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Abstract — Respiratory and bulk motion in abdominal 
PET studies lead to blurring of PET reconstructions. As a 
result, lesion volumes tend to be overestimated, while 
tracer uptake is underestimated and small lesions become 
undetectable. Motion correction may be used to correct 
PET images that would otherwise be blurred by motion. The 
purpose of this study is to investigate the feasibility of 
using MR-based motion tracking for motion correction on 
abdominal PET images acquired with PET/MRI. To study 
this, motion vector fields were generated using the novel 
MR sequence rCASPR. These vector fields were 
subsequently applied to simulated PET data acquired with 
the digital XCAT phantom. Motion correction of the 
reconstructions was done using the CASToR 
reconstruction framework complemented with a motion 
correction method  based on deformation vector fields. The 
influence of only using either respiratory or bulk motion 
correction was studied on a simulation with both 
respiratory and bulk motion. The feasibility of using MR-
based motion tracking with the rCASPR technique for 
motion correction of PET simulations was shown. Higher 
CRC values, CNR values and maximum uptake values and 
lower lesion volumes were found for the reconstruction 
with full motion correction than for the reconstruction 
without motion correction. Moreover, the relative impact of 
bulk motion correction versus respiratory motion 
correction could be assessed in this PET simulation 
containing both respiratory and bulk motion.  

 
Index Terms — Motion correction, PET/MRI 

I. INTRODUCTION 

Positron emission tomography (PET) is an imaging modality 

which is commonly used in oncology. In PET studies, a 

positron emitting tracer is injected into a patient. These tracers 

undergo radioactive decay, which results in the emission of a 

positron. Combined with an electron, annihilation takes place 

resulting in two gamma photons with a 180˚ opposing direction. 

If these photons are detected nearly simultaneously (i.e. within 

a small time window) in two opposing detectors, this is stored 

as a coincidence, which is used for the reconstruction of the 

PET image. Depending on the tracer, several physiological 

processes can be imaged using PET. Most common in oncology 

is the use of 18-fluorodeoxyglucose (FDG), which can be used 

to study the glucose metabolism (Papathanassiou et al. 2009).  

Abdominal PET images may be subject to respiratory motion, 

which affects the accuracy of the detection of lesions on PET 

images. Due to the blurring caused by motion, the volume of 

lesions tends to be overestimated, while the tracer uptake is 

underestimated. Moreover, the visibility of small lesions is 
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reduced on images affected by motion (Catana, 2015). Apart 

from respiratory motion, blurring may occur as a result of 

repositioning of the patient. This is mainly seen in pediatric 

PET studies if the patient has not been anesthetized to prevent 

them from moving.  

This study focuses on correcting PET images for liver motion. 

In adults, the liver motion during free breathing is typically in 

the order of 10 mm in the left-right and anterior-posterior 

direction, and 10-26 mm in the feet-head direction. During deep 

breathing, the liver can move up to 75 mm in the feet-head 

direction. These motions are mainly rigid, but small nonrigid 

deformations of up to 10 mm have been reported as well 

(Catana, 2015). Considering that the resolution of PET studies 

is often 3-5 mm, this motion is likely to cause blurring in the 

images.  

Currently, Oncofreeze AI, developed by Siemens 

Healthineers, can be used to correct for respiratory motion 

without the need of an external gating device. Based on the raw 

PET list-mode data, it derives a respiratory signal which is used 

for respiratory gating. Subsequently, motion is estimated from 

the gated PET images and this motion estimation is used for a 

motion corrected PET reconstruction. Other types of motion 

such as bulk motion cannot be corrected for with this method 

(Siemens Healthineers, 2021).  

With the relatively recent development of integrated whole 

body PET/MRI systems, new opportunities for motion 

correction of PET images have been presented. Similar to 

PET/CT, PET/MRI combines the information of physiological 

functionality provided by PET with anatomical information 

from magnetic resonance imaging (MRI) (or computed 

tomography (CT) in PET/CT) (Ehman et al., 2017). Depending 

on the MR sequence that is simultaneously used during the PET 

acquisition, several types of motion can be estimated. Methods 

for MR-based motion correction of PET images have been 

reported for head motion, respiratory motion, cardiac motion 

and dual cardiac and respiratory motion (Catana, 2018). A 

novel 3D method to estimate motion from MR data is rCASPR. 

rCASPR was used in this study for motion correction with 

PET/MRI.  

This study is part of the development of a PET/MRI scanner 

at the UMC Utrecht. It continues on the work of Van der Schagt 

(2021), who implemented a method to correct for motion with 

deformation vector fields. Feasibility of this method was shown 

for PET reconstructions with simulated vector fields and 

without other corrections. The aim of this study is to investigate 

the feasibility of using real-world MR-based vector fields 

generated with rCASPR for correction of both respiratory 
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motion and repositioning of the patient. Additionally, 

attenuation and scatter correction are incorporated in this study. 

