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Studying the relation between genetic variation and phenotype provides insight into molecular mechanisms 
and possibilities for treatment of disease. Since 98% of the genome is noncoding, the noncoding genome is an 
important research domain. However, determining the effect of noncoding genetic variation remains a chal-
lenge. One solution to this challenge is to use the predictive power of the state-of-the-art Enformer algorithm, 
which predicts gene expression and other assays from sequence. These predictions can be used as input fea-
tures to a classification algorithm that predicts the effect of a genetic variant. However, since the Enformer 
output is too large to directly use as input features, it needs to be compressed. In this study we present new 
methods to compress the Enformer output, which enhance classification performance compared to currently 
used methods. We use an eQTL dataset with eQTLs from 49 different tissue types and train multiple random 
forest classifiers to label noncoding variants as positive or negative eQTLs. Compared to the currently used 
scoring method Sum, our Sum Abs scoring method increases the average AUROC from 0,748 to 0,777. Addition-
ally, we explore the application of an autoencoder to compress the Enformer predictions and propose multiple 
ways of continuing this research.  
 

 
enetic variation plays a role in almost all hu-
man diseases, either by causing the disease, 
increasing susceptibility to the disease, or en-

hancing its symptoms.1 Consequently, studying the re-
lation between genetic variation and clinical disease 
will provide a powerful tool for identifying the molec-
ular mechanisms underlying disease, opening the way 
to curing them and enhancing functional interpreta-
tion of the genome. More specifically, within the field 
of genetics, noncoding variants are important. In the 
first place, because the largest part of the human ge-
nome is noncoding (up to 98%). Secondly, research 
shows that noncoding variants play a role in disease. 
For example, noncoding driver mutations have be-
come more important in cancer research.2 In addition, 
regulatory regions show signs of negative selection, 
suggesting noncoding variants having deleterious ef-
fects.3 Similarly, studies of inherited common variants 
show enriched disease association in noncoding re-
gions.4 Moreover, noncoding variants affecting gene 

expression have been found to cause Mendelian dis-
eases5 and to be enriched in cancer6. 
        Although noncoding variants are proven to be im-
portant for disease, they are challenging to explore. 
The reasons for this are, firstly, that not much is 
known about the function of noncoding DNA. Sec-
ondly, their effect is not as straightforward as coding 
mutations, and as a consequence functional interpre-
tation of noncoding variants remains a challenge,7,8 
also because there are many mechanisms of action. 
And thirdly, the effect of variants located in the 
noncoding region of the genome can vary from no ef-
fect at all to vast changes in gene regulation. 
        For these reasons there is need for methods that 
prioritize variants as potentially causal for disease.9,10 
Multiple methods have been proposed and put into 
use by which variants can be prioritized.9 Examples of 
these methods are comparative genomics data11, 
high-throughput epigenomics and functional ge-
nomics data (e.g., massively parallel reporter assays 
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(MPRAs))12, and the development of public databases 
that integrate various annotation sources for noncod-
ing variants13.  
        A promising development within the field of vari-
ant prioritization is the occurrence of a new genera-
tion of data resources. They distinguish themselves by 
providing quantitative scores for the deleterious im-
pact of non-coding variants on gene regulation. Most 
of them deploy supervised machine learning to calcu-
late the deleterious impact. For example, Combined 
Annotation-Dependent Depletion (CADD) was one of 
the earliest methods integrating a wide range of an-
notation data and able to provide a score for every 
variant of the whole genome (both coding and 
noncoding).14 The authors used a linear kernel sup-
port vector machine (SVM) for this. With the publish-
ing of a later generation of these quantitative score 
providing algorithms, called Deleterious Annotation 
using Neural Networks (DANN)15, the use of deep 
learning algorithms was introduced to this problem. 
        Deep learning in general is a promising tool for bi-
ological research. It is a class of machine learning al-
gorithms, able to identify highly complex patterns in 
large datasets.16 In general, genomics data are too 
large and too complex to be studied by eye or using 
simple correlations. Since machine learning algo-
rithms are designed to automatically detect patterns 
in data, they are especially well suited for genomics.17 
A model’s performance on a classification task de-
pends heavily on the quality and the relevance of the 
input features. Therefore, deep learning is a great op-
tion for genomics, since it addresses the problem of 
input features by embedding the computation of 

