
University Utrecht

Procedural game environment for
training player skills

A Game and media technology
Master’s Thesis

Author: Joel van der Werf, 7007094

Supervised by Dr. Sander Bakkes and Prof. Dr. Albert Ali

Salah

ABSTRACT

Wanting to learn someone to play a video-game is tightly tight to the concept of lit-

eracy, which means the competence or knowledge in a specified area. In video-games,

we call this game literacy, which means we want people to increase their skill in play-

ing video games. The common way of teaching a user game literacy is through the

use of tutorial’s which teaches the player the base mechanics of the game. Tutorials

in most situations are created by designers which forces players to complete some

simple tasks in a certain order that learn them the base mechanics of the game. After

completing the tutorial, the player plays through a series of levels, in which slowly

the difficulty of the game scales up. The problem with this approach is that we have

players of all kind of different skill levels in playing video games. We have to take the

different skill levels of player’s into account. If we do not take the different skill levels

of players into account, they might quite the game because of boredom or being too

frustrated because of not making any progress in the game. To solve this problem,

we propose a method that adaptively changes the generation of game levels based

on the player’s performance in the game and try to target the difficulty of the levels

based on the player’s skill in playing video games. Our method focuses on generating

game levels with game mechanics the user needs improvement on. Results show that

our method is enabled to train people in their game literacy better than a baseline

adaptive environment.

Keywords; Procedural Content Generation; Player modeling; Game literacy;

ii

Contents

Abstract i

Table of Contents ii

List of Tables v

List of Figures vi

List of Listings viii

Acknowledgements ix

1 Introduction 1

1.1 Game Literary and Video Games . 1

1.2 Procedural content generation . 3

1.3 Rage quitting . 4

1.4 Research question . 5

2 Related Work 6

2.1 Game literacy . 6

2.2 Mechanics . 7

2.3 Game and Level design theory . 8

2.4 Player modeling . 11

2.5 Procedural content generation for Super Mario Bros 16

2.6 Procedural content generation and difficulty adjustment 19

2.6.1 Evaluation of gameplay agents 20

3 Method 22

3.1 Answering research question one . 22

3.2 Answering research question two . 24

3.3 Answering research question three . 25

iii

3.3.1 Major components of an adaptive environment 25

3.4 Experiment . 28

3.5 Implementation details . 35

3.5.1 Tracking player data . 35

3.5.2 Player model . 38

3.5.3 Adaptive procedural content generation 44

4 Results 46

4.1 Experiment process and goals . 46

4.2 Baseline adaptive environment . 47

4.2.1 Survey . 49

4.3 Adaptive training environment . 52

4.3.1 Survey . 55

4.4 Differences between baseline and adaptive version 58

4.4.1 Gameplay results differences 59

4.4.2 Survey differences . 59

4.5 Difference between player types . 60

4.6 Player feedback . 61

5 Discussion 63

5.1 Difference between base and adaptive environment 64

5.2 Generalisation of the method to other games 65

5.3 Generation of the results to other games 66

5.4 Participants’ feedback . 66

5.4.1 Learning keyboard and mouse controls 67

5.4.2 Method as a background system 67

5.4.3 Fast alteration of difficulty . 67

5.4.4 Difficulty score version one and two 67

5.4.5 Higher difficulty scores can result in generation of unrealistic

levels . 68

5.5 Limitations . 68

6 Conclusion 70

A Additional Information 74

A.1 Statements made by participants . 74

A.2 Base version overarching design . 76

iv

A.3 Base version player model design . 77

A.4 Adaptive version overarching design 78

A.5 Adaptive version player model design 79

A.6 Adaptive individual player results . 80

A.7 Base individual player results . 82

Bibliography 83

v

List of Tables

Table 2.1 Mechanics in an Super Mario Bros game 8

Table 3.1 Goal and objective in Super Mario Bros 24

Table 3.2 Training goals and their difficulty score 39

Table 4.1 Statistics baseline version . 48

Table 4.2 Player character deaths baseline version 48

Table 4.3 Statistics adaptive version . 53

Table 4.4 Statistics teaching base mechanics. 53

Table 4.5 Player character deaths statistics 54

Table 4.6 Difference statistics adaptive vs baseline 59

Table 4.7 Difference between difficulty. 60

Table 4.8 Feeling the game invoked on participant adaptive vs baseline . . 60

Table 4.9 Statistics for the different player Types presented in this method. 61

vi

List of Figures

Figure 1.1 Example of Super Mario Bros level 3

Figure 2.1 Different players have different flow zones 9

Figure 2.2 Chart of the flow . 10

Figure 2.3 . 10

Figure 2.4 Adapting to different users personal flow zone 11

Figure 2.5 Three major components of player modeling 13

Figure 2.6 Overview comparison of level generators 18

Figure 3.1 Adaptive flow versus baseline version flow. 27

(a) Adaptive version flow . 27

(b) Baseline version flow . 27

Figure 3.2 Adaptive vs baseline player model. 31

(a) Adaptive environment player model 31

(b) Baseline adaptive environment version player model 31

Figure 3.3 Flow of generation of levels. 34

Figure 3.4 Example of training chunk. 34

Figure 3.5 Example of level with difficulty score 1. 41

Figure 3.6 Example of level with difficulty score 20. 41

Figure 3.7 Example of level with difficulty score 40. 41

Figure 3.8 Example of generated level. 45

Figure 4.1 Played Super Mario before and I am an expert. 49

Figure 4.2 Difficulty of the game at the start baseline version 50

Figure 4.3 Difficulty of the game at the end baseline version 50

Figure 4.4 Initial impression during gameplay following flow. 51

Figure 4.5 Feeling game invoked on users. 52

Figure 4.6 Played Super Mario before and I am an expert. 55

Figure 4.7 Difficulty at the start of the game adaptive version 56

Figure 4.8 Difficulty at the end of the game adaptive version 56

vii

Figure 4.9 Initial impression during gameplay following flow. 57

Figure 4.10Feeling game invoked on users. 57

Figure 4.11Motivation to use adaptive game environments 58

Figure A.1 Base version overarching design 76

Figure A.2 Base version player model . 77

Figure A.3 Overarching design . 78

Figure A.4 Player model design . 79

viii

Listings

3.1 Data tracked for each generated chunk. 36

3.2 Global data tracked for each version of the game. 37

3.3 Example evaluate training goal. 38

3.4 What influences increasing the difficulty score. 42

3.5 What influences decreasing the difficulty score. 42

3.6 Simplified version of targeting training goals. 43

ix

ACKNOWLEDGEMENTS

This thesis would not have been possible without the contribution and help of some

people, so I would like to express my gratitude to them. First, I would like to thank my

supervisor Dr. Sander Bakkes for his help, patience, and the insights he offered me

in our weekly meetings. I would also like to thank my family, friends, and colleagues

for their never-ending support throughout my studies, which helped alleviate all the

stress and tension that appeared in the last 2.5 years.

Joel van der Werf

1

Chapter 1

Introduction

Teaching someone how to play a video game is closely linked to the concept of literacy

[46] which refers to competence or knowledge in a specified area. In the past, literacy

was mostly used to describe the competence and knowledge of writing and reading,

but nowadays its meaning also extends to other research areas. For example, the

book What Video Games Have to Teach Us About Learning and Literacy by James

Paul Gee [12] introduces the concept of video game literacy, which involves not only

the ability to decode and understand meanings with respect to the domain of video

games, but also the ability to produce meanings. Understanding has therefore become

equivalent with the ability to access content, that is, to play video games.

1.1 Game Literary and Video Games

In this section, we will discuss game literacy and video games we do this based on our

test bed of the popular video game Super Mario Bros, since it is a well-known subject

of literacy studies related to video games [28]. Super Mario Bros was developed by

Nintendo [37] [32] [45] and falls under the video game genre [8] called platformers. A

video-game genre is a specific category of games related by similar gameplay charac-

teristics. Most platformer games use the same game play elements as presented in

the game Super Mario Bros.

The main goal of each level in the video game Super Mario Bros is to get the player

character to the end of the level. This is achieved by moving the player character

from left to right through the game level. Within each level, there are several ob-

stacles and challenges the player must overcome. The auxiliary goals of the video

game Super Mario Bros are to collect all the coins and to get the highest score in

2

each level. The score given to the player for each completed level is dependent on

the number of coins collected, how fast the player has completed the level, and the

number of enemies killed. Super Mario Bros also allows players to make up their own

goals throughout the game. An example of such a goal would be to beat the game

as fast as humanly possible, a concept called speed running [21]. Another example

would be to collect all collectibles (coins) in the level.

The gameplay elements for the player character are to move either to the left or the

right and the ability to jump and run. The player character can also shoot fireballs

depending on the character’s state. The player character state depends on how many

power-ups have been collected. The player character can be in one of the following

states:

• Small at the beginning of a game;

• Large, in which the player can crush some objects by jumping into them from

below;

• Fire state, in which the player character can shoot fireballs;

The main obstacles for the player character to overcome are gaps and a variety of

patrolling enemies in each of the levels. If the player characters fall down a gap, they

lose a life. If the player character touches an enemy, they lose a life when they are

still in the small state. However, if they are in the big or fire state, they shift back to

the small and large state respectively. Most patrolling enemies can also be beaten by

the player character if the character jump in such a way that they land on the enemy

from above or hit the enemy with a fireball. However, the outcome of this action is

dependent on the type of enemy: Goombas die and are removed from the level. Static

enemies such as piranha plants are not vulnerable to this action and will still hurt

the player character. Finally, turtle enemies withdraw into their shells. These shells

can then be used to throw at other enemies and kill them.

The last important thing to know about Super Mario Bros is that there are items

spread across the level, either hidden in blocks or visible. The player character can

find these items in blocks marked with a question mark and gain them by jumping

and hitting the blocks from below. Available items include:

• Coins, which can be collected to increase the player’s score and to unlock extra

lives for every hundred coins collected;

3

• Mushrooms, which change the player character’s state from the small to the

large and finally to the fire state;

• Flowers, which change the state of player characters to the fire state if they are

already in the large state;

In Figure 1.1 we can see an example of a Super Mario Bros level.

Figure 1.1: Example of Super Mario Bros level

1.2 Procedural content generation

Procedural content generation [39] [16] refers to the methods used to generate content

for games and simulations algorithmically, which normally would have been hand-

made by people. A large variety of procedural content generation techniques exist,

which have been applied to the content and styles of a wide variety of video games.

Procedural content generation has been particularly studied for the generation of

video-game levels [45] [3].

One of the first games to use procedural content generation was the game Elite [4].

Released in 1984, Elite is a space trading and combat simulator developed by David

Braben and Ian Bell and originally published by Acornsoft. For the game design,

Braben and Bell needed to create numerous galaxies in which trading was possible.

4

Instead of having a designer create all the galaxies, they used procedural content gen-

eration to algorithmically create all galaxies with planets, stars, and other spaceships

to trade with.

One of the most famous open-source projects involving procedural content gener-

ation for Super Mario Bros, is the project Infinite Super Mario Bros [32] by Markus

Persson. This project is a public domain clone of Nintendo’s classic platform game

Super Mario Bros. The game Infinite Mario Bros is playable on the web, and the

source code of the project is also available online. Infinite Super Mario generates all

its levels using procedural content generation.

The project Infinite Super Mario Bros has been used as a starting point for pro-

cedural content generation projects related to game levels for Super Mario Bros. In

2009 there was a competition [3] to create the best agent in terms of level generation

with the Infinite Super Mario Bros project as a starting point.

Another use of procedural content generation is to change game play parameters

with relevant real-time player data and game play context information data while a

game is in progress. This creates a way for developers to adjust their content gener-

ation process in run time to better suit the needs of individual players. This type of

procedural content generation is called adaptive procedural content generation [31].

Changing content based on procedural content generation driven by computational

models of user experience is a subsection of adaptive procedural content generation

called experience-driven procedural content generation [49].

An example of this would be to adaptively change the generation patterns of a video

game to increase or decrease its difficulty [27]. For example, in the Infinite Super

Mario Bros game levels are generated based on a difficulty value. The difficulty value

can be changed based on the output of computational models of user experience to

give the player the right balance between player skill and difficulty in the game.

1.3 Rage quitting

Rage-quitting [7] is defined by psychologists as the act of quitting a game when you

are losing, about to lose or feel that you will lose. Within the game Super Mario Bros

this can happen when a player is stuck at a certain point in a level and is unable

5

to progress beyond it. This can be because the user is not yet skilled enough to

overcome certain challenges. The examples given in the previous paragraph about

adaptive procedural content generation could be a solution to the problem of rage-

quitting, since it allows developers to adapt the difficulty of the game’s content based

on the player’s skill level in playing video games. It is specifically important to not

let users rage-quit if the intention is for them to acquire game literacy.

1.4 Research question

The main goal of this research is to create a method used for adaptive procedural con-

tent generation for the use case of training the user in acquiring basic game literacy,

and to determine which concept would be most conducive to achieving competence in

playing a game. This will be accomplished by letting users play game levels generated

by procedural content in a Super Mario Bros [28] clone. To reach this main research

goal, the following sub questions need to be answered:

1. How does a user acquire game literacy?

2. How can users be kept engaged throughout the learning process and prevented

from wanting to quit?

3. To what extent is an adaptive procedural content generation-system able to

train a user’s game literacy in playing platformer games?

6

Chapter 2

Related Work

One of the key challenges of video game design is teaching new players how to play the

game. Although game developers frequently use tutorials to teach game mechanics,

little is known about how tutorials affect game learn-ability and player engagement.

In most games, tutorials are structured levels that are the same for all players. In

their paper The Impact of Tutorials on Games of Varying Complexity [33], the authors

investigate the impact tutorials have on player engagement by letting 45000 players

play eight tutorials for different games of varying complexity. Results showed that

tutorials increased play time by as much as 29 percent by teaching more complex

game situations; they did not, however, improve player engagement if the situations

were too easy to overcome. One of the problems to solve is how to keep all players

engaged since player skill can be of varying levels.

