
Solving The Art Gallery Problem Using

Gradient Descent

Master’s Thesis

Georgiana Juglan

Supervisor:

Tillmann Miltzow

Second Examiner:

Frank Staals

Computing Science

November 9, 2022

Student Nr. 2996307

Utrecht University

The Netherlands

Abstract

The Art Gallery Problem is one of the central problems in computational geometry. It was recently

shown that the problem is ∃R-complete. Thus it is unlikely to be solvable by methods that are

usually applied to NP-complete problems. These methods include heuristics with provable guarantees

to come as close as possible to the optimal solution in polynomial time. Nonetheless, one of the most

important methods to solve ∃R-complete problems is called gradient descent. Curiously, there was no

attempt yet to solve the Art Gallery Problem with gradient descent. By aiming to maximise the area

seen by the guards in the Art Gallery Problem, we get a continuous cost function, which allows us

to compute the gradient. Using the gradient and other heuristics inspired from neural networks, we

try to solve the Art Gallery Problem practically using gradient descent. Specifically, we aim to use

the library CGAL. State-of-the-art implementations show how feasible this approach is. We visualise

some preliminary results and discuss the performance of the algorithm on different input shapes and

sizes.

Contents

1 Introduction 5

1.1 The Art Gallery Problem . 5

1.2 Gradient Descent . 6

1.3 Thesis Goal . 6

2 Literature Summaries 7

2.1 Efficient Computation of Visibility Polygons . 7

2.1.1 Algorithm of Joe and Simpson . 7

2.1.2 Algorithm of Asano . 8

2.1.3 New Algorithm: Triangular Expansion . 10

2.1.4 Experiments . 10

2.2 Irrational Guards Are Sometimes Needed . 11

2.2.1 Intuition for Triangular Pockets . 12

2.2.2 Intuition for Quadrilaterial Pockets . 13

2.2.3 Intuition for Rectangular Pockets . 13

2.2.4 Monotone Polygon Construction . 13

2.2.5 Rectilinear Polygon Construction . 14

2.3 Implementation of Guarding Algorithms . 15

2.3.1 Algorithm of Ghosh . 15

2.3.2 Algorithm of Bhattacharya, Ghosh and Roy . 16

2.3.3 New Algorithm . 17

2.3.4 Experiments . 17

2.4 An Algorithm with Performance Guarantees . 19

2.4.1 One-Shot Vision-Stable Algorithm . 20

2.4.2 Iterative Vision-Stable Algorithm . 21

2.4.3 Experimental Results . 21

3 Theory 23

3.1 Guarding the Polygon with One Point . 23

3.1.1 Gradient Descent . 23

3.1.2 Computing the Gradient . 24

3.1.3 Computing the New Guard’s Position . 26

3.2 Guarding the Polygon with Multiple Guards . 27

3.2.1 Computing the Gradient for Two Guards . 27

3.2.2 Computing the Gradient for Multiple Guards 28

3.3 Momentum . 30

3.4 Reflex Vertex Pull . 31

3.4.1 Pull onto the Reflex Vertex . 33

3.4.2 Pull Capping . 35

3.5 Reflex Area . 35

3.6 Line Search . 37

3.7 Angle Behind Reflex Vertex . 37

3.8 Hidden Movement . 38

3.9 Greedy Initialisation . 40

4 Practice 41

4.1 Heuristics . 41

4.1.1 Without Momentum . 41

4.1.2 Without Pulling To and Onto the Reflex Vertex 43

4.1.2.1 Evaluation and Results . 44

4.1.3 Without Pull Capping . 47

4.1.4 Without Reflex Area . 49

4.1.5 Without Line Search . 51

4.1.6 Without Angle Behind Reflex Vertex . 52

4.1.7 No Hidden Movement . 54

4.1.8 Greedy Initialisation . 55

4.2 Scaling for the Comb Polygon . 56

4.3 Hyperparameter Sensitivity . 59

5 Problems Encountered 61

6 Discussion 64

6.1 Future Work . 64

1 INTRODUCTION

1 Introduction

1.1 The Art Gallery Problem

The Art Gallery Problem [18] is a central problem in computational geometry. It can be introduced as

follows: given a simple polygon P with n vertices, we are interested in finding the minimum number

of guards that are able to see the whole polygon. A simple polygon is a polygon that has no holes.

Thus, we can define the visibility of a guard g in the polygon P ⊂ R2. The guard g = (x, y) ∈ P
sees another point q ∈ P if the line segment gq ⊆ P . The points that are visible from g form the

visibility polygon (region) Vis(g). In the Art Gallery Problem, we are looking for a minimum size set

of guards S that can see the whole polygon P .

Figure 1.1 displays an example of the Art Gallery Problem with polygon P guarded by 2 guards

(|S| = 2). The visibility region Vis of each guard is marked with a different colour. For guard g ∈ S,

its visibility region Vis(g) is emphasised with the pink contour. The vertex r blocks part of the view

of g. The vertex r is thus called “reflex”, because its interior angle is larger than 180◦. Reflex vertices

are only found in concave polygons, so convex polygons can be guarded by only one guard.

P

Vis(g)

r
g

Figure 1.1: Example of an Art Gallery Problem instance with polygon P guarded by 2 guards. The
visibility area Vis(g) is emphasised in pink.

The Art Gallery Problem is ∃R-complete [1], which means it is even harder to solve than NP-

complete problems [19]. For this reason, approximation algorithms have been extensively used to

address it ([5], [11], [13]). Nonetheless, to the best of our knowledge there is no related work on

approaching the Art Gallery Problem using gradient descent. As such, we approach the Art Gallery

Problem from a new perspective using gradient descent.

5

1.2 Gradient Descent 1 INTRODUCTION

1.2 Gradient Descent

Gradient descent is an iterative optimisation algorithm for finding the minimum of a continuous

differentiable function. The core idea of gradient descent is to repeatedly move in the opposite direction

of the gradient of the function at the current point using a specific step size (learning rate). High

learning rates result in approaching a local optimum faster, but risk overshooting it. Conversely, small

learning rates are more precise, with the compromise of a longer computation and convergence time.

When there is no more change in the gradient, then an optimum has been reached. Gradient descent

does not guarantee that the found optimum is global. For this reason, it can remain stuck in local

optima.

Figure 1.2 illustrates an example of applying gradient descent. The optimisation function takes

the shape of a curve. Starting from an arbitrary point on the curve, the goal is to reach the minimum

of the function (the bottom of the curve). This is done by computing the gradient (derivative) of the

function at the current point. The gradient is displayed in red and tells that the largest increase in

value for the function is going up the curve. Because we are interested in finding the minimum of

the function, we move in the opposite direction of the gradient. So, we move down the curve with

the given step size. Continuing from the new point on the curve, the process is repeated until the

minimum is reached. If we were interested in finding the maximum of the function, we would move

in the same direction with the gradient.

arbitrary initial position minimum

gradient

Figure 1.2: Illustrative example of applying gradient descent.

1.3 Thesis Goal

This thesis is an algorithm engineering paper. The main goal is to create and implement an algorithm

that uses gradient descent to approximate the solution to the Art Gallery Problem. The explored

research question is whether the Art Gallery Problem can be efficiently solved using gradient descent.

Additional to gradient descent, the algorithm deploys different heuristics to address various short-

comings and edge-cases. These are discussed based on polygon shapes and sizes. The algorithm is

implemented in C++ using the CGAL library [7].

This paper is organised as follows: Section 2 offers an overview of existing work. Section 3 explains

how gradient descent is used to solve the Art Gallery Problem and what heuristics we can make use of to

improve the performance of our algorithm. Section 4 offers an overview of our algorithm’s performance.

Due to the time constraints of the thesis, extensive experiments have only been performed for one of

the heuristics. Namely, Section 4.1.2.1 shows a preliminary evaluation for the experiments, based on

the number of iterations required to solve a problem instance. For the rest, only an intuition about

the advantages and use-cases for each of the heuristics is given. Lastly, Section 5 discusses issues this

project has encountered.

6

2 LITERATURE SUMMARIES

2 Literature Summaries

This section offers an overview of previous works addressing the Art Gallery Problem [18]. Working

with the visibility region is a basic tool in computational geometry, specifically in the context of the

Art Gallery Problem. The Art Gallery Problem is an ∃R-complete problem [1]. The problem class

∃R consists of instances that can be reduced in polynomial time to a decision problem of whether

a system of polynomial equations with integer coefficients and any number of real variables has a

solution. Since NP ⊆ ∃R, the ∃R class is an at least as hard to solve complexity class. That is due to

the fact that ∃R-complete problems are not know to have solutions of polynomial space.

Building on the aforementioned concepts, this section will further inspect how visibility in polygons

can be efficiently computed [6], how it is not always possible to place guards at rational coordinates [1],

in addition to two improved polygon guarding algorithms [16], [13].

2.1 Efficient Computation of Visibility Polygons

Bungiu, Hemmer, Hershberger, Huang and Kröller [6] introduce the implementations and their exper-

imental evaluations for two existing algorithms ([14], [3]) and a newly developed one for computing

visibility in polygons. These implementations are available in the CGAL library [7], starting with

version 4.5.

Therefore, Bungiu et al. present three algorithms and their practical performance.

2.1.1 Algorithm of Joe and Simpson

The algorithm of Joe and Simpson [14] runs in O(n) time and space.

Let vi, for i = 1, 2, ..., n, be the boundary vertices of the polygon P . Let g be a guard in P , and let s

be a stack data structure. The stack s will be used to keep track of the vertices determining Vis(g).

The algorithm begins by scanning the boundaries of P . The scanning is done through shooting

rays ~pvi, for i = 1, 2, ..., n in this order. The endpoints vi and vi+1 of each ray form a boundary

edge vivi+1. In this way, the processing of vi and vi+1 is done by checking whether the points are in

Vis(g). This means that the position of every vi+1 with respect to the ray ~pvi is checked. If vi+1 is

found in front of the ray ~pvi (if vi+1 is seen from g), then both vi and vi+1 are added to the processing

stack s. For every newly pushed vertex on s, the algorithm checks whether the segment vivi+1

obscures any of the previously added vertices. If that is the case, then the endpoints of the obscured

line segment are declared obsolete and deleted. The polygon comprised of the vertices from s forms

at the end the visibility polygon Vis(g).

Figure 2.1 displays an example run of the Algorithm of Joe and Simpson [14] for polygon P and

guard g. First, the ray from g is shot through vertex v1, and v1 is added to s. Then, the ray from g is

shot through v2. Since ray ~pv2 takes a right turn from ~pv1, this means that v2 is still in the visibility

region of g. For this reason, v2 is also added to s. The ray passing through v2 also intersects the

boundary of P in a point v′2. To account for the fact that g can see “behind” v2 and is still inside P ,

the boundary vertex v′2 is hence added to s. Next, the ray ~pv3 takes a left turn from v2, which means

that v3 is not seen from g.

7

2.1 Efficient Computation of Visibility Polygons 2 LITERATURE SUMMARIES

P
v1

v2

v3

v4

v5

v6

v7

v8

v9

v′2 v′5

Vis(g)
g

Figure 2.1: An example run of the algorithm of Joe and Simpson [14] for polygon P guarded by g and
boundary vertices vi, for i = {1, 2, ..., n}.

Similarly, v4 and v5 are added to s. However, because ray ~pv6 takes a left turn from ~pv5, segment v5v6

obscures v4v5. So, v4 and v5 are removed from s. Ray ~pv6 then intersects the boundary of P in v′6.

At the end, Vis(g) = {v1, v2, v′2, v6, v′6, v7, v8, v9, v10}, as shown on the boundary of the green area.

2.1.2 Algorithm of Asano

The algorithm of Asano [3] runs in O(n log n) time and O(n) space. It uses a plane sweep approach

with event line L.

Let P be a polygon determined by vertices {a1, a2, a3, b1, b2, b3, b4}. P may have holes. Suppose

we want to guard it by point g. The algorithm of Asano begins by efficiently sorting all the vertices

of P based on their polar angles with respect to the guard g. Figure 2.2 displays an example run of

the algorithm. The points will be treated in the order of a2, a1, a3, b4, b3, b2, b1 with respect to g and

their angular comparisons

]a2Op <]a1Op <]a3Op <]b4Op <]b3Op <]b2Op <]b1Op,

where O = (0, 0).

Then, the event line L starts sweeping around g as shown in Subfigures 2.2a - 2.2g. Every line

segment that L intersects is stored in a balanced binary tree T in the order of their intersection angle.

As T is updated, a new vertex of Vis(g) is stored each time the segment closest to g in T changes. It

is important to mention that the intersection between L and the line segments is not explicit, but is

instead determined by comparisons between the endpoints’ coordinates. For instance, in Figure 2.2,

the endpoint b2 of line segment b2a2 is the first one L intersects. Point b2 is thus added to T . Then, L

continues sweeping and adds b1, a2 and a1 to T . Although b2a2 and b1a1 represent line segments s2

and s1, respectively, the intersection of L with them is not explicitly computed, but is determined

based solely on the positions of their endpoints: s1 is farther away from g because q, a2 and b2 are on

the same side of s2.

8

2.1 Efficient Computation of Visibility Polygons 2 LITERATURE SUMMARIES

P

g

b2 s2

a2

b1

a1

s1

b3

b4
L

O = (0, 0)

a3

a′2

(a) a2 is added to the empty Vis(g) such
that Vis(g) = {a2}.

P

g

b2
s2

a2

b1

a1

s1

b3

b4
L

O = (0, 0)

a3

(b) a1 is added to Vis(g) such that
Vis(g) = {a1, a2}, and line segment b1a1 is added
to the empty binary tree T = {b1a1}.

P

g

b2
s2

a2

b1

a1

s1

b3

b4

L

O = (0, 0)

a3

(c) a3 is added to Vis(g) such
that Vis(g) = {a1, a2, a3}, and line
segment a1a3 is added to T such that
T = {b1a1, a1a3}.

P

g

b2
s2

a2

b1

a1

s1

b3

b4 L

O = (0, 0)

a3

(d) b4 is added to Vis(g) such
that Vis(g) = {a1, a2, a3, b4}, and line
segment a3b4 is added to T such that
T = {b1a1, a1a3, a3b4}.

P

g

b2
s2

a2

b1

a1

s1

b3

b4
L

O = (0, 0)

a3

(e) b3 is added to Vis(g)
such that Vis(g) = {a1, a2, a3, b4, b3},
and line segment b4b3 is added to T
such that T = {b1a1, a1a3, a3b4, b4b3}.

P

g

b2 s2
a2

b1

a1

s1

b3

b4
L

O = (0, 0)

a3

b′2

(f) b2 is added to Vis(g) such that
Vis(g) = {a1, a2, a3, b3, b4, b2}, and line segment
b2a2 is added to T such that
T = {b1a1, a1a3, a3b4, b4b3, b2a2}.

Figure 2.2: Example run of the Algorithm of Asano [3] on polygon P and guard g. The vertices of P
are added to the binary tree T in the order of their angle between g and the origin O = (0, 0). The
result of the algorithm is visibility region Vis(g) = {a1, a2, a3, b3, b4, b2}.

9

2.1 Efficient Computation of Visibility Polygons 2 LITERATURE SUMMARIES

P

g

b2
s2

a2

b1

a1

s1

b3

b4
L

O = (0, 0)

a3

(g) b1 is not added to Vis(g) because it is obstructed by the line segment b2a2 which is already in T . For the
same reason, line segments b3b1 and b1a1 are also not added in T .

Figure 2.2: Example run of the Algorithm of Asano [3] on polygon P and guard g. The vertices of P
are added to the binary tree T in the order of their angle between g and the origin O = (0, 0). The
result of the algorithm is visibility region Vis(g) = {a1, a2, a3, b3, b4, b2}.