Apart from studying the feasibility, the impact of only using 

either bulk or respiratory motion correction is studied. To 

investigate this, the detection and quantification of lesions in 

the liver is studied.  

The rest of this report is organized as follows. The rCASPR 

technique and the iterative PET reconstruction framework with 

motion correction and other corrections are described in section 

II. The used methods for the generation of motion vector fields 

with rCASPR are described in section III. Furthermore, details 

of the simulation, reconstruction and analysis of the PET data 

are described there. In section IV, the results of the experiments 

are shown and finally in section V, these results are discussed 

and conclusions are drawn. 

II. THEORY 

II. A. MR-based motion estimation 

1)  Current status in PET/MRI 
Most methods currently developed for motion correction in 

PET/MRI are specific for one type of motion (e.g. respiratory 

motion, cardiac motion, head motion) or dual respiratory and 

cardiac motion (Catana, 2018). In abdominal PET/MRI, 

respiratory and bulk motion are the two types of motion which 

are observed predominantly. Therefore, a combined approach 

which is both able to correct for respiratory motion as well as 

bulk motion provides significant improvement for abdominal 

PET/MRI. Marin et al. (2020) have reported such a method in 

which they use a subspace-based MR imaging method with 

highly undersampled k-space data, using a temporal resolution 

of 9.5 volumes per second. Motion estimation was done in three 

steps. First, the data was binned in several bulk motion frames 

by visual determination. Subsequently, each bulk motion frame 

was binned into respiratory frames by tracking the position of 

the tip of the right liver lobe. Lastly, a reconstruction was made 

for all bins and motion was estimated by registering the MR 

images. Limitations for this method, however, were the high 

computation time and distorted MR images during the 

repositioning. These distorted images could not be used to 

generate deformation fields, which resulted in discarding the 

PET data belonging to the frames of the bulk movement (Marin 

et al., 2020). 

 

2) T1-w rCASPR 
A novel method for MR-based motion estimation is rCASPR 

(rewound Cartesian Acquisition with Spiral PRofile ordering), 

which uses image-based motion estimation. This method was 

originally developed for motion tracking in MR-guided 

radiotherapy. rCASPR uses rotating Cartesian spiral interleaves 

which both start and end at the periphery as sampling trajectory, 

as shown in Figure 1. Sampling is done using a turbo spin echo 

pulse sequence. Self-navigation with repeated ky,z = (0,0) phase 

encodes is used for estimation of the respiratory motion 

(Bruijnen et al., 2022). 

During the reconstruction, the k-space data is first cropped to 

a lower spatial resolution and secondly the data is sorted in a 

number of respiratory frames using the self-navigation signal. 

Subsequently, images are reconstructed for each respiratory 

frame and interpolated to a higher resolution. Lastly, 

deformation vector fields are generated using registration to a 

reference position (e.g. the exhale position) (Bruijnen et al., 

2022). In this study, a T1-weighted version of rCASPR was 

used. 

II. B. PET reconstruction 

1)  Iterative PET reconstruction 
PET images are reconstructed using iterative reconstruction 

methods. A commonly used algorithm in clinical practice is the 

ordered subsets expectation maximization (OSEM) algorithm, 

which is a modified version of the maximum likelihood 

expectation maximization (ML-EM) algorithm. In ML-EM, an 

image guess is forward projected to the projection domain. This 

set of projections is compared with the measured projections to 

obtain correction factors for each projection. These correction 

factors are backprojected to the image domain, which is 

subsequently used to update the image guess. This updated 

image guess is used in the next iteration. By doing multiple 

iterations, an accurately reconstructed image is formed. A 

pseudo code for this algorithm can be found in Figure 3. The 

OSEM algorithm is similar to ML-EM, but each iteration is 

divided into several subsets. These subsets contain a part of the 

full dataset and the image guess is updated using only this part 

of the data for each subset. In this way, the image guess is 

updated multiple times during one iteration, which reduces 

reconstruction time (Alessio & Kinahan, 2006). 

 

2)  Correction factors in PET reconstruction 
In PET imaging, corrections are required to obtain 

quantitative PET images. These corrections include attenuation 

correction, scatter correction, random correction and 

normalization. These corrections can be applied either prior to 

or during the iterative reconstruction process (Tong et al., 

2010). 

a) Attenuation correction 

Applying attenuation correction usually leads to the biggest 

improvement of image quality. Attenuation correction is 

required since the annihilation photons interact with human 

Figure 1: Sampling trajectory that is used by rCASPR. Following 

the blue trajectory, it can be seen that the phase encodes first moves 

inwards (numbers 1-7) and then moves outwards again by sampling 

phase encodes between the inwards phase encodes (numbers 7-13). 

This is done repetitively with rotating spirals to sample the full k-

space cylinder in white (with an undersampling factor) (Bruijnen et 

al., 2022). 
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tissue, which affects the probability that an event is detected. 

