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Abstract

Research software enables data processing andplays a vital role in academia and industry. As such, it is essential
to have findable, accessible, interoperable, and reusable (FAIR) research software. However, what precisely the
landscape of research software looks like is unknown. Thus, we would like to understand the research software
landscape better and utilize this information to infer actionable recommendations for the Research Software
Engineer (RSE) practice. This study provides insights into the research software landscape at Utrecht Univer-
sity through an exploratory analysis while also considering the different scientific domains. We achieve this by
collecting GitHub data and analyzing repository FAIRness and characteristics through heatmaps, histograms,
statistical tables, and tests. Our method retrieved 176 users with 1521 repositories, of which 823 are considered
research software. Others can adopt the proposed method to gain insights into their specific organization, as it
is designed to be reproducible and reusable. The analysis showed significant differences between faculty char-
acteristics and how to support the application of FAIR variables. Among other things, our results showed that
Geosciences have the highest percentage of unlicensed repositories with 57%. Also, Social Sciences are an out-
lier in language usage, as they are the only faculty to primarily use R, while other faculties primarily use Python.
A first classification model is developed that achieves 70% accuracy in identifying research software that can be
used for future labelling tasks. Our recommendations include expanding the R café, creating FAIR reference
documents, featuring and highlighting high impact and FAIR research software, and creating yearly reports. We
conclude that our labelled GitHub dataset allows us to infer actionable recommendations on RSE practice.
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1 Introduction
Data and research software play a vital role in modern research, enabling scientific breakthroughs like captur-

ing a black hole as an image [35, 76], storing massive datasets on distributed systems [97], or the open-source

publication of a system for large-scale machine learning, which allows everyone to solve computer vision tasks,

among many other things [28]. However, not much is known about the landscape of research software, which

researchers and support staff create, and scientific resultsmaynot be reproducible or valid [33]. Relevant informa-

tion is scattered across different platforms like GitHub, PapersWithCode.com, employee pages and more. Some

entities require researchers to follow strict publishing guidelines to solve these issues, and some initiatives try to

gather research software in a system like the research software directory [99], whichwas developed by theNether-

lands eScience Center and can be implemented for different scopes. However, a deeper analysis of such data to

infer actionable recommendations for Research Software Engineer (RSE) practice has not been conducted yet.

This research project aims to develop a method for conducting exploratory data analyses of GitHub data,

which is transferable to other organizations and thus contributes to the scientific community. GitHub is the

most popular development platform in research and is the go-to reference for mining open source repositories

[49]. This method is then applied to data from Utrecht University (UU) only to maintain feasibility but can be

applied to other use cases such as comparisons between universities or other organizations. The data used for

the project is collected using the Scan and revieW of Open Research Data and Software at Utrecht University

(SWORDS@UU) framework [50], which was initiated by Anna-Lena Lamprecht and Jonathan de Bruin to get

insights into how UU researchers develop, manage and publish software.
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1.1 Relevance

This research is highly relevant for both the academic and non-academic worlds of software engineering, while

the main focus lies in academia. This research output can allow an organization to make data-based strategic

decisions, for example, regarding software openness and sustainability. Support staff can use the insights to craft

specialized trainings as knowledge gaps and needs might differ per faculty or department. This will also help

improve researchers’ assistance in achieving publications and research software that are more findable, accessible,

interoperable, and reusable (FAIR). Therefore, the output of this work supports the application of FAIR princi-

ples for research software which helps to improve the research software landscape. The proposed method is also

publicly available so that other organizations can adopt it for their own purposes.

In addition, the FAIR principles share some ideas with Free and/or Open Source Software (FOSS) objectives,

which is also highly relevant for non-academic software engineering since much software is built upon other

FOSS software [80]. Anoverwhelmingmajority of software source codeoriginates from thenon-academicworld,

namely industry anddeveloper communities [93]. Thus, support for applying FAIRprinciples is also relevant for

non-academic practice. In fact, there are many initiatives and organisations embedded within the industry that

aim to develop FOSS software, such as the Eclipse Foundation, OpenManufacturing Platform, and Catena-X.

1.2 Research question

This study aims to answer the following research question:

• How can information about open source publications onGitHub be used to infer actionable recommen-
dations for RSE practice to improve the research software landscape of an organization?

The main research question will be answered with the help of the following subquestions:

1. What is the current state of the art of FAIR principles?
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2. How can FAIR principles be supplemented with additional variables?

3. Are there different characteristics for different subpopulations1 in the data?

4. How can the application of FAIR variables for research software be supported?

5. How well can we identify research software with available data?

As stated in subquestion 2, the need for measurable variables becomes evident when one aims to better under-

stand research software FAIRness in quantitative terms. There is currently only one study available that proposes

a first FAIR-like framework to measure software quality, but it does not apply to data only from GitHub and

focuses on a single domain [89]. Subquestions 2 and 4 should also be contemplated for the different subpop-

ulations as this, for example, enables the crafting of the aforementioned specialized trainings. Answering these

questions will help to gain a better understanding of a research software landscape, and what differences exist for

the different subpopulations.

Subquestions 1 and 2 are answered through a literature review. Subquestion 2 will additionally be validated

through a similarity analysis. The other subquestions will be answered through the exploratory data analysis and

classification, which are explained in more detail in Section 3.2

1.3 Thesis outline

This study continues with the literature review and necessary background information in Chapter 2. In Chap-

ter 3, the research method and planning of the study are presented. Chapter 4 shows the results of the analysis

that are then discussed in Chapter 5, followed by the conclusion in Chapter 6.

1Subpopulations refer to grouping levels like faculties, departments and positions (e.g. PhD candidate, associate profes-
sor), while the population refers to all identified employees.
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2 Background and state of the art
This Chapter explains the necessary background knowledge in Section 2.1 and comprises the literature review

in the following Sections. The literature review includes the protocol in Section 2.2, FAIR principles in general

and for research software in Section 2.3 and Section 2.4, and existing GitHub analyses of FAIRness and research

domains in Section 2.5.

2.1 Technical background knowledge

GitHub is a development platform from which data for this study is collected. The platform allows developers

and organizations to collaborate in open or private repositories based on the version control system Git [43].

Commonways for collaboration are creating issues or pull requests. Issues are used to track feedback, ideas, issues

like bugs, feature requests andmore. Pull requests allowusers to commit any changes to the repository that a user

would like to suggest. This is usually done by forking a repository, which essentially means cloning. Afterwards,

the contributor commits and pushes changes on the forked repository andmerges the changes to the original one

via pull requests. It also offers the opportunity to follow people to get notified about their activity. GitHub

also offers many other features for free, like GitHub Actions, which allows for integrated continuous integration

and continuous delivery or continuous deployment (CI/CD) pipelines, and automatic detection of citation and

license files, leading to machine-readable metadata. There is also a REST API [5] which allows us to extract

information about users and repositories with all accompanyingmetadata that is available. Such RESTAPIs use

the HTTP protocol to receive andmodify data. Tomake things easier, we use ghapi [11] in the SWORDS@UU

framework, a Python wrapper for the GitHub REST API.

In the remainder of the thesis, we will use the terms metric and (FAIR) variable. A variable is any kind of

captured data like the owner of the repository or the repository id. A FAIR variable is related to concepts of
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FAIRness, openness, and sustainability. Examples of FAIR variables are the availability of a license or citation

information. Ametric is any kind of numeric variable like the number of issues, forks or stargazers. A metric is

always a variable and can also be a FAIR variable, but a (FAIR) variable does not always have to be a metric.

The FAIR for Research Software (FAIR4RS)-subgroup3 reviewed definitions of research software and pro-

vided their own definition, which will be used for the remainder of the study [61]:

Definition 1 Research Software includes source code files, algorithms, scripts, computational work-
flows and executables that were created during the research process or for a research purpose. Software
components (e.g., operating systems, libraries, dependencies, packages, scripts, etc.) that are used for
research but were not created during or with a clear research intent should be considered software in
research and not Research Software. This differentiation may vary between disciplines. The mini-
mal requirement for achieving computational reproducibility is that all the computational compo-
nents (Research Software, software used in research, documentation and hardware) used during the
research are identified, described, and made accessible to the extent that is possible. [61]

The creation of the definition has been a controversial discussion. During the analysis of determiningwhether

a software is considered a research software, there were often conflicting opinions. Katz et al. [71] also stated that

it is hard to distinguish between research and non-research initiatives due to an increasing focus on open source

software in general.

An essential aspect of the research software definition is the variation between disciplines. What exactly is

determined as research software depends on the agreement within communities and may also change over time.

This allows for flexibility since software is highly complex and makes the definition applicable in the future as

well [80]. Software can also have different granularity levels, making it difficult to determine and reference the

appropriate level correctly [93]. However, these aspects also make it difficult to categorize research software

properly. Since the categorization is flexible, labelled data from todaymight not be correctly labelled in the future.

5



2.2 Literature review protocol

The relevant literature includes FAIR principles in general, specifically regarding research software and the anal-

ysis of open source GitHub repositories. To that effect, the snowball method [106] was applied for identified

key papers [73, 80, 105]. Both forward and backward snowballing were applied. Forward snowballing refers to

following papers that have cited a specific paper, while backward snowballing refers to following the references

in a specific paper. There are also reading lists containing relevant research published before and after February

2020 for the application of FAIR principles for software that were taken into account [26, 104]. In addition,

Google scholar was used to identify additional papers with the queries FAIR research software, FAIR research

software GitHub, andGitHub analysis metadata open. The snowball method was again applied to identified key

papers [64].

2.3 FAIR principles in general

The FAIR principles were published in 2016 byWilkinson et al. [105] to clarify the objectives of good data man-

agement and are concise, domain-independent and high-level. Good data management acts as a pre-condition

for better knowledge discovery and innovation. The initiative initially started in a workshop in 2014 with many

involved parties interested in data discovery and reuse. The four foundational FAIR principles aim to improve

Findability, Accessibility, Interoperability, and Reusability. They are accompanied by guiding principles that

further elaborate on each foundational principle. A reference can be found in Appendix A, which also includes

proposed FAIR principles for research software.

An important aspect of the FAIR principles is that they should apply to all digital research objects like algo-

rithms, tools, workflows, and research software. To allow for reproducibility and reusability of research, it is
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necessary to make all relevant objects of the research process FAIR. There has also been an increase in general-

purpose data repositories, with Zenodo [54] being one well-known and widely used example. In contrast to

special-purpose repositories, general-purpose ones lead to less integrated data ecosystems that reinforce issues in

discovery and reusability. Scientific data gathering, therefore, is a time-consuming process that can be improved.

The goal is to include aspects of FAIRness in the quality assessment of digital research objects.

Wilkinson et al. stated that the FAIRification of digital research objects leads toward machine-actionability.

Machine-readability becomes more and more important as humans increasingly rely on computational agents

for discovery and integration. In the optimal case, such a machine can autonomously explore digital objects for

different tasks: Identify object type, determine usefulness for a given context, determine usability considering li-

cense, accessibility or usage constraints, and take appropriate action. Nonetheless, the FAIR principles are aimed

toward human-driven and machine-driven activities, which is different from similar initiatives. They also pre-

cede implementation and are technology-agnostic, allowing for high flexibility and applicability across domains.

However, they are not a standard and primarily act as a guideline. The entry barrier for relevant operators is kept

low by only minimally defining the FAIR guiding principles. The foundational principles are also independent

and separable, though they are still related.

