20, 25].

FIGURE 5.2: Decision tree algorithm tuned on maximum number of
features

Figure 5.2 presents the best AUC on training and test data for number of features
are hyperparameters. As one can see, there is not much difference in performance
when it comes to taking

√
n or log2 n as maximum amount of features, as long as 1

is not chosen. For the sake of completeness, 1 has been kept as optional value for the
hyperparameter tuning.

FIGURE 5.3: Decision tree algorithm tuned on minimum samples in
leaf
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The tuning of the minimum amount of samples in a leaf is presented in figure
5.3. The train score decreases over the whole range, decreasing less steep from 13
on. The test score slightly increases in the beginning, but also decreases from 13 on.
Tuning resulted in 19 being the best value for the hyperparameter. The range for
tuning is therefore shortened to [1, 5, 9, 13, 17, 21, 25, 29].

FIGURE 5.4: Decision tree algorithm tuned on minimum samples for
split

Figure 5.4 shows the AUC for different values of the maximum samples for a
split. The train score and test score look like two parallel lines. For a more detailed
view, we refer to figure ?? presented in Appendix A, from which can be seen that the
train score and test score slightly converge with the train score decreasing and test
score increasing. Tuning the hyperparameter provided 16 as optimal value, and so
the range has been kept between 2 and 24.

5.1.2 Random forest

Random forest is tuned on two hyperparameters: the number of estimators and the
maximum tree depth.
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FIGURE 5.5: Random forest algorithm tuned on maximum tree depth

Figure 5.5 shows tuning the maximum tree depth. From a tree depth of 11, the
train score equals 1 and the model seems to be overfit. The test score decreases from
approximately the same tree depth. For tuning the other models, the range is ad-
justed to [None, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. The process of tuning the number

FIGURE 5.6: Random forest algorithm tuned on number of estimators
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of estimators is presented in figure 5.6. From 10 to 50 estimators the curve for both
train and test score increase relatively sharply, after which both curves quite sta-
bilise. Both curves do not show a clear peak at the moment. The range of number of
estimators has been rearranged to [1, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300].

5.1.3 Logistic regression

FIGURE 5.7: Logistic regression algorithm tuned on maximum num-
ber of iterations

For logistic regression, two hyperparameters are tuned: the penalty and the max-
imum amount of iterations. While performing the algorithm with default parame-
ters, the error “STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the
number of iterations (max_iter)” arose until the maximum amount of iterations was
set to 500. Trial and error resulted in that a number of iteration of under 500 should
be included in hyperparameter tuning as well. That is why the range has been set
from 500 iterations to 1000 while tuning the hyperparameters.

Figure 5.7 shows two appearing horizontal straight lines in tuning the maximum
number of iterations. In Appendix A, figure A.2 provides a more informative plot,
with an y-axis ranging from 0.75 to 0.81. The train score increases between 100 it-
erations and 200 iterations, after which it drops a little and than stabilises. The test
score decreases between 100 iterations and 300 iterations. Then, it increases a little,
after which it stabilises. The range for the hyperparameter has been set between 100
iterations and 1000 iterations with steps of 100, so that the error message is taken
into account, as well as the number of iterations belonging to higher train and test
scores.

Figure 5.8 shows that only L2 penalty creates an AUC value. This is because
the default solver (lbfgs), which is used, only works with L2 penalty, and not with
L1 and Elastic-Net. Therefore, the penalty hyperparameter is removed from tuning
processes for the other experiments.



40 Chapter 5. Results

FIGURE 5.8: Logistic regression algorithm tuned on penalty

5.1.4 Extreme gradient boosting

The extreme gradient boosting algorithm is tuned on the number of estimators and
the maximum tree depth.

FIGURE 5.9: Extreme gradient boosting algorithm tuned on number
of estimators

Figure 5.9 presents tuning on the number of estimators. The original range is
widely chosen, as from 100 estimators the train score is overfitting. Also, test score
is decreasing from 10 estimators and onward. Therefore, a more detailed range is
chosen: [1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100].

Also the range for the maximum tree depth is estimated too wide, see figure 5.10.
From a tree depth of 12, both train and test scores do not seem to increase or decrease
anymore. The range is shortened to [None, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14].
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FIGURE 5.10: Extreme gradient boosting algorithm tuned on maxi-
mum tree depth

5.1.5 Neural network

The neural network algorithm is tuned on four hyperparameters: the size of the
hidden layers, the batch sizes, the maximum amount of iterations and whether early
stopping is valuable.

FIGURE 5.11: Neural network algorithm tuned on hidden layer sizes

Compared to figure A.3 in Appendix A, figure 5.11 provides more detailed infor-
mation on the tuning of hidden layer sizes for neural network. Between the hidden
layer sizes of four and six, the AUC for both train score and test score increases rel-
atively steep, after which both curves continue increasing, but less. Despite that the
optimum hidden layer size is five for this tuned model, the prediction is that the
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hidden layer sizes should have been tuned on a wider range, given the continuing
increasing curves.

FIGURE 5.12: Neural network algorithm tuned on batch sizes

The process on tuning the hyperparameter on batch size is presented in figure
5.12. Both train and test score show a decrease in AUC from a batch size of 1 to a
batch size of 250. From there on, both curves appear horizontally. With the optimum
batch size being one for tuning on this range, the range is adjusted for the other three
experiments to [1, 50, 100, 150].

FIGURE 5.13: Neural network algorithm tuned on maximum number
of iterations

In figure 5.13 provides a more detailed view on tuning the maximum amount
of iterations for neural network. The original figure A.4 can be found in Appendix
A. Figure 5.13 provides no clear trend on the train and test score for the maximum
amount of iterations.
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FIGURE 5.14: Neural network algorithm tuned on early stopping

Figure 5.14 shows very clear that continuing the training process is preferred
over early stopping when the loss does not improve enough anymore. The dif-
ference in train and test score (over 0.20 and over 0.10, respectively) and the total
amount of fits, led to the decision to remove the hyperparameter as tuning hyperpa-
rameter for the other three experiments.

5.1.6 K-nearest neighbour

K-nearest neighbour is tuned on the number of neighbours. As one can see in figure
5.15, the train score starts decreases from two neighbours, whereas the test score rises
from the amount of two neighbours, to the peak at approximately 30 neighbours.
After this peak, the test score also decreases. The optimal amount of neighbours for
the original dataset on patient characteristics is 25. The range is kept the same for
the other experiments.
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FIGURE 5.15: K-nearest neighbour algorithm tuned on number of
neighbours

5.1.7 Overview

After displaying hyperparameter processes, some adjustments in ranges are made
to improve hyperparameter tuning for the three remaining experiments. Table 5.1
provides an overview of the hyperparameter ranges on which the models are tuned.
To recall, for decision tree the range of the minimum of samples in a leaf is more
detailed, the penalty hyperparameter for logistic regression is removed, both the
ranges for number of estimators and maximum tree depth for extreme gradient
boosting are more detailed, the range of batch sizes for neural network is more de-
tailed, and also for neural network, the early stopping hyperparameter is removed.

TABLE 5.1: Hyperparameters for algorithmic tuning per model, with
n = number of features

Prediction Hyperparameter Range
model
DT Max features [1,

√
n , log2 n]

DT Max tree depth [None, 1, 5, 10, 15, 20, 25]
DT Min samples split [2, 6, 10, 14, 16, 20, 24]
DT Min samples leaf [1, 5, 9, 13, 17, 21, 25, 29]
RF #estimators [1, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300]
RF Max tree depth [None, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
LR Max iterations [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]
XGBoost #estimators [1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
XGBoost Max depth [None, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
NN Hidden layer sizes [4, 5, 6, 7, 8, 9, 10]
NN Batch sizes [1, 50, 100, 150]
NN Max iterations [400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300]
kNN #neighbours [2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60]
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5.2 Algorithm performance

The algorithm performance is presented in this section. For each of the algorithms
in each of the experiments, the tuned hyperparameters are first presented. A table
including the accuracy, AUC, f1 score, precision, and recall follows. When the dif-
ference between the AUC from default hyperparameters and the AUC from tuned
hyperparameters provides an interesting image, these figures are shown as well. If
not, the figures can be found in appendix B.

5.2.1 Original dataset: Patient characteristics

Decision tree

The decision tree model is tuned on the following hyperparameters and resulting
values and results (table 5.2):

• Max features: log2 n

• Max tree depth: 15

• Min samples split: 16

• Min samples leaf: 19

TABLE 5.2: Algorithm performance for decision tree on imbalanced
dataset - patient characteristics

Using default parameters Using tuned parameters
accuracy 0.77 0.88
AUC 0.54 0.77

0 1 0 1
F1 score 0.86 0.20 0.93 0.29
precision 0.88 0.18 0.89 0.56
recall 0.84 0.23 0.98 0.19

Tuning decision tree has a positive effect on almost all metrics. Accuracy in-
creases with 0.11 and the AUC increases with a step of 0.23, see table 5.2. Also the
f1 score increases, with 0.07 and 0.09 towards no reintervention and reintervention
respectively. Precision towards no reintervention increases with 0.01 to 0.89 and to-
wards reintervention, it increases significantly from 0.18 to 0.56. The recall towards
no reintervention increases from 0.84 to 0.98, but decreases from 0.23 to 0.19 towards
reintervention.

Random forest

The random forest model is tuned on the following hyperparameters and resulting
values and results (table 5.3):

• Max tree depth: 7

• #estimators: 300
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TABLE 5.3: Algorithm performance for random forest on imbalanced
dataset - patient characteristics

Using default parameters Using tuned parameters
accuracy 0.87 0.87
AUC 0.75 0.72

0 1 0 1
F1 score 0.93 0.19 0.93 0.00
precision 0.89 0.50 0.87 0.00
recall 0.98 0.12 0.99 0.00

After tuning the hyperparameters and implementing them in the model, the re-
sults have worsened compared to using default hyperparameters (table 5.3). Only
one case has been predicted as a reintervention, but incorrectly. This causes f1 score,
precision and recall to be 0.00 towards reintervention. The accuracy stayed 0.87,
while AUC decreased from 0.75 to 0.72.

Logistic regression

The logistic regression model is tuned on the following hyperparameters and result-
ing values and results (table 5.4):

• Max iterations: 100

• Penalty: L2

TABLE 5.4: Algorithm performance for logistic regression on imbal-
anced dataset - patient characteristics

Using default parameters Using tuned parameters
accuracy 0.86 0.86
AUC 0.78 0.78

0 1 0 1
F1 score 0.92 0.29 0.92 0.29
precision 0.90 0.40 0.90 0.40
recall 0.95 0.23 0.95 0.23

While running on default parameters, the maximum number of iterations was
reached and should be increased. While running with a range from 500 to 1000 with
a step of 100, the best value for the hyperparameter was 100. None of the measures
seem to have improved or worsened, as seen in table 5.4, which is logical since the
confusion matrix obtained with tuned hyperparameters is the same as using default
hyperparameters.

Extreme gradient boosting

The extreme gradient boosting model is tuned on the following hyperparameters
and resulting values and results (table 5.5):

• Max depth: None

• #estimators: 10
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TABLE 5.5: Algorithm performance for extreme gradient boosting on
imbalanced dataset - patient characteristics

Using default parameters Using tuned parameters
accuracy 0.84 0.87
AUC 0.65 0.73

0 1 0 1
F1 score 0.91 0.27 0.93 0.23
precision 0.89 0.33 0.89 0.44
recall 0.93 0.23 0.97 0.15

Table 5.5 shows that tuning the hyperparameters for extreme gradient boosting
has a positive effect on the accuracy and AUC. Accuracy increased with 0.03 to 0.87
and AUC with 0.08 to 0.73. Predictions on which patients undergoing a reinterven-
tions have increased, causing precision to increase from 0.33 to 0.44. Overall, less
patients are predicted to undergo a reintervention. With default hyperparameters
18 reinterventions were predicted and after tuning only nine in total. F1 score and
recall therefore increase with 0.02 and 0.04, respectively, towards no reintervention,
but decrease with 0.04 and 0.08 towards reintervention.

Neural network

The neural network model is tuned on the following hyperparameters and resulting
values and results (table 5.6):

• Hidden layer sizes: 5

• Batch sizes: 1

• Max iterations: 1300

• Early stopping: False

TABLE 5.6: Algorithm performance for neural network on imbal-
anced dataset - patient characteristics

Using default parameters Using tuned parameters
accuracy 0.88 0.87
AUC 0.80 0.82

0 1 0 1
F1 score 0.94 0.20 0.93 0.00
precision 0.89 0.75 0.87 0.00
recall 0.99 0.12 1.00 0.00

From table 5.6 can be seen that using tuned hyperparameters for neural network
has a large negative influence on the outcome. The model seems to work good
using default hyperparameters, with an accuracy of 0.88 and an AUC of 0.80. F1
score, precision and recall are all above 0.90 towards no reintervention, and 0.20,
0.75, and 0.12 towards reintervention. The fact that precision is 0.75, is due to only
four reintervention predictions, of which one is wrongly predicted. Predicting us-
ing the tuned hyperparameters results in ill-defined metrics. No reinterventions are
pridicted, causing f1 score, precision and recall to equal 0.00.
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K-nearest neighbour

The k-nearest neighbour model is tuned on the following hyperparameters and re-
sulting values and results (table 5.7):

• #neighbours: 25

TABLE 5.7: Algorithm performance for k-nearest neighbour on im-
balanced dataset - patient characteristics

Using default parameters Using tuned parameters
accuracy 0.86 0.87
AUC 0.50 0.61

0 1 0 1
F1 score 0.93 0.00 0.93 0.00
precision 0.87 0.00 0.87 0.00
recall 0.99 0.00 1.00 0.00

While from the metrics in table 5.7, it does not necessarily seem like it, differ-
ent predictions are made. Using default hyperparameters, two reinterventions are
wrongly predicted versus 26 wrongly predicted no reinterventions. With tuned hy-
perparameters, no reinterventions are predicted all. This has caused accuracy to in-
crease with 0.01 to 0.87 and AUC with 0.11 to 0.61. Recall towards no reintervention
equals one this time, because all cases are predicted to undergo no reintervention.

