
Exploring the multi-emitter localization problem in
high and low density settings

Tomas Ehrencron

Mathematical Sciences

Master Thesis

Supervisors:

Dr. P. Salanevich
Utrecht University

Dr. I Kryven
Utrecht University

Dr. H. van der Voort
Scientific Volume Imaging

M. Ram MS
Scientific Volume Imaging

Dr. F. van der Have
Scientific Volume Imaging

November 15, 2022

i

Abstract

Single Molecule Localization Microscopy is a set of techniques that allows to overcome the diffraction
limit and create higher resolution images by processing entire image series and combining the results.
Molecules that lie too close to each other to separate, are separated in time instead. The experiments to
acquire these images can be tedious and time-consuming. To speed up this process, we can image more
molecules per frame, but this will result in overlapping molecules. We explore two methods to solve the
issue of overlapping molecules in the image. We present a new method in solving this problem using
sparse regularization.

CONTENTS ii

Contents

1 Notation and conventions 1
1.1 Image notation . 1

2 Introduction and problem description 1
2.1 SMLM . 2

3 Preliminaries 3
3.1 Probability and statistics . 3
3.2 Continuous optimization . 6
3.3 Light detection model . 10
3.4 Image data models . 11

4 Literature study 12
4.1 Preprocessing step . 12
4.2 Molecule detection step . 13
4.3 Molecule localization step . 13
4.4 Post-processing step . 14
4.5 Other methods . 15
4.6 Performance measures . 15

5 Preprocessing steps 16
5.1 Background estimation . 16
5.2 FWHM estimation . 18

5.2.1 In multi-emitter setting . 19

6 Individual emitter localization 20
6.1 Molecule detection . 20
6.2 Localization . 21
6.3 Fit procedure . 23

6.3.1 Initial guess . 23
6.3.2 Combining results . 24

7 Multi-emitter grid localization 25

8 Experiments 27
8.1 Data sets . 27
8.2 Metrics . 27
8.3 Results . 28

9 Discussion 32
9.1 Future research and improvements . 32

A Parameter choices 34
A.1 Preprocessing steps . 34
A.2 Individual fitting algorithm . 34
A.3 Grid fitting algorithm . 34

B Tables 35

2 INTRODUCTION AND PROBLEM DESCRIPTION 1

1 Notation and conventions

Before we start we briefly discuss the notations and conventions used in this thesis. We use the following
definitions:

N = {0, 1, 2, . . .}
R+ = {r ∈ R | r ≥ 0}
[x] = {1, . . . , x} for x ∈ N \ {0}

For a differentiable function f : Rn → R, we define the gradient ∇f(x) as the n× 1 vector

∇f(x) =

∂

∂x1
f(x)
...

∂
∂xn

f(x)

 .

With some slight abuse of notation, we can consider a subset X ⊆ (x1, . . . , xn) of the set of variables. Then
∇Xf(x) is the vector containing the partial derivatives of the variables in X. If f is twice continuously
differentiable, then the Hessian matrix ∇2f(x) is the n×n matrix containing the second partial derivatives:

∇2f(x) =

∂2

∂x2
1
f(x) . . . ∂2

∂x1∂xn
f(x)

...
. . .

...
∂2

∂xn∂x1
f(x) . . . ∂2

∂x2
n
f(x)

For a function g : Rn → Rm : g = (g1, . . . , gm) where gi is continuously differentiable for all i = 1 . . . ,m, we
can define the m× n Jacobian matrix Jg as the matrix containing the first partial derivatives

Jg =

∂

∂x1
g1(x) . . . ∂

∂xn
g1(x)

...
. . .

...
∂

∂x1
gm(x) . . . ∂

∂xn
gm(x)

When it is clear from the context of which function we consider the Jacobian, we simply write J.

1.1 Image notation

An image consists of a series of T frames where each frame has width W and height H. We can formally
define an image (series) I as a function I : [W] × [H] × [T] → R+. A single frame t can then be defined as
I(t) : [W]× [H]→ R+, (w, h) 7→ I(w, h, t). When T = 1, we use some abuse of notation and denote an image
I as a function I : [W]×[H]→ R+ or even I : [WH]→ R+ where we use the translation t : [W]×[H]→ [WH]
given by t(i, j) = (j−1)W + i. In this last case, we can also view I as vector in RWH

+ or as matrix in RW×H
+ .

Acquisition images measure the light intensity by counting a certain number of electrons (see Section 3.3),
so the pixel values are in N. We defined the images in R+, because we are not only using the raw image
data. We also apply operations to these images which results in non-integer intensities. For the specific case
where I : [W]× [H]× [T]→ N we define the histogram H(I) : N→ N as

H(I)m = |{(w, h, t) ∈ [W]× [H]× [T] | I(w, h, t) = m}|

where m ∈ N. Finally, we define the neighborhood of size ρ of a pixel p = (w, h, t), denoted by Nρ(p), as

Nρ(p) = {(w′, h′) ∈ [W]× [H] | |w − w′| ≤ ρ, |h− h′| ≤ ρ}.

2 Introduction and problem description

Optical microscopy is limited by a physical boundary called Abbe’s diffraction limit [21]. This limit is defined
as

d =
λ

2n sin θ
,

2 INTRODUCTION AND PROBLEM DESCRIPTION 2

where λ is the wavelength of the light measured, n is the refractive index of the medium, and θ is the half-
angle of the cone of light that can enter the lens. Point sources that lie closer to each other than this distance
will overlap, because their interference patterns are overlapping. Since sin θ ≤ 1, and the refractive index of
the medium is also bounded (which is often around 1.5), there is an upper bound on d depending on λ. For
microscopes that use light from the visible spectrum, the measured wavelength is also bounded from below,
resulting in a maximum resolution of around a 200-300 nm [17].

2.1 SMLM

Single-molecule localization microscopy (SMLM) is a set of techniques with the aim of increasing the image
resolution above the diffraction limit. The idea behind SMLM is that molecules that lie close to each other, are
better localized when they emit light at different moments. In short, these techniques consist of the following
steps. First, fluorescent molecules are attached to a sample. Then, via a chemical or light-dependent process,
molecules are put in a ‘blinking’ stage. In this stage, the molecules repeatedly start emitting for a short
period of time before turning off again. We call such molecules emitters and the bright spots they produce
fluorophores. Generally, we will use the term ‘emitter’ to also refer to fluorophores when the distinction is
not relevant. A microscope detects these fluorophores in a series of images. In the final step, the images
are analyzed to determine the molecule locations with higher accuracy, showing the structure of the sample.
Figure 1 shows two example frames of a data set and the superresolution image constructed using the 3D-
DAOSTORM [2].

(a) (b)

Figure 1: Figure (a) shows one frame of a data set taken from an evaluation study by Sage et al.[36]. Figure
(b) shows a zoomed-in region of the resolved image by 3D-DAOSTORM [2].

Chemical processes There are many different methods to turn molecules into a fluorescent stage. Now, we
highlight a few prominent ones. Rust et al. developed stochastic optical reconstruction microscopy (STORM)
[34]. In this method we activate synthetic dyes using a certain wavelength and deactivate them using another.
The method is stochastic, since a random fraction of the total number of molecules is activated. If we repeat
these steps a large enough number of times, each molecule is likely to be activated at least once, so we can
determine its location with a higher accuracy. This accuracy can be improved, if we have multiple frames

3 PRELIMINARIES 3

for each molecule. The number of times a molecule can be activated and deactivated is bounded. However,
Rust et al. found that molecules can be cycled hundreds of times before going to a final photobleached state
in which they cannot be activated again. A similar method, called PALM, is presented by Betzig et al. [4].
PALM, photoactivated localization microscopy, uses fluorescent proteins to turn molecules into fluorescent
stage.

Sharonov and Hochstrasser developed the points accumulation for imaging in nanoscale topography (PAINT)
method[38]. This method works differently from STORM and PALM. Here, emitting dyes move freely through
the sample and occasionally bind to certain molecules for a certain period of time. Although the dyes are
constantly emitting, we still achieve bright spots, since bound dyes remain fixed on a position, so this region
will emit a constant amount of light. Other regions will emit a much smaller amount, because the dyes are
constantly moving and are not in this spot for the entire duration of the frame.

Although the event of a molecule lighting up is random, we have some control over the rate at which
molecules become emitters. We do not want all molecules to emit at the same time, since this will lead to
overlapping fluorophores which are harder to locate precisely. Ideally, the molecule density is low. That is,
each frame in our series contains only a few fluorophores which are nicely distributed without overlapping.
Then, we can precisely locate the molecules in each frame and combine the results in a single high resolution
image. To achieve this, we have to make sure that the rate at which molecules emit light is small enough,
so that the probability of fluorophores overlapping is small. As only a small number of molecules light up at
the same time, creating such an image series takes a lot of time. This is a disadvantage for several reasons.
In many situations, molecules are not fixated at an exact position, but they can move slightly. A longer
acquisition time means that molecules can move larger distances. The drift, the movement of the sample as a
whole, also becomes more prevalent. And of course the experiments will take longer to conduct. This has lead
to the development of algorithms that can analyze high-density data sets where there are many overlapping
fluorophores. The problem that these algorithms are trying to solve is often called the multi-emitter fitting
problem. In this thesis we investigate two approaches to this problem.

In Section 4, we will discuss many different algorithms for localizing molecules in both single-emitter and
multi-emitter settings.

Parameter of an emitter During the localization step of an emitter there are several parameters that
we can choose to incorporate in the fitting procedure. Most importantly are the positional parameters which
model the emitter’s x- and y-coordinate, since we are eventually interested in the exact location of the emitter.
Other common parameters are the brightness and the width of the fluorophore as they determine the shape
of the fluorophore we observe.

3 Preliminaries

3.1 Probability and statistics

Maximum likelihood estimation An important technique in parameter estimation is the maximum
likelihood estimation (MLE). In this setting, we consider a random variable X and a tuple x = (x1, . . . , xm)
containing m realizations of X that are all independent and identically distributed (IID). We assume that X
follows a distribution determined by a parameter θ ∈ Θ. For discrete probability distributions, we say that
the likelihood of a parameter θ given a single realization xi is equal to

L(θ | xi) := Pθ(X = xi).

The likelihood given all observations, then becomes

L(θ | x) :=
m∏
i=1

Pθ(X = xi).

For continuous probability distributions, we cannot use this definition, as Pθ(X = xi) = 0. Instead, we use
the density function to get

L(θ | xi) := fθ(xi).

3 PRELIMINARIES 4

Again, for a set of observations, this becomes a product. We do want to mention that there exists a more
general definition that uses measure theory, but since we will not need this, we omit it here.

We define the maximum likelihood estimation as θ̂ ∈ Θ that maximizes the likelihood. That is,

θ̂ = argmax
θ∈Θ

L(θ | x).

In practice, whenever we want to compute the MLE, it is easier to compute the parameter θ̂ that maximizes
the log-likelihood

ℓ(θ | x) = logL(θ | x)

instead. For example, in distributions containing exponents, taking the logarithm of the likelihood simpli-
fies the optimization function. The underlying reason for this is that many distributions are log-concave,
meaning that taking the logarithm results in a concave function [5] and concave functions are easier to max-
imize. Because the logarithm is a strictly increasing function, maximizing the log-likelihood is equivalent to
maximizing the likelihood. We do have to be careful, since the likelihood can be 0. If we simply interpret
log 0 = −∞ and −∞ < a for all a ∈ R, then there is no confusion.

Fisher information When estimating a parameter based on some data, we consider an estimator θ̂, a
function that takes the data as argument and outputs an estimation of the parameter we are interested
in. Since the data is randomly distributed, any estimator itself is also a random variable. To quantify the
performance of an estimator θ̂, we consider both the bias and its variance. In many situations, we can
design an unbiased estimator. This estimator will have bias 0 independently of the size of the data. On the
other hand, the variance depends on the size of the data. Intuitively, there is an upper limit on how much
information we can extract from a set of data. This vague bound is formalized using Fisher information and
the Cramér-Rao bound. More precisely, the Cramér-Rao bound gives a lower bound on the variance of any
possible unbiased estimator [30].

Before we define this bound, we formalize the concept of information. The general idea is that, whenever
we are estimating a certain parameter, any observation gives a certain amount of information about the
parameter. However, this amount can vary greatly between different random variables and the observed
value. The goal of the Fisher information is to quantify how much information we expect to get, as a
function of the parameter θ.

As an example, we consider two normally distributed variables X1 ∼ N (µ, 1) and X2 ∼ N (µ, 10) and we
want to estimate µ. Because the variance of X2 is larger, we need more samples to get the same amount of
precision compared to X1. In that sense we get less information per observation. Vaguely worded, we are
looking for a measure to quantify the ‘sharpness’ of the likelihood function.

Definition 3.1.1 (Score). Let X be a random variable with density function fθ that is determined by the
parameter θ ∈ Θ. The score s(θ | x) is then defined as the gradient of the log-likelihood with respect to θ
given data x [37]. That is, we define

s(θ | x) = ∇θℓ(θ | x) = ∇θ logL(θ | x).

If we only have one parameter, this simply reduces to s(θ | x) = ∂
∂θ logL(θ | x). The score describes the

rate of change of log-likelihood given the data as a function of θ. If θ is the true parameter, we expect that
this rate is 0, as the log-likelihood should be maximized here. Indeed, it holds that E [s(θ | x) | θ] = 0 where
the expectation is taken over all values of x. Before we can properly define the Fisher information, we need
to ensure that the following regularity conditions hold [37]:

1. The partial derivatives of fθ(x) over must be defined almost everywhere.

2. We can integrate fθ(x) over θ.

3. The support of fθ(x) does not depend on θ.

These conditions exclude for example the uniform distributed X ∼ U(0, θ), since its support is equal to [0, θ].

3 PRELIMINARIES 5

Definition 3.1.2 (Fisher information). If the above conditions hold, then the Fisher information is defined
as the variance of the score, given that θ is the true parameter, i.e.:

I(θ) = E

[(
∂

∂θ
logL(θ | X)

)2
∣∣∣∣∣ θ
]

where we take the expectation with respect to our random variable X. Recall that this was the random
variable that we observe with realizations x.

This is indeed equal to the variance, as one can show that the expectation of the score is equal to 0, that
is E

[
∂
∂θ logL(θ | X)

∣∣ θ] = 0. In higher dimensions, this becomes the Fisher information matrix which is
defined as

I(θ)i,j = E

[(
∂

∂θi
logL(θ | X)

)(
∂

∂θj
logL(θ | X)

) ∣∣∣∣∣ θ
]
.