2.1.3 New Algorithm: Triangular Expansion

The algorithm introduced by Bungiu et al. [6] is named Triangular Expansion and runs in Ω(n2) time

and O(n) space. It begins by triangulating P in O(n log n) time if P has holes, and O(n) otherwise.

The implementation runtime is constrained by CGAL, which makes use of the Delaunay triangulation

algorithm [9] with O(n2) time for the worst case, but with better performance in practice.

Taken from [6] and annotated to suit the explanations in these summaries, Figure 2.3 depicts an

example run of the algorithm on a polygon with holes P . Starting from the viewpoint g, the triangle

containing g is located by performing a simple walk. Trivially, g sees the entire triangle it is contained

in. The algorithm continues by recursively expanding the view of g from one triangle into the next,

until there are no more triangles to expand into. The view of g becomes restricted by the reflex

vertices l and r of the third triangle entered by the recursive step. Since l and r are reflex vertices,

the view past them is further restricted until the boundaries l′ and r′ of P , respectively, are reached.

Line segments ll′ and rr′ are added to Vis(g) in their angular order around g. At the end, Vis(g) will

contain the segments delimiting the visibility polygon of g.

2.1.4 Experiments

Bungiu et al. do not report on benchmarks with query points on edges in the interior polygon. This

is because they claim that their implementations perform similarly to other already implemented

algorithms. Instead, they use two real-world scenarios (a simple polygon of Norway with 20981

vertices, and a cathedral polygon with 1209 vertices) and a worst-case polygon for the Triangular

Expansion algorithm.

In terms of results on the real-world polygons, the Triangular Expansion algorithm has a 2-factor

improved performance when compared to Asano’s algorithm, and performs “one order of magnitude”

faster than Joe and Simpson’s algorithm. For the worst-case scenario, Asano’s algorithm outperforms

10

2.2 Irrational Guards Are Sometimes Needed 2 LITERATURE SUMMARIES

q

r

`

a

b

v

`′

e
∆

P

e`

er

Figure 2.3: The Triangular Expansion Algorithm Example - recursion entering triangle ∆ through
edge e [6].

the Triangular Expansion algorithm with increasing input complexity.

Thus, despite the Triangular Expansion algorithm being outperformed in the worst-case scenario,

Bungiu et al. add efficient implementations for 3 different polygon visibility algorithms in the CGAL

library. The choice of algorithms when using the library can be adapted based on the input polygons.

2.2 Irrational Guards Are Sometimes Needed

Abrahamsen, Adamaszek, and Miltzow [1] study the placement of the guards in the context of the Art

Gallery Problem [18]. Namely, it focusses on and confirms that there are polygons with integer coor-

dinates that require guards placed at points with irrational coordinates. Generalising, Abrahamsen et

al. show that ∀n ∈ N, there is a family of simple monotone polygons that can either be guarded by 3n

guards with irrational coordinates, or requires at least 4n guards with rational coordinates. The result

is also extended to a rectilinear polygon that can be guarded by 9 guards with irrational coordinates,

or requires at least 10 guards with rational coordinates. The family of simple monotone polygons that

can be guarded by 3n guards with irrational coordinates, as well as the rectilinear polygon that can

be guarded by 9 guards with irrational coordinates are also discussed.

First, we will address the question regarding whether polygons given by integer coordinates require

guard positions with irrational coordinates in any optimal solution by introducing a crafted monotone

polygon P . A polygon is monotone if there exists a line l such that every line orthogonal to l intersects

its boundary at most twice. Polygon P is depicted in Figure 2.4 and is constructed using a rectangle,

six triangular pockets (in green), three rectangular pockets (in blue) and four quadrilaterial pockets

(in red) are added. The intuition behind the polygon will be explained in the upcoming subsections.

The figure is accredited to Abraham et al. [15].

11

2.2 Irrational Guards Are Sometimes Needed 2 LITERATURE SUMMARIES

T `
t

T `
b

T r
t

T r
b

Tm
t

Tm
b

Rr

R`

Rm

P `
t

P `
b

P r
t

P r
b

(0, 4) (20, 4)

(20, 0)(0, 0)

(2, 4)

(2, 4.5)

(2.1, 4)

(1.9, 0)

(2,−0.5)

(2, 0)

(19, 4)

(19, 4.5)

(19.1, 4)

(18.9, 0)

(19,−0.5)

(19, 0)

(16 5
6 , 4)

(17 2
6 , 4.15)

(17 2
6 , 4)

(3.5, 0)

(3,−0.15)

(3, 0)

(20, 0.6) (30, 0.6)
(30, 0.5)(20, 0.5)

(0, 1.7)(−10, 1.7)
(−10, 1.8) (0, 1.8)

(10.5, 4)

(10.5, 8) (10.6, 8)

(10.6, 4)
(4, 4)

(4, 280
47)

(8, 294
47)

(8, 4) (16, 4)

(16, 1776
375)

(12, 2486
375)

(12, 4)

(4, 0)

(4,− 12
19)

(8,− 18
19)

(8, 0)
(16, 0)

(16,− 36
21)

(12,− 34
21)

(12, 0)

Figure 2.4: The polygon P developed by Abraham et al. [15] to emphasise the need for irrational
guards sometimes.

2.2.1 Intuition for Triangular Pockets

The six triangular pockets are created in order to force a guard on a line segment, as depicted in

Figure 2.5. The figure is taken from [1]. As such, they are grouped into three pairs: top pockets are

paired with bottom pockets corresponding to their position in P . For every pair (leftmost, middle,

rightmost) of triangular pockets, there is a corresponding line l`, lm, lr, respectively, that joins the

peaks of each triangular pocket in a pair. A guard can see both the peaks t, b of the pockets only if

it is placed on the line segment tb (Figure 2.5a). Hence, one guard is needed per pair, resulting in 3

guards in total.

t

b

(a) The only way that one guard
can see both t and b is when the
guard is on the blue line.

l`
lm lr

(b) The only way to guard the polygon with three guards requires one
guard on each of the green lines l`, lm, lr.

Figure 2.5: Forcing guards to lie on specific line segments [15].

12

2.2 Irrational Guards Are Sometimes Needed 2 LITERATURE SUMMARIES

2.2.2 Intuition for Quadrilaterial Pockets

The four quadrilateral pockets are created in order to force a guard in a region bounded by a curve.

Figure 2.6 was taken and adapted from [15], and depicts the visualisation for this case. Consider

some position of g` on l`. As g` moves up on l`, the point p`t slides towards the right on segment e`t,

and point p`b slides to the left on segment e`b. In this way, the lines p`tb and p`bd, where b, d are reflex

vertices, intersect and form the curve c`. Considering thus the fixed position of a guard gm either on

the left or on the right of the curve c`, there exists a position of guard g` on l` such that edge e`t and

line p`bgm are seen by g`. Then, only if gm is on the left or on c` can it see the remaining parts of

the pockets that are not seen by g` (edge e`b, line p`tg`). Analogously, in order for the right side of P

and the right pair of quadrilateral pockets to be seen by both guards gm and gr, gm has to be on the

curve cr or on its right. Since gm has to also satisfy its position on lm, its only feasible position is as

the intersection point between c`, cr and lm.

g`

gm
gr

l`
lm

lr

p`t prt

p`b
prb

e`t
ert

e`b
erb

c`
cr

Figure 2.6: Restricting a guard to a region bounded by a curve [15].

2.2.3 Intuition for Rectangular Pockets

The three rectangular pockets are created in order to force a guard to a single irrational point.

Further building onto the previously discussed instance from Figure 2.6, the three rectangular pockets

on the laterals and top of P are added. They allow for additional constraints for the positions of

the guards g`, gm, gr. Based on the curve equations of c` and cr, we can thus calculate the irrational

position of gm = (3.5 + 5
√

2, 1.5
√

2). Subsequently, we can fix the positions of g` and gr on lines l`

and lr.

2.2.4 Monotone Polygon Construction

The polygon P in question was found through experimentation in GeoGebra [10]. The triangular

and rectangular pockets were fixed. Finding then the position of the rectangular pockets required

the existence of a rational line that contained the irrational coordinates of guard gm from Figure 2.6.

The irrational coordinates of the two other guards g`, gr were chosen such that they would be able to

see the rest of the polygon that is unseen by gm. The rectangular pockets were added based on their

coordinates.

In this way, by placing each guard placed on the lines l`, lm, lr at unique irrational positions,

respectively, dependencies between guard positions were created. The resulting guard set becomes

thus S = {g`, gm, gr}. Given the unique and irrational positions of the guards, the only method for

seeing the whole polygon P using guards with rational positions would be to use at least 4. This

statement can also be generalised such that a family of polygons (Pn)n∈Z+ ,∀n can be guarded by 3n

13

2.2 Irrational Guards Are Sometimes Needed 2 LITERATURE SUMMARIES

guards with irrational coordinates, or requires 4n guards with rational coordinates. The coordinates

determining the polygons are hence polynomial in n.

2.2.5 Rectilinear Polygon Construction

Similarly, a rectilinear polygon PR can be created given integer coordinates. Polygon PR would require

guards with irrational coordinates in any optimal solution. It can be guarded by 9 guards if guards

can be placed at points with irrational coordinates. Otherwise, the smallest optimal guard set S with

rational coordinates would be required to have size 10.

Polygon PR can be constructed by extending P with the 6 non-rectiliniar grey parts (Q1, Q2, Q3,

Q4, T1, T2) in Figure 2.7, such that each of them requires at least 1 guard in the interior. The figure

was taken from [15]. When placing 6 guards in the grey parts, the white areas of PR remain unseen.

As such, 3 guards must still be similarly placed at the 3 irrational points on lines l`, lm, lr as in the

case of P , in order to guard the rest of PR.

H1 H2

H3 H4

l` lm lr

T1

T2

Q2

Q3

Q4

Q1

Rm

R` Rr

Figure 2.7: Rectilinear Polygon PR [15].

14

2.3 Implementation of Guarding Algorithms 2 LITERATURE SUMMARIES

2.3 Implementation of Polygon Guarding Algorithms for Art Gallery Prob-

lems

Maleki and Mohades [16] implement efficiently two existing approximation algorithms ([11], [4]) for

computing visibility in simple polygons. Namely, they introduce practical implementations for visibil-

ity algorithms that already offer theoretical guarantees. Additionally, they develop their own visibility

algorithm that aims to offer performance guarantees for polygon visibility computation. They lastly

evaluate experimentally their implementations for the three algorithms in the context of the Art

Gallery Problem [18].

To begin with, we will introduce some terminology used throughout this summary. The algorithms

distinguish in their implementation between vertex guards and point guards in a polygon P . Vertex

guards can be placed only on the vertices of P . Point guards can be placed without restriction inside P .

Lastly, the algorithms are tested on weak visibility polygons. A polygon P has weak visibility if all

boundary vertices of P can see all the points in P .

2.3.1 Algorithm of Ghosh

The algorithm of Ghosh [11] runs in O(n4) time and yields an O(log n)-approximation algorithm for

computing the minimum vertex guard for simple polygons.

One of the most important concepts the algorithm works with is that of a convex component.

Given a polygon P , we can form subsets of the vertices in P such that all the subsets form convex

subpolygons of P . We call these subsets of vertices the convex components of P .

The algorithm begins by computing the set of all the convex components C of a given polygon P .

Then, each vertex j ∈ P creates a set Fj with the convex components from C that it is able to fully

see. Let F := {Fj | ∀j ∈ P, Fj ⊆ C seen by j}. Then, the algorithm checks for overlaps between the

sets of F . For every vertex i and its corresponding convex components set Fi, the algorithm checks

whether any of the other sets F \ Fi sets are included in Fi. That is, if Fj ⊆ Fi, Fj ∈ F, i 6= j. If that

is the case, then vertex i sees at least as little as j. The vertex j is thus not needed as a guard, so Fj

is removed from F . Vertex i is added in the final guard set S. The algorithm repeats until the set F

becomes empty. When that happens, it means that the algorithm found a set S of guards who see all

the convex components of P without overlap.

An example run of the algorithm is depicted in Figure 2.8. Let P be the polygon in question, and its

boundary vertices V = {1, 2, 3, 4, 5, 6}. Polygon P is divided into two convex components C1 and C2,

such that C = {C1, C2}. The sets Fj ,∀j ∈ P are also displayed. Since F1 ⊆ F2 ⊆ F3 ⊆ F4 ⊆ F6

and F5 ⊆ F3 ⊆ F4 ⊆ F6, then F1, F2, F3, F4, and F5 are removed. The remaining set F6 yields the

final guard set S = {6}, which can see both convex regions of P , and hence the whole polygon.

15

2.3 Implementation of Guarding Algorithms 2 LITERATURE SUMMARIES

1

2

3

4

5

6
P

C1

C2

F1 = {C1}
F2 = {C1}
F3 = {C1, C2}
F4 = {C1, C2}
F5 = {C2}
F6 = {C1, C2}

Figure 2.8: Example run of the Algorithm of Ghosh [11] with polygon P divided into two convex
components C1 and C2. The resulting guard set is S = {6}.

2.3.2 Algorithm of Bhattacharya, Ghosh and Roy

The algorithm of Bhattacharya et al. [4] runs in O(n2) time and yields a 6-approximation for com-

puting the minimum vertex guard for weak visibility polygons without holes.

It begins by choosing two neighbours u and v as parents for every vertex in P . It then computes

the Shortest Path from each pair of parents (u, v) to every other vertex in P . The Shortest Path is a

path between two vertices such that the distance between them is minimal. If all distances between

two adjacent vertices are the same, then the length of the path corresponds to the number of edges

between the vertices. The Shortest Path from a pair of vertices (u, v) to any other vertex w is the

length of the minimum path between u and w, and v and w.

Then, all vertices that can be reached from u and v are unmarked. In increasing angular order

from uv, every vertex w ∈ P is checked for visibility from u, and v. If all vertices w are visible, then

u, and v are added to S. Otherwise, w is added to S and the procedure continues with w as the

starting node. All vertices that become seen from S are marked. At the end, the algorithm checks

whether the vertices in S have overlapping visibility regions, and duplicates are removed.

An example run of the algorithm is depicted in Figure 2.9. Let P be the polygon in question, and

its boundary vertices V = {a, b, c, d, e, f}. The algorithm starts with vertices a and c as parents of b.

Clockwise, vertex d is visible from ac, but e is not. For this reason, e is added to the guard set S, and

vertices d and f are chosen as the new parents. In increasing angular order, all vertices a, b, c, e are

visible from ef , so d and f are added to S. Since the visibility regions of d and f coincide (Vis(d) =

Vis(f)), and the visibility region of e is included in that of d and f (Vis(e) ⊆ Vis(d) ⊆ Vis(f)), e

and d can be removed from S. As such, the final guard set becomes S = {f}.

16

2.3 Implementation of Guarding Algorithms 2 LITERATURE SUMMARIES

a

b

c

d

e

f

P

Figure 2.9: Example run of the Algorithm of Bhattacharya et al. [4] for polygon P . The final guard
set is S = {f}.

2.3.3 New Algorithm

The algorithm introduced by Maleki and Mohades is focussed on polygons with large number of

vertices n and different amounts of reflex vertices r. If the number of reflex vertices is significantly lower

than the total number of vertices (r ≤ log log n), guards are placed at all reflex vertices. Otherwise,

they are placed according to the algorithm of Ghosh [11].

2.3.4 Experiments

Algorithms of Ghosh [11] and Bhattacharya et al. [4] are tested on weak visibility polygons, and the

newly introduced algorithm is tested on simple polygons.

Let Procedure 1 be a procedure for generating weak visibility polygons that is illustrated in Fig-

ure 2.10: given two points p = (k, 0), q = (−k, 0), n random points {x1, ..., xn} sorted on the distance

from p on pq, n sorted random angles {α1, ..., αn} ∈ (0, π), and n vertices {y1, ..., yn} are created by

shooting n rays at the corresponding angle αi,∀xi. Then, n reflex vertices {z1, ..., zn} are added in

the quadrilateral formed by vertices xiyiyi+1xi+1. The figure is accredited to [16].

