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Abstract 
Climate change is one of the greatest threats that humanity is facing today. Minimizing its effects 

can only be achieved through a future of renewable energies (REs). Therefore, innovation in this 

sector plays a key role in achieving environmental objectives to curb this threatening scenario 

before it is too late. Previous studies have shown the great impact the characteristics of 

knowledge networks have on the innovative performance of regions in general and in certain 

technologies in particular. These networks are defined as a variety of actors, which are 

interconnected by collaborative relationships that enable or constrain the diffusion, transfer and 

acquisition of knowledge and information, and thus influence innovative output. Interestingly, 

this approach has hardly been investigated in the energy sector despite the emphasis on 

collaboration being key towards successful energy innovations. Therefore, the main objective of 

this thesis is to answer the question of how the characteristics of a region´s RE sector knowledge 

network influence regional innovation in this sector.  

To this end, several hypotheses are proposed relating different characteristics of regional 

knowledge networks to the RE innovative performance of 270 European NUTS 2 regions 

between 2003 and 2017. These include characteristics referring to both intra-regional and inter-

regional collaborations and are classified in three main types: structural (overall connectedness 

and cohesive subgroups), proximity (geographic and technological proximity) and actor-specific 

(intermediaries and gatekeepers). For the construction of the variables, RE patents were used. 

Hypothesis testing has been done using regression analysis on three main models. One 

considering all patents in removable energy (baseline model), and two energy-specific for solar 

energy (solar model) and wind energy (wind model).   

The results reveal that an overall a loosely coupled regional network structure impulse 

innovation in RE, although, it is important that there are cohesive subgroups of inventors within 

it. It is also key that the region receives external knowledge from beyond its closest neighbours 

and that this is to some extent similar to the region's RE technology base. Finally, it is desirable 

to have actors in charge of disseminating internal and external knowledge throughout the 

groups of actors of the regional network.  

This thesis offers a new point of view through the analysis of knowledge networks to the study 

of regional innovation in RE, which we consider useful both for future studies in this field and 

for policy makers seeking to improve the regional performance of their regions in RE. 
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1. Introduction 
Addressing climate change is a major global concern that has been gaining increasing attention 

over the years. More effort is needed to change the current situation, or the or the 

consequences will be very harmful for to ecosystems, economic sectors, human health, and 

well-being (Boehm et al., 2021; IEA, 2019). Two of the most influential bodies in providing 

international policy advice regarding the energy transition, the International Renewable Energy 

Agency (IRENA) and the International Energy Agency (IEA), have claimed the importance of 

promoting technological innovation in the energy sector to accelerate the energy transition and 

meet the global net-zero emissions target by 2050 (IEA, 2019; IRENA, 2021). This relevance of 

energy innovation is also supported by several scientific studies (Böhringer et al., 2020; Bointner 

et al., 2016; Markard, 2018). Fundamentally, they claim that innovation is critical to deliver 

solutions in the energy system towards increasing its efficiency and sustainability. 

However, innovating in the energy sector is not an easy task, quite the contrary. Energy 

technologies tend to be large, complex and designed to endure for many years (Laimon et al., 

2020; Ridha et al., 2020). Thus, the IEA on its report on “Technology Innovation to Accelerate 

Energy Transitions”, highlights that counting with a strong regional innovation ecosystem is key 

to guarantee sustainable energy results over time (IEA, 2019). This ecosystem is complex, 

requiring the interaction of a wide range of actors (private firms, public and private research 

organizations, government, citizens, etc.) not only to generate innovativeness but to integrate 

it in the energy system. Furthermore, attention at the regional level to accelerate the energy 

transition is growing (Larruscain et al., 2017; Li et al., 2020a, 2021). The main reason is that 

international frameworks set global policies and targets, however, states have autonomy to set 

their own low-carbon targets and specific measures. A reason being that the regional energy 

context is key to determining their objectives (Hoppe & Miedema, 2020; IEA, 2019). 

At the European level, we can observe significant inequalities in countries' progress in innovation 

towards transition by looking at how their share of renewable energy (RE) in their final energy 

consumption has evolved over the years. For instance, when comparing Denmark with Slovenia 

between 2004 and 2019, we can find a considerable difference. In Sweden the share of RE 

energy from the total consumed grew by 21.7%, while in Slovenia only 6.6% (Eurostat, 2022b).  

Moreover, scientific literature in sustainable transition studies increasingly claims that research 

should take a more systemic and collaborative approach on the energy transition (Larruscain et 

al., 2017; Markard, 2018). In particular, the lack of collaborative perspectives prevents us from 

having a more complete vision of how the different actors and technologies that conform the 

innovation system in the energy sector interact to develop new innovations towards the energy 

transition (Larruscain et al., 2017). 

In this regard, a large body of research in innovation studies has claimed the importance of 

knowledge networks in facilitating innovation (Breschi & Lenzi, 2016; Graf, 2017; Innocenti et 

al., 2020; Krätke, 2010). Here, knowledge networks are understood as a variety of individuals 

and organizations, which are interconnected by collaborative relationships that enable or 

constrain the dissemination, transference and acquisition of knowledge and information, and 

thereby the creation of new innovations (Schutte & du Preez, 2008). Knowledge development 

and diffusion related to sustainable energy technologies has been claimed to be fundamental 

for innovation and technological development for climate change mitigation (Li et al., 2021). This 

study follows this research tradition by investigating how the role of knowledge network 

structures can influence for regional innovation in the sustainable energy sector. 
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A promising method to study collaboration between (energy sector) actors and its influence on 

innovation to accelerate the energy transition is Social Network Analysis (SNA). Numerous 

studies have already analysed knowledge networks and their impact on innovation employing 

SNA (Boschma & Frenken, 2009; Guan & Liu, 2016a; Hemphälä & Magnusson, 2012). However, 

most of these studies focus on specific companies or territories, depriving us of a more 

systematic vision of innovative systems, across companies and regions. Moreover, a new body 

of research has found evidence of the impact of knowledge networks on regional innovation 

performance (Innocenti et al., 2020; Kauffeld-Monz & Fritsch, 2013; Marrocu et al., 2013; Pan 

et al., 2020). They claim that the innovative capacity of the region varies depending on different 

structural network properties of a region, for example its cohesion, proximity to the regions with 

which it collaborates, and types of organizations that comprise it. 

However, despite the calls for a more systematic understanding of collaboration in sustainable 

innovation systems (Markard, 2018), and the claims for a regional approach to combat climate 

change (Hoppe & Miedema, 2020), very few articles have looked into regional knowledge 

networks specifically for the renewable energy sector (Larruscain et al., 2017; Li et al., 2021; 

Nordensvard et al., 2018). Furthermore, most studies on both regional knowledge networks 

towards innovation in general and in the sustainable energy field, are focused on specific 

characteristics of the network. Those are for instance in relation to its structure (Innocenti et al., 

2020), the position of certain actors (Gallo & Plunket, 2020; Kauffeld-Monz & Fritsch, 2013) or 

the different types of proximity of inter-regional collaborations (Marrocu et al., 2013; Pan et al., 

2020). 

This thesis aims to fill those gaps by analysing a broad set of network characteristics (structural, 

proximity and actor-specific) of regional energy sector knowledge networks and how they 

influence innovation in RE towards accelerating the energy transition.  

Therefore, the following research question guides this research: 

How do the structural, proximity, and actor-specific characteristics of a region´s 

renewable energy sector knowledge network influence regional innovation in 

renewable energy? 

Firstly, the focus is on the overall network connectedness and degree of cohesion among 

subgroups of the regional network as those properties prove to have a strong influence on 

regional innovation (Innocenti et al., 2020). Secondly, we look at two types of inter-regional 

proximities and its effect on the regional innovation in RE. Collaboration with external regions 

has been claimed to be important in the development of sustainable energy innovations (IEA, 

2019; Li et al., 2021). According to several authors, how proximate are these collaborations 

impacts the innovative the innovative performance of a region (Kalapouti & Varsakelis, 2015; 

Marrocu et al., 2013; Pan et al., 2020). In this research we focus on geographical and 

technological proximity as both have been claimed to be the highly relevant on regional 

innovation (Marrocu et al., 2013; Pan et al., 2020). Specifically, those who act as a bridge in the 

transfer of knowledge between groups of actors in the network and who are key to the 

dissemination of new knowledge in the region, which are gatekeepers and brokers. Both types 

of actors are widely recognized in the literature to play a key role in innovation at the regional 

level (Graf, 2011; Graf & Krüger, 2011; Kauffeld-Monz & Fritsch, 2013; Piazza et al., 2019).  

In this way, in order to support the central question, three sub-questions relating to the three 

sets of network characteristics (structural, geographic and actor-specific) are formulated: 
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1. Structural characteristics: How does the structure of the renewable energy knowledge 

network of a region, in terms of overall connectedness and cohesion of its subgroups, affects 

its innovative performance in the RE sector? 

 

2. Proximity characteristics: How does the inter-regional proximity of a region's actors' 

collaborations with other regions, in terms of geographical and technological proximity, 

affect its innovative performance in the RE sector? 

 

3. Actor-specific characteristics: How does the presence of gatekeepers and brokers in the 

renewable energy knowledge networks of a region affects its innovative performance in the 

RE sector? 

To address each of these sub-questions, we study inventor networks in the renewable energy 

sector in European Union (EU) regions plus the United Kingdom (UK), Norway and Switzerland 

in the period 2003 to 2017. A series of hypotheses based on regional network theory and its 

influence on regional innovation, as well as regional innovation in RE, are proposed. Regression 

analysis is used to test these hypotheses, while SNA tools are employed to construct the 

variables of the study.  

This thesis presents several contributions to the literature. First, by investigating the 

characteristics of knowledge networks in RE, it responds to the demand for a new collaborative 

approach to research innovation in the sector. Second, it adds to existing studies on knowledge 

networks and regional innovation by combining in a single study multiple characteristics that 

have proven to be relevant. In this way, it is possible to know whether they are all equally 

significant, or whether some are more important than others. Finally, the thesis adds interesting 

empirical evidence on the relevance of RE innovation for progress in the energy transition, by 

investigating both the temporal and spatial evolution of renewable energy patents in European 

regions. Furthermore, from the results of the analysis, several recommendations can be derived 

to regional policy makers seeking to improve the innovative performance in RE in their regions. 

After this first introductory section, the next section delves into the theoretical and conceptual 

background of the study. The third section presents the methodology followed. Then, the fourth 

section describes the results obtained. This leads to a fifth section where these results are 

summarized, and the derived conclusions presented. Finally, we conclude with the discussion 

section where the contributions of the thesis, limitations, and suggestions for future research 

are outlined.   

2. Theoretical and conceptual background  
In this section we start proving an overview of the RE sector in Europe. Then, we present a 

theoretical background on the influence of knowledge networks on regional innovation. And 

lastly, we develop several hypotheses based on previous studies on innovation in RE and 

knowledge networks, with the objective of solving the thesis research sub-questions. 

2.1. Renewable energy in Europe  

Renewable energy plays a key role in achieving the EU's climate targets, including becoming the 

first climate-neutral continent by 2050 (Eurostat, 2022a). It contributes to the reduction of 

greenhouse gas emissions and pollutants and, consequently, to the mitigation of climate change 

and the enhancement of air quality (European Commission, 2020; FSR, 2020). Innovation in RE 

is crucial to reach this path towards environmental sustainability. As with all innovation, new 
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technologies and processes in RE improve current technologies and increase the range of 

options available and the possible strategies for achieving these sustainable goals (IEA, 2019).  

Innovation in renewable energy has contributed to making the EU the frontrunner of global 

renewable energy deployment for more than two decades (European Commission, 2018). 