In 2017, a follow-up paper [86] by the original authors of the FAIR principles was released to clarify the in-

tent and interpretation of the FAIR Principles. They emphasized again that FAIR principles focus on making

research objects reusable to maximize their value without specifying technical requirements and that it is not

a standard. Instead, they are permissive guidelines that can be used to develop flexible community standards

[40, 86]. In addition, they stated that open science is steadily growing, and FAIR principles within this context

have been embraced by a wide range of governments and funding bodies. What is still needed are changes to

science reward andmethodological practice, as well as increased support infrastructure. Resources in such infras-

tructures should be FAIR. For this purpose, community-acceptable rules of engagement should be developed

7



that are suitable for a given community. They also clarify that “unfair” does not exist. For example, if data is

non-machine-readable, it does not become unfair. Rather, FAIRness is a continuous spectrum. Making associ-

ated metadata FAIR, in case the data may not be shared if it is for example personal data, already counts as full

participation within the FAIR ecosystem. This also showcases that openness and FAIR are not the same. Data,

especially health data, can often be on an individual level and thus resulting in privacy concerns which lead to

mixed success regarding appeals for open data [40, 42]. This is of less concern for FAIR research software and one

of the significant differences between data and software. They introduce the term re-useless data for datasets that

are not available for reuse, which is themajority of datasets with 80% [86]. The first step tomaking such datasets

FAIR is providing a Persistent Unique Identifier (PID), but that alone is insufficient. The next step would be

addingFAIRmetadata, followedbymaking the data FAIR.The last stepwould thenbe to link the datawith other

FAIR data to achieve the internet of FAIR data. What can be taken away from this is that improving FAIRness

is a continuous effort, and it is not clear when exactly something is FAIR.

There has been research on how FAIR principles can be applied to other digital research objects such as com-

putational workflows, training material, machine learning tools and models [56, 75, 107]. For machine learning

specifically, Katz et al. [75] started a community-building process for applying FAIR concepts to that domain.

The FAIR4RS-subgroup2 was tasked with exploring FAIR in contexts other than data and software [79]. Com-

mon recommendations based on their analysis include rich metadata (e.g. citation), recognition, proper docu-

mentation, unique identification of material (e.g. via PIDs), and getting community endorsement. We will see

in Section 2.4 that these recommendations are also highly relevant and applicable to research software.
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2.4 FAIR principles for Research Software

Since the original FAIR principles were published, several publications have pointed out that these principles do

not directly translate to research software [62, 63, 80]. Thus, it is necessary to modify, extend, add and delete

these principles to make themmore applicable to research software.

The FAIR for Research Software Working Group (FAIR4RS WG) is well-positioned to be the community

forum regarding FAIR principles for software, services and workflows [20]. The FAIR4RSWG was assembled

by the Research Software Alliance (ReSA) [32], the Future Of Research Communications and E-Scholarship

(FORCE11) [4], and the Research Data Alliance (RDA) [38]. They aim to represent many different stakehold-

ers, including research software users, developers, maintainers, policy creators, managers of relevant infrastruc-

ture (e.g. publishers, archives), and research (software) funders [72]. In addition, mature wide-scale community

engagement is promoted by basing it on the Center for Scientific Collaboration and Community Engagement

(CSCCE) participation model which enables structured member engagement [108]. This working group cre-

ated four subgroups that were assigned different tasks in order to support the creation of community-endorsed

FAIR4RS principles [46, 47]:

1. Examination of FAIR Guiding Principles for research software from scratch [74]. A group of people,
many of whom are involved in the FAIR4RS WG, previously published the position paper “Towards
FAIR principles for research software” [80] aimed at developing a set of FAIR principles for research
software. This subgroup took a fresh look at the same problem, and therefore planned to exclude authors
of that paper1. They also did not look at previous research except for the original FAIR principles.

2. Application of FAIR Guiding Principles in other contexts like workflows and training material [79].

3. Definition of research software to provide context [61]. This definition is used throughout the study.

4. Review of new research related to FAIR Software since the release of the paper “Towards FAIR principles
for research software”, as well as the paper itself [48, 80, 104].

1In the end, authors of that paper were included. The original idea, however, was to exclude them.
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Three additional subgroups were launched afterwards in September 2021 [45] to review adoption guidelines

for FAIR4RS principles [82], (early) adoption support [84], and governance [66]. There are also related initia-

tives whosemain focus does not lie on FAIR research software. However, since FAIR research software is related

to FAIR data, they also contributed to this subject:

• TheCURE-FAIRWorkingGroup stated in their charter [103] that their objective is to “establish standards-
based guidelines for curating for reproducible and FAIR data and code”.

• FAIRsFAIR - Fostering FairData Practices in Europe - aims to supply practical solutions for the use of the
FAIR data principles throughout the research data life cycle. Emphasis is on fostering FAIR data culture
and the uptake of good practices in making data FAIR. The FAIRsFAIR Work Package 2 published an
assessment report on “FAIRness of software” [60]. They focused on software as a research outcome.

• GO BUILD Pillar of GO FAIR US - they plan to develop a FAIR assessment framework for research
software platforms, including badging which is a common practice in open source development [13].

• The Australian Research Data Commons (ARDC) created a FAIR self-assessment tool for data [1] and
is in the development of a similar tool for software [2].

As previously mentioned, data can have privacy concerns which is typically not the case for research software.

On the contrary, openness should be the norm for research software for many reasons related to facilitating open

science, transparency, innovation through collaboration, reliability, and more. It should only be closed when

appropriate reasoning for exceptional cases is given [63]. Chue Hong et al. mentioned that research software

should be “as open as possible, as closed as necessary” [46]. It is also important for open science improvement to

recognize research software as a first-class research output, similar to research data [29, 44, 57, 59].

Lamprecht et al. [80] published the first position paper that suggests modified, extended and additional FAIR

principles for the application of these for research software. They explained why the application of FAIR prin-

ciples for research software needs to take different aspects into account, why quality considerations go beyond

FAIR and offer an analysis of where principles need adaptation or additional principles.

Software shares some characteristics like the possibility of having a Digital Object Identifier (DOI) assigned,

which is one kind of a PID, or having a license added, but also has significant differences. Data are facts, while
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software is the result of a creative process that is executable and usually consists of many dependencies with fre-

quent updates, which leads to shorter lifetimes than for data. Research software can be made available on many

platforms like digital repositories, archives, language-specific archive networks and more. In addition, research

software is often FOSS which overlaps with FAIR regarding accessibility and reusability. FAIR principles, how-

ever, do not require openness. Certain data is sensitive and therefore require access control which is different

from research software as this is part of the methodology which is expected to be shared.

They argue that there needs to be a distinction between the form and function of research software since

quality considerations differ. FAIRprinciples cover the formwith interoperability and reusability, but it needs to

bementioned that reusability also needs to take sustainability and the non-static nature of software into account,

which is different to data. Maintainability improves the sustainable growth of software and includes modularity,

understandability, testability, following guidelines and coding standards and can often bemeasured or quantified.

Quality regarding function is more difficult to measure for many reasons, and there are ongoing discussions on

whether applicable principles can be developed.

The original FAIR principles and the proposed FAIR principles for research software by Lamprecht et al. and

Chue Hong et al. [47] can be seen in Appendix A. The complete comparison of the different principles can be

found in the appendix of Chue Hong et al. [47].

Regarding findability for research software, the main concern is to ensure unambiguous identification by

common search strategies. This includes search engines but also registries and repositories. In the following text,

the principles proposed by Lamprecht et al. will be elaborated uponwhere necessary. Some principles are mostly

rephrased to be suitable research software. For F1, a key difference is that research software needs a PID for all

software versions to guarantee reproducibility. While Git offers code version control, GitHub, which is often

used for publishing and active development, does not serve the purpose of persistent storage. Zenodo is often

used together with Github to solve this. For F2, typical metadata that describes software should at least include

11



where to find specific versions, how to cite, authors of the research software, inputs and outputs, and dependen-

cies. There are also ongoing projects that offer solutions for structured metadata annotation for software like

codemeta [27]. It should also be noted that vocabulary provided by community-approved ontologies should

be used where possible. An ontology is ”a classification of categories describing a software artefact with explicit

specifications of its entities and relationships in a certain domain of use” [62]. Having such an ontology helps to

gain a shared understanding of used terms. For F4, it is important to note that there are three classes of registries

and repositories:

• General ones like Zenodo, GitHub, and software archives like the Software Heritage project [16]

• Language-specific ones like CRAN or PyPI

• Domain-specific ones like the bioinformatics-specific BioConductor [8]

Research software should be published in a suitable registry or repository. This may be influenced by pro-

gramming language or operating systems that are standard within the respective community.

Regarding accessibility, the original principles apply, while there is also the additional aspect of the ability

to actually use the software. Alternatively, in other words, to access the functionality, which as a minimum,

requires the availability of a working version. This also means that the software should be downloadable and

runnable, as it might depend on data samples, (paid) registration, other (proprietary) software and more. The

authors alsomentioned that accessibility, interoperability and (re)usability are intrinsically connected for research

software and consider aspects of installation instructions, dependencies and licensing as part of other principles.

Changes are relatively little compared to the original accessibility principles. Mainly, they are rephrased to include

a reference to software.

Regarding interoperability, a definition from the IEEE Standard Glossary of Software Engineering Termi-

nology was provided: “ability of two or more systems or components to exchange information and to use the

information that has been exchanged” [25]. This was complemented by a definition of semantic interoperability,
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ensuring “that these exchanges make sense - that the requester and the provider have a common understanding

of the ‘meanings‘ of the requested services and data” [65]. Interoperability for research software is the most

challenging high-level principle because software usually has high complexity. It is already the most challeng-

ing for data, which is usually less complex due to the static nature, while research software interacts with many

components that also include other software and data. There were more modifications for the interoperability

principles compared to the accessibility principles due to research software being live digital objects, unlike data.

The authors provided three angles from which interoperability for software can be viewed at:

• For a set of independent but interoperable objects to produce a runnable version

• For a stack of digital objects that should work together to execute a given task

• For workflows which interconnect different standalone software tools to transform data

One requirement for interoperability is softwaremetadata, which provides valuable information. This should

include software versions, dependencies with versions, data types, input and output format, communication in-

terfaces, and deployment options. Software portability, which refers to the ability to run software in different

operating systems, is also part of interoperability. Software containerization tools like Docker or Rocket help in

improving software portability. For I1, a key difference is that software source code is formal since it is written

in a programming language. The focus of this principle lies in the ability to share input and output with other

software, thus incorporating the terms machine readability and data exchange. For I2, this principle is split into

two sub-principles. The authors consider software and data it operates on as separate cases. FAIR vocabulary

should be used for both cases since FAIR software should operate on FAIR data. FAIRsharing.org provides a

registry of vocabularies, data types, formats and schemas for software. For I3, the aim is the interconnection of

data sets by semantically meaningful relationships, which is not directly applicable to research software. While

software dependencies are somewhat similar, there is not much semantically meaningfulness required as the pri-

mary relationship is “dependsOn”.
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Regarding reusability, themain goal is to have reproducible re-use of software within different scenarios [37]:

• reproducing the same outputs as reported

• (re)using the software with different data

• (re)using the software for (unsupported) cases

• extending the software for additional functionality

Other relevant aspects are the previously explained software maintainability (documentation), the legality of

reuse (licenses), and credit attribution to research software (citation). For R1.1, metadata should have separate

licenses from software as they can be considered independent. License propagation is not needed for metadata.

Software dependencies also make proper license management more complicated than for data since licenses of

dependencies need to be considered. Machine readability becomes important to automatically determine incom-

patibilities of dependencies due to licensing. For R1.2, provenance refers to origin, source, and history of soft-

ware and its associated metadata. Commonly included provenance data are contact information of the resource

provider, publication date and location. Software versions are a minimum requirement to track the provenance

of the software itself. Another aspect is the production of the software, for example, dependencies (see also I4S)

and compilation of the software. Citation and contribution information is related to provenance.

Outside of the FAIR principles, other considerations are community-specific metadata schemes for software

that will play an important role, and the need for a governance model for the FAIR principles to enable an open

process for updating them. This should also be considered for the different domains within the scope of commu-

nity discussions. The authors’ work also provides the foundation for the development of metrics and maturity

models to inform about software’s FAIRness. The Netherlands eScience Center and DANS released five FAIR

software recommendations [10, 83]. The Python package howfairis can also check compliance with the five rec-

ommendations for GitHub repositories [98]. Both of these resources will be updated to be more in line with

the FAIR4RS principles [84]. These FAIR variables are also used in the SWORDS@UU framework and, there-
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fore, in this study. However, the necessary level of FAIRness also depends on the type of software and should be

discussed within the community.