Proposition 3.1.3. If, on top of the regularity conditions, the second partial derivatives are also defined
almost everywhere, we get an equivalent definition:

I(θ)i,j = −E

[
∂2

∂θi∂θj
logL(θ | X)

∣∣∣∣∣ θ
]

Proof. We have that

∂2

∂θi∂θj
logL(θ | X) =

∂

∂θi

(
∂

∂θj
L(θ | X)

L(θ | X)

)

=
L(θ | X)

(
∂2

∂θi∂θj
L(θ | X)

)
−
(

∂
∂θi
L(θ | X)

)(
∂
∂θi
L(θ | X)

)
L2(θ | X)

=

∂2

∂θi∂θj
L(θ | X)

L(θ | X)
−
(

∂

∂θi
logL(θ | X)

)(
∂

∂θj
logL(θ | X)

)
.

Then, we can show that

E

 ∂2

∂θi∂θj
L(θ | X)

L(θ | X)

∣∣∣∣∣ θ
 =

∫
R

∂2

∂θi∂θj
L(θ | x)

L(θ | x)
f(x | θ) dx

=

∫
R

∂2

∂θi∂θj
f(θ | x)

f(θ | x)
f(x | θ) dx

=
∂2

∂θi∂θj

∫
R
f(θ | x) dx

=
∂2

∂θi∂θj
1 = 0.

This concludes the proof.

Example 3.1.4. As an example, we consider a Gaussian random variable with mean θ and variance σ2 and
we assume that we have n independently selected samples x = (x1, . . . , xn). In this case, we have for every
individual observation

L(θ | xi) = fθ(xi) =
1√
2πσ

e−
(xi−θ)2

2σ2 .

3 PRELIMINARIES 6

The second derivative of the log-likelihood becomes

∂2

∂θ2
ℓ(θ | xi) =

∂2

∂θ2

(
− log

(√
2πσ

)
− (xi − θ)2

2σ2

)
= − 1

σ2

Then, we can compute the Fisher information for the total sample x as follows:

I(θ) = −Eθ

[
∂2

∂θ2
logL(θ | x)

]
= −Eθ

[
∂2

∂θ2
log

(
n∏

i=1

L(θ | xi)

)]

= −Eθ

[
n∑

i=1

∂2

∂θ2
ℓ(θ | xi)

]
=

n

σ2

It follows that a high variance results in low Fisher information. Also note that in this particular case
the Fisher information does not depend on θ, since the shape of the density function does not change when
shifting the mean. △

Cramér-Rao bound The Cramér-Rao bound is a statistical result on the variance of unbiased estimators.
Suppose we have a one-dimensional parameter θ that we want to estimate, using an estimator θ̂ and suppose
this estimator is unbiased, i.e. E[θ̂] = θ. Then, the Cramér-Rao bound [30] states that

var(θ̂) ≥ 1

I(θ)
,

where I(θ) is the Fisher information of θ.

To continue Example 3.1.4, we find that for any estimator θ̂ of the mean, it holds that var(θ̂) ≥ σ2/n.

Note that this lower bound is achieved by using the sample mean for θ̂.

3.2 Continuous optimization

In almost all settings where we are estimating a certain parameter, we are in fact optimizing some function.
We define a minimization problem as

min
x∈Rn

h(x)

where h : Rn → R is a function. Although maximum likelihood estimation is a maximization problem, we
can turn it into a minimization problem if we negate the objective function. Note that we use in this section
the variable x instead of θ as we did for the MLE. We chose to use x here, since this section describes general
optimization techniques, while we use θ solely to denote parameters.

Another optimization approach is least squares (LS) optimization which is not based on probability
theory. Here, we have a vector of measurements d = (d1, . . . , dm) ∈ Rm and a set of functions qi : Rn → R
for i = 1, . . . ,m. We define the residuals ri = di − qi(x) and we consider the minimization problem

min
x∈Rn

R(x) := min
x∈Rn

m∑
i=1

ri(x)
2 = min

x∈Rn

m∑
i=1

(di − qi(x))
2
.

We estimate the input or parameter by minimizing the sum of the squared errors predicted by the functions.
As an example, we can consider the single emitter localization problem in an image I. The measurement d
consists of the pixel values, di = I(i) where i ∈ [WH]. For simplicity we assume that only the positional
parameters of the emitter are unknown and that the brightness and width of the fluorophore are known.
The functions qi take then two parameters (x1, x2) as arguments and return the predicted intensity of pixel
i ∈ [WH]. The goal is then to find positions (x1, x2) ∈ R2 that minimize R.

3 PRELIMINARIES 7

Generally, it is not possible to find the minimizer of a continuous optimization problem analytically,
except for very specific situations such as a least squares problem with linear qi [5, Chapter 1]. Otherwise, we
have to resort to iterative methods. Iterative methods gradually improve the solution, until we reach a local
minimum. Note that these method have no guarantee of finding the global minimum, unless the problem
is pseudoconvex [24] or we are very careful with how we choose our initial solution. Now, we present some
iterative methods that employ the gradient of the objective function.

Gradient descent method The simplest gradient method is the gradient descent algorithm. We start
with an arbitrary x0 and we use the iteration

xk+1 := xk − tk∇h(xk),

where we can choose the step size tk in each iteration. This method has the advantage that for a small
enough tk, the iteration is guaranteed to improve the solution. One choice for tk is using exact line search [5,
Chapter 9]. Here, we determine the optimal choice for t in each iteration. Formally, we consider the second
optimization problem

min
t∈R

h(xk − t∇h(xk)).

One can show that convergence is guaranteed, whenever h is strongly convex and we can also prove a rate of
convergence. However, convergence is slow when the condition number of the Hessian matrix is large. This
slow convergence is major disadvantage of gradient descent and it is often better to use different methods.
[5]

Newton-Raphson method Another common approach is the Newton-Raphson method or simply New-
ton’s method [5, Chapter 9]. Newton’s method is originally a root-finding algorithm, but a variation can be
used in minimization problems. The iteration for Newton’s method is

xk+1 = xk −∇2h(xk)
−1∇h(x).

where ∇2 is the Hessian matrix. In the gradient descent method we compute the linear approximation of
h at point xk. Then, we move in the optimal direction which is the negative gradient. Newton’s method
computes the quadratic approximation of h and then jumps to its stationary point. We can show this as
follows. We write the quadratic approximation as

h(xk + δ) ≈ h(x) +∇h(x)T δ + δT∇2h(x)δ

Then, the stationary point is such that ∇δh(xk + δ) = 0, that is

0 = ∇δh(xk + δ) ≈ ∇h(x) +∇2h(x)δ.

It follows that δ = −∇2h(x)−1∇h(x). Newton’s method can achieve a much faster rate of convergence than
the gradient descent method, but it only works in certain situations. Specifically, when the Hessian is not
invertible, this method fails and when the Hessian is ill-conditioned, computing the inverse is sensitive to
numerical errors. Moreover, the fast convergence is only achieved when the starting point is ‘close’ to the
optimum. In [5] sufficient (but not necessary) conditions are described for quadratic convergence.

Another disadvantage is the need for the inverse of the Hessian matrix in every iteration. Previously, we
stated that we only consider methods that use the gradient, and we will now remove this dependency.

Gauss-Newton method Although the gradient descent method and the Newton-Raphson method have
some conditions for convergence, they work for a general set of minimization problems. If we focus specifically
on least squares optimization, we can utilize the specific form of this problem. The Gauss-Newton method is
a modification for LS problems. If we apply the Newton-Raphson method, we compute the gradient and the
Hessian as follows:

∇jR(x) =
∂

∂xj

m∑
i=1

ri(x)
2

= 2

m∑
i=1

ri(x)
∂

∂xj
ri(x)

3 PRELIMINARIES 8

Let r(x) = (r1(x), . . . , rm(x)) and let J be the Jacobian matrix of r. Then, we have ∇R(x) = 2JT r(x). For
the Hessian, we have

∇2
j,kR(x) =

∂2

∂xj∂xk

m∑
i=1

ri(x)
2

= 2

m∑
i=1

[
∂

∂xj
ri(x)

∂

∂xk
ri(x) + ri(x)

∂2

∂xj∂xk
ri(x)

]
.

Now, we approximate the Hessian by omitting the second order derivatives. We get a matrix

Hj,k = 2

m∑
i=1

∂

∂xj
ri(x)

∂

∂xk
ri(x),

which we can write as H = 2JT J. If we use H instead of the Hessian, we get the recursion

xk+1 = xk − (JT J)−1JT r(xk).

It might not be clear if leaving out the higher order derivative in the Hessian provides a meaningful estimate
for it, but we can also derive the same relation in different way. Suppose we write our iteration as xk+1 =
xk + δ. We want to choose our δ in such a way that R attains a local minimum at xk + δ. This happens
whenever ∇δR(xk + δ) = 0. Of course, R is too complicated to determine δ directly, but we can use a linear
approximation of r in point xk. We have that

r(xk + δ) ≈ r(xk) + Jδ.

If we note that we can write R(x) = r(x)T r(x), we are actually solving the optimization problem

min
δ

R′(δ) := min
δ
∥r(xk) + Jδ∥22

which we can solve as follows. We have that

∇δR
′(δ) = ∇δ∥r(xk) + Jδ∥22

= ∇δ(r(xk) + Jδ)T (r(xk) + Jδ)
= ∇δ

(
2r(xk)

T Jδ + δT JT Jδ
)

= 2JT r(xk) + 2JT Jδ.

Setting this equal to 0, we have that δ = −(JT J)−1JT r(xk), which gives the same result as before.

Levenberg-Marquardt algorithm The Gauss-Newton method suffers from the same problems as Newton-
Raphson. The convergence is only suitable whenever our solution is already ‘close’ to the optimum. When the
current iteration lies further away from the optimum, the next iteration might even increase the optimization
function. In these cases we might produce an even worse solution. Levenberg [19] and Marquardt [25] both
independently suggested a combination of Gauss-Newton and gradient descent. More specifically, we add a
matrix to JT J before inverting it. One choice is simply λI where I is the identity matrix of appropriate size
and λ > 0 is the dampening factor. Then, the iteration becomes

xk+1 = xk − (JT J+ λI)−1JT r(xk).

When λ is close to 0, this iteration resembles the Gauss-Newton method. If λ becomes large, the iteration
behaves like gradient descent with tk = 1/λ.

From the viewpoint of regularization, we can arrive at the same iteration if we consider the problem

min
δ

R′(δ) + λ∥δ∥22.

3 PRELIMINARIES 9

This minimization problem aims to minimize R′ while keeping δ relatively small. Then, we have

∇δ

(
R′(δ) + λ∥δ∥22

)
= 2JT r(xk) + 2JT Jδ + 2λδ

= 2JT r(xk) + 2
(
JT J+ λI

)
δ

which leads to the same iteration. Instead of using the identity matrix, both Levenberg and Marquardt also
suggest using diag(JT J). Then, the dampening factor is scaled differently for each parameter. Intuitively, we
take larger steps in the direction of parameters with a small gradient. This speeds up the slow convergence
of gradient descent in flat areas.

Finally, we need to choose the dampening parameter λ for the algorithm. Marquardt [25] suggests the
following. Start with a choice λ0 and choose some ν > 1. Then, at iteration k, we compute the optimal δ for
both λk and λk/ν. If both values result in a worse solution, we choose xk+1 = xk and instead let λk+1 = νλk.
If λk/ν results in a worse solution and λk results in an improvement, we use the latter, but leave λk as it is.
If using λk/ν improves the solution, we choose λk+1 = λk/ν and continue with the improved solution.

Majorization minimization An optimization technique that is not based on gradients is the MM algo-
rithm. It either stands for majorization minimization or minorization maximization, depending on which
form of optimization is used. In this section we focus on majorization minimization, but maximization works
analogously.

Suppose we have a function h : Rn → R that we want to minimize without constraints. The MM algorithm
is an iterative method where we start with an initial solution x0 which we improve in each iteration. We
denote the point in iteration i by xi. The general idea is in each iteration to construct a surrogate function
g that majorizes h.

Definition 3.2.1. Let h : Rn → R be a function. We call g(· | x̂) : Rn → R a majorizer of h in point x̂ if:

• g(· | x̂) touches h in x̂, i.e. g(x̂ | x̂) = h(x̂);

• g(· | x̂) bounds h from above, i.e. g(x | x̂) ≥ h(x) for all x ∈ Rn.

We also say that g(· | x̂) majorizes h at x̂ or simply that g(· | x̂) majorizes h, when it is clear from the context
at which point h is majorized.

We will use some properties of majorizers.

Proposition 3.2.2. Let h, h1, . . . , hm : Rn → R be functions such that h = h1 + . . . + hm and let g1(· |
x̂), ..., gm(· | x̂) be majorizers of h1, . . . , hm respectively. Then, g(· | x̂) = g1(· | x̂) + . . . + gm(· | x̂) is a
majorizer of h.

Proof. The proof is straightforward. It holds trivially that

g(x̂ | x̂) = g1(x̂ | x̂) + . . .+ gm(x̂ | x̂) = h1(x̂) + . . .+ hm(x̂) = h(x̂)

and
g(x | x̂) = g1(x | x̂) + . . .+ gm(x | x̂) ≥ h1(x) + . . .+ hm(x) = h(x)

for all x ∈ Rn.

The general idea of an MM algorithm at iteration i is to construct a majorizer g (· | xi) and choose
xi+1 = argminx g (x | xi). This strategy is of course only viable when the majorizer can be minimized easily
and constructing a useful majorizer can be difficult. Hunter and Lange present some common techniques to
construct majorizers, including Jensen’s inequality, Cauchy-Schwartz inequality or constructing a quadratic
polynomial [12]. We will use one technique discussed in their paper which we will utilize.

Proposition 3.2.3. Suppose we have a convex function κ : R→ R and vectors c, x̂ ∈ Rn. Then the function
h(x) = κ(cTx) can be majorized at x̂ with the function

g(x | x̂) =
n∑

i=1

αiκ(ti)

where ti = cT x̂ · xi/x̂i and αi = cix̂i/(c
T x̂).

3 PRELIMINARIES 10

Proof. It holds that

g(x̂ | x̂) =
n∑

i=1

cix̂i

cT x̂
κ

(
cT x̂ · x̂i

x̂i

)
=

n∑
i=1

cix̂i

cT x̂
κ
(
cT x̂

)
= κ(cT x̂)

n∑
i=1

cix̂i

cT x̂
= κ(cT x̂) · c

T x̂

cT x̂
= κ(cT x̂) = h(x̂)

showing the first property. For the second property we employ the following inequality that holds for convex
functions:

κ

(∑
i

βiti

)
≤
∑
i

βiκ(ti)

where βi ≥ 0 for i = 1, . . . , n and
∑

i βi = 1. This is just a generalization of the defining property of convex
functions and the proof can be easily showed by induction. Since our αi sum to 1, we can show that

g(x | x̂) =
n∑

i=1

αiκ(ti) ≥ κ

(
n∑

i=1

αiti

)

= κ

(∑
i

cix̂i

cT x̂
· c

T x̂ · xi

x̂i

)
= κ

(∑
i

cixi

)
= h(x).