2.1 Game literacy

Game literacy is the ability to access, critically evaluate, analyze, and create games.

The article The power of game literacy [11] by Joshua Gad explains that game literacy

can be broken down into three levels: basic, advanced, and creative “literacy”.

• Basic literacy refers to the ability to consume media;

• Advanced is the ability to analyze media;

• Creative is the ability and knowledge to make media;

Basic game literacy in video games is taught by letting players play something that

is called a tutorial level. A tutorial level forces the player to employ one or more of

the game’s mechanics to overcome pre-designed scenarios. Advanced game literacy is

7

taught by exposing the user to different kind of challenges in the game, which require

insight into one or more of the game mechanics to be overcome. An example of cre-

ative game literacy is the game Super Mario Maker [30] by Nintendo. In this game,

users can make their own game levels for the game Super Mario. These game levels

can be built with different kinds of pre-made game assets.

The distinction in the levels of game literacy shows that it is necessary to create

a method that can teach users basic and advanced game literacy in the game Super

Mario Bros, basic game literacy because it involves being enabled to play the game,

while advanced literacy is used to analyze the game and the situation the user is in.

For the purposes of this research, the user is not required to be capable of making a

game or game level for Super Mario Bros, since we assumed that it would not increase

the user’s proficiency in playing the game.

2.2 Mechanics

Before beginning to teach someone basic game literacy, it is necessary to first be aware

of the game mechanics involved in a game of Super Mario Bros. This is needed, so

we know which mechanics we need to teach a user, so the user can successfully over-

come the challenges presented in the game. We use the game mechanics presented in

the game Super Mario Bros, since other platformer games include the same type of

mechanics as presented in Super Mario Bros.

Extensive research has been done into the game mechanics of the game Super Mario

Bros. For example, the paper Mario Level Generation From Mechanics Using Scene

Stitching [19] generates an artificial intelligence-based on the mechanics of Super

Mario Bros and describes the game mechanics, as can be seen in Table 2.1.

8

Game mechanics

Name Description

Jump Tracks if Mario left the ground (has a small y axis change less
than a certain threshold).

Low Jump Tracks if Mario made a low jump (has a high y axis change
greater than a certain threshold).

High Jump Tracks if Mario made a high jump (has a large x axis change
greater than a certain threshold).

Long Jump Tracks if Mario made a long jump.
Stomp Kill If Mario kills an enemy by jumping on top of it.
Shell kill If Mario kills an enemy by pushing a Koopa shell.
Fall kill If a enemy dies because it fell off the game screen.
Mode If Mario changed his mode (small, big, and fire).

Brick Block If Mario bumped into a brick block.
Question Block If Mario bumped into a question mark block.

Table 2.1: Name and description of the mechanics in an Super Mario Bros game.

Another fundamental aspect of Super Mario Bros is the physics of the player char-

acter named Mario. The article A Complete Guide To Super Mario Bros Physics

Engine [18] explains the parameters and values involved in the physics engine of the

games Super Mario Bros and Super Mario Bros 2.

It is important for use to implement the physics and game mechanics of Super Mario

Bros correctly to give the player the feeling of playing an actual, real version of Super

Mario Bros.

2.3 Game and Level design theory

An important aspect to keep in mind is the flow of the content of the game, which

helps keep the player optimally engaged [24] in the training process. In order for a

player to be optimally engaged in the training process, the challenge should be pre-

sented at a level equivalent to or slightly higher than the current skill level of the

player. Not too easy, but also not too hard. The challenges of the game should then

be increased as the player’s skill increases. The designer should be aware that drastic

changes in the game’s difficulty may result in the loss of player engagement. If the

player is optimally engaged in the content, then the player is considered to be in a

flow state. The concept of flow was introduced by Mihaly Csikszentmihalyi [25].

9

Figure 2.1: Different players have different flow zones

Figure 2.1 shows an example of how the flow should look for a game where dif-

ferent types of skilled players are supposed to be kept engaged in the content. From

the graph, we can see that the line is not linear. The reason for this is that if players

are kept continuously challenged, they might get exhausted.

Figure 2.3 shows that the curve operates into what is known as the flow channel.

This indicates a person’s tolerance for a temporary lack of or spike in engaging or

challenging content, while being given hope that more challenging or relaxing content

is on the way. That is why it is important for the flow of the content to also keep

into account some sort of short cooldown period after the completion of a challenge

(learning goal).

10

Figure 2.2: Example chart of the flow introduced by Mihaly Csikszentmihalyi

Figure 2.3

The article Flow in Games (and everything else) [6] mentions that the flow channel

and the curve may be different for different types of players. To design an engaging

experience for a broader audience, the experience cannot be the same for all users.

This means that the gameplay experience for each user should be adapted to his or

her personal flow zone. An example of personalized flow zones can be seen in Figure

2.4 where the flow rate of an average player is indicated with red arrows, while the

blue arrows indicate different skill levels of players, which need to be taken into con-

sideration for adaption to get that user into the flow zone.

The article The effectiveness of adaptive difficulty adjustments on students’ mo-

tivation and learning in an educational computer game [17] mentions that tying

adaptive difficulty to learning goals will result in significantly higher learning rate

outcomes. The authors have tested this by comparing games that make adaptive

difficulty changes with two equivalent non-adaptive learning activities.

For our method, it is important to keep the concept of flow and balancing player

skill with game difficulty in mind. This is so we can keep the player optimally en-

gaged in the training process of obtaining game literacy in playing platformer games.

11

Figure 2.4: Adapting to different users personal flow zone

2.4 Player modeling

The paper An inclusive view of player modeling [38] explains the concept of player

modeling as describing all aspects of a predictive model of player actions in games.

This includes the detection, modeling, prediction, and expression of the human player

characteristics that are manifested through cognitive, affective, and behavioral pat-

terns. These predictive models are constructed based on data obtained from the

interaction of a human player with a game [48]. Player models are built on dynamic

information obtained during game-player interaction, but they could also rely on

player profiling information.

In the paper Player modeling: Towards a common taxonomy [23] the authors dis-

cuss some commonly used methods for player modeling. These are the following

methods:

1. Genetic algorithms [14], use the process of natural selection. Genetic algorithms

are part of a subgroup of evolutionary algorithms.

2. Coevolutionary algorithms [34] evaluate the fitness of an individual in a popula-

tion. The individuals in the population are evaluated based on their interactions

with other individuals. The interaction between individuals in the population

can be either a competitive or Cooperative interaction.

12

3. Evaluation functions, are concerned in understanding and modeling how players

evaluate the different game states. Once we have modeled the way a player sees

the game, we can better predict the player’s future actions

4. Neural networks [29] can be seen as a “black box” that maps inputs to outputs.

This black box is implemented through a set of interconnect nodes (neurons)

that are activated according to their weighted inputs. A training process is used

to adjust the weights to the desired objective.

5. Rules-based models consist of a set of conditions that, when satisfied, generate

a series of actions.

6. Probabilistic Models are a statistical technique used to consider the impact

of random events or actions in predicting the potential occurrence of future

outcomes.

7. Monte-Carlo Tree Search [5] uses game simulations that are used to estimate

the values of game states and actions. This information is used to progressively

improve the quality of the simulations. Can be specifically useful for games like

poker to decide the best option based on previous simulation outcomes.

8. Machine learning, uses learning algorithms applied to player modeling.

In the article player modeling, [22] the authors give a definition of the taxonomy of

player modeling and the three major components that player modeling consists of:

Input, a computational model, and the output. This flow can be seen in Figure 2.5.

13

Figure 2.5: Three major components of player modeling [22]

The input for a player model is data regarding the game and the player, this can be

one or more of the types of input explained below:

1. Anything that a human player is doing in a game environment (behavioral data).

2. Objective data collected as bodily responses to game stimuli, such as physiology

and body movements.

3. The game context consisting of any player-agent interactions, but also any type

of game content viewed, played, and created.

The last type of input refers to player profile information and includes all the infor-

mation about the player that is static and is not directly (nor necessarily) linked to

gameplay. This may include information related to a player’s personality, such as

cultural variables and general demographics such as gender and age.

The second step includes the actual modeling; this can either be a top-down (model-

based) or bottom-up (model-free-based) approach. The top-down approach concerns

itself with theoretical fields of knowledge such as humanities and social sciences, which

14

hypothesize models to explain concepts. This is then followed by an empirical phase,

in which the researchers experimentally determine to what extent the hypothesized

models suit the researcher’s observations. Bottom-up (model-free) approaches refer

to the construction of a mapping model between player input and a player state rep-

resentation. As such, model-free approaches follow the approach of the exact sciences,

in which observations are collected and analyzed to generate models without a strong

initial assumption on what the model looks like or even what it captures. The model-

free and the model-based approach can also be combined. The paper A systematic

review of data-driven approaches in player modeling of educational games [15] analyse

and reviews data-driven player modeling approaches. The authors state that it would

be preferable to use a combination of model-free and model-based approaches, since

it could lead to a better understanding of player behavior.

Finally, we come to the output of player modeling, which is usually a set of par-

ticular player states. Such states can be represented as a class, a scalar (or a vector

of numbers) that maps to a player state, such as the emotional dimensions of arousal

and valence [1] or a behavioral pattern or a relative preference.

The paper Personalised gaming: a motivation and overview of literature [42] states

that techniques can be applied to automatically adapt the challenge that a game poses

to the skills of a human player. This is called difficulty scaling [40] When applied to

game dynamics, difficulty scaling is usually aimed at achieving a game wherein the

human player is challenged neither too little nor too much. Some methods mentioned

on how to achieve this are:

• Controlling the game environment;

• Establishing a discrete parameter that determines how difficult the game should

be;

• Coevolutionary algorithms [34];

• Estimating and tracking the ‘emotional intensity’ and mapping this to the emo-

tional dimensions of arousal and valence [1];

The purpose of difficulty scaling is to allow both novice and experienced players to

enjoy the appropriate challenge (learning goals) that the game offers. The paper Per-

sonalised gaming: a motivation and overview of literature explains this based on the

concept of player modeling.

15

The paper Player Modeling for Intelligent Difficulty Adjustment by Olana Missura

and Thomas Gartner [26] has attempted to solve a similar problem regarding balanc-

ing difficulty and player skill in real time. The authors investigated the use of machine

learning for dynamic difficulty adjustment. The author’s aim was to create a difficulty

adjustment algorithm that does not bother the actual players while they are playing

the game. The author’s approach to building a difficulty model consists of clustering

different types of players, finding a good difficulty adjustment for each cluster, and

predicting the cluster for short traces of gameplay. The author’s results suggest that

dynamic adjustment and cluster prediction together outperform alternative machine

learning algorithms to determine game difficulty adjustment for individual players.

An example of player modeling in Super Mario Bros is given in the papers Mod-

eling player experience in Super Mario Bros [44] and modeling player experience for

content creation [43]. In these papers, the authors investigate the relationship be-

tween level design parameters of platform games, individual playing characteristics,

and player experience using player modeling. For their research, the authors collected

and analyzed the following data:

• Controllable features of the game the parameters used for the procedural content

generation of the levels;

• Gameplay characteristics related to how the user plays the game. They mea-

sured statistical features such as how often and when the player jumped, ran,

died, and so on;

• The player’s experience of playing the game, measured through a 4-alternative

forced-choice questionnaire;

The results of the data show that various emotions are at play when playing a game

and how users perform under these emotions. The main focus of the study was on

the emotions of frustration, challenge, boredom, anxiety, predictability, and fun. It

was shown that the different emotions can have positive or negative effects on the

gameplay of the user. In future work, they want to use the results of their study to

create Super Mario Bros game levels based on the emotions the user is experiencing.

This means it is important to keep players’ emotions in mind when designing proce-

durally generated content for video-game levels.

16

In the paper Player-Centred Game Design: Player Modelling and Adaptive Digital

Games [20] the authors state that player modeling and adaptive procedural content

generation technologies may be used alongside existing approaches to facilitate im-

proved player-centered game design and in doing so provide a more appropriate level

of challenge, smooth out the learning curve, and enhance the gameplay experience

for individual players.

For our method, we wish to use the concept of player modeling [38] [23] to target

the difficulty of the game for an individual user based on his or her player skill. We

also wish to use player modeling for the user case of determining which training goals

we have to present to the user in the game in order to improve the user’s game lit-

eracy in playing platformer games. This goal can be reached by letting the player

model establish a discrete parameter for the targeted difficulty of the game and the

learning goals. The concepts presented on player modeling in the papers: Modeling

player experience in Super Mario Bros [44] and modeling player experience for con-

tent creation [43] provide us with useful information for reaching our goal of targeting

difficulty based on player skill and providing the user with training goals that help

them increase their skill in playing platformer games.

2.5 Procedural content generation for Super Mario

Bros

There has been substantial research done on generators of Super Mario levels; in 2010

there was even a competition. In the paper, The 2010 Mario AI Championship Level

Generation Track [3] a group of authors present the results of this competition. The

goal of the competition was that competitors participated by submitting level genera-

tors that could generate levels for the game Super Mario Bros. The goal of these level

generators was to generate new levels for Super Mario Bros tailored to an individual

player’s playing style and player skill level. In the following paragraphs, we will dis-

cuss some level generators presented in the paper The 2010 Mario AI Championship

Level Generation Track that could be of interest to our work.

The Notch algorithm is the algorithm that is used in the game Infinite Super Mario

Bros [32]. Notch builds the levels from left to right, iterating over each tile on an

x by y grid. At each tile, there is a probability of adding components like enemies,

17

platforms, and gaps to the level. Adding these components is based on the following

parameters:

• Seed: is a unique identifier to the generated level;

• Difficulty: is how difficult the generated level should be;

• Type of level: is the visuals used for the generated level;

– Overground;

– Underground;

– Castle;

When the generation of components is completed, basic checks are done to make

sure the generated levels are playable. Basics checks include the difference in height

between rows of blocks and the width of gaps made in the level.