The effect of attenuation varies regionally in PET 

reconstructions, which may result in artifacts and explains the 

need for attenuation correction (Zaidi et al., 2007). Correcting 

for attenuation is usually done by generating an attenuation map 

containing linear attenuation coefficients for each voxel. This 

map is used to get the expected attenuation for each line of 

response (Tong et al., 2010). In PET/MRI, these maps are 

commonly generated from the MR images using a priori 

knowledge about attenuation in different tissue types (Delso & 

Nuyts, 2018). 

b) Scatter correction 

Apart from true coincidences, scatter and random 

coincidences are detected in PET studies. Scatter coincidences 

are detected when one or both photons from the annihilation 

event are scattered, which leads to an incorrect positioning of 

the event, as shown in Figure 2. Heavily scattered photons can 

be filtered from the data by using an energy threshold, but 

events resulting from less heavily scattered photons cannot and 

these events should be corrected for (Tong et al., 2010). A 

commonly used approach to correct for scatters is single scatter 

simulation (SSS), which simulates the amount of scattered 

coincidences expected for a given scanner geometry, 

attenuation map and activity map (Watson, 2000). For this 

study, an SSS algorithm for the PET/MRI system at the UMC 

Utrecht was developed (unpublished data, Meinders & Jose 

Santo, 2022). Further information on this SSS algorithm can be 

found in Appendix 1. 

c) Random correction 

As shown in Figure 2, random coincidences result from two 

photons of two separate annihilation events. These 

coincidences reduce image contrast and can introduce image 

artifacts. Correction is usually done by estimating a random 

event sinogram (Tong et al., 2010). The random events can be 

estimated either by using the delayed event subtraction method 

or by estimation using the singles data (Cherry, 2012). In this 

study, random coincidences are neglected. 

d) Normalization 

One last correction that is usually incorporated in PET 

reconstructions is normalization. This is done to correct for 

variations in detector efficiency (Tong et al., 2010) and to 

correct for spatially varying sensitivity (Cherry, 2012). In this 

study, normalization for detector efficiency was set to unity for 

all voxels. 

 

3)  Motion correction with iterative PET reconstruction 
During the iterative process of PET reconstructions, motion 

correction based on deformation vector fields can be performed, 

as shown by Van der Schagt (2021). The method developed by 

Van der Schagt combines the OSEM algorithm in CASToR 

(Merlin et al., 2018) with motion correction based on 

deformation vector fields.  

The reconstruction method splits every iteration in multiple 

subsets. Each subset is split into the different motion frames and 

for each frame, the image guess is deformed using the 

deformation vector field corresponding to the frame, after 

which it is forward projected. These projections are compared 

with the measured projections of the given frame and based on 

this comparison, an error image is reconstructed using 

backprojection. Subsequently, the image guess is updated with 

the error image and deformed back to the reference frame. By 

using deformation vector fields, this method is able to correct 

for any type of motion. A limitation of this method, however, is 

the computational time and high memory usage when vector 

fields with high frequencies are used (Van der Schagt, 2021). 

The pseudo code of this algorithm is shown in Figure 3.  

This computational limitation can partially be overcome if the 

motion is periodic (e.g. respiratory motion). As discussed, 

rCASPR uses binning of the data into a number of respiratory 

frames to correct for respiratory motion, exploiting the 

knowledge that respiratory motion is periodic. Since the PET 

and MR data will be acquired simultaneously in PET/MRI, this 

same binning can be done for the PET data. In this way, the PET 

data can still be corrected for motion with a high temporal 

resolution, without extremely long computational times. 

Figure 2: The differences between true, scatter and random coincidences. As shown, scatter and random 

coincidences result in incorrect positioning of the event, which shows the need for correction of these 

coincidences (Cherry, 2012). 
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III. MATERIALS AND METHODS 

The  purpose of this study was to investigate the feasibility of 

using rCASPR for motion correction in PET/MRI. To study 

this, MR-based vector fields were acquired from an rCASPR 

scan of a healthy volunteer and applied to simulated PET data. 

The reconstructions of the PET data were analyzed by their 

accuracy of the detection and quantification of liver lesions. 

III. A. MR vector fields 

1)  rCASPR acquisition 
For the generation of the MR-based vector fields, a healthy 

adult volunteer was scanned using the rCASPR sequence. 

During the acquisition, the volunteer was asked to breathe 

normally and to move 1-2 cm to the right or left several times 

during the acquisition. The 1.5T Elekta Unity/Philips Marlin 

was used. This is representative for PET/MRI studies in the 

UMC Utrecht, since the PET/MRI system at the UMC Utrecht 

also features a 1.5T magnet, a split gradient coil and an identical 

body coil. The MR settings can be found in Table 1. 