Moreover, its growth has been steady, going from 9.6% share of its gross energy consumption 

from renewable sources in 2004 to 22.1% in 2020 (Eurostat, 2022a). To reach this share, each 

EU Member State contribute with its particular targets defined by its own national energy and 

climate plan (NECP)1. Accordingly, this share varies considerably depending on the country. 

Sweden and Finland lead the European ranking with a share of 60% and 44% respectively in 

2020. At the other extreme are Malta (11%) and Luxembourg (12%) (Eurostat, 2022a). 

Renewables are currently the leading source of electricity generation in the EU (European 

Commission, 2020). Technological advances, accompanied by measures to facilitate their 

expansion, have led to a considerable cost reduction of renewables over the years, making them 

very competitive on the market (European Commission, 2018). For instance, the cost of solar 

energy production has fallen by 75% from 2009 to 2018, and wind energy is the same or even 

cheaper than gas, coal and nuclear (European Commission, 2020). 

The main renewable energy sources in Europe are solar and wind, hydro energy and bioenergy. 

In general, by 2020 the largest source of removable energy in Europe is bioenergy, with almost 

60% of renewable energy generated (European Commission, 2021).  Regarding the generation 

of electric energy, the two main ones are wind (36%) and hydro (33%). At a further distance, 

solar (14%) and bioenergy (8%) follow. The remaining 8% is accounted for by other renewable 

energies (Eurostat, 2022a). 

Specifically in the period of analysis of this study (2003-2017), solar and wind energy are the two 

energies that have experienced the highest growth (European Commission & IRENA, 2018; 

Schremmer et al., 2018). The following figure (Figure 1) shows a comparison of the growth of 

cumulative installed capacity of solar PV and wind energy from 2000 to 2020 globally. As can be 

seen in the graph, both technologies have had similar development phases. Wind energy started 

a little earlier and its growth has been sustained since 2007. On the other hand, solar PV energy 

began to grow from 2007 onwards, but at a relatively faster rate.  

                                                             
1 NECPs are are the roadmaps where EU member states define their environmental objectives and how they will achieve them. In 
particular, they address energy efficiency planning, renewables, greenhouse gas emissions reductions, interconnections and 
research and innovation. NECPs were introduced by the Regulation on the governance of the energy union and climate action 
(EU)2018/1999 and adopted in 2019 (European Commission, n.d.-b). 
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Figure 1. Global cumulative installed solar PV and wind capacity from 2000 to 2020. Source: (GWEC, 2021). 

Focusing on solar energy, this can be found as solar photovoltaic or solar thermal. Photovoltaic 

technologies are oriented to the generation of electricity while solar ones are suitable for the 

production of domestic hot water. On a smaller scale there are also Thermal-PV hybrids 

technologies, which, being a combination of both, are able to convert solar radiation into usable 

thermal and electrical energy (Huide et al., 2017). Solar PV energy is the fastest growing energy 

source in Europe in recent years. Indeed, it has gone from generating only 1% of electricity with 

a total of 7.4 TWh in 2008 to 14% and 144.2 TWh in 2020 (Eurostat, 2022a). The origins of solar 

PV energy in Europe lie in Germany, which was one of the few countries in Europe to embrace 

it before 2008. Germany was followed by Italy and Spain, countries with great potential for this 

energy due to their large number of daylight hours. To date, these three countries are still the 

largest producers of solar power in Europe2 . However, solar thermal energy entered the market 

globally somewhat earlier than solar PV, and in general solar energy has experienced rapid 

growth in Europe since 2000 (Schremmer et al., 2018; Solar-energia, 2020). The price of solar 

energy has fallen more than 70% in the last decade, making it very competitive in many parts of 

the EU (European Commission, 2021). Innovation throughout the supply chain, within the 

manufacturing plants, as well as improvements in efficiencies contributed to this reduction in 

price. Geographically, the potential of this renewable energy technology varies across Europe, 

with the southern regions with the most hours of sunshine, such as Italy, Spain, Portugal and 

Greece, the ones that can take the most advantage of solar energy. However, its deployment in 

Europe is very spread out, where regions with less potential for this type of energy such as 

Germany, Belgium or Switzerland also present a large installed capacity of solar energy 

(Schremmer et al., 2018). 

Wind energy technologies are based on the creation of electricity using the kinetic energy 

generated by moving air. The history of the wind energy industry in Europe goes back almost 40 

years. In 1982 the first wind farm build in the Greek island of Kythnos. Nine years later, the first 

offshore wind farm opened in 1991 in Denmark (European Commission, 2020). Denmark's 

commitment to this technology has always been very high, being both a pioneer and European 

                                                             
2 In 2021, Germany generated 58TW from solar power, followed by Italy and Spain with 22 TW and 16TW respectively. 
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frontrunner in wind energy. In 2021, 44% of its electricity came from wind energy, the highest 

share in Europe (Komusanac et al., 2022). The rest of Europe joined Denmark in the deployment 

of wind power from around 2000 (EWEA, 2012). Denmark is followed by Ireland (31%) in share 

of the electricity demand covered by wind in 2021, with the EU average being 14% (Komusanac 

et al., 2022). Technological developments have been key. This is reflected in the progressive 

increase in turbine capacity from 22kW in the first models in 1982 to 10MW in today's offshore 

wind turbines. The greatest potential for electricity generation by wind power is found in areas 

of northern Europe, such as the United Kingdom, Denmark and northern France, characterized 

by a very windy climate, which enhances the efficiency of this technology. Unlike solar energy, 

most of the wind power generation takes place in these regions with high wind energy 

potential(Schremmer et al., 2018). 

As mentioned, hydro energy is the second most generated renewable energy in Europe to 

generate electricity. Its basic principle is using the power of moving water to produce electricity. 

In 1849, the British-American engineer James Francis developed the first modern water turbine, 

which is still the most widely used in the world (International Hydropower association, 2022). 

The first half of the 20th century saw the greatest growth of this energy source in Europe., with 

the creation of large-scale projects and a succession of innovations that improved its design and 

performance (trvst, 2022). It is therefore the most mature type of renewable energy at the 

present time. In the current century, hydropower production has stabilised at around 650 TWh 

per year, which varies mainly due to the annual hydrogeological situation (Hydropower Europe, 

n.d.). One limitation that constrains the potential of this technology is that it is highly dependent 

on the geological characteristics of the region. It is therefore not surprising that the countries 

that generate the most hydro energy in Europe are Norway, France and Sweden, while in flatter 

countries such as Lithuania or the Netherlands there is no hydro energy at all (Hydropower & 

Dams World Atlas, 2019).   

Lastly, as mentioned above, bioenergy is the main renewable energy source in Europe. It consists 

on the use of organic material, such as trees, organic waste, and agricultural crops to create 

energy. This energy, depending on how it is obtained, can be used for electricity generation, 

transport fuel or heating. 75% of all bioenergy in the EU is used in the heating sector (European 

Commission, 2021). Humans have a long history of burning biomaterials for heating and cooking 

from the time fire was discovered. However, the use of bioenergy for environmental purposes 

did not occur until the end of the 20th century, marked by the growing environmental concerns 

(Guo et al., 2015). In the EU the largest bioenergy consumers in absolute terms are Germany, 

France, and Italy, while per inhabitant are the Baltic and Scandinavian countries and Austria. 

European legislation considers bioenergy a renewable energy source and is considered key to 

the energy transition. (European Commission, 2019). However, there are studies that question 

how beneficial this energy source is, considering it to be a major source of carbon emissions 

(Stephenson et al., 2014; Sterman et al., 2018). 

For the future of renewable energies in Europe, solar PV and wind energy are expected to 

experience the greatest growth, as has already been the case for the last decade (European 

Commission & IRENA, 2018). In 2019, solar and wind energy in the EU overtook coal for the first 

time, and in 2021 surpassed that generated by gas (Moore, 2022). Although they are already 

competitive, it is expected that their investment and energy prices will continue to fall by 

increasing their performance and reliability. In particular, innovations are expected to facilitate 

their integration into the grid, dealing with the challenge of their volatile nature (IEA, 2019). 

Consequently, wind and solar PV together are expected to account for 21% of renewable energy 
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consumption by 2030. While hydropower will drop to 12% and bioenergy to 55%3 (European 

Commission & IRENA, 2018). 

This thesis is intended to delve into renewable energy innovation in Europe. Although it is known 

which regions are leading in renewable energy production in Europe and what type of renewable 

energy is generated in each of them, we seek to find empirical evidence of their relationship 

with the development of regional RE innovation. For this purpose, a descriptive analysis of the 

temporal evolution of renewable energy innovation in Europe, especially from 2003 to 2017, is 

included. 

2.2. Theoretical background on the influence of knowledge networks in regional 

innovation 

It is an acknowledged fact in the literature that the combination and recombination of previously 

unconnected ideas leads to the production of new knowledge, which in turn results in 

technological innovations (Arthur, 2007; Miguelez & Moreno, 2018). In the case of renewable 

energy innovation this is not different (IEA, 2019; Li et al., 2020a). This recombination of ideas 

to generate novelty can occur in two ways, either through one's own past learning processes or 

via interaction with other actors (Graf, 2011). Regarding the latter, the IEA states that the 

effectiveness of renewable energy innovations depends to a large extent on knowledge-sharing 

networks between industry, academia, research centres, policy makers and international 

associations (IEA, 2020). A growing body of research shows that the characteristics of social 

relationships and the networks they constitute influence the effectiveness and efficiency with 

which individuals and collectives innovate (de Noni et al., 2017; Innocenti et al., 2020; Miguelez 

& Moreno, 2018; Phelps et al., 2012). The main reason is that the nature of the network 

influences the ability of its individuals to access, absorb, apply and transfer this knowledge 

(Phelps et al., 2012). These studies are commonly referred to as "knowledge network" research. 

Knowledge networks are defined as sets of nodes whose social interconnections enable or 

constrain their ability to capture, transmit and create knowledge (Phelps et al., 2012). A node 

can be any type of actor involved in the task of creating new knowledge. Thus, nodes can be 

individuals, such as inventors, or collectives such as firms, universities, and research 

centres(Graf, 2011). At the regional level, several authors have found evidence that the 

innovativeness of a region is influenced by the characteristics of its knowledge network (de Noni 

et al., 2017; Graf, 2017; Innocenti et al., 2020; Marrocu et al., 2013). These characteristics can 

be defined by both intra-regional collaborations and inter-regional collaborations.  

Intra-regional collaboration analysis explores the collaborations that occur within the regional 

network and how those influence the recombination and exchange of knowledge within and 

between actors in a regional network (Belussi et al., 2010; Kauffeld-Monz & Fritsch, 2013; Sun, 

2016). Typical characteristics of this approach are those related to the structure of the regional 

network, such as its size, which corresponds to the number of actors that make it up, or its 

overall connectedness, related to the extent to which the network is interconnected (Hemphälä 

& Magnusson, 2012; Juhász & Lengyel, 2018; Zhang & Luo, 2020). In addition to the structure, 

some studies focus their analysis on the actors that conform the regional network (Kauffeld-

Monz & Fritsch, 2013; Piazza et al., 2019). Special attention is given to the network brokers, 

actors in the network that transfer knowledge between other actors that are not linked directly, 

                                                             
3 In 2010, of the total renewable energy consumed, bioenergy accounted for 67%, hydro energy for 21% 
and wind energy for 9% (European Commission, 2018). 
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and therefore play a key role in the dissemination of knowledge in the region. (Kauffeld-Monz 

& Fritsch, 2013).  