This concludes the proof.

3.3 Light detection model

Here, we present a model for the photon detection process. This encompasses both modeling the photon
detector and the light distribution coming from the sample. The latter part we largely base on [6] that
extensively discusses a number of models that increase in how well they model the real world.

Model of CCDs As a photon detector we consider the charge-coupled device (CCD). A CCD camera
consists of a two-dimensional array of detectors that collect incoming photons such that each detector collects
photons from a specific area of the sample. These photons are activating electrons, building up a charge in
the detector, which is initially 0. After a certain time this charge is measured and converted to an integer
number. A CCD will not activate an electron for every photon that enters and the fraction of photons that
are converted is called the quantum efficiency. Moreover, the CCD will measure an electric charge and not
the number of photons. To recover the number of electrons, a CCD camera specifies how many electrons
constitute one unit that the CCD outputs. Finally, the output can have an offset constant over time. This is
called the baseline of a detector and the offset can vary pixel by pixel, meaning that the same electric charge
can produce different output values. There exist methods that can determine the baseline as discussed in
[15]. As this is not the primary focus of this thesis, we will simply assume the baseline is known.

Not all electrons that are detected will originate from a photon originating from the sample [6]. Spurious
photons can be detected and the detector itself can measure dark current, small current that is present in a
detector, even when no photons enter the device [8].

Finally, we briefly want to mention EMCCD (electron-multiplying CCD) [7]. These devices increase the
number of electrons measured. In short, the number of electrons is amplified via a random process that is
repeated several times. The main advantage is that noise from reading out the number of electrons becomes
less prevalent. This is especially useful, when the number of electrons is very small. Although we will not
use this concept in our model, we mentioned it for completeness.

Photon distribution model Now, we describe our model for the photons arriving at the detector. This
model allows us to design algorithms for our problems, as well as provide a way to simulate images. Note
that these models can be applied in a more general setup than our localization setting.

Our first assumption is that the emission of photons by our sample, that are directed at the detector, is
a random process. In particular, we assume that it follows a Poisson process with rate Λθ(τ) which we call

3 PRELIMINARIES 11

the photon detection rate. Here, θ ∈ Θ is the parameter that determines where and how many photons are
emitted by our sample. This is a very general approach, but in our case we can have for example θ = (x, y, λ)
where θ contains the location (x, y) and brightness λ of one molecule. In this case mainly λ will influence
the photon detection rate (unless the molecule’s position is outside the detector range). We assume the
detection rate to be Poisson, since we model the photons as independent events. Previous photons do not
influence the probability of the next photon. The model also allows for the distinction of homogeneous and
inhomogeneous Poisson processes. If the light intensity of an object changes over time, we could model it as
an inhomogeneous model, while an object with a relative constant brightness follows a homogeneous Poisson
process.

Secondly, we describe the photon distribution profile. The photon distribution profile is a two-dimensional
probability density that describes the probability distribution of the photons on the detector over time. We
denote this density by fθ,τ (x, y), with (x, y) ∈ R2 being the position on the detector and θ ∈ Θ and τ ≥ 0
as before. In the case of just one object emitting light, the photon distribution profile is in the literature
often called the point spread function (PSF). When we have multiple molecules emitting light, we can view
the distribution profile as the sum of different translated PSFs. To model the PSF, the two-dimensional
Gaussian is a sensible distribution to use, but other distributions might model certain data more accurately.
For example, some molecules do not produce a rotationally symmetrical pattern, since they contain a dipole
[10]. A different commonly used distribution is the Airy pattern in Figure 2, consisting of a high density
spot in the center with less dense concentric circles surrounding it. Note that the figure has brightened
lower densities, so the concentric rings become visible. The Airy pattern is a more realistic distribution as
light traveling through a perfect lens produces such a pattern. We will limit ourselves to a two-dimensional
distribution as that simplifies later equations significantly.

Figure 2: Airy pattern with the altered intensities to enhance the concentric rings

3.4 Image data models

There are different ways how we can model the detected data. These models describe how we represent the
image data to which we apply our analysis algorithms.

Fundamental data model The fundamental data model is a theoretical model that assumes and infinite
detection area and no noise or discretization of the photon detection step. This means that the location
of each photon that is detected has infinite precision and that no noise comes from the photon detection
process. Suppose we consider a time interval [a, b]. The number of photons detected then follows the Poisson

4 LITERATURE STUDY 12

distribution and the exact times follow the Poisson process Λθ. The location of each photon detection now
follows the photon distribution profile fθ,τ exactly.

Poisson data model The assumption of no discretization assures that such a model can only be theoretical.
In reality, a photon detector has only finite precision which leads to a discretization of the photon detection.
This results in a pixel-like structure where we can interpret the brightness of a pixel as the number of
photons detected by the sensor in this position. This results in the Poisson data model which we will use in
the remainder of this thesis. The Poisson data model only considers a finite area and divides this area with
a grid. On top of that we also model the noise caused by additional photons mentioned above. We denote
the number of pixels by K and let Hθ,k be the random variable representing the detected number of photons
in pixel k with k = 1, . . . ,K. Then, we have

Hθ,k = Sθ,k +Bθ,k,

where Sθ,k represents the number of photons from our sample detected by pixel k and Bθ,k represents the
noise. The random variable Sθ,k follows the same Poisson distribution as the number of photons in the entire
image Λθ only scaled by the probability density over the area of the pixel. It follows that Sθ,k ∼ Poisson(λS

θ,k),
where

λS
θ,k =

∫ b

a

Λθ(t)

∫
Ck

fθ(x, y) dxdy dt.

Here, Ck is the area of pixel k. Similarly, we see that Bθ,k ∼ Poisson(βB
θ,k), where

βB
θ,k =

∫ b

a

ΛB
θ (t)

∫
Ck

fB
θ (x, y) dxdy dt.

Here, ΛB
θ and fB

θ are the photon detection rate and the photon distribution profile of the noise, respectively.
We assume that Sθ,k and Bθ,k are independent of each other, and since Hθ,k is the sum of two independent
Poisson variables, we have that Hθ,k ∼ Poisson(λS

θ,k + βB
θ,k). The fact that the number of detected photons

is a random process, means that neighboring pixels with roughly the same parameter λS
θ,k can have widely

different actual intensities. This results in a noisy image which we call shot noise.
Finally, we will assume that the background noise parameter βB

θ,k is constant and the same for all pixels.
From now on we denote it simply by β.

4 Literature study

A lot of research has already been done in the area of localization microscopy. In this section, we discuss
the general structure that localization algorithms follow. Then, for each step, we discuss some of the most
common choices, as well as some specific choices that were made in some papers. We want to note that some
(steps of) algorithms are applied to each of the frames separately. In that case we simply refer to each frame
as an image.

Most localization algorithms, both single-emitter and multi-emitter, follow a similar structure. They
consist of four individual steps: a preprocessing step, a detection step, a localization step and a post-
processing step. The preprocessing step is used to remove the background from the image. For example,
the background can consist of a large bright area in the image which is not caused by emitting photons, but
rather by the experimental setup. In the detection step, the goal is to find regions of interest that likely
contain a fluorophore. This splits the total image in smaller subimages. In the localization step, we analyze
these subimages to get a precise estimation of the location of the molecules. Finally, in the post-processing
step, we analyze the locations by filtering localizations or merging localizations that lie too close together.

4.1 Preprocessing step

The goal of the preprocessing step is to remove some of the background in the image. A simple approach is to
average all frames into a single image and subtract this from each frame. Some pixels will receive a negative

4 LITERATURE STUDY 13

value which can cause issues that need to be accounted for. Especially when doing a maximum likelihood
estimation, all pixel values need to be non-negative.

Some more advanced methods of background removal are described in [13]. Hüpfel et al. compare two
existing methods, the rolling ball algorithm and difference of Gaussians, to a new wavelet filtering approach
which all aim to remove brighter background areas, while keeping smaller features. The rolling ball algorithm
method visualizes an image as a three-dimensional graph, where the intensity is the z-coordinate. For each
pixel, it then places a fixed size sphere at the pixel’s position. The z-coordinate is determined as the largest
value such that the sphere lies entirely below the graph. The top of this sphere is then subtracted from the
pixel intensity. Background pixels that lie in a large bright background area will roughly be set to a low
intensity. The radius of the sphere can be chosen freely, but if the radius is too small, the features of the
image are also removed. In contrast, in the difference of Gaussians method we convolve an image (frame)
with two different Gaussian filters, where the first filter uses a smaller σ. Then, we subtract the result of the
first convolution from the result of the second one. Again, large bright background areas will be removed,
since the convolution in these areas of both filters is the same. Small features are preserved, since the first
Gaussian filter has a higher peak.

Finally, Hüpfel et al. [13] introduce a wavelet filtering approach. In this approach, they transform the
image to a frequency domain, similar to a Fourier transform, but with a different transformation. Specifically,
they use the Haar wavelet [18]. In this frequency domain, they determine the large frequencies, representing
the background areas, and construct a background image. After subtracting it from the original image, the
result is an image without background.

4.2 Molecule detection step

After we have removed the background, we find locations that are likely to be close to a molecule. Then, we
take part of the image around each of these locations and on these regions-of-interest (ROIs) we perform a
localization algorithm. Using a filter to smooth the noise in the image, we can reduce the number of false
positive and false negative detections [16].

Determining the ROIs can be done via different methods. We can simply find all pixels above some
threshold, and then remove closely situated pixels, as they are likely to correspond to the same fluorophore
[39]. A different approach is to compute local maxima. In [11], Huang et al. apply a square maximum filter
over the image and then find the pixels whose intensity remained equal. This effectively comes down to
finding each pixel that achieves the maximum intensity in the area surrounding it.

WindSTORM by Ma, Xu and Liu [23] applies a one-step deconvolution to separate overlapping fluo-
rophores. This one step deconvolution is done by applying the Fourier transform to the image, dividing by
the modulation transfer function (roughly the Fourier transform of the PSF), and transforming the image
back using the inverse Fourier transform. Then, they also simply find the local maxima to find individual
emitters. An advantage of this approach is that it immediately gives a good estimation for ROIs containing
multiple emitters.

A computationally expensive algorithm for the multi-emitter problem is FALCON by Min et al. [26]. In
the detection step, they place a finer grid on top of the pixel grid and then perform two entire deconvolutions
where they compute a value for each pixel. In both deconvolutions, they assume that the emitters are situated
at the locations of these subpixels and they approximate an arbitrary PSF at a certain point using the linear
Taylor expansion. They use the LS error between the measured image and the convolution, when emitters
with certain intensities are located in the subpixels. To greatly reduce the number of subpixels that will light
up, they added a regularization term which is a weighted ℓ1 norm over all subpixels. In order to remove
some bias, they then perform the same deconvolution without the regularization term, but instead, they only
consider the subpixels that had a positive support after the first deconvolution.

4.3 Molecule localization step

In the localization step, we must determine the precise location of the molecules in each ROI. The simplest
localization method is using the centroid of the ROI [14]. Here, we compute the x- and y-coordinate of
the molecule by taking the weighted average over all pixels. This method is only suitable for single-emitter
algorithms, as we can only achieve a single coordinate per ROI. Although it is fast and simple to implement,

4 LITERATURE STUDY 14

the results are inaccurate when the ROI contains parts of other fluorophores. The centroid method also has
a theoretical downside [27]. We assume an idealized setting where we have no noise and an infinite image
which follows the PSF exactly. PSFs like the Airy disk function decrease at the rate of 1/r3, where r is the
distance to the center. This means that this distribution has infinite variance and, as a consequence, the
centroid estimation has infinite variance as well.

A more advanced and commonly used localization algorithm is the maximum likelihood estimation (MLE).
In the single-emitter case, we can calculate the likelihood that we observe the image data given some pa-
rameters. We can choose which parameters to use depending on our prior knowledge and which PSF we
use. For example, if we use a 2D Gaussian, we can only include the molecule position (x, y) and assume
that the intensity and the covariance matrix are known and constant. Then, we maximize the likelihood
over all positions in the image. This approach produces the theoretical optimal result. By optimal we mean
that the variance of this estimator approaches the Cramér-Rao bound as the SNR increases [27, 36]. In
[20], Li et al. use a weighted MLE instead. They search for local maxima in the detection step. Since the
resulting subimage then has brighter pixels at the center, these pixels contain more reliable information. The
subimage is then pointwise multiplied with a 2D Gaussian weight function centered in the subimage. This
also decreases the bias of the MLE, whenever a second fluorophore is present at side of the subimage.

For multi-emitter algorithms, we have the additional problem of deciding how many emitters are in a
certain subimage. When we have selected this number, we add parameters for the other molecules. In [11],
Huang et al. use a MLE with a 2D Gaussian PSF. They iteratively increase the number of emitters until
the resulting predicted image approximates the actual image close enough. To ensure robustness, they only
model the locations of the molecules and a constant background as the parameters.

A different approach that is also common in the literature is the least squares estimation. We compute
the expected intensity for each pixel. The difference with the measured intensities form the residuals that
allow us to compute the LS error. This approach is taken by Thompson et al. [39].

The original papers on STORM [34] and PALM [4] both use the LS estimation as well for the molecule
locations. In [34], they fit an ellipsoidal Gaussian with arbitrary angle. However, when the ellipticity is too
large, they reject the sample, since it could indicate the presence of multiple fluorophores. As mentioned
in [17], this can result in bias, since areas with a high molecule density will reject more emitters than low
density areas.

Several studies have been done that compare MLE with LS [1, 27]. A good criterion is to compare the
bias and variance of both methods. The idea of measuring the accuracy by comparing the variance to the
Cramér-Rao bound was first introduced by Ober et al. [31]. As previously stated, LS estimations generally
converge much faster than MLE iterations, so the algorithms become faster. In [27], Mortensen et al. compare
MLE and LS estimation and find that the average distance to the true location is larger for LS estimation
compared to MLE and the Cramér-Rao bound. They suggest to use LS to get a fast and good approximate
location and then use MLE for an improvement. Abraham et al. [1] find similar results. Although both MLE
and LS estimaton find the true location on average, the variance of LS is higher compared to MLE, which
approaches the Cramér-Rao bound.