 

2)  rCASPR reconstruction 
For the reconstruction, the rCASPR data was first 

prewhitened and coil compressed by using the coil sensitivity 

maps and noise levels generated from a reference scan. The 

self-navigation signals of the different coil channels were 

clustered and used to bin the preprocessed data into 20 

respiratory phases using a soft-gating method. With soft-gating, 

data from neighboring phases is added to a phase by weighting 

each phase (Jiang et al., 2018). A Gaussian kernel was used for 

the soft-gating. Subsequently, the spatial resolution was 

reduced to 5.0 x 5.0 x 5.0 mm3 by cropping the k-space data 

(Bruijnen et al., 2022).  

Using parallel imaging and compressed sensing with locally 

low-rank constraints, respiratory resolved images were 

obtained. These low-rank constraints are used to better deal 

with aliasing artifacts in low-resolution images (Jiang et al., 

2018). Subsequently, the low-resolution respiratory resolved 

images were interpolated in order to obtain the original high 

spatial resolution. Using registration with the optical flow 

algorithm (Zachiu et al., 2015), deformation vector fields were 

obtained for each respiratory phase taking the exhale position 

as reference. The same registration was performed in the 

opposing direction to obtain the backward deformation vector 

fields. Lastly, these forward and backward vector fields were 

postprocessed to be consistent with each other (Bruijnen et al., 

2022).  

Afterwards, a new reconstruction of the same k-space data 

was made using a dynamic reconstruction with 10 dynamics. 

This was done by splitting the data into 10 consecutive frames 

with the same frame length. The different dynamics were 

reconstructed using parallel imaging and compressed sensing. 

Vector fields were generated for each dynamic with respect to 

the reference image of the respiratory resolved reconstruction 

by registration with the optical flow algorithm (Zachiu et al., 

2015).  

The motion vector fields that are defined as the gold standard 

for the subsequent simulations were created by combining the 

respiratory and dynamic vector fields. Each dynamic was 

binned into the observed respiratory frames in that dynamic. 

Subsequently, by linear addition, the respiratory and dynamic 

vector fields were combined for each observed combination of 

respiratory and dynamic frame.  

III. B. Simulated 4D PET data 

To simulate PET data, the digital XCAT phantom was used 

to obtain an activity and attenuation map with the anatomy of a 

50-year-old woman (Segars et al., 2010). Using affine 

registration followed by nonrigid registration with the elastix 

software (Klein et al., 2009; Shamonin et al., 2014), the 

phantom activity and attenuation map were transformed to 

Setting T1-w rCASPR 

Spatial resolution 2.0 x 2.0 x 2.0 mm3 

FOV 300 x 229.3 x 319 mm3 

Dimensions  150 x 115 x 160 

Repetition time 4.7 ms 

Echo time 2.1 ms 

Flip angle 20˚ 

Readout bandwidth 434.8 Hz 

TSE factor 55 

Coils (#Channels) Anterior + Posterior (8) 

Trajectory Cartesian rewound spirals 

Scan time 132.4 s 

Temporal resolution 3.9 Hz (258.5 ms per dynamic) 

Scanner 1.5T Elekta Unity/Philips Marlin 

Table 1: Scanner and sequence parameters of the MR acquisition 

used for obtaining motion vector fields. 

Figure 3: Pseudocode for iterative PET reconstructions with 

vector field based motion correction (Van der Schagt, 2021). 
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resemble the anatomy of the MR reference image. By applying 

the inverse MR-based vector fields on the transformed activity 

map using MATLABs built in imwarp function, a 4D activity 

map was generated of a moving phantom. Three spherical 

lesions with a radius of 7.5, 5.0 and 3.3 mm were added, located 

in a middle slice of the liver, as shown in Figure 4. The lesions 

had an activity 3.5 times higher than the liver.  

This 4D activity map was converted to list-mode true events 

with an analytical projector provided by the makers of the 

CASToR framework, complemented with the geometry of the 

PET/MRI system at the UMC Utrecht. This simulation was 

done for one bed position. For the experiment, it was assumed 

that 125,000 true events should be detected per second, as is 

common in PET acquisitions at the UMC Utrecht. This resulted 

in a total of 16.5 x 106 true events. Attenuation was taken into 

account during the generation of the true events. Scatter events 

were added using a single scatter simulation (SSS) algorithm 

(Watson, 2000). The input for the SSS were the 4D activity and 

attenuation map of the phantom and the used scatter-to-true 

ratio was 1.0, as is common for abdominal 3D PET scans 

(Cherry et al., 2012). Poisson noise was added to the simulated 

events. This procedure resulted in the simulated list-mode data 

that was regarded as the gold standard for the subsequent 

simulations and reconstructions.  

III. C. PET reconstruction 

PET reconstructions were performed using the CASToR 

framework (Merlin et al., 2018) complemented with the vector 

field motion correction method developed by Van der Schagt 

(2021). Attenuation correction was performed using the 

transformed attenuation map of the XCAT phantom for each 

frame to compute the attenuation correction factors for each line 

of response. Scatter correction was performed using SSS for 

each timeframe in the used vector field for motion correction. 