features into the model itself, creating end-to-end 
models. This means that raw data – a bare DNA strand 
– can be used as input features.  
        One solution for researching noncoding variants 
is using a new type of deep learning models using a 
transformer architecture.17 A particular model of this 
type, Enformer, can take a bare DNA strand as input 
(ranging from 1kb18 to 200kb19), and as output predict 
gene expression levels and chromatin states (e.g., 
DNase, ChIP-seq and CAGE genomic tracks). Utilizing 
these models to the noncoding variant prioritization 
problem is a promising route to take for multiple rea-
sons. Firstly, because – by using raw data as input – 
these models learn the “language” of the DNA, which 
we humans not yet understand. Secondly, wet lab ex-
periments are laborious and with these models there 
is no need for these experiments since the model it-
self will be able to predict at experiment accuracy the 
results of thousands of experiments. E.g., performing 
a MPRA is an option, but this is laborious.20 In con-
trast, these models make it possible to easily and 
within seconds determine the effect of a variant in sil-
ico. 
        Enformer is the state of the art for predicting 
gene expression and other assays from sequence19 
(outperforming Basenji221 and other precursors, e.g., 
ExPecto22, Basenji23 and Xpresso24). This model is suit-
able for using it in the process of classifying noncoding 
variants for several reasons. Firstly, gene regulation 
by the noncoding DNA includes long ranging interac-
tions (e.g., enhancers). And since the model has a 
transformer architecture (a type of deep learning ar-
chitecture where each position attends to the 

Figure 1. Project overview. This is the overview of the project, with step 1) inserting two DNA strands containing the 
reference and alternative alleles into the Enformer algorithm to obtain the Enformer raw scores, step 2) compressing the 
Enformer raw scores (2 x [98.000, 5.313, 896]) to obtain the Enformer scores ([98.000, 5.313]), step 3) using the Enformer 
scores as input features to train and validate a random forest classifier, and step 4) using the trained classifier to classify 
unseen variants. 
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information of all other positions, increasing infor-
mation flow between distal elements25), it can ac-
count for long range interactions, taking a 200 kb DNA 
sequence as input. Secondly, the mechanism of action 
of noncoding variants is influencing epigenetics, and 
the epigenetic state is what is predicted by Enformer. 
It predicts 5.313 genomic tracks: 2.131 transcription 
factor (TF) chromatin immunoprecipitation and se-
quencing (ChIP–seq), 1.860 histone modification 
ChIP–seq, 684 DNase-seq or ATAC-seq, and 638 CAGE 
tracks, from multiple different cell types (see methods 
for full description of genomic tracks). Tracks repre-
sent a 115 kb DNA strand aggregated into 128bp bins, 
resulting in 896 values per track.  
        In the study of Avsec et al. the Enformer predic-
tions are used for prioritization and classification of 
variants. We sought to optimize the training and perf 
ormance of this final variant classification step. 
        In this study, we introduce improved methods on 
how to use the output of the Enformer model to clas-
sify noncoding variants. More specifically, we de-
signed new scoring methods to compress the En-
former output to utilize it for classification of genomic 
variants, resulting in better classifier performance. 
Additionally, we propose promising ways forward in 
the application of the Enformer algorithm to the study 
of noncoding variants.  
 
Results  
General workflow. The general workflow of this study 
is that we, firstly, take a certain truth set of (noncod-
ing) variants. This truth set is a set of variants of which 
the labels are known, which therefore can be used for 
training a model. Then, for each of the variants, we 
take the surrounding 196.608 bp of the hg38 refer-
ence genome, insert the reference or alternative al-
lele into the sequence and use this sequence as an in-
put to the Enformer model, generating two arrays of 
dimensions 5.313 x 896 per variant (figure 1, step 1). 
After this we compress the Enformer raw scores to be 
able to use it as input to the classifier (figure 1, step 
2). These compressed scores will then be used as in-
put features to train, validate and test a classifier (fig-
ure 1, step 3). Finally, this trained classifier can be 
used to classify unseen variants, possibly providing 
new insights (figure 1, step 4) and helping researchers 
prioritize non-coding variants.  