The downside of the Notch algorithm is that it has no control over the generation of

levels, meaning it is completely random. For this reason, the paper Feature Analysis

for Modeling Game Content Quality [36] by Noor Shaker and Georgios Yannakakis

introduces a method that expands on Notch. In this method, they introduced gener-

ating content based on the controllable feature of the game Super Mario Bros. This

algorithm based on controllable features is explained in the paper Comparative Eval-

uation of Procedural Level Generators [37] in which Shaker and Yannakakis name

this method Parameterized Notch. The controllable features are parameters that can

be adjusted to guide the generation of levels. These are the following parameters:

• The number of gaps;

• Width of the gaps;

• Number of enemies;

• Placement of enemies;

• Number of power-ups;

• Number of boxes(coins);

• Type of block

– Type rock (breakable when Mario is in powered up state);

18

– Type solid;

When a level is generated, the same checks are done that are used in Notch to ensure

that a level is playable from beginning to end. The Parameterized Notch method

can also use randomization for the controllable parameters, the method is then called

Parameterized Notch-Randomized.

Hopper is another interesting method introduced in the paper The 2010 Mario AI-

Championship: Level Generation Track [3] by Tomoyuki Shimizu and Tomonori

Hashiyama. Hopper generates its levels by writing them from left to right and placing

features with specific probabilities in much the same way as Notch and Parameterized

Notch do. It was built with adaptability in mind so that the probabilities could easily

be altered depending on the player’s skill and prior performance. The difference be-

tween Notch and Hopper is that the generated parts are alternated with pre-designed

parts.

In the paper, A Comparative Evaluation of Procedural Level Generators in the Mario

Artificial Intelligence Frameworkk [37] the authors evaluate different Mario level gen-

erators that were used in the 2010 competition. In their paper, the authors compare

the generated levels with the levels made for the original game of Super Mario Bros.

For these, they measured the following statistics for each procedural level generator:

The leniency shows how difficult a level is. The linearity is how many height differ-

ences there are in the generator; the higher the height difference is in a generated level

the lower the linearity score gets. Density is a measure of how many platforms are

stacked on top of each other. Pattern density measures how many patterns (parts)

of the original Mario levels are used inside the generator. Pattern variation measures

the unique occurrences of patterns used within the generator. The more unique the

pattern is, the higher the score is. In Figure 2.6, we can see the results of the methods

we previously discussed.

Figure 2.6: Overview comparison of level generators: mean value (standard (devia-
tion) of each metric on the output of each generator [37]

19

The results show that parameterization in level generators plays a large role in chang-

ing the nature of generated levels compared to the other level generators from the

competition. This would make Parameterized Notch the ideal candidate for an adap-

tive procedural content generation level generator because it allows the researcher to

change the parameters from Parameterized Notch to the needs of an individual user.

2.6 Procedural content generation and difficulty

adjustment

The online article The Mario Game that Gets Harder the Better You Are (Infinite

Adaptive Mario) [47] [35] by Ben Weber proposes a method to adapt the difficulty of

the game Infinite Mario Based on the difficulty parameter for each individual user.

Infinite Adaptive Mario scales up the difficulty by increasing the frequency of gaps,

the average size of gaps, variation of ground height, and the number of enemies.

Scaling up the difficulty also tends to result in a larger number of possible paths

through a level. The player begins at difficulty level 50, which produces levels with

a moderate degree of challenge. Upon successful completion of a level, the challenge

is increased. The faster the user completes a level, the higher the increase is for the

difficulty score for the next generated level. At the moment of death, the difficulty

is decreased based on the amount of progress made by the player. If the player is

close to the goal at the moment of death, then the difficulty is decreased only a

small amount. If the player is close to the beginning of the level at the moment

of death, then the difficulty is decreased a large amount. A new level is generated

when the player either completes a level or fails to complete a level after three deaths.

The paper Challenge Balancing for Personalized Game Spaces [13] has attempted

to solve a similar problem in regard to balancing difficulty and player skill. In this

paper, the authors propose an approach for personalizing the game space in which

an altered version of Infinite Super Mario Bros is played in terms of levels to the end

of tailoring the experienced challenge to the individual user during the actual play of

the game. The authors’ approach specifically considers two design challenges, namely

implicit user feedback and a high risk of user abandonment. The method the authors

propose is to make use of the concepts explained previously, such as an altered version

of Infinite Super Mario Bros for the level generation and player modeling to adjust

20

the difficulty of the procedural content generation. The author’s approach works in

three steps:

• Implement a policy that is appropriate in expectation across users to be used

for initializing the online game;

• Implement a mapping from gameplay observations to the player experience to

be used for guiding the online game personalization;

• Rapidly establish an appropriate policy for the individual user in online game-

play employing the learned feedback model and a straightforward model of user

abandonment;

The method used for the research described in this thesis also intends to balance

player skill and the difficulty of the generated levels. However, our method also needs

to take into account the different training goals that are set for the individual player

in order to gradually learn the user’s basic and advanced game literacy. For this,

different parameters would need to be tuned rather than just the difficulty, and this

would also lead to a more complicated player model.

There are also ways to increase the difficulty based on measurements taken outside

the game environment. For example, In the paper Modeling and Adjusting in-game

Difficulty Based on Facial Expression Analysis by Blom et al [41] the authors make

use of facial expressions to determine if they should increase or decrease the difficulty

of the game. The authors record the user’s facial expression and use facial expres-

sion analysis to adapt to the difficulty. For example, if the player is angry, it lowers

the difficulty, while if the player has a neutral face possibly indicating boredom, it

increases the difficulty of the game.

The papers Infinite Adaptive Mario [35] and Challenge Balancing for Personalized

Game Spaces [13] are of importance to our work. This is because both papers aim

to balance player skill and the difficulty of procedural generated game levels, using

Super Mario Bros as a test bed. That is why these papers will be used as starting

point for our work.

2.6.1 Evaluation of gameplay agents

Hoyle [10] is a program that learns to play a broad variety of board games very well,

in real time. Hoyle is not a traditional game-playing artificial intelligence: it searches

21

and tolerates, even encourages, inconsistent and incomplete knowledge. Hoyle mini-

mizes search, focusing instead upon learning a set of reasons or a logical basis for a

course of action or belief in the board game. Hoyle learns during competition, and

demonstrates substantial, learned expertise after relatively little training.

The paper the Ideal Trainer [9] by Susan L. Epstein talks about how they evalu-

ate learning for different type of agents. They evaluate the different types of agents

(Artificial intelligence players) by letting the agents play x type of board games and

seeing what the agents learn from the different type of board games. The results

suggest that teaching a program by leading it repeatedly through the same restricted

paths is an overly narrow preparation for the variations that appear in real-world

experience. The results also demonstrate that variety introduced into training by

random choice from the agents does not constitute reliable preparation, and that a

program that directs its own training may overlook important situations. The results

argue for a broad variety of training experience with play at many levels. This variety

may either be inherent in the game or introduced deliberately into the training as

noise. A blend of expert guidance, knowledge-based and directed learning for a group

of agents or one by itself, is shown to be particularly effective for learning during

competition.

This paper deals with training people in acquiring game literacy in playing plat-

former type games like Super Mario Bros instead of artificial agents but the results

shown by the study done by Susan L. Epstein are still relevant to this research re-

garding expert guidance, knowledge-based and self-directed elaboration, which are

effective methods in learning.

22

Chapter 3

Method

The main problem to be solved by this research is: a method used for adaptive

procedural content generation for the use case of training the user in getting basic

game literacy, which concept is most conducive to achieving competence in playing

a game? An attempt to solve this has been made by letting users play procedural

content-generated game levels in a Super Mario Bros game clone. A variety of meth-

ods have been used to create, analyze, and evaluate the following research questions,

already stated in section 1.4:

1. How does a user acquire game literacy?

2. How can a user be kept engaged in the learning process and prevented from

wanting to quit?

3. To what extent is an adaptive procedural content generation-system able to

train a user’s game literacy in playing platformer games?

To answer these research questions, literature research has been employed. A user-

centered experiment has also been conducted. In this experiment, some users were

invited to play variations of a game clone of adaptive procedural content generation

Super Mario Bros and data is measured regarding gameplay and level generation,

while the user is playing the game. The data gathered in this experiment is then used

to analyze and discuss the method presented in this paper.

3.1 Answering research question one

The first sub-question is: how does a user acquire game literacy? Which is the concept

most conducive to achieving competence in playing a game? To answer this question,

23

literature research into the concept of game literacy and the mechanics of Super Mario

Bros has been done. For game literacy this literature research has shown that there

are three types of game literacy:

• Basic literacy refers to the ability to consume game media. A user will be

enabled to use the default mechanics of the game.

• Advanced literacy is the ability to analyze media. This means the user has

insight to determine which game mechanics available in the game need to be

used to overcome different scenarios with the combined mechanics in the game.

• Creative literacy is the ability and knowledge to make levels for a certain game;

This has led to the following definition of game literacy for this thesis project: the

ability of a user to play and analyze a level of the game Super Mario Bros. This

means the user needs to learn the base mechanics of a game of Super Mario Bros

and be enabled to execute them. This is known as basic game literacy. The user also

needs to learn how to overcome different combined obstacles in the game with the

game mechanics learned from the user’s own perception. This is known as advanced

literacy.

The list of game mechanics present in Super Mario Bros can be seen in the first

paragraph of previous work in section 2.2. These mechanics involve the different

types of blocks, enemies, and obstacles a user might come across in a normal game

of Super Mario Bros and which actions to take to overcome these obstacles. Each

mechanic can be associated with a training goal; if a player can overcome all the train-

ing goals the player can be said to have reached basic game literacy. If the player

can overcome differently combined training goals to a certain level of proficiency, the

player can be said to have reached advanced game literacy, since the player can now

identify which action to use to overcome obstacles in the game. Table 3.1 shows the

training goals with the corresponding actions the user has to take to complete these

training goals. If a player can create levels for Super Mario, the player has achieved

creative literacy, however this is not one of the goals of this thesis project, which

instead focuses on training the user in basic and advanced game literacy.

24

Training objectives

Training goals Completion

Walking Move Mario from left to right.
Small jump Jumping over or on a block of elevation one in height.

Medium Jump Jumping over or on a block of elevation 2/4 in height.
Chasm jump Jumping over a hole in the level.
Enemies Jumping over or on top of enemy without hitting it.

Platforming Jumping on top of a platform.
Static obstacle Mario overcomes fire chain and piranha plant by timing a jump

over these obstacles.
Question Block Mario picks up item hidden in block.

Table 3.1: Goal and objective of the training goals assigned in a Super Mario Bros
game.

3.2 Answering research question two

The second sub-question is: how can a user be kept engaged in the learning process

and be prevented from wanting to quit? For this, literature research has been em-

ployed regarding the game and level design in section 2.3 and the concept of flow in

section 2.3 in video games. Flow is the concept of keeping players optimally engaged

in the content they are currently experiencing. This means that the game needs to

offer some challenge to the player but should also have certain moments in the game

where the player can relax a bit.

Adaptive methods and player modeling may be used to get people into the flow

state. Player modeling is the study of computational models of users in games. This

includes the detection, modeling, prediction, and expression of human behavior. In

short, this means the adjustment of the game’s content based on the needs of indi-

vidual players. To adjust the game’s content, a method called adaptive procedural

content generation can be used. Procedural content generation is a method of creat-

ing data algorithmically. In the game Super Mario Bros, this would mean generating

challenging game levels for the user to play. The adaptive part is changing the level

of difficulty and training goals of the game based on the performance of the individ-

ual user in previous levels. The player model can then determine if the challenge of

training goals for a certain player needs to be increased or decreased based on the

tracked data.

25

3.3 Answering research question three

The third sub-question is: To what extent is an adaptive procedural content generation

system able to train the ”platformer” game literacy of a user? To answer this research

question first some research into the pros and cons of traditional structured tutorial

levels for video games is conducted. Secondly, the major components needed to cre-

ate an adaptive game environment for training player skills are discussed. Lastly, a

user-centered experiment is conducted. In this experiment, an adaptive procedural

content generation game environment is created based on a Super Mario Bros clone

to see if the chosen method would be well suited to training the game literacy of a user.

Most games use some sort of structured level [33] to teach a player the basics of

a game. These structured levels are created by a designer and are the same for all

players. The problem with structured created levels regarding training the user in-

game literacy is that the individual learning curve for each user is not considered in

pre-made levels. In pre-made game levels, the challenges of each level are determined

by the game designer. This can lead to a decrease in the learning rate since the con-

tent might either be too challenging or too easy for the user’s current skill level and

knowledge in game literacy. This is where adaptive procedural content generation

can help by adapting the training goals and challenges of the levels to the skill level

of an individual user. Using adaptive methods could lead to an increased learning

rate in-game literacy since the user can now be kept optimally engaged in the training

process by adapting the difficulty of the game to their skill level.

3.3.1 Major components of an adaptive environment

The answer to research question two shows that player modeling can be used to de-

termine if the training goals are either too easy or too hard for the user. But how can

the procedural content generation be adjusted to increase or decrease the difficulty

of the training goals?

First, literature research was done on different procedural content generation algo-

rithms to weigh the pros and cons of existing work for the chosen method. The

literature research done on procedural content generation explained in section 2.5,

showed that parameterization plays a significant role in changing the nature of gener-

ated levels. Parameterization also gives control to the creator related to what should

and should not be included in a generated game level. For this research’s goal of

26

generating levels that consist of challenging content with individual training goals

for a user to improve their game literacy, a method with parameterization would

be preferable. The method Parameterization-Notch-Random uses parameterization,

which allows researchers to decide what to include and what not in a generated level

regarding obstacles set by training goals. Parameterization-Notch-Random also uses

a form of randomization so that not all levels with the same training goals would feel

the same, thus keeping the levels interesting for the user. Because of these two major

reasons, Parameterization-Notch-Random has been chosen as a starting point for the

generation of game levels for a game clone of Super Mario Bros.

