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Abstract 

 

Sea surface temperature (SST) reconstructions based on lipid biomarker proxies Uk’
37 and 

TEX86 show offsets from expected values in the Mediterranean Sea compared to other parts of 

the global ocean. In surface sediments, SSTs based on Uk’
37 are often 2–4°C colder than mean 

annual values, whereas SSTs based on TEX86 are generally 2–6°C warmer. Uk’
37 is known to 

be prone to biases towards the production season of alkenones, a non-linear temperature 

response to temperatures >24°C and resuspension of alkenones when exported to the sea floor. 

TEX86, on the other hand, can be biased by the input of isoGDGTs produced by non-

Thaumarchaeota or Thaumarchaeota living in the deep sea. This study assesses sources of bias 

in these proxies in the Mediterranean Sea by using sediment traps moored in the Bannock Basin 

at 500 m, 1500 m and 2500 m depth, collecting alkenones and isoGDGTs in a near-continuous 

time serie between 2008 and 2011. The data show that SST estimates based on Uk’
37 

underestimate mean annual values by 4°C in the upper trap and 6°C in the middle and lower 

trap. This colder bias is caused by the bias towards the production season of the alkenones, 

proved by the high alkenone fluxes in winter. SST estimates based on TEX86 overestimate mean 

annual values by 8-9°C at each sediment trap. This warmer bias is a result of isoGDGT 

contributions by Group I.1b Thaumarchaeota and deep-water dwelling Thaumarchaeota, 

proved by [Cren’]/([Cren] + [Cren’]) ratio values of >0.04 and the [GDGT-2]/[GDGT-3] ratio 

values of >5, respectively. 

 

KEYWORDS:  

Uk’
37, TEX86, Mediterranean Sea, sea surface temperature, alkenone/isoGDGT fluxes 
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1. Introduction 

 

Sea surface temperature (SST) is an important parameter to study climate variability, abrupt 

climate change and the impact of continually occurring events on local climates. SSTs are used 

to understand the link between oceans and the atmosphere, they provide information on the 

global climate system and are useful to study marine ecosystems. Instrumental records of SSTs 

merely span until 1850 (Kennedy et al., 2011) and complete instrumental records covering more 

than 100 years are sparse (Laepple and Huybers, 2014). To reconstruct SSTs over multidecadal 

and longer time scales, paleoclimate proxies are needed (Laepple and Huybers, 2014). Up till 

now, several organic geochemical proxies have been developed to reconstruct SSTs over  longer 

time scales, including the Uk’
37-index (Prahl & Wakeman, 1987) and the TEX86-index 

(Schouten et al., 2002).  

 

The first paleothermometer studied in this thesis is the Uk’
37-index. This index is based on the 

concentrations of di- and tri-unsaturated ketones with 37 carbon atoms produced by haptophyte 

algae (Prahl & Wakeman, 1987) (Fig. 1). The algae are thought to produce more di-unsaturated 

C37 alkenones (C37:2) relative to tri-unsaturated C37 alkenones (C37:3) at higher growth 

temperatures (Brassell et al., 1986). Thus, high C37:3 values are linked to lower SSTs and high 

C37:2 values are related to higher SSTs. The linear relationship between the Uk’
37-index and sea 

surface temperatures is experimentally proved in culture studies of haptophyte species 

Emiliania huxleyi (Prahl et al., 1988; Herbert, 2001) and in global core-top calibrations (Müller 

et al., 1998; Conte et al., 2006). The Uk’
37-index is known to span till the Eocene period (Bianchi 

& Canuel, 2011; Schouten et al., 2013). 

 

 

The second paleothermometer studied in this thesis is the TEX86-index. This index is based on 

the relative abundance of isoprenoid Glycerol Dibiphytanyl Glycerol Tetraethers (isoGDGTs) 

consisting of 86 carbon atoms, largely produced by a group of marine archaea called 

Thaumarchaeota (Schouten et al., 2002). The isoGDGTs contain one to three cyclopentane 

moieties ([GDGT-1], [GDGT-2], [GDGT-3], respectively) or four cyclopentane moieties with 

Fig. 1. Structures of C37 alkenones. Modified after Bianchi and Canuel (2011). 
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an additional cyclohexane moiety (Crenarchaeol stereoisomer or [Cren’])(Fig. 2). Schouten et 

al. (2002) designed TEX86 based on the relative abundance of isoGDGTs in marine surface 

sediments. [GDGT-0], with zero cyclopentane rings, and crenarchaeol, with four cyclopentane 

rings and one cyclohexane ring similar to crenarchaeol stereoisomer, are excluded from this 

equation (Fig. 2). The index is known to span till the Cretaceous period (Bianchi & Canuel, 

2011; Schouten et al., 2013). 

 

 

Though both Uk’
37 and TEX86 have been applied in many studies, the validity of these proxies 

in the Mediterranean Sea is still heavily debated (De Lange et al., 1990; Ziveri et al., 1995; 

Ternois et al., 1996; Ternois et al., 1997; Sicre et al., 1999; Rutten et al., 2000; Ziveri et al., 

2000; Rosell-Melé & Prahl, 2013; Kim et al., 2015; Tierney and Tingley, 2018; Besseling et 

al., 2019; Skampa et al., 2020; Morcillo-Montalbá et al., 2021; Rice et al., 2022).  

 

In this region, SST estimates in surface sediments based on Uk’
37 are generally 2-4⁰C colder 

than mean annual values (Tierney & Tingley, 2018). This underestimation might be explained 

by a number of possible biases. The flux of suspended material from haptophyte algae, which 

create C37 alkenones, is highly seasonal in the Mediterranean Sea (Ternois et al., 1996; Ziveri 

Fig. 2. Structures of the GDGT compounds. Modified after Bianchi and Canuel (2011). 
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et al., 1995; Sicre et al 1999; Triantaphyllou et al., 2004), creating a possible seasonal bias of 

the SST estimates. The calibration of the Uk’
37 index could also be biased towards non-linear 

temperature sensitivity at the low and high ends of the calibration range (Tierney and Tingley, 

2018). The relationship between Uk’
37 and SST is only described well between 8⁰C and 25⁰C 

(Prahl et al., 1988), or 24⁰C (Richey and Tierney, 2016). Above and below these threshold 

levels, the Uk’
37-index displays a non-linear relation to SSTs (Richey and Tierney, 2016). 