Use eQTLs as truth set. The method we propose in 
this study is applicable to a range of different truth 
sets. For this study we specifically used eQTLs from 
the GTEx project.26 We focused on eQTLs because 
these are variants that change gene expression and 
thus likely also influence the phenotype or cause dis-
ease. One of the problems with eQTLs is that common 
ways of identifying eQTLs cannot distinguish individ-
ual variants, due to linkage disequilibrium (LD). To 
overcome this, we used a dataset in which the eQTLs 
are separated into positive and negative eQTLs. This 
was done by studying the statistical fine mapping of 
GTEx v8 eQTLs using the Sum of Single Effects (SuSiE) 
method.27 This method provides a posterior inclusion 
probability (PIP) score for each eQTL by which they 
can be divided into positive (PIP score > 0.9) and neg-
ative (PIP score < 0.01) variants. The PIP score is thus 
a way to distinguish between likely causal and likely 
non-causal eQTLs, that are grouped due to LD. One 
advantage of using non-causal eQTLs as the negative 
set is that this results in a stringent truth set. All vari-
ants are eQTLs, but not all are causal. These variants 
are more challenging to distinguish than, e.g., eQTLs 
and common variants. So, the classifier must learn the 
features of causal eQTLs. Moreover, this prevents the 
classifier just using the genomic location (or promoter 
sequences in our case) as a feature to distinguish the 
variants. This prevents confounding, which is a com-
mon pitfall in applying ML to genomics.28 However, 
there is a downside to using eQTLs. eQTL studies are 
systematically biased.29 Despite of this, the study of 
eQTLs is still worthwhile. 
        We used the same eQTL dataset as Avsec et al. 
used, which ranged from 54 variants for kidney cortex 
tissue to 2.740 variants for tibial nerve tissue, with a 
total of 49 different tissue types (figure 2, see meth-
ods). 
   
Improved scoring method of Avsec et al. Once we ob-
tain the Enformer predictions for each eQTL, this data 
needs to be compressed to be able to use it as input 
for a classifier, because classification using raw data 
(only Alt – Ref, figure 3a) performs poorly (see Delta 
in figure 3b) and is compute-intensive. Therefore, we 
searched for the best scoring method to compress the 
genomic tracks into a single value per track. The per-
formance of the scoring method was then assessed by 
training and validating a random forest classifier per 
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tissue type, taking the average AUROC of a 10-fold 
cross validation as a measure of classifier perfor-
mance (see methods). 
        The method by which Avsec et al. compress the 
Enformer output is not optimal. The predictions made 
by the Enformer model consist of 5.313 x 896 = 
4.760.448 values per DNA sequence. A variant thus 
gives rise to 2 x 4.760.448 = 9.520.896 values (two 
DNA sequences: the reference and alternative allele). 
Avsec et al. compressed the Enformer output by tak-
ing the sum across each of the reference and alterna-
tive tracks and subtracting them. So, the sum of scores 
for the output of Enformer given the reference se-
quence was subtracted from the sum of the output of 
the DNA sequence containing the variant (see Sum in 
figure 3a). However, with this way of handling the En-
former output a lot of information is lost and the full 
potential of the Enformer scores is not utilized. We 
therefore designed multiple other scoring methods, 
all of which take the reference and alternative ge-
nomic track as input and output a score (figure 3a, 
supplemental figure 1). The different scoring methods 

that we tried can be grouped as follows: the methods 
from Avsec et al., types of correlation between alter-
native and reference tracks, quantiles, combinations, 
and max.  
        Some of our scoring methods show a sizable in-
crease in classifier performance compared to the scor-
ing method employed by Avsec et al. (figure 3b, Sum 
is the scoring method of Avsec et al.). The biggest in-
crease in performance is found with the scoring meth-
ods that take the biggest difference between Ref and 
Alt predictions into account (Max Abs, Q99 Abs and 
Sum Abs, all significant increases, as determined by a 
paired t-test). The best performing scoring method is 
Sum Abs, which is a modified version of the method 
of Avsec et al., namely taking the absolute of the delta 
before addition. The reason for this is that by taking 
the absolute the final score represents the total dif-
ference in epigenetic regulation between the refer-
ence and alternative allele, instead of considering only 
the total increase (or decrease in case of a negative 
value), preventing leveling out the signal when in dif-
ferent regions of the genomic track the behavior of 