Figure 2.10: Generated weak visibility polygon for n = 3 [16] through Procedure 1.

17

2.3 Implementation of Guarding Algorithms 2 LITERATURE SUMMARIES

The algorithms of Ghosh [11] and Bhattacharya et al. [4] were tested using polygons generated by

Procedure 1 with n ∈ {10, 11, ..., 15} vertices and r ∈ {2, 3} reflex vertices. The results suggest that for

low values of n and r, the algorithm of Ghosh [11] performs better when using the number of guards

as evaluation criteria. Similarly, the algorithm of Ghosh [11] performed better both when tested on a

weak visibility polygon with low n = 10, 15 and n
2 ≤ r, and when tested with large n ∈ {100, 400}.

Secondly, let Procedure 2 be a procedure for generating simple polygons with custom number

of reflex vertices r is devised in Figure 2.11. The figure was taken from [16] and annotated to

suit the explanations in these summaries. Starting from a simple convex polygon P with n ver-

tices u, v, x1, x2, ..., x7, polygon P is triangulated such that every triangle has a joint edge with its

boundaries; r reflex vertices r1, r2, r3 are randomly added inside P , and the boundaries outside of the

reflex vertices are moved such that all r points are now forming boundaries.

Figure 2.11: Generated simple polygon P for n = 12, r = 3 [16] through Procedure 2.

The new algorithm is tested on simple polygons constructed as mentioned by starting from low r

and gradually increasing it. The results are reported positively in the sense that the |S| always remains

close to the optimal, as a 2-approximation solution.

Therefore, through the newly implemented algorithm, Maleki and Mohades [16] testify that the

algorithm of Ghosh [11] performs like a constant approximation in practice, and often better than its

theoretical bound when tested on complex simple polygons.

18

2.4 An Algorithm with Performance Guarantees 2 LITERATURE SUMMARIES

2.4 A Practical Algorithm with Performance Guarantees for the Art Gallery

Problem

Hengeveld and Miltzow [13] introduce the idea of vision-stability, and describe an iterative algorithm

that guarantees to find the optimal guard set for every vision-stable polygon in order to address the

Art Gallery Problem [18]. Additionally, it proves that the set of vision-stable polygons admits an

FPT algorithm when parametrised by the number of vertices visible from a chord of the polygon, and

gives a one-shot algorithm for that matter.

Hengeveld and Miltzow [13] start by introducing the notion of vision-stability (see Figure 2.12).

The figure was taken from [13] and annotated to facilitate the understanding of this summary. The

authors define guards as “enhanced” if they can “see around the corner” by an angle of δ (visδ(q)),

or “diminished” if their vision is “blocked” by reflex vertices by an angle of δ (vis−δ(q)). As such, the

size of the minimum δ-guarding set is defined as opt(P, δ). A polygon P has vision-stability δ if the

optimal number of enhanced guards is the same as the optimal number of diminished guards for that

matter (opt(P,−δ) = opt(P, δ)).

visδ(q) vis−δ(q)

Figure 2.12: Enhanced (visδ(q)) and diminished (vis−δ(q)) visibility regions of the one point q [13].

The core idea of Hengeveld and Miltzow’s approach is to discretise the problem in order to improve

the computation time. In this way, only a subset of potential guards and points to be guarded from P

would be considered. In order to do so, they introduce the notions of a candidate guard set C and

a witness set W . The role of the candidate guard set C is to discretise the guard searching space.

As such, we can find an upper bound opt[C] on the final guard set. Thus C is “pretty close” on the

actual optimum guard set opt. The candidate guard set C is then initialised with a subset of all the

potential guards. The guards that are included should have their visibility regions overlap as little

as possible. Similarly, the witness set W discretises the space of the guards’ visibility regions. At

initialisation time, W contains a subset of all vertices and faces of P . It is important to also include

faces in W . In this way, we account for the fact that if a point q is included in a face f , then f sees at

least as much as q. So, we can determine an approximation of how much more f sees when compared

to g. Thus, by adding the face as a witness, we are creating a discretisation of the space containing a

superset of possible guard positions.

Firstly, rays are shot from every reflex vertex such that the angle between any two rays is at most δ,

as observed in Figure 2.13, as taken from [13]. All the intersection points of the rays within P define

the candidate guard set C, together with the faces they are part of. A witness guard set W is then

defined by picking an arbitrary interior point of every face of P , together with all faces of P . In this

way, the problem can be discretised in a way in which the solution to the discretised problem are also

solutions to the continuous problem.

19

2.4 An Algorithm with Performance Guarantees 2 LITERATURE SUMMARIES

δ

Figure 2.13: Shooting rays from all reflex Vertices with angles between them at most δ [13].

2.4.1 One-Shot Vision-Stable Algorithm

At first, an Integer Program (IP) is built and named the One-Shot Vision-Stable Algorithm. It

computes the minimum number of point guards in polynomial time in a vision-stable polygon P with

vision-stability δ and r reflex vertices. The guards are encoded by binary integers, and linear equations

and inequalities are used to encode visibility. Assuming that δ is part of the input, the algorithm

returns the optimal solution only if the vision-stability of P is larger or equal to δ. The one-shot

vision-stable algorithm is reliable, as it also verifies that its result is an optimal solution.

Let f1 be the optimisation function of the IP. The function f1 uses variables [[c]] for every candi-

date c ∈ C, and [[w]] for every witness w ∈W . Its role is to count the number of guards that are used

with the purpose of minimising this number. Additionally, it makes use of parameter factor 1 + ε to

ensure that vertex candidates are preferred over face candidates. By choosing 1
ε = |C|+ |W |+ 1, we

ensure that ε is sufficiently small. As such, the optimisation function f1 of the IP is

f1 =
∑

c∈vertex(C)

[[c]] + (1 + ε)
∑

c∈face(C)

[[c]] + ε
∑

w∈face(W)

[[w]].

For every witness w, its visible set of candidates are denoted as vis(w), where face and vertex refer

to whether the candidate is a face or a vertex, respectively.

Additionally, let vis(w) be the set of candidates that see witness w ∈ W completely. For every

vertex-witness w ∈ vertex(W), we formulate a constraint such that all w ∈ vertex(W) is seen:∑
[[c]]∈vis(w)

c ≥ 1,∀w ∈ vertex(W).

We similarly formulate a constraint for every face-witness w ∈ face(W). However, we add [[w]] as a

variable to relax it, so that the focus is placed on first seeing all vertex-witnesses

[[w]] +
∑

[[c]]∈vis(w)

c ≥ 1,∀w ∈ face(W).

Nonetheless, the one-shot vision-stable algorithm proves to be too slow for practical reasons. The

bottleneck is however not solving the IP in itself, but computing visibilities. Hence, an iterative

vision-stable algorithm is devised, that is faster and retains similar performance guarantees.

20

2.4 An Algorithm with Performance Guarantees 2 LITERATURE SUMMARIES

2.4.2 Iterative Vision-Stable Algorithm

Starting with the smaller sets of candidates C and witnesses W , another IP is deployed in order to

find a minimum guard set S ⊆ C that sees all vertex-witnesses. This algorithm is then called the

Iterative Vision Stable Algorithm, as it changes C and W in each iteration.

As the Iterative Vision Stable Algorithm is also named the Big IP, it also has an objective func-

tion f2. The function f2 minimises the number of face-guards used in S and the number of unseen

face-witnesses. If S contains only point guards and sees all face-witnesses, the algorithm reports the

optimal solution by using the One-Shot IP. As such, f2 assures that all witnesses w are seen by their

set of candidates vis(w), and enforces that only the number of guards s resulted from the One-Shot

IP is used. The optimisation function with its constraints of the Big IP becomes

f2 =
∑

x∈splittable(W∪C)

[[x]] (1)

∑
[[c]]∈C

c = s, s ∈ Z, s the number of used guards in the One-Shot IP (2)

∑
[[c]]∈vis(w)

c ≥ 1 (3)

1− (ε
∑

[[c]]∈vis(w)

c) ≥ [[w]]. (4)

If not all point guards are used, or not all face-witnesses are seen, the faces of P are split (discre-

tised). Then the algorithm continues to the next iteration. The One-Shot IP is then used as soon as

all faces are deemed unsplittable (they have reached a certain granularity λ).

Inspired by the Iterative Algorithm, an FPT algorithm for the Art Gallery Problem can be created.

In this case, the FPT algorithm would have as parameter of chord-visibility width. Given a chord c

of P , we count the number n(c) of vertices visible from c. The chord-visibility width of P (cw(P))

is the maximum n(c) over all possible chords c. By using this measure, it is possible to describe the

local complexity of a polygon: many synthetic arbitrary polygons have much smaller chord-visibility

width than they have reflex vertices, and polygons constructed with hardness reductions have the

chord-visibility width proportional to the total number of vertices.

2.4.3 Experimental Results

The previously introduced algorithms are tested experimentally in terms of their running times and

solution quality with respect to the input size, chord-visibility width and vision-stability of the input

polygons P . The tests were run on 30 instances of arbitrary simple polygons of sizes 60, 100, 200

and 500 vertices. The algorithms have been implemented both with the theoretical performance

guarantees T (if no solution is found in T , abort) and with the practical optimisation of critical

witnesses.

When running the Iterative Algorithm with optimisations, reasonable practical results were found:

all tested instances were solved to optimality, although the overall running time was not improved

when compared to state-of-the-art algorithms. The median running time was also lower than the

average running time. This could be accounted for by the sensitivity of the algorithm to the vision-

stability of a polygon. Thus, a few polygons that are hard to solve (have low vision-stability) outweigh

the rest of the running times.

The Iterative Algorithm without optimisations was on the 60 vertices instance and with the the-

oretical limit T as a safe guard. A solution was found in an efficient manner (within an hour) only

21

2.4 An Algorithm with Performance Guarantees 2 LITERATURE SUMMARIES

for 25 out of 30 instances. For the rest of the 5 instances, the Big IP performed unnecessary splits,

which negatively influenced the running times.

Additionally, the correlation between the granularity λ of the input polygon was tested for the

iterative algorithm with performance guarantees T . There appeared to be a strong correlation between

the running times and λ. Thus, lower granularity implied a shorter running time.

In terms of the convergence to the optimal solution, the iterative algorithm with optimisations has

been used to show the fast convergence in the first few iterations. The speed of the convergence slows

down as the algorithm nears its end due to the increasing number of candidates and witnesses that

are added to C and W ∗, respectively, in the later iterations. Nonetheless, it appears that computing

the visibility area of the polygon is still the bottleneck in the algorithm’s performance.

22

3 THEORY

3 Theory

This section investigates the theory aspects of solving the Art Gallery Problem using gradient descent.

Namely, we explain what the optimisation function is in the context of the Art Gallery problem, and

how it can be solved with gradient descent. We initially apply gradient descent to only one guard,

then extend it to multiple guards.

3.1 Guarding the Polygon with One Point

First, we explore how gradient descent is applied for the case that we want to guard the polygon

using only one guard. As such, we tackle the main challenge of this section: defining the optimisation

function of the Art Gallery Problem to be continuous. Then, we compute its gradient descent. The

gradient descent computation is used then for defining how the new positions of a guard is computed.

3.1.1 Gradient Descent

Let P be a polygon and g = (x, y) ∈ P a guard. We are interested in computing the best direction

for moving g inside P such that the visibility area Vis(g) increases. That is, exploring what would be

a better position g′ to move g to such that g “sees more” of the polygon P .

We define f(g) = Area(g) as the area seen by a guard g. Let 5Arear(g) be the local change in the

area guarded by point g around a reflex vertex r seen by guard g, thus r ∈ Vis(g). Given all reflex

vertices i, the total (global) change in the area seen by g is summed up to Area(g) =
∑
i Areai(g).

Figure 3.1 offers an example for this case for a polygon P and its reflex vertices r1 and r2. The

polygon P is guarded by g, and its position is modified to g′ by a small change ∂y in its y-coordinate.

The visibility areas of g are Arear1 and Arear2 around reflex vertices r1 and r2, respectively. In this

way, the total change in the visibility area of g is computed as 5Area(g) = 5Arear1(g)+5Arear2(g).

Thus, we consider f(g) as the continuous objective function of the Art Gallery Problem. We then

use gradient descent as a method to optimise the objective function f . We define below what the

methodology of gradient descent consists of.

g

r1

r2

g′

∂y

5Arear1(g)

5Arear2(g)

P

Figure 3.1: Global change in the area seen by g when moved by ∂y to a new position g′.

23

3.1 Guarding the Polygon with One Point 3 THEORY

Let 5f be the gradient of f . The gradient then indicates the direction of the steepest descent for

the objective function f(g). The learning rate (step size) α is the size of the steps taken to reach the

optimum. It is typically a small value, and it is evaluated and chosen based on the behaviour of the

optimisation function.

After the gradient 5f is computed, we use it to calculate the new optimised position g′ of guard g:

g′ = g + α5 f(g).

In later sections we experiment with various learning rates. As such, we explore how they influence

the performance of our algorithm in relation to different test polygons.

3.1.2 Computing the Gradient

Given that f is a function that describes the visibility area of a point g, we first need to define how its

gradient is computed. We simplify the gradient computation without losing generality. As such, we

rotate the plane with rotation matrix R, so that g and any reflex vertex r have the same x-coordinate.

In this way, we only need to compute the gradient when we vary the y-coordinate. The computation

of the gradient remains the same regardless of the rotation applied to the plane.

We use the notation ∂f
∂y to denote the change in the visibility area f(g) when the plane is rotated

and then the y-coordinate is modified by a small amount ∂y → 0. In this way, we define

5 f(g) =

(
∂f

∂x
,
∂f

∂y

)ᵀ

(5)

to be the gradient of f given that P is guarded by a point g.

We now create a canonical geometric construction that allows us to further define and compute5f .

In this case, we consider the normalised length of the gradient as || 5 f(g)|| = 1. This canonical

construction is displayed in Figure 3.2.

P boundary

r

g

g′

5f(g)

∂y

L
a

b

41

42

Figure 3.2: Canonical gradient construction for when the position of g is varied by a small amount ∂y
around reflex vertex r to the new position g′.

Take a boundary line segment of P , r a reflex vertex inside P and g a guard whose optimal position

we are interested in. The reflex vertex r is seen by g. Let gr = a be known, and let 4rgg′ = 42.

Similarly, let b be the known distance between r and the polygon boundary in question.

Let ∂y be a tiny change in the y-coordinate of g. Let g′ be the new position of g given the

change ∂y. The point g′ sees more around r on the polygon boundary. Let L be the new segment

that g′ sees on the polygon boundary. As such, let 41 denote the increase in the visibility area of g

when it moves to position g′:

5Arear(g) = 41. (6)

24

3.1 Guarding the Polygon with One Point 3 THEORY

We are now interested in computing how the area seen by guard g increases given the change ∂y in

the position of g. The distances a and b are known. As such, we aim at expressing the gradient5Arear

for point g and reflex vertex r ∈ Vis(g) using a and b. Since 5Arear depends on the change in the

coordinates of g, computing it is tightly connected to the change in the area of triangle 41. We

proceed to calculate the area of 41 below.

Given that triangles 41 and 42 are square triangles, their areas is calculated as:

Area41(g) =
bL

2
,

Area42
(g) =

a∂y

2
.

Given that gg′ is parallel to polygon’s boundary, we use Thales’s Theorem [2] in triangles 41

and 42 to compute the length L:

∂y

L
=
a

b

L =
b∂y

a
. (7)

So, the area of 41 is computed:

Area41
(g) =

Lb

2

(7)
=

b∂y
a b

2

Area41
(g) =

b2∂y

2a
. (8)

We compute the gradient 5Arear in a plane rotated by R for a point g and a reflex guard r seen

by g as

R5Arear(g)
(5)
=

(
∂f

∂x
,
∂f

∂y

)ᵀ

(6)
=

(
0,

Area41

∂y

)ᵀ

R5Arear(g)
(8)
=

(
0,
b2

2a

)ᵀ

. (9)

Therefore, for all the reflex vertices r guard g sees, the total gradient 5f becomes the sum of all

the partial gradients 5fr as

5f(g) =
∑
i∈R(g)

5Areai(g), (10)

R(g) = {reflex vertices of P seen by g}.