Another bias might be the sinking rates of alkenones. This could be influenced by particles 

remaining in suspension, causing a time difference between observed SST minima/maxima and 

Uk’
37 SST minima/maxima (Mollenhauer et al., 2015). Suspension most likely influences the 

seasonal signal over depth as well (Mollenhauer et al., 2015). Additionally, the Uk’
37-index 

could be prone to influences of current advection and subsequent lateral transport over long 

distances (Thomsen et al., 1998; Benthien and Müller, 2000; Ohkouchi et al., 2002; Rühlemann 

and Butzin, 2006; Fallet et al., 2011). A recent study on the eastern Mediterranean Sea proves 

that some particles may travel over long distances before burial (Rice et al., 2022). 

Nevertheless, the SST at the point of the particle’s origin and at the point of burial are much 

alike (Rice et al., 2022), disqualifying the influence of lateral transport during sinking as a proxy 

bias. 

 

SST estimates in surface sediments based on TEX86 are generally 2-6⁰C warmer than mean 

annual values in the Mediterranean Sea (Kim et al., 2016). This overestimation might be 

explained by contribution of GDGTs by other producers. [GDGT-0] is produced by 

chemolithotrophic ammonia-oxidizing Thaumarchaeota (Sinninghe Damsté et al., 2012; 

Schouten et al., 2013; Elling et al., 2017; Bale et al., 2019), anaerobic methane-oxidizing 

archaea (Pancost et al., 2001; Schouten et al., 2001) and methanogenic Euryarchaeota 

(Schouten et al., 2013). The input of isoGDGTs from methanogens can be assessed by the 

[GDGT-0]/[Cren] ratio (Blaga et al., 2009; Bechtel et al., 2010), for which a ratio of >2 is 

indicative of a substantial contribution of [GDGT-0] produced by methanogenic Euryarchaeota. 

[Cren’] is produced in high abundance by ammonia-oxidizing Group I.1b Thaumarchaeota 

(Sinninghe Damsté et al., 2002). This bias is assessed by the [Cren’]/([Cren] + [Cren’]) or 

f[Cren’] ratio (O’Brien et al., 2017). Elevated levels of f[Cren’] are indicative for more input 

of soil-derived isoGDGTs produced by Group I.1b Thaumarchaeota compared to aquatically-

derived isoGDGTs produced by Group I.1a Thaumarchaeota (Sinninghe Damsté et al., 2012). 

For lakes, an f[Cren’] of >0.04 indicates a substantial input of isoGDGTs produced by Group 

I.1b Thaumarchaeota (Baxter et al., 2021). A high abundace of [GDGT-2] is produced by deep-

water dwelling Thaumarchaeota (Taylor et al., 2013). Several studies have suggested the 

[GDGT-2]/[GDGT-3] ratio to study the influence of deep-water dwelling Thaumarchaeota 

(Taylor et al., 2013; Hernández-Sánchez et al., 2014; Kim et al., 2016). A [GDGT-2]/[GDGT-

3] ratio of >5 confirms a substantial influence of isoGDGTs produced by deep-water 

Thaumarchaeota (Taylor et al., 2013).  
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For this thesis, I assess both temporal and spatial changes in alkenones and isoGDGTs in 

sediment trap material collected between 2008 and 2011 at 500 m, 1500 m, and 2500 m water 

depth from the Bannock Basin in the eastern Mediterranean Sea (Fig. 3). The aim of this study 

is to examine the relationship between alkenones and isoGDGTs and how the related proxies 

compare to SST. Additionally, a focus is placed on the transfer of alkenones and isoGDGTs to 

the sea floor. To study this, I propose two research questions: 1) How are Uk’
37 and TEX86 

related to SSTs in the Mediterranean Sea?, and 2) How are alkenones and isoGDGTs exported 

to the sea floor in the Mediterranean Sea? 

 

 

 

Fig. 3. Map of the Mediterranean Sea including sea floor depth and location of the sediment 

traps [red] (created with Ocean Data View) 
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2. Hydrographic Setting 

 

The Mediterranean Sea is an enclosed basin connected to the Atlantic Ocean by the Strait of 

Gibraltar, which is divided in the Western Mediterranean sub-basin and the Eastern 

Mediterranean subbasin (Zavatarelli and Mellor, 1994)(Fig. 3). It is an oligotrophic area with 

isolated highly productive regions in the western basin (Ziveri et al., 1995). The Modified 

Atlantic Water (MAW) is found in the surface layer of both sub-basins and has a thickness of 

50-200 m (Fig. 4) (Zavatarelli and Mellor, 1994). The surface flow is generally from west to 

east, causing colder and fresher water from the North Atlantic Ocean to enter the MAW from 

west to east as well (Roussenov et al., 1995). This direction is largely followed by temperature 

and salinity gradients, resulting in increasing surface temperature and salinity levels from west 

to east (Zavatarelli and Mellor, 1994). The Levantine Intermediate Water (LIW) is found in the 

subsurface waters of both sub-basins, between 200-800 m depth (Zavatarelli and Mellor, 1994). 