The FAIR4RS-subgroup4 reviewed the position paper, including a survey regarding FAIR principles for re-

search software and suitability of the FAIR principles proposed by Lamprecht et al. [48]. Having such a review

allows further work to incorporate community feedback. One aspect that was often mentioned, especially in

the question of what accessible and interoperable means in the context of research software, was sustainability.

The principles had around 60 to 90 percent acceptance. Oftentimes, it was criticized what exactly is meant by

the concrete principle or how it applies to research software, indicating that ambiguity needs to be minimized.

There were further publications since the publication of the position paper that incorporated previous findings

and community feedback to further develop FAIR principles [46, 47, 74].

The output of the previously mentioned FAIR4RS-subgroups was discussed by Katz et al. [73], which in-

cluded a community consultation. This resulted in five concerns regarding the scope and interpretation of terms

that need to be addressed:

• General vs. specific principles: There needs to be a balance between general and specific instructions.
While actionable instructions are easier to act upon, they are also less long-lasting than general statements.

• Long-term access to software: Should this be relevant for FAIR Research Software Principles?

• Defining research software: There are two definitions that were considered, inclusive and exclusive. In-
clusive refers to every software related to the researchwhile exclusive refers to software only from reviewed
publications.

• Defining software: Software can have many forms: scripts, executables, binaries, workflows and more.
They suggest to define software as “A set of instructions that performs some action, either as source code
(machine- and human-readable) or executable.”

• FAIRness of related research objects: How should FAIRness of related objects like software dependen-
cies and documentation be handled? Is FAIR recursively applicable?

Additionally, they looked at the different recommendations [10, 74, 80] regarding their differences and agree-

ment on the FAIR principles. A summary of the findings can be seen in Table 2.1.
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Principle Agreement Discord

Findable All agree about the foundational principle and mostly

agree about the guiding principles.

Minor. Some aspects like software granularity are only consid-

ered in some recommendations and levels of detail differ.

Accessible All agree about the foundational principle and that meta-

data should always be accessible even after software be-

comes unavailable.

Differences in interpretation andmentions regarding (metadata)

accessibility, software, retrievability, authentication and autho-

rization.

Interoperable Some agreement in partial aspects in the definition of in-

teroperability, but strong discord.

The three angles described by Lamprecht et al. are not agreed

upon by the different recommendations. There is also disagree-

ment whether controlled vocabularies like the Citation File For-

mat are relevant.

Reusable All agree that a clear license is essential, detailed prove-

nance is helpful, software should be described with ac-

curate and relevant attributes, and that potential use and

reuse should be maximized while following software en-

gineering best practices.

Only some recommendations mention maintainability and de-

pendability. Some interpret reuse as a much wider term. There

is also disagreement about the relevance of executability of soft-

ware, encapsulation and interpretation of community standards.

Table 2.1: Agreement and discord of different recommendations

Overall, interoperability and reusability are discussed and interpreted to varying levels of detail across the rec-

ommendations as captured in this community consultation. This largely stems from the different interpretations

and meanings of these words that vary across research areas. There are differences even where the recommen-

dations generally agree, like for findability. These findings indicate the need for researching characteristics for

different domains to improve RSE practice.

The FAIR4RS Steering Committee drafted adoption guidelines [46] that were reviewed by the community

[47]. For the development of the FAIR4RS principles, the original FAIR principles intention was taken as the

starting point: “to maximize the added-value gained by contemporary, formal scholarly digital publishing” and
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“to ensure transparency, reproducibility, and reusability” [105]. They also mentioned that the original FAIR

principles might need to be reinterpreted, that FAIRness is not binary, that software can appear in different

forms like executables and binaries, and that the FAIR4RS principles should be applied to all research software

that is related to publications. Also, best practices in software engineering are relevant to the FAIR4RSprinciples

since some practices directly improve FAIRness. The application of FAIR4RS principles is also the responsibil-

ity of software owners. The draft publication [46] was reviewed by the community and has been superseded

by an updated version that incorporates community feedback on the proposed FAIR4RS principles for the re-

lease of version 1.0 [47]. These can be seen in Appendix A. The authors provided an accompanying text for

each foundational and guiding principle that explains how to interpret the meaning. In the context of software,

interoperability and reusability, as defined in the original FAIRprinciples, overlap. Therefore, interoperability fo-

cuses on data exchange between independent software. In contrast, reusability focuses on the ability of execution,

inspection and understanding of humans and machines. The draft publication includes two sections that talk

about implementation challenges and what is necessary to adopt FAIR4RS principles widely. The mentioned

challenges hinder the adoption of the FAIR4RS principles. They are about metadata and identifier authority,

metadata vocabularies and properties, software identifiers, identification targets, software structure complexity,

FAIRness of related research objects, definition of accessibility and reusability, and the relation of openness and

FAIR.They also provide a summary ofwhat the EuropeanCommission deems necessary to support FAIRdigital

objects: metrics, incentives, skills and FAIR services [52].

Hasselbring et al. [63] reviewed the current state of FAIRness and openness of research software. The authors

consider the pragmatic and infrastructure views of the variations of open science. The pragmatic view has the

central assumption that ”Knowledge-creation could be more efficient if scientists worked together”. In contrast,

the infrastructure view assumes that “Efficient research depends on the available tools and applications“ [55].

These views require research software engineering to be sustainable, which requires RSEs. This is a relatively
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new academic position. The RSE community displayed interest in promoting open science, which puts them in

a perfect position to help researchers adopt FAIR and open software practices. A key obstacle in this endeavour is

ensuring appropriate credit and recognition for theRSEs, which the authors recommend addressing via software

citation and software observatories. Sustaining the communities, which include researchers, developers, main-

tainers, managers and active software users, is also essential. Research software has not reached a similar level of

FAIRness as research data. Software versions are often not archived, for example, via Zenodo, but only available

on GitHub, which is not made for archiving. Journals often allow to add supplementary material to publica-

tions, but it is often not further reviewed or explained and therefore does not support reuse. However, software

journals exist where research software might be published, for example, the Journal of Open Source Software or

the Journal of Open Research Software [14, 15]. There is also the possibility of sharing research software ser-

vices to allow for direct reuse of the software without the need for installation procedures [7, 21]. They also state

that research software has often been of subpar quality. This includes (no) testing, lacking documentation and

coding standards which is a result of scientists not being judged based on the quality of the software that enables

their publications. However, there have been initiatives including but not limited to several ACM conferences

to start an artefact evaluation process, as well as the ”Most Reproducible Paper Award” byACMSIGMOD.The

authors provide recommendations to address the issues of research software not being properly published for

scientific reward and proper citation along the FAIR principles. Challenges regarding findability are methods

of software citation and software retrieval. A key challenge is appropriate software metadata. Some solutions

regarding software citation and identification were previously mentioned [27, 53]. Software artefacts should

be published with preservation in mind to increase accessibility. GitHub alone does not support preservation.

A combination of GitHub for use, reuse and active involvement, and Zenodo for archival and reproducibility,

achieves this [12]. Another example would be the Software Heritage archive [51]. Established software and data

standards should be followed to increase interoperability and may be part of artefact evaluation processes. In
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addition, virtualization through Docker, for example, and online services improve interoperability and reusabil-

ity across platforms. Artefact evaluation processes should review replicability, reproducibility, and reusability of

research software to increase reusability. Modular software allows for reuse of parts of the software, and good en-

gineering practices ensure that other software can be built on top by others. These include, for example, proper

documentation, providing testing frameworks, and test data for continuous integration. Based on their expe-

rience with their analysis of the relationship between research publications and research software, the authors

proposed the deployment of decentralized research software observatories, which would support research soft-

ware retrieval and analysis. Such an observatory would provide support to open science research and encourage

best practices among research communities. Additionally, it would allow exploring opportunities and challenges

of cataloguing research software. Two critical components of such an observatory are support for metadata that

allows classification of research software and citation to enable FAIRness. In that regard, they also mention the

Research Software Directory [99] as a related system. However, this system’s focus is on repeatability and less on

FAIR and open principles. A first observatory for life sciences is already being developed [85, 89].

Anzt et al. [35] described the status and challenges of research software sustainability and suggested possible

improvements with a focus on theGerman landscape. Common challenges for creating sustainable research soft-

ware were described. They identified different stakeholders and where their interest stems from, ranging from

the general public, geopolitical units, industry and independent developers to RSEs, domain researchers and re-

search funding organizations. Since this study’s goal is to improve an organization, it is of primary interest what

motivates RSEs, research leaders, domain researchers, research funding organizations, and libraries which can be

part of an organization. The common arguments for the motivation of sustainable research software for these

people of interest are intrinsic interest in developing more sustainable and higher quality software, visibility and

reputation, spending more time and funding on actual research and less on (re-)creating software, compliance

with best practices, and reuse in other areas. The authors proposed a set of evaluation criteria for funding sus-
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tainable research software based on previously proposed evaluation schemes. The criteria are either hard criteria

that everyone should fulfill or soft criteria that depend more on specific community standards. These are about

usage and impact, software transparency and quality, and software maturity and are also part of a usual Software

Management Plan (SMP) [22]. It makes sense to focus on sustaining research software that is expected to have

high usage and impact, good quality and high maturity to utilize available RSE resources best.

Gruenpeter et al. [62] reviewed and analysed available FAIR principles for research software and presented

recommendations for constructing these principles. They stated that it needs to be taken into account that re-

searchers already face significant challenges regarding research software development and maintenance. They

also mentioned the need for training to produce FAIR and citable software and that issues arise due to different

interpretations for data and software, for example, regarding reuse and interoperability. TheCURE-FAIRWork-

ingGroup [88] also reviewed computational reproducibility challenges and has determined sociocultural factors

as one of the main challenges. This includes insufficient training and skills. Martinez-Ortiz et al. [84] identi-

fied early adopters of the FAIR4RS principles where common actions taken include training, metrics, guidelines

and infrastructure [82]. Especially the need for metrics to better quantify FAIRness has been emphasized, and

a working group for metrics development was created [3, 9, 36]. Pico et al. [89] proposed first indicators for

quantitative measurement of FAIRness.

During consultations and presentations in the context of the SWORDS@UU frameworkwith different stake-

holders, we noted that researchers indicated their approval of FAIR principles for research software. However,

their issue often was that they did not know how to make their research software more FAIR. The main reason

for this is that the principles are too abstract and not directly actionable, which further illustrates the need for

appropriate training and resources. Researchers are typically not formally educated software engineers, and as

mentioned, best practices often overlap with FAIR principles. As an experiment, we contributed to research

software repositories to improve their FAIRness, which was well received.
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Since the first publications of FAIR principles, various projects and initiatives have supported the facilitation

of FAIR research software [2, 27, 50, 82, 94, 98, 101]. What can be seen from the existing literature regarding

FAIR research software is that some things are generally agreed upon, which includes the provision of a license,

rich metadata, the need for quantifiable metrics, possibility for citation, infrastructure, and training. On the

other hand, there are differing opinions regarding interpretations of suggested principles, scope, and definitions.

This indicates that there exists ambiguity that needs to be cleared or that terms are understood in different con-

texts depending on the domain.

2.5 GitHub research software analyses regarding FAIRness and

research domains

There have beenmany analyses onGitHub data [49]. However, none of them focused on developing recommen-

dations of FAIRness for RSE practices on an organizational level. Their focus often lies on highly active projects,

which is not our focus [39, 41, 67, 77, 81, 92, 96]. Research software might not have these characteristics. Since

we are interested in the differences between research domains, we looked at GitHub analyses that concern them-

selves with domains. Additionally, analyses that suggested metrics regarding openness and sustainability were

inspected, as these topics are related to FAIRness. Due to the topic of FAIR research software being relatively

new, there are not many publications regarding FAIR research software analysis on GitHub compared to the

amount of general GitHub analysis.

