
R package development of the

shrinkISO method
02 January, 2022

Jipke H. van Lanen, 5489342

Supervised by: Renaud Tissier, Renee de Menezes and Adrien Melquiond

Abstract
By varying the location of splice sites, a single gene can produce different transcripts. This

alternative splicing leads to the production of different protein variants. Genomic

differences between cells can lead to differential exon usage (DEU): a difference in the
distribution of exon counts from the same gene. The shrinkISO method was developed to

find DEU using an empirical Bayesian approach, mixed model methodology and integrated

nested Laplacian approximation at the gene-level. The aim of this project was to develop
an R package for this method. Prior to the development of the package, the method was

used in the DEU analysis of chromosome 22. Results of this analysis were used in the

development of the package manual. The package improves the replicability as well as the

usability of the method. It will form a starting point for a detailed paper on the shrinkISO

method.

Layman’s Summary
Our genome is still a mysterious puzzle. Scientists have been working on solving this

puzzle piece by piece for many years. Common understanding is that a single gene

contains a DNA code that can be translated to just a single protein, but that is not entirely
true. A gene does not translate to just one protein, but genes can split and stitch their code

together in different ways. As a result, a single gene can translate to multiple, slightly

different proteins, possibly with different functions. The parts of the gene that are split and
stitched are called exons, and when this splitting and stitching happens in different ways it

is called alternative splicing.

Alternative splicing is necessary to create the complexity of many living creatures. It makes
sure that there are enough possibilities, so that our heart cells and our brain cells can do

different things. When a gene uses a different way of alternative splicing in different groups

of cells, this gene has differential exon usage.

We can try to estimate differential exon usage by comparing two groups of different cells,

using a method called shrinkISO. This method consists of a set of functions with statistical

calculations. In order to make it easier to use this method, we will bundle the functions

together in a package.

In this project we show the development of the package. Because the focus of the project

was on the development, it includes an extensive method in which we explain how

package development works. It further covers a small analysis, to get familiar with the
method. Based on the results of this analysis, we chose a set of genes to use as an example

in the package manual. The manual gives a good idea of the content of the package and

how to use it. The package is an improvement of the method, because it is much easier to

use and to share.

Introduction
A single gene can produce different mRNAs by variations of the splicing sites. This leads to

the production of different protein variants, which may have different cellular functions.

Different combinations of exons produce mRNA isoforms that diversify the transcriptome.
This tightly regulated biological process is called alternative splicing.1,2 Genomic

differences or genetic mutations can lead to differential exon usage or DEU: a difference in

the distribution of exon counts from the same gene between two groups.1-3 Annotation of
mRNA sequences can be used to map genome wide expression levels. By analyzing the

expression on exon-level for each gene, two groups can be compared for DEU.4 However,

there are not many models that perform this analysis.

The shrinkISO method was developed to find DEU from exon count data. It is an empirical

Bayesian approach method utilizing mixed effect models as well as integrated nested

Laplacian approximation (INLA5) in order to identify the presence or absence of DEU at the

gene-level in a pairwise comparison.

The main goal of this project was to develop an R package for the shrinkISO method, to

include the functions that were written and create a user manual. Prior to the package
development of shrinkISO, the method was applied to analyse chromosome 22. This

analysis was used as basis for the example in the user manual.

The project can not be described as a research project per se. That is reflected in the
structure of this report. In this project, a total of three packages were created. This report

is written, leading with these three packages.

Similar to a regular report, which would be written after a research internship, this report
contains a method section, results and a conclusion/discussion. However, this report is

slightly different in the sense that these subjects will be discussed in the light of one of the

three different packages.

In the method section, a package that was called HiDiHelper will be featured. This

package was created in order to practice “creating a package”, and therefore will function

as method. This part is not written in the typical past tense, as a method section usually is,
rather in a present (somewhat imperative) tense, addressing the reader as you. This way

the method could seemly function as a manual, if need be.*

In the result section, the focus will be on shrinkISO. This chapter will cover the most
important parts of the internship. It includes a short introduction of the method, a

file:///D:/MinorProject/Report/Report.html%23references
file:///D:/MinorProject/Report/Report.html%23references
file:///D:/MinorProject/Report/Report.html%23references
file:///D:/MinorProject/Report/Report.html%23references
file:///D:/MinorProject/Report/Report.html%23references

confined analysis of chromosome 22, and a detailed explanation of the package itself. The

vignette is included as part of the results, with additional comments.

After a conclusion, the discussion will address some ideas for improvements. It will also

reflect on what was learned by featuring a small package that was created with the

knowledge and experience that was gained during the internship.

