
Layman’s summary
There is a small chance of rupture of an cerebral aneurysm, but when it does it causes a severe stroke
(aneurysmal  subarachnoid  hemorrhage)  that  generally  high  mortality  and  morbidity.  Treatment  of
cerebral aneurysms is relative succesfull however also not without risks so when they are detected by
doctors it is important to estimate the risk of rupture of these aneurysms to determine so that they can
determine if it  is necessary to surgically treat them. An increase in models that predict  the risk of
rupture has taken place recently but the clinical usability of these models is still low however prediction
model for outcome after aSAH are more common. In this review studies in which these models are
developed were selected and assessed for potential methodological biases using the PROBAST tool.
Results from this analyses show that biases are mostly introduced during data selection by combining
data sets and during the analysis part. Most studies also did not publish the data or source code that was
used which could lead to replication problems.
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Abstract
Predicting the outcome of aneurysmal subarachnoid hemorrhage could play an important role in the
management  of  aneurysms.  As  developing  prediction  models  becomes  easier  an  uptake  in  model
development is taking place in science. This also increases the amount of methodological errors made
during development leading to difficulty in  reproduction or clinical  usage of these models.  In this
review papers that developed a model predicting the outcome of aneurysmal subarachnoid hemorrhage
were selected from PubMed. These papers were then assessed using the PROBAST tool to determine
potential methodological biases that were introduce during their development.

Introduction
Aneurysmal subarachnoid hemorrhage (aSAH) is a complication of a bleeding inside the brain due to
rupture of one or multiple aneurysm(s) where blood is leaking into the subarachnoid space. This type of
stroke represents 80% of the non traumatic subarachnoid hemorrhage cases (1,2). Although the incident
rate declined over time from 10 to 6 cases per 100.000 person from the 1980 to 2010, aSAH still
accounts for many lost life years of relatively young patients as it is generally characterized by high
case  mortality  as  approximately one third of  patients  die  within weeks after  occurrence  and most
surviving patients experience long lasting disability such as cognitive failure, anxiety, depression and
sleep problems (3,4). Due to better preventive management strategies such as coiling and clipping of
aneurysms in recent years case fatality decreased by 17%  (4). As these management strategies still
induce risk for the patients, assessing the risk of rupture for aneurysms could help improving aneurysm
management. Risk factors often associated with rupture of intracranial aneurysms include smoking,
high blood pressure, a family history of aSAH, ethnicity, excessive alcohol usage, diabetes and high
age (5). These properties associated with rupture can then be used to develop models that assess risk of
rupture for patients. In a similar way relationships can be inferred between properties and the outcome
of rupture to make predictions about the outcome of aSAH. Several models that predict outcome after
aSAH have been developed (6).

Predicting the outcome of an event from a range of predictors can be done by prediction models
which can be trained on data sets and have been used in highly diverse fields (7). The use of machine
learning in health science to infer relationships in data sets is increasing rapidly (8). These prediction
models are derived from indicators that have a statistical relationship with the clinical outcome and can
be assessed during intake of a patient (9). For different type of diseases these models are often not used
clinically due to lack of external validation or poor performance of these models on new cohorts as
they were developed using methodological errors by the researchers  (10). Outside of health science
question arise about the application of predictive models where researchers apply these techniques
without properly understanding the limitations of the developed model. This problem is also compared
to the replication crisis that affected social and medical sciences (11). 

Besides  following  the  correct  methodological  practices  when  applying  machine  learning
techniques, reproducibility of the developed model is important to mitigate the ongoing replication
crisis in science that arose due to difficulty in reproducing many studies (12). This includes availability
of data and source code so that the exact methodology can be followed or external data sets can be
tested  (12). Models developed in the machine learning field of health science scored worse in this
regard compared to other fields in machine learning such as language processing, computer vision and
general machine learning  (13). More generally machine learning platforms do not provide sufficient



tools to easily create reproducibility for research as developed models using the same data produce
highly different results between different machine learning packages (14).