The LIW flows westward and follows an opposite flow direction compared to the MAW (Kim 

et al., 2016; Besseling et al., 2019). The former is characterized by temperatures ranging from 

13⁰C in the West to 15.5⁰C in the East (Zavatarelli and Mellor, 1994). The Mediterranean Deep 

Water (MDW) is formed both in the Western Mediterranean sub-basin and the Eastern 

Mediterranean sub-basin, resulting in the  West Mediterranean Deep Water (WMDW) and the 

East Mediterranean Deep Water (EMDW), respectively (Zavatarelli and Mellor, 1994). The 

WMDW is characterized by a temperature of 12.7⁰C and the EMDW by a temperature of 13.6⁰C 

(Zavatarelli and Mellor, 1994).  

 

 

 

Fig. 4. Mediterranean water masses, including temperatures [black italic], levels of salinity 

[red bold] and flow direction [arrows]. Modified after State of the Mediterranean Marine 

and Coastal Environment ( https://www.grida.no/resources/5885 ) 

https://www.grida.no/resources/5885
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3. Methods 

 

3.1 Sediment trap 

Three Technicap PPS5/2 automated sediment traps were deployed in a time series in the 

southwestern Bannock Basin of the Mediterranean Sea (Libeccio subbasin: 34°18’N; 20°01’E) 

(Rutten et al., 2000; Ziveri et al., 2000) 

(Fig. 5). The traps are located well above 

the sea water/brine interface in 

oxygenated conditions (Rutten et al., 

2000; Ziveri et al., 2000) at 545 m, 1750 

m, and 2955 m water depth (Fig. 5; 

Table 1). Each trap is equipped with 24 

collection cups, all mounted on a 

rotating plate programmed to rotate 

every 22 days and 12 hours (MP06ST) 

or 20 days and 20 hours (CP001ST). A 

time series deployment of 18 samples 

(MP06ST) and 24 samples (CP001ST) 

was collected in all traps over a near-

continuous period of over 2.5 years. 

Sample 18 of the MP06ST mooring was 

opened for 6 days and still open upon 

retrieval. This sample was excluded 

from further analysis in this study. 

 

 

 

Table 1. Sediment trap details 

      

Mooring phase  Start date End date Sample interval Depth  Depth category 

      

MP06ST4 07/11/2008 24/11/2009 22.5 days 545 m 500 m 

MP06ST3 07/11/2008 24/11/2009 22.5 days 1750 m 1500 m 

MP06ST2 07/11/2008 24/11/2009 22.5 days 2955 m 2500 m 

CP001ST4 07/12/2009 21/04/2011 20.8 days 545 m 500 m 

CP001ST3 07/12/2009 21/04/2011 20.8 days 1750 m 1500 m 

CP001ST2 07/12/2009 21/04/2011 20.8 days 2955 m 2500 m 
      

 

 

Fig. 5. Schematic view of the sediment trap 

depths, from top to bottom: 500 m, 1500 m and 

2500 m. The water depth is 3530 m, and the 

seawater-brine interface is located at 3330 m 

depth [red line]. 
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3.2 Biomarker analysis 

Upon recovery of the traps , the samples were split into eight equal fractions using a pneumatic 

splitter (Tennant and Baker, 1992; Rutten et al., 2000). Seven fractions were filtered using a 

gas pressure system and divided into two groups: the first four were filtered on 0.2 μm glass 

fibre cellulose acetate filters, and the last three were filtered on 0.8  0 μm glass fibre filters. The 

swimmers were not removed. The remaining fraction was either filtered on a cellulose acetate 

filter or kept in solution. Upon arrival in the lab, the samples were freeze-dried, weighed, and 

extracted with a microwave MEX system (70⁰C, 1.5 h), using 25 mL dichloromethane (DCM): 

methanol (MeOH) (9:1). The extract was evaporated to near dryness under N2 using a 

TurboVap LV Caliper (32⁰C, 1 kbar). The total lipid extract (TLE) was redissolved in 1-2 mL 

DCM:MeOH (9:1) and passed over a Pasteur pipette column containing 2cm of Na2SO4 using 

DCM:MeOH (9:1) as an eluent and dried under a stream of N2. Acid hydrolysis of the TLE was 

performed by adding 0.5 mL 1.5N HCl in MeOH (27% 1:7) to the TLE vials and reacting in 

the oven (70⁰C, 2h). Subsequently, liquid-liquid extraction was performed by the addition of 

0.5 mL MilliQ and extracting with 4 mL DCM, drying it under a N2 stream, and then eluting it 

over a Pasteur pipette column containing 2cm of Na2SO4 using DCM:MeOH (9:1) as an eluent. 

The dried sample then underwent methylation, for which 0.5 mL DCM:MeOH (1:1), 10 mL 

0.2M diazomethane and 10 mL 0.2M acetic acid was added to each hydrolyzed sample before 

blow drying it under a stream of N2. The samples were passed over a Pasteur pipette column 

containing 2 cm non-activated silica gel topped with Na2SO4 using ethyl acetate as an eluent 

and dried under a stream of N2. The methylated samples were separated into apolar, neutral and 

polar fractions, eluting over a Pasteur pipette column containing 4 cm of AlOx using 

Hexane:DCM (9:1) as an eluent for apolar fractions, Hexane:DCM (1:1) as an eluent for neutral 

fractions and DCM:MeOH (1:1) as an eluent for polar fractions. 

