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Abstract 

 The Drift Diffusion Model (DDM) has long been used to investigate perceptual 

decision making. Previous research has linked pupil size measures to decision making 

processes, which in turn were linked to parameters of the DDM (Strauch et al., 2022b; de Gee 

et al., 2014; Murphy et al., 2014). Little research has been done to pair the DDM to the 

orienting response, a spatial component of pupil size. This research attempts to investigate 

the relationship between the orienting response (spatial decision making) and parameters of 

the DDM. We used a spatial decision-making paradigm in which participants indicated which 

Gabor patch (left or right) was larger. The Gabor patches were laid over black- and white bars 

for 200ms at the start of a trial to induce a pupil light reflex. This allowed us to measure the 

degree of spatial attention (Strauch et al., 2022a). We found pupil constriction to be a 

significant predictor of RT as well as accuracy. Stronger pupil constriction indicated longer 

RT and lower accuracy. We additionally replicated previous findings by Murphy et al. (2014), 

baseline pupil size positively predicts accuracy.  These results show we can indeed link the 

orienting response to DDM parameters. To what specific DDM parameters these can be 

linked is a topic for future research. 
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1. Introduction 

Decision making is a high-level cognitive process based on perception, attention, and 

memory (Prezenski et al., 2017). It is also a process in which choices are made by gathering 

information and assessing alternatives. Studying these choices has been an integral part of 

cognitive psychology (Ratcliff & Smith, 2006). We gather sensory information from a set of 

alternatives and compute this information to come to an informed decision. Choices are often 

binary: ‘yes or no’, ‘left or right’, ‘this or that’ and are generally studied as such. Experimental 

psychology has predominantly used random dot motion paradigms (RDM) to study perceptual 

decision making (Britten et al., 1992; Forstmann et al., 2010; Mulder et al., 2010, 2013; Pilly 

& Seitz, 2009; van Maanen et al., 2011). Participants are required to gather, process and 

interpret visual information on the properties of the RDM, to make an informed decision about 

its physical properties. During the task, dots move randomly through a circle shaped field. The 

participant is required to indicate, when more than fifty percent of the dots are moving in the 

same direction. Tasks like the RDM return behavioral outcome measures such as reaction time 

(RT) and accuracy. These behavioral measures are frequently modeled with so-called drift 

diffusion models (DDM).  

 

1.1 Drift Diffusion model 

The DDM is the dominant model used to study decision making. It takes behavioral 

outcome measures (RT & accuracy), translating these into components of cognitive processing 

(Ratcliff & McKoon, 2009). The DDM uses a multitude of parameters amongst which are a 

starting point, non-decision time, boundary separation and drift rate (Figure 1). The starting 

point (z) is associated with a bias towards one of the choice alternatives. This is usually halfway 

between both decision boundaries but can be manipulated. By explicitly (cue) or implicitly 

(changing proportion) attending the participant to which option most likely holds the correct 

answer (Mulder et all., 2012). For spatial decisions, starting bias could also be related to 

pseudoneglect, as this presents an innate attentional bias towards the left-visual hemifield 

(Jewell & McCourt, 2000). The stronger the attentional bias, the larger the shift in starting 

point. Underlying attentional networks have been suggested to determine the degree of this 

attentional bias (Strauch et al., 2022b). Non-decision time (T) is thought to reflect peripheral 

processing, this includes motor response as well as processing of the scene and stimuli prior to 

information accumulation. It can be manipulated by increasing mental load (van Ravenzwaaij 



et al., 2011), but is often stable within an experiment. Boundary separation can be easily 

manipulated by instructing the participant about speed and accuracy. An emphasis on accuracy 

is thought to increase caution and in turn boundary separation (Ratcliff & McKoon, 2008). 

Lastly, drift rate (v) is calculated using the behavioral outcome measures. It is associated with 

difficulty and reflects the accumulated evidence for the choice (van Ravenzwaaij et al., 2011).  

 

Figure 1 

Graphical representation of DDM parameters 

 
Note. The image shows three simulations using the DDM. Two drift towards the correct 

response, one drifts towards the incorrect response. Adapted from Ratcliff, R., & McKoon, G. 