4.4 Post-processing step

After the localization step, we end up with a list of molecule locations. If our data is a time series, we
have a list of molecule locations for each frame. The post-processing step is for any tweaking to get more
desirable results. For example, we can combine all frames in a time series into a single frame and try to detect
molecules that occur more than once. Then, we can either remove the least certain locations or average the
two locations in some way. If we use a multi-emitter approach, it is also possible that the subimages are
overlapping and then we could have duplicates in a single frame.

The post-processing can also be used to remove undesirable locations, when for example the intensity is
too low or the likelihood is too small. It might also be the case that the shape of fluorophore differs too much
from the PSF.

4 LITERATURE STUDY 15

4.5 Other methods

Not all algorithms follow the four step structure that we previously described. Some of these methods also
compute a higher resolution image directly, instead of a list of localizations. These approaches are especially
suited for high-density data, where locating individual molecules becomes more difficult, due to the large
number of overlapping fluorophores. Most notable is the use of convolutional neural networks. One such
example is Deep-STORM [29] by Nehme et al., which focuses on high density images. Contrary to the
previous algorithms, Deep-STORM is parameter free, since a single neural network is trained. The network
takes a (time) series of images as input and it produces a super-resolved image per frame as output, which
are then summed up to get a resulting image. Advantages of this approach is that the eventual algorithm
is very fast. Reconstructing a higher resolution image only requires a single feed-forward evaluation of the
network. The method is also parameter-free, so it does not have the disadvantage of getting wrong results
because of incorrectly chosen parameters. A large difference compared to the previously described algorithms
is that the network does not produce a list of molecule locations. Most other algorithms compute a list of
locations from which a higher resolution image is constructed. Since Deep-STORM directly outputs such an
image, it is difficult to compare its performance in terms of measures like the Cramér-Rao bound. Of course,
training the network takes a relatively long time. Nehme et al. stated that the training step took roughly
two hours.

In [40] Zelger et al. focus on three-dimensional localization of single emitters using a convolutional neural
network. Instead of outputting a super-resolved image, it simply outputs the locations.

A different class of methods focus on deconvolution of a higher resolution pixel grid, similar to FALCON.
Gazagnes et al. [9] used this approach with a different regularization term. Let the image be a grid of
dimension N × N . They place a finer grid of size NL × NL over the image. The assumption is then that
the original image is the result of a convolution of the ground truth image, which is then scaled down by
averaging blocks of L × L pixels. For a given finer image, we can then construct the theoretical measured
image. Gazagnes et al. define the optimization problem of minimizing the sum of square differences between
the actual image and the theoretical image. They add a regularization term which is the ℓ0-“norm”1 over
all pixel values. The problem then becomes NP-hard [28], so to solve it, they use the continuous exact ℓ0
(CEL0) penalty which is a continuous relaxation with some useful properties. This is in contrast with the ℓ1
norm, which is commonly used as a convex surrogate of the ℓ0-pseudonorm.

A very similar approach was taken by Bechensteen et al. [3]. The general setup is the same, except
the relaxation of the ℓ0-pseudonorm is different. They formulate the ℓ0-pseudonorm for any x ∈ Rn as a
minimization problem:

∥x∥0 = min
−1≤u≤1
u∈Rn

∥u∥1 s.t. ∥x∥1 = xTu

Note that ui = 1 if xi > 0 and ui = −1 if xi < 0 to make the inner product equal to ∥x∥1. It follows that
all other entries of u become 0 to minimize its ℓ1 norm. Bechensteen et al. now substitute the λ∥x∥0 term
in the optimization function with λ∥u∥1 and add the constraint that xTu = 1. The problem then becomes
continuous and biconvex. This means that for a fixed x, the optimization problem in u is convex and vice
versa. They replace this constraint with an additional regularization term ρ(∥x∥1 − xTu) and show that for
a sufficiently large ρ, the solution is equal to the biconvex problem. They solve the optimization problem by
increasing the value of ρ in steps.

4.6 Performance measures

A great number of studies have been done on the performance of localization algorithms and most papers
presenting a new algorithm, compare it to previous algorithms. There are different methods of measuring
the performance and in this section we will discuss the most common ones in the literature.

Since most algorithms output a list of localizations, we can base an accuracy measure on these locations
compared to the ground truth. Matching localizations with ground truths is non-trivial, since it can happen
that two localizations lie close to a single ground truth or that a localization is not close to any ground truth.

1The ℓ0-norm is not a norm, since it does not fulfill homogeneity property. Sometimes, it is also called a pseudonorm.

5 PREPROCESSING STEPS 16

In [35], Sage et al. use a bipartite matching between the localizations and the ground truths that minimizes
the sum of the distances. Then, they reject matchings that lie too far apart.

For the low-density algorithms, a useful measure is the Cramér-Rao bound. Most emitters can be detected
due to their sparsity, so we are then interested in the average distance between the localizations and the ground
truths. Methods that approach the Cramér-Rao bound are considered close to optimal, since it is generally
impossible to receive better accuracy. In a higher density setting, it is more likely that an algorithm misses
a fluorophore entirely when it is overlapping with other fluorophores. We can then use the Jaccard index
defined as

TP

TP + FP + FN
,

where TP , FP and FN stand for the number of true positives, false positives and false negatives, respectively.
This measure punishes both finding incorrect localizations and missing ground truths. In [9], Gazagnes et
al. use the same matching as in [35] with a maximum distance ∆. Any matched localization is then a true
positive. Unmatched localizations count as false positives and unmatched ground truths as false negatives.

In some situations, it is less logical to compare the end result to ground truth locations. The Deep-
STORM [29] algorithm outputs an image directly, so instead, Nehme et al. opt to compare normalized mean
squared error (NMSE) of the ground truth image with the computed image.

5 Preprocessing steps

Before we start the localization process, we want to perform three preprocessing steps. The first step is trans-
forming the digital units back to photon counts. Since we assumed these are known parameters determined
by the microscope, this is a simple direct computation. The other two steps are estimating the background
and estimating the width of the PSF.

5.1 Background estimation

To estimate the background, we consider the assumption we made on it. In Section 3.4 we assumed that
the background consists mainly of spurious photons which we modeled as a Poisson random variable with
parameter β which is constant over all pixels. The goal of the background estimation is to estimate this
value β. Simply computing the mean pixel intensity would produce an accurate estimator, if all pixels follow
the Poisson distribution with mean β. This would in fact be the MLE for β [33, Chapter 8]. However,
this estimations certainly contains bias, since emitters themselves will bring up the average pixel intensity,
especially when the molecule density is large. A better approach is to look at the histogram of the image
and try to find the peak of this distribution. Figure 3 shows the histogram of a low density image with
background parameter β = 60 in both a regular and logarithmic plot. Even though the plot on the left
resembles the probability mass function of a Poisson variable, the plot on the right reveals the extra pixels
from the emitters. This is even more prevalent in Figure 4 where we show the plots for a high density image.
Even with many emitters, the fraction of pixels that solely contain background will still outweigh the number
of pixels containing signal of emitters. Because pixel values are integer, we could simply determine the most
frequent pixel intensity, or the mode intensity. This however would also lead to bias, since we would always
get an integer estimation of β. To remedy this, we combine both ideas and average the pixels in small interval
of intensities centered around the mode intensity. Formally, we define the following estimator β̂. Let I be
an image in NWHT . We define MB = argmaxn∈NH(I)n where we recall that H(I) is the histogram of the
image. Although MB will generally be a singleton set, we define M ′

B = 1
|MB |

∑
m∈MB

m as the average of the

elements in MB . Then, we define KB = {k ∈ [WHT] | |Ik −M ′
B | < pB} where pB stands for ‘background

parameter’ which determines how wide the interval of intensities is. Then, we estimate β with

β̂ =
1

|KB |
∑

k∈KB

Ik.

We do not use this estimation to do a background subtraction. Instead, we incorporate β̂ in the localization
process later on.

5 PREPROCESSING STEPS 17

Figure 3: The histograms of a low density data set with β = 60. On the left the normal plot is shown and
on the left the log-linear plot.

Figure 4: The histograms of a high density data set with β = 60. On the left the normal plot is shown and
on the left the log-linear plot.

5 PREPROCESSING STEPS 18

This method breaks down when the molecule density becomes large enough that most pixels will contain
photon contributions from an emitter. However, those situations we want to avoid regardless, since at such
high densities localization becomes very difficult.

5.2 FWHM estimation

In this section we assume we already have a set D of detections, small regions of an image containing at least
one emitter. In the entire algorithm we perform this step twice, once for the estimation of the width of the
PSF and once to detect emitters for localization. The reason for this double work is that we need the width
of the PSF to search for local maxima in a correctly sized region. However, to estimate this width, we need
detections. To break this dependency we perform the detection step in this section with a fixed width of the
subregion. This width may be non-optimal for maximizing the number of emitters detected, but that is for
estimating the PSF width not relevant yet. We address how we find these detections in Section 6.1.

We assumed that the shape of our PSF is a two-dimensional Gaussian distribution with a fixed width.
However, we still need this width for our localization procedure. We could include a parameter σ for each
emitter in our parameter space, but under the assumption that σ is constant for all emitters, we can also try
to estimate σ beforehand.

One such way is to compute the full width at half maximum (FWHM). The FWHM is a way to quantify
the width of a peak in a graph. Intuitively, the FWHM is defined as the length of the intervals, where
the function is above half its maximum. Usually, we only consider functions with a single peak such as in
Figure 5. Now, we give a formal definition.

Definition 5.2.1 (FWHM). Let f : R → R≥0 be some bounded, (Riemann) integrable function with
M := supx∈R f(x). Then, we define

FWHM(f) =

∫ ∞

−∞
1{f(x)≥M/2} dx.

Proposition 5.2.2. Let f : R→ R≥0 be a function like above with FWHM(f) = t. Then,

1. it holds that FWHM(cf) = t for any c ∈ R>0 (scale-invariant);

2. it holds that FWHM(g) = t, where g(x) = f(x+ a) for a ∈ R (shift-invariant).

Proof. Let M := supx∈R f(x). Trivially, it holds that supx∈R(cf)(x) = cM . Then, we have that

FWHM(cf) =

∫ ∞

−∞
1{(cf)(x)≥cM/2} dx =

∫ ∞

−∞
1{f(x)≥M/2} dx = FWHM(f) = t.

Futhermore, via coordinate substitution x′ := x+ a it holds that

FWHM(g) =

∫ ∞

−∞
1{g(x)≥M/2} dx =

∫ ∞

−∞
1{f(x+a)≥M/2} dx

=

∫ ∞

−∞
1{f(x′)≥M/2} dx

′ = FWHM(f) = t.

Example 5.2.3. Since we assume our PSF to be Gaussian, it is useful to explore the relation between the
FWHM of the Gaussian density function and the variance parameter σ2. By the shift invariance property we
can consider a Gaussian random variable with mean 0 and variance σ2. The density function has maximum

f(0) =
1√
2πσ

e−
02

2σ2 =
1√
2πσ

.

The half maximum is attained when e−x2/(2σ2) = 1/2 which happens if x2/(2σ2) = log 2. It follows that
x = ±

√
2 log 2σ. The distance between these two points is then computed as 2

√
2 log 2σ. △

5 PREPROCESSING STEPS 19

Figure 5: Visualization of the full width at half maximum. Image taken from [22].

Now, suppose we have a subimage containing precisely one emitter. We can estimate the FWHM as
follows. We find the pixel containing the centroid of the subimage. That is, the average x- and y-coordinate
weighted by the pixel values. Then, we consider its value as the maximum. Note that taking the maximum
pixel value in the subimage would lead to bias, as the highest intensity pixel will, on average, be larger than
the true maximum, due to shot noise. But even if we consider the centroid pixel, we are likely to have a poor
estimate of the maximum value. To reduce variance, we can take a (weighted) average over a small region
around the centroid pixel at the cost of a small bias, since the average intensity of these pixels will be slightly
smaller than the true maximum intensity. To compensate for this bias, one could do a small Gaussian fit on
these pixels, but we want to keep this step computationally easy as the goal of estimating the FWHM was
to reduce the number of variables in the eventual fit procedure.

From the centroid pixel we walk in the left and right direction over our image until the pixel intensity
drops below half of the FWHM and count the number of pixels above it. We do the same for the up and down
direction and this gives us two estimations of the FWHM for each detection. Averaging these values over all
detections results in a stable estimation of the FWHM. Note that FWHM is independent of the intensity of
an emitter by the scale invariance property.

5.2.1 In multi-emitter setting

If we cannot assume a subimage contains exactly one emitter, then the above estimation will no longer be
accurate. Firstly, the centroid pixel can be a very bad estimation for the maximum intensity, since this pixel
can lie precisely between two emitters. For this reason we choose the maximum intensity pixel as starting
point instead of the centroid pixel. Again, we can take a weighted average of a small area around this pixel
to estimate the true maximum intensity.

Secondly, simply counting the pixels in x- and y- direction will sometimes overestimate the FWHM. For
example, suppose we have an emitter roughly in the center and a second emitter lying right next to it. We
perform the same method as above where we go in one direction until we arrive at a pixel below half the
maximum. However, instead of considering the average over all these values, we now determine the histogram
of all FWHM estimations (the estimations are all integer). Then, we follow the same idea of the background
estimation where we determine the maximum bin M and take the average of the FWHM estimates close to
M .

The process can be summarized in the following steps. From D, we compute the multiset (set with
duplicates) E = E(D) with estimations of the FWHM. Then, with some abuse of notation, we compute the
histogram H(E) of E. Similar to the background estimation, we compute MF = argmaxn∈NH(E)n and
subsequently, M ′

F = 1
|MF |

∑
m∈MF

m. Then, we define KF = {e ∈ E(D) | |e −M ′
F | < pF } where pF is the

6 INDIVIDUAL EMITTER LOCALIZATION 20

‘FWHM parameter’. In the end, we compute

̂FWHM =
1

|KF |
∑

e∈KF

e

as an estimation for the FWHM of the PSF. Then, we compute σ̂ = ̂FWHM/(2
√
2 log 2).

6 Individual emitter localization

In this section we describe our theory and methods for low-density emitter localization. We follow the two-
step structure often used in the literature, consisting of detecting regions of interests (ROIs) and localizing
emitters in these ROIs. We use the parameter estimations for the FWHM and the background from the
previous section.

6.1 Molecule detection

The next step is to detect the molecules in the image. Generally, we want to look for local maxima as emitters
will always contain a local maximum. However, areas without emitters can also contain a (low intensity)
local maximum, due to random noise. We can prevent these false detections as follows. First, we determine
a threshold value τ for a local maximum to be counted as a detection. Due to the randomness of the noise, it
is not unlikely that there are some background pixels with a high intensity value above τ . We cannot choose
τ too large, since at some point we are excluding actual emitters. In order to create a larger gap between
local maxima of emitters and local maxima of background pixels, we apply a uniform filter to our image. If
we consider an image I as a matrix, then the uniform filter of size α is a function Uα : RW×H

+ → RW×H
+ and

it outputs for each pixel the average pixel value in the window around p = (w, h). If we recall Nα(w, h) as
the neighborhood around pixel p, then it is defined as follows:

Uα(I)wh =
1

|Nα(w, h)|
∑

(i,j)∈Nα(w,h)

Iij .