5.2.2 Original dataset: Patient characteristics and process features

Decision tree

The decision tree model is tuned on the following hyperparameters and resulting
values and results (table 5.8):

• Max features:
√

n

• Max tree depth: 20

• Min samples split: 24

• Min samples leaf: 9

TABLE 5.8: Algorithm performance for decision tree on imbalanced
dataset - patient characteristics and process features

Using default parameters Using tuned parameters
accuracy 0.78 0.87
AUC 0.56 0.56

0 1 0 1
F1 score 0.87 0.24 0.93 0.00
precision 0.89 0.21 0.87 0.00
recall 0.85 0.27 1.00 0.00

Although tuning hyperparameters uses AUC as scoring metric, the AUC stays
0.56 after using tuned hyperparameters, see table 5.8. Also, the model using default
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parameters performs quite good towards reintervention, with an f1 score of 0.24.
27% of the positive cases was correctly predicted, and 7 out of 33 positive predicted
cases was correct. Using the tuned hyperparameters, no reinterventions were pre-
dicted and the metrics are again ill-defined.

Random forest

The random forest model is tuned on the following hyperparameters and resulting
values and results (table 5.9):

• Max tree depth: 4

• #estimators: 210

TABLE 5.9: Algorithm performance for random forest on imbalanced
dataset - patient characteristics and process features

Using default parameters Using tuned parameters
accuracy 0.87 0.87
AUC 0.72 0.74

0 1 0 1
F1 score 0.93 0.00 0.93 0.00
precision 0.87 0.00 0.87 0.00
recall 1.00 0.00 1.00 0.00

Fitting the model with default hyperparameters returns an ill-defined model. No
reinterventions are predicted. Using the tuned hyperparameters, no reinterventions
were predicted and the metrics are again ill-defined. Despite the same values for the
other metrics, the AUC’s differ with 0.02 as presented in figure 5.16.

FIGURE 5.16: AUC’s for random forest on imbalanced dataset - pa-
tient characteristics and process features, with the default hyperpa-

rameters in blue and the tuned hyperparameters in orange.
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Logistic regression

The logistic regression model is tuned on the following hyperparameters and result-
ing values and results:

• Max iterations: 100

• Penalty: L2

TABLE 5.10: Algorithm performance for logistic regression on imbal-
anced dataset - patient characteristics and process features

Using default parameters Using tuned parameters
accuracy 0.88 0.85
AUC 0.75 0.73

0 1 0 1
F1 score 0.94 0.33 0.92 0.25
precision 0.90 0.60 0.89 0.36
recall 0.98 0.23 0.95 0.19

Like with the logistic regression model using only patient characteristics as in-
put data, the maximum number of iterations was reached and should be increased
while running on default parameters. The message occurred until a maximum num-
ber of iteration of 500 was chosen. Still, tuning the hyperparameter resulted in 100
iterations being the optimal, but using this in the hyperparameter gives worse pre-
dictions than using the default parameter, see table 5.10. Accuracy drops from 0.88
to 0.85 and AUC from 0.75 to 0.73. Also, f1 score, precision, and recall decrease
towards both no reintervention and reintervention, with values between 0.01 and
0.08. On top of that, precision towards reintervention drops with 0.24. With default
hyperparameters, 6 out of 10 reintervention predictions were correct, with tuned
hyperparameter 5 out of 14 reintervention predictions were correct.

Extreme boosting

The extreme gradient boosting model is tuned on the following hyperparameters
and resulting values and results (table 5.11):

• Max depth: 2

• #estimators: 10

TABLE 5.11: Algorithm performance for extreme gradient boosting
on imbalanced dataset - patient characteristics and process features

Using default parameters Using tuned parameters
accuracy 0.86 0.87
AUC 0.76 0.76

0 1 0 1
F1 score 0.93 0.18 0.93 0.07
precision 0.88 0.38 0.89 0.50
recall 0.97 0.12 0.99 0.04
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Although, hyperparameter tuning is done with AUC as scoring metric, the AUC
with default hyperparameters is the same as the one with tuned hyperparameters,
0.76. Accuracy does increase with 0.01 to 0.87. Out of the eight reinterventions
predicted using default hyperparameters, only three were correct, resulting in a pre-
cision of 0.38. Precision towards no reintervention reaches 0.88, with 174 correct no
reintervention predictions of the 197. These predictions result in a recall of 0.97 to-
wards no reintervention and of 0.12 towards reintervention. After tuning the hyper-
parameters, many less reinterventions were predicted. In total two, instead of eight.
But precision towards reintervention increases from 0.38 to 0.50, because of the less
reinterventions predicted. Out of two, one was correct and the other one was not.
The decrease in recall is also caused by rise in no reintervention predictions. Earlier,
three of the 26 reinterventions were correctly predicted as reintervention, with tuned
hyperparamters only one.

Neural network

The neural network model is tuned on the following hyperparameters and resulting
values and results (table 5.12):

• Hidden layer sizes: 5

• Batch sizes: 50

• Max iterations: 800

TABLE 5.12: Algorithm performance for neural network on imbal-
anced dataset - patient characteristics and process features

Using default parameters Using tuned parameters
accuracy 0.85 0.85
AUC 0.68 0.68

0 1 0 1
F1 score 0.92 0.11 0.92 0.24
precision 0.88 0.22 0.89 0.33
recall 0.92 0.08 0.94 0.24

From the metrics accuracy and AUC, it does not seem like it, but using tuned
hyperparameter settings improves the model. Both accuracy and AUC stay at their
value with default hyperparameter settings, to be more specific: 0.85 and 0.68. At
first nine reinterventions are predicted, of which two are correctly predicted. This
results in precision towards no reintervention of 0.88 and towards reintervention of
0.22. Recall towards no reintervention is 0.92, due to 172 correctly predicted no rein-
terventions, and towards reintervention is 0.08, because of the two out of 26 correctly
predicted reinterventions. After tuning, 15 reinterventions are predicted, of which
five correctly predicted. Precision towards no reintervention increases with 0.01 to
0.89, and towards reintervention increases with 0.11 to 0.33. The recall towards no
reintervention increases with 0.02 to 0.94, and recall towards reintervention triples
to 0.24. This causes f1 score towards no reintervention to stay 0.92, and towards
reintervention to increase from 0.11 to 0.24.
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K-nearest neighbour

The k-nearest neighbour model is tuned on the following hyperparameters and re-
sulting values and results (table 5.13):

• #neighbours: 50

TABLE 5.13: Algorithm performance for k-nearest neighbour on im-
balanced dataset - patient characteristics and process features

Using default parameters Using tuned parameters
accuracy 0.86 0.87
AUC 0.63 0.58

0 1 0 1
F1 score 0.92 0.00 0.93 0.00
precision 0.87 0.00 0.87 0.00
recall 0.98 0.00 1.00 0.00

While fitting k-nearest neighbour with the default amount of neighbours, three
reinterventions are predicted. These have all been wrongly predicted, causing f1
score, precision and recall towards reinterventions to equal 0.00. Towards no rein-
terventions, a f1 score, precision and recall of 0.92, 0.87, and 0.98 are obtained. After
implementing 50 as the number of neighbours in the model, no reinterventions are
predicted anymore. This gives recall towards no reintervention a value of 1.00 and
towards reintervention a value of 0.00. Precision scores towards both no reinterven-
tion and reintervention stay the same and the f1 score towards no reintervention
increases with 0.01 to 0.93. Accuracy increases with 0.01 to 0.87, but the AUC has
worsened. Its value dropped from 0.63 to 0.58, mainly due to the ill-defined metrics.

5.2.3 Balanced dataset: Patient characteristics

Decision tree

The decision tree model is tuned on the following hyperparameters and resulting
values and results:

• Max features: log2 n

• Max tree depth: 20

• Min samples split: 24

• Min samples leaf: 1

Table 5.14 shows the results of metrics for decision tree with patient character-
istics as input data. All metrics improve using the tuned hyperparameters. While
using default hyperparameters, 38 reinterventions are predicted, of which eight cor-
rectly resulting in precision towards reintervention of 0.21. These eight correctly
predicted cases also result in a recall of 0.31 towards reinterventions. After tuning
the hyperparameters and rerunning the model with these, accuracy increases wiht
0.03 to 0.80 and AUC increases with 0.14 to 0.71. Reinterventions are better pre-
dicted. In total 40 reinterventions get predicted, of which 12 correctly. This makes
precision increasing to 0.30 and recall to 0.46. The f1 score increases from 0.25 to 0.36.
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TABLE 5.14: Algorithm performance for decision tree on balanced
dataset - patient characteristics

Using default parameters Using tuned parameters
accuracy 0.77 0.80
AUC 0.57 0.71

0 1 0 1
F1 score 0.86 0.25 0.88 0.36
precision 0.89 0.21 0.92 0.30
recall 0.83 0.31 0.84 0.46

Random forest

The random forest model is tuned on the following hyperparameters and resulting
values and results:

• Max tree depth: None

• #estimators: 300

TABLE 5.15: Algorithm performance for random forest on balanced
dataset - patient characteristics

Using default parameters Using tuned parameters
accuracy 0.87 0.88
AUC 0.84 0.82

0 1 0 1
F1 score 0.93 0.27 0.94 0.37
precision 0.89 0.45 0.90 0.58
recall 0.97 0.19 0.97 0.29

Tuning hyperparameters has a positive influence on almost every metric, except
for the AUC, see table 5.15. With five correctly and 11 incorrectly reinterventions
predicted with default hyperparameters, a f1 score of 0.27 towards reintervention is
reached. Precision towards reintervention is 0.45 and recall 0.19. Tuning happens
with the AUC as scoring metric, but this metric decreases from 0.84 to 0.82 after
tuning. Accuracy increases with 0.01 to 0.88. The tuned correctly predicts seven
reinterventions and incorrectly predicts five reinterventions. This cause the preci-
sion to increase with 0.13 to 0.58, the recall to increase with 0.10 to 0.29, and the f1
score as well to increase with 0.10 to 0.37.

Logistic regression

The logistic regression model is tuned on the following hyperparameters and result-
ing values and results (table 5.16):

• Max iterations: 700

• Penalty: L2

For the logistic regression model, tuning the hyperparameters does not seem to
change any performance metrics. Even the AUC curve is exactly the same as with
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TABLE 5.16: AUC’s for random forest on balanced dataset - pa-
tient characteristics, with the default hyperparameters in blue and

the tuned hyperparameters in orange.

Using default parameters Using tuned parameters
accuracy 0.87 0.87
AUC 0.73 0.73

0 1 0 1
F1 score 0.93 0.48 0.93 0.48
precision 0.92 0.50 0.92 0.50
recall 0.93 0.46 0.93 0.46

the default hyperparameters. This is due to predictions being the same with default
and tuned hyperparameters. In total, 168 no reinterventions are correctly predicted
and 12 reinterventions are correctly predicted in both cases, resulting in the same
confusion matrices.

Extreme gradient boosting

The extreme gradient boosting model is tuned on the following hyperparameters
and resulting values and results (table 5.17):

• Max depth: 9

• #estimators: 90

TABLE 5.17: Algorithm performance for extreme gradient boosting
on imbalanced dataset - patient characteristics

Using default parameters Using tuned parameters
accuracy 0.84 0.83
AUC 0.68 0.67

0 1 0 1
F1 score 0.91 0.27 0.90 0.22
precision 0.89 0.32 0.89 0.26
recall 0.93 0.23 0.92 0.19

Tuning the hyperparameters has a negative effect on all of the performance met-
rics. Accuracy and AUC both drop with 0.01, comparing tuned hyperparameters
with the default, to 0.83 and 0.67, respectively. Using default hyperparameters, six
reinterventions are correctly predicted and 13 are incorrectly predicted. Using the
tuned hyperparameters, only five reinterventions are correctly predicted, and 14 are
wrongly predicted. This results in the precision to drop from 0.32 to 0.26, and the
recall to drop from 0.23 to 0.19. F1 score decreases with 0.05 to 0.22.

Neural network

The neural network model is tuned on the following hyperparameters and resulting
values and results:

• Hidden layer sizes: 10
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• Batch sizes: 1

• Max iterations: 1300

TABLE 5.18: Algorithm performance for neural network on balanced
dataset - patient characteristics

Using default parameters Using tuned parameters
accuracy 0.83 0.82
AUC 0.70 0.70

0 1 0 1
F1 score 0.90 0.36 0.89 0.42
precision 0.91 0.34 0.93 0.35
recall 0.89 0.38 0.86 0.54

Although the accuracy slightly decreases with 0.01 to 0.82, tuning the hyperpa-
rameters has positive results for the neural network model, see table 5.18. At first,
the model performs quite well, correctly predicting 10 reinterventions and wrongly
predicting 19 reinterventions. This gives a precision of 0.34, a recall of 0.38 and a f1
score of 0.36 towards reinterventions. Tuning the model keeps the AUC at 0.70, but
the predictions change. 14 reinterventions are correctly predicted and 26 are incor-
rectly predicted. The f1 score increases from 0.36 to 0.42, precision rises with 0.01 to
0.35 and recall increases from 0.38 to 0.54.