Gharehyazie et al. [58] found that code reuse across projects in GitHub for FOSS code is significant andmore

common within domain boundaries. These findings all point towards existing cross-domain differences and

show that project characteristics differ between different areas.

Russell et al. [95] mentioned that the background of researchers is very diverse, leading to a unique culture
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around programming within Bioinformatics, where repositories tend to be small with few contributors. They

capture highly varying repositories for their analysis. Key findings include that around half of the repositories

did not have a license and a lack of reuse.

Hasselbring et al. [64] conducted an analysis of research software in the research areas of computational sci-

ence and computer science to provide recommendations to increase FAIRness and openness. They noted that

the emphasis in computational science lies in reproducibility, while the emphasis in computer science lies in reuse.

They follow that publication behaviour varies between research areas. The average life span of research software

is defined as the time from the first to the last commit activity. This metric greatly differs between computer

science and computational science with a 5-year median and 15-day median, respectively.

Pico et al. [89] proposed a software quality assessment framework for FAIRness using weighted indicators

as a scoring tool that combined different (meta)data sources, including GitHub. This was tested on software

within the life sciences, thus depicting an initial landscape of that domain and providing the first steps toward

an observatory. As we have seen from Katz et al. [73] in the previous section, there is unclarity regarding gen-

eral and specific principles. This study is helpful as it provides specific and concrete things that researchers can

scrutinize to improve FAIRness of their software. Their analysis found that research software in life sciences is

highly findable, moderately accessible and reusable, and barely interoperable with their defined weights of the

indicators. Findability being the highest makes sense, as otherwise, the research software would not be able to be

part of the dataset. Interoperability also proved difficult to be translated into measurable indicators, raising the

question of whether themeasurability is the problem or if low interoperability is an actual finding. This is in line

with what Lamprecht et al. [80] mentioned, that interoperability is the most challenging high-level principle.

Many indicators are related to specific resources within the life sciences, which illustrates that domain-specific

indicators might be necessary. This becomes apparent if one would like to assess if accepted ontologies were used

due to domain specificity or if the software is found in a domain-specific registry.
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3 Research method
We conducted an exploratory data analysis to gather more insights into the research software landscape [100].

The study is based on a GitHub dataset and is quantitative. We analyzed the data with the help of Python [102].

Details of the data collection are described in Section 3.1. Section 3.2 explains the data analysis, which included

the data exploration and statistical methods. Section 3.3 illustrates the validity of this study.

3.1 Data collection and labelling

The datawere collected through the SWORDS@UU framework [50], which collects users, their repositories and

variables in three corresponding phases. Any additional code that is not part of the SWORDS@UU framework,

instructions for reproducing the research, and the accompanying data were published under

https://github.com/kequach/Thesis-Mapping-RS.The collectedFAIRvariableswere included in the SWORDS@UU

framework in anew release. Supplementary steps for this studyweremarkedwith an asterisk in the corresponding

figures for each phase.

3.1.1 User collection

In phase one, the framework collected identified UU employees through different search strategies: GitHub

search API [5], UU employee pages API1 [24], PURE [18] output from UU, and the PapersWithCode.com

API [17]. The complete phase one that was adjusted for this study can be seen in Figure 3.1.

After the potential GitHub usernameswere collected, theyweremerged and enrichedwith the actual GitHub

APIdata. Thefiltering and labelling of users are semi-manual tasks. Thefiltering excludes all non-employeeswith-

out an employee profile page. In other words, anyone that can not be retrieved via the API of Utrecht University

1TheAPI is undocumented. See [91] for examples on how to interact with the API. [24] shows the web interface of the
API.
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was excluded, except for organizational accounts like ASReview. Students were included in case they could be

retrieved via the API. This also implies that former employees and University Medical Center Utrecht (UMCU)

employees were not included in this study. Organizational accounts that depict larger collaboration groups that

work on a national level like CLARIAH are included for comparison but are not considered part of Utrecht

University for the analysis. The labelling with additional information about faculty membership was done in

addition to the SWORDS@UU framework. The faculty and collaboration group information was added to the

repositories in the next phase. The filtered users are described as irrelevant users hereafter.

Figure 3.1: The modified first phase of the SWORDS@UU framework. Users are collected, filtered and labelled [50].

The collected users of the steps and search strategies can be seen in Figure 3.2. All users that were retrieved

from the different search strategies during the first step were merged, which left us with 628 unique users. From

these, we filtered out 428 irrelevant users, which resulted in 176 identified GitHub users employed at UU.

The 176UU-related users are further explained in Figure 3.3. Automatic labelling based on providedGitHub

metadata and information from the employee pages labelled 129 out of 176 users that needed to be manually

verified. The remaining users and the organizations were manually labelled. This process is time sensitive as
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Figure 3.2: Results of the non‐modified SWORDS pipeline for phase one.

employees leave and join the university at any given time. The users were collected and labelled during the first

two weeks of July 2022. Therefore, this process is naturally not utterly reproducible due to the external API

dependency.

Figure 3.3: Results of the user labelling for phase one.
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3.1.2 Repository collection

In phase two, the repositories were collected from the users that were the output of phase one. The complete

phase two that was adjusted for this study can be seen in Figure 3.4. Filtering consisted of automated filtering

of forks and GitHub.io repositories. Forks are copied repositories that are usually used to create pull requests

for the original repository. GitHub.io repositories are usually used for documentation or personal websites and

not software. Filtering non-research software projects is highly important since most repositories are personal

[49, 69]. Manual labelling of remaining repositories followed afterwards. The repositories were collected on

18.07.2022 and subsequently labelled until 10.08.2022. This was done in alphabetical order based on username

first and repository name second in two iterations, where unclear repositories were left to the second iteration.

An overview of the used repository type labels can be found inAppendix B. This left us with 823 research-related

repositories and 698 non-research-related repositories that are kept for comparison and classification.

Figure 3.4: The modified second phase of the SWORDS@UU framework. Repositories from identified users are collected, filtered and
labelled [50].

In addition to the repository type labelling, we also labelled each repository with the corresponding faculty,

which is determined by the owner of the repository. There are seven faculties and two support departments:
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• Faculty of Geosciences

• Faculty of Humanities

• Faculty of Law, Economics and Governance

• Faculty of Medicine

• Faculty of Science

• Faculty of Social and Behavioural Sciences

• Faculty of Veterinary Medicine

• University Corporate Offices

• Utrecht University Library

For labelling, manual verification is always needed. As this study only considered research related to UU, it

was necessary to find out during what time period an employee was employed if the repositories might have been

developed at another organization. As such, repositories that were developed before or after employment at UU

were filtered out to the best of available knowledge, e.g. addedCVs on employee pages or personal websites. Also,

it was required to understand the researchers’ subject to better differentiate between research-related and non-

research-related projects.

TNO [23], an independent research organisation, was not treated as a different entity since researchers can be

employed at bothTNOandUU.Therefore, being an employee ofTNOdoes not exclude a user fromour dataset.

Even after extensive investigation, some repositories were unclear whether they could be considered research-

related or not. In these cases, the author was contacted to clarify, and all requests were answered. In total, this

concerned only six users and ten repositories. For some repositories, it was not possible to clearly distinguish

between the labels non-rs, student work, and irrelevant, as they are not mutually exclusive. However, that is not

an issue since further analysis mostly excluded them, and classification only considers whether a repository is

research software or not.
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3.1.3 Variable collection

In phase three, the howfairis variables, nested GitHub variables, and additional FAIR variables were collected.

The complete phase three that was adjusted for this study can be seen in Figure 3.5. The howfairis variables were

created to check the compliance with the FAIR recommendations from the Netherlands eScience Center and

DANS [10]. While the first four variables are related to FAIRness, the has checklist variable attempts to cover

related topics, such as software engineering best practices. The variable only checks for one very extensive check-

list, which might not be appropriate for all kinds of research software [6]. Nested variables include information

about contributors, used (programming) languages, repository topics, and the README’s content. These were

collected in separate datasets to achieve a tidy data structure. Additional FAIR variables that were computed

based on available GitHub variables were identified with the help ofMartinez et al. [82, 98] and related GitHub

analyses [64, 89, 95] and can be seen inTable 3.1, together with the howfairis variables. For determining towhich

FAIR principle a variable relates to, we considered a combination of the principles by Lamprecht et al. [80] and

ChueHong et al. [47] that can be seen inAppendixA. The additional stepGather and compute additional FAIR

variableswas incorporated into the SWORDS@UU framework. The variables were gathered on 12.08.2022 and

13.08.2022.

The howfairis tool outputs five binary FAIR variables. Table 3.1 also describes the additional FAIR variables

that were gathered based on existing literature. These were not part of the SWORDS@UU data collection yet

and were incorporated into SWORDS@UU as part of this study. The FAIR variables from Russell et al. [95]

and Hasselbring et al. [64] should serve as a proxy to measure the FAIRness of the repositories. They are about

openness and sustainability, which are related to the FAIR principles. For the FAIR variables from Pico et al.

[89], we consider incorporating the ones that are applicable to only GitHub data. Many indicators are always

valid for GitHub data and, therefore, are not applicable. The implementation of metrics retrieval also differs
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Figure 3.5: The modified third phase of the SWORDS@UU framework. Variables from identified repositories are collected and
computed [50].

from the implementation of the references since the quality of these can be improved. As an example, the version

control usage by Pico et al. only counts versioning with the form of X.X as valid. This does not include semantic

versioning, which has the form of X.X.X [90]. In addition to the FAIR variables, we included the metrics in Ta-

ble 3.2 for data analysis. Eachmetric represents the natural count of occurrences unless otherwise described. Life

span is also considered a metric since it is a numeric variable. We also take a deeper look at the license, languages,

and topics.

3.2 Data analysis

To validate subquestion 2, we looked at the Jaccard similarity coefficient [78] of the howfairis and new FAIR

variables derived from literature and their percentages for research andnon-research software. In our case, Jaccard

similarity measures pairwise how many of the FAIR variables in two repositories are equal and how many are

different. It is, therefore, an appropriate measurement for boolean variables. The assumption here is that there

should be a high similarity to existing FAIR variables if they are suitable supplementary variables. This is the

preferred measurement over the usual correlation since these variables are all binary. The life span was excluded
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Name Description FAIR

Repository open? Is the repository open [98]? F

Has license? Is there a license [98]? R

Is registered? Is the repository registered in a registry [98]? FI

Has citation? Is there citation information [98]? R

Has checklist? Is there a checklist2 [98]? FAIR

Correct vcs usage? Does the repository use version control correctly? This ismeasured bywhether the repos-

itory’s first and last commit are on the same day [95].

RS

Life span The length of time between the first and last commit activity [64, 95]. Not considered

as FAIR variable but as an additional metric. See Table 3.2.

S

Repository active? Was there a commit within the last 365 days [64]? F

Has install instruc-

tions?

Are there installation instructions available [89]? Checked by mentions of install or

Docker in the README file.

R

Has example usage? Are there examples available [89]? Checked by mentions of usage, getting started,

quick start, example, tutorial in the README file.

R

Has contribution

guidelines?

Are there contribution guidelines available [89]? Checked by mention of contribut in

the README file.

A

Has tests? Is there a tests folder available [89]? R

Version identifiable? Is there a scheme to uniquely and properly identify the software version [89]? Valid

schemes have the form of X.X orX.X.X.

F

Table 3.1: Identified variables with descriptions. The FAIR column explains to which principles the variable is related to. S stands for
sustainability. Except for life span, all variables are binary.

2The used version (0.14.1) only checks for the OpenSSF Best Practices checklist
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Name Description

Stargazers Represents the number of people that have starred a Github project. Starring a project can indicate that a user likes the

project. It can also be used to bookmark a project, since starred projects are saved. The amount of stargazers can be used

as a metric to measure popularity.

Issues A way to keep track of the tasks, enhancements and bugs of the project. They can be discussed in a thread by users and

developers. Each repository can enable their own issue page. An issue can be open, for example when a new bug is found,

or closed, when it is solved. This shows the amount of open issues a repository has.