Based on literature research on player modeling and adaptive procedural content

generation, a flow chart can be made that shows the components needed for our

adaptive procedural content generation environment for training a player’s skill com-

pared to a baseline adaptive procedural content generation environment like infinite

adaptive Mario. This flow can be seen in Figure 3.1a and Figure 3.2b. The parts that

are different between the base version and our adaptive version are marked yellow in

the flow chart of the base adaptive environment.

27

(a) Adaptive version flow (b) Baseline version flow

Figure 3.1: Adaptive flow versus baseline version flow.

The main difference between our adaptive environment and a baseline version of

the adaptive environment is that our adaptive environment targets the difficulty for

an individual player instead of using default intervals to increase or decreasing the

difficulty score. Our adaptive environment also makes use of gameplay, level, and

player information to presents the players with challenging levels based on training

goals that focus on increasing the user’s game literacy in playing platformer games

instead of generating completely random obstacles solely based on the difficulty score

for the player to overcome.

28

The flow chart for our adaptive environment consists of the following steps:

1. Create or load player model;

2. Generate new part of level (chunk) based on this data;

3. Track progress of the player while playing the game;

4. Evaluate the player’s result at the end of the generate part of the level;

5. Adapt the procedural content generation based on the outcome of the evaluation

of the played part of a game level;

6. Then repeat steps 2 to 5 for each completed section or level;

The diagram shows that there are, however, still some unanswered questions.

• What should be done with a new player, whose proficiency in playing platformer

(Super Mario Bros type) games has not been determined? This is called the

hot cold problem.

• What should be done with players that get stuck in a certain part of a level?

• Can an adaptive procedural content generation game environment help in train-

ing players’ game literacy?

3.4 Experiment

To answer the questions stated at the end of the previous section, a user-centered ex-

periment will be conducted. After conducting the experiment, an empirical analysis

of the results will be done. For the experiment, a user study in an adaptive procedu-

ral content generation game environment will be done, where the aim is to generate

levels targeting the user’s skill level. For the experiment, a group of participants are

asked to play two variants of an adaptive procedural content generation platformer

game. These games are meant to be clones of the popular game Super Mario Bros

that will be developed for this experiment.

Two variants of the game are made to see if the participant’s game literacy learned

from one game can be used in a similar other game. This will be accomplished by

letting the user play both versions of the game for a certain amount of time. While

29

the user is playing the game, some data regarding the user’s performance will be

tracked. When the player is done playing both versions of the game, the tracked data

will be analyzed to see if the user’s game literacy learned from the first game can be

applied in the second game.

The games will employ the mechanics described in section 2.2. The notable differ-

ences between the two versions will be the visual graphics and the player character’s

physics. The visual graphics of the games are different, so the game expresses a vi-

sual distinction between the two versions of the game. There are two reasons for the

differences in character physics between the two versions of the game. The first is

that the mechanics described in section 2.2 are present in all platformer games, since

these mechanics describe the core of what a platformer game is and thus it would

not make sense to change those mechanics. The second reason is that it would be

easier to add more versions and variants of the game if needed. This is because it

would be easier to just change a few parameters for either the character physics or the

level generation parameters than it would be to add or remove entire game mechanics.

The game should be designed as an Infinite Mario Runner type of game. This means

that the game will forever generate small parts of Super Mario Bros-type of game

levels, while the player is traversing through the game level. This is done to provide

the player with an experience like that of playing an actual level of the game Super

Mario Bros, while also being able to adapt each part of the generated level to the

individual user’s needs. The game needs to include the following major components,

already discussed in section 3.3.1 and shown in Figure 3.1a, these are the following

elements:

• The basic mechanics for a platformer-type game like Super Mario Bros, as shown

in Table 2.2;

• Adaptive procedural content generation algorithm for a game of Super Mario

Bros based on training goal;

• A player model that can determine if the difficulty of the training goals is either

too high or too low;

• A way to generate training goals, based on player modeling;

• A way to evaluate the player based on the set training goals;

30

The first step of the design shown in Figure 3.1a is to check if the player has played

the game before. If that proves to be the case, the user’s data will be loaded in from

the previous session and the game will be started from where the player left off. If

the player has not played the game before, a new user will be created. The user will

then be taught the basic movement and mechanics of Super Mario Bros in generated

levels before adaptively targeting the player’s skill level. Teaching every user, the

base mechanics of platformer games is done to ensure that the user has the basic

game literacy required to play platformer games.

The second part of the design shown in Figure 3.1a is tracking player and level data.

User and level-related data will be tracked while the user is playing the game. This

data will include:

• Number of deaths caused by enemies;

• Number of deaths because of failed jumps;

• How long it took the user to complete a level;

• The average velocity with which the player is moving through the level;

• Current estimated difficulty score of a level; this influences the number of paths

and obstacles generated in the level;

• Training goals attached to the generated level;

• Play style of the user (speed running, collecting);

This data will then be used inside the evaluation step shown in Figure 3.1a to de-

termine whether the player has completed the level or not. The outcome of the

evaluation step is a true or false value that determines if the player has completed

the level and the assigned training goals to that level.

31

(a) Adaptive environment player model (b) Baseline adaptive environment version player
model

Figure 3.2: Adaptive vs baseline player model.

After the evaluation step, the player model is used to target the user’s difficulty score

and to determine which training goals should be assigned for the generation of the

next part of a level based on the outcome of the evaluation step. The flow of the

player model for our adaptive environment and a example of the baseline adaptive

environment can be seen in Figure 3.2a And Figure 3.2b. The baseline adaptive

environment has one flow either increase or decrease the difficulty score based on the

amount of player character deaths. While in the adaptive environment of our method

the player model can increase and decrease the difficulty score based on the players

performance. The player model can also take different types of actions to guide the

player in improving their game literacy. when the user has failed the training goal,

the player model can initiate one of the following actions:

32

1. Give the player a message on the screen with a tip on how to overcome an

obstacle and let the user try again with the same training goals;

2. Give the player a message on the screen with a tip on how to overcome an

obstacle and lower the difficulty of the training goals;

3. Give the player a message on the screen with a tip on how to overcome the

obstacle the player is currently facing;

4. Regenerate a level if a player is unable to complete a level and lower the difficulty

of the newly generated level;

When it is determined that a player can complete a level with reasonable ease, we can

increase the difficulty drastically for the next generated level. When it is determined

that a player can complete a level with some challenge and difficulty, we will only

increase the difficulty slightly for the next part of a generated level.

With the different actions in place that the player model can take based on the

user’s performance, we make sure user’s can never get fully stuck at a certain part in

a level, answering the question: What should be done with players that get stuck in a

certain part of a level? By faster increasing or decreasing the difficulty score based

on a user’s performance, we also reach content in the game faster that is around the

skill level of the player and thus getting the player closer to a flow state [25].

The training goals that the player is presented with are based on which mechan-

ics the player has failed, meaning that if the player has, for example, died multiple

times at the hands of a certain enemy, the chance of a level being generated with

that type of enemy would be really high. However, within the assignment step of

new training goals, all mechanics or types of enemies are possible, only the mechanics

that the player has failed more will have a higher probability of being generated in

the upcoming levels. This is done so that not all levels feel the same for the user.

The player model selects different types of obstacles or combined obstacles until it has

reached the player’s current difficulty score. The selected obstacles are based on the

training goals selected by the player model. Each obstacle in the game has a difficulty

score assigned to it, indicating how hard it would be for a player to overcome. The

procedural level generator is then responsible for the generation of levels with the

obstacles and training goals provided by the player model.

33

The last part of the design seen in Figure 3.1a is the generation of the levels. This will

be done using Parameterization-Notch-Random as a starting point for the generation

of game levels, where the parameters are based on the training goals. The follow-

ing parameters can be adjusted through the adaptive procedural content generation

algorithm:

• Number of chasms to generate;

• Number of enemies to generate;

• Which type of enemies are allowed to be generated

– Goomba;

– Shell;

– Flying shell;

• Number of platforms;

• Number of fire chains;

• Number of elevations (height of blocks) in the level;

• Difficulty score of the generated level, which influences the frequency of gener-

ated obstacles. It also leads to multiple ways through the levels [35] [47];

• Assigned training goals to the generated level;

The levels are generated in small parts called chunks. In the method chosen for this

research, two types of chunks are defined: the training chunk and the cool down

chunk. The training chunk is where the user will be challenged with certain training

goals based on the player’s skill level in playing platformer games targeted by the

player model. A training chunk can present the user only with one new mechanic in

each chunk. This creates an onboarding flow at the start of the game where the user

can learn the mechanics of a game of Super Mario Bros in sequential order instead

of having multiple new mechanics presented to the user all at once. The second type

is the cool down chunk: here, the user will not face any significant challenge in the

level. This is done for two reasons:

34

1. The first reason is that users can catch their breath and are not under continuous

pressure. This is based on the research done into flow in games [6] [25], which

states that a play under continuous pressure can have a negative impact on

keeping a player optimally engaged.

2. The second reason is that the cool-down chunks provide the possibility to run

calculations in the player model so that the user’s skill level can be targeted

before generating the next training part of the level.

Figure 3.3: Flow of generation of levels.

The cool-down chunks are significantly smaller than the training chunks. The reason

for this is that users might get bored if they are unchallenged for too long. Figure 3.3

shows an example of the general flow of the generation process of the level generator.

Figure 3.4 shows an example of a generated level containing some obstacles generated

based on training goals. In the top left corner of Figure 3.4, the training goals that

are presented in the generated level can be seen.

Figure 3.4: Example of training chunk.

After partaking in the experiment, the user will be asked some questions by filling in a

questionnaire. The questions in the questionnaire will focus on the generated levels of

the game and the player’s experience while playing the game. From the information

received from the experiment and the questionnaire, conclusions will be drawn to

determine whether the presented method increases the game literacy of the user and

to identify what the player liked about the method and what could be improved upon

this method in future research.

35

3.5 Implementation details

The method has three main goals. The first one is to teach the player the basic

mechanics of the game. The second one is to generate levels that target the user’s

current skill level in playing platformer games. The third one is to generate levels

that focus on mechanics the user has difficulty with overcoming while playing the

game.

This means this method needs to facilitate the way in which the user learns the

basic mechanics of the game. The method also requires some way to track player

data and to adapt the level generating process to target the user’s skill level based

on the tracked data. The method would need to decide what type of training goals

should be assigned to users so that they can increase their overall game literacy in

playing platformer games. The method should be able to generate new levels or parts

of levels called chunks based on the training goals and player’s skill level. This leads

to the following flow of our method:

1. Tracking player data;

2. Analyzing the player’s data to target the player’s skill level and training goals;

3. Lastly, generating a new section of a level based on the targeted player skill

level and training goals;

The result of each generated level should be a Mario clone game level that is the right

difficulty for an individual player and contains game mechanics the user has difficulty

overcoming while playing the game. The goal of playing these generated levels would

be to improve the player’s game literacy in playing platformer games.

3.5.1 Tracking player data

While the user is playing the game, data is tracked for each chunk the player is playing

by tracking in-game events. The data of the five last played chunks the user has played

is used to adapt to the player’s skill level and adapt training goals accordingly. We

use the last five chunks to determine the training goals and target the difficulty for the

user, since it would be inappropriate to consider mistakes, users made before them.

The information tracked for each chunk can be seen in Listing 3.1.

36

1 public class ChunkInformation

2 {

3 public int jumpDeaths = 0;

4 public int enemiesDeaths = 0;

5 public int goombaDeaths = 0;

6 public int shellDeaths = 0;

7 public int flyingShellDeaths = 0;

8 public int fireBarDeaths = 0;

9 public int timeCompleted;

10

11 public int totalCoinsInChunk = 0;

12 public int totalCoinsCollected = 0;

13

14 public int difficultyScore = 0;

15

16 public int index = 0;

17

18 public float averageVelocity = 0;

19

20 public bool completedChunk = false;

21 public bool outOfTime = false;

22

23 public List <TrainingType > tranningTypes;

24

25 public int GetTotalDeaths ()

26 {

27 return jumpDeaths + enemiesDeaths + fireBarDeaths;

28 }

29 }

Listing 3.1: Data tracked for each generated chunk.

A user’s data is also tracked over the duration of an entire gameplay session, to solve

the hot-cold problem when a user is playing the game for a second time and to start

them off using game-play info from previous sessions. This data is tracked for each

of the different versions of the game. The data tracked over an entire session can be

seen in Listing 3.2.

37

1 public class GlobalPlayerResults

2 {

3 public int HighestScoreVersionOne;

4 public int HighestScoreVersionTwo;

5

6 public int jumpDeathsVersionOne;

7 public int jumpDeathsVersionTwo;

8

9 public int EnemyDeathsVersionOne;

10 public int EnemyDeathsVersionTwo;

11

12 public int totalDeathsVersionOne;

13 public int totalDeathsVersionTwo;

14

15 public int fireBarDeathsVersionOne;

16 public int fireBarDeathsVersionTwo;

17

18 public int timeCompletionIntroductionVersionOne;

19 public int timeCompletionIntroductionVersionTwo;

20

21 public bool DidRegenerateLevelVersionOne;

22 public bool DidRegenerateLevelVersionTwo;

23 public bool DidFailTraingVersionOne;

24 public bool DidFailTrainingVersionTwo;

25

26 public bool DidSpeedRun;

27 public bool DidCollectAllCoins;

28 }

Listing 3.2: Global data tracked for each version of the game.

The global data includes the highest difficulty score reached by the user in each ver-

sion of the game. That data can be used as a starting point for the next session the

player will play. Data regarding the user’s gameplay style is also tracked, such as data

indicating whether the user is speed running (completing levels as fast as humanly

possible) or is behaving more like a collector collecting all the coins that are spread

out across the level.

The data in Listing 3.1 and Listing 3.2 will be used for the evaluation of the method,

after gathering all the results from the participants that partook in the experiment.

38

3.5.2 Player model

The purpose of the player model is to target training goals and determine a difficulty

score for an individual user based on previous results the user has achieved in levels

played beforehand. This is done using the tracked data specified in the previous

section. The player model has the following flow:

1. Evaluate the training goals;

2. Adapt difficulty score based on player skill;

3. Adapt training goals to player skill;

4. Generate new training goals;

The subsequent sections will go into more detail regarding the implementation of

these steps.