Figure 2. Overview of the eQTL distribution for the 49 different tissue types. An overview of the eQTL dataset used in 
this study, with the number of positive eQTLs per tissue type, for each of the 49 tissue types. The number of eQTLs per 
tissue type ranges from 54 positive eQTLs for the kidney cortex to 2741 positive eQTLs for tibial nerve tissue, with an 
average of 1000 positive eQTLs per tissue type. The dataset is balanced, meaning that the number of negative eQTLs is 
equal to the number of positive eQTLs. The full dataset contains 98.000 eQTLs.  
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the signal is different (see the example shown in figure 
3a). The difference in performance between taking 
the maximum difference (Max Abs, average AUROC = 
0,762) and the 99th quantile of the differences (Q99 
Abs, average AUROC = 0,776) can be explained by the 
fact that with Q99 Abs outliers are not included, which 
decreases the noise and enhances the predictive 
power of the features. In conclusion, we observed 
that the scoring methods that either consider the big-
gest difference (Max Abs and Q99 Abs) or the total dif-
ference (Sum Abs, average AUROC = 0,777) perform 
the best.  
        To check the robustness of the random forest 
classifier to changing hyperparameters, we trained 
the classifier with different hyperparameter s ettings. 
The hyperparameters are changed in such a way that 
the bias of the model increases. Three sets of hy-
perparameters were applied, with a maximal tree 
depth of 64, 8 and 4, a minimal number of samples per 
leaf of 1, 2 and 3, and a minimal number of samples 

per split of 2, 4 and 6 respectively (supplemental fig-
ure 2). Changing hyperparameters to make the mod-
els more biased does not dramatically change classi-
fier performances. Therefore, we can conclude that 
the random forest classifier is at least partly robust to 
changing hyperparameters. 
        Next, we checked whether the increase in classi-
fication performance due to the new scoring methods 
is robust to changing the type of classifier. To this end 
we swapped the random forest classifier with a k-
nearest neighbor classifier, support vector classifier, 
and a multi-layer perceptron classifier (MLPC). The 
new scoring methods (Max and Q99 + Pearson) were 
still increasing classifier performance compared to the 
default scoring method (Sum, figure 4). Importantly, 
the classifier hyperparameters are not fine-tuned, 
leaving much room for improvement. E.g., the reason 
that the Q99 + Pearson scoring method performs 
worse than the Max scoring method for the MLPC is 
possibly because the former scoring method produces 

native tracks). Classifier performances increase from Delta to Sum, from Sum to Max Abs, and from Max Abs to Q99 Abs and 
Sum Abs. Q99 Abs and Sum Abs have a similar performance. n = 33 for Delta and n = 49 for all other scoring methods. All P 
values are obtained by a paired two sample t-test (except for the Delta-Sum comparison, of which the t-test was not paired).  
 

Figure 3. The scoring methods used to compress the Enformer 
output. A) A schematic example of some of the different scor-
ing methods, applied to a single genomic track. The different 
types of correlation are applied on the full reference and alter-
native genomic track. The Sum method, which is used by Avsec 
et al., uses the delta of the reference and alternative track (Alt 
- Ref), while the Abs methods use the absolute of the Alt - Ref 
track. B) Boxplots of the AUROC values (the average AUROC of 
a 10-fold cross validation, as a measure for classifier perfor-
mance) of the classifiers that have been trained per tissue type. 
Delta shows the classifier performances when not applying a 
scoring method (only subtracting the reference from the alter-  
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twice as many features (10626, instead of 5313), 
while the MLPC with its default hyperparameter set-
ting has only one hidden layer. Therefore, perfor-
mance could be enhanced by increasing the model 
depth as well as by increasing the number of itera-
tions when training.  
 