* This was a topic after one of the presentations. As only the slides were available at the

time, this might work as an additional guide.

Method

Creation of the HiDiHelper package

Creating a package starts with the desire to create order in a chaotic collection of

functions that belong together. Putting functions together in a package provides for clean

and tranquil filing systems and more reproducible research methods.

In this chapter, the different steps that were taken in order to create a package are

explained, based on a package that was created in the first months of the internship. This
package, HiDiHelper, contains functions that make it easier to handle high dimensional

data, such as sequence data.

The following steps are based on Hilary Parker’s “Writing an R package from scratch”6. Her

directives were followed for all packages created during this internship.

Set up

Preparatory to creating your own package, you will need to install two existing packages.
Package devtools7 provides R functions that simplify common tasks when building an R

package and roxygen28 provides for automated documentation. Create a parent directory

in which you want to build your package, and set this as the current working directory in R.
With the command create_package("HiDiHelper", roxygen = TRUE)*, you create

the fundamentals of a package.

The fundamental elements of the package include a DESCRIPTION**, a NAMESPACE and

two folders, /R/ and /man/. The NAMESPACE is a confusing part of package building, but

roxygen2 makes this easier. Roxygen2 will write it for you, as long as you use the right
syntax. Important for that is the DESCRIPTION. In the DESCRIPTION (shown below) you

write the specifics of your package, like the package name and title, the creator(s), a short

description, etc. If your package depends on functions from other packages, you can use
the Import: command. When a user installs your package, the packages listed

in Imports: will also be installed, if not already present. It is advised to explicitly

use package::function() when you refer to functions from other packages within your

file:///D:/MinorProject/Report/Report.html%23references
file:///D:/MinorProject/Report/Report.html%23references
file:///D:/MinorProject/Report/Report.html%23references
https://r-pkgs.org/description.html
https://r-pkgs.org/namespace.html

functions. Under Suggest: you can list packages that could be beneficial to your package,

but are not absolutely required. These packages will not be automatically installed.

DESCRIPTION

Functions & Help files

The functions that are to be included in the package, you save in the /R/ folder

as function.R function files. For roxygen2 it works best if you store each function in a

separate file. Hidden functions, which do not require a help file (a.k.a. functions you only

use internally and therefore do not need a help file), can be saved in a single file.

Roxygen2 makes use of special comments (#'). It will ignore regular comments (#), so you

can keep using those for your own convenience. As an example, the function file
of HiDiHelper::mysplit() is shown below. Start your function file with the title of the

function, an empty (but commented) line and a short description. For other information in
the function file, roxygen2 uses ‘tags’ (@tag) at the beginning of a line (but after the special

comment). The most common tags in function files
are @param, @return and @examples. @param is used to describe the input of the

function. The tag is followed by the name of the argument, and then the description.
(#' @param argument_name Description.) @return is used to give a description of the

output, and with @examples you can show users how to run the function. The

tag @export is used to make the function publicly available and usable outside of your

package. (By default, roxygen2 does not export anything.) A function file of HiDiHelper
function mysplit() is shown below as an example.

Function file mysplit.R

To create and update the help files, you run devtools::document(). (Make sure your

working directory is set to inside the package). Roxygen2 will then automatically create (or
update) function.Rd help files in the /man/ folder. As an example, the .Rd file

of mysplit() is shown below. The tags are now converted to the correct format for a help

file.

Rd file mysplit.Rd

The help file that will emerge from the previous examples is shown below. When
using ?mysplit() a document like this one will show up in R.

Help with ?mysplit()

Add more guidance

You can make your package more user friendly by adding some more guidance in the form
of a README.md file. A README will show up on the main page of for example GitHub or

BitBucket. You can use this to write a short description of your package and the

installation procedure.

Finally, you can add a detailed manual to your package. In R this is called a vignette. A

vignette can include various examples of your functions, an exemplar analysis or a step-
by-step roadmap. The easiest way to write a vignette is with R Markdown9 (and knitr10). The

vignette is best included in the package as both an .Rmd and an .html/.pdf file in its

own /vignettes/ folder. It is possible to add (toy) data to your package that is used by

(the examples in) the vignette. These data you generally add to a separate /data/ folder.