Forks A fork is a copy of a repository for another user.

Size (in MB) The size of a repository in MB.

Contributors Contributors refers to the users that have contributed to a repository via commits and pull requests. The number of

contributors gives information on howmany people put effort into the repository.

Languages Languages refers to the used languages in a repository. These can be programming languages, markup languages, shell

scripts and more.

Topics Topics refer to the topics a repository is associated with. These are self-assigned.

Life span (in days) Life span refers to the time between the first and last commit in days.

Table 3.2: Used metrics with descriptions.

for this part as it is a metric. We also computed descriptive statistics of the metrics to help answer subquestions

3 and 4: this included minimum, maximum, mean, median, skewness, and kurtosis. Additionally, we looked at

the descriptive statistics of metrics, details of FAIR variables, and details of license, language, and topic usage for

each faculty. A FAIR score is computed based on available FAIR variables. This is used as a proxy for quantifiable

metrics, as most of the variables are binary and therefore not metrics.

For subquestion 3, we additionally conducted multiple univariate Kruskal-Wallis tests with applicable vari-

ables, which are all metrics, followed by a post hoc analysis with Dunn’s tests. The Kruskal-Wallis test represents
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the non-parametric alternative for one-way Analysis of variance (ANOVA). AnANOVA tests equality of means,

while a Kruskal-Wallis test compares mean ranks. It is a more general test and less powerful. However, ANOVA

assumes normal-distribution, which our variables do not fulfill. The Dunn’s test compares the mean of each

group pairwise and calculates which groups are significantly different. An alternative approach would be to use

a non-parametric multivariate analysis of variance, of which multiple methods exist [34, 70]. There are different

justifications for choosing either approach, and they address different research questions [68]. Some drawbacks

are that multiple univariate tests ignore the increased precision of pooled variance estimates, decreasing inference

reliability, and the estimation of the correlated error structure, which a multivariate model takes into account

[31]. However, as it is of interest to us in which metrics the differences exist, a multiple univariate approach

is more applicable. Huberty and Morris [68] also mention that multiple univariate analysis is applicable for ex-

ploratory research.

Subquestion 5 was answered with the help of two machine learning model classifications: logistic lasso regres-

sion and random forest. These were trained and tested on 80% and 20% of the data, respectively. The models

included all metrics and FAIR variables. Metrics were scaled to values between zero and one. This allowed us to

draw comparisons between variables from the logistic regression coefficients, as all variables are now on the same

scale. We used the Python package scikit-learn [87] for this part of the analysis. For describing themodels, wewill

use the term features for independent variables and class for the categorization of whether a repository is consid-

ered research software or not. We further excluded the feature repository open, as this should usually be true for all

collected repositories. However, some repositories were either deleted or changed to private between the reposi-

tory and variable collection, leading to some repositories having a non-true value. These were also excluded from

the classification. We looked at feature importances to determine the most useful ones for each model. Feature

importance for logistic regression is measured by coefficients. For random forest, it is measured by permutation

feature importance. An alternativemeasurewould be impurity-based feature importance. However, thismethod
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is biased towards high cardinality features, which we try to avoid. Additionally, we measured the models with

the performancemeasures accuracy, precision, recall, and F1-score. We compared the scores with a majority class

prediction which we named chance.

A common topic for considerationwhileworkingwith generalized linearmodels, which include logistic regres-

sion, is multicollinearity. This refers to the features in such a model having a high correlation. Multicollinearity

leads tomore unreliable estimates of the coefficients. A commonway to address this is by inspecting whether the

variance inflation factor (VIF) has a value below five [30]. Table 3.3 shows that none of the features have a VIF

above five. The logistic lasso regression is capable of handling highly correlated features by shrinking coefficients

of these towards zero, effectively serving as a feature selection. Logistic lasso regression, as implemented by scikit-

learn [87], has one hyperparameter C that was tuned via cross-validated randomized search with accuracy as the

scoring function. This hyperparameter serves as an inverse of the regularization term, effectively determining the

strength of the regularization. A low value equals high regularization, while a large value effectively equals no

regularization. As such, we used a randomized search in a log uniform distribution on the training data, ranging

from 0.00001 to 100 with 500 iterations, which can be seen in Figure 3.6. This lead us to choose a C-value of

2.545.

The random forest model had two hyperparameters that were considered for grid search tuning: maximum

number of features and number of trees. While there aremanymore possible hyperparameters to tune, the default

tends to do well for many cases. The grid search concluded with the maximum number of features being the

number of all features and a maximum number of trees being 500, which was the maximum search value.
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Feature VIF

Stargazers 3.87
Issues 2.21
Forks 4.46
Size (MB) 1.23
Contributors 3.29
Languages 2.93
Topics 1.56
Life span (days) 2.35
Has license? 2.42
Is registered? 1.41
Has citation? 1.42
Has checklist? 1.16
Correct vcs usage? 3.65
Repository active? 1.88
Has install instructions? 2.08
Has example usage? 1.77
Has contrib. guidelines? 1.31
Has tests? 1.70
Version identifiable? 1.74

Table 3.3: Variance inflation factor values

Figure 3.6: Results of the randomized search with a loguniform distribution for values from 0.00001 to 100 and accuracy as the
performance evaluation metric.
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3.3 Validity

There were several threats concerning the study. Contributions to research software that UU-affiliated users do

not own are not captured. This means we could not capture if a researcher would contribute to existing open

research software. The user search process may be flawed, resulting in a biased capture of UU employees. A sole

focus onGitHub datamay also lead to a similar bias in the data. However, existing literature indicated that this is

negligible. The used howfairis tool [98] also has flaws. Registering a repository in a registry or having a checklist

is not appropriate for all kinds of research software. Especially the checklist can often be too convoluted for

simple research software, such as research scripts. Due to the amount of captured repositories, manual labelling

of these might also be error-prone, especially considering the opinionated discussions regarding the definition of

what qualifies as research software [61]. The daily supervisor Jonathan de Bruin reviewed the created labels to

minimise possible mislabelling. However, a more significant threat to any GitHub analysis validity would be to

include personal use repositories [69], as they are not the focus of this study.

These threats are an inherent part of the method used. Nonetheless, the results benefit academia, as stated in

Chapter 1. The findings help to improve the RSE practice with concrete recommendations and novel findings.

The method can also be adapted for other organizations as it is publicly available [91] and thus lays the ground-

work for similar studies that may also improve the proposed method. Additionally, the created dataset will be

openly shared for others to reuse.
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4 Results
This Chapter illustrates the results of the data exploration and the statistical analysis. First, we describe the re-

trieved data on a user level in Section 4.1. Next, we look at the repository characteristics, including all metrics and

details about license, language, and topic usage in Section 4.2. This is followed by inspecting the FAIR variables

inmore detail in Section 4.3. Lastly, we look at the statistical analysis of the dataset, which includes the statistical

tests in Section 4.4 and the classification of research software against non-research software in Section 4.5.

4.1 Users characteristics

The number of collected users per faculty can be seen in Figure 4.1. UtrechtUniversity represents the GitHub

repositories of the organizational userUtrechtUniversity. Figure 4.1 showsnouserswithin the collecteddata from

the Faculty of Medicine. It is expected to have no users related to the Faculty of Medicine as they are employed

by the UMCU and, therefore, not part of this study. It is also expected that the Faculty of Science would have

the highest number of users, as they are most likely to extensively use GitHub for research and non-research

purposes.

The number of repositories per user per faculty can be seen in Figure 4.2 as a swarm plot with an overlapping

box plot. What can be seen is that most users have a small number of repositories. In contrast, only a few have a

vast number of repositories. There is also no dominant faculty for the users with many repositories.

Figure 4.2 shows the same plot with the user type instead of faculty. It shows that except for one user, it is

usually an organization or collaboration group that has a large number of repositories. It also seems logical if this

information is digested together with Figure 4.2. While there can be many users from a few faculties, there can

naturally only be a few organizational-level users for each faculty.
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Figure 4.1: Number of users per faculty ‐ both absolute and relative numbers. The y‐axis shows the count, the number on top of a bar
shows the percentage.

Table 4.1 shows the statistical measures ofmetrics for the collected users. The 25th quantile andmedian show

that most users have a small number of followers and users they are following. The high values for skewness and

kurtosis also indicate this. The number of repositories is similarly skewed but to a lesser extent, which themedian

also points towards. Additional box plots for number of followers and following can be seen in Appendix C.

Public repositories Followers Following

Minimum 0.00 0.00 0.00
25th percentile 2.00 0.00 0.00
Mean 13.02 10.32 5.44
Median 6.00 2.00 1.00
75th percentile 14.00 9.00 4.00
Maximum 126.00 210.00 103.00
Skewness 3.31 5.16 4.32
Kurtosis 13.19 30.98 24.24

Table 4.1: Descriptive statistics of numeric variables for all users

37



Figure 4.2: Number of public repositories per faculty.

Figure 4.3: Number of public repositories per user type.

38



4.2 Repository characteristics

The number of collected research software repositories per faculty and repository type can be seen in Figure 4.4.

Interestingly, the Faculty of Law, Economics and Governance has no open research-related repositories. We also

see a low number of research-related repositories for theUniversity Corporate Offices,Utrecht University Library,

and the Faculty of VeterinaryMedicine.

Figure 4.4: Number of research software repositories grouped by faculty and repository type.

Regarding non-research software, Figure 4.5 shows that most non-research software is related to documenta-

tion, general non-research software, andworkshops. This is logical, asmost repositories within docs andworkshop

still relate to academia but are more relevant for archiving or educational purposes. Non-research software most

often depicted either private projects or projects to get familiar with new programming languages, concepts, or

algorithms.

University Corporate Offices and Utrecht University Library are support departments and will be grouped to-

gether with the group of UtrechtUniversity for further analysis under the name of Support departments. The

facultiesVeterinaryMedicine and Law, Economics and Governance are excluded from further analysis due to the
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Figure 4.5: Number of non‐research software repositories grouped by faculty and repository type.

low amount of relevant repositories. However, this does not necessarily mean that there is no existing research

software within these faculties. It could be that it is hosted on different platforms, that their findability is lack-

ing, or that our search method is not well-adjusted to these faculties. Collaboration group is also excluded from

further analysis, as discussed in Chapter 3. Social and Behavioral Sciences will be shortened to Social Sciences for

readability purposes in the following analysis.

The final processed dataset on which the following analysis will be done can be seen in Figure 4.6. All faculty

groups now have a sufficient amount of research software repositories. The classes Total RS and Total non-RS

are also relatively balanced, which is relevant for the classification.

Figure 4.6: Number of final research software repositories grouped by faculty and repository type. Total RS aggregates the columns to
the left, equivalent to previous Figures, while total non‐rs additionally shows the number of repositories that are considered

non‐research software.
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Figure 4.7 shows the histograms for all metrics split into the two classes research software and non-research

software. We can see that the data are heavily long-tailed for both classes. There are a few repositories that have

much higher metrics than most of the other ones. Except for number of contributors, research software usually

has more large values than non-research software. Histograms with only research software and a heatmap of the

most common topics can be seen in Appendix D.

Figure 4.8 shows the heatmaps for all averages of metrics collected for the repositories. This shows us that the

averages are usually the highest for the repository type of research software. The number of languages and life

span are roughly equal across the faculties. Geosciences have the highest average for open issues and the lowest

average for contributors. Humanities have the lowest average for stargazers, forks, size, and topics often by a

substantial amount. Sciencehas thehighest average for size and the lowest average for open issues. This is followed

closely by Social Sciences, which are otherwise in-between other averages except for the number of languages.

Thismight indicate that they primarily use only a few programming languages. The Support department has the

highest average of stargazers by far, as well as forks, contributors, and topics.