Other reconstruction settings can be found in Table 2.  

Reconstructions of the PET simulation with the rCASPR 

vector fields were performed using no motion correction, 

motion correction with only the respiratory vector fields, 

motion correction with only the dynamic vector fields and 

motion correction with the combined vector fields. For the 

motion corrected reconstruction with the combined vector field, 

scatter correction with SSS was done on 20 frames which were 

obtained by dividing each dynamic frame in two smaller frames 

with equal size. All reconstructions were blurred using a 3D 

Gaussian postreconstruction kernel with a standard deviation of 

1.5 mm using the imgaussfilt3 function in MATLAB.  

Parameter  

Spatial resolution 3.0 x 3.0 x 3.0 mm3 

FOV  460 x 460 x 148 mm3 

Dimensions  153 x 153 x 50 

Optimizer ML-EM 

Number of iterations & subsets 4:21 

Projector Classic Siddon 

III. D. Quantitative analysis 

The four reconstructions (i.e. no motion correction, 

respiratory motion correction, bulk motion correction and full 

motion correction) of the simulations with the rCASPR-based 

vector fields were analyzed based on the maximum uptake 

value, the volume, the contrast recovery coefficient (CRC) and 

the contrast-to-noise ratio (CNR) of the lesions. To investigate 

the impact of both different types of motion (i.e. bulk and 

respiratory motion), the values were compared to the full 

motion corrected reconstruction, since that reconstruction was 

made with the PET data defined as gold standard.  

First of all, the maximum uptake value of each reconstruction 

was obtained and the average uptake value in the liver was 

calculated incorporating the slices where lesions were 

observed. Based on the maximum uptake value and the average 

uptake value in the liver, lesions were defined using a threshold 

Table 2: Reconstruction parameters of the PET reconstructions.  

Figure 4: Axial (left) and coronal (right) view of the simulated lesions in the liver of the XCAT-phantom. 
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and a combined edge- and surface-based connected component 

analysis. The used threshold was defined by    
 

𝑇 = 𝜇𝑙𝑖𝑣𝑒𝑟 + 1
2⁄ ∗ (𝑚𝑎𝑥𝑣𝑜𝑥𝑒𝑙 − 𝜇𝑙𝑖𝑣𝑒𝑟) (Eq. 1), 

 

where 𝜇𝑙𝑖𝑣𝑒𝑟 is the average value in the liver and 𝑚𝑎𝑥𝑣𝑜𝑥𝑒𝑙 is the 

maximum uptake value in the reconstruction. Lesions needed 

to consist of at least two voxels in order to exclude noise. For 

each segmented lesion, the maximum uptake value was 

obtained.  

The CRC was calculated by  

 

𝐶𝑅𝐶 =  
(

𝜇
𝑙𝑒𝑠𝑖𝑜𝑛

𝜇
𝑙𝑖𝑣𝑒𝑟

⁄ ) − 1

𝐶𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 − 1
 (Eq. 2) 

 

where 𝜇𝑙𝑒𝑠𝑖𝑜𝑛 and 𝜇𝑙𝑖𝑣𝑒𝑟 are the mean uptake values in the 

spherical regions of interest and the liver. 𝐶𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 is the 

simulated contrast between the lesions and the liver.  
The CNR was calculated for all regions of simulated lesions 

by 

 

𝐶𝑁𝑅 =  
𝜇𝑙𝑒𝑠𝑖𝑜𝑛 − 𝜇𝑙𝑖𝑣𝑒𝑟

𝜎𝑙𝑖𝑣𝑒𝑟
 (Eq. 3). 

 

Here, 𝜇𝑙𝑒𝑠𝑖𝑜𝑛 is the mean uptake value of the spherical regions 

of interest, 𝜇𝑙𝑖𝑣𝑒𝑟 is the mean uptake value of the liver and 𝜎𝑙𝑖𝑣𝑒𝑟 

is the standard deviation of the uptake values in the liver.  

IV. RESULTS 

1)  Quantification of the detected motion 
For all three spherical regions of interest, the maximum 

displacement was obtained in all three directions. These values 

are summarized in Table 3. Figure 5 shows a visualization of 

the obtained vector fields.  

 

2)  Quantitative analysis reconstructions 
A visual comparison of the middle axial slice through the 

lesions is shown in Figure 6 and a comparison of two coronal 

slices of the four different reconstructions is shown in Figure 7.  

Three different lesions were simulated in these slices. The 7.5 

mm lesion is for all three reconstructions clearly visible. The 

5.0 mm lesion is visible as well, although it appears less intense 

for the reconstruction without motion correction. The 3.3 mm 

lesion in the right lobe of the liver is less clearly detectable on 

all reconstructions. The 5.0 mm lesion is a good example where 

the effect of motion correction can be seen from these 

comparisons. In Figure 7, for the reconstruction with the bulk 

and combined vector fields, the highest intensity of the middle 

lesion can be seen in the middle slice through the lesions (left), 

whereas this is observed in the adjacent posterior slice (right) 

for the reconstructions with respiratory motion correction and 

without motion correction. Note that these differences are 

minimal due to the small displacements in the obtained MR-

based vector fields.  