Individual studies or developed models are important to understand new relationships between
predictors and the outcome of an disease. However these are then only applicable to small cohorts of
patients  for  example  one  or  a  small  number  of  hospitals.  Systematic  reviews  can  hereby play  an
important role in health science and the development of clinical procedures  (15). They can provide
reliable evidence for the effects of a procedure by combining multiple studies (16). Systematic reviews
of prediction models is a relatively new and developing area (17). These type of reviews is needed as
the  number  of  performed  studies  that  either  develop  a  prediction  models  or  externally  validate  a
developed model keep increasing. It is not yet known if this increase could also lead to an increase of
studies that do not follow methodological standards or where procedures are not fully reported. This
signals the need for systematic reviews testing for these errors due to researchers not being familiar
with machine learning procedures  (18). To asses these  type of methodological errors the PROBAST
tool was developed using the Delphi method  (19). The PROBAST tool aims to help find the risk of
biases  in  four  domains  (participants,  predictors,  outcome and  analysis)  that  are  introduced  in  the
development of prediction models (20).

In this systematic review studies that developed a prediction model for the outcome of aSAH
were selected from PubMed. The selected articles were assessed using the PROBAST tool to find
possible risk of biases introduced during the development of the model. An extra domain was added to
asses reproducibility of each study.

Methods
Study design
To analyze the quality of methodology followed in models developed to predict the outcome aSAH the
PROBAST tool was used. This tool is intended to be used to assess the risk of bias in multivariate
prediction models. The PubMed database was used to search for papers published before September 13,
2022. The PROBAST tool was extended by three questions to assess reproducibility of these studies
(Table S2).

Data sources and strategy
A search on the PubMed database was performed using the following keyword selection: predictive
AND models AND subarachnoid AND hemorrhage OR haemorrhage (Figure 1). For each search result
the title, abstract and keywords were used to assess the relevance of said paper. Cited sources in each
selected paper were scanned to select papers that were not included in the search query.

Inclusion and exclusion criteria
Included  in  this  review  are  papers  for  which  the  full  text  was  available  and  when  necessary
supplemental methods. Only papers were selected that developed a model to predict outcome of aSAH
using machine learning algorithms (Figure 1). In this study machine learning models were defined as
models that have the ability to either detect or abstract relationships in the data  (21). Examples of
models that meet this definition are: logistic regression, tree based algorithms and neural networks. The
journal in which these papers were published were assessed and only papers published in a journal with
an impact factor that was equal or higher than four were accepted to keep the focus of this review on
published studies that have a relatively high impact and thus have a bigger chance to share potential
methodological biases which could then be passed on to other studies. Another reason to filter papers
based  on  journal  impact  factor  and  thus  limiting  the  number  of  total  selected  papers  were  time
constraints. Papers that only validated an earlier developed model were omitted from this review due to
time constraints. 



Model development assessment
To test the produced models in the papers for potential biases the PROBAST tool was used (20). This
tool consists of four steps. First a research question was proposed by the reviewers. Second the type of
prediction model used in each paper was noted. Third for each domain the risk of bias was assessed and
fourth the overall risk of bias was assessed. The PROBAST tool consists tests biases in four domains:
participants,  predictors,  outcome  and  analysis  (Table  S2).  A fifth  domain  was  added  to  test  the
reproducibility  of  each  research  paper  (Table  S2).  This  domain  consisted  of  the  following  three
questions: [1] is the research data available publicly, [2] is the source code available publicly and [3] is
the developed model validated on external data sets in the same study. All questions used to test papers
according to the PROBAST tool can be found in supplementary table 1.

Figure 1: Search method and selection criteria of the included studies.
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Results
In total 27 papers were included in this review. Out of these, 18 used retrospective cohorts (22–39) and
9 used prospective cohorts (40–48) (Table S1). Sources of data were mainly from European or North
American origin including the United States (28–30,37,41,47,48), Canada (36), United Kingdom (23),
Germany (31), Spain (22,34), Switzerland (24,26,27), The Netherlands (44–46) and two studies from
China (35,40) (Table S1). Several studies used databases such as the SAHIT database (49) which gather
data from patients located in multiple countries (25,32,33,38,39). These kind of databases are generally
also  focused on European and North  American  participants.  Sampling  date  range from two years
(37,40) to 18 years (41,48) with a median of 7 years (Table S1). The number of enrolled participants
varied highly between studies ranging from 147 (35) to 10,936 (25) with an median of 548 enrolled
participants.  14  papers  created  models  using  multivariate  logistic  regression
(22,25,28,32,35,37,39,40,43–48) and 13 papers used other machine learning methods to create develop
models such as decision trees  (27,29,33,34), support vector machines  (27,29,41) or neural nets  (29–
31,38) (Table S1). Most studies used a binary outcome using a modified Rankin scale (positive: mrs 0-
3, negative mrs 4-6). 