Table 4.2 shows the highest occurring license for each faculty across the different repository types. There are

a few things to note here: Science is the only faculty where Apache 2.0 appears, while every other faculty has a

GPL license at the top. Each faculty has anMIT license at the top. Clearly, the dominating licenses areMIT and

GPLv2/GPLv3.

Faculty RS RSWIP Rscript

Geosciences GPLv3 MIT GPLv3, MIT
Humanities GPLv2, MIT Other GPLv2
Science Apache 2.0 MIT MIT
Social Sciences Other GPLv3 GPLv3, MIT
Support departments MIT GPLv3 MIT

Table 4.2: Highest occurring license per faculty per repository type.
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Figure 4.7: Histograms for metrics categorized by research software vs. non‐research software. The y‐axis is log‐scaled.
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Figure 4.8: Heatmaps for all metrics grouped by faculty and repository type. All and Total refer to the average across all research
software repositories. Therefore, these rows and columns do not equal the average across different rows and columns, since it also

takes the number of repositories in each cell into account. This will also be the case for the following Figures.
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Wecan take a deeper look into the license usage in Figure 4.9. This shows the license percentage for each faculty.

What this also reveals is the percentage of no license usage. If we would also consider no license, this would be

the dominating license usage for all faculties except the Support department. Most notable is Geosciences, with

57%of repositories having no license, which is 22 percentage pointsmore than the following faculty,Humanities.

Social Sciences have the least amount of unlicensed software. As we have seen fromTable 4.2, the most common

licenses are MIT and GPLv3. The licenses that follow afterwards are predominantly used by only one of the

faculties.

Figure 4.9: Heatmap grouped by faculty for percentage of licenses sorted from left to right by total percentage. The percentages sum
up to 100% across rows.

Table 4.3 shows the highest occurring language for each faculty across the different repository types. As ex-

pected, Python andR are dominatingmost categories. Science and Social Sciences stand out, with Python andR

as the top language across all repository types, respectively. The only outliers to this are RSWIP and Rscript for

Geosciences and Humanities. The category RSWIP for Geosciences and Humanities only have five repositories

each, limiting the conclusions that can be drawn from this. That MATLABwould be common for Geosciences

in Rscript is plausible, as it is widely usedwherematrixmanipulation is necessary, like processing of images. Shell
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is the most common language for Humanities in Rscript since the programming language Zep is often used here

and is not detected by GitHub. This concerns many repositories from the Utrecht Institute of Linguistics OTS

Lab (UiL OTS Lab).

Faculty RS RSWIP Rscript

Geosciences Python JavaScript, MATLAB, Python, Shell MATLAB
Humanities Python JavaScript Shell
Science Python Python Python
Social Sciences R R R
Support departments Python R R

Table 4.3: Highest occurring language per faculty per repository type.

Figure 4.10 shows all languages that were the top language in at least ten repositories. This confirms again that

Social Sciences use mainly R for their research, while Python is most common for all other faculties. We can see

a similar pattern to the licenses. After the first two top languages, the next ones are again predominantly used

by only one of the faculties. The columnNo language is a special case where no language could be detected. In

some cases, the contributors omitted the file extension, which GitHub uses to detect the languages.

Figure 4.10: Heatmap grouped by faculty for number of top languages sorted from left to right. Only languages with more than 10
total occurrences as top language are shown.
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Figure 4.11 shows all languages that appeared in at least 10% of the repositories in a faculty. This considers all

detected languages in a repository, not only the top language. While Jupyter Notebooks are often the dominant

language, as Figure 4.10 shows, they are present in only a small amount of repositories. Shell also moved up by

one spot; all faculties except for Social Sciences have used Shell in at least 20% of their repositories. This further

indicates that Social Sciences might behave differently from other faculties regarding language usage. There is

also a clear difference in language usage between Social Sciences and the other faculties, as R is used in 72% of

repositories within that faculty, while the others barely use it. They have a strong preference for Python, which is

present in about 50% of their repositories. Social Sciences, on the other hand, has Python present in only about

25% of the repositories.

Figure 4.11: Heatmap grouped by faculty for percentage of language occurence sorted from left to right based on added percentage
per column. This shows all languages that occurred in at least 10% of the repositories within a faculty. The percentage represents how
many repositories within a faculty used the mentioned language. As such, the percentage does not sum up to 100 across the columns

or rows. If all languages within a faculty appeared in all repositories, they would all have 100%.

Figure 4.12 shows the correlation matrix for metrics. We can see a strong correlation between the number of

stargazers and forks, between the number of forks and contributors, and a moderate relationship between the

number of stargazers with contributors or topics. Forking is usually done to contribute to a repository, and users

usually contribute to repositories they starred. A moderate relationship can be seen for number of issues with
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contributors and languages and contributors with life span. This seems logical, as contributors often communi-

cate via issues, and more contributors allow for a broader range of skills and used languages. They also facilitate

software maintenance over longer periods.

Figure 4.12: Correlation matrix for all metrics.

Descriptive statistics of all metrics can be seen in Table 4.4. The skewness and kurtosis show us that all metrics

are heavily skewed and long-tailed, albeit to different degrees. The statistics per faculty can be seen inAppendix E.

These show us that the median for all metrics except life span is relatively similar across all faculties.

Stargazers Issues Forks Size (MB) Contributors Languages Topics Life span (days)

Minimum 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
25th percentile 0.00 0.00 0.00 0.07 1.00 1.00 0.00 33.00
Mean 6.16 1.98 1.83 27.68 1.93 2.11 1.02 543.30
Median 0.00 0.00 0.00 0.68 1.00 2.00 0.00 297.00
75th percentile 1.25 1.00 1.00 7.65 2.00 3.00 0.00 739.50
Maximum 699.00 148.00 116.00 1209.65 42.00 20.00 20.00 5609.00
Skewness 12.95 9.85 8.96 6.84 8.59 3.36 3.15 2.41
Kurtosis 189.27 127.60 87.08 55.84 101.50 21.87 12.73 8.27

Table 4.4: Descriptive statistics of numeric variables for all faculties
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4.3 FAIR variables

Figure 4.13 shows the Jaccard similarity of all boolean FAIR variables. The Jaccard similarity between any vari-

able with repository open approximately equals the percentage of true occurrences of the concerned variable since

repository open is true for nearly all repositories. This shows that the three howfairis variables related to registry,

citation, and checklist are found only in a small number of repositories, while the newly proposed ones are more

frequent. We can also see that the correlation between the howfairis variables is not relatively high, except for

the two variables related to registry and checklist. From the first and second rows, we can see that except for

the variable correct vcs usage and repository active, all FAIR variables are more frequent or at least equal in case

the repository has a license. Is registered has a higher similarity with has contrib. guidelines. Since research soft-

ware that is registered is often developed bymultiple people, it seems logical that these kinds of research software

should have more guidelines for contribution. A similar logical argument can be made for the has citation and

version identifiable since the Zenodo citation integration uses release tags. 268 out of 337 tags, or roughly 80%

of repositories with tags, were correctly using identifiable versioning.

Figure 4.14 shows the heatmaps for the average percentage of each boolean FAIR variable per faculty. The

upper plot shows the averages for research software, while the lower one shows averages for non-research soft-

ware. We can immediately see from this that every FAIR variable has a higher percentage for research software

than for non-research software. Large absolute increases can be seen in has license, correct vcs usage, has install

instructions, has tests, and version identifiable. Social Sciences has the highest percentage of licenses across both

classes for research software, whileGeosciences has the lowest percentage. Social Sciences also have a high percent-

age of repositories that are registered, have citation enabled, or contain a checklist, compared to other faculties.

Geosciences have the lowest average percentage of correct vcs usage, meaning that more than 20% of the research

software repositories had only commits within a single day. Social Sciences and Support departments have a high
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Figure 4.13: Jaccard similarity for all boolean FAIR variables.

percentage of active repositories, while other faculties are generally less active. Support departments, by far, have

the highest percentage of install instructions and usage examples. For contribution guidelines, Social Sciences

and Support departments again are around the same high percentage, while other faculties have only a minus-

cule amount. Geosciences and Humanities, the two faculties with the lowest percentage, are also the ones with

the least amount of contributors. Interestingly, the Science faculty has the least amount of tests and identifiable

versions on average.
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Figure 4.14: Heatmaps for all boolean FAIR variables grouped by faculty. The upper heatmap shows the averages for research
software, while the lower one shows the averages for non‐research software.

Figure 4.15 shows the FAIR score calculated as the sum of all boolean FAIR variables for each repository. We

can see thatRscripts have a lower sum average than bothRS andRSWIP.We can also see that Social Sciences and

Support departments receive relatively high scores compared to the other faculties, with Geosciences having the

lowest average score.
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Figure 4.15: FAIR score of boolean FAIR variables grouped by faculty and repository type. The score for each repository is calculated
as the number of true FAIR variables, which are all booleans.

4.4 Statistical tests

In order to statistically determine whether there are different characteristics in the metrics between faculties, we

performed Kruskal-Wallis tests for each metric, followed by post hoc test analyses via Dunn’s test. The results

of the Kruskal-Wallis tests can be seen in Table 4.5. All metrics have significant differences except for life span.

Figure 4.16 shows the post hoc test results. A p-value smaller than 0.05 indicates that the two groups come from a

significantly different distribution. Overall, we can see that Science, Social Sciences and Support department are

not too different, as they only have significant p-valueswithin open issues and topics. Geosciences andHumanities,

however, are frequently dissimilar to other faculties. Geosciences is the only different faculty for the number of

contributors compared to all other ones.

Variable p-value Significance

Stargazers 1.247649e-08 ***
Issues 6.513571e-06 ***
Forks 1.301400e-09 ***
Size (MB) 3.112421e-04 ***
Contributors 3.651742e-05 ***
Languages 1.750939e-02 *
Topics 1.668033e-11 ***
Life span (days) 2.769494e-01

Table 4.5: Kruskal‐Wallis test results. Significance codes for p‐values: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Figure 4.16: Dunn’s test results for each variable.
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4.5 Research software classification

Wepredict whether a repository is considered research software or not based on two trainedmodels and a chance

prediction. Figure 4.17 shows the confusionmatrices for bothmodel predictions and chance predictions for the

research software classification. We can see from this that random forest performed better than logistic regression

since there are fewer false negatives and false positives.

Figure 4.17: Confusion matrices for logistic regression, random forest, and chance.

Based on the confusion matrix, further performance measures are calculated in Figure 4.18, which shows the

performance measures for both model and chance predictions. Both models outperform the chance classifica-

tion in accuracy and precision. Random forest achieves a higher score in all performance measures than logistic

regression and chance except for recall, which is expected. A random forest can better utilize complex variables

than a logistic regression, where an increase in a variable value always increases or decreases the probability of a

positive classification. This shows that the used variables improve classification compared to a chance classifier,

that we can improve research software identification accuracy by 16 percentage points, and that a random forest

is more suitable than logistic regression for this classification task.
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Figure 4.18: Performance measures of logistic regression, random forest, and chance.

Figure 4.19 shows the feature importance for the logistic regression model measured by the strength of the

coefficients. The number of contributors has the highest effect, followed by life span and issues. After these,

there is a steep decrease in the coefficient strength.

Figure 4.20 shows the permutation feature importance for the random forestmodel. Since the performance of

this model was better than for logistic regression, we assume these feature importances to be more relevant. Life

span is also an important feature for this model, with a 5.1% mean accuracy decrease, but the other top features

differ. There is also a more gradual decrease in importance, as the variable languages follows with a 4.5% mean

accuracy decrease. The following features size, has install instructions, has license, has tests all have amean accuracy

decrease of more than 2%.
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Figure 4.19: Feature importance for logistic regression shows the coefficients for each feature. A negative value indicates that an
increase in that variable leads to a higher chance that the classified repository is not research software. The feature importance should

therefore be viewed as an absolute value.