Additionally, an inter-regional regional approach focuses on the collaborations of a region with 

other regions. Several authors consider that this type of relationship is key to fostering a region's 

innovative capacity (de Noni et al., 2017; Graf, 2011; Marrocu et al., 2013; Miguelez & Moreno, 

2018). The main reason for this is that external knowledge inputs help to prevent a region from 

entering into a spatial lock-in generated by an excessive propensity to collaborate intra-

regionally (R. A. Boschma, 2005).  Seeking for extra-regional collaborations seems to be 

especially important in the case of renewable energy technologies. In fact, the EU has 

organizations, such as EIT innoEnergy, that promote cross-border partnerships in the energy 

sector with the objective of accelerating sustainable energy innovations (IEA, 2020). 

In the analysis of knowledge networks, a common approach to understanding interregional 

relationships is to examine the proximity of relationships (Lalrindiki et al., 2016; Marrocu et al., 

2013; Pan et al., 2020). Proximity does not only refer to the distance between collaborating 

actors (geographical proximity). Other types of proximity have also been shown to influence 

regional innovation, such as technological proximity, institutional proximity, social proximity and 

organizational proximity (R. Boschma & Frenken, 2009). Technological proximity refers to the 

similarity of the knowledge base of the collaborating regions. Institutional proximity concerns 

similarity at the institutional level, i.e. whether they share the same culture, traditions and 

political framework. Social proximity refers to the degree to which the collaboration between 

regions is based on friendly relationships. And organizational proximity means whether 

relationships take place between the same type of organizations (R. A. Boschma, 2005; Marrocu 

et al., 2013). Furthermore, as with intra-regional analysis, some authors focus on the key actors 

in the transmission of knowledge in the region, but in this case from outside the region (Gallo & 

Plunket, 2020; Graf, 2011; Punt et al., 2021). These actors are known as gatekeepers, who by 

maintaining connections with actors outside the region have access to knowledge externally 

produced, which transfer across the regional network via local connections (Gallo & Plunket, 

2020). 

In this thesis we combine in a single analysis all these characteristics that have been shown to 

have an impact on regional innovation. Thus, as mentioned in the introduction, the network 

characteristics are grouped into three groups. The first, focused on intra-regional regional 

connections, bringing together structural characteristics of each regional network. The second 

focuses on the proximity characteristics of the relationships between regions. And finally, we 

focus on actor-specific network characteristics by looking at intra-regional brokers and 

gatekeepers. 

In the following section, the characteristics chosen for each group are elaborated and the 

hypotheses are developed. 

2.3. Hypothesis development  

2.3.1 Structural characteristics 

As it was mentioned above, it is generally recognized that the structure of knowledge networks 

affects the innovative capacity of its members. In this study we specifically look at the overall 

connectedness of the knowledge network and the cohesion of its subgroups. 

The overall network connectedness refers to the proportion of connections in the network that 

have been reached in relation to all those that would be theoretically possible (Y. Zhang et al., 
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2013). Regarding its influence on regional innovation, there are opposing views. Innocenti et al. 

(2020) discovered a negative effect of having a higher rate of connectivity between network 

members than between members of a region. They claim that a high connectivity favours the 

circulation of redundant knowledge and the eventual lock-in of the region in certain 

technologies. Loosely coupled networks would solve this problem (R. A. Boschma, 2005). 

On the other hand, Graf et al (2017) and Fritsch et al. (2009) found a positive relation, arguing 

that a highly connected network facilitates the transfer of knowledge and information. A highly 

fragmented network prevents regional innovators from exchanging information with each 

other, making it more difficult to recombine ideas to generate new innovations. However, the 

latter makes an important remark, claiming that the degree of connectedness and its influence 

on innovation depends on the maturity of the field. In this way, the more mature technology 

sectors are not interested in the regional network being overly connected. The reason is that as 

the sector becomes more mature the circulation of redundant knowledge in the region also 

grows, as over time there is a tendency towards technological specialization (Crespo et al., 

2014). 

According to some authors the renewable energy sector has recently entered this mature phase 

(Barbieri et al., 2020; Sbadella et al., 2018). However, others claim that we can still observe novel 

developments, implying that this mature phase has not yet been fully reached (Hille et al., 2020). 

Our analysis covers the period from 2003 to 2017. At the beginning of this period, as mentioned 

above, the use of renewable energies, especially solar and wind, was taking off in Europe. Over 

the years it seems clear that the sector has been maturing, which can be observed by its 

progressive growth in the global energy mix. Therefore, given the relative closeness in time of 

the expansion of renewable energy sources, even if it loses its positive influence over time, we 

expect that a higher network density at the regional level favours innovation in renewable 

energies. 

H1. The higher the overall connectedness of a region RE sector knowledge network, the higher 

its regional innovation performance in REs. 

 

Cohesive sub-groups in the network or ego-networks refers to the subset of actors in a 

knowledge network between which there are relatively strong, direct, intense, frequent, or 

positive links (Innocenti et al., 2020). Articles reviewed found a positive relationship between 

the presence of cohesive subgroups within a region and regional innovation (Fritsch & Kauffeld-

Monz, 2009; Graf, 2017; Innocenti et al., 2020). The reason is that ego-networks usually exhibit 

a high level of trust among their members, which promotes collaboration. Trust facilitates risk 

sharing, resource pooling and information dissemination (Crespo et al., 2014). In addition, the 

complexity of renewable technologies makes collaboration a necessity, requiring expertise in 

different domains (Laimon et al., 2020). Hence, we can also expect that the presence of 

subgroups enhances regional innovation on renewable energy. 

H2. The higher the presence of cohesive subgroups in a region renewable energy sector 

knowledge network, the higher its regional innovation performance in REs. 

2.3.2. Proximity characteristics 

It is widely accepted in literature that proximity of actors influences the ability to innovate in a 

collaboration or network (Balland et al., 2015; R. A. Boschma, 2005; Juhász & Lengyel, 2018). 

The most investigated type of proximity is geographical proximity (Lazzeretti & Capone, 2016a). 

However, other forms of proximity have also proven to influence the innovativeness of network 
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actors (i.e., technological proximity, social proximity, institutional proximity, and organizational 

proximity). In this thesis only geographical and technological proximity are considered in the 

analysis. There are several reasons for this. First, it is very tricky to operationalize variables at 

the regional level corresponding to social and organizational proximity (Marrocu et al., 2013). 

Social proximity is based on friendship, which in itself is difficult to measure. The fact that our 

analysis includes many inventors at the European level makes it even more complicated. The 

geographic scope also affects the organizational proximity since it would require identifying the 

type of organizations to which each inventor belongs, in order to then relate the collaborations. 

Second, of the few papers that analyse various types of inter-regional proximity in innovation 

and knowledge transfer, the strongest association was found in geographical and technological 

proximity (Marrocu et al., 2013; Pan et al., 2020). 

To begin with, geographical proximity, several authors have argued that it is both catalytic and 

detrimental to innovation in clusters and intra-regional networks (Balland et al., 2015; R. 

Boschma & Frenken, 2009; Lazzeretti & Capone, 2016b). A certain level of proximity reduces the 

costs of information and knowledge transmission, as the communication channels between 

agents should be more efficient, facilitating the development of new inventions (R. Boschma & 

Frenken, 2009; Lazzeretti & Capone, 2016b). However, excessive geographic proximity can also 

be detrimental to innovation (R. Boschma & Frenken, 2009; Broekel & Boschma, 2012). Known 

as "proximity paradox", it is claimed that too much proximity between actors in any of the 

proximity dimensions might harm their innovative performance, leading to lock-in problems 

(Broekel & Boschma, 2012).  

As mentioned, the literature at the regional level in terms of inter-regional proximity is more 

limited. Several studies found a positive relationship between the geographical proximity of 

collaborations between regions and their innovative performance (Kalapouti & Varsakelis, 2015; 

Marrocu et al., 2013; Pan et al., 2020). Kalapouti & Varsakelis (2015) suggest that sharing social 

and economic context reduces semantic difficulties, facilitating the transfer of tacit knowledge, 

which is key to be able to develop innovations. At the country level, (Verdolini & Galeotti, 2011)is 

one of the few studies to investigate the effect of geographical proximity in the renewable 

energy sector. In line with studies concerning regional innovation in general, they found that 

collaboration between higher geographical distance countries was associated with lower 

probability of knowledge flow. Based on the results at the regional level, we assume that the 

negative effects of excessive proximity could be mitigated by the fact that there is already a 

certain distance when it comes to inter-regional collaborations. Hence, the following hypothesis 

is proposed. 

H3. The more geographically proximate the collaborations of a region with others in the field of 

sustainable energy are, the higher its regional innovation performance in REs.  

As for technological proximity, at the actor/firm level, several authors also refer to the proximity 

paradox. On the one hand, it is argued that some overlap in knowledge bases is necessary to 

have meaningful interaction between actors (Balland et al., 2015; R. A. Boschma, 2005). 

Basically, sharing knowledge and communication codes facilitates effective and efficient 

communication and makes it easier to disseminate or create new knowledge (Balland & Rigby, 

2017). On the other hand, they argue that when the knowledge bases between actors are too 

similar, the scope for mutual learning is reduced. There is a tendency to share redundant 

knowledge, which makes it more difficult to recombine it to generate new inventions (Balland 

et al., 2015). At the regional level, two regions are technologically proximate if their knowledge 

bases are similar. This means that they carry out activities in similar fields (Marrocu et al., 2013). 
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Papers analysing inter-regional technological proximity discovered that knowledge spillovers 

were easier to happen between technological proximate regions, enhancing their 

innovativeness (Marrocu et al., 2013; Pan et al., 2020; Verdolini & Galeotti, 2011). In particular, 

Marrocu et al., (2013), found in technological proximity the highest influence on regional 

innovation among the other proximities they studied (geographical, institutional, social and 

organizational). In this line we also expect that regions that collaborate with others that are 

technologically proximate in terms of sustainable energy are more innovative in this sector. 

Although we do not doubt that an excess of technological proximity can hinder innovation, we 

believe that when comparing regions, it is more complicated to reach that limit. It will be easier 

for two organizations to be technologically similar than two that are composed of a wide variety 

of actors from different technological backgrounds. Consequently, we state the following 

hypothesis. 

H4. The more technologically proximate the collaborations of a region with others in the field of 

sustainable energy are, the higher its regional innovation performance in REs.  

2.3.3. Actor-specific characteristics 

Finally, we focus on the typology of the actors participating in regional sustainable innovation 

networks. In particular, actors which are the most influential when it comes to disseminating 

knowledge in the network and thus, enhancing its innovativeness.  

First, we focus on brokers, defining them as those actors who link other actors that are not linked 

directly within the regional knowledge network.  The presence of brokers in a network is claimed 

to be key to guarantee the innovative performance of the region (Kauffeld-Monz & Fritsch, 2013; 

Piazza et al., 2019; Winch & Courtney, 2007). The main reason being that they play a key role in 

the dissemination of knowledge on the network (R. Boschma & Frenken, 2009) pointed out that 

one of the solutions to the phenomenon of regional lock-in would be the creation of links 

between network actors who are not proximate, not only geographically but also in other 

dimensions. Acting as bridges between actors, brokers help this to happen as they as they enable 

indirect exchanges of knowledge that otherwise would not happen.  Moreover, in some cases 

brokers act as mediators between third parties and can help to avoid misunderstandings, making 

the transfer of information more efficient (Fritsch & Kauffeld-Monz, 2009). In addition, brokers 

can themselves collaborate in enhancing regional innovation. Thanks to their position as 

intermediaries, they can take advantage of the variety of knowledge flows that reach them and 

recombine them to generate new inventions (Piazza et al., 2019). Given the benefits of the 

presence of brokers in regional innovation studies, we expect the same to happen in the 

renewable energy sector. As such, we formulate the following hypothesis. 

H5. The higher the presence of brokers in a region renewable energy sector knowledge network, 

the higher its regional innovation performance in REs. 