eQTL classifier for whole blood samples. To work 
more toward a real-life application of the classifier we 
created a single classifier to apply on whole blood 
samples. Here, instead of training a single classifier 
per tissue type, we combined the eQTLs of alle tissues 
into one big truth set and trained a single classifier on 
this dataset. At first sight the classifier performance 
seemed very high and the new scoring methods don’t 
increase classifier performance (figure 5a). However, 
we note that this is due to the problem of leakage. 
This means that the training and validation set are not 
totally different but partly share the same samples. 
This in turn is caused by combining the eQTLs of dif-
ferent tissue types, since many eQTLs are shared be-
tween tissue types. For example, out of the 2741 pos-
itive eQTLs from the tibial nerve tissue, 932 eQTLs are 

shared with the 2662 positive eQTLs of the thyroid tis-
sue. As a solution to this leakage problem, we re-
moved all eQTLs that were located on chromosome 1 
from the dataset that is used for training. (Chromo-
some 1 was chosen because of its size and average-
ness. Ideally, one would leave out all chromosomes 
one by one because they vary in size and importance.) 
Then, after training the classifier, we tested the classi-
fier on the eQTLs located on chromosome 1 (both the 
eQTLs from all tissues located on chromosome 1 and 
only the eQTLs of the whole blood sample that were 
located on chromosome 1, see figure 5b), which are 
eQTLs that the classifier has never seen before. Due 
to this leave-one-chromosome-out strategy, classifier 
performance decreased significantly because leakage 
was prevented (AUROC decreasing from 0,9174 to 
0,6637 for the Sum scoring method). However, model 
performance of this single classifier for all tissues was 
also lower than the average performance o f the tis-
sue-specific classifiers (AUROC 0,6637 for the single 
classifier compared to 0,7486 for the average of all tis-
sue-specific classifiers). This can be explained by the 
fact that some eQTLs will have both a positive and a 

Figure 4. The new scoring methods are also increasing performances of other types of classifiers. When the random 
forest classifier is replaced by other types of classifiers, the new scoring methods still increase classifier performance 
compared to the original scoring method. Tested classifiers are a k-nearest neighbor classifier, a support vector classifier 
and a multilayer perceptron classifier.  
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negative label, depending on the tissue type they orig-
inated from. For example, the variant at position 
40008013 on chromosome 15 is labeled positive in 
the thyroid tissue dataset, while being labeled nega-
tive in the tibial artery dataset. But when these da-
tasets are combined into a single dataset, this eQTL is 
present two times, with contradictory labels. There-
fore, the classifier cannot learn what the class of this 
eQTL is, resulting in a decrease in classifier perfor-
mance. Also, many eQTLs are tissue specific, making it 
hard to learn eQTLs expressed in blood from all possi-
ble tissues. 
 
Developing an autoencoder that compresses the En-
former output. As described above, we studied the 
different ways the genomic tracks can be compressed 
into a single score, by applying different scoring meth-
ods. However, there are more possibilities of com-
pressing the Enformer output. For example, the au-
thors of the Enformer paper applied a principal com-
ponent analysis (PCA) to distill the 5.313 features (re-
sulting from applying the Sum scoring method) into 20 
highly informative variant scores.19 When using these 
scores as features to train an eQTL classifier (in the 
same way as is done in this study), the AUROC 
dropped only from 0,747 to 0,743. 

        Another way of compressing the Enformer pre-
dictions would be to not use the scoring methods de-
scribed above, but to apply an autoencoder. Autoen-
coders are a specific type of neural network which are 
trained in an unsupervised or semi-supervised man-
ner to reconstruct the input.30 Due to the presence of 
bottleneck layers (the latent space), the data is com-
pressed and the autoencoder is forced to keep the 
most informative features of the data.  
        We have attempted to develop an autoencoder 
to compress the Enformer output. We trained the au-
toencoder on the delta values (see figure 3a, Alt-Ref), 
thus taking all 5.313 genomic tracks in their totality as 
input. In this way the initial input of 5.313 x 896 = 
4.760.448 values will be compressed into a certain 
number of encoded values, depending on the autoen-
coder architecture.  
        To apply an autoencoder model to this problem 
we build different autoencoder architectures, varying 
in number of layers, types of layers, and sizes of the 
latent space. Three architectures that we tried are dis-
cussed here (AE1 to AE3. The architecture of AE1 is 
shown in figure 6. See methods for the other architec-
tures). We applied a 1D convolution to the genomic 
tracks, with the different genomic tracks as channels. 