Figure 4.20: Feature importance for random forest. The y‐axis shows by how many accuracy percentage points the random forest
would perform worse if that feature would be removed. A negative importance can be interpreted that this is an irrelevant feature.
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5 Discussion
Wearguehowthe researchquestions are answeredbasedon the results inChapter 4. Subquestion1 is related to

the literature review andwill not be further discussed. The FAIR variables that were retrieved from the literature

review for subquestion 2 are validated in Section 5.1. Section 5.2 answers subquestion 3 and 4 that were related

to subpopulation characteristics and support for application of FAIR variables. The last subquestion, which is

about research software classification, is discussed in Section 5.3. Lastly, we look at the limitations of our study

in Section 5.4.

5.1 Validation of additional FAIR variables

Tovalidate subquestion 2 (how canFAIRprinciples be supplementedwith additional variables?), we looked at the

Jaccard similarity coefficient of the FAIR variables in Figure 4.13 and percentages for research and non-research

software in Figure 4.14. Since only a tiny percentage of repositories have information about registration, cita-

tion, and checklists, it is helpful to have additional measures of FAIRness. While all repositories should at least

include license and citation information, it is not always sensible to register research software or scripts in a reg-

istry or to create a checklist. However, it can be argued that FAIR variables should be applicable for all kinds of

research software. Unlike the other proposed FAIR variables, the commit-related variables correct vcs usage and

repository active do not have a higher similarity with licensed repositories. This might indicate that these are not

a good measure for FAIRness since licensing published software is a fundamental part of FAIRness. Addition-

ally, while it might be a good practice in software development to frequently commit and correctly use version

control, this aspect only relates marginally to FAIR principles. Their primary focus lies on measuring openness

and sustainability. However, correct vcs usagemight serve as a good measure to indicate which researchers might

need support with the usage of software tools.
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For the other FAIR variables, they relate to a stronger extent to the FAIR principles. Findability is improved

through clear version identifiability, accessibility through contribution guidelines, reusability through install in-

structions, example usage, and tests. As such, we determine them as valuable additions as FAIR variables. It does

not seem to be useful to determine faculty-specific FAIR variables. For example, even if Geosciences is signifi-

cantly different to all other faculties regarding the number of contributors, it still makes sense to include contri-

bution guidelines in case someone wants to contribute. Having such a guideline improves FAIRness, nonethe-

less.

5.2 Subpopulations and supporting application of FAIRvariables

To answer subquestion 3 (are there different characteristics for different subpopulations in the data?) and sub-

question 4 (how can the application of FAIR variables for research software be supported?), we looked at descriptive

statistics, licenses, languages, topics, and statistical test analysis. We first address subquestion 3.

Figure 4.8 provided an overview of how available metrics differed between the faculties and repository types.

Further faculty-specific differences could then be seen for both license and language usage. Social Sciences use

R in more than 70% of their repositories. In contrast, other faculties use mainly Python to a lesser degree and a

mix of other languages. However, Python and R comprise most of the research software created at UU, which

shows that support for these languages should be prioritized. Fostering local programming communities for

these popular languages, like the R Data Café [19] does, are useful to create informal support structures. For

that reason, we recommend creating a similar environment for Python, the most popular language at UU, or

incorporating Python into the R Data Café, as it is quite popular among researchers. Figure 4.14 revealed more

differences regarding FAIR variables, with Figure 4.15 revealing a potential order of measured FAIRness across

the faculties. This also empowers the argument that the RSE community is in a perfect position to support the
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improvement of FAIRness [63]. They are part of the Support department, which scored highest on average. As

such, it would be wise to incorporate them into the informal support structures. It should be noted that the

FAIR score from Figure 4.15 is currently designed such that each FAIR variable has an equal weight. We have

already discussed the importance of having a license, which should therefore be weighted higher than having a

checklist. Pico et al. [89] implemented such a weighting for their analysis. The statistical tests confirmed that

all metrics except life span are significantly different. This is particularly interesting since Hasselbring et al. [64]

found the life span median to be vastly different across the two subpopulations they compared. However, they

only presented themedian value without a statistical test for significance. The tests also showed that Geosciences

are significantly different to all other faculties regarding contributors, which means that they usually have less

expertise available, possibly leading to the lowest FAIR score. It might also be worthwhile to consider the further

levels of subpopulations. We looked only at the level of faculties. While it is possible to go down further levels,

it might also be of interest to group the employees via their job position, which is also available information.

How does the research software published by a full professor differ from that of a research engineer or PhD

student? Are the effects larger than across faculties? This allowsus tounderstandwhether position-based training

or materials might be more appropriate than faculty-based training. Based on these findings, we conclude that

there are different characteristics at the faculty level.

This finding becomes relevant in answering subquestion 4. In order to support the application of FAIR

variables, we need to consider the FAIRness maturity level of the researchers. As we have seen, this seems to vary

across the faculties. We can specifically examineGeosciences in different regards. Looking at licenses in Figure 4.9,

we see that most repositories in this faculty had no license, while other faculties performed considerably better

in that regard. Figure 4.14 also showed that Geosciences has a lower percentage of correct vcs usage. As we have

previously discussed regarding subquestion 2, this variable relates to good practices in software engineering. As

such, this might indicate that Geosciences require more fundamental training in this topic and hands-on usage
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of GitHub. Such training should still be open for anybody to participate in but could be more geared towards

the academic needs of Geosciences. A document or video-based tutorial would possibly also be worthwhile to

consider. However, while this may save resources, it also comes with drawbacks. A training for this purpose

seems most suited as it allows inexperienced researchers to ask questions and receive appropriate feedback. Un-

derstanding the tools that are used during the process of creating research software is a prerequisite to creating

FAIR research software.

Coming back to the licenses, there would ideally be no repository without a license since unlicensed software

can not be legally reused for any purpose. Therefore, this topic should be made more aware across all faculties

as it concerns them equally. However, it is also noteworthy that research-related repositories have more licenses

on average compared to non-research-related repositories and previously conducted analyses such as Russell et

al. [95]. While the significance of other FAIR-related aspects is less extreme, they follow a similar logic in being

relevant for all faculties. For the FAIR variables in this dataset, this concerns has citation, has install instructions,

has example usage, has contribution guidelines, has tests, version identifiable. We see varying percentages across the

variables and faculties, ranging from1% to 66%. As such, these are aspects that can be improved everywhere. Mak-

ing research software more FAIR could be accomplished by faculty-agnostic training or a document regarding

best FAIR practices. A document has the advantage of being easily editable, such that new additions or changes

in best FAIR practices can be incorporated with little effort to avoid the provision of outdated information.

Furthermore, FAIR research software with high impact can be featured, for example in existing newsletters,

to serve as references. High impact can be approximated with a high number of stargazers. We then additionally

look at the FAIR score as a second selection criteria and highlight aspects that show how these repositories have

achieved not only high impact but also FAIRness.

In addition, a yearly report on FAIRness that analyzes changes per faculty, similar to this study, might be

helpful in tracking the effect of the implemented measures. It might also incentivize researchers to improve
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FAIRness, as such a report should provide transparent criteria on how to achieve this. This has been a big hurdle

in improving FAIRness for many researchers, as stated in our findings from SWORDS@UU consultations and

presentations in Section 2.4. Such a yearly report also becomes feasible since this study provides a labelled dataset

and code for the analysis. If the phases are repeated, only new repositories need to be labelled, which is a minor

effort compared to having no previously labelled data.

5.3 Identifying research software

Section 4.5 answers subquestion 5 (how well can we identify research software with available data?). We used

logistic regression and random forest to predict the class of the repositories. Our results showed that bothmodels

outperform the majority class prediction. Since random forest performs better than logistic regression across all

performancemeasures, we assume thismodel is better suited for our purposes, dataset size, and available variables.

Using such a classification model can be useful for future tasks. Relating back to the yearly report, it would first

be necessary to label newly collected repositories each time. Using the model for prediction as a first automated

labelling step reduces manual labor and will help in making such a yearly report even more feasible. The manual

labelling process is time-consuming and error-prone. It should therefore be supported by automated solutions

as much as possible.

The used features for our models were all numeric or boolean variables. Further development on classifier

models should consider including categorical variables, such as the given license or most used language. Also,

it would be beneficial for future classification to develop more variables. One example would be to include the

readme text as n-grams or other potential forms. The classification could additionally be done for each subpopu-

lation. However, considering the amount of currently available repositories, we decided against this. This might

be more suitable if future work can also incorporate previous university employees.
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5.4 Limitations of study

This study only considers current researchers due to the API restrictions of the employee pages. If there were

public access to previous employees, it would be possible to widen this study to include all previous employees.

Another limitation is the sole focus onGitHubdata. While it is themost popular platform,UUalso hosts its own

GitLab server with active repositories. However, the highest number of stars for a repository is seven. Thismight

indicate thatmost of the relevant research software is indeed foundonother platforms. Furthermore, the variable

retrieval implementation can be improved to be more accurate. For example, the variable has citation does not

take into account if there is citation information in the readme, which is quite common. The variable has install

instructions only checks for mentions of the install keyword in the readme, but could also take language-specific

metadata into account. This includes setup.py, DESCRIPTION, pom.xml, and package.json files for Python, R,

Java, and JacaScript, respectively. Incorporating these files would also allow us to collect information on depen-

dencies and versions, as Lamprecht et al. [80] described.
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6 Conclusion
This study aimed to identify how open source publications onGitHub can be used to infer actionable recom-

mendations forRSEpractice to improve the research software landscape of an organization. In order to do so, we

reviewed the FAIR principles, identified suitable variables to measure FAIRness, and conducted an exploratory

data analysis. The quantitative analysis was applied to UU to determine different characteristics in the faculties,

support for the application of FAIR variables, and how well research software can be identified.

Ourmethod retrieved 176 users that had 1521 repositories. 823 of the repositories can be considered research

software. We found that proposed FAIR variables are a helpful addition to measuring FAIRness and that there

are different characteristics in the faculties, indicating a need for different possibilities of support for applying

FAIR variables. Among other findings, we found out that Geosciences have 57% of unlicensed software, while

the next highest percentage is much lower with 35% for the Humanities. There is also a clear difference in lan-

guage usage between Social Sciences, who primarily use R, and the other faculties, who primarily use Python.

We additionally provided first models for classifying research software to facilitate future research software iden-

tification, achieving an accuracy of 70%. The FAIR data analysis for GitHub allows UU to make data-based

decisions, as a first analysis of the research software landscape at UU and a first labelled dataset for reuse were

provided. This has not only confirmed and refuted beliefs in existing literature, but also provided novel findings

and recommendations, as well as laid the foundation for repeated analyses of this kind. The recommendations

include expanding the R café, creating FAIR reference documents, featuring and highlighting high impact and

FAIR research software, and creating yearly reports. Additionally, the SWORDS@UU framework was extended

with additional validated FAIR variables. There are several topics for future work, which are explained in detail

in Chapter 5. Data collection can be improved in several ways, analysis can be extended and applied to more

variations of subpopulations, and classification of research software can be refined. We conclude that the con-

ducted analysis allows us to infer actionable recommendations for RSE practice and encourage others to reuse

and improve the method.
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Acronyms
ANOVA Analysis of variance.

ARDC Australian Research Data Commons.

CI/CD continuous integration and continuous delivery or continuous deployment.

CSCCE Center for Scientific Collaboration and Community Engagement.

DOI Digital Object Identifier.

EOSC European Open Science Cloud.

FAIR findable, accessible, interoperable, and reusable.

FAIR4RS FAIR for Research Software.

FAIR4RSWG FAIR for Research Software Working Group.

FORCE11 Future Of Research Communications and E-Scholarship.

FOSS Free and/or Open Source Software.

PID Persistent Unique Identifier.

RDA Research Data Alliance.

ReSA Research Software Alliance.

RMSE root-mean-square error.

RSE Research Software Engineer.
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SMP Software Management Plan.

SWORDS@UU Scan and revieW of Open Research Data and Software at Utrecht University.

UiL OTS Lab Utrecht Institute of Linguistics OTS Lab.

UMCU University Medical Center Utrecht.

UU Utrecht University.