K-nearest neighbour

The k-nearest neighbour model is tuned on the following hyperparameters and re-
sulting values and results (table 5.19):

• #neighbours: 5

TABLE 5.19: Algorithm performance for neural network on balanced
dataset - patient characteristics

Using default parameters Using tuned parameters
accuracy 0.69 0.69
AUC 0.74 0.74

0 1 0 1
F1 score 0.79 0.37 0.79 0.37
precision 0.95 0.25 0.95 0.25
recall 0.68 0.73 0.68 0.73

There is no difference in any of the performance measures of the model using
default values or tuned hyperparameters. Accuracy and AUC stay 0.69 and 0.74. In
both cases 19 reinterventions are correctly predicted, and 57 are wrongly predicted.
123 no reinterventions are correctly predicted versus seven incorrectly. The fact that
the correlation matrices are the same, might be due to the tuned hyperparameter
having the same value as the default hyperparameter. In both cases, five neighbours
are used.
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5.2.4 Balanced dataset: Patient characteristics and process features

Decision tree The decision tree model is tuned on the following hyperparame-
ters and resulting values and results (table 5.20):

• Max features:
√

n

• Max tree depth: 25

• Min samples split: 16

• Min samples leaf: 1

TABLE 5.20: Algorithm performance for decision tree on balanced
dataset - patient characteristics and process features

Using default parameters Using tuned parameters
accuracy 0.79 0.76
AUC 0.52 0.52

0 1 0 1
F1 score 0.88 0.15 0.86 0.14
precision 0.88 0.15 0.87 0.12
recall 0.88 0.15 0.84 0.15

Tuning the hyperparameters of the decision tree model causes most performance
metrics to decrease. Using default hyperparameters, accuracy is 0.79 and the AUC is
0.52. With incorrectly predicting 22 reinterventions and as well incorrectly predict-
ing 22 no reinterventions, f1 score, precision and recall towards no reintervention all
equal 0.88 and towards reintervention all equal 0.15. Fitting the model with tuned
hyperparameters slightly changes the correlation matrix. Again, only four reinter-
ventions are correctly predicted, but 151 no reinterventions have been predicted,
instead of 155 using the default parameters. This makes, apart from the AUC and
recall towards reintervention, drop all performance metrics. Precision towards no
reintervention drops to 0.86 and towards reintervention drops to 0.14. Precision to-
wards no reintervention drops to 0.87 and towards reintervention drops to 0.12. Re-
call towards no reintervention drops to 0.84. The AUC stays 0.52 and recall towards
reintervention stays 0.15, since again four reinterventions are correctly predicted and
22 reinterventions were predicted as no reintervention.

Random forest The random forest model is tuned on the following hyperpa-
rameters and resulting values and results (table 5.21):

• Max tree depth: None

• #estimators: 270

Using default hyperparameters, the random forest model performs not so good
when it comes to prediction reinterventions. Accuracy is 0.86, because 176 out of 205
cases are correctly predicted, but these were all no reinterventions. The three pre-
dicted reinterventions, turned out to actually be no reintervention, causes f1 score,
precision and recall towards reintervention all to equal 0.00. The AUC is 0.68, and
f1 score, precision, and recall towards no reintervention equal 0.92, 0.87, and 0.98.
Using the tuned hyperparameters, slightly increases the performance of the model.
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TABLE 5.21: Algorithm performance for random forest on balanced
dataset - patient characteristics and process features

Using default parameters Using tuned parameters
accuracy 0.86 0.87
AUC 0.68 0.70

0 1 0 1
F1 score 0.92 0.00 0.93 0.07
precision 0.87 0.00 0.88 0.50
recall 0.98 0.00 0.99 0.04

Accuracy increases to 0.88 and the AUC to 0.70. Two reinterventions are predicted,
of which one of them is correct, resulting in a precision towards reintervention of
0.50. With only one of the 26 reinterventions correctly predicted, recall towards rein-
tervention equals 0.04 and the f1 score is 0.07. Towards no reintervention the metrics
are higher; 0.88 for precision, 0.99 for recall and 0.93 for f1 score.

Logistic regression The logistic regression model is tuned on the following hy-
perparameters and resulting values and results (table 5.22):

• Max iterations: 1000

• Penalty: L2

TABLE 5.22: Algorithm performance for logistic regression on bal-
anced dataset - patient characteristics and process features

Using default parameters Using tuned parameters
accuracy 0.85 0.86
AUC 0.74 0.73

0 1 0 1
F1 score 0.92 0.31 0.92 0.33
precision 0.90 0.37 0.90 0.41
recall 0.93 0.27 0.94 0.27

Using the default hyperparameters for logistic regression results in seven cor-
rectly predicted reinterventions, 12 incorrectly predicted reinterventions, 167 cor-
rectly predicted no reinterventions and 19 reinterventions which had been predicted
as no reinterventions. Performance metrics are good, with a f1 score of 0.31, a pre-
cision of 0.37 and recall of 0.27, all towards reintervention. The accuracy is 0.85
and AUC 0.74. After tuning the accuracy increases with 0.01 to 0.86 and the AUC
decreases with 0.01 to 0.73. After using tuned hyperparameter, again seven reinter-
ventions are correctly predicted, but now ten cases are predicted as reintervention,
but in reality did not undergo a reintervention. Recall stays the same, but f1 score
increases to 0.33 and precision to 0.41, both towards reintervention. From the met-
rics towards no reintervention, recall is the only one changing, with an increase of
0.01 to 0.94.

Extreme gradient boosting The extreme gradient boosting model is tuned on
the following hyperparameters and resulting values and results (table 5.23):
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• Max depth: 4

• #estimators: 20

TABLE 5.23: Algorithm performance for extreme gradient boosting
on balanced dataset - patient characteristics and process features

Using default parameters Using tuned parameters
accuracy 0.84 0.85
AUC 0.72 0.76

0 1 0 1
F1 score 0.91 0.16 0.92 0.17
precision 0.88 0.25 0.88 0.30
recall 0.95 0.12 0.96 0.12

At first using default hyperparameters, the model performs quite good with an
accuracy of 0.84 and an AUC of 0.72. Three reinterventions are correctly predicted,
23 reinterventions have incorrectly received the label ‘no reintervention’ while pre-
dicting and nine no reinterventions are incorrectly predicted as ‘reintervention’. Us-
ing the model with tuned hyperparameters causes two of the incorrectly predicted
as reinterventions now to be correctly predicted as no reintervention. Improvement
is therefore made on precision towards reintervention. The metric increases in value
from 0.25 to 0.30. Again, three reinterventions are correctly predicted, so the recall
towards reintervention stays 0.12. Together, this increases the f1 score towards rein-
tervention from 0.16 to 0.17, the accuracy from 0.84 to 0.85 and the AUC from 0.72 to
0.76.

Neural network The neural network model is tuned on the following hyper-
parameters and resulting values and results (table 5.24):

• Hidden layer sizes: 10

• Batch sizes: 100

• Max iterations: 1300

TABLE 5.24: Algorithm performance for neural network on balanced
dataset - patient characteristics and process features

Using default parameters Using tuned parameters
accuracy 0.85 0.84
AUC 0.64 0.68

0 1 0 1
F1 score 0.92 0.38 0.91 0.40
precision 0.91 0.41 0.91 0.38
recall 0.93 0.35 0.90 0.42

Overall, the neural network model performs quite well. 166 no reinterventions
have correctly been predicted, as well as nine reinterventions being correctly pre-
dicted. This results in an accuracy of 0.85 and an AUC of 0.64 and f1 score, pre-
cision, and recall of 0.92, 0.91, and 0.93 towards no reinterventions. Implementing



5.3. Feature importances 59

the hyperparameters results in labelling more cases as no reintervention than before.
Precision towards reintervention decreases, since first, nine out of 22 predicted rein-
terventions were correct, while after implementing tuned hyperparameters, 11 out
of 29 labelled reinterventions were actual reinterventions. Recall towards reinter-
vention increases from 0.35 to 0.42, because cumulative a greater amount of reinter-
ventions was labelled correctly. Accuracy drops with 0.01 to 0.84 due to 172 correctly
predicted cases, instead of the earlier 175. But the AUC increases from 0.64 to 0.68.

K-nearest neighbour The k-nearest neighbour model is tuned on the following
hyperparameters and resulting values and results (table 5.25):

• #neighbours: 5

TABLE 5.25: Algorithm performance for k-nearest neighbour on bal-
anced dataset - patient characteristics and process features

Using default parameters Using tuned parameters
accuracy 0.61 0.61
AUC 0.55 0.55

0 1 0 1
F1 score 0.74 0.25 0.74 0.25
precision 0.90 0.16 0.90 0.16
recall 0.63 0.50 0.63 0.50

Again, the best number of neighbours to put in the hyperparameter is five, equalling
the default value. Like in the previous experiment, with sampled data and only pa-
tient characteristics as input data, the models also perform the same. Accuracy stays
0.61, AUC stays 0.55, f1 score towards no reinterventions stays 0.74 and towards
reintervention stays 0.25, precision towards no reintervention equals 0.90 both times
and towards reintervention equals 0.16 both times, and the recall is 0.63 towards
no reintervention and 0.50 towards reintervention. This is due to both correlation
matrices being the same. In both cases, a reintervention was predicted 79 times, of
which 13 were correct. 13 times no reintervention was predicted, while actually a
reintervention took place, and 66 times a reintervention was incorrectly predicted.

5.3 Feature importances

The models with tuned hyperparameters are used to predict which patient charac-
teristics and process features have the most impact on the outcomes of the Novasure
surgery. The figures per experiment per algorithm can be found in Appendix D. Fig-
ure 5.17 provides an overview of the patient characteristics, perioperative features,
and waiting time and their ranking per algorithm per experiment. For each of the
model outcomes per experiment, a top 10 ranking is made by assigning the most
influential factor a one, the second most influential factor a two, and so on until the
tenth factor is assigned. The table is horizontally divided into four quarters. The
first two quarters on the left show the rankings only based on patient characteristic,
if it belongs to the ten most influential features according to the algorithm. The left
half first presents the outcomes of the six models having the original dataset as input
and then the outcomes with the sampled data as input. The third and fourth quar-
ters of the table provide the ranking of the patient characteristics, the perioperative
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features and the waiting time. Not all rankings between 1 and 10 have been filled,
since those ranks are taken by one of the 258 appointments and care activities. A
list of these appointments and care activies and their number of occurrences is pre-
sented in table 5.26. The darker the blue cell is coloured, the higher the ranking of
the feature is and the more influence it delivers, according to the prediction. When
a characteristic or feature has not been ranked 10 or higher in importance, the cell is
left blank.

Figure 5.17 shows per patient feature per experiment at which rank between 1
and 10 the feature is ranked. Age occurs 11 times in the top 10 ranks. Its ranks differ
from two to eight. Remarkable is that, once the data is balanced and process features
are added, the characteristic does not occur anymore.

Almost the same counts for BMI. It occurs 13 times in the rankings, multiple
times in the first three experiments, but once the data is balanced and process fea-
tures are added, it only occurs once on rank 9.

The complaints are not that well presented in the rankings. Benign adnexal ab-
normality does not occur at all, cycle disorder four times, uterine fibroids three times
and unknown complaints twice. None of the complaints occur in rankings from the
experiments with sampled data.

Parity, on the other hand, is represented in the ranks from all four experiments.
Especially with the data is sampled and patient features as input data all different
options are at least present twice. With process features added, parity lowers in
importance compared to other features, but most options occur in the ranking of
neural network.

Cesarean section a patient feature which does not occur in any top 10 ranking.
The uterus position seems an important feature when only looking at patient fea-

tures. All options occur three to six times in these experiment. When process features
are also taken into account, the anteverted uterus occurs once at rank five and once at
rank nine and retroverted uterus occurs once at position seven, but compared to the
experiments with only patient features, the feature is a lot less present.

The same counts for endometrial thickness. In experiment 1 and 3, the feature
occurs eight out of 12 times, on positions from four to nine, but is absent in the
rankings of experiment 2 and 4, which also focus on process features.

Cavity length occurs ten out 24 times. Eight of these occurrences are in experi-
ments focusing on patient characteristics and its ranks range from two to nine. Cav-
ity width also occurs ten out of 24 times, but six of them are in patient characteristic
focused experiments and four in the experiments also including process features.
The ranks differ from two to ten.

Dymenorrhea occurs seven times in total in the ranks, ranging from fifth to tenth.
The only time it makes the top 10 rank in experiments with process features is when
the data is balanced. Using decision tree, it is ranked as fifth important features.
Endometriosis occurs four times in the rankings, once at rank five, once at rank seven
and twice at rank eight.

The non-interrupted blue line is from adenomyosis. Twenty out of 24 times it
is ranked at position one and if not, the feature is still present in the rankings at
position two, four or five.

Uterine fibroids occurs ten times, with rankings between two and ten. Notable is
that with the original data and focusing on patient characteristics, it occurs in five of
the six feature importance rankings.

Sterilised only occurs three times in the rankings. In both logistic regression mod-
els focusing on patient characteristics, it is ranked fourth. It is ranked as eighth
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FIGURE 5.17: Top 10 ranking for patient characteristics and process
features
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important feature while utilising random forest with the original data focusing on
patient characteristics.