Figure 5. Classifier performances when training a single classifier on eQTLs of all tissue types. A) The average AUROC of 
the 49 classifiers is compared to the AUROC value of the single classifier trained on all eQTLs. The problem of leakage causes 
an increase in classifier performance, with the AUROC of the classifier trained on the combined tissues being 0,92. Also, 
there is no difference in classifier performance between the different scoring methods. Q99 + Pearson is the scoring method 
where the 99th quantile and the Pearson correlation values are combined, resulting in 2 x 5.313 features per variant. B) The 
average AUROC of the 49 classifiers is compared to the AUROC value of the single classifier trained on the eQTLs of all 
chromosomes except for those on chromosome 1 and tested either on the eQTLs on chromosome 1 (orange) or only the 
whole blood eQTLs on chromosome 1 (dark red). Leaving out chromosome 1 solves the leakage problem, but model per-
formance of the combined classifier is lower than the average of the classifier per tissue.  

A B
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Training the autoencoders resulted in an initial de-
crease in loss, but training stagnated after only a few 
batches (supplemental figure 3), even though the 
model was far from optimized (the loss of the recre-
ated samples was higher than the loss of an array of 
zeros). We hypothesized that the initial model (AE1) 
was too small to be able recreate the data. Therefore, 
we increased the model size (both in number of layers 
and in the number of values in the latent space, see 
AE2 in methods), but this did not increase model per-
formance. Even the largest model would not o verfit 
when trained on a single sample for 2000 epochs, 
meaning that this autoencoder architecture was not 
sufficient to encode the Enformer output. One possi-
ble reason for this problem is that the autoencoder 
was reducing the dimension of the genomic track 
from 896 to 1, while the 2000 values of the latent 
space where in the channels dimension (see AE2 ar-
chitecture). Therefore, the next architecture that we 
tried to train had as its latent space all the values in 
the genomic track dimension (by applying padding at 
the convolution layers) and 5 channels. However, 
even this did not result in the autoencoder being able 
to reproduce a single sample after training on it for 
2000 epochs (see supplemental figure 4). Due to lim-
ited time, we were not able to develop a working au-
toencoder for this problem, but we do think this is a 
promising route to take (see discussion). 
 
Discussion  
        We developed new scoring methods to compress 
the output of Enformer to use it for classification of 
noncoding variants. To see if the scoring methods are 
also increasing classifier performance when used for 
other classification tasks, our method proposed in this 

paper should also be tested with other truth sets. For 
example, as truth set the noncoding variants from the 
ClinVar database could be considered. However, at 
this point the number of noncoding variants in ClinVar 
is on the lower side. Kircher et al. identify this sparsity 
of pathogenic noncoding variants as a major bottle-
neck in the development of interpretative methods 
for noncoding variants.20 Other reasons for applying 
our method to a different truth set are the limitations 
that are inherent to eQTL experiments, which are 
shown by the study of Mostafavi et al..29  
        When training a single classifier on the eQTLs of 
different tissue types one should consider the tissue 
types the eQTLs originated from. The tissue type label 
should be implemented in the training. This can, for 
example, be done by building the classifier in such a 
way that it predicts for each tissue type whether an 
eQTL is positive of negative, thus predicting 49 labels 
per eQTL. It remains to be studied whether combining 
the different classifiers for each tissue into a single 
classifier for all tissues increases classification perfor-
mance. As French and Edwards observe, a major chal-
lenge in predicting the effect of noncoding variants is 
that this effect can very much depend on the tissue 
type the variant is located in7, which pleads for a tis-
sue-specific approach and discourages training on 
eQTLs of multiple different tissue types simultane-
ously. However, since the Enformer output contains 
genomic tracks that are specific to certain cell types 
(over 600 different cell types, see methods), the clas-
sifier that uses these as input features will be able to 
predict tissue type-specific effects.  
        Concerning the training of an autoencoder, be-
cause truth sets of interest in general will not have 
enough samples to train a neural network, we pro-
pose to first train the autoencoder in an unsupervised 