The volumes of the segmented volumes are shown in Figure 

8. The 3.3 mm lesion could not be segmented with the used 

method in all four reconstructions. Compared to the actual 

lesion size, the segmented lesions in all reconstructions appear 

smaller. The simulated 7.5 mm lesion had a volume of 1.8 cc, 

 Lesion 1 Lesion 2 Lesion 3 

Max. AP 

displacement 
5.3 mm 5.5 mm 5.1 mm 

Max. LR 

displacement 
4.6 mm 4.3 mm 3.7 mm 

Max. FH 

displacement 
3.0 mm 4.5 mm 3.7 mm 

Figure 5: A visualization of the obtained vector fields overlaid at the reference frame. Left shows the axial view and right 

shows the sagittal view.  

Table 3: Table containing the maximal displacements in each 

direction in all three lesions  for the rCASPR-based simulation. (AP = 

Anterior-Posterior, LR = Left-Right, FH = Feet-Head). 
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Figure 7: Coronal view of two adjacent slices of the four different reconstructions of the simulations with the rCASPR-based vector fields. 

(MC = motion correction). 

Figure 6: Visualization of the axial middle slice through the lesions for all four 

reconstructions. (MC = motion correction).  
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the 5.0 mm lesion had a volume of 0.61 cc and the 3.3 mm 

lesion had a volume of 0.16 cc. The maximum uptake values in 

the segmented lesions are shown in Figure 9.   

Figure 10 shows the CRC values of the spherical regions of 

interest. The CNR values for the spherical regions of interest 

are presented in Figure 11.  

Overall, based on the quantitative analysis and comparing the 

values to the reconstruction with the full vector field, the 

reconstruction with bulk motion correction appears most 

similar and the reconstruction without motion correction 

appears least similar. However, for the two smaller lesions, the 

highest similarity to the full motion corrected reconstruction 

alternates between the bulk and respiratory motion corrected 

reconstructions.  

The quantitative analysis shows that the detectability drops 

for smaller lesions (i.e. they have a lower maximum intensity, 

CRC and CNR).  

V. DISCUSSION 

The purpose of the experiments with the rCASPR-based 

vector fields was to study the feasibility of using rCASPR for 

motion correction on the PET/MRI system at the UMC Utrecht.  

Additionally, we were able to assess the relative importance of  

bulk versus respiratory motion correction.   

By using a 1.5T Elekta Unity/Philips Marlin system for the 

acquisition of the vector fields, the acquisition is representative 

for possible acquisitions on the PET/MRI system, since it also 

features 1.5T magnet, a split gradient coil and an identical body 

coil. However, due to the integration with PET, another surface 

coil might be used on acquisitions with the PET/MRI system to 

minimize attenuation by the surface coil. Motion detection 

using the T1-weighted rCASPR sequence was successful and 

vector fields could be used for the PET simulations.  

Due to time considerations, an analytical projector provided   

by the makers of CASToR was used for the generation of the 

PET data. The accuracy of this analytical projector has not been 

reported. For simulations known to be accurate, Monte Carlo 

simulations would be needed to generate the PET data, for 

example by using GATE (Jan et al., 2004). With GATE, it 

would also be possible to include the generation of accurate 

scatter events (including multiple scattered events), random 

events and time-of-flight (ToF) information, so all possible 

corrections could be included in reconstructions. In this study, 

random correction, detector efficiency normalization and ToF 

have not been used.  

Compared to the simulated activity map of the phantom, the 

lesions segmented from the reconstructions appear smaller. 

This can be explained by a combination of using a relatively 

low-count acquisition and a threshold-based segmentation. 

Figure 11: CNR of the spherical regions of interest for 

all four reconstructions (mc = motion correction). 

Figure 8: Volumes of the segmented lesions for all four 

reconstructions (mc = motion correction). 
Figure 9: Maximum uptake value in the segmented 

lesions for all four reconstructions (mc = motion 

correction). 

Figure 10: CRC of the spherical regions of interest for 

all four reconstructions (mc = motion correction). 
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Because the rCASPR scan took 132 s, the same scan time was 

chosen for the simulation of the PET acquisition. Typically, 

PET studies are acquired in 180 s for each bed position. 

Performing the simulations of this study for an acquisition time 

of 180 s rather than 132 s would result in a higher number of 

counts. As explained by Moses (2011), low-count acquisitions 

deteriorate image quality, which reduces the visibility of small 

lesions. Not using ToF may have led to higher noise levels in 

the reconstructions.  