A uniform filter smooths bright background pixels, since the surrounding pixels will, if they are background
pixels as well, have an average intensity of the background. This results in average intensity close to the
background intensity. On the other hand, a bright pixel in the center of an emitter will be surrounded by
other (slightly less) bright pixels, so its averaged intensity will not decrease much.

If I is an image series, then the uniform filter is applied to each separate frame. To reduce extensive
notation, we will simply denote the blurred image by I ′.

Now, we only need to choose the threshold value. For this we consider the distribution and the histogram
of the pixel intensities. We can split the total set of pixels of an entire image series roughly in two sets, signal
pixels, which contain both background and emitter intensity, and background pixels, which only contain
background noise. We denote these set by A and B respectively. The ratio between the sizes of these two
sets will vary with the density, but as long as the density is not extremely large we will have that |A|/|B| << 1.
The pixels in B have intensities that are all realizations of the same Poisson distribution with parameter β.
The intensities of the pixels in A are realizations of all slightly different Poisson distributions with parameter
β+αk where αk is the parameter of the Poisson variable of the intensity contributed by one or more emitters
to pixel k. When the number of background pixels is sufficiently large compared to the number of signal
pixels, we have relatively many realizations of the same discrete random variable and the histogram of the
image series will approximate the probability mass function of this random variable for the lower intensity
pixels (see Figure 3).

In an ideal situation, where all emitters are nicely separated, the histogram of all signal pixels will be
independent of the density of the image.2 The goal is then to remove the background pixels from the histogram
and determine a suitable threshold value from just the signal pixels. From Section 5.1 we have an estimation

2Although density influences the separation of emitters, we want to emphasize that the number of signal pixels compared to
the number of background pixels, does not influence the shape of the histogram of just the signal pixels.

6 INDIVIDUAL EMITTER LOCALIZATION 21

β̂ of the background parameter β. We approximate the number of background pixels by considering the
mode intensity m again. We compute

p =
β̂me−β̂

m!

which approximates the probability that a random background pixel has intensity m. Then, the number of
background pixels Bp can be approximated by Nb = H(I)m/p. Note that in higher density pixels H(I)m is
smaller, so this accounts for different densities. Using this approximation, we can approximate the expected

number of background pixels for the other intensities. That is, we compute the values Hb
i = Nb · β̂

ie−β̂

i! for
each i ∈ N. Then, we compute Hs

i = max(0,H(I)i−Hb
i) as an approximation for the number of signal pixels

of a given intensity i. As a threshold value we choose the median value of the signal pixels. Note that Hs
i is

most likely not integer. However, we can still compute the median intensity of this ‘histogram’. We compute
the threshold value τ as follows:

τ := min
j∈N

{
j∑

i=0

Hs
i >

1

2

∞∑
i=0

Hs
i

}
This may seem like a fairly low threshold value leading to many extra detections, but recall that we look

for local maxima in the blurred image. Pixels in the center of an emitter will approximately still have the
same intensity, since they are surrounded by other pixels with a high average intensity, while high intensity
pixels on the edge of emitters or in the background decrease in intensity, since they are surrounded by pixels
with a low average intensity.

We can improve this threshold value. A small fit on the lower intensities instead of simply considering
mode intensity will better estimate the number of background pixels. Incorporating an estimate on the
molecule density can improve it even further. We chose the above method mainly for simplicity and because
the threshold parameter is less important than the fit parameters like the FWHM and the background.

Finally, we define the set of candidate pixels D. Let I ′ be the blurred image. From I ′ we compute pixels
with intensity above τ that are a local maximum. A pixel is considered a local maximum if it takes on the
maximum value in the neighborhood around it. That is, we are determining the set

D :=

{
p ∈ [W]× [H]× [T]

∣∣∣ I ′(p) ≥ τ, I ′(p) = max
(w′,h′)∈Nρ(p)

I ′(w′, h′, t)

}
.

Remark 6.1.1. One might wonder why we do not consider the original image when determining whether a
pixel is a local maximum. The reason for this is that the maximum intensity pixel of an emitter might be,
due to shot noise, more towards the edge of the fluorophore instead of the middle. If we were to select part
of the image around this pixel, the fluorophore is not nicely centered in the middle of the subimage. Taking
the blurred image smooths outliers on the edge and the maximum is more likely to be closer to the center of
the fluorophore.

6.2 Localization

When we fit individual emitters, we consider two optimization methods, least-squares fitting and maximum
likelihood optimization. Now, we go into detail of these optimization functions and their gradients.

Generally, we are trying to fit three parameters for an emitter, two positional parameters x and y, and the
intensity b (for brightness). We assume a two-dimensional Gaussian point spread function and we estimate
the variance from the data. For each detection d ∈ D, we consider the neighborhood Nr(d) which we use for
the localization. Since we only consider the neighborhood Nr(d) in the remainder of this section, we simply
denote the restriction of I to Nr(d) by Id := I|Nr(d). We choose r such that most of the PSF is contained,

being r = ̂FWHM/2 + 1. For both optimization problems we compute the expected intensity, λS
θ,k of each

pixel, given the parameters (see Section 3.4). For readability we denote it by λk. Suppose we are fitting N
emitters. Then, the set of parameters consists of θ := (x1, y1, b1, . . . , xN , yN , bN). The expected intensity λk

6 INDIVIDUAL EMITTER LOCALIZATION 22

of a pixel k is then calculated as

λk =

N∑
i=1

bi

∫
Dk

1

2πσ2
e−

1
2σ2 ((x−xi)

2+(y−yi)
2) dxdy + β

where Dk is the surface of pixel k and β is the background. From this expression we can compute the partial
derivatives as follows. For the intensity parameter we get

∂λk

∂bi
=

∫
Dk

1

2πσ2
e−

1
2σ2 ((x−xi)

2+(y−yi)
2) dxdy.

The location parameters are slightly more complicated. Let Dk = [lk, rk] × [tk, bk]. Then, we can calculate
the partial derivatives with respect to xi and yi. Because the PSF is a two-dimensional Gaussian, we define

fxi
(x) = 1√

2πσ
e−

(x−xi)
2

2σ2 and fyi
(y) = 1√

2πσ
e−

(y−yi)
2

2σ2 as one-dimensional probability density functions and let

Fxi and Fyi be the corresponding distribution functions. With these we can rewrite the integral over Dk as
follows: ∫

Dk

1

2πσ2
e−

1
2σ2 ((x−xi)

2+(y−yi)
2) dxdy =

∫ bk

tk

∫ rk

lk

1

2πσ2
e−

1
2σ2 ((x−xi)

2+(y−yi)
2) dx dy

=

∫ rk

lk

fxi
(x) dx

∫ bk

tk

fyi
(y) dy.

Now, we can compute the partial derivative with respect to xi as follows:

∂λk

∂xi
= bi

∫ bk

tk

fyi(y) dy ·
∂

∂xi

∫ rk

lk

fxi(x) dx

To solve the remaining partial derivative, we apply the substitution x′ = x− xi and use the Leibniz integral
rule. Then, we have that

∂

∂xi

∫ rk

lk

fxi
(x) dx =

∂

∂xi

∫ rk

lk

1√
2πσ

e−
(x−xi)

2

2σ2 dx

=
∂

∂xi

∫ rk−xi

lk−xi

1√
2πσ

e−
x′2
2σ2 dx′

=
1√
2πσ

e−
(rk−xi)

2

2σ2 · (−1)− 1√
2πσ

e−
(lk−xi)

2

2σ2 · (−1)

+

∫ rk−xi

lk−xi

d

dxi

(
1√
2πσ

e−
x′2
2σ2

)
dx

= fxi(lk)− fxi(rk).

Using an analogous reasoning for the derivative with respect to y, we get the following partial derivatives:

∂λk

∂xi
= bi (Fyi

(bk)− Fyi
(tk)) (fxi

(lk)− fxi
(rk))

∂λk

∂yi
= bi (fyi

(tk)− fyi
(bk)) (Fxi

(rk)− Fxi
(lk))

We can use the above partial derivatives to compute the partial derivatives for the optimization functions in
MLE and LS estimation.

MLE For MLE we use the fact that the pixel intensity is a Poisson random variable. We get the likelihood
function

L(θ | Id) =
∏

k∈Nρ(d)

λ
Id(k)
k e−λk

Id(k)!
.

6 INDIVIDUAL EMITTER LOCALIZATION 23

Taking the logarithm, we obtain

ℓ(θ | Id) = log
∏
k

λ
Id(k)
k e−λk

Id(k)!

=
∑
k

log
λ
Id(k)
k e−λk

Id(k)!

=
∑
k

(Id(k) log λk − λk − log Id(k)!)

Since log Id(k)! is constant, the maximum likelihood estimation can be formulated as the following minimiza-
tion problem:

min
θ

LMLE(θ) := min
θ

∑
k

(λk − Id(k) log λk)

The partial derivative of LMLE(θ) with respect to any variable θi, where θi ∈ {x1, y2, b1, . . . , xN , yN , bN}, can
be computed as

∂

∂θi
LMLE(θ) =

∂

∂θi

∑
k

(λk − Id(k) log λk)

=
∑
k

(
∂λk

∂θi
− Id(k)

λk
· ∂λk

∂θi

)
=
∑
k

(
1− Id(k)

λk

)
∂λk

∂θi
.

LS If we use least squares optimization, we try to minimize the distance between the image and the expected
image from the λk. The measurements are simply the measured pixel intensities. The functions we denoted
by fi in Section 3 are in this case the expected intensities λk. For pixel k the residual becomes rk = Id(k)−λk.
We get the following optimization problem:

min
θ

LLS(θ) := min
θ

∑
k

(Id(k)− λk)
2

Although we will only need the partial derivatives of the rk, we also present, for completeness, the partial
derivative of LLS(θ) with respect to any variable θi

∂

∂θi
LLS(θ) =

∂

∂θi

∑
k

(Id(k)− λk)
2

= −
∑
k

2(Id(k)− λk)
∂λk

∂θi

6.3 Fit procedure

The above optimization problem can be solved using a gradient-based iteration algorithm. Now, we formulate
our method. Although the method allows for an arbitrary number of emitters to be fitted, we limited ourselves
to two. This already results in a sufficiently complex algorithm. However, we do not know how many emitters
are in a certain subimage. So, for each detection we perform both a 1-emitter fit and a 2-emitter fit. Then,
we determined which solution is the most reliable.

6.3.1 Initial guess

The result of an iterative optimization algorithm can vary greatly between different initial guesses, since our
optimization functions are non-convex [5, Section 1.4]. In the case of fitting one emitter we can choose our
initial guess close to the actual solution by choosing a high-intensity pixel. A reliable optimization method

6 INDIVIDUAL EMITTER LOCALIZATION 24

will move to the optimal value from there. However, when fitting multiple emitters, we run in a problem.
Suppose, for example, that we have two emitters that slightly overlap and we choose our initial two locations
in the same fluorophore. Because the optimization function is non-convex, the two locations can converge
to the emitter location of the fluorophore they start in. Although in the global minimum the two locations
are at both emitters, this requires one of the two locations to move from one fluorophore to the other. This
can require going to a worse solution first resulting in a non-optimum local minimum. On the other hand,
if we chose our initial guess in such a way that both fluorophores contained a location, we probably would
find the correct solution. Enforcing this is difficult, since we initially do not know where the emitters are.
A simple solution is to use random starting positions. To improve the guesses we use the image itself as a
distribution for guesses, since higher intensity pixels are more likely to contain an emitter. That is, let X be

a random variable taking values in Nr(d) with probability mass function pX(k) = Id(k)/
(∑

j∈Nr(d)
Id(j)

)
and k ∈ Nr(d). Then, we take two independent realizations of X as initial solutions.

6.3.2 Combining results

Now we have a for each detection d ∈ D a 1-fit θd1 = (x1, y1, b1) ∈ Θ1 =: R2 × R+ for one emitter and a
2-fit θd2 = (x21, y21, b21, x22, y22, b22) ∈ Θ2 =: R2 × R+ × R2 × R+ for two emitters. We have to decide which
emitters we return. We could simply compare the values of the optimization function, but the 2-fit simply has
more degrees of freedom. For each solution θd1 ∈ Θ1 we can find a solution in Θ2 with an equal optimization
value. If we choose (x21, y21, b21, x22, y22, b22) = (x1, y1, b1, 0, 0, 0) then the optimization functions of both LS
and MLE will return the same value. So, unless we pick a bad initial solution, the final solution of the 2-fit
will always be at least as good as the one from the 1-fit. For this reason we chose a decision tree approach,
where we try to incorporate additional information on the model. For example, if the 1-fit has an unusual
large intensity, then it is likely we have actually two emitters close to each other. On the other hand, if the
two localizations of the 2-fit are very close to each other and at least one has an unusual small intensity, then
it is likely that the algorithm is just trying to fit two emitters while we only have one. Lastly, if either of the
two emitters is placed far outside the ROI, then we have probably one emitter as well. To detect unusual
intensities, we first perform all 1-fits on the detections. If we denote the 1-fit of detection d by (xd, yd, bd),
we define the (multi)set B = {bd | d ∈ D}. We define unusual intensities using the following boundaries. We
define bmin = min(B) and bmax = max(B). We also define blow = minb∈B{|{b′ ∈ B | b′ < b}| > 0.05 · |B|}
and bhigh = maxb∈B{|{b′ ∈ B | b′ > b}| > 0.05 · |B|}. Now, we use the following decision tree procedure:

1. If d(p1, p2) < 1, choose 1-fit;

2. else if b21 /∈ [bmin, bmax] or b22 /∈ [bmin, bmax], choose 1-fit;

3. else if b1 > bhigh, choose 2-fit;

4. else if d(p1, p2) < 2 and either b21 < blow or b22 < blow, choose 1-fit;

5. else choose solution with smallest optimization value.

Now we argue the above decision tree step-by-step. In step 1 we use the fact that there is a minimum distance
at which we can confidently separate two emitters. If we find p1 and p2 closer to each other, we decide it is
simply one emitter.

In step 2 we compare the brightnesses of the 2-fit with the minimum and maximum 1-fit brightnesses.
This step is to filter two situations where we fit two emitters on a region containing one. In this situation
one of the two emitters represents the actual emitter while the other is either far away and very bright to
get a slightly better optimization value than the 1-fit or very dim and somewhere inside the region to also
slightly decrease the optimization function. In both situations the second emitter does not represent a true
emitter, but is simply a result of trying to fit two emitters where there is only one emitter.