Figure 6. The architecture of the encoder part of AE1. The first half of the architecture (encoder) of the first autoencoder 
(AE1). The decoder part is the exact mirror image of the encoder part. The details of the autoencoder architecture can 
be found in the GitHub repository (see methods).  
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manner on the Enformer output of random variants 
(e.g., from the 1000 Genomes Project31 or gnomAD32). 
Then, subsequentially, the model can be finetuned by 
training on the samples from the truth set, possibly in 
a (semi-)supervised manner.  
        There are numerous possibilities of moving this 
data compression problem forward. One example is 
the application of contrastive learning, in which the 
model is trained in such a way that samples of the 
same class lie close to each other in the embedding 
space, while the distance within the embedding space 
between samples of different classes is being maxim-
ized (e.g., by applying triplet loss33). Another way of 
training the compression model in a supervised man-
ner is considering the classification loss when training 
the autoencoder. The classification loss can be used 
as direct feedback to the training of the autoencoder. 
        When classifying variants in a real-life scenario, 
the unseen set of variants that you want to classify will 
highly likely be unbalanced. For example, when you 
sequence the genome of a patient, only a small frac-
tion of the variants encountered will influence gene 
expression. It is important to account for this unbal-
anced data in the development of a variant classifier, 
by making the test set and optionally also the training 
set unbalanced (see common ML pitfall 5 in Whalen 
et al.28).  
        In conclusion, applying the Enformer algorithm to 
the problem of determining the effect of noncoding 
variants is a promising way forward. We show that the 
best way of handling the Enformer output for classifi-
cation is applying the Q99 Abs or the Sum Abs scoring 
method. Additionally, we propose ways of continuing 
this research to gain more insight into the role of 
noncoding variants in human disease and to get one 
step closer to treatment.  
 
Methods 
        To work with the Enformer algorithm we used the 
scripts developed by the authors and additional 
scripts that we wrote ourselves. For an explanation on 
how the Enformer scores and subsequent compres-
sions were obtained and all necessary scripts, we refer 
to the GitHub repository: https://github.com/Nimrod 

deWit/UMCInternshipEnformer. A description of all 
the genomic tracks can be found on 
https://raw.githubusercontent.com/calico/ba-
senji/master/manuscripts/cross2020/targets_hu-
man.txt. The eQTL dataset was downloaded from 
https://console.cloud.google.com/stor-
age/browser/dm-enformer/data/gtex_fine.  
        The scoring methods that were tested are the fol-
lowing: Delta (subtract the reference from the alter-
native tracks), Sum (of the Delta values, per track take 
the sum of the values), Max Abs (take the absolute of 
the Delta values and select the maximum value), Q99 
Abs (take the absolute of the Delta values and per 
track take the 0.99 quantile of the values), Sum Abs 
(take the absolute of the Delta values and per track 
take the sum of the values), SADR, SAX, SAXR, SAR (see 
scripts in the Basenji repo), Pearson/Kendall/Spear-
man correlation (for each genomic track calculate the 
correlation between the reference and alternative 
track), Qn (take the n quantile value of Delta). In case 
of combinations the values of the two scoring meth-
ods are combined, resulting in 10626 values per vari-
ant. 
        The random forest, k-nearest neighbor, support 
vector, and multi-layer perceptron classifiers were 
trained with scikit-learn’s default hyperparameters, 
unless stated otherwise. The AUROCs that were used 
as a measure of classifier performance are the aver-
age AUROCs of a 10-fold cross validation. Except for 
the classifiers that were tested separately on eQTLs 
from chromosome 1, where the AUROC value is just 
the AUROC value that results from predicting the sam-
ples of the test set.  
        For the architectures of AE1, AE2 and AE3 see the 
AE*_architecture.py scripts in the GitHub repository.  
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Supplemental figures 

 
 
 
  