 

3.2.1 Alkenone preparation, analysis and proxy calculation 

For quantitative analysis of alkenones, the neutral fractions were dissolved in 50 mL hexane 

(500 m trap) or 10 mL ethyl acetate (1500 m and 2500 m traps). Analyses were performed with 

a gas chromatograph-flame ionization detector (GC-FID) after manually co-injecting 1 mL 

dissolved sample and 1 mL squalene standard (63.8 mg/mL). The alkenone peaks were 

manually integrated in the chromatograms. These peaks were used to construct the U37
k′  index 

as defined by Prahl and Wakeham (1987): 

 

 

U37
k′

=
[C37:2]

([C37:2] + [C37:3])
 

 

 

 



| 10 | 

 

The SSTs for the Bannock Basin were calculated by the global core top calibration (Prahl & 

Wakeman, 1988): 

 

U37
k′ = 0.034 ∙ SST + 0.039 

 

 

3.2.2 IsoGDGT preparation, analysis and proxy calculation 

For quantitative analysis of the GDGTs, C46 GDGT 99ng/vial standard (CP001ST4 and 

CP001ST3) and C46 GDGT 152ng/vial standard (MP06ST4, MP06ST3, MP06ST2 and 

CP001ST2) was added to each sample before dissolving it in 500 mL (500 m trap) or 220 mL 

(1500 m and 2500 m trap) Hexane:IPA (99:1). The samples were then passed over a filter 

syringe before analyzing them with High-Performance Liquid Chromatography - Mass 

Spectrometry (HPLC-MS; Agilent Technologies 1290 Infinity equipped with an auto-injector 

and ChemStation chromatography manager software) by an autosampler. The GDGT peaks 

were manually integrated from the extracted ion current chromatograms of the [M+H]+ ions. 

These peaks were used to construct the TEXH
86 as defined by Kim et al. (2015): 

 

 

TEX86
H = LOG (

(GDGT − 2) + (GDGT − 3) + (Cren′)

(GDGT − 1) + (GDGT − 2) + (GDGT − 3) + (Cren′)
    )  

 

 

The SSTs for the Bannock Basin were calculated with the Mediterranean specific equation 

(Kim et al., 2015): 

 

SST = 68.4 ∙ TEX86
H + 38.6 
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4. Results 

 

4.1 Satellite data 

Throughout the period between November 2008 and April 2011, the satellite SSTs range 

between a minimum of 13.4⁰C and a maximum of 28.5⁰C (Fig. 6). The warmest months are 

towards the end of summer (August-September) and the coldest month is March. The annual 

mean temperature is ~21⁰C. 

 

4.2 Uk’
37 SST estimates 

The Uk’
37 values are converted to SSTs and compared to satellite SSTs (Fig. 7). The Uk’

37 SSTs 

range between 11.4-27.6⁰C, 11.1-23⁰C, and 8.3-22.5⁰C at the sediment trap depths of 500 m, 

1500 m and 2500 m, respectively. The flux weighted averages give temperatures of 17.1⁰C, 

15.1⁰C, and 15.1⁰C from the upper to the lower trap. The SSTs display seasonality. However, 

due to a time lag, the timing of the SST maxima/minima differs per depth. From upper to lower, 

the SST maxima are in September/October, November/December, May/June. This is explained 

by a time lag of 1-2 months at 500 m depth, 5-6 months at 1500 m depth and 9 months at 2500 

m depth. An exception to this seasonal signal are the first six months of 2009, when SSTs 

increase towards April and decrease again till July. This does not fit in with the patterns found 

in the other years at the same depth. 

 

4.3 TEX86 SST estimates 

The TEX86 values are converted to SSTs and compared to satellite SSTs (Fig. 8). The TEX86 

SSTs range between 28.1-30.6⁰C, 27.5-30.8⁰C, and 28.6-31.0⁰C at the sediment trap depths of 

500 m, 1500 m and 2500 m, respectively. The flux weighted averages give temperatures of 

29.4⁰C, 29.7⁰C, and 30.2⁰C from the upper to the lower trap. The SSTs display seasonality, with 

highest temperatures in winter/spring (December-March), which is at least 4 months later than 

the maximum in satellite SSTs. 

Fig. 6. Sea surface temperatures measured by satellites (grey) and annual mean sea surface 

temperatures (red).  
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Fig. 7. Sea surface temperatures estimates by Uk’
37 (blue) and annual mean temperatures 

(red), compared with satellite measured SSTs (grey).  

Fig. 8. Sea surface temperatures estimates by TEX86 (green) and annual mean 

temperatures (red), compared with satellite measured SSTs (grey). 
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4.4 Alkenone fluxes 

C37:3 and C37:2 alkenones occur at the three trap deployment depths between 2008 and 2011 

(Fig. 9). The alkenones are continuously exported throughout the year. The total C37 alkenone 

fluxes decrease over depth, ranging between 0.02 - 3.94, 0.004 - 0.681 and 0.001 - 0.15 

μg/m2/day from upper to lower trap, respectively, with an average flux of 0.47, 0.103 and 0.03 

μg/m2/day. The fluxes display seasonality, with higher fluxes towards winter/spring 

(December-May), accounting for up to 75% of the annual flux. The ratio between the C37:3 and 

C37:2 alkenones differs per depth. At 500 m, the fluxes are primarily made up of C37:2 alkenones, 

except for the peak in the spring of 2010. At 1500 m depth, they often hold more C37:3 alkenones 

than C37:2 alkenones. At 2500 m, both C37:3 alkenone fluxes and C37:2 alkenone fluxes have 

comparable volumes. 

 

 

4.5 IsoGDGT fluxes 

Fluxes of [GDGT-0], [GDGT-1], [GDGT-2], [GDGT-3], Crenarchaeol ([Cren]) and 

Crenarchaeol Stereoisomer ([Cren’]) are found at the three trap deployment depths between 

2008 and 2011 (Fig. 10). The total isoGDGT flux decreases over depth, ranging between 42 - 

1286, 5 - 1094 and 1.5 - 0.7 ng/m2/day from upper to lower trap, respectively. There is no clear 

Fig. 9. Alkenone fluxes (μg/m2/day) at the three trap deployment depths. 
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seasonal signal which spans all depths. The composition of the fluxes differs over depth. At 500 

m depth, The GDGT fluxes are primarily made up of [Cren] and [GDGT-0]. At 1500 m depth, 

the fluxes primarily hold [Cren]. At 2500 m depth, the fluxes are primarily composed of [Cren] 

and [GDGT-0].  