25

3.1 Guarding the Polygon with One Point 3 THEORY

3.1.3 Computing the New Guard’s Position

We use the coordinates of the gradient 5f to compute the movement direction of the guard g given all

the reflex vertices from P seen by g. In order to do so, we use the construction depicted in Figure 3.3.

g

r

5f(g)

~v⊥ a

b

y

x

~v

g′

Figure 3.3: Computing the new position g′ of guard g around reflex vertex r based on the gradient5f .

Let ~v be the vector corresponding to the direction of movement from guard g to a reflex vertex r,

such that ~v = (r − g) = (x, y)ᵀ, with norm ||~v|| = a. So, ||~va || = 1.

Let ~v⊥ = (g′−g) be the vector corresponding to the direction of movement from guard g to its new

position g′. Vector ~v⊥ is orthogonal to ~v, in the same direction as 5f , such that ||~v|| = ||~v⊥|| = a.

We use the coordinates of ~v⊥ to compute the coordinates of 5f and thus the direction in which g

needs to move.

The coordinates of ~v⊥ are computed using the construction from Figure 3.4. Since ~v⊥ ⊥ ~v, and g

and r are on the right-hand side of ~v⊥, the coordinates of ~v⊥ are rotated by−90◦ so that ~v⊥ = (−y, x)ᵀ.

Analogously for the case when g and r are rotated by 180◦ to the left-hand side of ~v⊥, the coordinates

of ~v⊥ are rotated by 90◦ to ~v⊥ = (−x, y)ᵀ.

~v

~v⊥

x

y

−y

x

p′

r

g

Figure 3.4: Computing the coordinates of ~v⊥ given the guard g and the reflex vertex r = (x, y).

We know that the norm of the total gradient 5f is

|| 5 f(g)|| (10)= ||
∑(

0,
b2

2a

)ᵀ

||

(9)
=

√(
b2

2a

)2

|| 5 f(g)|| = b2

2a
. (11)

Since5f has the same direction as ~v⊥, we wish to normalise it with 1
a (the norm of ~v⊥). Therefore,

the gradient for guard g and one reflex vertex r ∈ Vis(g) is computed as

5f(g) = ~v⊥
b2

2a

1

a
. (12)

26

3.2 Guarding the Polygon with Multiple Guards 3 THEORY

As mentioned before, the total gradient for guard g and all the reflex vertices r the guard sees is

5f(g) =
∑

r∈R(g)

5Arear,

R(g) = {reflex vertices of P seen by g}.

The new position g′ of guard g based on all the reflex vertices it sees is:

g′ = g + α5 f(g). (13)

3.2 Guarding the Polygon with Multiple Guards

In this section we investigate how to generalise the computation of gradient descent to multiple guards.

Previously we defined the gradient descent of one guard in order to compute its movement towards

optimality. We extend this computation to multiple guards. Namely, we define how the gradient

descent changes when the visibility region of one guard is seen by other guards as well.

3.2.1 Computing the Gradient for Two Guards

Let point g1 be the guard we have previously computed the gradient for. Let point g2 be another

guard in the polygon. The position of g2 is optimised around reflex vertex r2, as seen in Figure 3.5.

Guard g2 sees a part of the visibility region already seen by g1. Let the shared seen region be 42,

and the region that is only visible by g1 be 41.

P boundary

r1
g1

g′1

5f(g1)

∂y

−a b1

41

r2

b2

42

g2

p1 p2

0

Figure 3.5: Canonical gradient construction for when the visible area of g′1 is also seen by guard g2.

The visibility regions of guards g1 and g2 are computed. Let p be the intersection point between

them. Let d be the point seen by g1 on the polygon boundary. Point p divides the segment seen by g1

behind the reflex vertex r1 into two subsegments r1p1 and p1p2. The lengths of the subsegments are b1

and b2, respectively, with b1 + b2 = b. Recall that b is the distance between the reflex vertex r1 and

the polygon boundary. Thus, b2 corresponds to the length of the shared seen segment.

As before in equation 8, the area seen by g1 is

Area41+42
(g1) = (b1 + b2)2

∂y

2a
.

27

3.2 Guarding the Polygon with Multiple Guards 3 THEORY

However, 42 is already seen by guard g2. Since this area is already covered, we are only interested in

how g1 covers the remaining 41. We can compute that from the same equation as

Area41(g1) = b21
∂y

2a
.

So, we do not need to take 42 into account when computing the gradient of g1.

Now we can also compute the shared area seen 42 as:

Area42
(g1) = Area41+42

(g1)−Area41
(g1)

= (b1 + b2)2
∂y

2a
− b21

∂y

2a

Area42
(g1) =

[
(b1 + b2)2 − b21

] ∂y
2a
. (14)

We use thus equation 14 in the next section to introduce a generalisation for the computation for

the exclusive area seen by g1.

3.2.2 Computing the Gradient for Multiple Guards

We generalise the gradient computation to m guards and m intersection points. Let g be the guard

whose position we wish to optimise around reflex vertex r as before. Let the areas highlighted in blue

in Figure 3.6 be the parts of the visibility region of g that are also seen by the other m−1 guards. Let

the visibility region of g intersect other guards’ visibility regions in m intersection points p1, p2, ..., pm.

Let the distance from the reflex vertex r to the intersection points be b1, b2, ..., bm, b.

P boundary

r

g

g′

5f(g)

∂y

b1 b2 bm

42

4m

41
43

p1 p2 p3 pm

b−a 0

Figure 3.6: Canonical gradient construction for where the pink parts of the visible area of g are also
seen by other guards. The grey polygons 41,43, ...,4m−1 are the areas that are exclusively seen
by g.

We generalise equation 14. Namely, we need to subtract the areas that are seen by other guards

from the total area seen by guard g.

We start to move in the direction from the polygon boundary to reflex vertex r. We know the

intersection points pm−1..., p3, p1 of the shared seen regions with the visibility region of g. Thus, we

compute the distances rpm−1, ..., rp3, rp1 between the reflex vertex r and the beginning of the shared

28

3.2 Guarding the Polygon with Multiple Guards 3 THEORY

visibility regions. Analogously, we compute the distances rpm, ..., rp4, rp2 between the reflex vertex r

and the end of the shared visibility regions.

The areas of polygons 41,42, ...,4m do not grow linearly. For this reason, we cannot simply

subtract the sum of the shared areas from the total area seen by g.

An explanation about why this is the case is given in Figure 3.7. Take overlapping polygons

s1, s2, s3, s4 with areas Areas1 = 2, Areas2 = 3, Areas3 = 4, Areas4 = 5. We want to compute the

area of polygons s1 and s2. However, it is incorrect to simply add their areas together as

Areas1+s3 = 2 + 4 = 6,

as s2 is overlapping in between them. Instead, from the total area

Areas1+s2+s3+s4 = Areas4 = 5

we sequentially subtract the areas we are not interested in (Areas2 ,Areas4) and add the ones we are

interested in (Areas1 ,Areas3). Namely,

Areas1+s3 = Areas1+s2+s3+s4 −Areas4 + Areas3 −Areas2 + Areas1 = 5− 5 + 4− 3 + 2 = 3.

s1

s2

s3

s4

Figure 3.7: Example for computing the area of overlapping polygons with areas Areas1 = 2,
Areas2 = 3, Areas3 = 4, Areas4 = 5. It is incorrect to compute Areas1+s3 = 2 + 4 = 6. Instead,
Areas1+s3 = Areas1+s2+s3+s4 −Areas4 + Areas3 −Areas2 + Areas1 = 5− 5 + 4− 3 + 2 = 3.

Similarly to Figure 3.7, we compute the area seen exclusively by g. From the total Area41+42,...,4m

seen by g we need to alternatively subtract the shared areas Area4m
, ...,Area44

, Area42
, then add

the exclusively seen areas Area4m−1
, ...,Area43

,Area41
.

This results in the fact that the area seen by g exclusively is computed as

Area41+43+...+4m−1
(g) = Area41+42+...+4m

(g)

−Area4m−1
(g) + Area4m−2

(g)

− ...
−Area42(g) + Area41(g)

=
(
b2 − b2m + b2(m−1) − ...− b22 + b21

) ∂y
2a
.

29

3.3 Momentum 3 THEORY

Alternatively, if 41 is first seen by other guards (so b11 = 0), then all the signs are flipped. This

claim is also supported by the intuition of Figure 3.7. If we are interested in the areas of s2 and s4,

then it is incorrect to compute them as

Areas2+s4 = 3 + 5 = 8.

This is because s1 and s3 are overlapping in between them. Instead,

Areas2+s4 = Areas1+s2+s3+s4 + Areas4 −Areas3 + Areas2 −Areas1 = 5 + 5− 4 + 3− 2 = 7.

3.3 Momentum

This section introduces an extension to the regular gradient descent algorithm: momentum. Momen-

tum builds upon the idea of considering the past states of the gradient descent computation. In this

way, the past states create “inertia” to the newly computed gradient state. This results in the move-

ment trajectory to be smoother. This is especially advantageous for the gradient descent computation.

The reason is that the gradient descent computations can be noisy. So some of them are extremely

large, while others are insignificant. Momentum addresses this non-uniformity [12].

An example for the benefits of using momentum are found in Figure 3.8. Subfigure 3.8a displays a

gradient descent computation without momentum. Initially, the jumps are large and become smaller

as the minimum is approached. In Subfigure 3.8b these movements become smoothened out. The

gradient descent steps become thus more even. This allows the overall trajectory to be less noisy and

chaotic.

arbitrary initial position minimum

gradient

(a) No momentum.

arbitrary initial position minimum

gradient

(b) With momentum.

Figure 3.8: Illustrative examples of gradient descent trajectories with and without momentum.

So, the position gi at iteration i of a guard g is not calculated anymore based only on the current

computation of gradient descent. Instead, it also takes into account past values of gradient descent.

In order to decide how much past states influence the value of the current position, we take each

gradient value with a weight.

Let Mi(gi) be the momentum for a guard at iteration i. Let 5fi(gi) be the computation of the

gradient descent in iteration i. Let the weight of a gradient descent value be a hyperparameter γ. As

such, we take into account the value of the previous gradient 5fi−1(gi−1) with weight γ. However,

we still want the current gradient 5fi(gi) to influence the guard’s movement. This can happen with

a weight of 1− γ. So, the computation for the momentum at iteration i becomes

Mi(gi) = γMi−1(gi−1) + (1− γ)5 fi(gi).

We start with

M0(g0) = (1− γ)5 f0(g0).

30

3.4 Reflex Vertex Pull 3 THEORY

We then check for correctness how the next iterations of the momentum are carried out:

Mi(g) = γMi−1(gi−1) + (1− γ)5 fi(gi)

= γ(γMi−2(gi−2) + (1− γ)5 fi−1(gi−1)) + (1− γ 5 fi(gi))

= γ2Mi−2(gi−2) + (1− γ)(γ 5 fi−1(gi−1) +5fi(gi))
= γ3Mi−3(gi−3) + (1− γ)(γ2 5 fi−2(gi−2) + γ 5 fi−1(gi−1) +5fi(gi))
...

In this way, our momentum computation exponentially decreases the influence of a past state over

the guard’s current movement. So, the previous value of the momentum exerts its inertia with γ

influence over the new value of the momentum.

Similarly, the new position gi of guard g with learning rate α is now calculated as

gi = gi−1 + αMi(gi−1).

3.4 Reflex Vertex Pull

This section presents an additional idea to our gradient descent algorithm: pulling a guard towards

reflex vertices. The pull strategy makes use of the second derivative of our optimisation function

f(g) = Area(g).

As mentioned previously, we are using the first derivative to compute the gradient of a guard’s

movement. That is, we use the first derivative of f(g) to find the direction of a guard’s movement

that increases its seen area. Additionally, we also make use of the second derivative of f(g) to explore

what the rate of change in the area increase is.

We can achieve a more rapid increase in the seen area if we move a guard closer to a reflex vertex.

The closer a guard is moved to a reflex vertex, the larger the increase in the area seen past the vertex.

If a guard is moved directly on a reflex vertex, then the area seen past the vertex is maximised.

We explore how the pull towards a reflex vertex r can be computed, with an example in Figure 3.9.

Let the guard g = (0, 0), the reflex vertex r = (2, 0) and the polygon boundary intersection point

be (5, 0). So, the distances a = 2 and b = 3 are known. Let hr be the pull in question. Let g′y

be the new coordinates of guard g when only the gradient is taken into account. In that case, we

are only interested in the small movement ∂y. Analogously, let g′x be the new coordinate of guard g

when g moves by a small amount ∂x towards the reflex vertex. As previously, and without losing

generality, assume that g and r have the same x-coordinate by rotating the plane R. Combining the

two movements together results in g′ being the final position of g.

The gradient is computed as

5f(g)
(12)
= (0,

b2

2a2
)ᵀ = (0,

9

8
)ᵀ = (0, 1.125)ᵀ.

The pull is computed as

hr(g)
(15)
= (

b2

2a3
, 0)ᵀ = (

9

16
, 0)ᵀ = (0.625, 0)ᵀ.

So, the new position g′ of the guard g given the learning rate α = 0.3 becomes

g′ = g + α(5f(g) + h(g)) = 0.3((0, 1.125)ᵀ + (0.625, 0)ᵀ) = (0.1875, 0.3375).

31

3.4 Reflex Vertex Pull 3 THEORY

P boundary

r = (2, 0)

g = (0, 0)

5f(g) = (0, 1.125)>
∂y

a = 2 b = 3

hr(g) = (0.625, 0)>

g′ = (0.1875, 0.3375)

∂x g′x

g′y

(5, 0)

Figure 3.9: Computing the movements of the guard g based on both the gradient and the pull towards
reflex vertex r. The new position of the guard with learning rate α = 0.3 becomes g′ = (0.1875, 0.3375).

We explain how we arrived at the pull computation. The pull is the second derivative of the norm

of the gradient, so

hr(g) = 5|| 5 fr(g)|| =
(
∂ 5 f(g)

∂x
,
∂ 5 f(g)

∂y

)ᵀ

=

(
∂ 5 f(g)

∂x
, 0

)ᵀ

.

We calculate hr(g) as follows: the Euclidean norm of the gradient is ||5 f(g)|| = b2

2a (11), so the norm

of the second gradient is

||hr(g)|| = || 5 || 5 f(g)||||

= || 5 (
b2

2a
)||

=
b2

2a

d

da

= b2
1

2a

d

da

||hr(g)|| = −b2 1

2a2
.

Note that we are using the norm approximation heuristic

5|| 5 f(g)|| ≈ 5
∑
i∈R(g)

||fi(g)||,

R(g) = {reflex vertices of P seen by g}.

The reason for this choice is that computing the norm of the partial gradients, summing them and

then computing their gradient is much easier than computing the gradient of their sum

5|| 5 f || = 5||
∑
i∈R(g)

fi||,

R(g) = {reflex vertices of P seen by g}.

We are aware of the fallacies of this approximation. Take the opposing unit vectors a1 = (1, 0)ᵀ,

a2 = (−1, 0)ᵀ. The sum of their norms
∑
i ||ai|| = 2, whereas the norm of their sum is ||∑i ai|| = 0.

Clearly, they are not the same. Nonetheless, we still consider this approximation due to computation

speed improvements and easiness of use.