Overall, the anaesthetic does not seem to be an important feature. Local anaesthetic
is once ranked ninth and once tenth, and sedation is once ranked fifth.

Ablation duration is once ranked at position one, once at position two and twice
at position five. Of course, it only occurs in the experiments with process features,
but it is more present (three times) when the original data is used than when the
data has been sampled (one time). Ablation power occurs five out of 12 times and its
rankings range from two to ten.

Last, waiting time occurs five out of 12 times as well. Once, it is positioned as the
most influential factor by k-nearest neighbour. Apart from that, the feature is twice
ranked fourth, once seventh and once ninth.

TABLE 5.26: Alphabetic list of influential appointments and care ac-
tivities

Appointment or care activity Number of
occurrences

11/21 operatief kliniek 404 2
Abnormaal bloedverlies 1
Beoordeling ecg holter inspanningsonderzoek ed 3
Controle patient 2
Controle patient bekkenbodemzorg 1
Controle patient gynaecologie 3
Dagverpleging 3
Dagverpleging i 3
Diagnostische hyteroscopie inclusief eventuele proefexcisie(s)
en/of inclusief eventuele endometriumbiopsie(en) en/of het
verwijderen van een enkelvoudige poliep voor pathologisch
onderzoek

7

Doelgerichte telefonische consultatie van een poortspecialist
door een patiënt bij een al geopende dbc ter vervanging van
een fysiek consult

5

Dotcode zorgtype 41 51 en 52 2
Echo gynaecologie via 1e lijn 2
Echo op verzoek huisarts gynaecologisch 2
Echografie van de buikorganen 2
Echoscopie gynaecologisch 5
Eerste polikliniekbezoek 2
Geen uitval standaard cyclusstoornissen geen inten-
sieve/invasieve therapie geen klinische opname specifieke
overige ingrepen

1

Geen uitval standaard cyclusstoornissen geen inten-
sieve/invasieve therapie geen klinische opname geen
specifieke overige ingrepen geen ambulant middel/ dag
ambulant

2

Geen uitval standaard cyclusstoornissen inten-
sieve/invasieve therapie geen oper groep 3 geen oper
groep 2 open oper groep 2 endoscopisch geen oper groep 1
diagnostisch specifiek/ gynaecol

2

Continued on next page
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Table 5.26 – continued from previous page
Appointment or care activity Number of

occurrences
Geen uitval standaard geen cyclusstoornissen geen ontstek-
ingsprocessen vrouwelijke organen in bekken uterus en ad-
nex intensieve/ invasieve therapie geen oper groep 3 geen
oper groep 2 oper groe

1

Geen uitval standaard geen cyclusstoornissen ontstek-
ingsprocessen vrouwelijke organen in bekken geen inten-
sieve/ invasieve therapie geen klinische opname geen spec-
ifieke overige ingrepen geen am

2

Geen uitval standaard geen cyclusstoornissen ontstek-
ingsprocessen vrouwelijke organen in bekken inten-
sieve/invasieve therapie geen oper grope 2 geen oper
groep 1 diagnostisch specifiek/gynaeco

1

Geen uitval standaard geen intensieve/ invasieve therapie
geen klinische opname geen oper licht diagnostisch (zwaar)/
therapeutisch licht

1

Hemoglobine (incl (eventueel) hematocriet en celindices (mcv
mch en mchc en erytrocyt)) 2
Herhalingsbezoek 2
Herhaalpoliklinkiekbezoek 10
Microcurettage pipelle 1
Nieuwe patient abnormaal bloedverlies 4
Nieuwe patient plaatsen iud 1
Plaatsen spiraal (iud ius) 1
Poliklinische behandeling 2
Preassessment dagopname anesthesiemedewerker 1
Sis echo 3
Spoed 1
Spoedeisende hulp contact buiten de seh afdeling elders in
het ziekenhuis

4

Telefonisch consult 10
Telefonisch consult poli medewerker 1
Telefoonpatient artsassistenten 1
Uteruscuretteage exclusief diagnostische microcurettage (en-
dometriumsapmling zoals pipell vabra milex novak)

3

Zorgdomein abnormaal bloedverlies 2

The appointments and care activities listed in table 5.26 occurred once or more
as one of the fifteen most influential process features. The table presents the ap-
pointments and care activities in alphabetical order and provides information on
how many times they were one of the fifteen most influential process features in one
of the algorithms. The appointments and care activities have been kept in Dutch,
since the scope of this research includes answering the question on how predicting
results are influenced by including process features. In total, 38 unique features oc-
curred 136 times in the top 15 ranks. While most of them occur once or twice, some
occurrences are remarkable. Herhaalpolikliekbezoek and telefonisch consult both make
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it to 10 out 12 lists. The only patient characteristics occurring more often, are ade-
nomyosis (24), age (14), amount of children unknown (11), BMI (15), cavity length (12),
cavity width (13), dysmenorrhea (11), endometrial thickness (11), and myomatosus (16),
but these patient characteristics are used as input data in 24 models, instead of 12.
Also, ‘Diagnostische hyteroscopie inclusief eventuele proefexcisie(s) en/of inclusief eventuele
endometriumbiopsie(en) en/of het verwijderen van een enkelvoudige poliep voor pathologisch
onderzoek occurs quite often, with seven times, even as Doelgerichte telefonische consul-
tatie van een poortspecialist door een patiënt bij een al geopende dbc ter vervanging van een
fysiek consult and Echoscopie gynaecologisch, which both occur five times. Three differ-
ent appointments and care activities start with the word Controle and four start with
the word Echo. The phrase ‘Geen uitval standaard’ is followed seven times by mostly
the same phrases being positive or negative, depending on the presence of the word
‘geen’. It looks like this is a template to fill in and the cumulative presence of 10
times in the rankings points that this phrase provides quite interesting information
to investigate more.
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Chapter 6

Discussion

This chapter discusses the results presented in chapter 5. First tuning the hyper-
parameters is addressed. For each of the algorithms (at least) one of the hyperpa-
rameters is further investigated. These tuned hyperparameters are implemented in
the estimator and predictions are made. Then, the performances of the algorithms
with different data inputs are discussed. The third part of this chapter focuses on
the feature importances, comparing them with literature and expert opinion.

6.1 Hyperparameters

For each of the algorithms, the different tuned hyperparameters per experiment are
presented and compared to each other.

6.1.1 Decision tree

TABLE 6.1: Tuned hyperparameters for decision tree, with PC for pa-
tient characteristics and PF for process features.

Original data Balanced data
Prediction model Hyperparameter PC PC & PF PC PC & PF
DT Max features log2n

√
n log2n

√
n

DT Max tree depth 15 20 20 25
DT Min samples split 16 24 24 16
DT Min samples leaf 19 9 1 1

For the decision tree model the maximum number of features is twice the square
root of the features and twice the log is taken (table 6.1). Recalling figure 5.2, this
does not seem odd, since the values create an AUC quite close to each other. It could
be that with the changing circumstances has an influence on this. The trend which
can be found is, when only patient characteristics are taken as input data, the square
root is taken, and with including process features, the log is taken. This results in
a maximum number of features of log2(24) ≈ 4.58 for experiments with patient
characteristics and a maximum number of features of

√
291 ≈ 17.06. The maximal

tree depth ranges from 15 to 25, which is the higher half of the tuning range. Also,
the more input data or feature, the higher the maximum tree depth gets. Recalling
figure 5.1, it might be interesting to investigate whether a tree depth higher than 25
or a range from 15 to 25 with smaller steps than five performs better. Another option
is to optimise the maximum tree depth, while also taking the minimum samples to
split a node into account, since they have great influence on each other (Harrison,
2019). Also for the tuned minimum samples split, no sure trend can be found. This
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might come due to the still increasing test score, see figure ref ??. On the other hand,
the minimum samples to form a leaf has reached its optimum and is only decreasing
in figure 5.3. Still, for the original dataset, more samples are needed to form a leaf,
contrary to the sampled dataset where in both cases a leaf of one seems to be the
optimum.

6.1.2 Random forest

TABLE 6.2: Tuned hyperparameters for random forest, with PC for
patient characteristics and PF for process features.

Original data Balanced data
Prediction model Hyperparameter PC PC & PF PC PC & PF
RF Max tree depth 7 4 None None
RF Number of estimators 300 210 300 270

Table 6.2 shows the optimum per hyperparameter per experiment. For maxi-
mum tree depth, there is a split in the values for original data and balanced data.
Where the original data has a numerical maximum tree depth, the balanced data
performs better when there is no maximum tree depth. Since the upper bound of
range of the maximum depth equal 11, it might be that somewhere between 11 and
no limit lies the perfect boundary. Like with decision tree, it also might been interest-
ing to include the minimum samples to split a node, since they influence each other
(Harrison, 2019). It is not clear where this different comes from, but it seems like the
model only needs a flat tree when there a majority belongs to one category and a lot
of depth when there is a 50% chance that the data point belongs to one category or
the other. It did not seem like it from figure 5.6, but the range of number of estima-
tors should have been increased, since the maximal number of estimators for two of
the four experiments is the upper bound of the tuning range. This figure does not
show a clear peak, so investigating in the number of estimators more deeply, would
be interesting.

6.1.3 Logistic regression

TABLE 6.3: Tuned hyperparameters for logistic regression, with PC
for patient characteristics and PF for process features.

Imbalanced data Balanced data
Prediction model Hyperparameter PC PC & PF PC PC & PF
LR Max iterations 100 100 700 1000

During the default run, 500 iterations was the minimum to run the model with-
out warnings. While tuning the models, it is chosen as the best value for maximum
numbers of iterations for three of the four models, being the lower bound of the
range (table 6.3). Still, a range from 100 to 1000 with steps of 100 is chosen. While
for the first two experiments, 100 iterations are the optimum value for the hyper-
parameter, the model needs more iteration when sampling the input data. Taking
process features into account, resulting in 291 features, provides the maximum value
as optimum. When recalling figure A.2, we can conclude that, despite the warning,
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the amount of iterations should be somewhere near zero at it’s lowest. Investigat-
ing in what smaller steps would do to the AUC, could be interesting. From figure
?? can also be concluded that doing more iterations would not improve the AUC
or do harm. It would only take more time and memory. As earlier mentioned, the
penalty hyperparameter has been removed from the tuning hyperparameters, since
the solver of the logistic regression was kept the default and only works with L2-
penalty.

6.1.4 Extreme gradient boosting

TABLE 6.4: Tuned hyperparameters for extreme gradient boosting,
with PC for patient characteristics and PF for process features.

Original data Balanced data
Prediction model Hyperparameter PC PC & PF PC PC & PF
XGBoost #estimators 10 10 90 20
XGBoost Max depth None 2 9 4

Extreme gradient boosting has been tuned on two hyperparameters: the number
of estimators and the maximum tree depth, see table 6.4. The number of estimators
fluctuates for the four experiments. For the original dataset, it overall needs a low
number of estimators of ten. For the balanced input data it once needs 90 estimators
and once 20 estimators. No trend can be found one whether the amount of input data
or the amount features has an influence on that. The same counts for the maximum
tree depth. With values of None, 2, 9, and 4, it looks like the less features, the deeper
the trees need to be, but this cannot be concluded with too much confidence. Both
the fluctuations in hyperparameters between the different experiments might point
out that the global optimum has not been found, and that further investigation, may
it be extending the ranges of decreasing the steps of the ranges, is recommended.

6.1.5 Neural network

TABLE 6.5: Tuned hyperparameters for neural network, with PC for
patient characteristics and PF for process features.

Original data Balanced data
Prediction model Hyperparameter PC PC & PF PC PC & PF
NN Hidden layer sizes 5 5 10 10
NN Batch sizes 1 50 1 100
NN Max iterations 1300 800 1300 1300

The tuning results for the neural network hyperparamters are presented in table
6.5. The hyperparameter for hidden layer size has not reached its optimum at ten,
according to the curve in figure 5.11. While the original dataset settles with five as
optimum hidden layer size, the balanced data sheet needs at least ten, as seen in ta-
ble 6.5. Although hyperparameter tuning for the first experiment resulted in a (local)
optimum of five, it turned out to not be enough every time. It would be interesting
to investigate whether adding more hidden layers would make a significant differ-
ence. The batch sizes fluctuate between one and 100, reaching over the whole chosen
range. Apart from the models having patient characteristics as input data preferring
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a batch size of one, no actual trend can be found between these batch sizes. The
trend in maximum number of iterations is clear: the upper bound of the range has
been found as optimum for three out of four times. The number of iterations should
increase, as lightly confirmed by figure 5.13. It is unclear where the variations for
all three hyperparameters come from and it would be, if it was not for time’s sake,
interesting to investigate even further than in the experiments done before.

6.1.6 K-nearest neighbour

TABLE 6.6: Tuned hyperparameters for k-nearest neighbour, with PC
for patient characteristics and PF for process features.

Original data Balanced data
Prediction model Hyperparameter PC PC & PF PC PC & PF
kNN #neighbours 25 50 5 5

For k-nearest neighbour, only one hyperparameter is tuned: the amount of neigh-
bours (table 6.6). For the original dataset with patient characteristics as input data,
the optimal value for neighbours corresponds with the tuned value of 25, as seen in
figure 5.15. The amount of neighbours increases to 50, when adding process features.
It seems like having imbalanced data causes noise in predicting the class. For both
experiments using sampled data, the hyperparameter is set to 5 neighbours, which
according to Tatsat, Puri, and Lookabaugh (2020) is in the range of good values (1 to
20 neighbours). One clarification for this might be sampling using SMOTE. Specific
data points from the minority class have been duplicated, so it is possible that one or
more “neighbours” are found with a total distance of 0, for the data point of which
the outcome is predicted. This could result in needing less neighbours to accurately
predict the outcome of the point to be predicted.