 

 

4.6 IsoGDGT ratios per depth 

The GDGT fluxes found between 2008 and 2011 are used to calculate the [GDGT-2]/[GDGT-

3] ratio, the [GDGT-0]/[Cren] ratio and the [Cren’]/([Cren]+[Cren’]) ratio at each trap 

deployment depth (Fig. 11-13; Appendix 1,2). At 500 m depth (Fig. 10, Appendix 2), each ratio 

displays a seasonal signal. The [GDGT-2]/[GDGT-3] ratio ranges between 9.4 and 19.4, with 

the lowest values in spring (March-June) and the highest values in winter (December-January). 

The [GDGT-0]/[Cren] ratio ranges between 0.32 and 0.41. The highest values are found in 

spring (April-May) and the lowest values are found in winter (January-February). The 

[Cren’]/([Cren]+[Cren’]) ratio ranges between 0.08 and 0.11, with the highest values in winter 

(December-March) and the lowest values in summer (August-September).  

 

Fig. 10. IsoGDGT fluxes (ng/m2/day) at the three trap deployment depths. 
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At 1500 m depth (Fig. 12, Appendix 2), each ratio displays a seasonal signal, though clear 

seasonal trends are not always present. The [GDGT-2]/[GDGT-3] ratio ranges between 9 and 

21 There is no clear trend visible in terms of high or low [GDGT-2]/[GDGT-3] ratio values. In 

December 2008, the values are low, while in December 2009, the values are extremely high. 

The [GDGT-0]/[Cren] ratio ranges between 0.3 and 0.5. This ratio seems to lack a seasonality 

signal as well. However, similar to the trend seen at 500 m depth, the [GDGT-0]/[Cren] ratio 

correlates negatively with the [GDGT-2]/[GDGT-3] ratio. The [Cren’]/([Cren]+[Cren’]) ratio 

ranges between 0.07 and 0.12, with the highest values in winter (December-March) and the 

lowest values in summer (August-September). 

 

At 2500 m depth (Fig. 13), the [GDGT-2]/[GDGT-3] ratio ranges between 9.10 and 19.37. The 

[GDGT-0]/[Cren] ratio ranges between 0.32 and 0.61. The [Cren’]/([Cren]+[Cren’]) ratio 

ranges between 0.08 and 0.10. Although there are signs of seasonality in terms of the presence 

of minima and maxima in each ratio, there are no clear trends in this seasonal signal.  

Fig. 11. Trap deployment depth 500 m, from top to bottom: isoGDGT fluxes, [GDGT-

2]/[GDGT-3] ratio, [GDGT-0]/Cren ratio, [Cren’]/(Cren+ [Cren’]) ratio and TEX86 SSTs 
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Fig. 12. Trap deployment depth 1500 m, from top to bottom: isoGDGT fluxes, [GDGT-

2]/[GDGT-3] ratio, [GDGT-0]/Cren ratio, [Cren’]/(Cren+ [Cren’]) ratio and TEX86 

SSTs 

Fig. 13. Trap deployment depth 2500 m, from top to bottom: isoGDGT fluxes, [GDGT-

2]/[GDGT-3] ratio, [GDGT-0]/Cren ratio, [Cren’]/(Cren+ [Cren’]) ratio and TEX86 SSTs 
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4.7 Correlation between isoGDGT ratios and TEX86 SSTs 

 

The correlation between the influence of deep-water Thaumarchaeota, methanogens and Group 

I.1b soil Thaumarchaeota with TEX86 SSTs in studied by a plotting the TEX86 SSTs against 

[GDGT-2]/[GDGT-3] ratio, the [GDGT-0]/[Cren] ratio and [Cren’]/([Cren]+[Cren’]) ratio, 

respectively. Correlations are found significant at values of P < 0.005. 

 

4.7.1 [GDGT-2]/[GDGT-3] ratio versus TEX86 SSTs 

The [GDGT-2]/[GDGT-3] ratio correlates positively with the TEX86 SSTs (Fig. 14) at all 

sediment trap depths. This indicates that the input of isoGDGTs produced by deep-water 

Thaumarchaeota is related to SST overestimations by TEX86. 

 

 

 

 

4.7.2 [GDGT-0]/[Cren] ratio versus TEX86 SSTs 

The [GDGT-0]/[Cren] ratio correlates negatively with the TEX86 SSTs (Fig. 15). This indicates 

that the input of isoGDGTs produced by methanogens is not related to SST overestimations by 

TEX86, but instead enables a colder bias. 

Fig. 14. [GDGT-2]/[GDGT-3] ratio versus TEX86 SST (⁰C) at the three trap deployment 

depths. 
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4.7.3 [Cren’]/([Cren] + [Cren’]) ratio versus TEX86 SSTs 

The [Cren’]/([Cren]+[Cren’]) ratio correlates positively with the TEX86 SSTs (Fig. 16). This 

indicates that the input of isoGDGTs produced by soil-derived Group I.1b Thaumarchaeota is 

related to SST overestimations by TEX86. 

 

 

 

Fig. 15. [GDGT-0]/Cren ratio versus TEX86 SST (⁰C) at the three trap deployment depths. 