(2008). The diffusion decision model: theory and data for two-choice decision tasks. Neural 

computation, 20(4), 873-922. 

 

1.2 Psychophysiology to understand decision making 

It has been shown how powerful the DDM is for modeling decision making. If the DDM 

indeed reflects our decision-making processes, we should be able to isolate 

psychophysiological substrates of the parameters specified by the DDM. Amongst recent 

publications, pupil size is arguably the most promising psychophysiological measure with 

multiple links to separate parameters of the DDM (de Gee et al., 2014; Murphy et al., 2014; 

Luck, 2005; Poldrack et al., 2011). 

Pupil size not only reflects changes in brightness and accommodation, but an array of 

mental processes (Naber et al., 2011, 2013; Strauch et al., 2022b). This includes changes in 

attention and high-level cognition. These changes in attention are linked to differential 

attentional networks (alerting, orienting, executive function). Pupil size changes linked to the 

alerting response are mediated by a network centered around the locus coeruleus (LC) and the 



norepinephrine system (Sara, 2009). The LC is non-spatially organized and elicits relatively 

slow responses compared to structures of other attentional networks (Strauch et al., 2022a.). 

De Gee et al. (2014) demonstrate a link between drift rate/evidence accumulation and pupil 

size during decision making. This is little surprising, given that the pupil closely tracks 

fluctuations in mental effort/memory load (Alneas et al., 2014). Furthermore, Murphy et al. 

(2014) demonstrated how baseline pupil size (thus prior to the decision-making process) is 

supposedly linked to increases in evidence accumulation rate (drift rate) variability.  Changes 

in pupil linked arousal states thus affect the decision-making process. 

The orienting response is a reflexive response evoked by novel stimuli (Sokolov, 1990). 

This response is modulated by the superior colliculus (SC), a spatially organized structure 

located in the posterior midbrain. The SC is known to play a critical role in the neural control 

of saccadic eye movements (King, 2004). As the SC and the orienting response are heavily 

linked, the orienting response has been suggested to determine the degree of the change in the 

deployment of spatial attention. The SC has since been described to likely mediate the pupil 

size changes caused by the attentional orienting response (Strauch et al., 2022a).   

Executive functions, such as changes in focal attention, likely affect pupil size through 

use of both the LC- and SC systems (Joshi & Gold, 2020; Strauch et al., 2022b).  

Components of the DDM have already been linked to the alerting networks through 

pupil size (Alneas et al., 2014; de Gee et al., 2014; Murphy et al., 2014). Here we set out to test 

whether pupil size can indicate a further parameter in the DDM, by investigating pupil size 

changes associated with orienting in the beginning of a decision-making process. We do this 

by using a spatial decision task in combination with pupillometry, in contrast to the more 

frequently used RDM tasks (Britten et al., 1992; Forstmann et al., 2010; Mulder et al., 2010, 

2013; Pilly & Seitz, 2009; van Maanen et al., 2011). Though most decisions in life are spatial, 

RDM tasks are not (Mulder et al., 2013). As the orienting response relies heavily on the SC 

and this structure is spatially organized, a spatial task is needed to investigate it. Our pupils 

respond to changes in brightness (Binda & Gamlin, 2017). As Gabor patches can be set to equal 

brightness as background luminance, these stimuli are suited for pupillometry. The research 

will thus use Gabor patches of different sizes in a spatial organization (one left, one right) to 

investigate our hypotheses. 

  



2. Research question & hypotheses 

 

To what extent can the orienting response be linked to components of the DDM? 

 

1. Pupil constriction is linked to behavioral outcome measures of the DDM. 

1A. Pupil constriction is a predictor for RT 

1B. Pupil constriction is a predictor for accuracy 

2. Baseline pupil size should be predictive of accuracy.  

3. If the orienting response indeed determines the degree of the attentional bias, this 

should influence the starting point for decision making. 