In step 3 we use the observation that if b1 is an outlier in B, much brighter than the average intensity of
an emitter, then it is quite likely we simply have two emitters that have a large overlap, leading to a bright
spot.

In step 4 we do a similar test to step 1 and 2, but with a different motivation. When the 2-fit is placed
at a small distance, but not so small that it is impossible to distinguish between one or two emitters, we

7 MULTI-EMITTER GRID LOCALIZATION 25

check in addition if either of the 2-fit emitters is unusually dim. In that case it is likely that there is only
one emitter and that the position of the 2-fit emitters minimizes the optimization function better than two
emitters at the same position.

Finally, if none of the above situations apply, we consider the optimization value. In most cases the 2-fit
will be better, but if we are unlucky with the initial positions, we might find a larger optimization value than
the one from the 1-fit. If this is the case, it means that the 2-fit is not optimal. One could then try different
solutions, until we find one that is better, but for practical reasons, we simply choose the 1-fit.

If we process every detection d ∈ D, we end up with a total set of localizations L. As a final postprocessing
step, we filter duplicate localizations. Especially when we have overlapping emitters it is possible that we find
the same emitter in different detections. We go through each localization ℓ and determine all localizations in
the same frame that are within a distance of one pixel. Then, for each of these localizations we compare the
optimization function to the one of ℓ and remove the worst one (the largest optimization value). After this
step there are no localizations within pixel distance from each other.

Pseudocode of the entire algorithm is presented in Algorithm 1. For the sake of readability we left out
the user-chosen parameters which should be defined at the start and passed to functions.

Algorithm 1 Individual emitter localization

Input: I ∈ R[W]×[H]×[T]

β̂ ← computeBackground(I) (See Section 5.1)

τ ← computeThreshold(I,β̂)
I ′ ← blurImage(I)
DFWHM ← findDetections(I ′, τ)
̂FWHM ← computeFWHM(I,DFWHM) (See Section 5.2)

σ̂ ← ̂FWHM/(2
√
2 log 2)

ρ← ̂FWHM/2
D ← findDetections(I ′,τ , ρ) (See Section 6.1)
L← ∅
for d ∈ D do

(x1, y1, b1)← 1Fit(I,d,τ2,β̂,σ̂)
L1(d)← {(x1, y1, b1)}

end for
B := (bmin, bmax, blow, bhigh)← calculateBrightnessBounds(L1)
for d ∈ D do

(x21, y21, b21, x22, y22, b22)← 2Fit(I,d,τ2,β̂,σ̂)
L2(d)← {(x21, y21, b21, x22, y22, b22)}

end for
for d ∈ D do

L← L ∪ChooseFit(L1(d),L2(d),B)
end for
L← filterDuplicates(L)
return L

7 Multi-emitter grid localization

In this section we take a different approach from the one in the previous section. This approach is loosely
based on the paper of Gazagnes et al. [9] and more suited for high-density data compared to individual
emitter fitting. The reason for this is that it does not suffer from the issue in individual fitting where we
can have other emitters partly in the ROI of a detection. For simplicity we consider a single-frame image I
where W = H = N . We emphasize that a square image is not required, but is simply assumed to simplify
the complexity analysis. Moreover, we view I ∈ RN2

+ as a vector.

7 MULTI-EMITTER GRID LOCALIZATION 26

Contrary to the previous section, we assume that the emitters lie on some finer grid of size NL × NL.
That is, emitter positions are assumed to be in a discrete set of locations instead of a continuous space. We
call the elements of this finer grid subpixels. This situation is illustrated in Figure 6. Just as with individual
emitter fitting, we first estimate the FWHM and the background β̂ from Section 5.1. Then, recall from
Example 5.2.3 that we can compute the standard deviation of a Gaussian distribution from the FWHM. So,

we use the estimate σ̂ = ̂FWHM/(2
√

2 log(2)).

N

L

Figure 6: An N ×N image with one pixel subdivided in an L× L grid of subpixels.

In this setting we allow each subpixel to have an emitter. So, our variable vector becomes x ∈ RN2L2

+ .
Here xi stands for the intensity of the emitter at subpixel i ∈ [N2L2] where we interpret 0 intensity as the
absence of an emitter. The contribution of an emitter at position i ∈ [N2L2] to pixel k ∈ [N2] is computed
similarly as before as the two-dimensional Gaussian with fixed variance σ2 positioned in the center of the
subpixel. We denote the integral of the Gaussian pdf centered at subpixel i over the area of pixel k by Aik

where we use the estimation of the FWHM to approximate the parameter σ. That is, we define

Aik =

∫
Dk

fi(x, y) dxdy =

∫
Dk

1

2πσ̂2
e−

1
2σ̂2 ((x−xi)

2+(y−yi)
2) dxdy

where Dk is again the area of pixel k and (xi, yi) is the center of subpixel i. Then, the expected intensity of

pixel k can be calculated as λk(x) =
∑N2L2

i=1 Aikxi + β̂ where xi is the intensity of the emitter at position i.
Gazagnes et al. use this approach and then try to minimize the LS error over x.

Details of this section removed by embargo.

8 EXPERIMENTS 27

Figure 7: The first frame of each of the datasets. Each row contains images with densities 0.1, 0.2, 0.3, 0.5,
1.0 and 2.0 and each column contains the three different background levels 0, 30 and 60.

8 Experiments

The next step is to evaluate our two algorithms. In this section we explain the exact steps of this analysis. We
start with the generation of the data sets. Then, we discuss the metrics and how we compute them. Finally,
we analyze the results from our algorithms and compare them to each other and to the ThunderSTORM
algorithm [32].

8.1 Data sets

To evaluate the algorithms, we use the interactive ImageJ plugin ThunderSTORM [32] to generate data sets
and their ground truth (GT) locations. With this tool we can freely determine the parameters of the image,
most importantly, the noise level and the molecule density. We generate several data sets consisting each
of 1000 frames of size 64 × 64. The pixel size is set to 100nm. We add a baseline of 100 digital units and
simply set the number of electrons per digital unit to 1.3 We fix the FWHM at 350, as we assumed this in
our algorithm to be fixed, and chose the intensity range to be [700, 900].

The parameters we varied are the level of background noise and the molecule density. We choose the set
of backgrounds to be {0, 30, 60} where these values represent the Poisson parameter β from Section 5.1. For
each of these background noise levels we generate six image sets for the densities {0.1, 0.2, 0.3, 0.5, 1.0, 2.0}
where these values stand for the average number of molecules per µm. The first frame of each data set is
shown in Figure 7.

8.2 Metrics

Before we discuss the metrics we will use, we need to match localizations to ground truth locations. We
denote the set of localizations and GT locations by A and B respectively. The goal now is to find a matching
between A and B. That is, we want to find a set C containing pairs (a, b) with a ∈ A and b ∈ B such that
each a and b occur at most once in C. Of course, we cannot choose any matching. We have to choose a
criterion such that it is reasonable that a localization corresponds to the matched GT location. A sensible
choice is to choose a maximum tolerance distance r to count as a valid pair and try to find a matching that

3For an explanation on these parameters, see Section 3.3.

8 EXPERIMENTS 28

pairs as many localizations and locations together. There are several algorithms to compute such a matching.
We will utilize the matching of the ThunderSTORM plugin [32]. They use the Gale-Shapley algorithm which
requires a preference list of the set B for each a ∈ A and vice versa. It then finds a stable matching between
localizations and locations. This means that there are no a ∈ A and b ∈ B that are not matched together,
but prefer each other over their current match. In the case of ThunderSTORM the preference is determined
by the distance where closer locations or localizations have a preference over ones that are further away.

Remark 8.2.1. The choice for the Gale-Shapley algorithm is an odd one, since there is one particular
case where Gale-Shapley fails, even though Ovesný et al. emphasize that in that situation Gale-Shapley
outperforms a greedy solution. This situation is shown in Figure 8. In this figure we have GT locations
(red dots) and localizations (blue crosses) that we need to match together. The authors explicitly claim that
Gale-Shapley finds the matching in d) as opposed to the one in c). However, this is not a stable matching,
since the GT location 1 and the localization B prefer each other. However, there is also an argument to be
made that we should always match closest GT-localization pairs as opposed to finding the one that maximizes
the number of matchings. Since we considered this matching outside of the scope of this thesis, we chose to
simply use the matching algorithm from ThunderSTORM as a black box.

Figure 8: Image taken from the Supplementary notes of ThunderSTORM [32]. The authors claim that Gale-
Shapley finds the matching in d) while it actually finds the matching in c).

Now we have our matching, we denote the number of matched localizations by TP (for true positives),
the number of unmatched localizations by FP (for false positives) and the number of unmatched GTs by FN
(for false negatives). We can measure the performance of our algorithms with the following three metrics:

Recall =
TP

TP + FN
Precision =

TP

TP + FP
Jaccard =

TP

TP + FN + FP
.

The Jaccard index punishes both outputting too many and too few localizations. This metric is well-suited to
determine the detection step of an algorithm which is especially useful for high-density images or images with
a lot of noise. The recall and precision rate can indicate whether an algorithm fails to find some emitters
or places too many incorrect ones. In low-density low-noise images it can be expected that a reasonable
algorithms will detect most emitters in each frame, but when the number of emitters per frame is high or
there is a lot of background noise, finding the number of emitters and their rough locations might already be
a challenge itself. The Jaccard index is then a useful metric.

8.3 Results

Since we have many parameters, we have listed all parameter choices in Appendix A. For the individual
fitting algorithm we chose the least squares optimization algorithm, since its results are more stable. The
MLE approach suffers from some issues, if the model that is used does not match the actual situation. In
particular, fitting the wrong number of emitters can lead to some bad results. For example, suppose we have
a nicely centered emitter, but with a second emitter on the boundary. If we fit one emitter, putting the

8 EXPERIMENTS 29

localization in the center of the image results in a very small likelihood, since the intensity of the second
emitter is very unlikely with just one emitter. As a result, the algorithm will put the emitter somewhere
in between the two emitters. The least squares method does not suffer as much from this issue, because
placing a localization between the two emitters results in a larger penalty than just the penalty of ignoring
the second emitter.

Remark 8.3.1. Before we present the results, we must make a few remarks. First, the grid fitting algorithm
failed for unknown reasons on a large fraction of frames of the image series with molecule density 2. Most
likely, this is due to a implementation bug and not a fault in the algorithm. Unfortunately, we could not
find the exact reason for this behavior, so we left it out of the experiment. Secondly, since the algorithm is
significantly slower than the individual emitter fitting algorithm, we limited the number of analyzed frames
to 200.

Lastly, there are some data points missing in the tables and graphs. These are all due to bugs in the
ThunderSTORM plugin. Some matchings could not be saved and the ThunderSTORM algorithm itself failed
on some data sets.

Now we are ready to present the results of our two algorithms. We need to choose the maximum distance
between a localization and a GT location. Since the performance is greatly dependent on this distance, we
computed the results for distance 50nm and 100nm (0.5 pixel and 1 pixel respectively). The results of the
experiments for both methods are presented in Tables 2, 3, 4 and 5 in Appendix B. We noticed that increasing
the maximum distance from 50nm to 100nm greatly increases the number of true positives. This means that
there are a significant number of localizations within a pixel distance, but not half a pixel distance. Upon
further inspection these situations occurred most often when either the emitter was at the border of an image
or when there at least two overlapping emitters and the algorithm did not find all of them. For example, if
there are two emitters overlapping, but the algorithm decides there is only one there, it will place the emitter
somewhere between the two emitters at a small distance from both. In these situations the algorithm did
discover an emitter, but at slightly larger distance. For this reason we choose to use 100nm results to analyze
further.

(a) Individual fitting (b) Grid fitting

Figure 9: Ground truth locations (green) and localizations (red) for a small region from the data set with
density 1 and background level 30.

Comparison of the two methods Now, we want to compare the two methods. We have plotted the
Jaccard index, precision rate and recall rate for maximum distance 100 in Figure 10. Since we only have

8 EXPERIMENTS 30

results up to density 1 for the grid algorithm, we have omitted the results of the density 2 for the individual
fitting algorithm. We immediately see that for the noise level 60 the results are not consistent and vary a
lot. Furthermore, we observe that the Jaccard index for individual fitting performs slightly better than grid
fitting in the lower density settings. Especially in the recall rate, there is a small difference. There is one
particular case where the grid fitting algorithm will always fail to find an emitter which is when two emitters
are extremely close to each other. The individual fitting algorithm then still has the choice to choose for two
emitters when the intensity is too large, but the grid fitting algorithm does not have that choice. However,
the small number of false negatives makes it difficult to perform a meaningful analysis on the localizations. It
is also possible that we can attribute the difference between parameter choices, since these might be chosen
non-optimal.

For the higher density images we see, for the noise levels 0 and 30, that the grid fitting algorithm
performs significantly better than the individual fitting algorithm. The precision rate remains quite steady
in both algorithms, where the grid fitting only performs slightly better, but the recall rate for the grid fitting
algorithm is much better compared to individual fitting algorithm. Although the grid fitting algorithm still
cannot distinguish emitters that are too close to each other, there will also be more areas where many emitters
are overlapping, but not on top of each other. These situations are particularly difficult for the individual
fitting algorithm, since it can at most fit two emitters at once. This also explains the declining recall rate of
the individual fitting algorithm. It can only fit two emitters within a certain ROI, possibly a few extra from
a ROI next to it. If the number of emitters in the ROI becomes too large, it is already guaranteed to miss
some. Finally, the general better performance on higher density images of the grid fitting algorithm can also
be attributed to the fact that it does not suffer from mismatches on the border of a ROI. When molecules
are nicely separated in low density images, there will be few emitters intersecting the ROI of a detection,
but this occurs much more often in high density images. In some of the cases these emitters are found in a
different detection, but it can always miss some. Because the grid fitting algorithm processes an entire image
at once, it is not affected by these issues.

Comparison to ThunderSTORM We also ran the ThunderSTORM algorithm itself on the data sets.
The ThunderSTORM has many parameter choices as well which we will list first. The ThunderSTORM
plugin contains many options for preprocessing the data in order to enhance its features helping in detecting
molecules. We used the wavelet filtering using B-splines where we chose B-spline order 3 and a B-spline scale
of 2.0. For the detection step we simply chose the local maximum option with a threshold value equal to
the standard deviation of the first level of the wavelet transform as was suggested by them. The pixel must
be above the threshold and a local maximum in the 3× 3-neighborhood around it. For the localization part
we chose a fitting radius (region-of-interest) of three pixels. We used the least squares fit method to better
compare the results to our individual fitting method and chose the initial sigma to be 1.6 pixels.