32

3.4 Reflex Vertex Pull 3 THEORY

The pull hr(g) is directed towards the reflex vertex r. So, it has the same orientation as vector ~v =

(r − g). We normalise hr(g) with the norm of vector ~v. Its norm is ||~v|| = 1
a . So,

hr(g) = ~v
−b2
2a2

1

a
= ~v
−b2
2a3

. (15)

Let h(g) be the total pull for guard g. As for the gradient, the total pull for guard g and all reflex

vertices r the guard sees is

h(g) =
∑

r∈R(g)

hr(g),

R(g) = {reflex vertices of P seen by g}.

Therefore, the movement of a guard g to the new position g′ takes both the gradient and the pull

into account:

g′ = g + α(5f(g) + h(g)).

Additionally, we choose how much influence the pull itself has in the movement of the guard by adding

a hyperparameter β:

g′ = g + α(5f(g) + βh(g)).

3.4.1 Pull onto the Reflex Vertex

We have now created a heuristic for pulling a guard closer to a reflex vertex based on the increase in

the seen area behind the reflex vertex. It could happen however that the pull towards the reflex vertex

is forceful. In this case, the guard could be moved past the reflex vertex, in between the reflex vertex

and the polygon boundary. Although the area seen behind the reflex vertex would be maximised,

the guard would “unsee” (parts of) the area seen from its initial position g. In order to address this

particular edge-case, the guard is placed on the reflex vertex when the pull is strong enough.

This section thus expands on a procedure that decides when a guard is best placed on a reflex

vertex based on its pull towards it.

Firstly, we must define the condition of what a “strong enough” pull means. Such a pull would

move the guard g “close enough” to the reflex vertex. Hence, we need to define what a minimum

the distance between the new guard position g′ and reflex vertex r would be. The most straight-

forward way to do so would be to assign a hyperparameter to the distance between g and r. Recall

that ||gr|| = a. For now, let 2
3 be the factor of closeness of g′ to r. This means, that when the guard

is more than two thirds of the distance close to the reflex vertex, then the guard is moved onto the

reflex vertex:

||hr(g)|| > 2

3
a. (16)

Next, we need to account for the case where the guard is close to multiple reflex vertices. Namely,

we consider the specific edge-case when a guard is in between two reflex vertices, illustrated in Fig-

ure 3.10. Let D be the minimum distance in between any two reflex vertices of polygon P :

D = min
q 6=r

distance(q, r),

∀q, r ∈ P reflex vertices.

33

3.4 Reflex Vertex Pull 3 THEORY

Let g be a guard in between two reflex vertices r1 and r2 at distance D from each other. Let the

pulls hr1(g) and hr2(g) be strong towards r1 and r2, respectively. However, because they are opposites

in directions, they cancel each other out, resulting in g possibly not changing its position at all.

r2

g

a2

hr2(g)r1

a1

hr1(g)

D

Figure 3.10: Guard g is in between two reflex vertices r1 and r2. Because they are collinear, g is
equidistant from them and the pulls are equally strong ||hr1(g) = hr2(g), they cancel each other out.

We now introduce another condition for pulling the guard towards the closer reflex vertex when

pulls are cancelling each other out. If a guard g is not equidistantly placed in between two reflex

vertices, we are interested in computing what the closer reflex vertex is. So, if g is closer to a reflex

vertex than half of the minimum distance in between any two reflex vertices D
2 , then we consider it

close enough if:

a <
D

2
.

In this case we choose to still move towards one of the reflex vertices and make progress.

An example of moving on top of a reflex vertex is found in Figure 3.11. Let the guard g = (1, 0), the

reflex vertex r = (2, 0) and the polygon boundary intersection point be (5, 0). So, the distances a = 1

and b = 3 are known. Let hr(g) be the pull in question. The gradient is computed as

5f(g)
(12)
= (0,

b2

2a2
)ᵀ = (0,

9

2
)ᵀ = (0, 4.5)ᵀ.

The pull is computed as

hr(g)
(15)
= (

b2

2a3
, 0)ᵀ = (

9

2
, 0)ᵀ = (4.5, 0)ᵀ.

The guard is close enough to r to be moved onto it (16):

||hr(g)|| > 2

3
a ⇐⇒ 4.5 >

2

3
.

So the new coordinate of the guard is g′ = r = (2, 0). they Note that Figure 3.11 displays how the

closer the guard to a reflex vertex is, the stronger its pull. This comes in contrast with Figure 3.9.

Given the same reflex vertex r and polygon boundary coordinates, the guard g = (0, 0) was farther

away, and its pull hr(g) = (0.625, 0)ᵀ was thus not as strong. Hence, we only want to place guards on

reflex vertices when their pull is strong enough.

34

3.5 Reflex Area 3 THEORY

P boundary

r = (2, 0)

g = (1, 0)

5f(g) = (0, 4.5)>
∂y

a = 1 b = 3

hr(g) = (4.5, 0)>

∂x g′x

g′y

(5, 0)

g′

Figure 3.11: Computing the movements of the guard g based on both the gradient and the pull towards
reflex vertex r. The guard g is close enough to r (16), so g is placed on top of the reflex vertex r.

3.4.2 Pull Capping

Nonetheless, it can happen that the pull towards a reflex vertex is significantly larger in comparison

to the gradient and the momentum. In that case, if the guard is not pulled onto the reflex vertex, it

would at least have a huge jump towards the reflex vertex.

We want to smoothen out possibly erratic movement jumps. Just like in the case of momentum,

we want our pull to be smoothened out when it is “suddenly too large”. We define what “suddenly

too large” is based on the momentum. If the pull is larger than a factor of µ than the momentum and

a constant c, then we cap it at that value. So, at step i, the momentum hi(gi) is capped as:

if ||hi(gi)|| > µ||Mi(gi)||+ c, then

hi(gi) = hi(gi)
µ||Mi(gi)||
||hi(gi)||

.

The factor µ becomes thus a hyperparameter to experiment with.

3.5 Reflex Area

An additional heuristic is introduced in this section: the concept of reflex area. The reflex area

heuristic counteracts a specific edge-case: a guard placed on a reflex vertex would move behind the

reflex vertex. As such, it would stop seeing the area that it was seeing before. We want to prevent

this loss in area seen. So, we are restricting the movement of the guard away from the reflex vertex

such that it continues seeing the same areas it was seeing from the reflex vertex.

This case is illustrated in Figure 3.12. In Subfigure 3.12a, guard g starts moving with pull hr(g)

towards reflex vertex r. The pull is strong enough to place g on r in Subfigure 3.12b. In this case, g

sees everywhere around r. However, the new gradient 5f(g) of g moves it past r in Subfigure 3.12c.

The initially seen area before r is now not completely seen anymore by g.

Let rr′ and rr′′ be the extensions to the polygon boundary segments whose intersection is the

reflex vertex r. We call reflex area the area between line segments rr′ and rr′′ that is inside the

polygon. Subfigure 3.12d draws the reflex area more closely. If a guard g has to move outside of it,

we project its new position g′ onto the closest reflex line (in this case, rr′). If g has to move inside the

reflex area, it can do so unaffectedly. In this way, we maintain the gained property of a guard seeing

everything around a reflex vertex while still allowing it to move away from the reflex vertex.

35

3.5 Reflex Area 3 THEORY

P

r

g

hr(g)

(a) Guard g starts moving with pull hr(g) towards
reflex vertex r. Guard g cannot see past r.

P

r

g 5f(g)

(b) Guard g is placed on reflex vertex r. Guard g
sees both before r and past it.

P

r

g

reflex area

r′

r′′

(c) Guard g has moved past reflex vertex r. Guard
g cannot see anymore before r.

r
g

5f(g)

g′

reflex area

r′ r′′

(d) The movement of g is restricted inside the
reflex area.

Figure 3.12: Guard g moves towards and on the reflex vertex r. Eventually, its newly computed
position is away from r and the reflex area. This results in g not seeing the initial area anymore. So,
its movement is restricted to the reflex area 4rr′r′′. If g needs to move outside the reflex area, its
new position is projected on the closest reflex line.

36

3.6 Line Search 3 THEORY

3.6 Line Search

We introduce in this section another extension to the regular gradient descent algorithm: line search [21].

Given a step size, its aim is to search for the best solution on the gradient descent line.

Figure 3.13 illustrates an example for this extension. Take guard g and reflex vertex r. Let 1
x

be the starting search factor, and s the step size factor. Recall that Mi(g) is the optimal movement

direction for a guard at iteration i. As such, line search computes the optimal guard position gi+1 =

gi + st

xMi(gi), with t the best step power for the guard from { s0

xMi
, sxMi(gi),

s2

xMi(gi), ...}. The

dashed line represents the direction of gradient descent, as computed based on the gradient and reflex

vertex pull computations. Given a step size s, 3 different possible new guard positions are identified:

g′i1 = gi+
1
xMi(gi), g

′
i2

= gi+
s
xMi(gi), g

′
i3

= gi+
s2

xMi(gi). The optimal guard is the one who has the

largest increase in the area seen. If the global area is not increased, a best solution is also chosen if a

guard is gaining visibility to a previously unseen part of the polygon, regardless of the area increase.

It is worth mentioning that Line Search deems the use of a learning rate obsolete. Because the

search factor finds the optimal position on the direction line, it acts thus as a learning rate.

P boundary

r

g

5f(g)

a b

h(g)

g′2
g′1

g′3

s2

x

s
x

1
x

Figure 3.13: The gradient descent line gives the direction of searching for the optimal guard posi-

tion. Given step sizes 1
x ,

s
x ,

s2

x , there are 3 possible guard positioning on the dashed gradient descent
line: g′i1 , g

′
i2
, g′i3 . The best of them is chosen based on the size of the newly visible area seen.

3.7 Angle Behind Reflex Vertex

We propose in this section a heuristic that further fine-tunes the factor with which a guard’s movement

is influenced by a reflex vertex. Currently, we only take into account the distance b between the reflex

vertex and the polygon boundary. Intuitively, the unseen area behind the reflex vertex should also

play a role in the computation of the gradient: guards should be drawn faster to larger areas. In order

to do so, we take into account the normalised value of angle θ behind the reflex vertex.

A visualisation for this heuristic is found in Figure 3.14. The pull of the guard g towards the reflex

vertex r is influenced by the normalised value of θ as follows:

g′ = g + (
θ

2π
+ c)(5f(g) + βh(g)).

We additionally add a constant c to account for small angles. For example, if the normalised value

of θ is close to 10−5, then c = 10−2. Then the guard still has a significant move towards the unseen

area, no matter how small it is. In this way, smaller areas are not overlooked.

37

3.8 Hidden Movement 3 THEORY

P boundary

r

g

5f(g)

a b

hr(g)

g′

θ

Figure 3.14: The normalised angle µ behind the reflex vertex r takes into account the factor with
which the guard g is drawn to r.

3.8 Hidden Movement

This section tackles a computation speed-up for the case in which guards have a movement vector of

0 (they don’t move). This can happen when the area seen by a guard is already completely seen by

other guards. We consider that having a movement vector of 0 is detrimental to the progress of the

algorithm. Note that we call movement vector the sum of all heuristics that apply to computing the

new position of a guard. The reason behind this is that it is unlikely that a guard’s optimal position

has been found when its movement vector is 0. Hence, we would like every guard to move, no matter

how little.

In order to allow guards to still move when their movement vector is 0, we deployed the hidden

gradient heuristic. This heuristic is based on the fact that we allow guards whose movement vector

is 0 to still move with a newly computed “hidden” movement vector. So, if there are guards whose

movement vector is 0, we recompute their movement vector by not taking into account the area seen

by the guards who have a non-zero movement vector.

An example of this approach is found in Figure 3.15. Let G = {g1, g2, g3} be the complete set of

guards. Initially in Subfigure 3.15a, only g1 has a non-zero movement vector. The visibility regions of

g2 and g3 are overlapping with that of g1, so their movement vectors are 0. Let G0 = {g1} be the set

of guards who at step 0 have a non-zero movement vector. In this case, only g1 Then, Subfigure 3.15b

displays the remaining set G \ G0 of guards with a zeroed movement vector. The visibility area

of guard g1 overlaps with g2, so only guard g2 has a non-zero movement vector. So, g2 is part of

the set G1 = {g2} of guards who at step 1 have a non-zero movement vector. Lastly, we compute

the non-zero movement vector for guard g3 in Subfigure 3.15c. The guard g3 can now be part of

the set G2 = {g3} which contains the guards who at step 2 have a non-zero movement vector. In

Subfigure 3.15d all the guards have been moved to their new positions g′1, g
′
2, g
′
3, respectively. So the

movement vectors have been computed as G = G0 ∪ G1 ∪ G2, where G1 and G2 contain the guards

with hidden movements.

38

3.8 Hidden Movement 3 THEORY

P

g3

g2

g1
5f(g1)

(a) Guard g2 and g3 have a movement vector of
0, because guard g1 sees all the areas they see.
So, the set of guards with a non-zero movement
vector is G0 = {g1}.

P

g3

g2

5f(g2)

(b) Guard g1 had a non-zero movement vector,
so we compute the movement vectors of guards
g2 and g3 without g1. Guard g2 sees everything
that g3 sees, so g3 has movement vector 0. So, the
set of guards with a non-zero movement vector is
G1 = {g2}.

P

g3

5f(g3)

(c) Guard g2 had a non-zero movement vector,
so we compute the movement vector of guard g3
without g2. Guard g3 has a non-zero movement
vector. So, the set of guards with a non-zero
movement vector is G2 = {g3}.

P

g′3

g′2

g′1

(d) The new positions g′1, g
′
2, g

′
3 of the guards such

that G = G0 ∪G1 ∪G2.

Figure 3.15: Example of hidden movement computation for guard set G = {g1, g2, g3} in a corridor-
like polygon. The visibility areas of each of the guards g1, g2, and g3 are shown in purple, green and
orange, respectively.

The hidden movement heuristic can be generalised. Let G be the complete set of guards. For

each step i, let Gi = G \Gi−1 be the set of guards with a non-zero movement vector after removing

the guards with a movement vector from step i− 1. The set G0 is the set of guards with a non-zero

movement vector before removal of any guards. At the end, the union of all subsets Gi comprises the

set of all guards G = G0 ∪G1 ∪ In this way, all guards have a non-zero movement vector and make

progress.

39

3.9 Greedy Initialisation 3 THEORY

3.9 Greedy Initialisation

In this section we introduce another heuristic for our algorithm: greedy initialisation. This heuristic

sequentially places guards at starting positions in areas that are unseen by other guards. In this way,

the algorithm has a head start with a larger covered area than when guards are placed arbitrarily

anywhere in the polygon.

Figure 3.16 offers an example of a greedy initialisation. The first guard g1 is arbitrarily placed

inside polygon P as shown in Subfigure 3.16a. Then, guard g2 is arbitrarily placed in an unseen part

of P , as displayed in Subfigure 3.16b. The algorithm continues then with the optimisation of the

guards’ positions.

g1

P

(a) Guard g1 has been arbitrarily placed inside
the polygon P .

g1

g2

P

(b) Guard g2 has been arbitrarily placed inside
the polygon P , outside the visibility region of
guard g1.

Figure 3.16: Greedy Initialisation for guards g1 and g2 inside polygon P . The visibility regions of the
guards are displayed in orange and purple, respectively. In this way, the algorithm gains a head start
for optimising the positions of the guards.

Nonetheless, placing guards arbitrarily inside unseen areas of the polygon deemed to be too difficult

in CGAL given the time constraints of this thesis. For this reason, we are placing the guards in

the middle of the leftmost segment of every unseen area. We are aware of the limitations of this

deterministic approach.

40

4 PRACTICE

4 Practice

This section provides the implementation details of the theory part (Section 3). Then, we introduce

our experimental setup. The experiments include basic test polygons to showcase the execution of

the program. In the experimental setup we discover the benefits of each heuristic. We then analyse

how the program scales in the context of the comb polygon. Lastly, we mention the importance of

the hyperparameter values used.