 

 

3. Methods 

3.1 Participants 

A convenience sample of n = 19 participants took part in the experiment. Of these, five 

were discarded due to incomplete/unusable data. Data of n = 14 participants (Mage = 21.8, SDage 

= 2.4) were used in the analyses. All participants read and agreed to an informed consent in 

which it was stated that the acquired data would be anonymized and handled confidentially. 

There were no negative consequences to participating in or aborting the experiment. 

Participants could decide to receive either € 6,- cash or 0.75 participation credit in line with the 

UU guidelines. 

 

3.2 Materials 

The experiment was conducted using PsychoPy version 2020.2.9 (Peirce et al., 2019) 

on an Asus ROG PG278Q monitor with a refresh rate of 99 Hz. The monitor featured a screen 

resolution of 2560*1440 pixels at 67.5cm distance from the participant. A standard keyboard 

was placed on the desk between monitor and participant. Gaze position and pupil size of the 

right eye were measured using an Eyelink 1000+ tracker (SR research) in a light- and sound- 

attenuated laboratory. A chin- and forehead rest was used to ensure stable head position.  

 



3.3 Design and procedure 

Before the experiment started, participants read an information letter and informed 

consent. After signing the informed consent and agreeing to participate in the experiment, set-

up and length of the experiment were explained. Before starting the experiment, a nine-point 

calibration and validation procedure of the eye-tracker was performed. The experiment 

consisted of two parts for a total of three blocks. The first part of the experiment contained one 

block with 100 trials and was used to determine stimulus size difference for part two of the 

experiment (Figure 2A). Participants were instructed to attend and keep their gaze position at 

the center of the screen for more than 0.5 seconds to start a trial. A trial consisted of two Gabor 

patches with gaussian masks presented 1000 pixels (visual angle needs to be calculated) 

towards the left- and right side of the fixation cross. These circles had varying sizes, with a 

base size of 250 pixels. Stimulus size difference could either be: 5, 10, 15, 25 or 50 pixels. With 

size (up to twenty times per condition) and target side randomly selected each trial.  Participants 

were required to keep their gaze position at the center while covertly attending the Gabor 

patches. Participants were instructed to react as fast and accurately as possible to which of the 

two patches was larger using the left and right arrow keys. Trials were self-paced with the trial 

ending after keypress, participants would additionally receive feedback on their performance 

after each trial. Stimuli were presented for a maximum of five seconds in case of no response. 

If gaze position was shifted from the center of the screen, or no response was given, a warning 

message would be displayed, and the trial would be recycled to be redone later. Participants 

would receive a message with the number of trials after each 25 correct trials. After completing 

100 correct trials, participants could get out of the chinrest and take a mandatory five-minute 

break as the stimulus size difference was calculated. 

The stimulus size difference for part two of the experiment was calculated with a 

proportional drift diffusion model (PRDDM) in Jupyter Notebook. Responses faster than 0.15 

seconds and slower than 2 seconds were removed from the dataset. Using RT, accuracy and 

size difference, the model was fitted over the data. Stimulus size difference for a performance 

threshold of 80% was calculated and plotted, this threshold determined the difference between 

stimuli for the following two blocks. 

Part two of the experiment consisted of two separate blocks with 125 trials each. Trials 

remained self-paced but the participants no longer received performance feedback. 

Experimental design of block 1 was equal to that of the threshold block with one exception 

(Figure 2A). The feedback screen was changed to a one second blank grey screen to remove 



aftereffects (Thompson & Burr, 2009) and allow time for blinking. Participants could take an 

additional break between blocks but were required to keep their head on the chinrest. Block 2 

added a brief 200ms visual stimulus at the beginning of each trial (Figure 2). Black (<.15 cd/m2) 

and white (42.5 cd/m2) bars (width of 9ᵒ visual angle), randomly presented at the right or left 

of the screen respectively were presented behind the Gabor patches. Participants were again 

instructed to report which stimulus was larger and to respond as fast and accurately as possible. 

After completion of both parts of the experiment, participants were thanked and 

debriefed on the aim of the research. 

 

Figure 2A 

Trial sequence threshold- & block 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. Trials always started with a grey baseline screen, followed by a screen with two Gabor 

patches. After responding participants either received feedback in the ‘threshold block’ or a 

grey screen in block 1.  