Second, we put our attention on the gatekeepers of the network. Similar to brokers, these actors 

also act as intermediaries between otherwise unconnected actors, with the difference that, in 

this case, those are internal and external actors (Graf, 2011). Although brokers help to 

disseminate and recombine knowledge within the network, for some authors this is insufficient 

to guarantee that the region does not fall into lock-in (Gallo & Plunket, 2020; Graf, 2011). As 

mentioned above, the entry of external knowledge into the regional network is key to guarantee 

the renewal of its knowledge base by providing potentially diversified and non-redundant ideas  

(Gallo & Plunket, 2020). Particularly, the importance of external knowledge to boost regional 

innovation in the RE has already been reiterated in this work on several occasions. Thus, the 
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presence of gatekeeper in the region is a way for the region to be connected to “global 

pipelines”. Moreover, gatekeepers have the ability to translate externally produced knowledge 

into a form that can be assimilated by local actors, enhancing the efficiency of information 

transmission (Gallo & Plunket, 2020). In addition, like intra-regional brokers, access to multiple 

sources of knowledge makes gatekeepers potential inventors in the region. Consequently, we 

also expect that the presence of gatekeepers in the energy knowledge network at the regional 

level has a positive effect on its capacity to innovate in renewable energy. 

H6. The higher the presence of gatekeepers in a region renewable energy sector knowledge 

network, the higher its regional innovation performance in REs. 

3. Methodology  
This research focus on European regions (NUTS 24) and analyses how different properties of 

knowledge networks in the renewable energy sector at the regional level help to enhance their 

innovativeness in this sector. To address this topic, several hypotheses described in the previous 

section have been proposed, which are tested through quantitative methods combining SNA 

analysis techniques on knowledge networks and regression analysis. Regional knowledge 

networks are constructed based on co-inventions (Breschi & Lenzi, 2015; de Noni et al., 2017) 

and in the field of renewable energy.  

For the creation and management of all variables, modelling and calculation of the results and 

figures, the software program for statistical analysis RStudio has been used. 

In this section, we begin by explaining how network and regional innovation data is obtained 

and their characteristics. Next, the operationalisation of the variables to address the hypotheses 

of the study are discussed. Finally, it is described the econometric analysis that to be followed. 

It is composed of a descriptive part focusing on innovation in RE and a quantitative part 

consisting of a regression analysis to confirm or reject each of the hypotheses.  

3.1. Data 

The basic idea underpinning this research is that regional innovation capacity in RE is driven by 

knowledge spillovers facilitated by knowledge network structures within the region. Different 

sources for constructing regional innovation networks can be found in the literature, each with 

its advantages and disadvantages. 

Due to the characteristics of this research, we have chosen patents to construct the variables of 

our analysis. Several reasons explain this decision. Firstly, patents are one of the most widely 

used measures of innovation because, as by definition, they involve inventiveness (Nelson, 

2009). Second, several studies claim that patents are a good indicator to address knowledge 

spillovers (Boschma & Frenken, 2009; Nordensvard et al., 2018; Yan & Guan, 2018; Zhang & Luo, 

2020). They provide details about the actors involved in an inventive process, making it possible 

to relate them to each other in a technological, temporal, and geographical framework. These 

collaborations act as knowledge canals that together form the regional knowledge network. In 

addition, it has been decisive that patents are highly accessible (Guan & Liu, 2016a, 2016b). 

Lastly, there are already several studies that have used patent data to build knowledge networks 

in the energy sector (Nordensvard et al., 2018; Yan & Guan, 2018). For instance, Yan & Guan 

                                                             
4 Defined by Eurostat, Nomenclature of Territorial Units of Statistics or NUTS is a geocoding standard to 
refer to country subdivisions for statistical purposes. NUTS 3 level is the smallest regional subdivision of 
a country within this classification (Eurostat, n.d.-a). 
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(2018) patents granted in the alternative energy field to construct knowledge networks with the 

aim of exploring how the position of an inventor affects its inventiveness. 

Nevertheless, it is important to mention that working with patents to construct regional 

knowledge networks carries some drawbacks. A major one for this research is related to the 

determination of where the innovative activity has occurred. Ideally, the address of the exact 

location where the R&D was performed should be used (Graf & Krüger, 2011). However, patent 

data do not provide this information. The use of the applicant's address entails the problem that 

many times, organizations, especially large ones, have subsidiaries located in other places, 

wherethe innovation process takes place (Graf, 2017). However, they typically apply for patents 

centrally, at their headquarters. To deal with this issue, most papers that use patents to 

construct regional networks use the inventor's residence instead, assuming that people work 

close to where they live (Graf, 2011, 2017; Graf & Krüger, 2011; Innocenti et al., 2020). Then, 

the same logic is used for this thesis. 

For the collection of patents data, we use the OECD REGPAT database (July 2021 edition) (OECD, 

2021). The main reason to use this database is that it includes information regarding the location 

of inventors in Europe (Laurens et al, 2019), which is crucial in this study.  

As already stated, the geographical scope of this thesis is European regions at the NUTS 2 level. 

In particular, regions from all 27 EU countries are included, with the exception of the Republic 

of Cyprus because its patents are not listed in the version of the REGPAT database in use. In 

addition, regions from the United Kingdom (UK), Norway, and Switzerland are also included, 

making a total of 29 countries and 270 regions considered. 

In defining patents in the renewable energy sector and classifying them by subtypes, we refer 

to class Y02E of the Cooperative Patent Classification (CPC) (Veefkind et al., 2012). Specifically, 

we look into the Y02E-10 subclass, which covers patents relating to the generation of energy 

from renewable energy sources and includes geothermal energy (Y02E-10/10); hydro energy 

(Y02E-10/20); energy from the sea (Y02E-10/30); solar thermal energy (Y02E-10/40); 

photovoltaic (Y02E-10/50); thermal-PV hybrids (Y02E-10/60) and wind energy (Y02E-

10/70)(USPTO, 2022). 

Regarding the time window of the analysis, the period from 2003 to 2017 is chosen. The main 

reason is to have a sufficiently extended period of analysis to be able to analyse regional 

renewable energy innovation knowledge networks from a dynamic perspective, but also, to 

have enough data to be able to construct the regional networks. Therefore, several different 

attempts have been undertaken to find this balance between data and years until this period of 

analysis is chosen. The 2003 to 2017 period accumulates 82.73% of the patents in renewable 

energies of all those available in the REGPAT database of the selected European regions. 

Noteworthy, we use the "priority year" to classify each patent by year. It corresponds to the year 

of the first date on which the patent was applied for, and therefore, it is the closest to the actual 

time of the invention (Breschi & Lenzi, 2015; de Noni et al., 2017). 

Additionally, this period has been divided into three non-overlapping sub-periods of 5 years 

(Period 1: 2003-2007; Period 2: 2008-2012; Period 3: 2013-2017). By doing this, we account for 

the regional variation of innovative activity across time and to prevent the impact of the patent 

statistics' volatility on the estimation of our dependent variable (Kalapouti & Varsakelis, 2015; 

Li et al., 2021; Yan & Guan, 2018). The following figure (Figure 2) shows the number of patents 

per year and period. We can see how the second period is the one that accumulates the most 

patents in RE, followed by the third. 
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Figure 2. Distribution of patents in RE (Y02E-10 class) by period and year in EU plus UK, Norway, Switzerland classified 
by priority year. 

Summarizing, our data consist of patents in RE (Y02E-10 class) for the period 2003 to 2017, 

divided into three 5-year sub-periods (2003-2007, 2008-2012, 2013-2018) and collected from all 

the countries of the EU (except for the Republic of Cyprus) plus UK, Switzerland, and Norway. 

This results in 270 NUTS 2 European regions with at least one patent registered in RE in the time 

window of analysis. 

Nevertheless, in the regression analysis this number of regions is reduced. The reason for this is 

that regions with no or very few patents in RE have not been included. Specifically, for the 

construction of the variables, regions without patents and those belonging to the third tercile in 

number of patents in RE in the time window of analysis have not been considered. The reason 

is to have enough data to construct the variables that define the characteristics of the regional 

network and that these are not biased by having none or very few collaborations. Furthermore, 

for this quantitative analysis, three databases have been developed to create three different 

types of models with which to evaluate each of the hypotheses. The first, known as the "baseline 

model", includes patents from the seven renewable energies distinguished in the Y02E-10 class 

of the CPC. After removing those regions belonging to the third tercile, we are left with 180 

regions in this model. Furthermore, two additional models are created in which only one type 

of renewable energy patents are considered for the creation of the variables. In particular, a 

model is dedicated to solar energy, called "solar model", which contains only patents of the 

subclasses Y02E-10/4 (Photovoltaic), Y02E-10/5 (Solar-thermal), Y02E-10/6 (Thermal-PV 

hybrids). The second field-specific model corresponds to wind energy, and is therefore called 

"wind model", and contains patents of its corresponding subclass, Y02E-10/7. Likewise, by 

eliminating the regions belonging to the third quartile, the solar model is left with 166 regions 

and the wind model with 162. The main purpose behind creating three different models is to 

explore to what extent there are differences between regional network characteristics 
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considering all renewable energies (general model) and focusing on a single type of RE (wind 

and solar models). As seen in section 2.1, solar and wind energy have grown the most during the 

last two decades, coinciding with our period of analysis. Consequently, these are the two 

technologies that accumulated the highest number of patents between 2003 and 2017, which 

is key to have enough data to create meaningful regional knowledge networks at this level of 

analysis. The fact that both technologies are at a similar stage of development may allow us to 

explore whether the technological differences affect the characteristics of their networks, since 

there are not strong differences in the maturity of the technologies that could influence them. 

3.2. Operationalization of variables 

The adoption of patent data as relational data source allows regional knowledge networks to be 

constructed and examined using SNA methods (Breschi & Lenzi, 2016). In this framework, 

inventors are the nodes of the network, and the edges are based on co-inventions, i.e. they link 

inventors who have collaborated on the same patent (Breschi & Lenzi, 2016). In other words, 

two inventors are linked if they are jointly named as inventors in one or more patent documents. 

As already mentioned, in order to associate each inventor with a region and thus delimit each 

regional network, the location of the inventor's residence is used. In particular, the REGPAT 

database provides the exact address, city, regional code (NUTS 3) and country of residence of 

the inventor 5. Furthermore, it is important to mention that we are not using fractional counting 

when attaching a patent to a region when it has been created by several inventors residing in 

different regions. Following Yang et al. (2020), we argue that knowledge is knowledge is arguably 

a non-divisible asset, and hence we assign the same patent application to each NUTS 2 involved 

region.  

Having established how the regional network is constructed in our analysis, we now proceed to 

define the operationalization of each of the variables that are used in our regression analysis. 

The main objective of this regression analysis is to test whether or not each of the previously 

stated hypotheses are fulfilled. By doing this, we are able to ascertain the main objective of the 

thesis, which is none other than to investigate the extent to which the characteristics of the 

regional network in RE affect its innovative performance in the sector. 

3.2.1. Dependent variable 

Many of the reviewed studies use patent counts as proxy of regional innovation performance 

(Graf, 2011, 2017; Miguelez & Moreno, 2018; Tavassoli & Carbonara, 2014). There are also 

studies that use patents to account innovation in the energy sector (Noailly & Shestalova, 2013; 

Yan & Guan, 2018), and in particular, at the regional level (Abramovsky & Simpson, 2011).. It is 

true that patents do not precisely reflect the innovation performance of a region, since not all 

inventions are patented, nor do they all have the same impact. However, patent data is 

considered for proxying innovativeness as it presents the minimum standards of novelty, 

potential economic benefit and originality, and, consequently, they are a good indicator of 

economically profitable ideas and knowledge production (European Commission, 2021; 

Miguelez & Moreno, 2018). Therefore, the dependent variable is the number of renewable 

energy patents (Y02E-10 subclasses by EPO) by region and sub-period. 