Evaluate training goals

After the completion of a generated part of a game level, the training goals associated

with that level are evaluated. This is done by checking if the user has completed the

level and the training goals associated with it. An example of how training goals are

evaluated can be seen in listing 3.3, which shows that the player is allowed to make at

least one mistake since any human can make an unintended error for several reasons.

Users are also allowed to make slightly more errors if they are attempting to speed

run [21] the levels, which is the concept of trying to complete the levels as fast as

possible, which also increases the chance of making mistakes.

1 private bool DidCompleteEnemiesTrainingGoal ()

2 {

3 var isSpeedRunning = _playerModel.IsSpeedRunning ();

4 var enemyDeaths = _playerModel.chunkInformation.enemiesDeaths;

5

6 if (isSpeedRunning == false && enemyDeaths > 1

7 || isSpeedRunning && enemyDeaths > 2)

8 {

9 return false;

10 }

11 return true;

12 }

Listing 3.3: Example evaluate training goal.

39

The completion of training goals for each mechanic or combined mechanic in the game

is also checked. A combined mechanic is a mechanic that consists of multiple training

goals that need to be overcome together. For example, the training goal of enemies

and platforms can be combined and would mean having an enemy that is patrolling

on top of a platform.

Difficulty score

Every game mechanic has a difficulty score attached to it. The difficulty score reflects

how difficult the mechanic is supposed to be for a player to overcome. The difficulty

score influences the following parameters during generation:

• The amount of game mechanics placed in the generated level;

• The type of mechanics that are selected; a higher difficulty score results in more

difficult mechanics being selected;

• The number of available paths the player can take in the level;

The difficulty scores for each mechanic can be seen in Table 3.2.

Training goals difficulty score

Training goals Difficulty score

Walking 1
Small jump 2
Medium Jump 2
Question Block 2
Chasm jump 6
Enemies 6
Platforming 6
Static obstacle 10

Table 3.2: Training goals and their difficulty score in a Super Mario Bros game.

The different mechanics can also be combined, which will result in a higher overall

difficulty score. An example of a combined mechanic with an increased overall dif-

ficulty score is one where enemies walk on a generated platform: this combines the

mechanic of enemies with the mechanic of platforming. The difficulty score for each

mechanic is determined based on the number of actions the player must take to over-

come it, and whether the action can result in a player’s death. For example, walking

only requires the player to perform one action, namely pressing one button. While

40

overcoming a chasm jump requires players to use their insight on when to jump and

multiple inputs from the user to overcome the mechanic, it is also possible for the

player to die if the user fails to complete the chasm jump mechanic.

41

Figures 3.5, 3.6, and 3.7 present the various levels generated with different difficulty

scores and show that higher difficulty scores introduce more obstacles in the level and

present different paths through the level because of the added verticality in the levels.

Figure 3.5: Example of level with difficulty score 1.

Figure 3.6: Example of level with difficulty score 20.

Figure 3.7: Example of level with difficulty score 40.

Listing 3.4 and 3.5 show the variables that influence the decision to increase or de-

crease the difficulty score. The difficulty score can be increased to a maximum of 100

and a minimum of one. Changing the difficulty occurs once a player has reached the

end of a part of a generated chunk (part of a level). If the user has completed the

training goals successfully, the increasing difficulty Listing 3.4, will be used; if the

user has failed a training goal, the decreased difficulty Listing 3.5 will be used.

42

1 private int IncreaseDifficulty(ChunkInformation chunk)

2 {

3 var increaseDifficulty = 0;

4 var totalDeaths = chunk.GetTotalDeaths ();

5

6 increaseDifficulty += chunk.collectedAllCoins ? 5 : 0;

7 increaseDifficulty += chunk.completedChunk ? 5 : 0;

8 increaseDifficulty += chunk.timeCompleted < 5 ? 5 : 0;

9 increaseDifficulty += totalDeaths == 0 ? 5 : 0;

10 // 5.86 max speed walking.

11 increaseDifficulty += chunk.averageVelocity > 5.86f

12 && totalDeaths < 3

13 && timeCompleted < 4

14 ? 10

15 : 0;

16

17 return increaseDifficulty;

18 }

Listing 3.4: What influences increasing the difficulty score.

1 private int DecreaseDifficulty(ChunkInformation chunk)

2 {

3 var decreaseDifficulty = 0;

4 var totalDeaths = chunk.GetTotalDeaths ();

5

6 decreaseDifficulty += chunk.completedChunk ? 0 : 5;

7 decreaseDifficulty += chunk.timeCompleted < 30 ? 0 : 5;

8 decreaseDifficulty += totalDeaths > 5 ? 10 : 0;

9

10 return decreaseDifficulty;

11 }

Listing 3.5: What influences decreasing the difficulty score.

The time it takes the user to complete the level, the average velocity with which the

player character moves through the level determines if the user is trying to complete

the levels as fast as possible, also known as speed running [21]. When the user is speed

running, the penalty for failing the training goal is less severe than if the player is

not speed running. When the user successfully completes the training goals attached

to a level and has not been speed running the level, it will result in a higher increase

in the difficulty score. The difficulty score will also increase more substantially if the

player has completed the level with zero player deaths and if the player has collected

all the collectibles (coins) and has thus taken more risk in completing the level. By

43

allowing different intervals in the amount of increase or decrease, of the difficulty

score we target the user’s skill level in playing platformer games faster than using

default intervals in the increase or decrease, of the difficulty score thus considering

the question: What should be done with a new player, whose proficiency in playing

platformer (Super Mario Bros type) games has not been determined? This is called

the hot cold problem. that was stated at the end of Section 3.3.1.

Adapt training goals and difficulty

Training goals are targeted by calculating a distribution based on the data specified in

the previous sections for each mechanic. This distribution is based on which mechanics

the user has failed in previously played parts of the game. For example, if a user has

died five times at the hand of enemies and died once because of falling through a

gap in the level, the training goal enemies will be five times more prevalent in the

distribution than the mechanic chasms (gaps in the world). There are lower and upper

bound values in the distribution between mechanics, so that at least every mechanic

has a chance to be present in a newly generated level. This is done so that the levels

have some randomization in them, so the user doesn’t get bored from continuously

playing the same type of level. From the created distribution of mechanics, we take x

random training goals until we have reached the targeted difficulty score for a specific

user. In listing 3.6 we can see a version of the flow discussed in the text above.

1 int currentDifficultyScore = 0;

2 List <TranningType > tranningTypes;

3

4 CalculateDistribution ();

5

6 while (difference > 0)

7 {

8 // Difference between targeted and current selected mechanics

difficulty.

9 var difference = targetDifficultyScore - currentDifficultyScore;

10 // Get one mechanic from the distribution.

11 var type = MechanicFromDistribution ();

12

13 tranningTypes.Add(type.tranningType);

14 currentDifficultyScore += type.difficultyScore;

15 }

16 return tranningTypes;

Listing 3.6: Simplified version of targeting training goals.

44

3.5.3 Adaptive procedural content generation

The adaptive procedural content generation is responsible for the generation of the

levels based on the training goals and difficulty score generated by the player model.

Each training goal corresponds with one or more obstacles/mechanics in the level.

The level generator generates an x by y grid and from there on generates obstacles

within the level based on parameters set by the player model. The level is generated

in the following stages:

1. Generate Floor;

2. Generate elevations in the level;

3. Generate chasms in the level;

4. Generate platforms in the level;

5. Generate enemies in the level;

6. Generate static obstacles in the level;

7. Generate Coins in the level;

Obstacles are placed in random positions within the grid based on some rules that

ensure that the level is playable and looks believable. Some exceptions are in place

for combined mechanics. For example, with the combined game mechanics of plat-

forming and enemies, firstly an attempt is made to find an existing platform created

in the level and an enemy is spawned on that already existing platform. The same is

done for the mechanic platforming and chasms: an attempt is made to find an already

generated platform in the level and a chasm is generated underneath the platform.

The adaptive procedural content generation is also responsible for making sure the

levels are playable. While generating obstacles randomly in the world, some rules

have been put in place to make sure the levels are playable. These rules are listed

below:

1. The difference in height between two neighboring tiles can be a maximum of

the highest jump height possible for the player character;

2. A chasm can only be a maximum of the furthest possible jump position in the

X direction by the player character;

45

3. The random obstacles being generated need to be within the grid size;

4. Each tile in the generated world can contain one mechanic, so we do not have

overlapping elements on the map;

Figure 3.8: Example of generated level.

Figure 3.8 shows the result of a generated level with a difficulty score of 40 from our

discussed method. This level contains the following training goals:

• Platform + enemies + chasm;

• Medium elevation;

• Medium Elevation + enemies;

• Chasm jumps;

To answer the last question stated at the end of Section 3.3.1, Can an adaptive pro-

cedural content generation game environment help in training players’ game literacy?

We will do a user-centered experiment comparing our adaptive procedural content

generation environment used for training the user in platformer game literacy against

a basic infinite Mario level generator with scaling difficulty. The results of this ex-

periment will be discussed in the next Section.

46

Chapter 4

Results

This chapter discusses the results of the developed games. To evaluate the games, a

user testing period was scheduled, during which the testers played the games and filled

out a questionnaire. In addition to the questionnaire, the users’ in-game behavior was

objectively analyzed from data gathered during the gaming session. The participants

were volunteers with different game experience backgrounds, the only condition being

that they had not played the game before, meaning testers who had played the game

during the development phase to help test the mechanics and the game’s difficulty

were not eligible.

4.1 Experiment process and goals

For our experiment we had two different types of environments, the first one being

the adaptive procedural content generation game training environment using adap-

tive methods to target training goals and the user’s difficulty score as discussed in

Section 3. The second one being a baseline infinite Mario runner that increases or

decreases difficulty with a standard interval and randomly selects obstacles based on

the user’s current difficulty score.

In the experiment, users first were presented with either our adaptive procedural

content generation game training environment or the baseline adaptive procedural

content generation training environment. Participants played only one of the two

environments, so the results would not be influenced by learning game literacy from

the other environment. Both the base Mario runner and the adaptive Mario runner

had two different types of training games that would each be played for 5 minutes.

47

Note that when we talk about environments we are talking about the adaptive or

baseline method implemented for the experiment. And when we are talking about

game version we mean the different version of a clone of the popular game Super

Mario Bros with the second version being slightly altered regarding the physics and

visuals.

Each different type of training game is slightly altered from the other version in

terms of physics and game visuals. The goal is to verify if a user can use the game

literacy learned from playing the first training game in another similar training game,

which is the second training game. The intention is to verify this by tracking game-

play and level generation data while the player is playing the game. After playing the

game, the participant is also asked to fill in a questionnaire regarding their experience

with previous versions of Super Mario Bros and the environment they just played.

4.2 Baseline adaptive environment

First we will show the results for the baseline environment of the game. This is the

version of the game that does not use adaptive methods to target training goals for

the users or try to target the user’s difficulty score. Instead, this version increases or

decreases difficulty with standard intervals based on if the user can complete the level

within 3 player character deaths. The baseline adaptive environment flow can also be

seen in Section 3 and illustrated in Appendix A.2 and Appendix A.3. While partici-

pants are playing the game, player and level generation data is tracked, as discussed

in section 3.5.1. Some results on individual user level can be found in Appendix A.7,

However some statements made in this section will be based on the data found in

Appendix A.7.

The highest difficulty score reached in each version of the game is tracked and con-

sidered. A participant can reach a minimum of one and a maximum score of one

hundred. The results can be seen in Table A.6. Table A.6 shows that overall, players

performed slightly better or slightly worse in the second version of the game compared

to the first version of the game. It is important to note that all players first played

version one and then version two. The results show that most users stay around the

same difficulty score between the two versions.

48

Version one and two statistics

Version Min Max Mean Median Mode SD VAR(x)

1 17 38 26 25.5 30 7 49
2 19 38 27.5 25 22 6.8 46

Table 4.1: Statistics of highest difficulty score between the two versions of the game.

A paired T-test based on the highest difficulty scores reached between the two versions

of the game was also done, using a paired T-test, since data of two groups contain-

ing the same population in different scenarios is being compared. The results of the

paired T-Test are: The two-tailed P value equals 0.2159. By conventional criteria, this

difference is considered to not be statistically significant. The T-test was calculated

using the mean presented in A.1. The mean of Group One minus Group Two equals

-1.67 95 percent confidence interval of this difference: From -4.46 to 1.13 Intermediate

values used in calculations: t = 1.313 and df = 11. The standard error of difference is

1.216. This means there is no clear difference in learning between session one and two.

Data regarding player character deaths was also tracked, which corresponds with

the different mechanics generated in a level for the user. Table 4.5 shows the results

related to causes of player character death and how many times they occurred.

Player character deaths

Version Total Enemies Jump Fireball

1 95 41 40 14
2 91 37 41 13

Table 4.2: The number of times the player character has died and to which mechanics.

The results show that around the same number of player deaths occurred in version

one compared to version two.

49

4.2.1 Survey

After playing both versions of the game, the participants were asked to fill in a ques-

tionnaire about their experience with the baseline procedural content generation game

training environment. The questionnaire was filled in anonymously by each partici-

pant.

The first question was: How much experience do you have in playing the game Super

Mario Bros? This question was asked to determine how skilled the overall group of

participants initially was in playing Super Mario Bros.

Figure 4.1: Played Super Mario before and I am an expert.

Figure 4.1 shows that two participants consider themselves experts in playing Super

Mario Games. Ten participants mention having played Super Mario Bros before and

consider themselves beginners. Zero participants stated that they had never played

Super Mario Bros before and are thus new to the game.

The second and third questions asked the participants how they felt about the diffi-

culty of the content at the beginning and the end of the game, using the five-point

Likert scale as measurement. Question two was phrased as follows: How challenging

would you describe the content at the beginning of the level? The result can be seen

in Figure 4.2.