The algorithm is implemented in C++ and makes use of the CGAL library [7]. The project is

publicly found at https://github.com/geo-j/master-thesis. It contains 22 code files and 1873

lines of code (excluding comments and empty lines). From the CGAL library we are using the

Triangular Expansion Visibility algorithm [6] to compute the visibility polygons.

The program takes the segments of a boundary of a simple polygon, and the initial coordinates of

the guards as input. For each iteration, the new position of the guards, the area seen by each guard

and their movement direction details (momentum, pull, events i.e. pulling on top of reflex vertices)

are logged in a file. Using the logfile, the program creates visualisations for the position of each guard,

their visibility polygon area and their movement direction vector for each iteration. The program also

plots the area seen both by each guard and in total. The visualisations are created using the Python

3 libraries matplotlib [17] and the scikit-geometry [20]. The plots displaying guard movements inside

polygons show, for each guard, the total gradient vector in red. For each reflex vertex, the partial

gradient vectors are green and the pull vectors are purple.

4.1 Heuristics

In this section we observe the role played by each of the heuristics used. We additionally notice how

different heuristics are relevant for different types of polygons. In order to do so, we run the program

with all the heuristics but one, for each of the heuristics. By analysing the difference in movement for

each of the guards, we assess the influence every heuristic has on different types of polygons.

It is worth mentioning that the experiments are not run with greedy initialisation. When initialising

guards greedily, some polygons already become solved from the beginning. This does not allow us to

properly showcase the other heuristics. Nonetheless, we still discuss the greedy initialisation heuristic

at the end of this section.

We use fixed hyperparameters for all the runs. This allows us to focus on the differences between

the heuristics. As such, we use the momentum hyperparameter γ = 0.8 and pull attraction β = 1.

The hyperparameter values were chosen through experimentation. The algorithm is sensitive to the

hyperparameter choices, so for other values it often becomes stuck in local optima.

4.1.1 Without Momentum

In this section we discuss the impact momentum has on the overall behaviour of the algorithm. As

introduced in Section 3.3, momentum takes into account the position history of the guards. In this

way, the overall trajectory of a guard is smoothened out.

We observe this behaviour with an arbitrary polygon in Figure 4.1. The polygon requires a

minimum of 3 guards to be fully seen. They start at the same fixed position in both cases. We

compare how the guards move with all the heuristics to when not using momentum.

41

https://github.com/geo-j/master-thesis

4.1 Heuristics 4 PRACTICE

Figure 4.1: Arbitrarily shaped polygon.

Figure 4.2 displays the area seen per iteration for the arbitrary polygon. Both the total and the

individual areas seen by each guard are shown. Starting with almost the whole polygon seen, the

guards are eventually optimally placed. Nonetheless, using momentum clearly makes a difference in

Subfigure 4.2a, than when not using it in Subfigure 4.2b. Momentum allows the overall seen area

to keep a steady trajectory towards its maximum. Additionally, guards quickly find their optimum

in only 4 iterations, without many oscillations. In Subfigure 4.2b however we observe how the total

area fluctuates. The guards display large jumps close to iterations 5 and 20. These jumps cause the

overall progress towards the optimum to be less stable. For example, when guard 2 (g2) has a sudden

drop in the area it sees around iteration 5, the total area seen naturally drops as well. The algorithm

only recovers after iteration 20, when guard 0 (g0) makes another large jump. This behaviour also

emphasises how the movement of one guard heavily influences the other guards’ trajectories. As a

result, the guards’ trajectories to optimality become noisier and slower (more iterations are needed).

(a) All heuristics. (b) No momentum.

Figure 4.2: Total area seen per iteration for an arbitrary polygon guarded by 3 guards.

Thus, it becomes clearer how momentum allows the smoothening of noisy guard movements. We

reckon that because guards are holding a steadier trajectory, they are more likely to achieve the opti-

mum in less iterations. When not using momentum, the number of iterations increases substantially.

Momentum appears to be a crucial improving heuristic to our whole algorithm, both in terms of

speed-up and in the smoothness of the process.

42

4.1 Heuristics 4 PRACTICE

4.1.2 Without Pulling To and Onto the Reflex Vertex

In this section we discuss the impact that the pull to and onto the reflex vertex heuristic has upon

the behaviour of the algorithm. Sections 3.4 and 3.4.1 introduced the pull to and onto reflex vertices

heuristic, respectively. These heuristic tackles the idea that the closer a guard is to a reflex vertex,

the stronger it is pulled towards it. If a guard is “close enough” to a reflex vertex, then the locally

maximum seen area would be achieved by placing the guard on top of the reflex vertex. Thus, we

believe that studying the impact of these two heuristics together is the most natural.

Figure 4.3 displays the guards’ movement both when we are using all the heuristics and when we

are not pulling them to and onto reflex vertices. The polygon is arbitrarily shaped and requires three

guards for full guarding. Subfigures 4.3a and 4.3c show how the green guard’s movement changes

when it is placed onto the reflex vertex. Subfigures 4.3b and 4.3d show how the guard’s movement

changes when it is not pulled towards the reflex vertex. We observe how in Subfigure 4.3c the green

guard is placed onto the reflex vertex. It then strives to reach the unseen polygon part in the upper

left corner. On the other hand, in Subfigure 4.3d the guard moves away from the reflex vertex.

(a) All heuristics. The green guard is pulled to-
wards the reflex vertex.

(b) The green guard has a pull towards the re-
flex vertex. However, we are not taking it into
account.

(c) All heuristics. The green guard is onto the
reflex vertex.

(d) The green guard is placed according to the
momentum computation, without being pulled
towards or onto the reflex vertex.

Figure 4.3: Example of different movements of guards with and without pulling them to and onto
reflex vertices in an arbitrarily shaped polygon guarded by three guards.

43

4.1 Heuristics 4 PRACTICE

4.1.2.1 Evaluation and Results We compare the performance of our algorithm in two settings:

with all heuristics and without the pull to and onto reflex vertices. We observe this behaviour on

the three polygons displayed in Figure 4.4. For each polygon, the algorithm is run 20 times for each

heuristic setting, each time with randomised starting guards coordinates. Our evaluation consists of

comparing the average number of iterations required for the algorithm to finish in the two heuristic

cases. We additionally take note of the average total area seen per iteration.

(a) Polygon 1: arbitrarily
shaped polygon that requires 3
guards for complete guarding.

(b) Polygon 2: comb-shaped
polygon with four teeth that
requires 4 guards for complete
guarding.

(c) Polygon 3: arbitrarily
shaped polygon that requires 2
guards for complete guarding.

Figure 4.4: The polygons used for the experiments.

Figure 4.5 displays how the total area seen on average per iteration for the three polygons develops

in the two heuristics cases. There is a quite clear distinction between using all heuristics and not using

the pull for all the polygons. Overall, the algorithm requires more iterations when the pull heuristic

is not used.

The initial total area seen is higher on average for the all heuristics case than for the no pull case.

Nonetheless, the algorithm in the no pull case compensates this disadvantaged start within the first

6 iterations for all polygons. In these first 6 iterations, reach pass 96% total polygon visibility. When

using all heuristics, the algorithm manages to achieve the full visibility in less than 10 iteration after

the initial spike. In the case of the no pull algorithm, the convergence towards the optimum is much

slower in terms of number of iterations. Subfigure 4.5c displays the worst such case (polygon 3), where

the no pull algorithm took thrice as many iterations than in the all heuristics case. Subfigure 4.5b

displays a less dramatic case for polygon 2. There not using the pull results in more smoothened out

convergence curve, that is only a quarter longer than the all heuristics case.

The difference in the average number of iterations happens due to the polygon shape. Polygons

1 and 3 are polygons where guards are required to travel past reflex vertices. So, the absence of the

pull influences the speed and the efficiency of the movement much more. This is because without a

pull, guards only travel around reflex vertices. Subfigure 4.5a displays such a case for polygon 1. In

the first 10 iterations without a pull, the guards appear to oscillate between different positions. When

using the pull, guards have a more stable trajectory. We reckon that this happens due to the fact

that placing guards on reflex vertices maximises the seen area around the vertex. Otherwise, guards

are required to find their optimal position around the reflex vertex. Conversely, polygon 2 (Subfigure

4.5b) shows a less drastic difference between the two heuristic cases. This is due of its shape: its reflex

vertices do not have such a strong influence. Namely, an optimal positioning in this case can also be

achieved by moving around reflex vertices, and not necessarily towards them.

44

4.1 Heuristics 4 PRACTICE

(a) Polygon 1. (b) Polygon 2.

(c) Polygon 3.

Figure 4.5: Average total area seen per iteration for all the experiment polygons.

Figure 4.6 displays the average number of iterations for all polygons in the two heuristic cases. As

previously observed, it takes more iterations on average to solve a polygon when not using the pull

heuristic. Nonetheless, not using this heuristic also results in a less predictable guard movement, with

a larger variability. This is especially noticeable for polygons 1 and 3, in Subfigures 4.6a and 4.6c,

respectively. In these two cases, it is unlikely that there is a statistical difference between the two

approaches. This is because the median values of both cases lie within the first and third quantile

of each other’s boxes. However, the initial guard placement plays an important role in determining

how well our algorithm performs. When no pull is used, some outliers appear. Those correspond

to unfortunate initial guard coordinates. Using all heuristics mitigates such unlucky cases by swiftly

moving to and placing guards onto reflex vertices and maximising the area seen around the reflex

vertex. This results in a more predictable guard movement that faster converges towards an optimum.

A few outliers appear also when using all heuristics on polygon 3. An optimal solution is still

achieved in less iteration on average than when not using the pull heuristic. Nonetheless, the starting

guard positioning in the case of all heuristics used on polygon 3 appears to be positively skewed. This

means that on average the starting positioning of the guards gave the algorithm a head start. It

is statistically unclear how this influences our algorithm’s performance. In the case of polygon 2 in

Subfigure 4.6b, the improved performance of the all heuristic algorithm becomes clearer. The median

number of iterations lays underneath the first quantile when no pull is used. This indicates that a

statistical difference between them could be likely. It is worth discussing what the implications of

45

4.1 Heuristics 4 PRACTICE

this difference are. We have discussed that the shape of polygon 2 allows guards to find an optimum

solution similarly fast to when all heuristics are used. Still, the pull appears to play a statistically

important role in the faster convergence towards the optimum.

(a) Polygon 1. (b) Polygon 2.

(c) Polygon 3.

Figure 4.6: Average number of iterations for all the experiment polygons.

Therefore, we believe that pulling guards towards reflex vertices results in reaching the optimum

in less iterations. This appears to be an improvement for all polygon shapes, regardless of whether

guards need to move only around or also towards and onto reflex vertices. This difference is less likely

to be supported statistically for polygons with stronger pulls towards reflex vertices. It is unclear

whether this statistical uncertainty is due to the heuristic themselves, or the skewed starting guard

positions. Nonetheless, on average, the algorithm can solve polygons up to three times as fast when

using all heuristics than when not using the pull.

46

4.1 Heuristics 4 PRACTICE

4.1.3 Without Pull Capping

In this section we discuss how capping the pull towards a reflex vertex influences the progress of the

algorithm. Section 3.4.2 introduced the pull capping notion. The reason for this choice was to not

allow the pull to overpower the value of the momentum. So, if the pull is larger than µ times the

momentum, it is capped at the momentum value multiplied by µ.

We compare how the guards move when we are using all the heuristics to when we are not capping

the pull towards reflex vertices. We use the comb polygon with four teeth as example. The guards

have a pull cap hyperparameter µ = 1. Thus, if the pull is larger than the momentum, we cap it at

the size of the momentum. This value was chosen experimentally in order to clearly show the benefits

of using this heuristic. So, if the pull is as large as the momentum, we prioritise pulling guards onto

reflex vertices if they are “close enough”.

(a) All heuristics. The guard’s pull towards the
reflex vertex is capped.

(b) All heuristics. The guard does not act upon
the pull towards the reflex vertex.

(c) No pull onto the reflex vertex. The guard’s
pull towards the reflex vertex is not capped.

(d) No pull onto the reflex vertex. The guard is
drawn closer to the reflex vertex.

Figure 4.7: Example of different movements of guards with and without pull capping in a comb
polygon with four teeth.

Figure 4.7 displays the two reflex vertex pull cases: Subfigures 4.7a and 4.7b show how the blue

guard movement changes when its pull is capped; Subfigures 4.7c and 4.7d show the blue guard’s

movement without pull capping. We observe how in Subfigure 4.7a the blue guard has its pull

towards the reflex vertex capped. In that case, the movement vector is larger than the pull, so the

guard doesn’t move towards the reflex vertex. So, the blue guard moves as its movement vector

dictates to the position in Subfigure 4.7b. This encourages the guard to explore the polygon more

rather than directly moving towards a reflex vertex. Conversely, Subfigure 4.7d displays the blue

47

4.1 Heuristics 4 PRACTICE

guard moving closer to the reflex vertex it is pulled to. In subsequent iterations, it is placed on the

reflex vertex.

Figure 4.8 shows how the global behaviour of the algorithm is influenced by the capping. Inter-

estingly enough, when capping the pull, the guards’ behaviour is more erratic. This results in more

iterations before the whole polygon is seen (Subfigure 4.8a). On the other hand, using no capping

allows a steadier increase in the total area seen (Subfigure 4.8b). Eventually, the blue guard (g0) is

drawn and placed onto the reflex vertex in iteration 2. It is worth mentioning that it does not move in

the last iteration because the other guards have already covered the whole polygon. Nonetheless, the

reflex vertex placement does not improve the locally seen area. It however reinforces the previously

discussed idea that placing guards on reflex vertices is globally beneficial for the algorithm. As such,

tuning the hyperparameter µ is a crucial point of exploration for deciding how and when pull capping

would always prove most favourable.

(a) Seen area for all heuristics. (b) Seen area without pull capping.

Figure 4.8: Total and individual areas seen per iteration for a comb polygon with four teeth.

In this way, we claim that capping the guards’ pull towards a reflex vertex highly depends on

the hyperparameter µ. When not capped, it emphasises the importance of placing guards on reflex

vertices. However, when the pull of guards is capped, we are using a more exploratory approach to

discovering the polygon. Thus, we can experimentally decide whether to use this heuristic.

48

4.1 Heuristics 4 PRACTICE

4.1.4 Without Reflex Area

In this section we discuss the importance of keeping guards in the reflex area of a reflex vertex they had

been placed on. Section 3.5 introduced this heuristic. The idea counteracts the edge-case of guards

moving away from reflex vertices they had been placed on. When they move away from the reflex

vertex, they might unsee a large previously seen area. It is possible that afterwards their movement

vector directs them to move back onto the reflex vertex. We want to prevent them from unnecessarily

moving away and then back on the vertex in a loop. For this reason, we keep them in the reflex area.

The reflex area is then the area determined by the two segment lines meeting in the reflex vertex. By

staying in this area, the guard would be able to move away from the reflex vertex in a direction that

does not undo its progress.

We compare how the guards move when we are using all the heuristics to when we are not keeping

guards into a reflex area. We use another arbitrary polygon as an example, that needs two guards to

be fully seen.

Figures 4.9 and 4.10 compare the algorithm progress when using and not using the reflex area

heuristic, respectively. Subfigures 4.9a - 4.9e show the guards’ movement when one of them is bound

to the reflex area. In this case, the blue guard wants to move away from the reflex vertex. The reflex

area does not allow it to move away from the reflex vertex, so it stays there. Subfigures 4.9b - 4.9h

display the guards’ movement when the reflex area heuristic is not applied. In this case, the blue guard

moves away from the reflex vertex (Subfigure 4.9d), only to be drawn back to it in the next iteration

(Subfigure 4.9f). This repetitive behaviour continues without eventually reaching the optimum state.