                                                             
5 The NUTS classification always consists of five characters. To move from NUTS level 3 to NUTS level 2, 
it is only needed to delete the last character, which, depending on the region, can be a number or a 
letter. 
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3.2.2. Independent variables: Network characteristics 
This section describes how the independent variables of the study are calculated according to 

the group of network characteristics to which they belong (structural, proximity and actor-

specific characteristics). 

Structural characteristics 

We assess the structure of the regional knowledge network in terms of its overall connectedness 

and the cohesion of its subgroups. The overall connectedness of a network can be measured by 

its density (Innocenti et al., 2020). This is the number of ties within a regional network relative 

to the number of potential ties in the same network (Graf, 2017; Kauffeld-Monz & Fritsch, 2013). 

As mentioned above, ties are formed when the inventors have collaborated on the same RE 

patent. A “potential tie” is a connection that might exist between two nodes, independently of 

whether or not it actually exists. In this case, two inventors can potentially collaborate as long 

as they belong to the same regional network. The following formula summarizes how the density 

of each regional knowledge network has been calculated. 

𝑃𝑇𝑖 =  
𝑛𝑖 ∗ (𝑛𝑖 − 1)

2
 (1) 

𝐷𝑖 =  
𝑁𝑇𝑖

𝑃𝑇𝑖
(2) 

Subindex 𝑖 refers to any region of the analysis; 𝑃𝑇𝑖  refers to the number of potential ties in 

region 𝑖; 𝑛𝑖  is the total number of inventors in region 𝑖; 𝑁𝑇𝑖  is the total number of ties in region 

𝑖; and finally, 𝐷𝑖  is the density of the knowledge network of region 𝑖. 

Moreover, the transitivity of the regional networks is used as proxy of the cohesion of its 

subgroups (Guler & Nerkar, 2012). A number of empirical studies measure the immediate 

network of an actor, such as the presence of connections between the actor's direct ties 

(Fleming et al., 2007; Hansen et al., 2001; Obstfeld, 2016). As we explained, cohesive subgroups 

are expected to enhance the regional networks innovativeness in RE because they are often 

characterized by a high level of trust, which facilitates knowledge sharing among their actors. To 

capture something similar but at the overall network level, Guler & Nerkar use the transitivity 

of the network, which measures the tendency of nodes to cluster. In our case, a region with high 

transitivity means that the regional network has groups of nodes that are densely 

interconnected. The transitivity is measured as the ratio of the count of “triangles” and 

connected “triples” in a knowledge network(Nykamp, n.d.). A triangle is a set of three nodes 

where each node is connected to the other two. A triple occurs when three nodes are connected 

by two (open triple) or three (closed triplet) ties.  In our case, for a region 𝑖 this is formulated as 

follows. 

𝑇𝑖 =  
3 ∗ 𝑛𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠𝑖

𝑛𝑇𝑟𝑖𝑝𝑙𝑒𝑠𝑖
 (3) 

𝑛𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠𝑖 refers to number of triangles in a regional network; 𝑛𝑇𝑟𝑖𝑝𝑙𝑒𝑠𝑖 is the number of 

connected triples in the regional network; and 𝑇𝑖  is the transitivity coefficient of the regional 

network. The factor of three multiplying the number of triangles is because each triangle 

contributes to three different connected triples in the network.  
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Proximity characteristics 

We now turn to explain how the inter-regional proximity variables are constructed. Starting with 

geographical proximity, for each region it is measured by the average inverse distance (in Km) 

of its collaborations with other European NUTS 2 regions (Marrocu et al., 2013). The REGPAT 

database provides information on the NUTS 2 region in which each inventor resides. Therefore, 

the distance between collaborations between inventors is taken between the centroids of each 

pair of regions in which each inventor lives (Breschi & Lenzi, 2015; Marrocu et al., 2013). With 

this way of measuring distances, some accuracy is lost with respect to taking the distance 

between the exact addresses of the inventors. However, this decision was taken primarily 

because information on the inventors’ addresses is not always available or reliable for all 

inventors.  

Regarding technological proximity, it is estimated as the average technological similarity in RE 

between a region and the other regions with which it has collaborated (Marrocu et al., 2013). 

First, the similarity between each pair of regions is calculated based on their patenting activity 

in each RE energy type. Named technological proximity index by Marrocu et al. (2013), for the 

general model, which includes the seven REs considered (geothermal energy, hydro energy, 

energy from the sea, solar thermal energy, PV energy, thermal-PV hybrids, and wind energy), it 

is calculated as follows. 

𝑡𝑖𝑗 = 1 − (
1

2
 ∑|𝐼𝑖𝑘 − 𝐼𝑗𝑘|

𝑘=7

𝑘=1

) (4) 

where 𝐼𝑖𝑘 corresponds to the sectoral share of RE energy k in region I; 𝐼𝑗𝑘  is exactly the same but 

in region 𝑗; 𝑘 goes from one to seven and refers to each type of renewable energy; 𝑡𝑖𝑗  is the 

technological proximity index and is set between zero (perfect dissimilarity) and one (perfect 

similarity). For the field-specific models, solar and wind, this is the only formula for the 

operationalization of variables that slightly changes. As in these cases only patents related to 

solar energy for the solar model and wind energy for the wind model are considered, the 

subcategories of each RE have been considered. As a result, the only thing that changes in the 

formula is the maximum value of 𝑘, which depends on how many subcategories each RE has6. 

As a result, maximum 𝑘 of the technological proximity index in the solar model is 15 and in the 

wind model it is 5. By calculating this index for each pair of regions we obtain a symmetric matrix 

with the technological similarity in RE between all regions.  

Additionally, another symmetric matrix is calculated with the number of interactions between 

each pair of regions according to the number of times their inventors have collaborated. Both 

matrices are multiplied. Then, for each region, the average of the previous result of all the 

regions with which it has collaborated is obtained and divided by the total number of 

collaborations it has had with other regions. This final result is the proximity index, which in our 

                                                             
6 Considering that in the solar model we have combined solar thermal energy (Y02E 10/40), Photovoltaic 
[PV] energy (Y02E 10/50), Thermal-PV hybrids (Y02E 10/60) the subcategories are: PV systems with 
concentrators, CuInSe2 material PV cells, dye sensitized solar cells, solar cells from Group II-VI materials, 
solar cells from Group III-V materials, microcrystalline silicon PV cells, polycrystalline silicon PV cells, 
monocrystalline silicon PV cells, amorphous silicon PV cells, organic PV cells, power conversion systems. 
In the case of wind energy (Y02E 10/70) the five subcategories are: wind turbines with rotation axis in 
wind direction, offshore wind turbines, onshore wind turbines, wind turbines with rotation axis 
perpendicular to the wind direction, power conversion electric or electronic aspects (USPTO, 2022). 
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case corresponds to the inclination of a region to collaborate with other regions that are more 

technologically similar to it in terms of RE. As a formula and for each region 𝑖: 

𝑇𝑃𝑖 =  
∑ (𝑆𝑖𝑗 ∗ 𝑎𝑖𝑗)𝑧

𝑗

𝐶
 (5) 

Where 𝑆𝑖𝑗  is the similarity index between regions 𝑖 and 𝑗; 𝑧 is the number of regions with which 

the region 𝑖 and therefore varies with each region; 𝑎𝑖𝑗 is the number of interactions between 

regions 𝑖 and 𝑗 based on the number of times that inventors from both regions have 

collaborated; and 𝐶 is the total number of collaborations between the two regions. 𝑇𝑃𝑖  ranges 

between 0 and 1, being 1 in the case that region 𝑖 has collaborated only with regions 

technologically identical in RE to itself, and 0 in the opposite case. 

Actor – specific characteristics 

By acting as a bridge between different groups of inventors, the presence of gatekeepers and 

brokers in the regional network is expected to enhance their innovative performance in RE. An 

inventor from one region is considered a gatekeeper if they have collaborated with inventors 

from other regions as well as from his/her own region (Gould & Fernandez, 1989; Graf & Krüger, 

2011). Based on this definition, the brokerage() function from the SNA package in R 

(RDocumentation, n.d.-a) provides a score related to the frequency of gatekeepers in a given 

network7. In order to standardise the value and make it comparable across regions, it has been 

divided by the total number of inventors in each regional network. 

Shifting attention to the brokers of a regional knowledge network, those are identified as 

inventors who link any groups of inventors within the network (Kauffeld-Monz & Fritsch, 2013). 

On this basis we count the frequency of inventors in the regional network whose position in the 

network interconnects two or more groups of inventors. In the same way as with the 

gatekeeper’s variable, we standardise the value by dividing it by the total number of inventors 

in each network. Consequently, our final variable is the share of brokers in each regional 

knowledge network. 

3.2.3. Independent variables: Control variables  

Several control variables that proved to have an influence on regional innovation are included 

in the model. Firstly, we include cooling degree days (CDD) index as proxy of energy demand 

(Calignano & Trippl, 2020). Here, the assumption is that demand for energy enhances regional 

innovation in the sector due to market pull (Vincent Emodi et al., 2015). The CDD index is a 

weather-based technical score designed to describe the energy needs of buildings in terms of 

cooling (Eurostat, 2022). 

Secondly, human capital boosts regional innovation because very specific competences are 

needed to produce new ideas and capture external knowledge (de Noni et al., 2017). Hence, a 

region's propensity to innovate is dependent on the average level of human capital in its local 

                                                             
7 In more detail, for each regional knowledge network the arguments passed to the brokerage() function 
are: a symmetrical matrix with the number of times each pair of inventors in the regional network have 
collaborated in the creation of a patent, known as affiliation matrix; and a membership vector indicating 
which inventors are from the region and which are from outside the region (only those external inventors 
who have collaborated with other internal inventors are considered). The function calculates the 
“brokerage score” for each network node, considering the number of brokering positions held by this 
inventor. The brokerage() function provides a score for the whole network by summing all of its individual 
node scores. 
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economy. We use tertiary education attainment to measure regional human capital (de Noni et 

al., 2017; Marrocu et al., 2013). Specifically, this variable is defined as the share of the population 

aged 25-64 who have successfully completed tertiary studies (Breschi & Lenzi, 2015; de Noni et 

al., 2017).  

Fourthly, we add the population as a control to account for size effects (Miguelez & Moreno, 

2018). A large region is bound to have more inventors among its population and therefore more 

patents. Lastly, we control for the Research and Development (R&D) intensity in each region, 

which is proxied as the ratio of R&D capital stock over real gross domestic product (GDP) (de 

Noni et al., 2017; Yang et al., 2020). 

All data for control variables are provided by Eurostat (Eurostat, n.d.-b). Eurostat provides data 

for each control variable by year and region. In this way our only manipulation of this data is to 

filter them for the European regions considered and calculate its average by sub-period of 

analysis. 

In the next page, the following table (Table 1) summarizes how each variable is calculated. 
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Table 1.Summary of each variable including its type, a brief description, and the source from which the data was 
obtained for its calculation. 

Type Variable Description Source 

Dependent 
variable 

Regional 
innovation in RE 

Number of RE patents by NUTS 2 region and period 
(Graf, 2011; Tavassoli & Carbonara, 2014) 

OECD 
REGPAT 
database, 
Own 
calculation 

Independent 
variables 

H1. Network 
connectedness 

Measured by the density of the network (Innocenti et 
al., 2020). Hence, the ratio of all actual links of 
inventors to the total number of all possible links 
within the network. 

OECD 
REGPAT 
database 
Own 
calculation  

H2. Cohesive 
subgroups 

Estimated by the transitivity of the network (Guler & 
Nerkar, 2012). Fraction of pairs of inventors with 
common links to another inventor. 