When comparing the reconstructions to the full motion 

corrected reconstruction, most results are comparable to what 

can be found in literature. As summarized by Catana (2015), 

motion artifacts result in blurring of lesions, which leads to 

higher lesion volumes, lower uptake values and reduced 

detectability for small lesions. The reconstruction with full 

motion correction indeed has the highest maximum uptake 

value for the lesions and highest CNR. The 7.5 mm lesion 

appears larger in the reconstruction with respiratory motion 

correction and without motion correction, and comparable for 

the reconstruction with bulk motion correction. The impact of 

the different types of motion correction on the volume of the 

5.0 mm lesion varies, possibly due to the size of the lesion 

which lowers the detectability. The higher CRC levels for the 

7.5 mm lesion for the reconstruction with respiratory motion 

correction and without motion correction can be explained by 

noise in the data.  

Furthermore, when comparing with the full motion corrected 

reconstruction, reconstruction with bulk motion correction 

seems to result in bigger improvements of image quality for this 

volunteer than respiratory motion correction. The quantification 

of the detected motion shows that most motion in the 7.5 mm 

lesion is detected in the anterior-posterior and left-right 

directions. The 5.0 mm lesion has similar displacements in all 

three directions. Respiratory motion estimation with rCASPR 

is done using self-navigation in the feet-head direction, so it can 

be expected that respiratory motion correction would work best 

when higher displacements in the feet-head direction are 

observed. Literature also reveals that the biggest displacement 

in respiratory motion is in the feet-head direction. The 5.0 mm 

lesion is subject to higher feet-head displacement compared to 

the 7.5 mm lesion. The quantitative analysis for the 5.0 mm 

lesion of the respiratory motion corrected reconstruction shows 

more similar results to the full motion corrected reconstruction, 

compared to the 7.5 mm lesion. Bulk motion correction shows 

similar results as full motion correction for the 7.5 mm lesion. 

Another reason why bulk motion results in more similar results 

for this volunteer can be the fact that respiratory motion is 

periodic while the observed bulk motion in this experiment was 

not. Therefore, without incorporation of respiratory motion 

correction, most events might still have come from the average 

position in the respiratory motion cycle of this volunteer, 

resulting in less extensive blurring. Note that these results are 

specific for this volunteer and might differ for other volunteers.  

V. A. Future research 

This study was part of the development of a PET/MRI system 

at the UMC Utrecht and focused on motion correction 

possibilities. One of the final goals of the development of the 

system is to obviate anesthesia in pediatric PET studies by 

being able to track all types of motion. Although in this study 

both respiratory and bulk motion were corrected using 

rCASPR, it is not expected this method will be able to correct 

for more extensive repositioning. This is needed in pediatric 

PET studies when the patient has not been anesthetized. 

Therefore, other options for motion tracking should be studied, 

of which MR-MOTUS shows potential. This MR method 

generates vector fields directly from k-space data by comparing 

the measured k-space signal to the expected signal from a 

deformation field applied to a reference image. So far, it has 

shown to be able to correct for head-neck motion and 

respiratory motion, although not combined (Huttinga et al, 

2020; Huttinga et al; 2021). Being model-based, this method 

can be presumed to be flexible. A logical next step would be to 

develop a model for MR-MOTUS which could be used to 

correct for combined respiratory and bulk motion, the 

predominant types of motion in pediatric PET studies.  

As for the PET reconstruction, a logical next step would be to 

simulate PET acquisitions with Monte Carlo simulations in 

order to incorporate random correction and ToF. 

Reconstruction with multiple bed positions should be studied as 

well, since this might pose additional challenges to the current 

motion correction method.  

Furthermore, challenges might be posed by the spatial 

distortion present in MR images at the edges of the transaxial 

and axial field of view, which is not present on PET images. 

This might complicate the registration of the attenuation map 

and the vector fields (Afaq et al., 2021). Experiments with a 

moving phantom might be used to investigate the impact of 

these distortions on the PET/MRI system.  

V. B. Conclusions 

The feasibility of using MR-based motion tracking with the 

rCASPR technique for motion correction of PET simulations 

was shown. Moreover, the relative impact of bulk motion 

correction versus respiratory motion correction could be 

assessed in the PET simulation containing both respiratory and 

bulk motion.  
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I. THEORY 

Single scatter simulation (SSS) is a method to predict the 

scatter rate at each line of response in a PET study given an 

attenuation map, activity map and PET geometry. Based on the 

attenuation map, the contour of the imaged object is defined and 

all points within this object are defined as scatter points. For all 

scatter points, a prediction can be made on the expected scatter 

contribution to the total amount of counts for each line of 

response in the PET system. This is done based on the formula 

 

𝑆𝐴𝐵 = ∫ 𝑑𝑉𝑆 (
𝜎𝐴𝑆𝜎𝑆𝐵

4𝜋𝑅𝐴𝑆
2 𝑅𝑆𝐵

2 )
𝜇

𝜎𝑐

𝑑𝜎𝑐

𝑑𝛺
[𝐼𝐴 + 𝐼𝐵]