Fig. 16. [Cren’]/Cren + [Cren’] ratio versus TEX86 SST (⁰C) at the three trap deployment 

depths. 
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5. Discussion 

 

5.1 Underestimation of SSTs by the Uk’
37 index 

The reliability of SST estimates based on Uk’
37 is prone to influences of seasonality of the 

alkenone production (Tierney and Tingley, 2018). A winter-spring production might result in 

an underestimation of the Uk’
37 SSTs (Tierney and Tingley, 2018). The highest C37 alkenone 

flux in the Bannock Basin occurs in (late) winter and spring (December-May). This corresponds 

to winter-spring maxima of coccoliths observed in other sediment trap studies from the Eastern 

Mediterranean Sea (Malinverno et al., 2009; Skampa et al., 2020; Triantaphyllou et al., 2004) 

and in the Bannock Basin specifically (Ziveri et al., 1995; 2000). It is slightly different from 

the flux patterns found in the Western Mediterranean Sea, which have a major flux peak in fall 

(September-November) and a small peak in spring (May) (Ternois et al., 1996; 1997; Sicre et 

al., 1999). Additionally, another difference between the Bannock Basin and the Ligurian Sea 

(Western Mediterranean) is the number of annual flux peaks. The Ligurian Sea displays bi-

annual peaks (Ternois et al., 1996; 1997; Sicre et al., 1999), while the Bannock Basin has only 

one flux peak per year. Export fluxes of coccolithophores found in the South-Western margin 

of Crete show an opposite trend to the one found in the Bannock Basin, with low overall export 

fluxes between November and February (Malinverno et al., 2009).  

 

The SSTs based on Uk’37 are indeed lower than the satellite SSTs. A comparison between the 

mean annual temperatures of the Uk’37 estimates and the satellite data shows a difference of 4⁰C 

at the 500 m trap and 6⁰C at the 1500 m and 2500 m traps. The underestimation differs per 

season, with the largest difference in summer (5-7⁰C) and the smallest differences in winter (2-

4⁰C). The highest alkenone fluxes are found in winter/spring as well. This explains the 

underestimation of Uk’
37, as its mean annual temperature is biased towards winter temperatures. 

 

An exception to the aforementioned trends is the first six months of 2009 at the 500 m trap. 

Here, a seasonality is visible that is opposite to what is expected: an increase of SSTs towards 

April and a decrease towards August as a result of the input of more C37:2 alkenones than C37:3 

alkenones. This trend is not repeated in other years or at the other depths. An explanation is the 

biosynthesis of more C37:3 compared to C37:2. This is likely as the flux of C37:3 in this period is 

much lower than these fluxes in similar periods, i.e. the first six months of 2010.  

 

5.2 Overestimation of SSTs by the TEX86 index 

Several studies from the Mediterranean Sea have demonstrated that surface sediments at depths 

>1000m receive additional input of isoGDGTs from deep-water dwelling Thaumarchaeota 

(Kim et al., 2015; Besseling et al., 2019). Input from deep-water Thaumarchaeota is known to 

bias TEX86 SSTs to a higher value in the Mediterranean Sea (Besseling et al., 2019). Substantial 
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influence of deep-water Thaumarchaeota is assessed by [GDGT-2]/[GDGT-3] ratio values >5.0 

(Taylor et al., 2013; Hernández-Sánchez et al., 2014, Rattanasriampaipong et al., 2022). In the 

Bannock Basin, the [GDGT-2]/[GDGT-3] ratio values are between 9 and 21 throughout the 

year for each depth, indicating a substantial contribution of deep-water dwelling 

Thaumarchaeota. Mean annual TEX86 estimates in this region indeed overestimate SSTs by 8-

9⁰C. Additionally, the influence of deep-water Thaumarchaeota is positively correlated with 

TEX86 SSTs. This further proves the ovestimation of TEX86 to be a result of the influence of 

deep-water Thaumarchaeota. Another source of isoGDGTs related to higher TEX86 SSTs is the 

input of soil-derived isoGDGTs produced by Group I.1b Thaumarchaeota (Weijers et al., 2006). 

A study from a small subtropical river-estuary system in China showed that sediment 

dominanted by marine input typically correspond to a [Cren’]/([Cren]+[Cren’]) ratio of <2 

(Cheng et al., 2021). However, a study from a lake in East Africa proposes a threshold level of 

>0.04 as indicative for a substantial influence by Group I.1b Thaumarchaeota (Baxter et al., 

2021). The [Cren’]/([Cren]+[Cren’]) ratios in the Bannock Basin range between 0.08 and 0.12 

at each depth. This is both higher than 0.04 and lower than 2, indicating the substantial influence 

of soil-derived isoGDGTs on the TEX86 signal. This is further supported by the significant 

positive correlation found between the [Cren’]/([Cren]+[Cren’]) ratio and SSTs based on TEX86 

at 1500m and 2500 m depth (Fig. 17). Interestingly, the correlation between the 

[Cren’]/([Cren]+[Cren’]) ratio and the SSTs based on TEX86 at 500 m depth are not correlated 

significantly, though the [Cren’]/([Cren]+[Cren’]) ratio lies well below 2. The reason behind 

this is unclear, though it should be noted that the relation between the [Cren’]/([Cren]+[Cren’]) 

ratio and the TEX86 SSTs would have been significant, if this study had deemed P<0.5 as 

significant instead of P<0.005.  

 

The overestimation of TEX86 SSTs could also be explained the input of isoGDGTs produced 

by methanotrophic archaea (Zhang et al., 2020). The input of isoGDGTs from methanogens 

can be assessed by the [GDGT-0]/[Cren] ratio (Blaga et al., 2009; Bechtel et al., 2010). A 

[GDGT-0]/[Cren] ratio >2 indicates a substantial contribution of isoGDGTs produced by 

methanogens (Blaga et al., 2009; Bechtel et al., 2010, Sinninghe Damsté et al., 2012), instead 

of Thaumarchaeota. For a sediment trap study, the signal of methanogens will not be found, as 

these archaea are benthic. However, a positive relationship between  the [GDGT-0]/[Cren] ratio 

and TEX86 SST could still be indicative for input of isoGDGTs produced by other archaea. This 

can be assessed by a sediment trap study. Nevertheless, in the Bannock Basin, this relationship 

is correlated negatively, excluding the input of other isoGDGT producing archaea.  
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6. Conclusion  

 

To study the underestimation of SSTs by Uk’
37 and the overestimation of SSTs by TEX86 in the 

Mediterranean Sea, this thesis focussed on two research questions: 1) How are Uk’
37 and TEX86 

related to SSTs?, and 2) How are alkenones and isoGDGTs exported to the sea floor? The data 

show that SST estimates based on Uk’
37 underestimate mean annual values by 4°C in the upper 

trap and 6°C in the middle and lower trap. This is due to the bias of this proxy towards winter 

temperatures. In contrast, SST estimates based on TEX86 overestimate mean annual values by 

8-9°C at each sediment trap. This is explained by the input of soil-derived isoGDGTs produced 

by Group I.1b Thaumarchaeota, following [Cren’]/([Cren]+[Cren’] ratio values of >0.04. It is 

further proved by the very small seasonal signal. Neither SST estimates based on Uk’
37, nor 

based on TEX86 are an accurate reflection of annual mean temperatures in the Eastern 

Mediterranean Sea. Both the alkenones and isoGDGTs are exported throughout the year. 