OECD 
REGPAT 
database, 
Own 
calculation 

H3. Geographical 
proximity 

The inverse of the average distance of collaborations 
of the region's inventors with those of other regions 
(Marrocu et al., 2013).  
 

OECD 
REGPAT 
database, 
Own 
calculation 

H4. Technological 
proximity 

Average technological similarity of each region with 
other regions based on the number of collaborations 
between inventors (Marrocu et al., 2013)..  

OECD 
REGPAT 
database, 
Own 
calculation 

H5. Brokers Share of brokers in the regional network. Brokers are 
identified as those inventors who interconnect two or 

more groups of inventors (Kauffeld-Monz & 
Fritsch, 2013)..  

OECD 
REGPAT 
database, 
Own 
calculation 

H6. Gatekeepers Gatekeeper score defined by Gould & Fernandez (1989) 
by the total number of inventors. Gatekeeper are 
identified as those inventors who hold connections with 
actors within and outside the regional network 
 

OECD 
REGPAT 
database. 
Own 
calculation 

Control variables Energy demand Measured by the CDD index. A weather-based 
technical score based on the energy needs of buildings 
in terms of cooling. 

Eurostat 

Human capital Estimated by tertiary education which is measured as 
the share of the population aged 25-64 who have 
successfully completed tertiary studies.  

Eurostat 

Population Number of inhabitants of a given area on 1 January of 
the year in question 

Eurostat 

Population density Ratio between the annual average population and the 
land area of the region 

Eurostat 

R&D intensity Share of R&D expenditure by the total GDP of a region Eurostat 

 

3.3. Data analysis and econometric regression 

First of all, a descriptive analysis is carried out. The main objective is to get an overview of the 

construction and development of innovation in the RE sector in Europe. To this end, we study 

how the different REs (geothermal energy, hydro energy, energy from the sea, solar energy, and 

wind energy) have evolved over the years and which regions were leading these developments. 

The descriptive analysis also allows us to see empirically whether there is a relationship between 

innovation in renewable energy and renewable energy production, something that has been 

advocated in the theoretical part but which we are now able to test with our data.  
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This descriptive-explorative analysis is followed by the descriptive statistics and distributions of 

the dependent and independent variables of the study. In a second step, the regression analysis 

is conducted to evaluate the relationship between regional patent production in RE and the 

independent variables selected to characterise the regional knowledge networks. The ultimate 

goal is to test the hypothesis outlined in Section 2.3.  

Given the spatial structure and panel nature of the dataset, a country and period fixed effects 

model is chosen. It is expected that innovation production in RE in the European regions is not 

random but influenced by the territorial particularities of the countries where the regions are 

located. In addition, this aims to control for the regulatory and policy differences among 

European countries (Paatero & Lund, 2007). For instance, Germany was the first European 

country to implement a feed-in-tariff for different RE technologies in the year 2000 (Dewald & 

Truffer, 2012). In addition, as mentioned above (section 2.1), each country has its own NECPs, 

which defines its sustainable objectives and national measures to achieve them, including 

specific actions in the area of renewable energy. 

In addition, the dependent variable is lagged by one period with respect to the independent and 

control variables. The reason for doing so is to minimize reverse causality and endogeneity issues 

in our estimated coefficients caused by using RE patents to calculate both dependent and 

independent variables (Breschi & Lenzi, 2015; Miguelez & Moreno, 2018). In addition, the time 

lag allows regional innovation to change in response to the input factors we have considered 

(de Noni et al., 2017). 

The following is a general formulation of the regression model employed. 

𝑌𝑖,𝑡+1,𝑙 =  𝛼𝑖 +  𝜆𝑖 + 𝛽1𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖,𝑡,𝑙 +  𝛽2𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑖,𝑡,𝑙 + 𝛽3𝐺𝑒𝑜𝑃𝑟𝑜𝑥𝑖,𝑡,𝑙 +  𝛽4𝑇𝑒𝑐𝑃𝑟𝑜𝑥𝑖,𝑡,𝑙

+ 𝛽5𝐺𝐾𝑏𝑦𝐼𝑛𝑣𝑖,𝑡,𝑙 +  𝛽6𝐵𝑟𝑜𝑘𝑒𝑟𝑠𝑖,𝑡,𝑙 +   𝛽6𝐺𝑎𝑡𝑒𝑘𝑒𝑒𝑝𝑒𝑟𝑠𝑖,𝑡,𝑙 +  𝜙𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑖,𝑡,𝑙          (6) 

𝑌𝑖,𝑡+1 represents the dependent variable, which is the number of patents in RE per region 𝑖 and 

𝑡 + 1 means that it is lagged one period. This implies that the dependent variable is calculated 

for periods 2 (2008-2012) and 3 (2013-2017) of the time windows. 𝑙 refers to the country 

dummy. Each independent variable is shown together with its corresponding coefficient, 𝛽. 

𝜙𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑡 represent the control variables of the study together with their coefficients, 𝜙.  

Both independent and control variables are not lagged, hence they are obtained for the periods 

1 (2003-2007) and 2 (2008-2012). Finally, 𝛼 represents the country dummy variables and 𝜆 

represents the time dummy variables, relating to the fixed time and country effects respectively.  

In modelling the relationship between our regional innovation outcome and network variables, 

we have to consider two specific features of our data: First, the dependent variable (i.e. number 

of RE patents in a region) is a count variable which can only take non-negative values. 

Consequently, the most suitable models for this type of data are either Poisson models or 

negative binomial (NB) models (Guan & Liu, 2016; Miguelez & Moreno, 2018). Poisson models 

require the variance of the dependent variable to be equal to its mean. Negative binomial 

models are similar to Poisson models but deal with overdispersion in the dependent variable 

(Barnett, 1997). 

In this study to determine which model to use, overdispersion is tested by fitting a Poisson 

regression model with period and country fixed effects using the dispersiontest() function in R 
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(RDocumentation, n.d.-b)8. Briefly, if the test result is above zero, it means that there is 

overdispersion in the model. In our case, the result of the overdispersion test in the baseline 

model is 14.93, in the solar model it is 12.03 and in the wind model it is 25.47. In all three cases 

well above zero, thus we conclude that the negative binomial model is the best fit to our data. 

In addition to the analysis, robustness tests are carried out to ensure the validity of the results. 

Although explained in more detail in the later section of the results dedicated to robustness 

tests (section 4.3.3), five models using NB regression are included. These models differ from the 

main models in that new variables are added or the way of calculating them is altered. In 

addition, several models are re-estimated, but using Quasi-Poisson regression instead of NB 

regression. In the same way as NB regression, Quasi-Poisson regression is suitable for treating 

the overdispersed count data of our analysis  (Hoef et al., 2007). Furthermore, it is verified that 

each model does not suffer from multicollinearity problems among the independent variables. 

For this purpose, we calculate the variance inflation factor (VIF) of each variable in each model. 

This is a very common measure to check the amount of multicollinearity in regression analysis. 

(Innocenti et al., 2020; Yan & Guan, 2018; Yang et al., 2020). In this way, those models in which 

any of its independent variables exceeds a VIF value of 4 have been discarded (Hoef et al., 2007). 

4. Results 
Split into three main parts, this section reports the results of the analysis. The first part consists 

of a descriptive-explorative data analysis of RE inventions. The focus is on describing RE 

innovation in Europe and finding evidence of its relationship with regional RE production. The 

following subsection describes the statistical characteristics of the variables under study. Finally, 

we conclude this section with regression analysis where we try to find out if the hypotheses 

(section 2.3), which relate different characteristics of the regional network (structural, proximity 

and actor-specific characteristics) with its innovative performance in RE, are met. 

4.1 Descriptive-explorative data analysis of RE inventions 

In this section, a description of innovation in RE in Europe is presented. For this purpose, several 

diagrams and maps based on renewable energy patents are shown. We point out that this 

description is framed within the geographic scope of this analysis, which are 270 regions of the 

EU countries (except the Republic of Cyprus) and Switzerland, Norway and UK. First, the 

approach is generic, in order to understand how RE innovation has evolved over the years, and 

what types of energy predominate. Subsequently, some maps are shown aiming to discover how 

RE innovation is distributed across Europe, seeing which regions are frontrunners and which are 

lagging behind. In addition, throughout the section we try to see what relationship exists 

between regional innovation and current sustainable energy performance. 

                                                             
8 This function tests the null hypothesis of equidispersion in a Poisson model against the alternative of 

overdispersion (Cameron & Trivedi, 1990). The following formula summarizes the logic under the test.  

𝑉𝑎𝑟(𝑌) =  μ + c ∗ μ  (7)  

H0: c = 0; Ha: c ≠ 0 

𝑉𝑎𝑟(𝑌) corresponds to the variance of the model dependent variable, μ is its mean and c is a constant 
and the result of the dispersiontest(). If the test result gives a value of c equal to zero, it means that the 
variance and the mean of the dependent variable are equal, thus fulfilling the null hypothesis, and 
therefore the appropriate model would be the Poisson model. case c is different from 0, the alternative 
hypothesis would be fulfilled and an alternative to the Poisson model would need to be used. 
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Starting by looking at the number of patents in RE can count we count 2,296 patents from 1977, 

when the first one was registered in the OECD REGPAT database, until 2019. However, in the 

following bar chart (Figure 3), we can observe that the distribution of number of patents per 

year in RE is very uneven, with the vast majority concentrated from 2000 onwards. 

 

Figure 3.  Bar chart with the number of patents per priority year in renewable energy according to the REGPAT 
database in the analysed countries (EU countries except the Republic of Cyprus plus UK, Norway, and Switzerland) 

This surge in total RE inventions is in line with the growth in the share of renewable energy in 

total gross consumption that the EU has experienced in recent years, from 9.6% in 2004 to 22.1% 

in 2020 (Eurostat, 2022b), suggesting a connection between RE inventions and the shift towards 

cleaner, renewable energy consumption.  

Furthermore, as explained in the methodology section, the time window of analysis of this study 

is from 2003 to 2017 in order to have enough data to construct the variables and assess the 

characteristics of the regional networks in a satisfactory way. This period alone agglomerates 

82.73% of all patents registered. Taking a look at the pie chart below (Figure 4) we find that the 

vast majority of RE energy patents belong to solar energy (51.1%), especially photovoltaic 

(35.6%), and wind energy (37.5%). The two combined account for 88.6% of total patents.  

 

Figure 4. Pie chart of the share of RE patents per type from 2003 to 2017 
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The following graph (Figure 5) shows the number of patents by sub-period of analysis (Period 1: 

2003 – 2007, Period 2: 2008 – 2012, Period 3: 2013 – 2017) and type of renewable energy. We 

can easily see how the second period is the one that accumulates the most patents in RE. 

Furthermore, in all three cases, solar and wind energy remain the most patented by far. This 

makes sense, since as mentioned in the theory (section 2.1), these are the two types of energy 

that have experienced the greatest growth in the last two decades (European Commission & 

IRENA, 2018; Schremmer et al., 2018). In 2020, wind and hydro clearly lead the ranking of 

electricity generated from renewable sources with 36% and 33%, respectively, followed by solar 

energy (14%). However, the latter has been growing the fastest in recent years, accounting for 

only 1% in 2008 (Eurostat, 2022b). As we discussed, the fact that hydro energy has such a low 

percentage of patents compared to the other two, despite the large amount of electricity it 

generates, might be due to the fact that the technology has been used for this purpose for many 

years already, a, specifically since the late 19th century, (Hydropower Facts and Information, 

2019). Compared to solar and wind, for instance, it is a much more mature form of energy 

generation with less room for innovation. 