When considering multiple data sources that can be used to develop models it is important that
these sources are compatible with each other in order to maintain the integrity of the model meaning
that data is collected and assessed in a similar way. This potential bias is covered in the first domain of
the PROBAST tool. Several studies used different data sets for development and validation, leading to
usage of different outcome metrics not being compatible with each other. This required the need to
correct for these differences leading to artificial outcome measures (23,32,46) (Table S3, Domain 1 &
3) or different methodology for assessing predictors (22,32,46) (Table S3, Domain 1 & 2). In another
case the cohort was divided in a development and an internal validation cohort using date of admission
as a separator between cohorts (22) (Table S3, Domain 1 & 2). Due to possible changes in procedures
over time this could lead to potential biases. Inclusion and exclusion of participants was generally well
documented (Table S3, Domain 1). Whereas domain one to three regard biases introduced via the data
selection, domain four of the PROBAST tool focuses on potential biases that could be introduced via
the  statistic  analyses  that  was  performed.  Overall  there  were  enough  participants  that  had  the
predetermined  outcome  during  each  study  meaning  that  there  was  no  need  to  correct  for  class
imbalances in the data. Transformations in categorical, continuous variables or the dichotomization of
variables could help the performance of machine learning algorithms. Generally the way in which
variables were handled was well documented except for one paper where this was not mentioned (26).
Missing  data  for  enrolled  participants  can  be  handled  in  several  ways.  Generally  some  form  of
imputation was involved however certain studies performed complete case analyses by assuming that
data is missing randomly  (42,43). Data is often not missing at random and therefore complete case
analysis could introduce bias by excluding participants with missing data. Six studies did not mention
how  missing  data  was  handled  (22,25,35–37,40,47) (Table  S3,  Domain  4).  When  benchmarking
developed models it  is preferred to use a validation cohort that is independent of the development
cohort. In eight papers no mention was made of a separate validation cohort (22,28,32,37,40,43,45,48)
(Table S3, Domain 4). Using predictors that are multicolinear could introduce bias in the coefficients of
the used predictors of developed models. Using such predictors should be avoided when developing
models  that  are  intended  to  be  used  to  interpret  the  resulting  predictions.  When  only  outcome
prediction is important checking for multicolinearity is not required. Out of the 27 papers, 18 did not
fully  check  or  did  not  mention  multicolinearity  between  predictors  (22,24–26,28–30,32,35–
37,40,42,44–48) (Table S3, Domain 4).  During the benchmarking of  the model  over  fitting of  the
model meaning that the model  corresponds too well  to the development data leading to  decreased
predicting performance on different data sets, should be taken into account. Usually this is done via
comparison of AUROC, precision recall curves or confusion matrixes between the development and
validation  data  sets.  In  total  eight  papers  did  not  mention  such  analysis  in  their  study



(22,23,28,32,37,42,44,45) (Table  S3,  Domain  4).  Optimism  of  the  developed  model  could  be
determined by applying cross validation or bootstrapping to the data set during development. Twelve
out  of  the 27 studies  did not  apply or mention one of these techniques  (24,26,28,29,35–40,45,47)
(Table S3, Domain 4). Overall this domain contained the most potential to bias. By having 23 out of the
27 studies containing at least one way in which they could introduce a bias in to the developed model
via the performed analyses for this domain.