50

Figure 4.2: Difficulty of the game at the start of the game stated by the participants.

The results show that for most of the participants, the difficulty level was seen as

being easy at the beginning of the game.

Question three was phrased as follows: How challenging would you describe the con-

tent at the end of the level? The result can be seen in Figure 4.3

Figure 4.3: Difficulty of the game at the end of the game stated by the participants.

The results show that one participant interpreted the content easy. Eighth partici-

pants found the challenges the game presented neutral in terms of difficulty. Three

participants considered the content as hard and zero participants considered the con-

tent as very hard.

The fourth question asked the participants about their initial impression of the game.

It focused on whether the player felt bored, neutral, or intensive during the game

51

play. This question was asked to ensure that the game does not fall into the boredom

or too intensive side of the flow channel. Question four was stated as follows: What

impression did the game have on you? The results can be seen in Figure 4.4.

Figure 4.4: Initial impression during gameplay following flow.

Out of the group of participants, six users felt neutral while playing the game. Five

users felt intensive during gameplay and one user felt bored while playing the game.

52

The fifth question focused on the feelings the game evoked in the users, and

specifically on whether the game evoked a negative, neutral, or positive feeling in

the user. Question five was phrased as follows: what feeling did the game give you?

Figure 4.5 shows the results.

Figure 4.5: Feeling game invoked on users.

The results show that in most participants, the game evoked a positive or neutral

feeling. One user experienced negative feeling during gameplay.

4.3 Adaptive training environment

Now we will show the results for the adaptive procedural content generation envi-

ronment as discussed in section 3. This is the environment that does use adaptive

methods to target training goals for the users and try to target the user’s difficulty

score in playing platformer games. The difficulty score is targeted by increasing or

decreasing the difficulty score based on the player’s performance in playing a game

level, instead of using default intervals for increasing or decreasing the difficulty score

after completion of a chunk (part of a level). While participants are playing the game,

player and level generation data is tracked, as discussed in section 3.5.1. Some results

on individual user level can be found in Appendix A.6, However some statements

made in this section will be based on the data found in Appendix A.6.

The highest difficulty score reached in each version of the game is tracked and con-

sidered. A participant can reach a minimum of one and a maximum score of one

hundred. The results can be seen in Table A.6. Table A.6 shows that overall, players

performed better in the second version of the game compared to the first version of

the game. It is important to note that all players first played version one and then

version two. The results show that only two users performed slightly worse in the

53

Version one and two statistics

Version Min Max Mean Median Mode SD VAR(x)

1 10 85 41 36 30 21.5 463
2 15 100 61 65 65.7 23 534

Table 4.3: Statistics of highest difficulty score between the two versions of the game.

second version of the game than in the first version, with a score of 80 in the first

version and 75 in the second version. There was one player who was able to reach

the highest difficulty score of 100.

A paired T-test based on the highest difficulty scores reached between the two versions

of the game was also done, using a paired T-test, since data of two groups containing

the same population in different scenarios is being compared. The results of the paired

T-Test are: The two-tailed P value equals 0.0001. By conventional criteria, this differ-

ence is considered to be statistically significant. The T-test was calculated using the

mean presented in A.1. The mean of Group One minus Group Two equals 18.76 95

percent confidence interval of this difference: From 4.78 to 32.74 Intermediate values

used in calculations: t = 2.7121 and df = 40. The standard error of difference is 6.918.

Both versions of the game start with an introduction to the game mechanics. This is

a small section of the game that is meant to teach the player the base mechanics of

the game. Table 4.4 shows the difference in statistics regarding the introduction. It

should be noted that the introduction for both games has the same flow.

Statistics base mechanics

Version Completed Failed Mean standard devi-
ation

1 21 1 67.1 98.3
2 22 0 36.0 15.2

Table 4.4: Statistics teaching base mechanics.

The results show that one participant was incapable of completing the introduction

in version one but was able to do so in version two of the game. The data also shows

that participants were faster in completing the tutorial in the second version of the

game. It also shows that there is a significant difference in the standard deviation

between the two versions. This is due to the range being higher in version one than

54

in version two since one player spent five minutes in the tutorial in version one.

Data regarding player character deaths was also tracked, which corresponds with the

training goals generated for the user. Table 4.5 shows the results related to causes of

player character death and how many times they occurred.

Player character deaths

Version Total Enemies Jump Fireball

1 196 104 79 13
2 224 100 106 18

Table 4.5: The number of times the player character has died and to which mechanics.

The results show that in the second version of the game more player character deaths

occurred than in the first version. It also shows that in the second version, more

players died from jumping and platforming than from enemies, while in version one

it is the other way around.

55

4.3.1 Survey

After playing both versions of the game, the participants were asked to fill in a ques-

tionnaire about their experience with the adaptive procedural content generation

game training environment. The questionnaire was filled in anonymously by each

participant.

The first question was: How much experience do you have in playing the game Super

Mario Bros? This question was asked to determine how skilled the overall group of

participants initially was in playing Super Mario Bros.

Figure 4.6: Played Super Mario before and I am an expert.

Figure 4.6 shows that 13 participants consider themselves experts in playing Super

Mario Games. Six participants mention having played Super Mario Bros before and

consider themselves beginners. Three participants stated that they had never played

Super Mario Bros before and are thus new to the game.

The second and third questions asked the participants how they felt about the diffi-

culty of the content at the beginning and the end of the game, using the five-point

Likert scale as measurement. Question two was phrased as follows: How challenging

would you describe the content at the beginning of the level? The result can be seen

in Figure 4.7

56

Figure 4.7: Difficulty of the game at the start of the game stated by the participants.

The results show that for most of the participants the difficulty level was seen as

being easy at the beginning of the game.

Question three was phrased as follows: How challenging would you describe the con-

tent at the end of the level? The result can be seen in Figure 4.8

Figure 4.8: Difficulty of the game at the end of the game stated by the participants.

The results show that the game can offer some difficulty to users of all skill levels.

The fourth question asked the participants about their initial impression of the game.

It focused on whether the player felt bored, neutral, or intensive during the game

play. This question was asked to ensure that the game does not fall into the boredom

or too intensive side of the flow channel. Question four was stated as follows: What

impression did the game have on you? The results can be seen in Figure 4.9.

57

Figure 4.9: Initial impression during gameplay following flow.

Out of the group of participants, fourteen users felt neutral while playing the game.

Seven users felt intensive during gameplay and one user felt bored while playing the

game.

The fifth question focused on the feelings the game evoked in the users, and specifi-

cally on whether the game evoked a negative, neutral, or positive feeling in the user.

Question five was phrased as follows: what feeling did the game give you? Figure 4.10

shows the results.

Figure 4.10: Feeling game invoked on users.

58

The results show that in most participants the game evoked a positive or neutral

feeling. One user experienced negative feeling during gameplay.

The last question the participants were required to fill in focused on whether the

user would be motivated to use adaptive procedural environment games to increase

their skills in playing video games. The question was phrased as follows: After playing

the game for a while, it uses adaptive methods to change the difficulty of the game

and suggest training goals in certain game mechanics the player can improve in, for

each individual participant. Would playing video games like the ones you just played

motivate you to increase your skills in playing video games? The results can be seen

in Figure 4.11.

Figure 4.11: Motivation to use adaptive game environments for increasing player skill.

The results show that one player noted that they felt it would neither discourage

them nor encourage them to use procedural game environments to increase their skill

in playing video games. The other 22 participants would be motivated a little to a

lot to use an adaptive procedural game environment to increase their skill in playing

video games.

4.4 Differences between baseline and adaptive ver-

sion

In this section we will present the major difference found in the results between the

base and adaptive game environments. When we are talking about environment we

talk about the base version and the adaptive version. When we are mentioning games

59

we are talking about the two different type of games in regards to physics and visuals

for both the environments.

4.4.1 Gameplay results differences

In Table 4.6 we can see the results for the base version marked with type b and adap-

tive version marked with type a regarding highest difficulty score reached between

the different games.

Base versus adaptive statistics

Type Version Min Max Mean Median Mode SD VAR(x)

b 1 17 38 26 25.5 30 7 49
b 2 19 38 27.5 25 22 6.8 46
a 1 10 85 41 36 30 21.5 463
a 2 15 100 61 65 65.7 23 534

Table 4.6: Statistics of highest difficulty score between the adaptive and base versions
of the game.

From the results we can notice that on average the adaptive version participants are

enabled to reach higher difficulty scores compared to the base version. We can also

notice that there is a big difference between the max score that has been reached

between both versions.

We did a T-test based on the highest score both for the base version and the two

sub games and the adaptive version and its two sub-games. The results for were the

adaptive version are 0.001 and the base version are 0.2159 we can see that there is

a significant difference in the adaptive version with it being lower then 0.005 with a

score of 0.001. While there is no significant different between the two games in the

base version with it being higher then 0.005 with a score of 0.2159. Indicating their

is a higher learn rate in the adaptive version in regard to reaching higher difficulty

scores.

4.4.2 Survey differences

In this section we will discuss the major differences between the base and adaptive

version in regards to the survey filled in by the participants.

60

The question regarding How challenging would you describe the con- tent at the end of

the level? we can see the results of the base (b) and adaptive (a) version in Table 4.7.

Base versus adaptive statistics

Type Very easy Easy Neutral Hard Very Hard

b 0 1 8 3 0
a 0 0 2 18 2

Table 4.7: Difference between difficulty.

The results show that more people experiences difficult content in the adaptive ver-

sion compared to the base version. While in the base version more people experienced

neutral difficulty content.

The question regarding What feeling did the game give you?we can see the results of

the base (b) and adaptive (a) version in Table 4.8.

Base versus adaptive statistics

Type Negative Neutral Positive

b 1 5 6
a 1 3 18

Table 4.8: Feeling the game invoked on participant adaptive vs baseline

From the results we can see more people have percentage wise a positive experience

in the adaptive version compared to the base version.

4.5 Difference between player types

In the game, each player is also assigned a variable that indicates whether the user

has a play style that corresponds with speed running, collector, or casual [2]. speed

runners being players who wish to complete the level as fast as possible, and collectors

being users willing to collect all the collectibles (coins) in the levels. Finally, casual

players are those who are neither collectors nor speed runners and are content with just

overcoming the challenges of the game. Table 4.9 shows the distribution of collectors,

speed runners and casuals detected in this manner during the experiment. The results

show that, on average, speed runners reach a higher difficulty score compared to

61

Difference between player types

Type Total Highest Score Total Deaths Failed Train-
ing goal

Casual 8 70 100 3
Collector 6 100 145 4
Speed runner 10 100 284 6
Combo 2 100 109 2

Table 4.9: Statistics for the different player Types presented in this method.

casuals and collectors. However, they also show that, on average, speed runners

make more mistakes in the game, based on the number of deaths and the training

goals they failed. This can also be seen on an individual player level in Appendix A.6.

Note that from Appendix A.6 shows that some players are marked as being both a

speed runner and a collector.

4.6 Player feedback

The last question was optional and was an open question where participants could

give their overall impression of the game. The question was phrased as follows: What

kind of impression gave the adaptive game? Most responses indicated that the game

had left a good overall impression. Below are some of the more noteworthy comments

received from the participants, which will be discussed in the next section.

1. On higher difficulty scores the difficulty can ramp up quite significantly even if

the difference in difficulty score is only slightly higher or lower.

2. I like being challenged in a game and made me want to perform better. When a

game is too easy, you are not really paying attention and just cruising through.

I think it will be important to find the right balance so that when it’s getting

too difficult it also adapts to making it easier.

3. Apart from that the impact of the adaptive difficulty is very hard to gauge

because I cannot make a comparison with how it would have played if it were

harder/easier, and I would not want to play a game like that multiple times

to find out. Because of this the message ”Good job! Difficulty increasing” felt

useless to me because I do not know what changes and games always get more

difficult the further you get into a level. The system would be better suited as

62

a subtle background thing that can alter difficulty without the player knowing

it.

4. In my opinion, it altered the level rather fast. In the first few stages that

wouldn’t be a problem. At the end however, it became pretty savage. Overall

it was a pretty nice way to get used to the pc controls instead of an old school

controller!

All the responses users gave to our game can be seen in Appendix A.1.

63

Chapter 5

Discussion

The results indicate that the chosen adaptive procedural content generation method

for training player skill can train people in game literacy, since there is a clear sta-

tistical difference in results between version one and version two of the game played

by the participants of this experiment. It can also be said that the game is able to

generate various levels with various amounts of difficulty. This supports the theory

that adaptive procedural content generation algorithms can help in training a per-

son’s game literacy.

It can also be noted from the results that the player character died more in the

second version of the game than in the first version in the adaptive environment.

This can be due to multiple reasons, one being that as people get further into the

game, they are challenged more at higher difficulty scores. It can also be that people

are more willing to take risks after getting used to the type of game they are playing

having already played version one of the game. It can also be noted that participants

who are willing to take more risks are able to get further into the game than people

that are less willing to take risks. The data supports this conclusion, since partici-

pants that are marked as speed runners reach higher difficulty scores than those who

are not. It should be noted that this can also be because participants that are speed

running are more familiar with Super Mario Bros games. This can, however, not be

determined from the data since this familiarity was not tracked in the game.

64

5.1 Difference between base and adaptive environ-

ment

For the experiment, we created two different types of procedural content generation

environments, the base and adaptive environment. The adaptive procedural content

generation game environment is as proposed in Section 3 that uses adaptive methods

to target the user’s difficulty score and generates levels based on training goals. The

second method being a base procedural content generation environment that increases

the difficulty of the game with default intervals after completing a section of a level.

For the adaptive environment there is a statistical difference for the highest score

reached between version one and version two of the game, while there is not one for

the base environment of the game. This indicates that the adaptive method is better

suited for training the user in game literacy for playing player former games than the

base environment.