Figure 2B 

Trial sequence block 2 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. Trials always started with a grey baseline screen, followed by a screen with two Gabor 

patches. During the first 200ms of the trial screen, black/white bars in either configuration 

were layed under the Gabor patches. After response a one second grey pause screen was 

presented. 

3.4 Stimuli 

Each Gabor patch used in the experiment had a set of constant physical properties: 

[Texture: Sin, Mask: gauss, Phase (in cycles): 0.0, Spatial frequency: 0.012, Texture 

resolution: 128] 

Gabor patches in part one of the experiment had varying sizes, with a base size of 250 

pixels. Stimulus size difference could either be: 5, 10, 15, 25 or 50 pixels. With size (up to 

twenty times per condition) and target side randomly selected each trial.   

 

3.5 Data processing 

Data was processed using a custom-made Python script (3.7.9). Invalid trials were removed 

from the dataset. Pupil traces were baseline corrected by subtracting the average pupil size of 

the last 200ms before trial onset from every following data point.   



4. Results 

To investigate our hypotheses, two mixed linear models (MLM) were run. Results are 

split in three sections. In the first we predict RT, in the second section we predict accuracy, 

and in the third we present the measured pupil traces. Figure 5 shows pupil traces 

comparisons for the first and second block. It is evident that there is no pupil constriction in 

the first block, which is why there is little use in using this data to investigate the relationship 

between the orienting response and the DDM. The results will thus be focused on the second 

block. As the DDM has many components and behavioral measures linked to it, our 

prediction of RT as well as accuracy both attempt to answer our initial hypothesis. 

 

4.1 Predicting reaction times 

Both (MLM) regressions were run in Python using the statsmodel package (Seabold et 

al., 2010). Our first MLM included RT as the dependent variable, main effects for accuracy, 

baseline pupil size, constriction amplitude and a squared component of the constriction 

amplitude were added. Participant was included as a random effect. This model was chosen 

through the Akaike Information Criterion (AIC), as it had the lowest AIC value (Appendix A). 

A total of eight models to predict RT were tested. The model was specified as follows:  

 

RT ~ accuracy + baseline pupil size + constriction amplitude + squared constriction 

amplitude + (1|Participant) 

 

Results show a very large z-score for constriction amplitude, as well as a large z-score 

for accuracy (Table 1) with both being statistically significant.  

 

     Table 1 

     Fixed and random effects for the MLM with RT as the predicted variable. 

     

 



A linear regression was calculated to predict RT based on constriction amplitude, for 

both correct- (Figure 3A) and incorrect (Figure 3B) answers.  A significant regression was 

found for correct answers (F(1, 1213) = 29.43, p< 0.001) with an R2 of 0.024. Participants’ 

predicted RT is equal to 0.9756 – 0.0005 x constriction amplitude in seconds. A similar 

significant regression equation was found for incorrect answers (F(1, 364) = 4.449, p<0.05) 

with and R2 of 0.012. Participants’ predicted RT is equal to 1.0270 - 0.0003 x constriction 

amplitude in seconds. For both correct and incorrect answers, the constriction amplitude related 

negatively to reaction time with slower reactions observed when the pupil constricted stronger. 

 

Figure 3 

Reaction time predicted by constriction amplitude  

Note. Constriction amplitude is given in arbitrary units but can be defined as the difference 

between the absolute pupil constriction – average baseline pupil size. (A) RT predicted by 

constriction amplitude for correct answers. (B) RT predicted by constriction amplitude for 

incorrect answers. 
 

 

A linear regression was calculated to predict RT based on constriction amplitude (Figure 

4A) and baseline pupil size (Figure 4B).  A significant regression equation was found for 

constriction amplitude (F(1, 1579) = 33.59, p< 0.001) with an R2 of 0.021. Participants’ 

predicted RT is equal to 0.9870 – 0.0004 x constriction amplitude in seconds. A similar 

significant regression equation was found for baseline pupil size (F(1, 1579) = 30.66, p<0.001) 

with and R2 of 0.019. Participants’ predicted RT is equal to 0.9298 + 0.0001 x baseline pupil 

size in seconds. Constriction amplitude related negatively to reaction time with slower reaction 

times observed when the pupil constricted stronger. The opposite was found for baseline pupil 



size, this related positively to reaction time with faster reaction time observed with a higher 

baseline pupil size.  