* In this step we advise you to use create_package(), opposed to just create() as

Parker’s guidelines suggest. The function create() does not cooperate well with the

current version of roxygen2.

file:///D:/MinorProject/Report/Report.html%23references
file:///D:/MinorProject/Report/Report.html%23references

** “In fact, it [the DESCRIPTION] is the defining feature of a package (RStudio and devtools

consider any directory containing DESCRIPTION to be a package).” 11

Results

ShrinkISO method and package

The main goal of this internship was to put a collection of functions from a method that
was previously called shrinkISO together in a package. This method was designed for the

analysis of differential exon usage (DEU) from exon count data. It is an empirical Bayesian

approach method utilizing mixed effect models as well as integrated nested Laplacian

approximation (INLA5) in order to identify the presence or absence of DEU at the gene-level
in a pairwise comparison. The analysis relies on three steps: Calculation of normalization

factors (yellow), estimation of the full and the null model, and the computation of

posterior probabilities, Bayes factors and multiple testing correction. In the next

paragraphs, these steps will be explained in more detail.

In this chapter, the shrinkISO method is used on a small analysis of chromosome 22 to get

an idea of method, and the use of the functions. This experience is used to develop the

shrinkISO package, which is featured in the second part of this chapter.

DEU analysis of chromosome 22

Introduction

To get familiar with the shrinkISO method, a small analysis of chromosome 22 was

performed. In this analysis, exon-level count data from two cancer types were compared

for DEU. Group one contained ten samples of breast cancer (BRCA) counts and group two

held ten colon adenocarinoma (COAD) samples.

Count data for this analysis came from the cancer genome atlas (TCGA) database. The
database is used for its large sample sizes, which allows to check the replicability of the

results. This is important for proving the method reliable. However, biological outcomes

are of less interest. Doing this analysis as practice gives an idea of the use and convenience

of the functions and the existing scripts, and the user friendliness of the method as is.

Method

For the extraction and organization of the data, the R tool recount212 and scripts from

Robin Schutter and Terry Chan were used. A disjoint exon-level data count file was
extracted from the TCGA data base with the
scripts data_extraction.Rmd and get_count_info.R.

The data consisted of three different data sets: Sample data, Annotation data, and Count
data. Because of the large size of the data, this method made use of indices to identify the

different groups. Indices were extracted from the sample data and saved separately.

file:///D:/MinorProject/Report/Report.html%23references
file:///D:/MinorProject/Report/Report.html%23references
file:///D:/MinorProject/Report/Report.html%23references

With the Shell script join_counts.sh, annotation data and count data were linked. A

hiccup presented itself while running Shell scripts. The scripts were written in Linux; using

them in Windows gave an error. As it appeared, the difference in end-of-line-character of
the different operating systems was the cause of trouble. This problem was solved by re-

extracting part of the data and running the scripts via WSL-Ubuntu. Another part of the

data was made fit by changing end-of-line-characters using Notepad++.

The samples of cancer types BRCA and COAD were extracted from the count data with a
python script filter.py. The same was done for the annotation data with

the get_count_info.R script. Still, the filtered count data file was to large to load into R

at once. Therefore, chunks were made by dividing each sample over separate files
with split.py.

Normalization was performed with the TMM_norm.R and annotation.R scripts. These

scripts included functions from the shrinkISO package that were later rewritten in order to

make the package more applicable on broader data. This TMM-based normalization makes
use of the calcNormFac() function from the EdgeR package. The scripts resulted in a

vector with TMM factors, a vector with the library sizes, and a list of offsets for each

sample.

To restrict computational power needed for the estimation of the models, data was split
by chromosome with split.sh. From here on only chromosome 22 remained in the

analysis.

The analysis was ran by three scripts. The first script split.R randomly picked ten

samples from each cancer type using the indices. The script run_all.R ran these

samples, together with the offsets, sample data and annotation data through INLA, twice.

Both the full and the null model were estimated in this script. Running chromosome 22 (on

four cores) took three hours.

From the two models, the lFDR.R script computed the a priori probability, the local FDR,

the posterior, and the Bayes factors for each gene. This script automatically computed
three objects: res25 with an fdr.cut of 0.1 and a threshold of 1/25, res100 with the same

cut, but a threshold of 1/100, and resall with an fdr.cut of 1.0. Results from the analysis

were saved in .RData files.

Results

To get familiar with the plotting functions, the structure of the results, and further

processing steps, the results of the chromosome 22 analysis are shown in various plots.

Some of the plot functions will be included in the package, others are from R base.

Prior vs. Posterior

This plot of the prior and posterior is drawn with the R base plot function and
the density() function. It shows the occurrence (density) of the initial and updated

probabilities from resall.