 

Figure 5. Number of RE patents by period and type of energy 

In section 2.1 of the theory, we showed a graph (Figure 1) comparing the cumulative growth of 

solar PV and wind power installed capacity. Making an estimation of seven years from the 

priority date of the patent until its approval (Jones, 2021) and until it starts to be commercialized 

(Svensson, 2007), the following graph (Figure 6) compares the number of patents per year also 

for solar PV and wind energy. Saving the distances because the first graph was at global level 

and this one at European level, we can see how the growth of both energies is also very similar 

here, again reflecting the fact that they are at a similar stage of development. We can also 

deduce that this growth in solar PV and wind power installations generation is partly related to 

this increased innovation in both technologies. 
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Figure 6. Number of solar PV and wind patents per priority year in Europe between 1993 and 2012. 

Our attention now turns to the regions under analysis. For this purpose, a series of maps are 

shown (Figure 7 and Figure 8) to find out how renewable energy innovation has been distributed 

across Europe's regions (NUTS 2). The objective is to discover which regional differences exist in 

Europe in terms of innovation in renewable energies. In this way, it is possible to see whether 

there are major differences and, if so, which regions are hotspots in this field, and which are 

lagging behind. In addition, we identify which type of renewable energy is most patented in each 

region. This allow to determine whether there is a relationship between the innovativeness of 

the region and the type of energy mostly generated in the region. 

With Figure 7, we start by looking at the overall distribution of the number of RE patents in 

Europe. The map in the top left corner reflects the distribution of patents over the entire time 

window (2003 - 2017), while the other three maps focus on each of the three periods of analysis. 

The five ranges defining the level, by colour intensity, of regional innovation in RE in each map 

have been created on the basis of which quintile the region is in terms of number of patents in 

RE in each period. Looking at these ranges we can see that the last one is the widest in all four 

maps. This shows that a few regions lead by a significant margin in the number of renewable 

energy patents. Focusing on this in more detail, we can observe that Germany is the leading 

country, with 24,255 patents between 2003 and 2017. It is followed by Denmark (6,779) and 

France (6,476). Consequently, it is not surprising that of the ten regions with the most patents, 

five are German (Darmstadt, Weser-Ems, Stuttgart, Oberbayern, Freiburg), two are from 

Denmark (Central Jutland and Southern Denmark) and two are French (Rhône-Alpes and Île de 

France). The ranking is closed by the Spanish region of Navarra. In addition, it can be observed 

that, with some exceptions, western and northern Europe concentrate most patents to the 

detriment of southern Europe and especially eastern Europe9. 

 

 

 

 

                                                             
9 Classification of macro regions in Europe by the United Nations (UN). 
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Figure 7. Distribution of the number of RE energy patents across Europe10 

If we focus on the three analysis periods separately, we can see how the ranges increase 

considerably in periods 2 and 3 compared to period 1. For instance, the highest rank goes from 

67-386 patents in period 1 to 153-1458 and 117-1962 in periods 2 and 3 respectively. This is in 

line with the global growth in the number of patents that we saw in the bar chart at the 

beginning (Figure 2). With this we can see that growth in innovation in RE is occurring across the 

board in most regions. Furthermore, we can note that, with minor exceptions, most regions 

remain in the same quintile, suggesting that the improvement is more or less homogeneous 

across Europe, with Western and Northern Europe remaining the most innovative macro-areas 

in RE. 

The map below (Figure 8) shows which type of RE is the most patented by region. For that 

purpose, of the total number of patents in each region, the percentage of each of the seven 

renewable energies considered (energy from the sea, geothermal, hydro, photovoltaic, solar 

thermal, solar-thermal hybrids, and wind) has been calculated. The colour corresponds with the 

energy form for which the region registered the highest share. As can be noticed, the map is 

dominated by solar energy, primarily photovoltaic, and wind energy. It is interesting to note that 

the most patented region in the region is also the most, or one of the most, generated RE type 

in the region. For instance, in Denmark, where its three regions have mostly patents in wind 

                                                             
10 The maps only differ in the period of analysis, with the top left one referring to the entire analysis window (2003-2017), and the 

rest each referring to each of the three analysis periods individually (2003 - 2007, 2008 - 2012, 2013 - 2017). 
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power, the most generated type of RE energy is also wind power (48% of the total energy 

generated in 2021) (Statista, 2022). In Italy, hydroelectric power has dominated the production 

of RE since last century, mainly thanks to its geological characteristics (Enel, 2021) 

 

Figure 8. Most patented RE type by region in the period 2003 to 2017 

In summary, we can highlight several points in this section. Firstly, it is important to note the 

growth in RE innovation that has been experienced in the last two decades, and especially how 

this goes hand in hand with renewable energy generation. This fact confirms what was already 

mentioned in the introduction, which is the importance of innovation in this field for the long-

awaited expansion of renewable energies. On the other hand, it has been seen how a few 

regions are far ahead of the rest in RE innovation, and how, in general, Western and Northern 

Europe is several steps ahead of Southern and especially Eastern Europe. Germany and Denmark 

top the ranking with the most patents in the RE energies analysed. The historical commitment 

of both countries to this sector seems to be key, always maintaining an ambitious sustainable 

energy programme and high levels of public funding (Curry, 2019; Danish Ministry of Energy, 

2018). 
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4.2. Descriptive statistics of the variables under analysis 

This section of the thesis shows the results from the descriptive statistics of the variables (Table 

2), outliers are flagged by calculating their boxplots (Figure 9). These correspond to the baseline 

model variables, thus data from the seven SRs under analysis are included11.  

Table 2. Descriptive statistics of the dependent variable and the independent variables of the baseline model dataset 
between 2003 and 2017. Note: The results have been rounded to two significant figures. 

Variables Mean Median Min. Max. SD 

Number of patents in RE (DV) 56 29 2 760 85 

Density (IV) 0.083 0.052 0 0.67 0.098 

Transitivity (IV) 0.83 0.93 0 1 0.27 

Geographical proximity (IV) 0.0043 0.0036 0.00041 0.019 0.0029 

Technological proximity (IV) 0.66 0.68 0.18 0.89 0.13 

Brokers (IV) 0.029 0.0084 0 0.32 0.042 

Gatekeepers (IV) 0.87 0.11 0 26.59 0.13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                             
11 The statistics and boxplots of the variables in the solar and wind models are similar and therefore 
have not been included. They can be consulted in appendix A.  
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Figure 9. Boxplots of the dependent and independent variables of the baseline model dataset in the period 2003 - 
2017. 

From table 2 and the boxplots of the variables in figure 9 we can determine their distribution. 

The number of RE patents per region presents a median of 28.5, and we can see that the upper 

50% of observations – which fall in the 3rd and 4th quartile – are more dispersed towards a higher 

number of patents. Hence, we can find a skewed distribution in the number of RE energy patents 

towards lower numbers. We can also confirm that there are outliers in the data which have 

many more patents than the average, being these mainly regions in Germany and Denmark and 
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some more in central and northern Europe as mentioned in the previous section. As already 

discussed, to control for the skewed distribution we use negative binomial models. 

Regarding the independent variables we can see the same pattern in four of the independent 

variables: density, geographical proximity, the gatekeeper index by the number of inventors and 

the share of brokers. These four variables have a median closer to the bottom, and all outliers 

on the opposite side. This is notably pronounced in the case of the variables relating to network 

brokers and gatekeepers, especially the latter. On the other hand, transitivity and technological 

proximity are skewed in the opposite direction. 

Starting with density we can see that most regions have a low density, with an average of 0.08 

ties per total possible ties. If we look at which regions are outliers, there is no clear pattern of a 

high network density geographical area. However, we can observe that most outliers have fewer 

patents than the European average, suggesting that a high density may be detrimental to their 

innovative capacity in RE. In contrast, transitivity, which reflects how cohesive the network is, 

shows the opposite pattern. Most regions show a high cohesion, with an average transitivity of 

0.83. The outliers do not belong either to a specific geographical area in Europe but are related 

to low innovation rates. Regarding inter-regional proximity variables, we can notice that most 

regions collaborate with technologically similar regions, with median (0.68), much closer to the 

third quartile than to the first quartile. As for their outliers, they have a low, below-average 

patent production. On the contrary, most regions tend to have low values of geographical 

proximity but in this case looking at the outliers we cannot establish a clear relationship with RE 

patent production at regional level, finding values both above and below the average. Finally, 

we can observe the highly skewed distribution of the brokers and gatekeepers’ variables. From 

this we can deduce that a large number of regions do not have in their network these types of 

actors. Focusing on the outliers, we can see that several of these also correspond to regions with 

a large number of patents in RE, such as DE25 (Mittelfranken), which has the most gatekeepers, 

producing 153 patents in RE, which is well above the average. Or DK04 (Midtjylland), the region 

with more patents in a single period (756 between 2008 and 2012), which has 0.13% of brokers 

in the same period. 

4.3. Regression analysis 

This section presents the estimation of the results to identify the relationship between the 

selected characteristics of the regional knowledge network of inventors in the field of RE and 

the region's capacity to innovate in this domain. We begin by presenting the correlation matrix 

of the variables of the analysis. Next, the results of the chosen model are presented by using the 

negative binomial regression. Finally, a series of robustness tests are conducted in order to check 

if the findings are reliable. 

As specified in the methodology section (3.1), with the objective of testing whether there are 

differences between the characteristics of the regional network taking into account all 

renewable energies and focusing on a single type of renewable energy, three main models have 

been created. First, the baseline model includes all RE patents to construct both the dependent 

and independent variables. The solar model considers only patents belonging to groups related 

to solar energy: Y02E-10/4 (Photovoltaic), Y02E-10/5 (Solar-thermal), Y02E-10/6 (Thermal-PV 

hybrids). Finally, a third model (wind model) was specified to analyse wind energy (Y02E-7) 

separately. The number of patents for the remaining types of renewable energy is insufficient 

to carry out a comprehensive regression analysis. 
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4.3.1. Correlation analysis  

The correlation matrix of all the variables from the databases of the baseline model, solar model 

and wind model can be found in the Appendix B. 

Regarding the correlation between the dependent variable and the independent variables, 

particularly surprising is the high negative correlation between the number of RE patents per 

region and network density in the three variable databases (-0.29 in the baseline model, -0.29 

in the solar model and -0.16 in the wind model). This result is in line with what was deduced 

from the statistical description of density (section 4.2). Contrary to the corresponding 

hypothesis (Hypothesis 1), it seems to confirm that high network density is counterproductive 

for regional innovation in RE. The rest of the independent variables show correlations in line 

with the corresponding hypotheses (technological proximity, gatekeeper index by number of 

inventors, and share of brokers) or their correlations are too low to make predictions (transitivity 

and geographical proximity). 

Among the other variables, we can observe significant correlation coefficients between some of 

them. Particularly high, in all three cases, is the correlation between the control variables, 

population and the CDD index (-0.42 in the baseline model, 0.43 in the solar model and 0.32 in 

the wind model), which may lead to multicollinearity problems in our models. As mentioned, 

this issue is checked by measuring the variance inflation factor (VIF) of each variable in each 

model, making sure that is below the threshold of 4 (O’Brien, 2007). 

4.3.2. Negative-binomial regression results 
In this section we present the results obtained in several models based on negative-binomial 

regression. In the following table (Table 3), Models 1 to 4 are baseline models, i.e., the total 

number of patents of the seven REs considered in the study have been taken into account to 

create them.  More specifically, models 1 to 3 show the effect of each group of network 

characteristics separately, together with the control variables. Thus model 1 includes the 

variables referring to the structural characteristics of the network (density and transitivity), 

model 2 focuses on the inter-regional proximity characteristics (geographical and technological 

proximity) and model 3 on the actor-specific characteristics (gatekeeper index by the number of 

inventors and the share of brokers). Finally, model 4 is the most complete model, including all 

three types of network characteristics in a single model12. 