We enabled multi-emitter fitting and limited the number molecules per region to two, since that is our
maximum as well. We chose a model selection threshold of 10−6 and intensity range limit on [700, 900], equal
to how we generated the data. This is more information than we assumed in our algorithm, but since we also
incorporated some knowledge on the range of intensity, we chose this approach for a better comparison.

Remark 8.3.2. The ThunderSTORM algorithm seemed to have much difficulty with detecting emitters
close to the edge of the frame, resulting in a low recall rate. In order to make a fairer comparison, we decided
to exclude any ground truths that were within three pixels of the border. This means that we removed both
unmatched GTs (false negatives) and matched GTs (true positives). The filtered data is shown in Table 6
in Appendix B. Note that the data is missing for two images sets, background level 0 and 30 for density 0.1.
This is due to a bug in the ThunderSTORM plugin where it would get stuck on these particular data sets.

Figure 11 shows the results of the ThunderSTORM algorithm next to our individual fitting algorithm.
We observe that the ThunderSTORM algorithm is more stable under noise, since both the precision rate
and the recall rate (and the Jaccard rate as a consequence) decrease at higher noise levels, but they remain
consistent. In comparison, our individual fitting algorithm becomes very unstable at noise level 60. Moreover,
the ThunderSTORM algorithm also performs more consistently in increasing densities, losing precision and
recall rate gradually. The individual algorithm breaks down at density 2, performing significantly worse.
Although there are several differences between the our algorithm and the ThunderSTORM algorithm, one of
these differences, which could explain the described behavior, is the smaller neighborhood for finding local

8 EXPERIMENTS 31

Figure 10: The Jaccard index, precision rate and recall rate of the two methods.

9 DISCUSSION 32

Figure 11: The Jaccard index, precision rate and recall rate of the individual fitting algorithm and Thunder-
STORM [32].

maxima. ThunderSTORM has the option to either search in the 4-connected neighborhood (the 4 pixels
horizontally and vertically adjacent) or the 8-connected neighborhood (including diagonal pixels). This is a
much smaller neighborhood than the one in our algorithm where we chose roughly the FWHM size. This
may lead to missing more emitters that are close to each other, because only the brightest attains a local
maximum.

That being said, our individual fitting algorithm does outperform ThunderSTORM when the density
is at most 1 and the noise level at most 30. Utilizing the intensity ranges appears to not be present in
ThunderSTORM, since it caps the intensity estimated intensity values.

9 Discussion

The results show that for the purposes of multi-emitter fitting the grid fitting algorithm is generally a better
choice. The caveat is that this algorithm is significantly slower due to large computational complexity.

9.1 Future research and improvements

Now, we discuss some of the future research that is still possible and improvements that can be done on
the algorithms of this thesis. Our goal was to also compare the localization results with the theoretical
Cramér-Rao bound. Unfortunately, we did not have time for this in the end. Computing these bounds can
give us more insight in the performance of the algorithms.

9 DISCUSSION 33

For both algorithms we can greatly improve the parameter selection process. Many parameters are
determined by a trial-and-error process, but a better theoretical foundation could provide more optimal
parameter choices.

A useful quantity to estimate as a preprocessing step would be either the density or the number of emitters
in a frame, so a good estimation for those can improve the algorithm. This allows us to better estimate the
background. At the moment we consider the mode intensity M and consider an average of the intensities
around M . However, this overestimates the background parameter β, especially for high molecule density
images, since some of the pixels with intensity m are the sum of a smaller background intensity and a small
signal intensity. Knowledge of the molecule density can compensate for this overestimation.

Both methods can also be improved in terms of runtime. In the individual fitting algorithm there is a
large difference between the time usage of the 1-fit and the 2-fit. If we can detect situations where we are
almost certain that there is only one emitter, we might not need to compute the 2-fit for every detection.
Since this algorithm performs better for lower densities where there are relatively few overlapping emitters,
such an addition can be very useful. The grid fitting algorithm is well suited for GPU parallelization, so a
logical next step is to explore how large the speedup is in parallel setting.

In addition to the improvements mentioned above we can extend the individual fitting algorithm to more
than two emitters. The decision process to choose between the different fits will then have to be generalized.
Right now, the methodology is quite ad-hoc and similar decision steps are less suitable when we increase the
number of emitters being fitted.

For the grid fitting algorithm there are also several more improvements. As mentioned before, a huge
disadvantage is that we have to specify L at the start. A better resolution will result in a large complexity
increase, while most of the resulting image will not change at all. We could alter the algorithm in the
following way. We start with a small value of L, say 1, for which we perform the optimization step. This
leads to a small subset P ⊂ [N2L2] of (sub)pixels containing emitters. Then, we increase L, but only refine
the subpixels close to P . We can optimize this new set of smaller subpixels again to get a better resolution.
Using this approach repeatedly, we can get an arbitrarily small precision (until floating point precision fails
to distinguish neighboring subpixels) without the large increase in complexity.

Another disadvantage is that we cannot incorporate additional information into the model. If we have
knowledge on the range of intensities of the emitters, then finding emitters with a larger intensity suggests
multiple emitters close to each other. Our algorithm will, depending on the parameters and how close the
emitters are, often simply conclude that there is one brighter emitter there. One way to address this issue
is to add a post-processing step to detect these cases and enforce an extra emitter in a local fit procedure,
possibly using the individual fitting algorithm.

Finally, an interesting future research direction is to find an algorithm to optimize the parameter choices
for λ and p, either theoretically or experimentally.

A PARAMETER CHOICES 34

A Parameter choices

A.1 Preprocessing steps

We start with the preprocess parameters. We choose the background parameter pB = M ′
B/2 where M ′

B was
the mode intensity. For computing the FWHM we perform the detection step with uniform filter of size
α = 1, maximum filter of size ρ = 3. Note that for these filters the sets Nα(p) and Nρ(p) are 3× 3 and 7× 7
respectively. The FWHM parameter pF is chosen to be 2 pixels. This seems quite small, but the FWHM is
also just a few pixels wide.

A.2 Individual fitting algorithm

In the actual detection step we choose the same size uniform filter, but we choose r = ̂FWHM/2 + 1 as
the neighborhood size for the region of interest. This means that the width of the ROI is always at least
̂FWHM .

A.3 Grid fitting algorithm

The grid fitting algorithm has also several parameters to be specified. Most importantly, we have to choose
L which determines how precise the coordinates of our algorithm become. We choose L = 5. The next
parameter is the maximum distance d between pixel k and subpixel i such that we count the contribution of
an emitter in i to pixel k. We choose d = 4.5 pixels, meaning that for a subpixel i we consider a 9×9-window
of pixels around i. It follows that |Ci| = 81.

Finally, we have the two parameters p and λ that influence the sparsity of the solution. Since these
parameters depend should depend on the noise level and molecule density, we choose them for each data
set separately. Choosing these parameters is ultimately a trial-and-error process, but we keep p fixed for
data sets with the same molecule density and tune λ for each data set separately, following the argument in
Section ??. The chosen parameters are shown in Table 1.

Background
Density 0 30 60
0.1 (0.7, 0.1) (0.7, 0.01) (0.7, 0.01)
0.2 (0.8, 0.1) (0.8, 0.03) (0.8, 0.03)
0.3 (0.8, 0.1) (0.8, 0.03) (0.8, 0.02)
0.5 (0.85, 0.1) (0.85, 0.05) (0.85, 0.03)
1.0 (0.85, 0.05) (0.85, 0.03) (0.85, 0.03)

Table 1: Parameter choices for the grid algorithm as pair (p, λ)

B TABLES 35

B Tables

(density, background) TP FP FN Jaccard precision recall RMSE
(0.1, 0) 4082 39 44 0.980 0.991 0.989 12.404
(0.2, 0) 7852 196 273 0.944 0.976 0.966 13.458
(0.3, 0) 11542 423 707 0.911 0.965 0.942 14.193
(0.5, 0) 18433 1315 2202 0.840 0.933 0.893 15.727
(1.0, 0) 31189 5683 9752 0.669 0.846 0.762 18.815
(2.0, 0) 25285 29831 56382 0.227 0.459 0.310 26.571
(0.1, 30) 3975 83 111 0.953 0.980 0.973 16.938
(0.2, 30) 7882 319 408 0.916 0.961 0.951 17.932
(0.3, 30) 11388 729 1073 0.863 0.940 0.914 18.743
(0.5, 30) 17638 1986 2992 0.780 0.899 0.855 19.948
(1.0, 30) 29965 7012 11102 0.623 0.810 0.730 22.244
(2.0, 30) 20196 32434 61025 0.178 0.384 0.249 29.322
(0.1, 60) 3949 143 163 0.928 0.965 0.960 20.483
(0.2, 60) 7439 1652 760 0.755 0.818 0.907 21.537
(0.3, 60) 11166 945 1251 0.836 0.922 0.899 21.447
(0.5, 60) 16897 5340 3469 0.657 0.760 0.830 23.876
(1.0, 60) 27661 8661 12883 0.562 0.762 0.682 24.760
(2.0, 60) 17253 33271 64657 0.150 0.341 0.211 30.530

Table 2: Results from individual fitting with maximum fit distance of 50nm.

(density, background) TP FP FN Jaccard precision recall RMSE
(0.1, 0) 4108 13 18 0.993 0.997 0.996 13.506
(0.2, 0) 7998 50 127 0.978 0.994 0.984 16.160
(0.3, 0) 11860 105 389 0.960 0.991 0.968 18.007
(0.5, 0) 19426 322 1209 0.927 0.984 0.941 22.233
(1.0, 0) 35217 1655 5724 0.827 0.955 0.860 30.287
(2.0, 0) 39780 15336 41887 0.410 0.722 0.487 50.277
(0.1, 30) 4043 15 43 0.986 0.996 0.989 18.993
(0.2, 30) 8141 60 149 0.975 0.993 0.982 21.412
(0.3, 30) 11945 172 516 0.946 0.986 0.959 23.846
(0.5, 30) 19147 477 1483 0.907 0.976 0.928 27.661
(1.0, 30) 34947 2030 6120 0.811 0.945 0.851 34.055
(2.0, 30) 35601 17029 45620 0.362 0.676 0.438 54.073
(0.1, 60) 4065 27 47 0.982 0.993 0.989 23.101
(0.2, 60) 7977 1114 222 0.857 0.877 0.973 27.610
(0.3, 60) 11910 201 507 0.944 0.983 0.959 27.124
(0.5, 60) 18921 3316 1445 0.799 0.851 0.929 32.029
(1.0, 60) 33774 2548 6770 0.784 0.930 0.833 37.950
(2.0, 60) 32641 17883 49269 0.327 0.646 0.398 56.253

Table 3: Results from individual fitting with maximum fit distance of 100nm.

B TABLES 36

(density, background) TP FP FN Jaccard precision recall RMSE
(0.1, 0) 788 46 49 0.892 0.945 0.941 14.701
(0.2, 0) 1506 68 76 0.913 0.957 0.952 15.045
(0.3, 0) 2286 106 150 0.899 0.956 0.938 15.685
(0.5, 0) 3878 199 316 0.883 0.951 0.925 16.803
(1.0, 0) 7313 544 890 0.836 0.931 0.892 17.876
(0.1, 30) 780 35 45 0.907 0.957 0.945 18.708
(0.2, 30) 1562 71 103 0.900 0.957 0.938 18.239
(0.3, 30) 2205 153 231 0.852 0.935 0.905 19.079
(0.5, 30) 3495 382 615 0.778 0.901 0.850 19.916
(1.0, 30) 6532 1005 1730 0.705 0.867 0.791 21.339
(0.1, 60) 664 47 134 0.786 0.934 0.832 21.159
(0.2, 60) 1512 101 160 0.853 0.937 0.904 21.718
(0.3, 60) 2193 238 332 0.794 0.902 0.869 22.200
(0.5, 60) 3346 433 657 0.754 0.885 0.836 22.794
(1.0, 60) 5451 1631 2663 0.559 0.770 0.672 24.507

Table 4: Results from grid fitting with maximum fit distance of 50nm.

(density, background) TP FP FN Jaccard precision recall RMSE
(0.1, 0) 830 4 7 0.987 0.995 0.992 21.518
(0.2, 0) 1562 12 20 0.980 0.992 0.987 18.978
(0.3, 0) 2386 6 50 0.977 0.997 0.979 20.453
(0.5, 0) 4058 19 136 0.963 0.995 0.968 22.011
(1.0, 0) 7752 105 451 0.933 0.987 0.945 24.087
(0.1, 30) 808 7 17 0.971 0.991 0.979 23.111
(0.2, 30) 1626 7 39 0.972 0.996 0.977 22.525
(0.3, 30) 2333 25 103 0.948 0.989 0.958 24.603
(0.5, 30) 3788 89 322 0.902 0.977 0.922 27.676
(1.0, 30) 7341 196 921 0.868 0.974 0.889 31.294
(0.1, 60) 700 11 98 0.865 0.985 0.877 25.944
(0.2, 60) 1594 19 78 0.943 0.988 0.953 26.501
(0.3, 60) 2379 52 146 0.923 0.979 0.942 29.269
(0.5, 60) 3666 113 337 0.891 0.970 0.916 30.647
(1.0, 60) 6548 534 1566 0.757 0.925 0.807 37.464

Table 5: Results from grid fitting with maximum fit distance of 100nm.

B TABLES 37

(density, background) TP FP FN Jaccard precision recall
(0.2, 0) 6488 221 191 0.940 0.967 0.971
(0.3, 0) 9648 374 423 0.924 0.963 0.958
(0.5, 0) 15710 784 1233 0.886 0.952 0.927
(1.0, 0) 27928 2568 5706 0.771 0.916 0.830
(2.0, 0) 42831 7892 24343 0.571 0.844 0.638
(0.2, 30) 6455 142 275 0.939 0.978 0.959
(0.3, 30) 9544 351 718 0.899 0.965 0.930
(0.5, 30) 15027 887 1883 0.844 0.944 0.889
(1.0, 30) 26194 3161 7585 0.709 0.892 0.775
(2.0, 30) 38276 9337 28406 0.504 0.804 0.574
(0.1, 60) 3251 72 106 0.948 0.978 0.968
(0.2, 60) 6357 216 416 0.910 0.967 0.939
(0.3, 60) 9272 495 956 0.865 0.949 0.907
(0.5, 60) 14207 1229 2502 0.792 0.920 0.850
(1.0, 60) 24282 4044 9195 0.647 0.857 0.725
(2.0, 60) 34904 10899 32214 0.447 0.762 0.520

Table 6: Results from the ThunderSTORM algorithm with maximum fit distance of 100nm. The ground
truths closer than 300nm from the border are excluded.