Significance of genes

In this plot the number of exons on a gene against the local False Discovery Rate is shown.
The coloring is done by p0 density. It demonstrates whether the significance of a gene

depends on the number of exons this gene contains. Genes with a higher number of exons

seem to have a significant outcome more often. Of the 641 genes in chromosome 22, 132

genes were found significant.

Significant gene in a step plot

The plot above shows one of the genes that was found significant. The x-axis represents a

gene by plotting the exons in genomic order along the axis. Each line represents the TMM
corrected and arc-hyperbolic-sine transformed exon count of a sample. In the first half of

this gene, BRCA samples show more counts, while COAD samples have higher counts from

exon 17 and on. This step.plot() function was specifically designed to visualize these

type of results, and will be included in the package.

Conclusion

Even though the method stands, there is some room for improvement. Especially when it
comes to the usability and the aim on broader use. The existing scripts tend to make this a

niche method, only applicable to a certain type of data. Developing a package will

contribute to a more replicable method, and will improve user friendliness.

ShrinkISO package development

Once familiar with the possibilities of R coding and package development, and more

comfortable around the shrinkISO method, it is time to combine these aspects.

Overview

As a first step towards creating the package, a visual representation of the method was
composed. It was important to understand the exact course of events; origin of certain

data, change in data structure during certain processes, input, output and goals of

functions etc. In order to better comprehend these things, (a predecessor of) the following

overview was contrived.

This simple but veracious figure gives a good idea of the method. In fact, the overview gave

such a strong grasp of the whole concept, that was decided to include it in the package
manual. In order to do so, the figure needed to be developed using R. Soon the realization

came that this was more work than it looks like; R lacks a simple option to draw overviews

like these. Trying to make this as easy as possible, functions were written for the different
building blocks of the overview figure. Quickly, this became a project on its own. (More on

this project in the discussion.)

The package

The package was created according to the method as described above. Help files were

written with roxygen2 for every user-accessible function. (Internal functions can be found
in hidden_functions.R.) Dependencies on three other packages were added:
EdgeR13 for the TMM normalization function calcNormFac() inside calcOffs(),

ShrinkBayes14 for calling the INLA() function during the model estimations, and

snowfall15 for parallel computation of the model. A README was written to include a short

description. Installation details will need to be completed once the package becomes

publicly available.

The majority of the last months was spend on the shrinkISO vignette. The vignette has

become a step-by-step guide for using the method in this package, based on toy data. To

have an exemplary analysis with data that do not consume too much space, a semi-
random selection of 40 genes was made. This selection was based on the analysis of

chromosome 22. Several functions were written in order to randomly select 20 genes that

were considered significant, and combine these with 20 randomly selected genes that

file:///D:/MinorProject/Report/Report.html%23discussion
file:///D:/MinorProject/Report/Report.html%23method
file:///D:/MinorProject/Report/Report.html%23references
file:///D:/MinorProject/Report/Report.html%23references
file:///D:/MinorProject/Report/Report.html%23references
file:///D:/MinorProject/Report/Report.html%23chr22analysis
file:///D:/MinorProject/Report/Report.html%23chr22analysis

were found non-significant. Sample, annotation and count data were filtered on solely

these genes. These were saved in the shrinkISO/data/ folder as pdata (sample/patient

data, 1 KB), Gencode (original name of the annotation data file when extracted with

recount2, 8 KB), and exon_counts (count data, 46 KB).

The original vignette can be found in shrinkISO/vignettes/ as .Rmd and .html file. It

serves as user manual for the method and consists of four chapters: an introduction, an

explanation of the input data, the analysis itself and the visualization of results. The

vignette is added as part of this report in the appendix, with some additional comments on

the development and background information in orange .

Discussion
The shrinkISO package is an improvement upon the initial method in that it is more widely

applicable, and more user friendly and accessible. The hurdles that were encountered
during the first analysis made this clear. Using a method from personalized scripts was

time consuming. The package is an improvement, not only in that it is easier to share, it is

also more reliable. It makes for better reproducibility of results. It is open to users with less

experience and just a lot faster to master for the ones with experience.

This project, including the vignette, will be a starting point for a detailed paper on the

shrinkISO package. A genome wide analysis covering BRCA vs COAD comparison with
different sample sizes is still in progress, as well as an analysis of BRCA sub types. Using the

package, it will be easier to do a replicability analysis and check the robustness of the

method under different conditions.

Still, there is some room for improvements on the package. A niftier formulation of some

of the functions would contribute to user friendliness. For example,
the inlai.sf() function still needs to run twice with practically the same settings.