Figure 4.10 displays the difference in the areas seen between the two approaches. When using

all heuristics (Subfigure 4.10a), the algorithm terminates in 7 iterations. The continuous line marks

the guard who did not move away from the reflex vertex. Conversely, when not using the reflex area

heuristic (Subfigure 4.10b), the algorithm appears not to terminate. One of the guards loops away

and back on the reflex vertex. The other guard loops so that it sees the area that is being seen and

unseen by the other guard. In this way, they do not synchronise in order to see the polygon at the

same time. This shows in the repetitive plot.

In this way, the reflex area heuristic becomes important to the correct run of the algorithm. It

addresses the issue of guards moving repeatedly away and back on reflex vertices. This behaviour

causes the other guards to move towards the area that becomes unseen by the first guard. The guards

continue to move out of sync with each other, resulting in the polygon never being fully seen.

49

4.1 Heuristics 4 PRACTICE

(a) All heuristics. The blue guard is on the reflex
vertex.

(b) No reflex area. The blue guard is on the reflex
vertex.

(c) All heuristics. The blue guard is still on the
reflex vertex (in the reflex area).

(d) No reflex area. The blue guard moved away
from the reflex vertex.

(e) All heuristics. The blue guard is still on the
reflex vertex (in the reflex area).

(f) No reflex area. The blue guard is drawn back
to the same reflex vertex.

(g) All heuristics. The blue guard is still on the
reflex vertex (in the reflex area).

(h) No reflex area. The blue guard is back on the
reflex vertex.

Figure 4.9: Comparison between using and not using the reflex area heuristic on an arbitrary polygon
guarded by two guards.

50

4.1 Heuristics 4 PRACTICE

(a) Area seen for all heuristics on another arbi-
trary polygon.

(b) Area seen for no reflex area heuristic on an-
other arbitrary polygon.

Figure 4.10: Area comparison between using and not using the reflex area heuristic on an arbitrary
polygon guarded by two guards.

4.1.5 Without Line Search

In this section we discuss the impact line search has on the overall behaviour of the algorithm. As

introduced in Section 3.6, line search determines how far a guard should move towards the direction

movement vector. In this way, it computes the optimal position of a guard on the movement direction

given a step size.

Line Search has step size s, maximum movement factor x and starting factor st

x , t = 0 as hyper-

parameters. For our experiments, we choose s = 2 and x = 32. We start with a factor of 1
32 for

the movement vector. We increase it by a step size of 2 up to factor 32. In this way we generate 10

solutions in total, one for every step 1
32 ,

1
16 ,

1
8 , ..., 1, 2, 4, ..., 32. This allows us to search a larger space

of position possibilities knowing the direction of the movement vector. We pick the best solution along

all the step size based on the largest area increase.

Figure 4.11: Polygon in the shape of a comb with four teeth.

A suggestive way to observe how well line search works is with the comb polygon with four teeth

from Figure 4.11. Comb polygons with t teeth require t guards to be guarded, one guard for each

tooth. This is because the space in between the teeth is large enough so that guards cannot fully see

two teeth simultaneously. In our case, t = 4. We compare how the guards move when we are using

51

4.1 Heuristics 4 PRACTICE

all the heuristics to when we are not using line search. They start at the same fixed position in both

cases, so we focus on observing their movements.

Figure 4.12 displays the area seen per iteration for the comb polygon with four teeth. Both the

total area seen and the individual area seen by each guard are shown. Starting with around 82.5%

total area seen, the global optimum is eventually found. Nonetheless, using line search clearly makes

a difference between Subfigures 4.12a and 4.12b. The first noticeable difference is the number of

iterations. Using line search allows the guards to find their optimal positions in 3 iterations, with

a steady increase in the total area seen. Note that not all guards were moved in iteration 3. This

is because the polygon was fully seen after moving only two of the guards. On the other hand, in

subfigure 4.12b not using line search results in the optimal position to be found in more than 80

iterations. Additionally, 3 of the guards found their optimal position after the 30th iteration, whereas

the last 50 iterations are spent on only one guard finding its own.

(a) All heuristics. (b) No line search.

Figure 4.12: Total area seen per iteration for the comb polygon with four teeth, guarded by four
guards.

Therefore, we reckon that line search significantly and more efficiently speeds up the process of

finding the optimal position for each guard. In this way, each guard moves faster to its optimal

position. The situation where multiple guards that have found their optimal position have to wait for

only one guard to find its own is also avoided.

4.1.6 Without Angle Behind Reflex Vertex

In this section we discuss the benefits of using the angle behind reflex vertices. Section 3.7 introduced

this heuristic. The idea behind this technique is that guards should be drawn faster to larger unseen

areas behind reflex vertices. In this way, we prioritise unseen areas based on their size, while still

accounting for the small unseen areas.

We compare how the guards move when we are using all the heuristics to when we are not taking

into account the angle behind the reflex vertex. We use an arbitrary polygon as an example, that

needs three guards to be fully seen. Figure 4.13 shows a comparison between using and not using the

angle behind the reflex vertex heuristic. Subfigures 4.13a and 4.13b display the first two iterations of

the algorithm when all heuristics are used. Subfigures 4.13c and 4.13d focus on the first two iterations

when not using the heuristic.

52

4.1 Heuristics 4 PRACTICE

We observe a major difference in the way the final movement vector is computed for the orange

guard in the two cases. When all heuristics are used, the movements of the guards are much smaller

and smoother. For example, in Subfigure 4.13c, the orange guard has a large movement vector outside

the polygon due to the unseen part in the upper pocket. When we also take into account the angles

behind the reflex vertices in the pocket, its movement vectors become much smaller (Subfigure 4.13a).

In fact, the orange guard is also drawn slightly to the right part of the polygon, as it has a larger

angle behind the reflex vertex. That part of the polygon is already seen by the blue guard, so it starts

moving towards the upper pocket in Subfigure 4.13b.

(a) All heuristics. The orange guard’s movement
is towards upper right.

(b) All heuristics. The orange guard’s movement
is towards upper left.

(c) No angle behind the reflex vertex. The or-
ange guard’s movement is all the way to the left
boundary of the polygon.

(d) No angle behind the reflex vertex. The orange
guard’s movement is towards the left-side outside
the polygon.

Figure 4.13: Example of different movements of guards with and without the angle behind the reflex
vertex in an arbitrarily shaped polygon guarded by three guards. The total gradient vector is displayed
in red, partial gradient vectors are green and the pull vector is purple.

In terms of efficiency, the optimal solution is achieved in more iterations when the angle heuristic

is used. This is observed in Figure 4.14. When using all heuristics, the optimal solution is achieved

in 5 iterations (Subfigure 4.14a). The movement of the guards is smooth. Two of the guards have an

increasing seen area, whereas the orange guard moves slowly towards the upper pocket of the polygon.

Not using the angle heuristic allows us to achieve the same goal in only 3 iterations, in a less smooth

manner (Subfigure 4.14b).

Therefore, computing the angle behind the reflex vertex is a heuristic that allows us to fine-tune

and smoothen the movement of the guards. In this way, we focus on moving fast towards the bigger

unseen areas, while not neglecting the smaller ones. We could say that this heuristic offers a trade-

53

4.1 Heuristics 4 PRACTICE

(a) Seen area for all heuristics.
(b) Seen area without the angle behind the reflex
vertices.

Figure 4.14: Total and individual areas seen per iteration for an arbitrarily shaped polygon guarded
by three guards.

off between the number of iterations and path smoothness. For this reason, the performance of the

algorithm is influenced by the type of polygons it is applied to: polygons with sharper, narrower turns

could benefit the most from this heuristic.

4.1.7 No Hidden Movement

In this section we discuss the importance of using the hidden movement heuristic. Section 3.8 intro-

duced it. The idea is based on the fact that we want guards to make progress, no matter how little.

If a guard’s visibility region is already seen by other guards (so its movement vector is zero), it is still

unlikely that its position is optimal. Thus, we want the guard to still progress.

We compare how the guards move when we are using all the heuristics to when we are not using

the hidden movement heuristic. We use the comb polygon with four teeth as an example.

Figure 4.15 displays a comparison between using and not using the hidden movement in our

algorithm. In Subfigure 4.15b we notice that the execution of the algorithm takes twice as many

iterations than in Subfigure 4.15a. The reason behind this is the fact that for half of the iterations

two of the guards do not move when no hidden gradient is used. Additionally, the total area seen in

that case fluctuates. This is in contrast with the case where the hidden gradient heuristic is used. In

that case, the total area seen is continuously increasing, and all guards who can make progress move.

Therefore, we reckon that the hidden gradient heuristic results in a significant improvement to our

algorithm in terms of efficiency. In this way, all guards are ensured to make some progress towards

their optimum and are not stalled.

54

4.1 Heuristics 4 PRACTICE

(a) All heuristics. (b) No hidden gradient.

Figure 4.15: Seen area for the comb polygon with four teeth guarded by four guards.

4.1.8 Greedy Initialisation

In this section we discuss the benefits of using a greedy initialisation technique for our algorithm.

Section 3.9 introduces it as beneficial for giving a head start to our algorithm. In our experiments we

greedily initialise the guards in the middle of the leftmost segment of each of their visibility regions.

The reason behind this choice is that CGAL did not offer a quick way to pick a randomised position

inside the visibility area. Due to the time constraints of this thesis, we decided to use a deterministic

positioning.

So far we have not used greedy initialisation in any of our examples. The reason is that this

technique already solves some polygons at guard placement time. An example in this case is the comb

polygon with four teeth in Figure 4.16.

Figure 4.16: The comb polygon with four teeth is already completely seen at greedy initialisation
time.

55

4.2 Scaling for the Comb Polygon 4 PRACTICE

In the case of polygons who are not completely seen at initialisation time, it is unclear whether the

greedy placement improves the overall progress. How well the algorithm behaves is highly dependent

on the initial placement of the guards. Namely, the algorithm often does not finish with different

starting positions (it is stuck in local optima). Because of this drawback, we cannot create extensive

experiments with different starting guard positions.

Therefore, we believe that the greedy initialisation technique would benefit most from a determinis-

tic placement if it were tailored to the shape of the polygon. Otherwise, an arbitrary placement would

be most suitable for general cases. However, due to time constraints, this heuristic’s performance is

limited. So, it is to be explored with a more robust implementation that places guards arbitrarily.

4.2 Scaling for the Comb Polygon

In this section we observe how the algorithm scales on the comb polygon. We take the comb polygons

with 2, 3, ..., 10, 15, 20, 50, 100 teeth. We note how the algorithm progresses in terms of the total

area seen per iteration. As such, we run the algorithm with all heuristics (but greedy initialisation)

for all the mentioned comb polygons. All guards start at the same y-coordinate, 0.1 units apart from

each other. An example of such a starting point is found in Figure 4.17. In this way, we ensure that

the performance of the algorithm can be compared using the same starting position of the guards.

We deem a timeout of one hour for declaring an algorithm infeasible for larger polygons. We then

analyse how the algorithm performed under each of the circumstances. Lastly, we offer some points

of improvement.

Figure 4.17: In the comb polygon with 6 teeth, all guards start at the same y-coordinate, with 0.1
units in between them.

We expect that the number of iterations and the execution time needed would scale with the

number of teeth t of the polygon. With every t + 1 tooth added, we would need the same time as

before for the t guards to reach their respective teeth, and some extra time for the new t+ 1th guard.

Figure 4.18 displays the progression of our algorithm for the comb polygons with 2, 3, ..., 10, 15,

20 teeth within one hour. The comb polygons with 50 and 100 teeth did not complete any iteration

within that time. For comb polygons with 5 teeth and more than 6 teeth, the timeout was not enough

56

4.2 Scaling for the Comb Polygon 4 PRACTICE

to find a feasible solution. Nonetheless, it is worth discussing their behaviour, as it highlights the

different issues the algorithm faces. For comb polygons with 7, 9 and 10 teeth, the guards appear to

be stuck in a local plateau that they did not manage to escape. This is traced to an edge-case where

the guards are stuck in their position because their movement vector does not improve the total area.

Another reason why the guards do not move is that they are still trying to maximise their local area

in the case where the total area seen cannot be increased within that step. This could result in them

all moving to the same part of the polygon. Since that part of the polygon maximises their local

area, they not move anymore. For the comb polygon with 5 teeth, the guards appear to be stuck in

a local maxima that they manage to escape. Unfortunately, they later return to it and restart the

cycle. It is unclear whether the comb polygon with 8 teeth would display a similar looping behaviour.

Given the timeout, the guards trying to solve the comb polygon with 8 teeth display a less predictable

behaviour. Hyperparameter tuning could address this issue.

Figure 4.18: The percentage of the area seen in terms of iterations for comb polygons with 2, 3, ...,
10, 15, and 20 teeth.

Conversely, it is also crucial to address in Figure 4.19 the comb polygons which the algorithm

manage to solve: 2, 3, 4 and 6 teeth. In this case, we observe a clearer scaling: the more teeth a comb

polygon has, the longer it takes to be solved. What is more, the solution also scales with the number

of teeth. The comb polygon with 4 and 6 teeth take twice as many iterations to be solved than the

ones with 2 and 3 teeth, respectively. We would expect a similar behaviour for comb polygons with

more teeth, if the algorithms would finish.

57

4.2 Scaling for the Comb Polygon 4 PRACTICE

Figure 4.19: The percentage of the area seen in terms of iterations for comb polygons with 2, 3, 4,
and 6 teeth.

It is also worth discussing how the initial guard placement and comb polygon shapes could influence

the performance of the algorithm. Firstly, it is important to note the initial placement strategy. Guards

are placed in the same lower left part of the polygon. However, the larger a polygon, the lower the

initially seen area. For example, we observe how the comb polygon with 2 teeth starts at more than

80% seen area. On the other hand, the comb polygon with 20 teeth has a less than 65% seen area at

start. We could argue that this type of placement gives larger polygons a start disadvantage. A way

to mitigate this issue could be to find a way of placement that scales, while still keeping the initial

similar positioning among different combs.

Moreover, the algorithm is sensitive to the shape of the polygons. The bigger a comb polygon

grows, the sharper and narrower its teeth are. A good example in this case is Figure 4.20, which

displays a comb polygon with 20 teeth. Clearly, the teeth are much narrower than in the case of a

comb with 4 teeth. This raises the question about the performance of the algorithm given different

angles in the polygon boundary. A possible solution to this aspect would be to scale up the polygon.

However, a similar question would remain: does the algorithm necessarily perform better or worse

because of the polygon shape? What would be the optimal shape?

58

4.3 Hyperparameter Sensitivity 4 PRACTICE

Figure 4.20: Comb polygon with 20 teeth.

4.3 Hyperparameter Sensitivity

The algorithm is highly sensitive to the hyperparameter choices, polygon shapes and sizes, and guard

starting points. We already emphasised how the hyperparameter values have been chosen: other

values than the ones used would result in the program crashing or not terminating. Similarly, in the

context of the comb polygon, we have discussed that the polygon shape can have a crucial effect on

the performance of the algorithm.

In this section we additionally explain how the guard starting points influence the outcome of

the program. We use the irrational guards polygon [1] as an example. The polygon can be guarded

by 3 guards with irrational coordinates, or 4 guards with rational coordinates. We thus compare

these placements. We position 3 guards at an approximation of the optimal irrational coordinates,

and 4 guards at arbitrary rational coordinates. The approximated irrational guards have coordinates

(2, 0.59), (19, 1.71), (10.57, 2.12). The arbitrary guards have coordinates (5, 0), (5.5, 0), (6, 0), (6.5, 0).

Figure 4.21: Comparison for the irrational guards polygon between guards with approximately irra-
tional coordinates and rational guard coordinates.

59

4.3 Hyperparameter Sensitivity 4 PRACTICE

Figure 4.21 displays the difference in runs between the previously mentioned guard placements.

The orange line displays the algorithm run for the guard irrational approximation coordinates. As

expected, the algorithm deems that the whole polygon is seen within the first iteration. On the

other side, the blue line shows the algorithm performance for the guards with rational coordinates.