VIF variance inflation factor.
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A FAIR principles comparison

FAIR Guiding Principles (2016) Towards FAIRPrinciples for research software (2020) FAIR4RS Principles (2022)

Findable

The first step in (re)using data is to find them. Metadata

anddata should be easy to find for both humans and com-

puters. Machine-readable metadata are essential for auto-

matic discovery of datasets and services, so this is an essen-

tial component of the FAIRification process.

The main concern of findability for research software

is to ensure software can be identified unambiguously

when looking for it using common search strategies.

Software, and its associatedmetadata, is easy for both hu-

mans and machines to find.

F1. (Meta)data are assigned a globally unique and persis-

tent identifier

F1. Software and its associated metadata have a global,

unique and persistent identifier for each released version.

F1. Software is assigned a globally unique and persistent

identifier.

F1.1. Components of the software representing levels of

granularity are assigned distinct identifiers.

F1.2. Different versions of the software are assigned dis-

tinct identifiers.

F2. Data are describedwith richmetadata (defined byR1

below)

F2. Software is described with rich metadata. F2. Software is described with rich metadata.

F3. Metadata clearly and explicitly include the identifier

of the data they describe

F3. Metadata clearly and explicitly include identifiers for

all the versions of the software it describes.

F3. Metadata clearly and explicitly include the identifier

of the software they describe.

F4. (Meta)data are registered or indexed in a searchable

resource

F4. Software and its associated metadata are included in

a searchable software registry.

F4. Metadata are FAIR, searchable and indexable.

A. Accessible

Once the user finds the required data, she/he needs to

know how can they be accessed, possibly including au-

thentication and authorisation.

Accessibility translates into retrievability [...] however,

we found mere retrievability not enough. In order for

anyone to use any research software, a working version

of the software needs to be available.

Software, and its metadata, is retrievable via standardized

protocols.

A1. (Meta)data are retrievable by their identifier using a

standardized communications protocol

A1. Software and its associated metadata are accessible

by their identifier using a standardized communications

protocol.

A1. Software is retrievable by its identifier using a stan-

dardized communications protocol.

A1.1. The protocol is open, free, and universally imple-

mentable

A1.1. The protocol is open, free, and universally imple-

mentable.

A1.1. The protocol is open, free, and universally imple-

mentable.
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A1.2. The protocol allows for an authentication and au-

thorization procedure, where necessary

A1.2. The protocol allows for an authentication and au-

thorization procedure, where necessary.

A1.2. The protocol allows for an authentication and au-

thorization procedure, where necessary.

A2. Metadata are accessible, even when the data are no

longer available

A2. Softwaremetadata are accessible, even when the soft-

ware is no longer available.

A2. Metadata are accessible, evenwhen the software is no

longer available.

I. Interoperable

The data usually needs to be integrated with other data.

In addition, the data need to interoperate with applica-

tions or workflows for analysis, storage, and processing.

Interoperability for research software can be understood

in two dimensions: as part of workflows (horizontal di-

mension) and as stack of digital objects that need to work

together at compilation and execution times (vertical di-

mension)

Software interoperates with other software by exchang-

ing data and/or metadata, and/or through interaction

via application programming interfaces (APIs), described

through standards.

I1. (Meta)data use a formal, accessible, shared, and

broadly applicable language for knowledge representa-

tion.

I1. Software and its associated metadata use a formal, ac-

cessible, shared and broadly applicable language to facili-

tate machine readability and data exchange.

I1. Software reads, writes and exchanges data in a way

that meets domain-relevant community standards

I2. (Meta)data use vocabularies that follow FAIR princi-

ples

I2.1. Software and its associated metadata are formally

described using controlled vocabularies that follow the

FAIR principles.

Now split between F4 and I1.

I2.2. Software use and produce data in types and formats

that are formally described using controlled vocabularies

that follow the FAIR principles.

I3. (Meta)data include qualified references to other

(meta)data

I2. Software includes qualified references to other ob-

jects.

I4S. Software dependencies are documented and mecha-

nisms to access them exist.

R. Reusable

The ultimate goal of FAIR is to optimize the reuse of

data. To achieve this, metadata and data should be well-

described so that they can be replicated and/or combined

in different settings.

Reusability in the context of software has many dimen-

sions. At its core, reusability aims for someone to be able

to reuse software reproducibly.

Software is both usable (can be executed) and reusable

(can be understood, modified, built upon, or incorpo-

rated into other software).

R1. (Meta)data are richly described with a plurality of

accurate and relevant attributes

R1. Software and its associated metadata are richly

described with a plurality of accurate and relevant at-

tributes.

R1. Software is describedwith a plurality of accurate and

relevant attributes.
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R1.1. (Meta)data are released with a clear and accessible

data usage license

R1.1. Software and its associatedmetadata have indepen-

dent, clear and accessible usage licenses compatible with

the software dependencies.

R1.1. Software is given a clear and accessible license.

R1.2. (Meta)data are associatedwithdetailedprovenance R1.2. Software metadata include detailed provenance,

detail level should be community agreed.

R1.2. Software is associated with detailed provenance.

R1.3. (Meta)data meet domain-relevant community

standards

R1.3. Software metadata and documentation meet

domain-relevant community standards.

R3. Software meets domain-relevant community stan-

dards.

R2. Software includes qualified references to other soft-

ware.
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B Repository type labels

Label Description Research

software?

Research

Software

Is the tool used for research or was it produced during research? If it is installable (has setup file, is

a package, Docker installation) it counts as Research Software. GUIs and (shiny) apps also count

as Research Software. If there is no documentation but code structure implies reusability, it is still

counted as Research Software, even if the author describes it as a ”simple script”. Parts used by other

software that are reusable also count as Research Software.

Yes

Rscript Generally things that are only for reproducibility of specific analyses or workflows, not reusability

directly. Scripts that need (heavy) modification to be used for other purposes that the original in-

tent. Additionally, scripts for benchmarking, testing or showcasing of research software. Queries

like SPARQL scripts are also considered research scripts.

Yes

RSWIP Research Software that is currentlyWIP or in alpha/experimental phase. Based on available informa-

tion within a repository or corresponding documentation. Incomplete abandoned software is also

considered RSWIP. Releases in R with version number less than 1.0 considered RSWIP according

to best practices: https://lifecycle.r-lib.org/articles/stages.html#experimental

Yes

Empty Includes placeholder repositories that have not much more than a few lines of text or a license. No

Non-RS Other kind of software, for example for simplifying or automating workflows that were not clearly

developed during research process. Software and scripts created for learning or other purposes not

directly related to research.

No
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Rdata Repositories with only research data. If they contain research software or scripts, they will be classi-

fied as such.

No

Workshop This includes course and exercise material, tutorials, workshops. No

Docs This includes notes, summaries, documentation, lists, presentations, ontologies, websites, guidelines,

LaTeX files, lecture slides, project management (projects tab), publication PDFs, vignettes, books,

and anything else falling into this category.

No

Template Code, LaTeX or documentation templates/boilerplates that are not created during the research pro-

cess according to our used definition.

No

Student work Bachelor andmaster thesis relatedwork, student coursework etc.; Actual researchprojects by students

conducted under supervision (e.g. scientific internships) are not part of this category. Thesis work

published on organizational accounts are counted as Research Software/Rscripts.

No

OtherRS Research Software from researchers that were developed at other institutions. No

Irrelevant Test/dummy/Toy/Demo/course project/non-scientific code challenge repositories. Also includes

other types of repositories, e.g. for storing artwork, data dumps of misc. projects, storage for con-

figuration files, schemas, stylings, themes, moved or deleted repositories.

No
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C Further user plots

Figure C.1: Number of followers of users per faculty.

Figure C.2: Number of users a user is following per faculty.

84



D Further repository plots

Figure D.1: Histograms for metrics that are considered research software. The y‐axis is log‐scaled.
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Figure D.2: Topics percentage for each faculty. Only topics that occurred more than 6 times were included.
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E Descriptive statistics per faculty

Stargazers Issues Forks Size (MB) Contributors Languages Topics Life span (days)

Minimum 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
25th percentile 0.00 0.00 0.00 0.02 1.00 1.00 0.00 12.00
Mean 2.84 3.02 1.49 16.96 1.22 2.19 0.62 473.46
Median 0.00 0.00 0.00 0.12 1.00 2.00 0.00 267.00
75th percentile 1.00 0.00 0.75 5.98 1.00 3.00 0.00 662.00
Maximum 80.00 148.00 62.00 263.95 4.00 20.00 10.00 3623.00
Skewness 5.70 7.05 8.07 3.67 2.88 4.42 3.30 2.32
Kurtosis 33.76 51.33 69.78 14.09 8.77 26.72 10.97 5.91

Table E.1: Descriptive statistics of numeric variables for Geosciences

Stargazers Issues Forks Size (MB) Contributors Languages Topics Life span (days)

Minimum 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
25th percentile 0.00 0.00 0.00 0.08 1.00 1.00 0.00 39.25
Mean 0.58 2.92 0.18 9.52 1.79 2.36 0.25 591.39
Median 0.00 0.00 0.00 0.42 1.00 2.00 0.00 430.00
75th percentile 0.00 2.00 0.00 4.92 2.00 3.00 0.00 816.50
Maximum 11.00 77.00 3.00 205.65 9.00 7.00 11.00 2796.00
Skewness 4.34 5.54 3.43 4.56 2.58 1.02 6.60 1.38
Kurtosis 21.09 35.84 12.59 28.83 7.79 0.45 48.36 1.23

Table E.2: Descriptive statistics of numeric variables for Humanities

Stargazers Issues Forks Size (MB) Contributors Languages Topics Life span (days)

Minimum 0.00 0.0 0.00 0.00 1.00 0.00 0.00 0.00
25th percentile 0.00 0.0 0.00 0.11 1.00 1.00 0.00 38.00
Mean 8.71 1.3 2.42 38.85 2.08 2.17 1.17 590.09
Median 1.00 0.0 0.00 1.17 1.00 2.00 0.00 278.00
75th percentile 3.00 0.0 1.00 11.75 2.00 3.00 0.00 764.00
Maximum 699.00 53.0 97.00 927.14 42.00 17.00 20.00 5609.00
Skewness 11.19 7.1 7.87 5.26 9.36 3.39 3.11 2.77
Kurtosis 141.37 56.8 66.58 32.71 110.80 17.78 12.14 9.64

Table E.3: Descriptive statistics of numeric variables for Science
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Stargazers Issues Forks Size (MB) Contributors Languages Topics Life span (days)

Minimum 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
25th percentile 0.00 0.00 0.00 0.13 1.00 1.00 0.00 34.00
Mean 6.78 1.36 1.99 34.96 1.99 1.77 1.37 514.22
Median 0.00 0.00 0.00 1.45 1.00 1.00 0.00 336.50
75th percentile 1.75 0.00 1.00 9.53 2.00 2.00 2.00 759.25
Maximum 350.00 36.00 84.00 870.33 29.00 7.00 18.00 3337.00
Skewness 8.30 4.91 7.93 5.09 6.92 1.75 2.66 1.86
Kurtosis 71.01 26.28 65.80 27.67 53.17 3.64 10.23 4.03

Table E.4: Descriptive statistics of numeric variables for Social and Behavioural Sciences

Stargazers Issues Forks Size (MB) Contributors Languages Topics Life span (days)

Minimum 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
25th percentile 0.00 0.00 0.00 0.07 1.00 1.00 0.00 74.00
Mean 12.16 2.07 3.46 29.54 2.46 2.01 1.83 452.88
Median 0.00 0.00 0.00 0.56 2.00 1.00 0.00 256.00
75th percentile 2.00 1.50 1.00 3.13 3.00 3.00 3.00 548.50
Maximum 694.00 49.00 116.00 1209.65 17.00 7.00 12.00 2375.00
Skewness 8.55 6.42 6.43 7.04 3.84 1.35 1.78 1.75
Kurtosis 75.39 49.14 43.42 52.86 16.16 1.89 3.08 2.48

Table E.5: Descriptive statistics of numeric variables for Support departments
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