REFERENCES I

References

[1] Anish V. Abraham, Sripad Ram, Jerry Chao, E. S. Ward, and Raimund J. Ober. Quantitative study
of single molecule location estimation techniques. Opt. Express, 17(26):23352–23373, Dec 2009. doi:
10.1364/OE.17.023352. URL http://opg.optica.org/oe/abstract.cfm?URI=oe-17-26-23352.

[2] Hazen Babcock, Yaron M. Sigal, and Xiaowei Zhuang. A high-density 3d localization algorithm for
stochastic optical reconstruction microscopy. Optical Nanoscopy, 1(1):6, Jul 2012. ISSN 2192-2853. doi:
10.1186/2192-2853-1-6. URL https://doi.org/10.1186/2192-2853-1-6.

[3] Arne Bechensteen, Laure Blanc-Féraud, and Gilles Aubert. New
ℓ2 − ℓ0 algorithm for single-molecule localization mi-
croscopy. Biomed. Opt. Express, 11(2):1153–1174, Feb 2020. doi: 10.1364/BOE.381666. URL
http://opg.optica.org/boe/abstract.cfm?URI=boe-11-2-1153.

[4] Eric Betzig, George H. Patterson, Rachid Sougrat, O. Wolf Lindwasser, Scott Olenych, Juan S.
Bonifacino, Michael W. Davidson, Jennifer Lippincott-Schwartz, and Harald F. Hess. Imaging in-
tracellular fluorescent proteins at nanometer resolution. Science, 313(5793):1642–1645, 2006. doi:
10.1126/science.1127344. URL https://www.science.org/doi/abs/10.1126/science.1127344.

[5] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2004.

[6] Jerry Chao, E Sally Ward, and Raimund J Ober. Fisher information theory for parameter estimation
in single molecule microscopy: tutorial. JOSA A, 33(7):B36–B57, 2016.

[7] Olivier Daigle, Claude Carignan, Jean-Luc Gach, Christian Guillaume, Simon Lessard, Charles-Anthony
Fortin, and Sébastien Blais-Ouellette. Extreme faint flux imaging with an emccd. Publications of
the Astronomical Society of the Pacific, 121(882):866, aug 2009. doi: 10.1086/605449. URL https:

//dx.doi.org/10.1086/605449.

[8] Eric R Fossum and Donald B Hondongwa. A review of the pinned photodiode for ccd and cmos image
sensors. IEEE Journal of the electron devices society, 2014.

[9] Simon Gazagnes, Emmanuel Soubies, and Laure Blanc-Féraud. High density molecule localization for
super-resolution microscopy using cel0 based sparse approximation. In 2017 IEEE 14th International
Symposium on Biomedical Imaging (ISBI 2017), pages 28–31, 2017. doi: 10.1109/ISBI.2017.7950460.

[10] Fabian Hinterer, Magdalena C Schneider, Simon Hubmer, Montserrat López-Martinez, Philipp Zelger,
Alexander Jesacher, Ronny Ramlau, and Gerhard J Schütz. Robust and bias-free localization of in-
dividual fixed dipole emitters achieving the cramér rao bound for applications in cryo-single molecule
localization microscopy. PloS one, 17(2):e0263500, 2022.

[11] Fang Huang, Samantha L Schwartz, Jason M Byars, and Keith A Lidke. Simultaneous multiple-emitter
fitting for single molecule super-resolution imaging. Biomedical optics express, 2(5):1377–1393, 2011.

[12] David R Hunter and Kenneth Lange. A tutorial on mm algorithms. The American Statistician, 58(1):
30–37, 2004.

[13] Manuel Hüpfel, Andrei Yu. Kobitski, Weichun Zhang, and G. Ulrich Nienhaus. Wavelet-based back-
ground and noise subtraction for fluorescence microscopy images. Biomed. Opt. Express, 12(2):969–
980, Feb 2021. doi: 10.1364/BOE.413181. URL http://opg.optica.org/boe/abstract.cfm?URI=

boe-12-2-969.

[14] I. Izeddin, J. Boulanger, V. Racine, C.G. Specht, A. Kechkar, D. Nair, A. Triller, D. Choquet, M. Dahan,
and J.B. Sibarita. Wavelet analysis for single molecule localization microscopy. Opt. Express, 20(3):2081–
2095, Jan 2012. doi: 10.1364/OE.20.002081. URL http://opg.optica.org/oe/abstract.cfm?URI=

oe-20-3-2081.

http://opg.optica.org/oe/abstract.cfm?URI=oe-17-26-23352
https://doi.org/10.1186/2192-2853-1-6
http://opg.optica.org/boe/abstract.cfm?URI=boe-11-2-1153
https://www.science.org/doi/abs/10.1126/science.1127344
https://dx.doi.org/10.1086/605449
https://dx.doi.org/10.1086/605449
http://opg.optica.org/boe/abstract.cfm?URI=boe-12-2-969
http://opg.optica.org/boe/abstract.cfm?URI=boe-12-2-969
http://opg.optica.org/oe/abstract.cfm?URI=oe-20-3-2081
http://opg.optica.org/oe/abstract.cfm?URI=oe-20-3-2081

REFERENCES II

[15] Ivan V Kotov, Alexandra. I Kotov, James Frank, Paul O’Connor, Victor Perevoztchikov, and Peter
Takacs. Ccd base line subtraction algorithms. IEEE Transactions on Nuclear Science, 57(4):2200–2204,
2010. doi: 10.1109/TNS.2010.2049660.

[16] Pavel Kř́ıžek, Ivan Raška, and Guy M. Hagen. Minimizing detection errors in single molecule localization
microscopy. Opt. Express, 19(4):3226–3235, Feb 2011. doi: 10.1364/OE.19.003226. URL http://opg.

optica.org/oe/abstract.cfm?URI=oe-19-4-3226.

[17] Mickaël Lelek, Melina T Gyparaki, Gerti Beliu, Florian Schueder, Juliette Griffié, Suliana Manley, Ralf
Jungmann, Markus Sauer, Melike Lakadamyali, and Christophe Zimmer. Single-molecule localization
microscopy. Nature Reviews Methods Primers, 1(1):1–27, 2021.

[18] Ü. Lepik. Numerical solution of differential equations using haar wavelets. Mathematics and Computers
in Simulation, 68(2):127–143, 2005. ISSN 0378-4754. doi: https://doi.org/10.1016/j.matcom.2004.10.
005. URL https://www.sciencedirect.com/science/article/pii/S0378475404002757.

[19] Kenneth Levenberg. A method for the solution of certain non-linear problems in least squares. Quarterly
of applied mathematics, 2(2):164–168, 1944.

[20] Luchang Li, Bo Xin, Weibing Kuang, Zhiwei Zhou, and Zhen-Li Huang. Divide and conquer: real-
time maximum likelihood fitting of multiple emitters for super-resolution localization microscopy. Opt.
Express, 27(15):21029–21049, Jul 2019. doi: 10.1364/OE.27.021029. URL http://opg.optica.org/

oe/abstract.cfm?URI=oe-27-15-21029.

[21] Ariel Lipson, Stephen G Lipson, and Henry Lipson. Optical physics. Cambridge University Press, 2010.

[22] Daniel Locci-Lopez, Rui Zhang, Arnold Oyem, and John Castagna. The multi-scale fourier transform.
09 2018. doi: 10.1190/segam2018-2994723.1.

[23] Hongqiang Ma, Jianquan Xu, and Yang Liu. Windstorm: Robust online image processing for high-
throughput nanoscopy. Science Advances, 5(4):eaaw0683, 2019. doi: 10.1126/sciadv.aaw0683. URL
https://www.science.org/doi/abs/10.1126/sciadv.aaw0683.

[24] Olvi L Mangasarian. Pseudo-convex functions. In Stochastic optimization models in finance, pages
23–32. Elsevier, 1975.

[25] Donald W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. Journal of
the Society for Industrial and Applied Mathematics, 11(2):431–441, 1963. doi: 10.1137/0111030. URL
https://doi.org/10.1137/0111030.

[26] Junhong Min, Cédric Vonesch, Hagai Kirshner, Lina Carlini, Nicolas Olivier, Seamus Holden, Suliana
Manley, Jong Chul Ye, and Michael Unser. Falcon: fast and unbiased reconstruction of high-density
super-resolution microscopy data. Scientific Reports, 4(1):4577, Apr 2014. ISSN 2045-2322. doi: 10.
1038/srep04577. URL https://doi.org/10.1038/srep04577.

[27] Kim I Mortensen, L Stirling Churchman, James A Spudich, and Henrik Flyvbjerg. Optimized localization
analysis for single-molecule tracking and super-resolution microscopy. Nature methods, 7(5):377–381,
2010.

[28] B. K. Natarajan. Sparse approximate solutions to linear systems. SIAM Journal on Comput-
ing, 24(2):227–234, 1995. doi: 10.1137/S0097539792240406. URL https://doi.org/10.1137/

S0097539792240406.

[29] Elias Nehme, Lucien E. Weiss, Tomer Michaeli, and Yoav Shechtman. Deep-storm: super-resolution
single-molecule microscopy by deep learning. Optica, 5(4):458–464, Apr 2018. doi: 10.1364/OPTICA.5.
000458. URL http://opg.optica.org/optica/abstract.cfm?URI=optica-5-4-458.

[30] Frank Nielsen. Cramér-rao lower bound and information geometry. In Connected at Infinity II, pages
18–37. Springer, 2013.

http://opg.optica.org/oe/abstract.cfm?URI=oe-19-4-3226
http://opg.optica.org/oe/abstract.cfm?URI=oe-19-4-3226
https://www.sciencedirect.com/science/article/pii/S0378475404002757
http://opg.optica.org/oe/abstract.cfm?URI=oe-27-15-21029
http://opg.optica.org/oe/abstract.cfm?URI=oe-27-15-21029
https://www.science.org/doi/abs/10.1126/sciadv.aaw0683
https://doi.org/10.1137/0111030
https://doi.org/10.1038/srep04577
https://doi.org/10.1137/S0097539792240406
https://doi.org/10.1137/S0097539792240406
http://opg.optica.org/optica/abstract.cfm?URI=optica-5-4-458

REFERENCES III

[31] Raimund J. Ober, Sripad Ram, and E. Sally Ward. Localization accuracy in single-molecule
microscopy. Biophysical Journal, 86(2):1185–1200, 2004. ISSN 0006-3495. doi: https://doi.
org/10.1016/S0006-3495(04)74193-4. URL https://www.sciencedirect.com/science/article/pii/

S0006349504741934.

[32] Martin Ovesný, Pavel Kř́ıžek, Josef Borkovec, Zdeněk Švindrych, and Guy M. Hagen. ThunderSTORM:
a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging.
Bioinformatics, 30(16):2389–2390, 05 2014. ISSN 1367-4803. doi: 10.1093/bioinformatics/btu202. URL
https://doi.org/10.1093/bioinformatics/btu202.

[33] John A Rice. Mathematical statistics and data analysis. Cengage Learning, 2006.

[34] Michael J. Rust, Mark Bates, and Xiaowei Zhuang. Sub-diffraction-limit imaging by stochastic optical
reconstruction microscopy (storm). Nature Methods, 3(10):793–796, Oct 2006. ISSN 1548-7105. doi:
10.1038/nmeth929. URL https://doi.org/10.1038/nmeth929.

[35] Daniel Sage, Hagai Kirshner, Thomas Pengo, Nico Stuurman, Junhong Min, Suliana Manley, and Michael
Unser. Quantitative evaluation of software packages for single-molecule localization microscopy. Nature
Methods, 12(8):717–724, Aug 2015. ISSN 1548-7105. doi: 10.1038/nmeth.3442. URL https://doi.

org/10.1038/nmeth.3442.

[36] Daniel Sage, Thanh-An Pham, Hazen Babcock, Tomas Lukes, Thomas Pengo, Jerry Chao, Ramraj Vel-
murugan, Alex Herbert, Anurag Agrawal, Silvia Colabrese, et al. Super-resolution fight club: assessment
of 2d and 3d single-molecule localization microscopy software. Nature methods, 16(5):387–395, 2019.

[37] Mark J Schervish. Theory of statistics. Springer Science & Business Media, 2012.

[38] Alexey Sharonov and Robin M. Hochstrasser. Wide-field subdiffraction imaging by accumulated binding
of diffusing probes. Proceedings of the National Academy of Sciences, 103(50):18911–18916, 2006. doi:
10.1073/pnas.0609643104. URL https://www.pnas.org/doi/abs/10.1073/pnas.0609643104.

[39] Russell E. Thompson, Daniel R. Larson, and Watt W. Webb. Precise nanometer localization analysis for
individual fluorescent probes. Biophysical Journal, 82(5):2775–2783, 2002. ISSN 0006-3495. doi: https://
doi.org/10.1016/S0006-3495(02)75618-X. URL https://www.sciencedirect.com/science/article/

pii/S000634950275618X.

[40] P. Zelger, K. Kaser, B. Rossboth, L. Velas, G. J. Schütz, and A. Jesacher. Three-dimensional localization
microscopy using deep learning. Opt. Express, 26(25):33166–33179, Dec 2018. doi: 10.1364/OE.26.
033166. URL http://opg.optica.org/oe/abstract.cfm?URI=oe-26-25-33166.

https://www.sciencedirect.com/science/article/pii/S0006349504741934
https://www.sciencedirect.com/science/article/pii/S0006349504741934
https://doi.org/10.1093/bioinformatics/btu202
https://doi.org/10.1038/nmeth929
https://doi.org/10.1038/nmeth.3442
https://doi.org/10.1038/nmeth.3442
https://www.pnas.org/doi/abs/10.1073/pnas.0609643104
https://www.sciencedirect.com/science/article/pii/S000634950275618X
https://www.sciencedirect.com/science/article/pii/S000634950275618X
http://opg.optica.org/oe/abstract.cfm?URI=oe-26-25-33166

	Notation and conventions
	Image notation

	Introduction and problem description
	SMLM

	Preliminaries
	Probability and statistics
	Continuous optimization
	Light detection model
	Image data models

	Literature study
	Preprocessing step
	Molecule detection step
	Molecule localization step
	Post-processing step
	Other methods
	Performance measures

	Preprocessing steps
	Background estimation
	FWHM estimation
	In multi-emitter setting

	Individual emitter localization
	Molecule detection
	Localization
	Fit procedure
	Initial guess
	Combining results

	Multi-emitter grid localization
	Experiments
	Data sets
	Metrics
	Results

	Discussion
	Future research and improvements

	Parameter choices
	Preprocessing steps
	Individual fitting algorithm
	Grid fitting algorithm

	Tables