This can be due to multiple reasons. One reason being the adaptive method uses

adaptive methods to target the user’s difficulty score faster. While the base version

slowly builds up the difficulty score with default intervals. This can lead to people

not reaching their skill level in the base version while they do in the adaptive version,

and thus not being challenged by the content of the game. This can also be supported

by seeing the results of the survey where participants mentioned that the difficulty of

the content for the adaptive environment was mostly considered hard at the end of

the game, while with the base version most participant mentioned neutral difficulty

in the game’s content.

A second reason can be that the adaptive version focuses on generation obstacles

in the level that the user has difficulty with overcoming, and thus increasing the part

of the user’s game literacy in which the user has the most to learn. While the base

version randomly generates obstacles in the game levels. The adaptive version also

presents the user with tips on how to overcome certain obstacles and adjust the dif-

ficulty of the content accordingly, while the base version does not.

The results indicate that our adaptive method is better suited at training a partici-

pant in game literacy than the base method. We should, consider that the five-minute

time frame could not be enough time for the base method to reach the difficulty level

65

of a certain participant’s skill in playing platformer games. This could also explain

the reason of higher skill level participants not increasing their game literacy between

version one and two of the game. However, we could also notice from the result that

players stuck on lower difficulty scores in the base environment did not improve much

or at all in their second gameplay session while users did in the adaptive environment.

We should also note that the different sizes of participants group could have played a

part in this, and a large population for both environments might give slightly different

results.

5.2 Generalisation of the method to other games

In this section we will discuss how parts of our method could be adapted in to different

games.

1. Presenting different mechanics one by one is a good way of teaching someone

the different mechanics in a game. In our adaptive method, each generated

chunk can only present one new mechanic or one new combined mechanics to

the player. This allows for the player to get a gentle introduction to the new

mechanics of the game and how to overcome those mechanics.

2. Adapting the difficulty to the user’s skill level or slightly above can increase the

learning rate for a user, as can be seen from the results of this study. As we can

see, a single discrete parameter controlling the type and amount of obstacle in

a level can be a successful way of doing it.

3. Allowing a player model to give the user feedback while playing the game can

be an effective way to instruct users in how to overcome certain challenges they

otherwise would be stuck at.

4. Targeting the user’s difficulty score in playing a certain game is an effective

way of getting the user fast to a point in the game they can increase that

game literacy in playing a certain video game. We can see this from our study

where users that did not have the targeting of difficulty score in the baseline

version would earlier be bored in playing the game due to the lack of challenging

content.

The downside of implementing our method for other games is that the developer needs

to be well learned in the mechanics of the game and how the mechanics influence the

difficulty in the game.

66

5.3 Generation of the results to other games

In this section, we discuss some results and observations done during the experiment,

that could also be of use when developing games.

Results from the questionnaire indicate that fast alteration of difficulty can lead to

unreal feeling for playing video-games. For our goal, that was not much of a prob-

lem, since our goal was to create an adaptive game environment with the use case of

training the user’s game literacy. However, if you want to use our adaptive method

solely for the use case of creating a game with difficulty scaling, it might be smart to

consider smoothing the curve for increasing and decreasing the difficulty.

Results also indicate that providing the user only with one new game mechanic at

a time has a positive influence on the learning rate, especially in the early part of

the game. Results also indicate the opposite, providing the player with more than

one new mechanic at a time can significantly slow down the learning process, since

in most cases it is harder to overcome parts of a level that introduce more than one

mechanic at once. In the baseline environment where it could happen that one or

more new mechanic was introduced, players got stuck longer than in our adaptive

environment that would introduce the game mechanics one by one.

From the results, we could also notice that people are more tolerant to content that

was slightly above their skill level than game content that was slightly below their

skill level. Content that was slightly below their skill level specially for larger number

of times could lead to an increase in boredom and in turn would lead to less effective

learning rate.

5.4 Participants’ feedback

The last question in the questionnaire was an open question to the participants, asking

them to share their experience of playing the game. In this section, some remarks

made by the participants are discussed. Overall, the feedback of participants was

positive for the method that was created. All feedback given by the participants can

be read in Appendix A.1.

67

5.4.1 Learning keyboard and mouse controls

Some participants noted that they only play games on the console with a controller

as input device. Some of those participants noted that the method presented in this

thesis is a good way of learning how to use computer controls using a keyboard and

mouse for playing video-games and thus gain game literacy in playing video games

on a computer.

5.4.2 Method as a background system

One participant stated that the method used in the experiment would be better

suited as a background system. Meaning that the user doesn’t notice that there is

a system active altering the difficulty of the game. In a game developed in normal

circumstances this would be the most desirable option, since the method would then

be less obvious for the players, but in this case the focus was on testing the system

and specifically on using it as a tool for training a player’s game literacy.

5.4.3 Fast alteration of difficulty

One person stated that the level was altered a little too fast; in the case of this

experiment, this was done to investigate in an explorative manner the game mechanics

or combinations of game mechanics that an individual player could be trained in.

5.4.4 Difficulty score version one and two

The results show that two people performed worse in version two of the game than in

version one. The two participants that performed worse in version two of the game

than in version one, were on higher difficulty scores. An explanation for this can

be that on higher difficulty levels, the randomization part of the procedural content

generation algorithm has a higher impact on the difficulty of the generated levels than

it has on lower difficulty score. This is because the algorithm needs to place more

obstacles in the world at random positions. The random placement of obstacles in

the game level was not considered for the calculation of the difficulty score of a level.

The problem with this is that different obstacles next to each other or combined can

be considerably more difficult to overcome than other combinations of obstacles.

It should also be noted that the difference in the difficulty score was only a score

of five: the users scored 80 in the first version and 75 in the second version of the

68

game. It should be noted that in future experiments it would be better to consider

the position in the world of already generated obstacles within the procedural content

generation algorithm and the calculation of the difficulty score. The problem stated

before can also explain why some participants mentioned in the questionnaire that

on higher difficulty scores, the levels can sometimes become drastically more difficult.

5.4.5 Higher difficulty scores can result in generation of un-

realistic levels

One participant noted that sometimes on high difficulty scores, the level can look

slightly random or unrealistic. This has two reasons, reason one being if a participant

fails one type of training goal a lot, the adaptive procedural content generation algo-

rithm will focus on generating levels with that training goal a lot. There are upper

bound and lower bounds in place for the generation of obstacles. There is however a

small chance it would for example only generate enemies if the player has only died to

enemies. A part of a level only containing for example 20 enemies in it and nothing

else can feel like an unrealistic level to the user. The second reason being the random

placement of obstacle within a chunk (small part of a level) one part of the chunk

might have considerably more obstacles while another part of the chunk might have

no obstacles at all.

5.5 Limitations

One of the limitations of these experiments is that it is difficult to determine whether

the chosen method would work for a different type of game genres, since the experi-

ment was limited to one game genre, namely platformer games. It is also not possible

to determine whether casual players would perform better than players that employ

speed running since the gameplay time was limited to five minutes a session and the

participants that used speed running would reach the difficult parts of the generated

levels faster than for example a casual or collector type of player. Finally, since only

a small group of the participants had never played Mario before, it is not possible to

determine whether the chosen method is able to teach a person the basic mechan-

ics of the game. However, the two participants that were beginners were both able

to complete the game’s introduction, which teaches the players the game mechan-

69

ics. One person was already able to do this when playing the first version and the

other participant was able to complete it while playing the second version of the game.

One of the limitations of the system was that previously generated obstacles in the

game level were not considered. For higher difficulties, not considering previously

randomly placed objects in the level could lead to a drastic increase in the difficulty

of the generated levels.

70

Chapter 6

Conclusion

The goal of this research was to create a method used for adaptive procedural content

generation for the use case of training the user in getting basic game literacy and to

determine which concept would be most conducive to achieving competence in playing

a game. This was done by letting users play procedural content generated game levels

in a Super Mario Bros [28] clone. To reach this main research goal, some sub ques-

tions had to be answered.

The first sub-question is: how does a user acquire game literacy? Which is the

concept most conducive to achieving competence in playing a game? The user needs

to learn the ability to play and analyze a level of the game Super Mario Bros. This

means the user needs to learn the base mechanics of a game of Super Mario Bros

and be enabled to execute them. This is known as basic game literacy. The user also

needs to learn how to overcome different combined obstacles in the game with the

game mechanics learned from the user’s own perception. This is known as advanced

literacy. Each mechanic can be associated with a training goal; if a player can over-

come all the training goals the player can be said to have reached basic game literacy.

If the player can overcome differently combined training goals to a certain level of

proficiency, the player can be said to have reached advanced game literacy, since the

player can now identify which action to use to overcome obstacles in the game.

The second sub-question is: how can a user be kept engaged in the learning pro-

cess and be prevented from wanting to quit? For this we found the concept of flow

which means keeping players optimally engaged in the content they are currently ex-

periencing. This means that the game needs to offer some challenge to the player but

should also have certain moments in the game where the player can relax a bit.

71

Adaptive methods and player modeling may be used to get people into the flow

state. Player modeling is the study of computational models of users in games. This

means the adjustment of the game’s content based on the needs of individual players.

To adjust the game’s content, a method called adaptive procedural content generation

can be used. Procedural content generation is a method of creating data algorithmi-

cally. In the game Super Mario Bros, this would mean generating challenging game

levels for the user to play. The adaptive part is changing the level of difficulty and

training goals of the game based on the performance of the individual user in previous

levels. The player model can then determine if the difficulty of the generated levels

need to be changed or the training goals need to be adjusted based on the tracked data.

The third sub-question is: To what extent is an adaptive procedural content gen-

eration system able to train the ”platformer” game literacy of a user? To answer this

research question we did a user-centered experiment in two different types of procedu-

ral content generation environments. The first method being a adaptive procedural

content generation game environment as proposed in Section 3 that uses adaptive

methods to target the users difficulty score and generates levels based on training

goals. The second method being a base procedural content generation environment

that increases the difficulty of the game with default intervals after completing a sec-

tion of a level.

Based on the previous answered research questions we found that an adaptive proce-

dural content generation algorithm needs three major components as listed below:

1. Collect player and level generation data;

2. Use the collected data in a player model to determine training goals and a

difficulty score for the user;

3. Adapt the procedural generation algorithm to the needs of an individual user

based on the outcome of the player model;

The game that was created to test this method was a clone of the popular game

Super Mario Bros. For this version of Super Mario Bros, parts (chunks) of a game

level were generated while the player was playing the game. After each completed

chunk, the player model would check if it would have to change the difficulty score to

target the player skill better based on the player’s past performance. It would also

72

check the performance of the user over the last five played chunks, to see if the user

had difficulty overcoming some mechanics. If the player model determined that some

mechanics were harder for the user than others, it would lean more to generating

levels with the mechanics the user had problems overcoming. These mechanics are

referred to in this research as training goals. Once the difficulty level and training

goals were set, the procedural content generation algorithm called Parameterized-

Random-Notch was responsible for taking this information and generating believable

and playable Super Mario Bros game levels. Parameterized-Random-Notch works by

generating obstacles on an x by y grid, where each obstacle generated can be con-

trolled by setting parameters based on the game mechanics of the game like number

of enemies, number of platforms and number of chasms.

An experiment was conducted with 34 participants. In this experiment, participants

were presented with either the adaptive environment as presented in Section 3 or

the baseline adaptive environment of a Super Mario Bros game clone as presented

in Section 3. The participants played two games created for each version of their

assigned procedural content generation game environment that had been created for

this purpose. Each version of the game was slightly altered from the other version

in terms of physics and game visuals. The games are slightly different from each

other, making it possible to verify if a user can use the game literacy learned from

playing the first version of the game in another similar game, which is version two.

The participants were also asked to fill in a questionnaire regarding their experience

with the game.

Results indicate that the adaptive method is better suited in training the user in

game literacy regarding platformer games than the base procedural content genera-

tion method. The adaptive method also showed that it can generate various game

levels of the game Super Mario Bros of various difficulty for different kind of players

and their skill level in playing video games. This supports the theory that adaptive

procedural content generation algorithms can help in training a person’s game literacy.

Finally, since only a small group of the participants had never played Mario before, it

is not possible to determine whether the chosen method is able to teach a person the

basic mechanics of the game. However, the two participants that were beginners were

both able to complete the game’s introduction, which teaches the players the game

mechanics. One person was already able to do this when playing the first version and

73

the other participant was able to complete it while playing the second version of the

game.

One of the downsides of the experiment is that it has been tested on one specific

game genre, namely platformer games. For future work it would be interesting to

test the method on one or more different types of game genres. This would be useful

to determine whether the method can be used with several types of game genres. An-

other aspect that could be improved is to take into consideration previously placed

obstacles in the world when calculating the difficulty score. For the experiment pre-

sented in this paper, this was not done and for higher difficulties, this could lead

to a sometimes-drastic increase in the difficulty of the generated levels, because of

the randomized placement of obstacles in the world. One way to solve this could be

by limiting the number of obstacles that can be placed within an x by y space and

increasing this limit when the difficulty score of the user increases.

74

Appendix A

Additional Information

A.1 Statements made by participants

• nice game.

• funny and challenging

• Overall: good impression.

• Got harder as i played better

• Some surprising spawns vs the original

• Nice, been familiar with the game style.

• Very challenging, wanted to play again to get a better highscore!

• Seeing the increase in difficulty gave a feeling of satisfaction and challenge.

Interesting to play.

• At the end, the map felt more unnatural. Especially in version 2, it didn’t look

and feel like a regular mario level.

• In my opinion, it altered the level somewhat fast. In the first few stages that

wouldn’t be a problem. At the end however, it became pretty savage. Overall

it was a pretty nice way to get used to the pc controls instead of an old school

controller!

• got a good quick impression of the game, it’s easy to play in the beginning and

start with the basics. It interact how you play the game. When you get further

75

in the game and completed you’re goals the game will be harder so that you

can increase you’re skills.

• like being challenged in a game so the change in difficulty got me more into the

game and made me want to perform better. When a game is too easy you’re not

really paying attention and just cruising through. I think it will be important

to find the right balance when it’s getting too difficult that it also adapts to

making it easier.