Though isoGDGTs do not display a seasonal bias, the alkenones show a higher flux towards 

their production season in winter/spring. Another difference is the source of the biomarkers. 

The alkenones are all exported from the surface waters to the sea floor, while the isoGDGT 

fluxes are influenced by input of isoGDGTs produced in the deep water, as proved by the 

[GDGT-2]/[GDGT-3] ratio value of >5.  
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Appendix 1. Uk’
37 values and TEX86 values 

Table 2. Uk’
37 values, Uk’

37 estimates, and flux weighted average at the three trap deployment 

depths. 
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Table 3. TEX86 values, TEX86 estimates, and flux weighted average at the three trap 

deployment depths. 
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Appendix 2. IsoGDGT values at the three depths 

 

Table 4. IsoGDGT ratios at 500 m depth. 
 

 

 [GDGT-2]/[GDGT-3] [GDGT-0]/[Cren] [Cren’]/([Cren] + [Cren’]) 

2008    

NOV 16.28 0.37 0.11 

DEC BDL BDL BDL 

2009    

JAN 19.39 0.32 0.11 

FEB 19.21 0.34 0.11 

 17.24 0.33 0.10 

MAR 9.43 0.40 0.09 

APR 10.74 0.40 0.10 

 9.68 0.38 0.09 

MAY 8.93 0.41 0.08 

JUN BDL BDL BDL 

JUL 10.02 0.39 0.09 

 10.55 0.38 0.09 

AUG 11.69 0.36 0.08 

SEP 12.44 0.38 0.09 

OKT 11.50 0.38 0.09 

 11.71 0.40 0.09 

NOV 12.30 0.40 0.09 

DEC 19.35 0.36 0.10 

2010    

JAN 18.84 0.34 0.10 

 18.76 0.33 0.10 

FEB 15.80 0.33 0.10 

MAR 14.79 0.35 0.11 

APR BDL BDL BDL 

 9.96 0.40 0.08 

MAY 11.07 0.38 0.09 

JUN 11.57 0.36 0.09 

 12.36 0.36 0.10 

JUL 12.55 0.33 0.10 

AUG 13.08 0.34 0.09 

 14.34 0.35 0.09 

SEP 13.84 0.35 0.10 

OKT 13.80 0.35 0.09 

 13.95 0.36 0.09 

NOV 14.79 0.37 0.09 

DEC 15.23 0.37 0.09 

 14.41 0.37 0.09 

2011    

JAN 14.79 0.36 0.09 

FEB 15.60 0.37 0.10 

MAR 15.62 0.36 0.09 

 15.24 0.35 0.10 

APR 16.87 0.35 0.10 
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Table 5. IsoGDGT ratios at 1500 m depth. 
 

 [GDGT-2]/[GDGT-3] [GDGT-0]/[Cren] [Cren’]/([Cren] + [Cren’]) 

2008    

NOV 16.30 0.35 0.10 

DEC 18.85 0.35 0.10 

2009    

JAN 10.60 0.47 0.12 

FEB 13.96 0.33 0.11 

 15.35 0.34 0.10 

MAR 15.59 0.33 0.10 

APR 11.33 0.36 0.10 

 10.31 0.38 0.09 

MAY 10.86 0.38 0.09 

JUN 8.97 0.40 0.08 

JUL 11.43 0.49 0.08 

 11.47 0.37 0.10 

AUG 11.76 0.36 0.09 

SEP 12.10 0.44 0.09 

OKT 12.66 0.39 0.09 

 17.65 0.36 0.10 

NOV 18.51 0.34 0.10 

DEC 21.13 0.35 0.10 

2010    

JAN 19.09 0.35 0.10 

 18.76 0.32 0.10 

FEB BDL BDL BDL 

MAR 15.25 0.36 0.09 

APR 8.96 0.41 0.09 

 8.95 0.43 0.07 

MAY 13.27 0.37 0.09 

JUN 12.36 0.38 0.09 

 12.23 0.38 0.08 

JUL 13.68 0.37 0.09 

AUG 14.99 0.36 0.09 

 14.60 0.38 0.09 

SEP 15.31 0.34 0.09 

OKT 17.62 0.33 0.11 

 15.08 0.41 0.09 

NOV 13.68 0.46 0.08 

DEC 14.22 0.48 0.09 

 13.98 0.53 0.10 

2011    

JAN 18.89 0.37 0.10 

FEB 14.19 0.44 0.09 

MAR 16.17 0.43 0.08 

 14.02 0.40 0.09 

APR 13.12 0.41 0.09 
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Table 6. IsoGDGT ratios at 2500 m depth. 
 