The  newly  added  fifth  domain,  containing  questions  about  reproducibility  of  the  work
performed in the papers, showed that reproducibility is not reported on frequently by researchers while
publishing their work. Only one study published the research data (25). and another would give the data
upon reasonable request (23) (Table S3, Domain 4). External validation to determine the applicability
of a developed model in circumstances wherein the model was not developed using a data set that is
independently generated, was only performed in six of the reviewed papers  (25,33–35,44,46) (Table
S3, Domain 4). 

Looking at the total picture across all five domains there would be no paper that scores good in
all domains. However after excluding domain five only four papers do not introduce a potential bias
during  model  development  according  to  PROBAST criteria  (27,31,33,41) showing  that  following
correct procedures, when developing models using machine learning, is still not widely applied (Table
S3, Domain 4). Overall most potential biases were introduced during the analyses (domain 4) (Figure
2).

Figure 2: Overview of the number of papers not satisfying the PROBAST domain 1-4 and
the newly added 5th domain.



Discussion
This study aimed to review the methodological process of developed models for the outcome of aSAH
using  machine  learning  algorithms.  Only  four  out  of  the  27  reviewed  papers  scored  well  on  the
PROBAST tool that was used to asses potential biases introduced during model development. Most
biases  were  introduced  during  the  analyses  phase  (domain  4)  mainly  omitting  to  check  for
multicolinearity between predictors in the data set or check for over fitting of the model. The newly
added fifth domain to the PROBAST tool covering study reproducibility showed that very few studies
publish data or their code. External validation of the developed model also occurred only in 6 out of the
27 papers. This number could be higher as some of the models were validated externally in a different
paper while this review only focused on papers were a model was developed.

A strength of this study was that the scope of the review was based on a validated assessment
tool  (PROBAST).  Predefined inclusion and exclusion criteria  were used and the study design was
determined beforehand. This systematic review aimed to give a complete overview of the published
literature  of  prediction  models  for  the  outcome of  aSAH.  An  earlier  published  systematic  review
published in 2013 aimed to do the same and included 11 studies in their review which found similar
results as this review found such as lack of outcome metric evaluation and lack of external validation
(6).  As the  use of  prediction  models  is  becoming more  widespread a  new overview of  prediction
models for the outcome of subarachnoid hemorrhage was needed. In this review 27 papers matched the
inclusion criteria  leading to  a  good overview of  the  current  developments  in  this  field.  Using the
combination of PubMed and a complement citation search in each paper resulted in a more complete
paper selection. Another strength of this review is the use of PROBAST to assess the methodology of
developing prediction models making it possible to compare the results of this systematic review to
other fields by comparing the specific PROBAST domains.

12  out  of  27  studies  did  not  make  any  mention  of  cross  validating  or  bootstrapping  the
developed model.  Both  are  re-sampling methods used to  determine  model  performance.  Generally
cross validation is used to determine model optimism by dividing the development group into smaller
groups (folds) so that the model can be validated on the hold-out data (50). This is in contrast with a
bootstrapping  method  where  new  groups  are  made  using  re-sampling  of  the  development  group.
Bootstrapping is therefore mainly used to determine model stability (51). In health science data sets are
generally limited by the amount of participants that have a certain condition such as aSAH. This was
also mentioned in most studies reviewed for this paper as a reason for the relative small data sets.
Therefore it could be a logical conclusion that applying cross validation and thus making the validation
groups smaller is not feasible. For small data sets leave one out cross validation (LOOCV) could be
considered. When applying LOOCV the model is trained on n-1 samples leaving one sample for the
validation set. One drawback of this method is that a high variance could be introduced in the resulting
performance by validating on one sample (52). Lack of cross validation and bootstrapping could lead to
a failure to detect over fitting making the developed models less suitable for outcome prediction (53).

18 out of the 27 studies did not check for or reported multicolinearity. Multicolinearity in data
sets occurs due to correlations between predictors in the data. This can be avoided by checking for
correlations during predictor selection and only select non correlated predictors or combine predictors
when necessary  (54).  A result  of  multicolinearity  in  a  data  set  can  be  that  the  resulting  predictor
coefficients of the model are skewed. When the aim of the model is to explain outcome predictions this
could form a problem (55). Since the main focus of the models developed by the reviewed studies is
the prediction of clinical outcome and not risk factor detection this could be an valid argument for not
checking for multicolinearity.