• Mario felt awkward to control because his movement speed scales while I am

used to Mario having a constant movement speed. Apart from that the impact of

the adaptive difficulty is very hard to gauge because I can’t make a comparison

with how it would’ve played if it was harder/easier and I wouldn’t want to

play a game like that multiple times to find out. Because of this the message

”Good job! Difficulty increasing” felt useless to me because I don’t know what

it changes and games pretty much always get more difficult the further you get

into a level. Maybe the system would be better suited as a subtle background

thing that can alter difficulty without the player knowing?

• It’s fun to see that the difficulty level gets increased. Makes it exciting to see

what is coming next.

• Nice.

• I got a very pleasant feeling playing the game.

76

A.2 Base version overarching design

Figure A.1: Base version overarching design

77

A.3 Base version player model design

Figure A.2: Base version player model

78

A.4 Adaptive version overarching design

Figure A.3: Overarching design

79

A.5 Adaptive version player model design

Figure A.4: Player model design

80

A.6 Adaptive individual player results

User Version Intro completed Highest score Speed runner Collector

1 1 true 55 false false

1 2 true 65 false false

2 1 true 30 false false

2 2 true 45 false false

3 1 true 30 false false

3 2 true 40 false false

4 1 true 10 false false

4 2 true 15 false false

5 1 true 80 true false

5 2 true 75 true false

6 1 true 45 true false

6 2 true 50 true false

7 1 true 60 true false

7 2 true 90 true false

8 1 true 20 false false

8 2 true 25 false false

9 1 true 30 false false

9 2 true 70 false false

10 1 true 36 true false

10 1 true 80 true false

11 1 true 40 true false

11 2 true 70 true false

12 1 false 10 false true

12 2 true 25 false true

13 1 true 25 false false

13 2 true 35 false false

14 1 true 40 true false

14 2 true 65 true false

15 1 true 60 true false

15 2 true 90 true false

16 1 true 85 true true

16 2 true 100 true true

Continued on next page

81

Table A.0 – continued from previous page

User Version Intro completed Highest score Speed runner Collector

17 1 true 80 true true

17 2 true 70 true true

18 1 true 30 false false

18 2 true 60 false false

19 1 true 60 true false

19 2 true 80 true false

20 1 true 15 false true

20 2 true 50 false true

21 1 true 35 false true

21 2 true 65 false true

22 1 true 30 false true

22 2 true 55 false true

82

A.7 Base individual player results

User Version Intro completed Highest score Speed runner Collector

1 1 true 25 false false

1 2 true 28 false false

2 1 true 22 false false

2 2 true 22 false false

3 1 true 28 false true

3 2 true 22 false true

4 1 true 21 false false

4 2 true 19 false false

5 1 true 38 false false

5 2 true 38 false false

6 1 true 30 false false

6 2 true 38 false false

7 1 true 26 false false

7 2 true 24 false false

8 1 true 20 false false

8 2 true 23 false false

9 1 true 30 false false

9 2 true 34 false false

10 1 true 17 false false

10 1 true 23 false false

11 1 true 18 false false

11 2 true 26 false false

12 1 false 38 true false

12 2 true 36 true false

83

Bibliography

[1] Lisa Feldman Barrett. Valence focus and arousal focus: Individual differences

in the structure of affective experience. In Journal of Personality and Social

Psychology, pages 153–166, 1995.

[2] Richard Bartle. Hearts, clubs, diamonds, spades: Players who suit muds. Inter-

action design foundation, 1996.

[3] Noor Shaker; Julian Togelius; Georgios N. Yannakakis; Ben Weber; Tomoyuki

Shimizu; Tomonori Hashiyama; Nathan Sorenson; Philippe Pasquier; Peter

Mawhorter; Glen Takahashi; Gillian Smith; Robin Baumgarten. The 2010 mario

ai championship: Level generation track. In IEEE Transactions on Computa-

tional Intelligence and AI in Games, pages 332–347, 2011.

[4] D. Braben and I Bell. Elite (bbc micro). In Acornsoft, 1984.

[5] Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M. Lucas, Pe-

ter I. Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon

Samothrakis, and Simon Colton. A survey of monte carlo tree search methods.

IEEE Transactions on Computational Intelligence and AI in Games, 4(1):1–43,

2012.

[6] Jenova Chen. Flow in games(and everything else). Communications of the ACM,

2013.

[7] Dr Natalie Coyle. The psychology of rage quitting. http://platinumparagon.

info/psychology-of-rage-quitting/, 2018. (accessed: 18.10.2021).

[8] Arsenault Dominic. Video game genre, evolution and innovation. Eludamos:

journal for computer game culture, 3:149–176, 2009.

[9] Susan L. Epstein. Towards an ideal trainer. Mach. Learn., June 1994.

http://platinumparagon.info/psychology-of-rage-quitting/
http://platinumparagon.info/psychology-of-rage-quitting/

84

[10] Susan L. Epstein. Learning to play expertly: A tutorial on hoyle. ””, January

2001.

[11] Joshua Gad. The power of game literacy. superjumpmagazine, 2019.

[12] James Paul Gee. What Video Games Have to Teach Us About Learning and

Literacy. St. Martin’s Griffin, 2007.

[13] Sander Bakkes; Shimon Whiteson; Guangliang Li; George Viorel; Visniuc; Efs-

tathios Charitos; Norbert Heijne and Arjen Swellengrebel. Challenge balancing

for personalised game spaces. In IEEE Games Media Entertainment, 2014.

[14] John H Holland. Genetic algorithms. Scientific american, 267(1):66–73, 1992.

[15] Danial Hooshyar, Moslem Yousef, and Heuiseok Lim. A systematic review of

data-driven approaches in player modeling of educational games. In Artificial

Intelligence Review volume 52 2017, 2017.

[16] Ricardo Lopes; Ken Hilf; Luke Jayapalan and Rafael Bidarra. Mobile adap-

tive procedural content generation. In Proceedings of the fourth workshop on

Procedural Content Generation in Games, 2013.

[17] Sandra Sampayo Vargas; Chris J.Cope; Zhen He; Graeme J.Byrne. The effec-

tiveness of adaptive difficulty adjustments on students’ motivation and learning

in an educational computer game. In Computers & Education Volume 69, pages

Pages 452–462, 2013.

[18] Jdaster64. A complete guide to super mario bros physics engine. https:

//web.archive.org/web/20130807122227/http://i276.photobucket.com/

albums/kk21/jdaster64/smb_playerphysics.png. (accessed: 28.02.2022).

[19] Michael Cerny Green; Luvneesh Mugrai; Ahmed Khalifa and Julian Togelius.

Mario level generation from mechanics using scene stitching. In Foundations of

Digital Games, September 2020, pages 266–274, 2020.

[20] Darryl Charles; Michael McNeill; Moira McAlister; Michaela Black; Adrian

Moore; Karl Stringer; Julian Kücklich; and Aphra Kerr. Player-centred game

design: Player modelling and adaptive digital games. In Digital Games Research

Group, 2005.

[21] Manuel Lafond. The complexity of speedrunning video games. In 9th Interna-

tional Conference on Fun with Algorithms, pages 27:1–27:19, 2018.

https://web.archive.org/web/20130807122227/http://i276.photobucket.com/albums/kk21/jdaster64/smb_playerphysics.png
https://web.archive.org/web/20130807122227/http://i276.photobucket.com/albums/kk21/jdaster64/smb_playerphysics.png
https://web.archive.org/web/20130807122227/http://i276.photobucket.com/albums/kk21/jdaster64/smb_playerphysics.png

85

[22] Georgios N. Yannakakis; Pieter Spronck; Daniele Loiacono and Elisabeth Andre.

Player modeling. Artificial and Computational Intelligence in Games, 2013.

[23] Marlos C Machado, Fantini Eduardo P.C., and Luiz Chaimowicz. Player mod-

eling: Towards a common taxonomy. In 2011 16th International Conference on

Computer Games (CGAMES), pages 50–57, 2011.

[24] Thomas Malone. What makes things fun to learn? a study of intrinsically

motivating computer games. In Pipeline, 1981.

[25] Csikszentmihalyi Mihaly. Flow: The psychology of optimal experience. Harper

& Row New York, 1990.

[26] Olana Missura and Thomas Gartner. Player modeling for intelligent difficulty

adjustment. In International Conference on Discovery Science, 2015.

[27] Olana Missura, Thomas, and Gartner. Player modeling for intelligent difficulty

adjustment. In International Conference on Discovery Science, pages 197–211,

2009.

[28] Shigeru Miyamoto. Super mario bros. In Nintendo, 1985.

[29] Berndt Müller, Joachim Reinhardt, and Michael T Strickland. Neural networks:

an introduction. Springer Science & Business Media, 1995.

[30] Nintendo. Super mario maker. In Nintendo, 2015.

[31] Sérgio Oliveira and Lúıs Magalhães. Adaptive content generation for games. In

Encontro Português de Computação Gráfica e Interação, 2017.

[32] Markus Persson. Infinite mario bros. https://creatorcsie.github.io/

NotchGame/Applet&JNLP/Mario/. (accessed: 22.11.2021).

[33] Erik Andersen Eleanor O’Rourke; Yun-En Liu; Richard Snider; Jeff Lowdermilk;

David Truong; Seth Cooper; Zoran Popovic. The impact of tutorials on games

of varying complexity. In Department of Computer Science & Engineering, Uni-

versity of Washington, 2012.

[34] Elena Popovici, Anthony Bucci, R Paul Wiegand, and Edwin D De Jong. Co-

evolutionary principles., 2012.

https://creatorcsie.github.io/NotchGame/Applet&JNLP/Mario/
https://creatorcsie.github.io/NotchGame/Applet&JNLP/Mario/

86

[35] Ben Weber; Robert Quigley. The mario game that gets harder the better you

are. https://www.themarysue.com/infinite-adaptive-mario/. (accessed:

01.03.2022).

[36] Noor Shaker and Georgios Yannakakis. Feature analysis for modeling game

content quality. In Computational Intelligence and Games (CIG) 2011 IEEE

Conference, pages 266–274, 2011.

[37] Steve Dahlskog; Britton Horn; Noor Shaker and Gillian Smith. A comparative

evaluation of procedural level generators in the mario ai framework. In Founda-

tions of Digital Games, 04 2014.

[38] Adam M. Smith; Chris Lewis; Kenneth Hullett; Gillian Smith and Anne Sullivan.

An inclusive view of player modeling. In Proceedings of the 6th international

conference on foundation of digital games, pages 301–303, 2011.

[39] Gillian Smith. An analog history of procedural content generation. In FDG,

2015.

[40] Pieter Spronck; Ida Sprinkhuizen-Kuyper and Eric Postma. Difficulty scaling of

game ai. In Proceedings of the 5th International Conference on Intelligent Games

and Simulation, 2004.

[41] Paris Mavromoustakos Blom; Sander Bakkes; Pieter Spronck. Modeling and

adjusting in-game difficulty based on facial expression analysis. Entertainment

Computing, 31, 2019.

[42] Sander Bakkes; Chek Tien Tan and Yusuf Pisan. Personalised gaming: a moti-

vation and overview of literature. In Proceedings of The 8th Australasian Con-

ference on Interactive Entertainment: Playing the System, pages 1–10, 2012.

[43] Christopher Pedersen; Julian Togelius and Georgios Yannakakis. Modeling player

experience for content creation. In IEEE Transactions on Computational Intel-

ligence and AI in Games 2, pages 54–67, 2010.

[44] Georgios Yannakakis; Julian Togelius and Chris Pedersen. Modeling player ex-

perience in super mario bros. In CIG2009 - 2009 IEEE Symposium on Compu-

tational Intelligence and Games, 2009.

[45] S. Karakovskiy; Julian Togelius; and Robin Baumgarten. The 2009 mario ai

competition. In Evolutionary Computation (CEC), 2010 IEEE Congress on,

2009.

https://www.themarysue.com/infinite-adaptive-mario/

87

[46] Zamel V and Spack R. Negotiating Academic Literacies Teaching and Learning

Across Languages and Cultures. Routledge, 1998.

[47] Ben Weber. The mario game that gets harder the better you are.

http://alumni.soe.ucsc.edu/~bweber/dokuwiki/doku.php?id=infinite_

adaptive_mario. (accessed: 01.03.2022).

[48] Geogios N. Yannakakis. Game ai revisited. In Proceedings of the 9th conference

on Computing Frontiers, pages 285, 292, 2012.

[49] Georgios Yannakakis and Julian Togelius. Experience-driven procedural content

generation. In IEEE Transactions on Affective Computing, 2011.

http://alumni.soe.ucsc.edu/~bweber/dokuwiki/doku.php?id=infinite_adaptive_mario
http://alumni.soe.ucsc.edu/~bweber/dokuwiki/doku.php?id=infinite_adaptive_mario

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Listings
	Acknowledgements
	Introduction
	Game Literary and Video Games
	Procedural content generation
	Rage quitting
	Research question

	Related Work
	Game literacy
	Mechanics
	Game and Level design theory
	Player modeling
	Procedural content generation for Super Mario Bros
	Procedural content generation and difficulty adjustment
	Evaluation of gameplay agents

	Method
	Answering research question one
	Answering research question two
	Answering research question three
	Major components of an adaptive environment

	Experiment
	Implementation details
	Tracking player data
	Player model
	Adaptive procedural content generation

	Results
	Experiment process and goals
	Baseline adaptive environment
	Survey

	Adaptive training environment
	Survey

	Differences between baseline and adaptive version
	Gameplay results differences
	Survey differences

	Difference between player types
	Player feedback

	Discussion
	Difference between base and adaptive environment
	Generalisation of the method to other games
	Generation of the results to other games
	Participants' feedback
	Learning keyboard and mouse controls
	Method as a background system
	Fast alteration of difficulty
	Difficulty score version one and two
	Higher difficulty scores can result in generation of unrealistic levels

	Limitations

	Conclusion
	Additional Information
	Statements made by participants
	Base version overarching design
	Base version player model design
	Adaptive version overarching design
	Adaptive version player model design
	Adaptive individual player results
	Base individual player results

	Bibliography