 [GDGT-2]/[GDGT-3] [GDGT-0]/[Cren] [Cren’]/([Cren] + [Cren’]) 

2008    

NOV 17.74 0.32 0.11 

DEC 19.05 0.32 0.12 

2009    

JAN 16.15 0.33 0.11 

FEB 16.48 0.32 0.10 

 15.97 0.33 0.10 

MAR 11.19 0.41 0.10 

APR 13.48 0.39 0.10 

 12.19 0.38 0.10 

MAY 13.78 0.43 0.09 

JUN 12.81 0.39 0.09 

JUL 12.28 0.41 0.09 

 12.85 0.46 0.08 

AUG 11.20 0.46 0.09 

SEP 12.01 0.46 0.08 

OKT 9.10 0.46 0.08 

 11.00 0.44 0.10 

NOV 13.77 0.40 0.10 

DEC 18.94 0.33 0.10 

2010    

JAN 11.41 0.56 0.09 

 19.37 0.37 0.10 

FEB 16.49 0.35 0.10 

MAR 15.68 0.35 0.10 

APR 14.41 0.35 0.10 

 10.21 0.37 0.10 

MAY 13.44 0.36 0.10 

JUN 14.47 0.33 0.10 

 15.22 0.34 0.10 

JUL 13.68 0.37 0.09 

AUG 14.10 0.46 0.09 

 15.25 0.38 0.10 

SEP 15.56 0.44 0.09 

OKT 13.69 0.60 0.08 

NOV 13.90 0.61 0.08 

DEC 14.17 0.56 0.09 

 12.84 0.58 0.08 

2011    

JAN 12.92 0.51 0.09 

FEB 11.95 0.55 0.08 

MAR 15.06 0.42 0.09 

 15.43 0.44 0.09 

APR 15.79 0.37 0.09 
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Appendix 3. P and R2 values  

 

 

Table 7. P values: pairwise comparison between [GDGT-2]/[GDGT-3] ratio, [GDGT-0]/Cren ratio, [Cren’]/(Cren + [Cren’]) ratio and TEX86 SST 

within each trap deployment depth (dark). P < 0.005 (bold). 
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5
0

0
 m

 [GDGT-2]/[GDGT-3]  0 0.168 2.22E-16 0.460 0.696 0.020 0.090 0.603 0.914 0.251 0.669 

[GDGT-0]/Cren 0  0.489 3.89E-14 0.992 0.656 0.249 0.331 0.564 0.469 0.121 0.246 

[Cren’]/(Cren+[Cren’]) 2.22E-16 3.89E-14  0.012 0.273 0.872 0.018 0.082 0.604 0.973 0.140 0.539 

TEX86 SST 0.168 0.489 0.012  0.002 0.337 0.002 0.011 0.463 0.900 0.070 0.451 

1
5

0
0

 m
 [GDGT-2]/[GDGT-3] 0.460 0.992 0.002 0.273  0.003 0.005 4.74E-07 0.059 0.443 0.478 0.825 

[GDGT-0]/Cren 0.696 0.656 0.337 0.872 0.003  0.015 9.71E-07 0.181 0.010 0.006 0.045 

[Cren’]/(Cren+[Cren’]) 0.090 0.331 0.011 0.082 4.74E-07 9.71E-07  1.35E-10 0.016 0.180 0.007 0.040 

TEX86 SST 0.020 0.249 0.002 0.018 0.005 0.015 1.35E-10  0.040 0.197 0.006 0.111 

2
5

0
0

 m
 [GDGT-2]/[GDGT-3] 0.603 0.564 0.463 0.604 0.059 0.181 0.040 0.016  0.001 7.24E-05 9.67E-10 

[GDGT-0]/Cren 0.914 0.469 0.900 0.973 0.443 0.010 0.197 0.180 0.001  8.19E-11 2.51E-08 

[Cren’]/(Cren+[Cren’]) 0.669 0.246 0.451 0.539 0.825 0.045 0.111 0.040 9.67E-10 2.51E-08  1.15E-10 

TEX86 SST 0.251 0.121 0.070 0.140 0.478 0.006 0.006 0.007 7.24E-05 8.19E-11 1.15E-10  
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Table 8. R2 values: pairwise comparison between [GDGT-2]/[GDGT-3] ratio, [GDGT-0]/Cren ratio, [Cren’]/(Cren + [Cren’]) ratio and TEX86 SST 

within each trap deployment depth (dark). P < 0.005 (bold). 
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5
0

0
 m

 [GDGT-2]/[GDGT-3]  0.858 0.052 0.849 0.015 0.004 0.141 0.078 0.008 0.000 0.036 0.005 

[GDGT-0]/Cren 0.858  0.013 0.800 0.000 0.006 0.037 0.026 0.009 0.015 0.066 0.037 

[Cren’]/(Cren+[Cren’]) 0.849 0.800  0.162 0.033 0.001 0.147 0.082 0.008 0.000 0.060 0.011 

TEX86 SST 0.052 0.013 0.162  0.237 0.026 0.229 0.165 0.015 0.000 0.089 0.016 

1
5

0
0

 m
 [GDGT-2]/[GDGT-3] 0.015 0.000 0.237 0.033  0.202 0.187 0.482 0.088 0.015 0.013 0.001 

[GDGT-0]/Cren 0.004 0.006 0.026 0.001 0.202  0.142 0.463 0.045 0.159 0.179 0.099 

[Cren’]/(Cren+[Cren’]) 0.078 0.026 0.165 0.082 0.482 0.463  0.657 0.140 0.046 0.174 0.104 

TEX86 SST 0.141 0.037 0.229 0.147 0.187 0.142 0.657  0.103 0.042 0.177 0.064 

2
5

0
0

 m
 [GDGT-2]/[GDGT-3] 0.008 0.009 0.015 0.008 0.088 0.045 0.103 0.140  0.236 0.343 0.631 

[GDGT-0]/Cren 0.000 0.015 0.000 0.000 0.015 0.159 0.042 0.046 0.236  0.675 0.563 

[Cren’]/(Cren+[Cren’]) 0.005 0.037 0.016 0.011 0.001 0.099 0.064 0.104 0.631 0.563  0.699 

TEX86 SST 0.036 0.066 0.089 0.060 0.013 0.179 0.177 0.174 0.343 0.675 0.699  

 

 