However, while keeping the original function available for users with very specific desires,
another overarching function could be written to run both the full and the null model in
one go. The function calcOffs() might need some altering when it comes to digesting

very large data sets. As the analysis of chromosome 22 needed to be divided in chunks in
order to go through the normalization procedure, calcOffs() was written to do this all at

once. There was no time left to delve into this and investigate, but it might still require a

closer look. Furthermore, a suggestion was made to take the length of the exons and

position of introns into account when drawing a step.plot. Implementing this might ask for

some puzzling, but the data are all there. Currently only the order of the exons is taken into
account, but combining genomic locations of the exons (start and end position, present
in data.ann) and count data could give a new and surprising perspective.

Other plans for the future concern the visual representation of the method that was shown
in the the shrinkISO package overview section. Beginning a new project, sometimes it is

difficult to see the whole picture. Encountering the project in a visual manner can help to

get a hold of a project. Many people prefer a visual explanation over text. However, R has

no easy way of drawing these overviews. To make things easier (primarily for this project),
functions to draw the several different shapes to create these overviews were written. But

file:///D:/MinorProject/Report/Report.html%23overview

since this project might not be the only R project benefiting from a clear overview, an

additional package was created. The package arrows is not yet finished, but will be

available on GitHub as soon as it is.

An interesting next move could be to bring this package to the web with shiny16. Drawing

figures using the shiny user interface might be more approachable for people that are less
experienced in R. As this figure will be turned to code that can be copied, they will have

somewhere to start from and build upon. Bioinformatics is a fast growing field. Yet, not all

scientists are comfortable using R, and for some it might even seem scary. Web tools like

shiny could help make it more approachable.

Acknowledgements
I would like to thank all members of de Menezes’ group, for their time and support. A

special thanks to Terry Chan, for being patient, extremely helpful and, above all, kind when

I struggled starting up this project. I would like to thank a past member of the group, Robin

Schutter. A share of the work that was done during this internship, was build on work to
which he contributed during his internship. And finally, my supervisors, Renee de Menezes,

Renaud Tissier and Adrien Melquiond. Thank you for your patience, understanding, and

over all positive attitude.

References & links

1. Nilsen, T., Graveley, B. Expansion of the eukaryotic proteome by alternative

splicing. Nature 463, 457–463 (2010).

2. Park, E., et al., The Expanding Landscape of Alternative Splicing Variation in Human
Populations. AJHG 102.1, 11-26 (2018).

3. Yeo, G., Holste, D., Kreiman, G. et al. Variation in alternative splicing across human

tissues. Genome Biol 5, R74 (2004).

4. Anders S., Reyes A., Huber W., Detecting differential usage of exons from RNA-seq
data. Genome Res. 2008-17, (2012)

5. R-INLA Project

6. Parker, H., Writing an R package from scratch. (2014)
7. Wickham, H., Bryan J., et al. Devtools.

8. Wickham, H. et al. Roxygen2

9. Dervieux, C, et al. R Markdown
10. Xie, Y., et al. Knitr

11. quote: Bryan, J., Wickham, H., R Packages, chapter 8. Package metadata.

12. Collado-Torres, L. et al. recount2

13. Chen, Y., et al. edgeR
14. van de Wiel, M. A., ShrinkBayes

15. Knaus, J., Snowfall
16. Chang, W. et al. Shiny, shiny.rstudio.com

file:///D:/MinorProject/Report/Report.html%23references
https://doi.org/10.1038/nature08909
https://doi.org/10.1038/nature08909
https://doi.org/10.1016/j.ajhg.2017.11.002
https://doi.org/10.1016/j.ajhg.2017.11.002
https://doi.org/10.1186/gb-2004-5-10-r74
https://doi.org/10.1186/gb-2004-5-10-r74
https://pubmed.ncbi.nlm.nih.gov/22722343/
https://pubmed.ncbi.nlm.nih.gov/22722343/
https://www.r-inla.org/
https://hilaryparker.com/2014/04/29/writing-an-r-package-from-scratch/
https://cran.r-project.org/web/packages/devtools/index.html
https://cran.r-project.org/web/packages/roxygen2/vignettes/roxygen2.html
https://rmarkdown.rstudio.com/
https://cran.r-project.org/web/packages/knitr/index.html
https://r-pkgs.org/description.html
https://bioconductor.org/packages/release/bioc/html/recount.html
https://bioconductor.org/packages/release/bioc/html/edgeR.html
https://github.com/markvdwiel/ShrinkBayes
https://cran.r-project.org/web/packages/snowfall/index.html
https://cran.r-project.org/web/packages/shiny/index.html
https://shiny.rstudio.com/