 

Figure 4 

Reaction time predicted by constriction amplitude vs. baseline pupil size 

Note. Constriction amplitude and baseline pupil size are given in arbitrary units but can be 

defined as the difference between the absolute pupil constriction – average baseline pupil 

size. (A) RT predicted by constriction amplitude. (B) RT predicted by average baseline pupil 

size.  

 

4.2 Predicting accuracy 

Our second MLM included accuracy as the dependent variable, main effects for 

baseline pupil size and constriction amplitude were added. Participant was included as a 

random effect. This model was chosen through the Akaike Information Criterion (AIC), as it 

had the lowest AIC value (Appendix B). A total of four models to predict accuracy were tested. 

The model was specified as follows:  

 

Accuracy ~ baseline pupil size + constriction amplitude + (1|Participant) 

 

 Results show both baseline pupil size and constriction amplitude to be significant 

predictors of accuracy (Table 2).  

 

  



   Table 2 

   Fixed and random effects for the MLM with accuracy as the predicted variable. 

    

 

 

4.3 Pupil traces 

Figure 5 shows the average pupil traces for block 1 and block 2. Average pupil traces 

in block 1 show a clear dilation, while average traces in block 2 show a constriction. 

 

Figure 5 

Average pupil traces for block 1 and block 2 

Note. Average pupil size relative to baseline in arbitray units (a.u.). Negative values on the y-

axis indicate a smaller pupil size compared to the baseline featuring a grey screen.  

 

A dependent samples t-test was run to investigate the maximum constriction difference 

between the pupil traces for correct- and incorrect answers (Figure 6). Maximum pupil 



constriction was calculated for both traces and a window of twenty data points (ten to each 

side) was taken as the array. The dependent t-test shows a significant difference between the 

pupil traces for correct- and incorrect answers, t(19)=152.591, p<0.0001.  

 

Figure 6 

Pupil traces for correct and incorrect answers 

Note. Average pupil size relative to baseline in arbitray units (a.u.) for both correct (blue) and 

incorrect (orange) answers. Negative values on the y-axis indicate a smaller pupil size 

compared to the baseline featuring a grey screen. Participants had an average response time of 

1185ms for correct answers and 1282ms for incorrect answers. As trials were self-paced, less 

data was collected at later time points. This explains the poorer data quality seen further along 

the x-axis. *** = p < 0.0001. 

  



Discussion 

The pupil’s alerting response, mediated by the LC, has already been linked to 

components of the DDM (Strauch et al., 2022b). Pupil size during the decision-making process 

has been linked to drift rate/evidence accumulation (de Gee et al., 2014). As well as baseline 

pupil size (before the decision-making process) being linked to increases in drift rate variability 

(Murphy et al., 2014). In this research we investigated whether the pupil orienting response 

can also be linked to DDM components. The orienting response is mediated by the SC, which 

is a spatially organized neural structure. As the SC and orienting response are heavily linked, 

the response has already been suggested to determine the degree of the change in the 

deployment of spatial attention (Strauch et al., 2022b). Participants completed a spatial 

decision-making task, in which they indicated whether a Gabor patch presented on the left or 

the right was larger. This spatial decision-making task was used to adhere to the spatial 

organization of the SC (King, 2004). Whilst also fitting with demands of the DDM, as a binary 

forced choice paradigm (Ratcliff & Rouder, 2000). Here, we report several results 

demonstrating that the orienting response can indeed be linked to components of the DDM.  