The popularity of area under the curve as an outcome measurement has increased over time (56)
which  also  shows  in  this  review  as  most  studies  reported  area  under  the  curve  as  the  outcome
measurement. There is however also criticism on the use of this outcome measurement. This is because
a threshold for area under the curve is  calibrated for every developed model,  comparison between



models  using  AUROC as  a  measure  would  be  the  same as  comparison between multiple  metrics
(56,57). It could be considered to use the H measurement, which was proposed to to overcome this
effect (58). Another issue with area under the curve as a outcome measure is that when the data set is
unbalanced,  area under  the curve could give a skewed result.  A high area under the curve can be
obtained while due to the low number of outcomes, false positives are masked leading to an high area
under the curve. For imbalanced data sets it is recommended to use the precision recall curve or scorers
such as accuracy or F-beta as an outcome measure (59). As there were no imbalanced data sets in the
reviewed studies AUROC seems to be an acceptable outcome measure as most other studies report on
this outcome measure.

In  the  field  of  machine  learning  models  are  often  only  validated  internally  (60) which  is
generally done by splitting the data set in an developmental data set and an validation data set and then
apply methods such as bootstrapping or cross validation (61). Only six studies in this review performed
external validation. External validation is critical when the model is intended to be used clinically as
the  developed  model  has  to  be  widely  applicable  when  used  for  this  purpose  (27).  Most  studies
reported lack of external data sets that had the same outcome measures or predictors as reason to not
externally  validate  their  model.  Also some of  the  other  studies  might  have  published the  external
validation of their model in an different paper which were not included in this review.

Only 2 out of the 27 reviewed studies published their data sets in a online repository and only
one study published their  source  code.  Good data  stewardship  is  important  when it  comes  to  the
reproducibility  of  performed research  (62).  In  order  to  increase  and spread knowledge about  data
stewardship the FAIR principles were proposed. The goal of these principles was to make data more
easier to find, access, compatible and reusable. In principle this has to be done in such a way that
repositories are more accessible for machines by implementing for example well documented API’s
and in this  way making data  also more accessible  for  humans  (12).  A difficulty  in health  science
regarding open data is that due to patient privacy data can not be published publicly which could
explain the low amount of reviewed studies publishing their data sets (63). A possible solution to this
difficulty could be the synthesis of artificial data sets that contain the exact same properties as the
original data set (64–66). This data set can then be published using the FAIR principles.

The median of enrolled participants of all reviewed papers was 548 showing that overall the
size of the data sets were small for machine learning applications. Although sample size of the data set
in not a PROBAST criteria many of the studies reported small sample size as an factor in how that
study was performed. Small sample size is an issue that is also present in other fields of health science
(67).  In  health  science  the  size  of  the  data  sets  are  mainly  limited  by  the  costs  of  large  scale
experiments necessary for data collection or the occurrence of a specific outcome (68). The reviewed
papers also mention this as the main constraint for generating data sets that include more participants.
Data collection over longer time scale often was hard as procedures changed over time making the use
of smaller data sets more acceptable.

Although the results published in this study could provide valuable insight in the application of
machine learning algorithms within health science this study also contains several limitations. This
study assessed the methodological approach of studies used in the model development but did not
assess the quality of the models itself and thus their ability to make clinical predictions. Furthermore
the selection and assessment  of studies  was performed by one researcher.  Assessment  by multiple
researchers could help reduce potentiality systematic errors that could have been introduced during the
process. Only studies that have been published in English have been included in this study which could
potentially cause a bias in the selected literature and thus participants of the selected studies (69). For
this review the online repository PubMed was used. As PubMed mainly focuses on medical journals
most  relevant  studies  should have  been found however  it  can  not  be excluded that  some journals
publishing an relevant study was not available in this repository (70).



Conclusion
Potential methodological biases of model development studies were identified using the PROBAST
tool. The reviewed studies show that mainly biases are introduced during the analyses for example
accounting for missing data and considering different outcome metrics. Also during data collection
biases were introduced for example when multiple data sets are used using different methodology of
data  collection.  Following  the  FAIR  principles  data  should  be  easily  accessible  which  was  not
applicable to most studies as they did not publish their data sets to an repository.