6.2 Algorithm performance

After the hyperparameters have been tuned, the algorithms are run and criticised
on their performances. Recall that the algorithms are tuned on AUC and that based
on AUC and accuracy, the best algorithms is determined. The section covers and
repeats the results found in section 5.2 and the figures found in appendix B. This
section is written towards reinterventions. Therefore all f1 scores, precisions and
recall are towards reinterventions.

6.2.1 Original dataset: Patient characteristics

First, the AUC’s for all models on patient characteristics with the original dataset as
input data is shown in figure 6.1.

TABLE 6.7: AUC and accuracy for patient characteristics based on
original dataset

DT RF LR GB NN kNN
AUC 0.77 0.72 0.78 0.73 0.82 0.61
Accuracy 0.88 0.87 0.86 0.87 0.87 0.87
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FIGURE 6.1: AUC’s for algorithms on original dataset - patient char-
acteristics

The AUC and accuracy per model for experiment 1 are shown in table 6.7. Train-
ing with the AUC as scoring metric results in neural network having the highest
AUC of 0.82. Remarkable is that this AUC is achieved, even though the model has
been ill-defined. The model labelled all cases as no reintervention, despite that the
test data set exists of 26 reintervention cases. With an ill-defined model comes an
accuracy of 0.87, being the percentage of test data with the label ‘no reintervention’.
While both random forest and k-nearest neighbour also have an accuracy of 0.87,
only k-nearest neighbour is as well ill-defined. For random forest the accuracy of
0.87 is due to one case predicted as reintervention, while it was actually labelled as
‘no reintervention’. This patient in question is 41 year old patient, who had cycle
disorder as the complaint leading to the Novasure, a BMI of 24.2, one child, and suf-
fered from dysmenorrhea, endometriosis, myamatosus, but not from adenomyosis.
In this experiment, decision tree has the highest accuracy of 0.88, due to 184 correctly
predicted no reinterventions and five correctly predicted reinterventions. It also has
the highest precision (0.56), recall (0.19) and therefore also f1 score (0.29) from the six
models in this experiment. The precision of of 0.56 is achieved by predicting nine
reinterventions, of which five correctly.

6.2.2 Original dataset: Patient characteristics and process features

Figure 6.2 shows the AUC’s for the experiment using the original data using patients
and process features as prognostic factors.

TABLE 6.8: AUC and accuracy for patient characteristics and process
features based on original dataset

DT RF LR GB NN kNN
AUC 0.56 0.74 0.73 0.76 0.85 0.58
Accuracy 0.87 0.87 0.85 0.87 0.68 0.87
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FIGURE 6.2: AUC’s for algorithms on original dataset - patient char-
acteristics and process features

The AUC values for the second experiment range from 0.56 to 0.85. Neural net-
work reached the highest AUC, although this was no improvement compared to the
model with the default hyperparameter values (recall table 5.12). Also, the accuracy
of the neural network did not change, while the the f1 score, precision and recall did
due to different predictions. After tuning, more reinterventions were predicted, both
correctly and incorrectly, causing the increase of the f1 score, precision and recall.

The only model with an improving AUC was random forest. The model got ill-
defined twice, due to no reintervention predictions. Still, the AUC increased with
0.02 and therefore has become a slightly better model with tuned hyperparameters.

Some other models reached the same AUC after tuning the hyperparameters, as
before tuning the hyperparameters. These were decision tree and extreme gradient
boosting. For decision tree the ill-defined model worked as good as the model using
default hyperparameter, taking the AUC into account. At first, seven reinterventions
were correctly predicted, while 26 cases were incorrectly labelled as reintervention.
The change in this predictions caused an increase in accuracy, making the ill-defined
model perform better than the model with predictions in both classes.

Gradient boosting does not suffer from an ill-defined model, but also after tuning
this model, the amount of reinterventions predicted decreases from eight to two
in total. From those two, one of them was correctly predicted, making precision
increase to 0.50.

The AUC’s of logistic regression and k-nearest neighbour even decreased. Note-
worthy is that the highest accuracy received is 0.87. This is mainly due to the ill-
defined models: decision tree, random forest and k-nearest neighbour. Extreme gra-
dient boosting also predicts 179 cases right, except in this case one of them being a
correctly predicted reintervention. The lower accuracy of logistic regression is due
to 175 correctly predicted cases in total: 170 no reinterventions and five reinterven-
tions. Nine cases are incorrectly labelled as reintervention, causing prediction to
be 0.36. Based on accuracy, all ill-defined models and extreme gradient boosting
perform best, but logistic regression and neural network predicted both predict for
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five cases correctly that they would undergo a reintervention, resulting in higher f1
scores and higher recalls than the other models.

6.2.3 Balanced dataset: Patient characteristics

FIGURE 6.3: AUC’s for algorithms on balanced dataset - patient char-
acteristics

In experiment 3, the input data has been sampled, resulting in two classes with
an equal amount of samples. The results are presented in figure 6.3 and table 6.9.

TABLE 6.9: AUC and accuracy for models with patient characteristics
of balanced dataset

DT RF LR GB NN kNN
AUC 0.71 0.82 0.73 0.67 0.70 0.74
Accuracy 0.80 0.88 0.87 0.83 0.82 0.69

Different to the earlier done experiments, none of the models is ill-defined. On
both AUC and accuracy, random forests performs best, compared to the other mod-
els in this experiment. The accuracy is higher than the accuracy for ill-defined mod-
els. In total, the random forest model predicted 182 cases right, instead of 180. From
the 182 correctly predicted cases, seven were predicted as reinterventions. The accu-
racy of logistic regression equals the accuracy of ill-defined models, but the model is
not ill-defined. According to predictions, 24 cases would undergo a reintervention,
while in reality this was true for 12 of the 24. Adding these 12 to the 168 correctly
predicted no reinterventions, makes 180 correct predictions and creates an accuracy
of 0.87. Precision for logistic regression is 0.50 due to half of the predicted reinter-
ventions being true. A f1 score of 0.48 is achieved, which is the highest f1 score
over all experiments. Decision tree, extreme gradient boosting and neural network
have accuracy values between 0.80 and 0.83. The number of correctly predicted
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reinterventions fluctuate (12, 5, 14, respectively), as well as the as reintervention la-
belled cases (28, 14, 26). Outstanding is the relatively low accuracy from k-nearest
neighbour. The predictions are the same as k-nearest neighbour using default hy-
perparameters, since the default hyperparameters equal the tuned hyperparameter.
In total, 76 reintervention labels were predicted, but only 19 of them are right. Seven
cases had incorrectly been labelled as no reintervention and 57 cases had incorrectly
been labelled as reintervention. This causes the low accuracy. But despite that low
accuracy, the model achieves the highest recall of all experiments. Out of the 26
actual reinterventions, 19 have been correctly predicted.

6.2.4 Balanced dataset: Patient characteristics and process features

FIGURE 6.4: AUC’s for algorithms on balanced dataset - patient char-
acteristics and process features

Figure 6.4 shows the AUC’s for the sampled dataset including both patient char-
acteristics and process features. Compared to experiment 2, also taking process fea-
tures into account, but not having sampled test data, none of the models in experi-
ment 4 performs better looking at the AUC’s. The AUC’s of decision tree, random
forest and k-nearest neighbour are lower than in experiment 2. The AUC’s of logistic
regression, extreme gradient boosting and neural network equal the AUC values of
experiment 2. Half of the accuracies, however, is higher compared to experiment 2.

TABLE 6.10: AUC and accuracy for patient characteristics and pro-
cess feature of balanced dataset

DT RF LR GB NN kNN
AUC 0.52 0.70 0.73 0.76 0.68 0.55
Accuracy 0.76 0.87 0.86 0.85 0.84 0.61



6.2. Algorithm performance 73

The accuracy of random forest is 0.87, being the highest of the experiment. In
total, two reinterventions are predicted, one being correctly labelled and one incor-
rectly. This creates a precision of 0.50, but a recall of 0.04, and therefore a f1 score of
0.07.

Decision tree performs not as high as most other models in this experiment. The
AUC sticks at 0.52 and the accuracy equals 0.76. Of the in total 161 correctly pre-
dicted labels, only four of them were reinterventions and the tuned model performs
worse than the model using default hyperparameters. The tuned model predicts
four correct reinterventions, but also increased the amount of incorrectly labelled
reinterventions to 28 cases, while they are not.

Extreme gradient boosting receives the highest AUC in this experiment, and a
thereby coming an accuracy of 0.85. The accuracy is because 172 no reinterventions
and three reinterventions were predicted correctly. In total, this is no improvement
compared to experiment 2 (same data input, but no sampled train data), but more
reinterventions are predicted.

Both logistic regression and neural network also reach a quite high accuracy of
0.86 and 0.84. For logistic regression 169 no reinterventions and seven reinterven-
tions were predicted correctly and for neural network 161 no reinterventions and 11
reinterventions were predicted correctly. Compared to the same models in experi-
ment 2, more reinterventions are correctly predicted, but at small cost of correctly
predicted no reinterventions. The judgement on in which experiments perform bet-
ter, depends on the goal the prediction. When the main goal is to correctly predict all
the patients who will be satisfied with their Novasure surgery and who will not un-
dergo a reintervention, experiment 2 performs better. If the goal is to warn patients
that they are likely to not be satisfied with their Novasure, experiment 4 performs
better.

Again and due to the same reason as before, the predictions for the k-nearest
neighbour mode using the tuned hyperparameters are the same as the predictions
using the default hyperparameters. In total, 79 reintervention labels were predicted,
but only 13 of them are right. 13 cases had incorrectly been labelled as no reinter-
vention and 66 cases had incorrectly been labelled as reintervention. It means that
accuracy stays 0.61, the AUC stays 0.55, f1 score stays 0.25, precision stays 0.16, and
recall stays 0.50. This all, because both the default and tuned hyperparameter use
the five nearest neighbours.

6.2.5 Algorithm performance

Overall, there is no one way to conclude that one model performs best. Four exper-
iments have been carried out and in most cases, the models do not perform exactly
the same as in the other experiments. For example, where decision tree has the high-
est accuracy in experiment 1, extreme gradient boosting has the highest accuracy
in experiment 2 (apart from the ill-defined models also having this accuracy) and
random forests has the highest accuracy in experiment 3 and 4. Neural network per-
forms best on AUC in experiment 1 and 2, but random forest has the highest AUC
in experiment 3 and extreme gradient boosting in experiment 4.

Tuning the hyperparameters was done with the AUC as scoring metric, instead
of accuracy. The reason behind this, is that accuracy in these experiments is mis-
leading. There are only two cases, in which a higher accuracy than 0.87 has been
reached. In the first experiment with the original data set en focused on patient char-
acteristics, decision tree achieved an accuracy of 0.88 with 176 correctly predicted no
reinterventions and five correctly predicted reinterventions. The same accuracy is
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reached by random forest in experiment 3, also focusing on patient characteristics,
but with sampled test data. In this case, 175 no reinterventions were correctly la-
belled, as well as seven reinterventions. One of the main intentions of the research
is to find out which patients are susceptible on undergoing a reintervention. In that
case, an accuracy of 0.87 with predicted reinterventions should not be one of the
well-performing models. The next subsection looks at what influence f1 score has as
the scoring metric.

TABLE 6.11: Comparison of AUC’s for random forest and logistic
regression to Stevens et al. (2021) with S for Stevens et al. (2021) and

H for the results found in this research.

Experiment Random forest Logistic regression
number S H S H
1 0.65 0.72 0.71 0.78
2 - 0.74 - 0.73
3 - 0.82 - 0.73
4 - 0.70 - 0.73

Table 6.11 compares the AUC’s obtained in the research by Stevens et al. (2021)
and to the AUC’s found in this research. Stevens et al. did not calculate accuracies,
since their database has an imbalanced ratio of 1:8. Two points should be noted.
While in the research by Stevens et al, logistic regression performs better than ran-
dom forest, this is never the case in this research. Based on the AUC, random forest
performs better than logistic regression. Also, both random forest and logistic re-
gression in this research reach a higher AUC than the models did in the the research
by Stevens et al. This softens their conclusion that machine learning algorithms do
not perform better than predicting with logistic regression.

6.3 Ill-defined cases

Five out of 24 predictions using a model with tuned hyperparameters are ill-defined.
They predict that all patients do not need to undergo an intervention, while in reality
always 26 of the patients from the test data are reintervention cases. One problem
with ill-defined models is that due the data structure, the accuracy is always 0.87,
which is the second highest accuracy reached by all models. One possibility to cir-
cumvent this, is to use f1 score instead of AUC as scoring metric, while tuning.

As a try-out, the experiment is redone on the five ill-defined models, but with
f1 score as scoring metric this time. This includes the ill-defined models from ex-
periment 1 (neural network and k-nearest neighbour) and experiment 2 (decision
tree, random forest and k-nearest neighbour). The exact results are presented in Ap-
pendix E. The try-out experiment included tuning the hyperparameters in the exact
same way as during the previous experiments, expect the scoring metric AUC is re-
placed with f1 score. This results in none of the five models being ill-defined again.
The accuracies of the five models range between 0.81 and 0.87, which is still in line
with experiments using the AUC as scoring metric. The same counts for the result-
ing AUC’s, which range between 0.50 and 0.77. Only for k-nearest neighbour with
patient characteristics and process features as input data the f1 score, precision and
recall are again all 0.00. As seen in previous experiments, with 5 neighbours as tuned
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hyperparameter, the results for the tuned models are the same as for the model us-
ing default hyperparameters. In these cases, three reinterventions were predicted,
but incorrectly.