We found pupil constriction to be a significant predictor of RT (p < 0.001) as well as 

accuracy (p < 0.05). Stronger pupil constriction indicates longer RT (Figure 4, Figure 5A) and 

lower accuracy. These findings are in line with our hypotheses as they show we can link the 

orienting response to the DDM. As well as offering an insight into the influence of the strength 

of the orienting response in combination with those parameters. Figure 3 shows constriction 

amplitude to be a negative predictor for RT irrespective of accuracy. Regression equations show 

a negative value per unit of constriction amplitude. This is because, though there is an increase 

in constriction amplitude, this is measured as a decrease in pupil size. We additionally found 

baseline pupil size to positively predict RT (Figure 4B). This is in line with our hypothesis, as 

well as previous findings by Murphy et al., (2014). Our second MLM (Table 2) shows both 

constriction amplitude (as mentioned above) and baseline pupil size to be slightly positive 

predictors of accuracy.  

Figure 6 shows a stronger pupil constriction for incorrect answers compared to correct 

answers (p<0.0001). If there is a strong orienting response (large constriction amplitude), one 

would assume a fast deployment of spatial attention (Strauch et al., 2022a). This spatial 

attention is required to come to a decision as we need to attend either side. We thus need to first 

deploy spatial attention and, if the pupil indexes this, it is conceivable the starting point in the 

DDM model changes with this. This reduces the distance to either one of the boundaries, likely 



reducing time needed to come to the decision associated with this boundary. However, it is also 

possible we show a strong orienting response if our spatial attention is at an incorrect position. 

In this case, a strong orienting response should be associated with slower responses. Though 

we see a stronger orienting response, our results also show an increase in RT for incorrect 

answers. This leaves room for speculation about the effect of both the orienting and alerting 

response on the eventual RT. If a stronger orienting response is indeed accompanied by a shift 

in starting point, this may be countered by the effect of mental effort during the decision-

making process (de Gee et al., 2014; Alneas et al., 2014).  

Though fitting the actual model is outside of the scope of this thesis, a next step in 

future research would be to link this orienting response to specific parameters of the DDM. 

Drift rate is unlikely to be linked to the orienting response, as it was already linked to pupil 

dilation (de Gee et al., 2014). As well as boundary separation, as this has been found to be 

manipulated by task instruction (Ratcliff & McKoon, 2008). As stated, it is very conceivable 

starting point could be linked to the orienting response. Fitting the model would possibly 

explain any confusion on the strength of the effect of both the orienting and alerting response. 

Perhaps non-decision time could also be linked to the orienting response, as it also reflects 

internal mental processes (van Ravenzwaaij et al., 2011). This would carry our third hypothesis 

over into a new research in which the model is fitted to the data. 

As our first block has proven to be non-informative for the orienting response, there is 

little use in keeping it in the experimental design. Without this first block, the number of trials 

in the ‘threshold block’ and block 2 could be increased. An increased amount of trials in the 

‘threshold block’ subsequently increases sensitivity of the PRDDM, leading to a better 

threshold value and a more accurate experiment. Additionally, the current paradigm has a base 

value for either the left-or right Gabor patch (250 pixels). The other Gabor patch is always 

larger by the number of pixels calculated in the ‘threshold block’. Participants are not informed 

on this, but it is possible they perceived it somewhere in the experiment. It is highly unlikely 

this was the case, as all participants reported to have found the task very difficult. As the 

threshold is calculated for the 250-pixel Gabor patch, an increase/decrease of this base size 

would alter the relative threshold. It would be better to randomly select whether the alternative 

is smaller or larger than the baseline size. This ensures participants cannot be sure about the 

correct answers without attending both sides of the screen. 

  



Reference list 

Alnæs, D., Sneve, M. H., Espeseth, T., Endestad, T., van de Pavert, S. H. P., & Laeng, B.

 (2014). Pupil size signals mental effort deployed during multiple object tracking and

 predicts brain activity in the dorsal attention network and the locus coeruleus. Journal

 of vision, 14(4), 1-1. doi:https://doi.org/10.1167/14.4.1 

Binda, P., & Gamlin, P. D. (2017). Renewed attention on the pupil light reflex. Trends in \

 Neurosciences, 40(8), 455-457. https://doi.org/10.1016/j.tins.2017.06.007 

Britten, K. H., Shadlen, M. N., Newsome, W. T., & Movshon, J. A. (1992). The analysis of

 visual motion: A comparison of neuronal and psychophysical performance. Journal of

 Neuroscience, 12, 4745–4765. 