𝑉𝑆

 (Eq. A1.1) 

 

where the first term in the integral (
𝜎𝐴𝑆𝜎𝑆𝐵

4𝜋𝑅𝐴𝑆
2 𝑅𝑆𝐵

2 ) denotes a 

geometrical correction. The second term 
𝜇

𝜎𝑐

𝑑𝜎𝑐

𝑑𝛺
 denotes the 

probability for a scatter event to happen for a given scatter angle 

and photon energy, which can be calculated using the Klein-

Nishina equation. 𝐼𝐴 and 𝐼𝐵 are represented by  

 

𝐼𝐴 = 𝜀𝐴𝑆𝜀𝑆𝐵
, 𝑒−(∫ 𝜇𝑑𝑠

𝐴
𝑆 +∫ 𝜇,𝑑𝑠

𝐵
𝑆 ) ∫ 𝜆(𝑠)𝑑𝑠

𝐴

𝑆

 (Eq. A1.2) 

and 

 

𝐼𝐵 = 𝜀𝐵𝑆𝜀𝑆𝐴
, 𝑒−(∫ 𝜇,𝑑𝑠

𝐴
𝑆 +∫ 𝜇𝑑𝑠

𝐵
𝑆 ) ∫ 𝜆(𝑠)𝑑𝑠

𝐵

𝑆

 (Eq. A1.3). 

 

Here, the first two terms (𝜀𝐴𝑆𝜀𝑆𝐵
,

 or 𝜀𝐵𝑆𝜀𝑆𝐴
,

) represent the 

detector efficiencies for the given photon trajectory. The third 

term (𝑒− ∫ 𝜇𝑑𝑠
𝐴

𝑆
+∫ 𝜇,𝑑𝑠

𝐵

𝑆  or 𝑒− ∫ 𝜇,𝑑𝑠
𝐴

𝑆
+∫ 𝜇𝑑𝑠

𝐵

𝑆 ) is the total 

attenuation along the photon paths and the fourth term 

(∫ 𝜆(𝑠)𝑑𝑠
𝐴

𝑆
 or ∫ 𝜆(𝑠)𝑑𝑠

𝐵

𝑆
) is the total activity along the photon 

paths. Using a tail-fitting method, the produced scatter 

sinogram can be scaled to the PET data and correction factors 

can be produced (Watson, 2000). A visual presentation of the 

SSS is shown in Figure A1.1. 

II. IMPLEMENTATION 

In this study, a version of this SSS method has been 

implemented for the PET/MRI system in the UMC Utrecht. 

Following Watson (2000), to have a fast implementation, the 

activity and attenuation map are cropped to a lower resolution 

and scatter points with a low attenuation coefficient (e.g. air) 

are neglected. The activity and attenuation map were cropped 

to a resolution of 9.1 x 9.1 x 9.9 mm3. Furthermore, scatter rates 

for only 1.4% (3 rings out of 36 rings and 72 detectors out of 

432 detectors per ring) of all detectors were calculated. Using 

linear interpolation, the scatter sinogram was brought to the 

same dimensions as the PET data. Tail fitting was done by 

fitting the simulated scatter rates to the amount of events 

outside of the body contour.  

III. INITIAL VALIDATION 

An initial validation of the algorithm was done by comparing 

the produced scatter sinograms to scatter sinograms of a low-

count Monte Carlo simulation of the same phantom with GATE 

(Jan et al., 2004). A visual comparison of the sinograms is 

shown in Figure A1.2. The goal in this initial validation was to 

have the SSS sinograms resembling the shape and intensity 

distribution of the Monte Carlo sinograms.  

It should be noted that this initial validation cannot be seen as 

a proper validation of the algorithm. In order to do that, the 

output should be compared to a high-count Monte Carlo 

simulation and the effect of the scatter correction in the 

reconstruction should be studied as well.  
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Appendix 1: Single scatter simulation for 
the PET/MRI system at the UMC Utrecht 

Figure A1.1: Visual presentation of the single scatter simulation for 

one scatter point and line of response. The scatter point is presented as 

S and the annihilation events with an asterisk (*). The detectors are 

placed at A and B in the ring-system (Watson et al., 1997). 
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Figuur A1.2: Visual comparison between the simulated scatter rates by the single scatter simulation (SSS) algorithm for the PET/MRI system 

at the UMC Utrecht and the scatters simulated with a low-count Monte Carlo simulation of the same phantom. This comparison serves as an 

initial validation of the algorithm and the goal was to let the SSS sinograms resemble the Monte Carlo sinograms in terms of shape and intensity 

distribution. Both non-oblique (both detectors in same ring) and oblique (detectors in two different rings) sinograms are shown. The SSS and 

Monte Carlo sinograms are shown in pairs. The Monte Carlo sinograms were blurred with a Gaussian filter.  