Supplemental figure 1. Classifier performances for all scoring methods. The performances of the classifiers when ap-
plying different scoring methods. ‘Enformer paper’ are the values obtained from figure 3d of ref. 16, Sum is our attempt 
to recreate these values by applying their Sum method on the same data. The Kelley methods (SADR, SAX, SAXR, SAR) 
are scoring methods that were present as optional methods in their scripts (see sonnet_sad.py in 
https://github.com/NimroddeWit/UMCInternshipEnformer). The Q scoring methods are different quantiles, and for the 
combinations the values of two scoring methods were combined, resulting in 2 x 5.313 values per variant. Max is the 
same as Max Abs and Raw is the same as Delta. See methods for a more extensive description.  

Supplemental figure 2. Random forest classifiers are robust to hyperparameter change. Different hyperparameter set-
tings were tried for the random forest classifiers. Changing the hyperparameters max depth, min samples per leaf and 
min samples per split did not severely affect classifier performances.  
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Supplemental figure 3. A typical loss curve for training the autoencoders. The loss typically decreased during training 
on the first few samples but remained at the same level for the rest of the training. The spikes in the loss curve are 
caused by the fact that training is done in batches,  

Supplemental figure 4. Random examples of original genomic tracks compared to recreated genomic tracks. A repre-
sentative set of genomic tracks, where the blue lines represent the Alt - Ref genomic tracks from the original sample, 
and the red lines the version recreated by AE3. The recreated values do not match the original values, also showing 
spikes at the outer parts of the track.  
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Layman’s summary (Dutch) 
        In de meeste ziektes speelt genetica een rol. Daarom is onderzoek naar het effect van genetische variatie 
belangrijk. Ons genoom bestaat uit een coderend en een niet-coderend deel. In deze studie passen we zelflerende 
algoritmes toe om het effect van genetische variatie in het niet-coderende deel van het genoom te bepalen. Het 
Enformer algoritme is een state-of-the-art algoritme wat in staat is voor elke willekeurige streng DNA te voorspel-
len hoe de genexpressie zal zijn. Deze voorspellingen gebruiken we om een ander zelflerend algoritme te trainen 
zodat het in staat is onderscheid te maken tussen genetische variatie die wel en die geen invloed heeft op genex-
pressie (een algoritme wat onderscheid probeert te maken tussen twee of meerdere groepen noemen we een 
classificeerder). Hiervoor gebruiken we een dataset met varianten waarvan het bekend is dat deze een effect 
hebben op genexpressie (positieve eQTLs) en varianten waarvan bekend is dat deze geen effect hebben op gen-
expressie (negatieve eQTLs). Voor elke variant in deze dataset verkrijgen we de voorspellingen van het Enfomer 
algoritme.  
        Aangezien deze voorspellingen een te grote omvang hebben om direct gebruikt te worden voor het trainen 
van de classificeerder, moeten de voorspellingen gecomprimeerd worden. Dit is eerder gedaan door Avsec et al. 
(ref.19), maar wij hebben deze methode verbeterd. Wanneer de classificeerder getraind wordt op onze scores 
presteert het beter dan wanneer het getraind wordt op de scores van Avsec et al.. Hun methode van scoren, Sum, 
zorgt voor een gemiddelde classificeerder prestatie (AUROC) van 0,748, terwijl onze methodes Max Abs, Q99 Abs 
en Sum Abs respectievelijk zorgen voor een gemiddelde prestatie van 0,762, 0,776 en 0,777. 
        Naast deze vernieuwde methodes om de voorspellingen te comprimeren, hebben we ook geprobeerd de 
voorspellingen op een geheel andere wijze te comprimeren, namelijk met behulp van een zogenaamde automa-
tische encoder. Dit is een algoritme dat leert om een grote hoeveelheid waardes samen te vatten. Het is ons niet 
gelukt om dit algoritme werkend te krijgen en we doen voorstellen hoe dit onderzoek vervolgd kan worden.  
        Concluderend kan worden gesteld dat het gebruiken van het Enformer algoritme om meer inzicht te krijgen 
in niet coderende varianten een veel belovende weg is en in dit onderzoek presenteren we nieuwe methodes om 
dit te doen. 
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