For all the models, using f1 score as scoring metric seemed to improve the re-
sults. With the purpose of not predicting what the outcome of the Novasure surgery
would be, but more specifically predicting which cases are likely to undergo a rein-
tervention, it might be more interesting to tune hyperparameters with f1 score as
scoring metric. The focus is than laid on improving reintervention predictions, in-
stead of solely predicting the most cases correctly. For further research, this might
be interesting to investigate.

6.4 Sampling

The last two experiments had different input data than the first two experiments.
The training data was split in the two classes there are and the minority class of
reintervention is enlarged such that the two classes are of the same size. This resulted
in no more ill-defined models. In each of the cases, reinterventions were predicted.
Instead, 380 reinterventions are predicted in experiment 3 and 4 in total versus the 68
reinterventions predicted in experiment 1 and 2, without sampled data. The ratio of
true positives decreases slightly from 0.38 (26 out of 68) to 0.28 (108 out of 380). Table
6.12 shows how for both experiments, the average accuracy and AUC decrease, and
the f1 score, precision and recall increase when the training data is sampled.

TABLE 6.12: Average f1 score, precision and recall per experiment,
with PC for patient characteristics and PF for process features

Original data Balanced data
Performance metric PC PC and PF PC PC and PF
accuracy 0.87 0.84 0.82 0.80
AUC 0.72 0.64 0.73 0.66
f1 score 0.18 0.15 0.37 0.24
precision 0.36 0.26 0.38 0.34
recall 0.12 0.12 0.45 0.26

To conclude, for the purpose of finding patient who are likely to undergo a rein-
tervention, it is recommended to sample the training data. It results in more reinter-
ventions being predicted, than happens without sampling the training set.

Currently, the strategy only includes oversampling the minority case so that it
has the same size as the majority case, but other oversampling strategies can be
tried, as well as including an undersampling strategy.

6.5 Feature importances

In this section the most highly and often ranked patient characteristics and process
features are discussed. First, the most highly ranked feature importances are sum-
marised in table 6.13, after which they are discussed more deeply. The discussion is
set up with help of medical experts and literature. The paper Prognostic Factors for
the Failure of Endometrial Ablation by Beelen et al. (2019) is used as a starting point and
extended with additional papers when needed. This research provides an overview
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of prognostic factors predicting failure of endometrial ablation, having considered
990 studies.

Table 6.13 lists the most important features. All features, if occurring in the ex-
periment, have been ranked from 1 to 15. If the feature occurred as input in the
experiment, but was not ranked 15 or higher, it was assigned with 16. Then the total
average per feature is calculated. Table 6.13 first names the feature, then the relative
position in ranking compared to other features and behind that the total average
rank is presented. The important features are discussed in order of raking, except of
the appointments and care activities. These phrases are in Dutch and presented in
italics. These phrases are discussed at the end of the chapter together. For the full
names of the shortened phrases, we refer to appendix A.3.

6.5.1 Adenomyosis

Adenomyosis is the most influential feature according to this research. It is ranked
with position 1 by 20 of 24 predictions and is also present in the top 10 for the other
four models. The average rank is 1.8, which is enormously high, especially com-
pared to the follow-up average rank of 8.4. According to the expert, this is an inter-
esting result, since the existence of adenomyosis is a controversial variable for several
reasons. First of all, in 863 cases it has not been checked whether there might be
adenomyosis. Purely looking at this definition, it does not provide us any informa-
tion. Adenomyosis is a complaint hard to find since it is located within the uterus
wall and even when there is a cause for its existence, this cannot be guaranteed for a
hundred percent. Also, a Novasure does not cure this complaint. The device is not
able to reach the adenomyosis in the uterus wall and therefore, it is not removed after
the Novasure surgery. But on the other side, when there are no indications to check
whether adenomyosis is present, it probably does not occur at the patients, since they
do not suffer from it. In literature, adenomyosis is mentioned as one of the importance
causes of dysmenorrhea, which was found to have the most strongly correlated risk
factor for receiving a reintervention (Beelen et al., 2019). In this this research, dysmen-
orrhea is ranked as 15th with an average rank of 14.3. McCausland and McCausland
(1998) advice to offer patients with adenomyosis a hysterectomy over repeat ablation,
one of the other surgeries offered as a reintervention in the MMC.

6.5.2 Ablation power

One of the process features highly present in multiple rankings is ablation power. It
is ranked at position four in the relative ranking and has an average rank of 11.4.
According to Abbott et al. (2003), the ablation power is automatically based on the
cavity’s size. When looking at figure 5.17, this is slightly hinted. In experiment
2, ablation power is also ranked top 10 if cavity width is. To what extend this is
grounded or a coincidence, can be further investigated.

6.5.3 Waiting time

Waiting time is relatively ranked fourth with an average rank of 11.4. Despite the fact
that the feature is this important according to this research, literature only mentions
waiting time with the purpose of decreasing, a purpose being more important since
the consequences of the Covid pandemic (Ghoubara et al., 2021).



6.5. Feature importances 77

TABLE 6.13: Most important patient characteristics and process fea-
tures based on their average ranking

Feature Relative rank Average rank
Adenomyosis 1 1.8
Telefonisch consult 2 8.4
Herhaalpoliklinkiekbezoek 3 8.8
Ablation power 4 11.4
Echoscopie gynaecologisch 4 11.4
Waiting time 4 11.4
Diagnostische hyteroscopie inclusief eventuele... 5 11.6
Ablation duration 6 11.8
BMI 7 12.4
Spoedeisende hulp contact buiten de seh afdeling... 7 12.4
Uterine fibriods 7 12.4
Age 8 12.8
Cavity width 9 13.1
Doelgerichte telefonische consultatie van een ... 10 13.4
11/21 operatief kliniek 404 11 13.8
Sis echo 12 13.9
Controle patient gynaecologie 13 14.0
Dagverpleging i 14 14.2
Amount of children unknown 15 14.3
Dysmenorrhea 15 14.3
Herhalingsbezoek 15 14.3
Cavity length 16 14.4
Dagverpleging 16 14.4
Three or more children 16 14.4
Anteverted uterus 17 14.5
One child 17 14.5
Controle patiënt 18 14.6
Echo op verzoek huisarts gynaecologisch 19 14.7
Nieuwe patient abnormaal bloedverlies 19 14.7
Zorgdomein abnormaal bloedverlies 19 14.7
Local anaesthetic 20 14.8
Beoordeling ecg holter inspanningsonderzoek ed 20 14.8
Poliklinische behandeling 20 14.8
Two children 21 14.9
Uteruscuretteage exclusief diagnostische ... 21 14.9
Geen uitval standaard cyclusstoornissen ... 22 15.0
Nieuwe patient plaatsen iud 22 15.0

6.5.4 Ablation duration

Ablation duration is ranked as sixth important feature with and average ranking of
11.8. The expert is curious about the maximum duration of the ablation. 120 sec-
onds is a prescribed limit, but the question arises what happens if the ablation is
allowed to take, for example, five seconds longer. Their hypothesis is that maybe
those five seconds are determining in the patient having to undergo a reintervention
or not. Unfortunately, previous researches on this feature also do not exceed these
120 seconds (Cooper et al., 2002).
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6.5.5 BMI

BMI is ranked seventh in the relative rank with an average rank of 12.4. It is gen-
erally known that the higher the patient’s BMI is, the harder it gets for doctors to
investigate and cure patients. But literature does not share the idea of BMI having
a direct influence on the outcome of the Novasure surgery. Only one study (Smith-
ling et al., 2014) found an association between BMI and reintervention, while by the
other twelve studies discussed by Beelen et al. (2019), no association was found. But
Beelen et al. (2019) also presents that the pooled data of three studies (Wishall et al.,
2014; Madsen et al., 2013; Smith, Karpate, and Clark, 2016) show that patients with a
BMI higher than 30 are at higher risk of receiving a reintervention. 152 patients from
the dataset used in this research have a BMI higher than 30.

6.5.6 Uterine fibroids

Like BMI, uterine fibroids are ranked seventh in the relative rank with an average
of 12.4. Earlier research shows conflicting results on uterine fibroids (Beelen et al.,
2019). This research only focuses on the presence of uterine fibroids, whereas other
researches distinguish in size, the amount of fibroids or type. Of the 14 studies in
which the presence of uterine fibroids was analysed as a prognostic factor, six studies
(Peeters et al., 2013; Riley, Davies, and Harkins, 2013; Bansi-Matharu et al., 2013;
Soini et al., 2017; Nakamura et al., 2017; Glasser, Heinlein, and Hung, 2009) found
an association between the presence and reintervention. The other eight studies did
not find an association (El-Nashar et al., 2009; Simon et al., 2015; Amso et al., 2003;
Hachmann-Nielsen and Rudnicki, 2012; Shavell et al., 2012; Klebanoff et al., 2017;
Kdous et al., 2008; Smithling et al., 2014).

6.5.7 Age

With an average rank of 12.8, age appears to be the eight most influential factor for
a Novasure surgery. According to the expert, this seems logical. At some point
the patient addresses her menopause and will, even if they had not had a Nova-
sure surgery, not suffer from AUB anymore. The older the patient is, the sooner the
menopause arrives and the less time complaints have to reoccur. Among earlier re-
search, age had widely been analysed as a prognostic factor Beelen et al. (2019). 11
out of 19 studies (Simon et al., 2015; Longinotti et al., 2008; Kdous et al., 2008; Naka-
mura et al., 2017; Soini et al., 2017; Bansi-Matharu et al., 2013; Riley, Davies, and
Harkins, 2013; Shavell et al., 2012; Hachmann-Nielsen and Rudnicki, 2012; Kopeika
et al., 2011; Klebanoff et al., 2017) concluded that younger women are at higher risk
of receiving a surgical reintervention compared with older women.

6.5.8 Cavity length and width

Cavity length and width occur botch 10 times. Cavity width is relatively ranked ninth
and cavity length 16th. Their average ranking differ less, with 13.1 for cavity width
and 14.4 for cavity length. During the Novasure surgery the device should cover
the full internal side of the uterus, covering the total length of the cavity, as well
as the width. After process features have been added as input data, both cavity
length and width do not occur in the rankings anymore. This outcome contributes
to what is already found in literature. Thiel et al. (2014) researched, among other
things, surgical reinterventions on one group with a sounded uterus length over 10
cm and one group with a sounded uterus length under 10 cm, and found no serious
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procedure-related adverse events in either group. Also Beelen et al. (2019) noted
that one out of six studies (Peeters et al., 2013) researching uterus length found an
association between the uterus length and reinterventions.

6.5.9 Parity

When taking patient features into account, parity is a feature which occurs in the
rankings quite often for most models. Each of the options, amount of children un-
known, no children, one child, two children, and three or more children, occur at least four
times and at most nine times in the rankings. The options are more present when
the focus is on patient characteristics, but for some reason, all options, except for
three or more children are very relevant according to neural network in experiment 4.
To current knowledge, no association has been found between parity and a patient
receiving a reintervention (Beelen et al., 2019), which might explain the loss of im-
portance when process features are added. In literature, there are different ways to
represent parity as a variable. In multiple studies parity is seen as a float variable.
Others use nulliparous versus parous, and make it a binary variable. Then, there
are the studies which take categories with the amount of children, as done in this
research. Madsen et al. (2013) and El-Nashar et al. (2009) handled parity as a categor-
ical value and found that only if a patient had five or more deliveries, it correlates
with undergoing a reintervention.

6.5.10 Dysmenorrhea

Dysmenorrhea is relatively ranked as 15th with an average rank of 14.3, which litera-
ture agrees with. Beelen et al. (2019) describes that out of nine studies, seven showed
that preexisting dysmenorrhea was a predictive factor for surgical reintervention. Out
of eight studies with reported outcome measures, three studies described that both
present or preexisting but now absent dysmenorrhea is a prognostic factor for failure
of endometrial ablation, like the Novasure surgery.

6.5.11 Uterus position

All four positions of the uterus, including anteverted uterus retroverted uterus stretched
position and nothing found, occur three to seven times in the rankings, but only antev-
erted uterus receives an average ranking of 14.5 and is averagely ranked 17th. Con-
trary to that, the only position being associated with reintervention is a retroverted
uterus, according to literature (Bongers, Mol, and Brölmann, 2002; Amso et al., 2003;
Gervaise et al., 1999; Lok et al., 2003; Agarwal et al., 2011). Sidenote to this research is
that a balloon device is used, which is a different ablation device than the Novasure.

6.5.12 Endometrial thickness

Even though endometrial thickness has not been ranked 15 or more influential, it is
a feature to consider before performing a Novasure surgery. According to liter-
ature, endometrial thickness is correlated to other prognostics factors, like age and
BMI. Beelen et al. (2019) mention the thought that endometrium regenerates over the
years, which puts older women at lower risk of failure because they have reached
menopause by that time, introducing both age and endometrial thickness as prognostic
factors. Hapangama and Bulmer (2016) hypothese that the excessive amount of fat
tissue in obese women causes hyperestrogenic state, which facilitates rebuilding of
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the endometrium after ablation. This has the consequence of the patient being more
likely to receive a reintervention.