Forstmann, B. U., Anwander, A., Schäfer, A., Neumann, J., Brown, S., Wagenmakers, E.-J.,

 Turner R. (2010). Cortico–striatal connections predict control over speed and

 accuracy in perceptual decision making. Proceedings of the National Academy of

 Sciences, 107, 15916–15920. doi:10.1073/pnas.1004932107 

de Gee, J. W., Knapen, T., & Donner, T. H. (2014). Decision-related pupil dilation reflects

 upcoming choice and individual bias. Proceedings of the National Academy of

 Sciences, 111(5), E618-E625. https://doi.org/10.1073/pnas.1317557111 

Jewell, G., & McCourt, M. E. (2000). Pseudoneglect: a review and meta-analysis of

 performance factors in line bisection tasks. Neuropsychologia, 38(1), 93-110.

 https://doi.org/10.1016/S0028-3932(99)00045-7 

Joshi, S., & Gold, J. I. (2020). Pupil size as a window on neural substrates of

 cognition. Trends in cognitive sciences, 24(6), 466-480.

 https://doi.org/10.1016/j.tics.2020.03.005 

King, A. J. (2004). The superior colliculus. Current Biology, 14(9), R335-R338. 

Krauzlis, R. J., Lovejoy, L. P., & Zénon, A. (2013). Superior colliculus and visual spatial

 attention. Annual review of neuroscience, 36. 

Book: Luck, S. J. (2005). An introduction to the event-related potential technique.

 Cambridge, MA: MIT Press.  

https://doi.org/10.1167/14.4.1
https://doi.org/10.1016/j.tins.2017.06.007
https://doi.org/10.1073/pnas.1004932107
https://doi.org/10.1073/pnas.1317557111
https://doi.org/10.1016/S0028-3932(99)00045-7
https://doi.org/10.1016/j.tics.2020.03.005


van Maanen, L., Brown, S. D., Eichele, T., Wagenmakers, E.-J., Ho, T., Serences, J. T., &

 Forstmann, B. U. (2011). Neural correlates of trial-to-trial fluctuations in response

 caution. Journal of Neuroscience, 31, 17488–17495.

 doi:10.1523/JNEUROSCI.2924-11.2011 

Mulder, M. J., Bos, D., Weusten, J. M., van Belle, J., van Dijk, S. C., Simen, P., Durston, S.

 (2010). Basic impairments in regulating the speed–accuracy tradeoff predict

 symptoms of attention-deficit/hyperactivity disorder.. Biological Psychiatry, 68,

 1114–1119. doi:10.1016/j.biopsych.2010.07.031 

Mulder, M. J., Wagenmakers, E. J., Ratcliff, R., Boekel, W., & Forstmann, B. U. (2012). Bias

 in the brain: a diffusion model analysis of prior probability and potential

 payoff. Journal of Neuroscience, 32(7), 2335-2343.  DOI:

 https://doi.org/10.1523/JNEUROSCI.4156-11.2012 

Mulder, M. J., Keuken, M. C., van Maanen, L., Boekel, W., Forstmann, B. U., &

 Wagenmakers, E. J. (2013). The speed and accuracy of perceptual decisions in a

 random-tone pitch task. Attention, perception, & psychophysics, 75(5), 1048-1058.

 DOI: 10.3758/s13414-013-0447-8 

Murphy, P. R., Vandekerckhove, J., & Nieuwenhuis, S. (2014). Pupil-linked arousal

 determines variability in perceptual decision making. PLoS computational

 biology, 10(9), e1003854. https://doi.org/10.1371/journal.pcbi.1003854 

Naber, M., Frässle, S., & Einhäuser, W. (2011). Perceptual rivalry: reflexes reveal the gradual

 nature of visual awareness. PLoS One, 6(6), e20910

 https://doi.org/10.1371/journal.pone.0020910 

Naber, M., Alvarez, G. A., & Nakayama, K. (2013). Tracking the allocation of attention using

 human pupillary oscillations. Frontiers in psychology, 4, 919.

 https://doi.org/10.3389/fpsyg.2013.00919 

Book: Poldrack, R. A., Mumford, J. A., & Nichols, T. E. (2011). Handbook of functional \\

 MRI data analysis. New York: Cambridge University Press. 