Supplements

Table S1: Summary data of selected papers.

Paper Model type Country Cohort Sampling time 
(years)

Cohort size

(22) Logistic 
regression

Spain Retrospective 10 536

(23) RF, SVM UK Retrospective 8 1017
(24) CHAID CH Retrospective 6 548
(25) Logistic 

regression
Multiple Retrospective 10936

(26) ML CH Retrospective 6 1866
(27) SVM, FAM, RF, 

GLM, GBM
CH Retrospective 6 156

(28) Logistic 
regression

US Retrospective 3 430

(29) SVM, FAM, RF, 
GLM, GBM, 
MLP

US Retrospective 14 2467

(30) MLP US Retrospective 7 451
(31) GLM, MLP DE Retrospective 6 388
(32) Logistic 

regression
Multiple Retrospective 10 357

(40) Logistic 
regression

CN Prospective 2 366

(41) SVM US Prospective 18 1595
(33) RF Multiple Retrospective 266
(42) ffANN NL Prospective 7 585
(43) Logistic 

regression
EU Prospective 2143

(44) Logistic 
regression

NL Prospective 16 1620

(45) Logistic 
regression

NL Prospective 16 1620

(46) Logistic 
regression

NL Prospective 5 409

(47) Logistic 
regression

US Prospective 527

(35) Logistic 
regression

CN Retrospective 6 147

(36) ML CA Retrospective 14 10322
(37) Logistic 

regression
US Retrospective 2 161

(34) RF SP Retrospective 11 441
(48) Logistic 

regression
US Prospective 18 1619

(38) MLP Multiple Retrospective 7 3550
(39) Logistic 

regression
Multiple Retrospective 6 3551



Table S2: Questions used from the PROBAST tool (domain 1-4) (20) and questions added (domain 5) 
to review the selected papers.

Domain 1. Data selection. 1.1 Were appropriate data sources used (e.g. compatible 
with each other)

1.2 Were all inclusions and exclusions of participants 
appropriate?

Domain 2. Predictors. 2.1 Were predictors defined and assessed in a similar way
for all participants?

2.2 Were predictor assessments made without knowledge 
of outcome data?

2.3 Are all predictors available at the time the model is 
intended to be used?

Domain 3. Outcome. 3.1 Was the outcome determined appropriately?
3.2 Was a pre-specified or standard outcome definition 

used -> were multiple outcome measurements 
considered

3.3 Were predictors excluded from the outcome 
definition?

3.4 Was the outcome defined and determined in a similar 
way for all participants?

3.5 Was the outcome determined without knowledge of 
predictor information?

3.6 Was the time interval between predictor assessment 
and outcome determination appropriate?

Domain 4. Analyses. 4.1 Were there a reasonable number of participants with 
the outcome? / Was there accounted for imbalanced 
data sets?

4.2 Were continuous and categorical predictors handled 
appropriately?

4.3 Were all enrolled participants included in the 
analysis?

4.4 Were participants with missing data handled 
appropriately?

4.5 Were test and training groups well defined?
4.6 Was selection of predictors based on univariable 

analysis avoided?
4.7 Were relevant model performance measures 

considered?
4.8 Were model over fitting and optimism in model 

performance accounted for?
4.9 Do predictors and their assigned weights in the final 

model correspond to the results from multivariable 
analysis?

4.1 0 Was cross validation/bootstrapping used?
Domain 5. Reproducibility. 5.1 Is the research data available publicly?



5.2 Is the source code available publicly?
5.3 Was the result validated on different external data sets

in the same study?



Table S3: Results of the questions from the PROBAST tool and the added domain 5 for each selected paper with green indicating that a 
question was satisfied and red indicating that a question was unsatisfied.

Paper 1.1 1.2 2.1 2.2 2.3 3.1 3.2 3.3 3.4 3.5 3.6 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.1 5.1 5.2 5.3
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(40)
(41)
(33)
(42)
(43)
(44)
(45)
(46)
(47)
(35)
(36)
(37)
(34)
(48)
(38)
(39)
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