6.5.13 Appointments and care activities

In total, 38 unique appointments and care activities were added to the features oc-
curring in the rankings for patient characteristics and process features, as can be
seen in table 5.26. The meaning of the appointments and care activities is left out
of scope, but prominences are discussed. Diagnostische hyteroscopie inclusief eventuele
proefexcisie(s) en/of inclusief eventuele endometriumbiopsie(en) en/of het verwijderen van
een enkelvoudige poliep voor pathologisch onderzoek appeared in seven of the models.
Only adenomyosis, age, amount of children unknown, BMI, cavity length, cavity width,
dysmenorrhea, endometrial thickness, and myomatosus occur more often in the rankings,
all being patient characteristics, and thus having twice as much chance of appearing
in the rankings. The phrase ‘Geen uitval standaard’ is followed seven times by mostly
the same phrases being positive or negative, depending on the presence of the word
‘geen’. It looks like this is a template to fill in and the cumulative presence of ten
times in the rankings points out that this phrase provides quite interesting infor-
mation to investigate more. Herhalingsbezoek and Herhaalpolikliniekbezoek occur two
and ten times, and, although they do not provide any extra information on what the
appointment was on, these features might provide insights on the process and the
following chance of a reintervention, as suggested by the expert. Taking the terms
Telefonisch consult and Telefonisch consult poli medewerker together, they occur 11 times
in the rankings. Investigating in these different appointments and care activities
might be interesting for further research.

6.6 Threats of validity

Like every other research, this research has threats of validity which influence the
quality of the research, but also open opportunities to investigate and improve.

First, preparing the data can cause bias in this research. The data set used came
from the hospital and includes raw data written by the genealogists while they were
seeing patients. This results in a dishevelled data set, making it hard to retrieve some
values. For some features, information about more than half of the total amount of
patients was missing. With the total amount of patients being 1029, all living in
Eindhoven and its surroundings, the dataset seems quite small and specific. Taking
this into account, the research may be influenced by sampling bias.

During the project, the patient and process features chosen are mostly based on
a paper on prognostic factors found with the help of a literature study and a medical
expert’s opinion. Both the author of the paper and the medical expert work at the
gynaecologist department of the MMC. After results have been obtained, validation
was done by the same literature and a MMC expert. This causes a construct valid-
ity in the form of mono-operation bias. Added to that, expert validation has been
done by only one expert. It could be seen as a limitation that this research has not
been externally validated in another cohort or by an expert from a different hospital
providing the same surgery.

While creating the models, hyperparameter tuning has been performed to best
knowledge, but the possibility exists that a combination of an untested classification
technique and a classifier outperforms the settings used in this research. Also, there
might exist parameter settings which outperform the current settings, even though
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the hyperparameter settings are optimised using multiple iterations for optimilisa-
tion or a different optimisation algorithm. Later was found that, for example, the
Bayesian hyperparameter optimisation performs better than the used GridSearchCV
(Binder et al., 2020; Pijnenborg et al., 2021). Construct validity occurs here.

One last thing which should be taken into account is that this research is per-
formed by a Business Informatics student. Like with every data science project, my
scope of knowledge is limited to data science and does not include any form of med-
ical knowledge apart from personal experiences. Although, we have seen and learnt
about the genealogist domain to a great extend during the project, we are not the
expert in this field and we have tried to bridge this gap with surrounding experts.
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Chapter 7

Conclusion

In this research, we investigated the use of historical data of Novasure patients to
provide evidence-based insights into current treatments and their impacts on the
outcome of the Novasure surgery per patient. The Novasure surgery is a minimally
invasive procedure that aims to destroy or remove endometrial tissue in order to
solve heavy menstrual bleeding complaints. Related work on both machine learn-
ing techniques and patient-level predicting techniques in healthcare have been dis-
cussed with as most important work ‘Prediction of unsuccessful endometrial ablation:
random forest vs logistic regression’ by Stevens et al. (2021). Six algorithms have been
taken into account: decision tree, random forest, logistic regression, extreme gra-
dient boosting, neural network, and k-nearest neighbour. All six algorithms have
been run four times. Once with the original dataset and patient characteristics, once
adding process features as input data with the original dataset, once with a sampled
dataset only using patient characteristics and once focusing on patient characteris-
tics and process features using the sampled dataset.

The first research question to answer is To what extent do patient characteristics have
an influence on the outcome of a Novasure surgery? With the help of literature and the
experiments, this question is answered. From literature can be concluded that age
and dysmennorrhoea are important patient characteristics influencing the outcome of
a Novasure surgery. From the experiments can be concluded that adenomyosis is the
feature which is the most important when it comes to prognostic factors. It has been
ranked very high by all 12 models. Both age and BMI contribute in the determination
of the outcome of a Novasure surgery. Also, cavity length and cavity width are features
influencing the outcome of the Novasure surgery.

Then, experiments are carried out to answer the second research question: How
are predicting results of the Novasure success outcome influenced by including process fea-
tures? Including process features to the input data, changed the outcome drastically.
Next to perioperative features ablation power, waiting time, ablation duration, and local
anaesthetic, 38 appointments and care activities raised as important features. One can
conclude that taking process features into account can increase the accuracy of pre-
dicting whether a reintervention is wished after undergoing a Novasure surgery. As
described above, patient characteristics have a direct influence on process features
and thereby an impact on the result of the surgery. This research left further inves-
tigation out of scope, but with multiple appointments and care activities also ap-
pearing multiple times in the rankings, it is valuable to give attention to process fea-
tures. Very interesting is that important features provide information of the uterus
or are connected in another way. It includes the cavity width and cavity length, which
directly influence the form of the conformable bipolar electrode array, and the en-
dometrial thickness, which has an influence on the ablation power, and the presence
of uterine fibroids.
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The third question is How do the following predictive machine learning techniques per-
form compared to each other? The six algorithms to compare are decision tree, random
forest, logistic regression, extreme gradient boosting, neural network, and k-nearest
neighbour. To predict surgery outcomes on patient-level, not one algorithm is to
point as the best. On the original data, decision tree and extreme gradient boosting
perform best with respect to accuracy. In both cases, neural network reached the
highest AUC. When the dataset is sampled, random forest performs best with re-
spect to accuracy. Both random forest and extreme gradient boosting perform best
with respect to the AUC in these two experiments.

So, to answer the main research question: Given patient characteristics and process
features, which machine learning algorithm(s) can predict the outcome of Novasure surgery
with highest accuracy?: Purely looking at the accuracy, decision tree and random for-
est both reached the highest accuracy of 0.88 of all experiments. This was under
the conditions of only taking into account patient characteristics and sampling the
original data to get two equally sized groups for no intervention. Due to the im-
pact of process features on the Novasure surgery, it is valuable to take those into
account. Under these circumstances, the answer would be that random forest, to-
gether with extreme gradient boosting and neural network are able to predict the
outcome of Novasure surgery with the highest accuracy. Taking possible improve-
ments into account, it is valuable to perform research including multiple machine
learning algorithms when predicting the outcome of the Novasure surgery.

This research also softens the conclusions drawn by Stevens et al. (2021). With
a comparable research, the that logistic regression does not necessarily outperform
other machine learning algorithms. In fact, for all four experiments, the AUC of
random forest was higher than for logistic regression, and all AUC’s were higher
than the AUC’s retrieved by that study. Due to results being so close to each other,
this research shows that it is valuable to investigate in multiple machine learning
models for predicting Novasure success outcomes.

7.1 Future work

After carrying out this research on the prediction of the outcome of Novasure surgery
and which predictive machine learning model performs best to do this, we think
that there are some factors which would contribute in delivering an improved or
extended research and valuable results.

Applying the method in which both patient characteristics and process features
are taken into account while predicting surgery success outcomes can validate whether
process features also have an influence on surgery outcomes and contribute stronger
in generalisation of this hypothesis. When focusing on the Novasure surgery, other
algorithms could be added to the research and trying different techniques of hyper-
parameter tuning.

As a response to the results, it is interesting to first investigate in redoing this
research, with the aim of finding reinterventions as precisely as possible. This would
include tuning models with other scoring metrics. Also, it would be very interesting
to investigate in different appointments and care activities, to find out what specific
actions influence the process and the outcome of the Novasure surgery or are prior
indications that a Novasure will not be sufficient and a reintervention is needed.
This research has proven that process features have a significant influence on the
outcome of the Novasure surgery, but has not investigated in which specific process
features take the lead. This might be good starting point for further research.
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Medically, the most interesting future work is building a tool in which genealo-
gists can fill in patients characteristics and receive a statistical report with informa-
tion on whether a Novasure surgery is suitable for the patient or whether an other
type of ablation or intervention is desired. This could help them with patient-level
decision making and improve expectation management for the patient.
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Appendix A

Deprecated table

A.1 From Data description

• Table A.1: Summary of dataset including their feature, range, or possible val-
ues and contingent notes, still including different kind of reinterventions.

uitleg toevoegen

A.2 From Results

• Figure ??: Tuning on minimum number of samples to split for decision tree,
with y-axis form 0 to 1.

• Figure 5.7: Tuning on maximum number of iterations for logistic regression,
with y-axis from 0 to 1.

• Figure A.3: Tuning on maximum number of hidden layer sizes for neural net-
work, with y-axis from 0 to 1.

• Figure A.4: Tuning on maximum number of hidden layer sizes for neural net-
work, with y-axis from 0 to 1.

FIGURE A.1: Decision tree algorithm tuned on minimum samples for
split
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TABLE A.1: Summary of dataset, including their feature, range, or
possible values and contingent notes.

Feature Range/Values Notes
Patient features - predictor variables Amount of missing values
Age [26, 60] -
Complaint Cycle disorder, benign

adnexal abnormality or
uterine fibriods

18

BMI [15.57, 50.20] 442
Parity [0, 6] or unknown 238
Cesarean section 0 ∨ 1 -
Uterus position AVF, Nothing found,

RVF or Stretch
-

Endometrial thickness (mm) [1, ) 571
Cavity length (mm) [22, 65] 453
Cavity width (mm) [25, 55] 315
Dysmenorrhea 0 ∨ 1 or unknown 678
Endometriosis 0 ∨ 1 -
Adenomyosis 0 ∨ 1 or unknown 863
Uterine fibroids 0 ∨ 1 -
Sterilisation 0 ∨ 1 -
Process features - predictor variables
Appointments 2 years pre
Novasure
Care activities 2 years pre No-
vasure

[0, 100]

Waiting time (days) [0,265] 313
Perioperative features - predictor variables
Anaesthesia Local anaesthetic, Seda-

tion or General anaes-
thetic

-

Ablation duration (sec) [6,120] 580
Power ablation (watt) [1,180] 237
Reintervention information - outcome variables Reintervention type
Reintervention 0 ∨ 1
Invasive reintervention 0 ∨ 1
Non-invasive reintervention 0 ∨ 1
Laparoscopic Hysterectomy 0 ∨ 1 Invasive
AUE 0 ∨ 1 Invasive
Uterus amputation 0 ∨ 1 Invasive
VUE 0 ∨ 1 Invasive
Fibroids resection 0 ∨ 1 Invasive
Sonata 0 Invasive
Balloon ablation 0 ∨ 1 Invasive
Contraceptive implant 0 Invasive
Intrauterine device 0 ∨ 1 Invasive
Contraceptive injection 0 Invasive
Tranexamic acid 0 ∨ 1 Non-invasive
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FIGURE A.2: Logistic regression algorithm tuned on maximum num-
ber of iterations

A.3 From Discussion

• 1: Adenomyosis

• 2: Telefonisch consult

• 3: Herhaalpoliklinkiekbezoek

• 4: Ablation power

• 4: Echoscopie gynaecologisch

• 4: Waiting time

• 5: Diagnostische hyteroscopie inclusief eventuele proefexcisie(s) en/of inclusief
eventuele endometriumbiopsie(en) en/of het verwijderen van een enkelvoudige
poliep voor pathologisch onderzoek

• 6: Ablation duration

• 7: BMI

• 7: Spoedeisende hulp contact buiten de seh afdeling elders in het ziekenhuis

• 7: Uterine fibriods

• 8: Age

• 9: Cavity width

• 10: Doelgerichte telefonische consultatie van een poortspecialist door een patiënt
bij een al geopende dbc ter vervanging van een fysiek consult

• 11: 11/21 operatief kliniek 404

• 12: Sis echo
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FIGURE A.3: Neural network algorithm tuned on hidden layer sizes

• 13: Controle patient gynaecologie

• 14: Dagverpleging i

• 15: Amount of children unknown

• 15: Dysmenorrhea

• 15: Herhalingsbezoek

• 16: Cavity length

• 16: Dagverpleging

• 16: Three or more children

• 17: Anteverted uterus

• 17: One child

• 18: Controle patiënt

• 19: Echo op verzoek huisarts gynaecologisch

• 19: Nieuwe patient abnormaal bloedverlies

• 19: Zorgdomein abnormaal bloedverlies

• 20: Local anaesthetic

• 20: Beoordeling ecg holter inspanningsonderzoek ed

• 20: Poliklinische behandeling

• 21: Two children

• 21: Uteruscuretteage exclusief diagnostische microcurettage (endometrium-
sapmling zoals pipell vabra milex novak)
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FIGURE A.4: Neural network algorithm tuned on maximum number
of iterations

• 22: Geen uitval standaard cyclusstoornissen intensieve/invasieve therapie geen
oper groep 3 geen oper groep 2 open oper groep 2 endoscopisch geen oper
groep 1 diagnostisch specifiek/ gynaecol

• 22: Nieuwe patient plaatsen iud
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Appendix B

Feature importances per algorithm
per experiment

FIGURE B.1: AUC’s for decision tree on imbalanced dataset - pa-
tient characteristics, with the default hyperparameters in blue and

the tuned hyperparameters in orange.
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FIGURE B.2: AUC’s for random forest on imbalanced dataset - pa-
tient characteristics, with the default hyperparameters in blue and

the tuned hyperparameters in orange.