Posner, M. I., & Dehaene, S. (1994). Attentional networks. Trends in neurosciences, 17(2),

 75-79.https://doi.org/10.1016/0166-2236(94)90078-7 

Pilly, P. K., & Seitz, A. R. (2009). What a difference a parameter makes: A psychophysical

 comparison of random dot motion algorithms. Vision Research, 49, 1599–1612.

 doi:10.1016/j.visres.2009.03.019 

https://doi.org/10.1523/JNEUROSCI.2924-11.2011
https://doi.org/10.1016/j.biopsych.2010.07.031
https://doi.org/10.1523/JNEUROSCI.4156-11.2012
https://doi.org/10.3758/s13414-013-0447-8
https://doi.org/10.1371/journal.pcbi.1003854
https://doi.org/10.1371/journal.pone.0020910
https://doi.org/10.3389/fpsyg.2013.00919
https://doi.org/10.1016/0166-2236(94)90078-7
https://doi.org/10.1016/j.visres.2009.03.019


Prezenski, S., Brechmann, A., Wolff, S., & Russwinkel, N. (2017). A cognitive modeling

 approach to strategy formation in dynamic decision making. Frontiers in

 psychology, 8, 1335. https://doi.org/10.3389/fpsyg.2017.01335 

Ratcliff, R., & Rouder, J. N. (2000). A diffusion model account of masking in two-choice

 letter identification. Journal of Experimental Psychology: Human perception and

 performance, 26(1), 127. 

Ratcliff, R., & Smith, P.L. (2004). A comparison of sequential sampling models for two

 choice reaction time. Psychological Review, 111, 333–367. 

Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory and data for two

 choice decision tasks. Neural Computation, 20, 873-922. 

van Ravenzwaaij, D., van der Maas, H.J., & Wagenmakers, E.-J. (2011). Does the name-race

 implicit association test measure racial prejudice? Experimental Psychology, 58, 271

 277. 

Sara, S. J. (2009). The locus coeruleus and noradrenergic modulation of cognition. Nature

 reviews neuroscience, 10(3), 211-223. DOI: 10.1038/nrn2573 

Sokolov, E. N. (1990). The orienting response, and future directions of its development. The

 Pavlovian journal of biological science, 25(3), 142-150. 

Stein, B. E. (1984). Development of the superior colliculus. Annual review of

 neuroscience, 7(1), 95-125. 

Strauch, C., Romein, C., Naber, M., Van der Stigchel, S., & Ten Brink, A. F. (2022a). The

 orienting response drives pseudoneglect—Evidence from an objective pupillometric

 method. Cortex, 151, 259-271. https://doi.org/10.1016/j.cortex.2022.03.006 

Strauch, C., Wang, C. A., Einhäuser, W., Van der Stigchel, S., & Naber, M. (2022b).

 Pupillometry as an integrated readout of distinct attentional networks. Trends in

 Neurosciences. https://doi.org/10.1016/j.tins.2022.05.003 

Thompson, P., & Burr, D. (2009). Visual aftereffects. Current Biology, 19(1), R11-R14. 

Urai, A. E., Braun, A., & Donner, T. H. (2017). Pupil-linked arousal is driven by decision

 uncertainty and alters serial choice bias. Nature communications, 8(1), 1-11.

 https://doi.org/10.1038/ncomms14637  

Urai, A. E., De Gee, J. W., Tsetsos, K., & Donner, T. H. (2019). Choice history biases

 subsequent evidence accumulation. Elife, 8. doi: 10.7554/eLife.46331 

 

 

https://doi.org/10.3389/fpsyg.2017.01335
https://doi.org/10.1038/nrn2573
https://doi.org/10.1016/j.cortex.2022.03.006
https://doi.org/10.1016/j.tins.2022.05.003
https://doi.org/10.7554%2FeLife.46331