Unfortunately, the program in this case crashes after the 8th iteration. The error was unclear and the

time constraints of this thesis did not allow us to solve it.

The irrational guards polygon becomes thus a suggestive example to the sensitivity of the algorithm

to initial guard placements. The starting position of the guards can determine whether the algorithm

is able to escape local maxima or not crash. Nonetheless, we are not able to provide a generalisation

of this statement. Namely, we were not able to determine how the starting position of the guards

influences the progress of the algorithm, while it is also dependent on the polygon shape.

In this way, we observed how the different heuristics influence the algorithm. Some heuristics,

like the pull, are likely to be statistically significant and fundamental to the faster convergence of the

algorithm, regardless of the polygon shape. Others, such as the pull capping, require case-specific

tuning based on the start positions of the guards and the shape of the polygon. In the next section we

further discuss why the algorithm is sensitive to these hyperparameters and how it could be improved.

60

5 PROBLEMS ENCOUNTERED

5 Problems Encountered

The development of this algorithm has encountered a number of important problems that affected its

progress. This section emphasises the most influential such issues and, if known, suggest a solution

for resolving them.

Edge-Cases

To begin with, some edge-cases remained unaddressed. For example, Figure 5.1 shows a frequently

appearing such edge-case: the blue guard is stuck on the vertex because its movement direction points

outside the polygon. When this happens, the program would project the movement direction vector on

the closest polygon boundary. In our example we would expect that the blue guard moves downwards

on the polygon boundary. However, the projection of the movement direction vector inside the polygon

is the vertex. The grey dashed lines display the extensions of the segments intersecting in the vertex

the guard is stuck on. So, the guard cannot move anywhere else from the vertex.

Figure 5.1: Edge-case for when the blue guard cannot move because its movement direction cannot
be projected towards the inside the polygon.

In order to solve this issue, we would need to devise a technique that allows the guard to move

regardless of its gradient. One such heuristic could be to mirror the movement direction vector inside

the polygon. The black dotted line in the figure displays the mirroring line. The mirrored movement

direction vector along the mirroring line is displayed in dark red. In this way, the guard would be able

to make progress along the polygon’s boundaries as expected.

However, we did not encounter this edge-case frequently enough to give it a high priority on the

issues list. Due to the time constraints of the thesis, it remained hence unsolved.

61

5 PROBLEMS ENCOUNTERED

CGAL

Moreover, numerous issues were posed by the CGAL library itself. These problems mainly related to

the library’s non-detailed errors and brief documentation. Having to reverse engineer and delve into

the source-code of CGAL slowed down the debugging process. Because some errors were not explicit at

all, some crashes remained unsolved (for example, the program crashes for certain starting positions

for different polygons). We encountered these issues only half-way through the thesis. Because of

a lack of more robust known computational geometry libraries and time constraints, we decided to

heroically tackle them.

Some issues were posed by converting between CGAL’s number types and the native C++ types

(double). CGAL’s proprietary numeric values were greatly inefficient and effort was required to

convert these to C++ native double values. Doing this greatly increased efficiency. Nonetheless,

such conversion resulted in approximation errors. For instance, some guards “close enough” to reflex

vertices were wrongly considered to be on the reflex vertex. Conversely, comparing point coordinates

would not always work, as sometimes guards with the same coordinates would not be considered to

be the same.

Input Polygons

Additionally, we were especially interested in the irrational guards polygon [1]. However, our program

can only solve the irrational guards polygon if the guards are already very close to the optimum. For

other starting positions, the program crashes with a CGAL error about the finiteness of the computed

numbers. More concretely, the assertion of is finite(d) in the Interval nt.h was failing. The

error gives no further information about the line of the code it is encountered at. Because of the

vagueness of the error and the time constraints of the thesis, we could not fix this issue.

Lastly, we also wanted to test the program on polygons from the APGlib library [8]. The APGlib

library offers an extensive testbed for polygons. Unfortunately, we encountered the same error with

the APGlib polygons we used for testing. Interestingly, the program only got stuck in a local minimum

for one of the polygons with 20 vertices (polygon 3). Nonetheless, the fact that we could not address

the CGAL error in this thesis’ time constraints was quite dissatisfying.

Scalability

Another problem worth mentioning is scalability. The program does not scale. As mentioned in

Section 4, for comb polygons with more than 6 teeth, the waiting time already exceeds an hour to

finish. We believe that this waiting time is inadequate for the size of the polygon and number of

guards inside it.

Some of the largest bottlenecks that work against scalability are the visibility area and the hidden

movement computations. Currently, the visibility area of each guard is updated at every iteration.

We are using the Triangular Expansion Visibility [6] which runs in O(g) time, with g the number of

guards. Thus, the visibility computation per iteration runs in O(g2) time. In terms of the hidden

movement computation, each guard has its gradient recomputed at most g times. This happens in

the case when only one guard out of the g guards has a non-zero movement vector, and thus it gets

removed from the set. The remaining g − 1 guards have their movement vector recomputed. Again,

in the worst case only one guard has a non-zero gradient. Thus, a guard gets its movement vector

recomputed in O(g2) time.

62

5 PROBLEMS ENCOUNTERED

Other poorly scalable parts of the algorithm are based on the number of reflex vertices. The

movement vector computation depends on the number of reflex vertices r. If r >> g, then the

algorithm performs poorly for polygons with significantly fewer guards than reflex vertices.

For these reasons, the program is especially sensitive to the values of the parameters. For instance,

searching between fewer steps for line search can help the program find a solution faster. In this

way, we decrease the number of steps taken for computing a new guard position. The program is

additionally sensitive to the heuristics used and the shape of the polygons. In Section 4 we have

mentioned some shapes of polygons that the algorithm can solve, with which hyperparameters and

initial guard positions.

Therefore, we believe that if these edge-cases and errors get solved, the program should perform

correctly and without crashing. Additionally, should the naive (brute-force) approaches be imple-

mented more efficiently, we would expect the program to scale. We would still predict that the

program gets stuck in local maxima. However, it should be possible to escape them with case-specific

hyperparameter tuning and heuristic choice.

63

6 DISCUSSION

6 Discussion

This thesis focussed on implementing and evaluating a gradient descent algorithm to find a solution

to the Art Gallery Problem. This goal has been achieved for the few discussed polygons. Nonetheless,

this method raised quite some issues. For this reason, we discussed more in-depth the development

process and the performance of the algorithm. There were numerous edge-cases to be taken into

account. For many of them, we created various hyperparameterised heuristics. Other heuristics (such

as momentum) were created as an improvement to the shortcomings of gradient descent.

The resulting program is sensitive to hyperparameter choices, polygon shapes and starting guard

positions. For this reason, we only provided qualitative evaluations for the heuristics used to extend

gradient descent. Namely, we discussed both specific added benefits of each of the heuristics, and

a comparison based on the average number of iterations required to fully see a polygon. The way

this was done is by running the program with all heuristics but the one whose practicality we are

discussing. In this way, we assess the added advantage of each heuristic in its absence. The reason

behind this experimental setup is that combinations of all heuristics are both verbose and unnecessary.

Given that the program is still limited to a few examples, we cannot use extensive statistical tools

to test its overall performance. With the given examples, we managed to assess that using the pull

heuristic is likely to be statistically significant to improve the algorithm’s performance in terms of the

number of iterations. In this way, we provided a pragmatic overview to the usefulness of each of the

heuristics and hyperparameters used. Namely, we analysed on what the type of polygons different

heuristics and hyperparameter values provide concrete results.

Section 6.1 further discusses how the program could be improved in the future.

6.1 Future Work

Currently, the program offers a state-of-the-art view about its practical possibilities. In the future, it

would be suitable to extend it with more robust functionalities.

One of the most crucial aspects of improvement for the program would be to solve the existing

errors and bugs. As of now, the program crashes for specific input polygons (see Section 5 for an

extensive overview of its shortcomings). Another important element to consider would be to code

it more efficiently, as the program does not scale. This is because some of the data structures and

techniques used are naive (brute-forced). Implementing them in a more efficient way should improve

the scalability of the program.

Additionally, some features and heuristics are not complete. For example, the greedy initialisation

of the guards’ position is deterministic. In order to quantitatively assess the performance of the

algorithm, a truly randomised greedy initialisation would be required for statistical significance.

Lastly, it would be worth exploring how the algorithm would benefit from a different implemen-

tation. Namely, using another programming language like Python (or CGAL Python bindings) and

other geometry libraries which are better documented and more reliable to use.

64

Acknowledgements

I would like to thank Till Miltzow and Frank Staals for supervising the thesis and always offering

creative and constructive feedback. I would also like to thank Simon Hengeveld for the helpful advice

and explanation of his implementation for solving the Art Gallery Problem. Lastly, I would like to

thank my partners Tim and Teun for always supporting me during both the rough and the happy

times of this thesis.

REFERENCES REFERENCES

References

[1] Mikkel Abrahamsen, Anna Adamaszek, and Tillmann Miltzow. “Irrational Guards are Some-

times Needed”. In: CoRR abs/1701.05475 (2017). arXiv: 1701.05475. url: http://arxiv.

org/abs/1701.05475.

[2] George Johnston Allman. Greek geometry from Thales to Euclid. Hodges, Figgis, & Company,

1889.

[3] Tetsuo Asano. “An efficient algorithm for finding the visibility polygon for a polygonal region

with holes”. In: IEICE TRANSACTIONS (1976-1990) 68.9 (1985), pp. 557–559.

[4] Pritam Bhattacharya, Subir Kumar Ghosh, and Bodhayan Roy. “Approximability of guard-

ing weak visibility polygons”. In: Discrete Applied Mathematics 228 (2017). CALDAM 2015,

pp. 109–129. issn: 0166-218X. doi: https://doi.org/10.1016/j.dam.2016.12.015. url:

https://www.sciencedirect.com/science/article/pii/S0166218X16306333.

[5] Édouard Bonnet and Tillmann Miltzow. “An Approximation Algorithm for the Art Gallery

Problem”. In: CoRR abs/1607.05527 (2016). arXiv: 1607.05527. url: http://arxiv.org/

abs/1607.05527.

[6] Francisc Bungiu et al. “Efficient Computation of Visibility Polygons”. In: CoRR abs/1403.3905

(2014). arXiv: 1403.3905. url: http://arxiv.org/abs/1403.3905.

[7] Computational Geometry Algorithms Library. https://www.cgal.org.

[8] Marcelo C. Couto, Pedro J. de Rezende, and Cid C. de Souza. Instances for the Art Gallery

Problem. www.ic.unicamp.br/~cid/Problem-instances/Art-Gallery. 2009.

[9] Boris Delaunay et al. “Sur la sphere vide”. In: Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii

i Estestvennyka Nauk 7.793-800 (1934), pp. 1–2.

[10] Geometry, Algebra and Computer Algebra apps. https://www.geogebra.org/.

[11] Subir Kumar Ghosh. “Approximation algorithms for Art Gallery Problems in polygons”. In:

Discrete Applied Mathematics 158.6 (2010), pp. 718–722. issn: 0166-218X. doi: https://doi.

org/10.1016/j.dam.2009.12.004. url: https://www.sciencedirect.com/science/

article/pii/S0166218X09004855.

[12] I Goodfelow, Y Bengio, and A Courville. “Deep learning (adaptive computation and machine

learning series)”. In: (2016), p. 296.

[13] Simon B. Hengeveld and Tillmann Miltzow. “A Practical Algorithm with Performance Guaran-

tees for the Art Gallery Problem”. In: CoRR, SoCG abs/2007.06920 (2020). arXiv: 2007.06920.

url: https://arxiv.org/abs/2007.06920.

[14] Barry Joe and Richard B Simpson. “Corrections to Lee’s visibility polygon algorithm”. In: BIT

Numerical Mathematics 27.4 (1987), pp. 458–473.

[15] D. Lee and A. Lin. “Computational complexity of Art Gallery Problem”. In: IEEE Transactions

on Information Theory 32.2 (1986), pp. 276–282. doi: 10.1109/TIT.1986.1057165.

[16] Shiva Maleki and Ali Mohades. “Implementation of polygon guarding algorithms for art gallery

problems”. In: CoRR abs/2201.03535 (2022). arXiv: 2201.03535. url: https://arxiv.org/

abs/2201.03535.

[17] Matplotlib: Visualisation with Python. https://matplotlib.org/.

66

https://arxiv.org/abs/1701.05475
http://arxiv.org/abs/1701.05475
http://arxiv.org/abs/1701.05475
https://doi.org/https://doi.org/10.1016/j.dam.2016.12.015
https://www.sciencedirect.com/science/article/pii/S0166218X16306333
https://arxiv.org/abs/1607.05527
http://arxiv.org/abs/1607.05527
http://arxiv.org/abs/1607.05527
https://arxiv.org/abs/1403.3905
http://arxiv.org/abs/1403.3905
https://www.cgal.org
www.ic.unicamp.br/~cid/Problem-instances/Art-Gallery
https://www.geogebra.org/
https://doi.org/https://doi.org/10.1016/j.dam.2009.12.004
https://doi.org/https://doi.org/10.1016/j.dam.2009.12.004
https://www.sciencedirect.com/science/article/pii/S0166218X09004855
https://www.sciencedirect.com/science/article/pii/S0166218X09004855
https://arxiv.org/abs/2007.06920
https://arxiv.org/abs/2007.06920
https://doi.org/10.1109/TIT.1986.1057165
https://arxiv.org/abs/2201.03535
https://arxiv.org/abs/2201.03535
https://arxiv.org/abs/2201.03535
https://matplotlib.org/

[18] Joseph O’rourke et al. Art gallery theorems and algorithms. Vol. 57. Oxford University Press

Oxford, 1987.

[19] Marcus Schaefer. “Complexity of some geometric and topological problems”. In: International

Symposium on Graph Drawing. Springer. 2009, pp. 334–344.

[20] Scientific Python Geometric Algorithms Library. https://github.com/scikit-geometry/

scikit-geometry.

[21] WH Swann. “A survey of non-linear optimization techniques”. In: FEBS letters 2.S1 (1969),

S39–S55.

67

https://github.com/scikit-geometry/scikit-geometry
https://github.com/scikit-geometry/scikit-geometry

	Introduction
	The Art Gallery Problem
	Gradient Descent
	Thesis Goal

	Literature Summaries
	Efficient Computation of Visibility Polygons
	Algorithm of Joe and Simpson
	Algorithm of Asano
	New Algorithm: Triangular Expansion
	Experiments

	Irrational Guards Are Sometimes Needed
	Intuition for Triangular Pockets
	Intuition for Quadrilaterial Pockets
	Intuition for Rectangular Pockets
	Monotone Polygon Construction
	Rectilinear Polygon Construction

	Implementation of Guarding Algorithms
	Algorithm of Ghosh
	Algorithm of Bhattacharya, Ghosh and Roy
	New Algorithm
	Experiments

	An Algorithm with Performance Guarantees
	One-Shot Vision-Stable Algorithm
	Iterative Vision-Stable Algorithm
	Experimental Results

	Theory
	Guarding the Polygon with One Point
	Gradient Descent
	Computing the Gradient
	Computing the New Guard's Position

	Guarding the Polygon with Multiple Guards
	Computing the Gradient for Two Guards
	Computing the Gradient for Multiple Guards

	Momentum
	Reflex Vertex Pull
	Pull onto the Reflex Vertex
	Pull Capping

	Reflex Area
	Line Search
	Angle Behind Reflex Vertex
	Hidden Movement
	Greedy Initialisation

	Practice
	Heuristics
	Without Momentum
	Without Pulling To and Onto the Reflex Vertex
	Evaluation and Results

	Without Pull Capping
	Without Reflex Area
	Without Line Search
	Without Angle Behind Reflex Vertex
	No Hidden Movement
	Greedy Initialisation

	Scaling for the Comb Polygon
	Hyperparameter Sensitivity

	Problems Encountered
	Discussion
	Future Work