FIGURE B.3: AUC’s for logistic regression on imbalanced dataset -
patient characteristics, with the default hyperparameters in blue and

the tuned hyperparameters in orange.
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FIGURE B.4: AUC’s for extreme gradient boosting on imbalanced
dataset - patient characteristics, with the default hyperparameters in

blue and the tuned hyperparameters in orange.

FIGURE B.5: AUC’s for neural network on imbalanced dataset - pa-
tient characteristics, with the default hyperparameters in blue and the

tuned hyperparameters in orange.
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FIGURE B.6: AUC’s for k-nearest neighbour on imbalanced dataset -
patient characteristics, with the default hyperparameters in blue and

the tuned hyperparameters in orange.

FIGURE B.7: AUC’s for decision tree on imbalanced dataset - patient
characteristics and process features, with the default hyperparame-

ters in blue and the tuned hyperparameters in orange.
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FIGURE B.8: AUC’s for random forest on imbalanced dataset - patient
characteristics and process features, with the default hyperparame-

ters in blue and the tuned hyperparameters in orange.

FIGURE B.9: AUC’s for logistic regression on imbalanced dataset -
patient characteristics and process features, with the default hyper-

parameters in blue and the tuned hyperparameters in orange.
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FIGURE B.10: AUC’s for extreme gradient boosting on imbalanced
dataset - patient characteristics and process features, with the default
hyperparameters in blue and the tuned hyperparameters in orange.

FIGURE B.11: AUC’s for neural network on imbalanced dataset - pa-
tient characteristics and process features, with the default hyperpa-

rameters in blue and the tuned hyperparameters in orange.
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FIGURE B.12: AUC’s for k-nearest neighbour on imbalanced dataset
- patient characteristics and process features, with the default hyper-

parameters in blue and the tuned hyperparameters in orange.

FIGURE B.13: AUC’s for decision tree on balanced dataset - patient
characteristics, with the default hyperparameters in blue and the

tuned hyperparameters in orange.
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FIGURE B.14: AUC’s for random forest on balanced dataset - patient
characteristics

FIGURE B.15: AUC’s for logistic regression on balanced dataset - pa-
tient characteristics, with the default hyperparameters in blue and the

tuned hyperparameters in orange.
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FIGURE B.16: AUC’s for extreme gradient boosting on balanced
dataset - patient characteristics, with the default hyperparameters in

blue and the tuned hyperparameters in orange.

FIGURE B.17: AUC’s for neural network on balanced dataset - pa-
tient characteristics, with the default hyperparameters in blue and

the tuned hyperparameters in orange.
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FIGURE B.18: AUC’s for k-nearest neighbour on balanced dataset -
patient characteristics, with the default hyperparameters in blue and

the tuned hyperparameters in orange.

FIGURE B.19: AUC’s for decision tree on balanced dataset - patient
characteristics and process features, with the default hyperparame-

ters in blue and the tuned hyperparameters in orange.
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FIGURE B.20: AUC’s for random forest on balanced dataset - patient
characteristics and process features, with the default hyperparame-

ters in blue and the tuned hyperparameters in orange

FIGURE B.21: AUC’s for logistic regression on balanced dataset - pa-
tient characteristics and process features, with the default hyperpa-

rameters in blue and the tuned hyperparameters in orange
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FIGURE B.22: AUC’s for extreme gradient boosting on balanced
dataset - patient characteristics and process features, with the default
hyperparameters in blue and the tuned hyperparameters in orange

FIGURE B.23: AUC’s for neural network on balanced dataset - patient
characteristics and process features, with the default hyperparame-

ters in blue and the tuned hyperparameters in orange
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FIGURE B.24: AUC’s for k-nearest neighbour on balanced dataset -
patient characteristics and process features, with the default hyper-

parameters in blue and the tuned hyperparameters in orange
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Appendix C

Confusion matrices

(A) Default hyperparameters (B) Tuned hyperparameters

FIGURE C.1: Confusion matrices for decision tree on original dataset
- patient characteristics
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(A) Default hyperparameters (B) Tuned hyperparameters

FIGURE C.2: Confusion matrices for random forest on original
dataset - patient characteristics

(A) Default hyperparameters (B) Tuned hyperparameters

FIGURE C.3: Confusion matrices for logistic regression on original
dataset - patient characteristics

(A) Default hyperparameters (B) Tuned hyperparameters

FIGURE C.4: Confusion matrices for extreme gradient boosting on
original dataset - patient characteristics
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(A) Default hyperparameters (B) Tuned hyperparameters

FIGURE C.5: Confusion matrices for neural network on original
dataset - patient characteristics

(A) Default hyperparameters (B) Tuned hyperparameters

FIGURE C.6: Confusion matrices for k-nearest neighbour on original
dataset - patient characteristics

(A) Default hyperparameters (B) Tuned hyperparameters

FIGURE C.7: Confusion matrices for decision tree on original dataset
- patient characteristics and process features
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(A) Default hyperparameters (B) Tuned hyperparameters

FIGURE C.8: Confusion matrices for random forest on original
dataset - patient characteristics and process features

(A) Default hyperparameters (B) Tuned hyperparameters

FIGURE C.9: Confusion matrices for logistic regression on original
dataset - patient characteristics and process features

(A) Default hyperparameters (B) Tuned hyperparameters

FIGURE C.10: Confusion matrices for extreme gradient boosting on
original dataset - patient characteristics and process features
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(A) Default hyperparameters (B) Tuned hyperparameters

FIGURE C.11: Confusion matrices for neural network on original
dataset - patient characteristics and process features

(A) Default hyperparameters (B) Tuned hyperparameters

FIGURE C.12: Confusion matrices for k-nearest neighbour on original
dataset - patient characteristics and process features

(A) Default hyperparameters (B) Tuned hyperparameters

FIGURE C.13: Confusion matrices for decision tree on balanced
dataset - patient characteristics
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(A) Default hyperparameters (B) Tuned hyperparameters

FIGURE C.14: Confusion matrices for random forest on balanced
dataset - patient characteristics

(A) Default hyperparameters (B) Tuned hyperparameters

FIGURE C.15: Confusion matrices for logistic regression on balanced
dataset - patient characteristics

(A) Default hyperparameters (B) Tuned hyperparameters

FIGURE C.16: Confusion matrices for extreme gradient boosting on
balanced dataset - patient characteristics
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(A) Default hyperparameters (B) Tuned hyperparameters

FIGURE C.17: Confusion matrices for neural network on balanced
dataset - patient characteristics

(A) Default hyperparameters (B) Tuned hyperparameters

FIGURE C.18: Confusion matrices for k-nearest neighbour on bal-
anced dataset - patient characteristics

(A) Default hyperparameters (B) Tuned hyperparameters

FIGURE C.19: Confusion matrices for decision tree on balanced
dataset - patient characteristics and process features
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(A) Default hyperparameters (B) Tuned hyperparameters

FIGURE C.20: Confusion matrices for random forest on balanced
dataset - patient characteristics and process features

(A) Default hyperparameters (B) Tuned hyperparameters

FIGURE C.21: Confusion matrices for logistic regression on balanced
dataset - patient characteristics and process features

(A) Default hyperparameters (B) Tuned hyperparameters

FIGURE C.22: Confusion matrices for extreme gradient boosting on
balanced dataset - patient characteristics and process features
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(A) Default hyperparameters (B) Tuned hyperparameters

FIGURE C.23: Confusion matrices for neural network on balanced
dataset - patient characteristics and process features

(A) Default hyperparameters (B) Tuned hyperparameters

FIGURE C.24: Confusion matrices for k-nearest neighbour on bal-
anced dataset - patient characteristics and process features
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Feature importances per data input
per algorithm

FIGURE D.1: Feature importance for decision tree on original dataset
- patient characteristics
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FIGURE D.2: Feature importance for random forest on original
dataset - patient characteristics
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FIGURE D.3: Feature importance for logistic regression on original
dataset - patient characteristics
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FIGURE D.4: Feature importance for extreme gradient boosting on
original dataset - patient characteristics



124 Appendix D. Feature importances per data input per algorithm

FIGURE D.5: Feature importance for neural network on original
dataset - patient characteristics
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FIGURE D.6: Feature importance for k-nearest neighbour on original
dataset - patient characteristics
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FIGURE D.7: Feature importance for decision tree on original dataset
- patient characteristics
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FIGURE D.8: Feature importance for random forest on original
dataset - patient characteristics
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FIGURE D.9: Feature importance for logistic regression on original
dataset - patient characteristics
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FIGURE D.10: Feature importance for extreme gradient boosting on
original dataset - patient characteristics
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FIGURE D.11: Feature importance for neural network on original
dataset - patient characteristics



Appendix D. Feature importances per data input per algorithm 131

FIGURE D.12: Feature importance for k-nearest neighbour on original
dataset - patient characteristics
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FIGURE D.13: Feature importance for decision tree on sampled
dataset - patient characteristics

FIGURE D.14: Feature importance for random forest on sampled
dataset - patient characteristics
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FIGURE D.15: Feature importance for logistic regression on sampled
dataset - patient characteristics

FIGURE D.16: Feature importance for extreme gradient boosting on
sampled dataset - patient characteristics
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FIGURE D.17: Feature importance for neural network on sampled
dataset - patient characteristics

FIGURE D.18: Feature importance for k-nearest neighbour on sam-
pled dataset - patient characteristics
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FIGURE D.19: Feature importance for decision tree on sampled
dataset - patient characteristics
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FIGURE D.20: Feature importance for random forest on sampled
dataset - patient characteristics
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FIGURE D.21: Feature importance for logistic regression on sampled
dataset - patient characteristics
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FIGURE D.22: Feature importance for extreme gradient boosting on
sampled dataset - patient characteristics
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FIGURE D.23: Feature importance for neural network on sampled
dataset - patient characteristics
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FIGURE D.24: Feature importance for k-nearest neighbour on sam-
pled dataset - patient characteristics
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F1 score results

Optimal hyperparameters for neural network on original dataset - patient character-
istics:

• Hidden layer sizes: 10

• Batch sizes: 1

• Max iterations: 700

TABLE E.1: Algorithm performance for neural network on original
dataset - patient characteristics

Using default parameters Using tuned parameters
accuracy 0.86 0.87
AUC 0.77 0.77

0 1 0 1
F1 score 0.93 0.18 0.97 0.07
precision 0.88 0.38 0.88 0.33
recall 0.97 0.12 0.99 0.04

Optimal hyperparameter for k-nearest neighbour on original dataset - patient
characteristics:

• #neighbours: 2

Optimal hyperparameters for decision tree on original dataset - patient charac-
teristics and process features:

(A) Default hyperparameters (B) Tuned hyperparameters

FIGURE E.1: Confusion matrices for neural network on original
dataset - patient characteristics
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TABLE E.2: Algorithm performance for k-nearest neighbour on orig-
inal dataset - patient characteristics

Using default parameters Using tuned parameters
accuracy 0.87 0.87
AUC 0.65 0.57

0 1 0 1
F1 score 0.93 0.13 0.93 0.18
precision 0.88 0.50 0.88 0.43
recall 0.99 0.08 0.98 0.12

(A) Default hyperparameters (B) Tuned hyperparameters

FIGURE E.2: Confusion matrices for k-nearest neighbour on original
dataset - patient characteristics

• Max features:
√

n

• Max tree depth: 25

• Min samples split: 10

• Min samples leaf: 1

TABLE E.3: Algorithm performance for decision tree on original
dataset - patient characteristics and process features

Using default parameters Using tuned parameters
accuracy 0.81 0.82
AUC 0.66 0.58

0 1 0 1
F1 score 0.89 0.39 0.90 0.22
precision 0.92 0.33 0.89 0.25
recall 0.87 0.46 0.92 0.19

Optimal hyperparameters for random forest on original dataset - patient charac-
teristics and process features:

• Max tree depth: None

• #estimators: 1

Optimal hyperparameter for k-nearest neighbour on original dataset - patient
characteristics and process features
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(A) Default hyperparameters (B) Tuned hyperparameters

FIGURE E.3: Confusion matrices for decision tree on original dataset
- patient characteristics and process features

(A) Default hyperparameters (B) Tuned hyperparameters

FIGURE E.4: Confusion matrices for random forest on original dataset
- patient characteristics and process features
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TABLE E.4: Algorithm performance for random forest on original
dataset - patient characteristics and process features

Using default parameters Using tuned parameters
accuracy 0.87 0.81
AUC 0.80 0.50

0 1 0 1
F1 score 0.93 0.00 0.89 0.09
precision 0.87 0.00 0.87 0.12
recall 1.00 0.00 0.92 0.08

(A) Default hyperparameters (B) Tuned hyperparameters

FIGURE E.5: Confusion matrices for k-nearest neighbour on original
dataset - patient characteristics and process features

• #neighbours: 5

TABLE E.5: Algorithm performance for k-nearest neighbour on orig-
inal dataset - patient characteristics and process features

Using default parameters Using tuned parameters
accuracy 0.86 0.86
AUC 0.58 0.58

0 1 0 1
F1 score 0.92 0.00 0.92 0.00
precision 0.87 0.00 0.87 0.00
recall 0.98 0.00 1.00 0.00
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