Moreover, models 5 and 6 are specific models for solar and wind energy respectively. Both 

include the variables of the three groups of network characteristics, plus the control variables. 

With the difference that the solar model does not include the control variable CDD index 

because it causes multicollinearity (VIF = 5.37). 

 

 

 

 

 

                                                             
12 Note that the population density control variable is not included in the first four models because they 
present multicollinearity problems if all control variables were included (VIF > 4 in all four models). By 
omitting this variable this problem ceased. 
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Table 3. Results of the negative regression models with period fixed effects and country dummy variables. 

  (1) 
All RE 

(2) 
All RE 

(3) 
All RE 

(4) 
All RE 

(5) 
Solar 

(6) 
Wind 

Model  Negative binomial model 

Dependent variable Number of patents in RE 

Density -2.044 *** 
(0.463) 

  -1.670*** 
(0.451) 

-1.376 *** 
(0.362) 

-2.179 *** 
(0.413) 

Transitivity 0.009 
(0.151) 

  0.357 ** 
(0.150) 

0.373 *** 
(0.143) 

0.563 *** 
(0.155) 

Geographical 
proximity 

 -6.685*** 
(1.513) 

 -4.820*** 
(1.446) 

-2.537* 
(1.309) 

-8.869 
(1.821) 

Technological 
proximity 

 0.9297 *** 
(3.367e-
01) 

 0.439  
(0.326) 

0.243 
(0.336) 

0.744 ** 
(0.320) 

Gatekeepers   0.063 *** 
(0.014) 

0.069*** 
(0.014) 

0.094 *** 
(0.012) 

0.114  
(0.098) 

Brokers   5.005 *** 
(0.912) 

4.184 *** 
(0.904) 

1.564* 
(0.873) 

4.514 *** 
(0.930) 

CDD -0.002*** 
(0.001) 

-0.003 *** 
(0.001) 

-0.002 *** 
(0.001) 

-0.002 
*** 
(0.001) 

 -0.003 ** 
(0.001) 

Human capital 0.033 *** 
(0.008) 

0.035 *** 
(0.008) 

0.040 *** 
(0.008) 

0.023*** 
(0.008) 

0.038 *** 
(0.008) 

0.024 
(0.012) 

Population  0.000 *** 
(0.000) 

0.000 *** 
(0.000) 

0.000 *** 
(0.000) 

0.000 *** 
(0.000) 

0.000 *** 
(0.000) 

0.000 *** 
(0.000) 

Population density     -0.000 *** 
(0.000) 

0.000 
(0.000) 

R&D by GDP  4.722 
(3.948) 

2.291 
(4.020) 

3.896 
(3.918) 

2.003 
(3.776) 

1.342 *** 
(4.013) 

-1.351 ** 
(6.161) 

Theta  2.533 2.508 2.670 2.934 3.255 1.621 
Observations  360 360 360 360 332 324 
Nr of Regions  180 180 180 180 166 162 
Period dummy Yes Yes Yes Yes Yes Yes 
Country dummy Yes Yes Yes Yes Yes Yes 

Note: *Significant at 0.1, **Significant at 0.05 and ***Significant at 0.01. Numbers in parenthesis are standard errors 

of coefficients. Numbers in parenthesis are standard errors of coefficients Numbers in parenthesis are standard errors 

of the variables' coefficients. Theta refers to the overdispersion parameter for negative binomial models. 

Structural characteristics 

Starting with the network overall connectedness variable, we can observe that the density 

variable coefficient is negative and highly significant in the baseline models (1 and 4) as well as 

in the solar (5) and wind (6) models. This goes against the hypothesis that a higher network 

density is positively associated with regional innovation in RE. Hence, we need to reject our 

hypothesis (Hypothesis 1) and assume that a high regional density is, instead, detrimental to a 

region's innovation performance in RE. These results are in line with those found by Innocenti 

et al., (2020). Considering in this case regional innovation in general, they found evidence from 

Italian regions that a higher network density would favour the circulation of knowledge that 

already exists and is redundant, but hinder development and exchange of new knowledge and 

thus the development of innovation capacity (e.g., new inventions) in regions. These results 

could also mean that the renewable energy sector is more mature than initially thought. As seen 

in the theory section, according to several authors, the more mature the technological sector, 

the more fragmented the networks should be in order to avoid technological overspecialization 

(Crespo et al., 2014; Fritsch & Kauffeld-Monz, 2009).  

As for the transitivity of the network, we see that its coefficient is positive and significant in all 

the models in which it appears. This result is in line with what was expected and implies that the 



Álvaro González Mateo   

38 
 

greater the cohesion of the sub-groups of the regional network, the greater their innovation in 

RE. Confirming the hypothesis (Hypothesis 2), it seems key that there are well-connected sub-

groups of the network as this is a sign that intense collaborations exist, where knowledge is 

recombined for the generation of new inventions in RE. Group collaboration is claimed to be 

especially important in RE energy technologies, which due to their complexity require the 

cooperation of different experts with different backgrounds and provenance (e.g. private 

companies, research centers, universities...) (IEA, 2019; Laimon et al., 2020). In addition, these 

results also seem to confirm the importance of trust in the development of innovations, a 

characteristic of network sub-groups. Trust would ease risk, resource and information sharing 

(Crespo et al., 2014). 

In neither of the two variables do we find particularly different results for solar and wind energy. 

In fact, both technologies have been expanding practically simultaneously in Europe. Therefore, 

we can deduce that they do not have a very different maturity difference, as it can happen with 

hydropower, which can lead to noticeable differences in terms of network connectedness. 

Proximity characteristics  

Concerning the effects of geographical and technological  proximity, we obtain opposite results 

depending on the type of proximity. Firstly, in the baseline models, the geographical proximity 

coefficient is negative and highly significant in both the model focused on proximity variables 

(2) and the most complete model (4). Comparing them with the models for solar and wind 

energy, we see that the geographical proximity coefficient remains negative, although it loses 

significance. Given these results, we can reject the corresponding hypothesis (Hypothesis 3) that 

stated that closer collaboration between regions would be helpful for their innovation 

performance in RE as it reduces the costs of transmitting information and knowledge, making 

communication between inventors more efficient (Kalapouti & Varsakelis, 2015; Marrocu et al., 

2013). In contrast, our results imply that the regions collaborating with more distant regions are 

also more innovative in renewable energy than those collaborating with closer ones. From this 

finding it can be deduced that the nature of renewable energy might be more universal or 

codified, and therefore communication barriers for collaboration over distance might be less 

rigid. In addition, we can expect that the knowledge transmitted from the distant regions is more 

novel. In other words, it may be easier for their knowledge bases to be more similar, which 

facilitates redundant knowledge sharing. 

Contrary to geographical proximity, the coefficient of technological proximity is positive in both, 

baseline models and RE specific models. However, their significance varies, being high in model 

2, which focuses on the proximity variables, and moderate in the wind model. Meanwhile, in the 

baseline model with all variables (4) and in the solar one (5) it loses significance. We can thus 

confirm hypothesis 4, whereby collaboration between regions with a certain technological 

similarity in RE is beneficial for their innovativeness in this field. Hence, we can assume and as 

discussed in the theory section (section 2.3.2), knowledge spillovers are more likely to take place 

across regions with a similar knowledge base that facilitates the recombination of ideas 

(Kalapouti & Varsakelis, 2015; Marrocu et al., 2013; Pan et al., 2020). However, it is also 

important to stress that this is not one of the most influential variables considered in this 

analysis, except for the case of wind energy. It should be recalled that in the case of the baseline 

models (2 and 4), the percentage in number of patents in each type of renewable energy was 

used to define the relationship between regions. Whereas for models specific to an ER type, the 

subtypes of each of the renewable energies in question, solar or wind, were used to determine 

them. 
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As for the comparison between the solar and wind model, in both cases we found some 

differences in the two types of proximities. The fact that the coefficient of geographic proximity 

is smaller and more significant for solar energy than for wind energy may be due to the 

differences in geographic location between the two. If we look again at Figure 8, we see that the 

regions where wind energy innovation predominates are mostly located in coastal areas and at 

high latitudes, characterized by being windy. Furthermore, an important part of wind energy is 

offshore13, which by definition can only be found in coastal regions. In contrast, a bit more 

concentrated in Southern and Western Europe but predominant solar energy regions are found 

all over the map. This is also true for the energy generated. As already mentioned (Section 2.1), 

countries with fewer sunshine hours, such as Germany and Belgium, also have a high 

deployment of solar energy installations, while wind power generation is mainly located in 

windy areas of northern Europe. Although location affects the efficiency of both technologies, it 

is true that solar energy is somewhat more versatile and can be found both on large solar farms 

in rural areas and on rooftops in urban areas for local use. It is also capable of generating 

electricity even with clouds. Consequently, it may be that the fact that wind energy is a little 

more geographically concentrated in Europe, led to the fact that these relationships are not as 

distant as they can be in the case of solar energy.  

Regarding technological proximity, we can observe that it is more significant in wind energy than 

in solar energy. The explanation for this may be due to differences in the complexity of the two 

technologies. The choice of the type of wind turbine to build a wind farm depends to a large 

extent on the wind conditions (direction and strength) and the chosen terrain (Estruga, 2020). 

Hence, we may think that regions specialize in certain types of wind turbines according to their 

conditions. It thus seems logical that regions would benefit from collaborating with 

technologically similar regions that can provide specific knowledge to optimize the potential of 

their own conditions. 

We now turn our attention to the influence of brokers and gatekeepers in regional innovation. 

Starting with brokers, its coefficient is positive and significant in both baseline models (3,4) and 

renewable energy specific models (5,6). Hence, we can confirm Hypothesis 5 and affirm that a 

higher presence of brokers in the network is associated with more capacity of the region to 

innovate in RE. In line with other results in the literature, it seems that brokers help in the 

diffusion of knowledge through the regional network (Kauffeld-Monz & Fritsch, 2013; Piazza et 

al., 2019; Winch & Courtney, 2007). Thus, its function as mediator and translator between 

unconnected actors also appears to be effective in the renewable energy sector. This role may 

improve the efficiency of information transfer, which eventually could lead to its recombination 

into new inventions (Fritsch & Kauffeld-Monz, 2009). 

Similarly, the coefficient of the gatekeeper index is positive in the four models and significant in 

three of them except for the wind energy model. Therefore, hypothesis 6 is also confirmed. This 

implies that regional RE networks that have actors with connections both inside and outside the 

region seem to perform better in RE. This result seems to underline the importance of having 

access to global knowledge pipelines for boosting regional innovation. Something that has 

already been emphasized by several authors (R. Boschma & Frenken, 2009; de Noni et al., 2017; 

Miguelez & Moreno, 2018) and in particular concerning the energy sector (Li et al., 2020). It is 

possible that, like brokers, gatekeepers improve the efficiency and speed of this knowledge 

transmission, facilitating the dissemination of new ideas in the network and thus its overall 

                                                             
13 In 2021, almost 20% of new wind energy installations Europe were offshore and in total represent 
12% of the wind energy generated.(Iberdrola, 2022) 
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innovation capacity. Their experience collaborating with both groups of inventors would 

enhance their ability to reinterpret the information received and make it easily comprehensible 

to local actors (Gallo & Plunket, 2020). 

Lastly, in the comparison between the solar and wind models we can observe some difference 

between the results of brokers and gatekeepers’ variables. As we have already noted, in both 

models the respective coefficients of these variables are positive, suggesting the presence of 

both types of actors is beneficial for the regional innovation in both RE technologies. However, 

looking at the significance level of each coefficient, it seems that its relevance varies depending 

on the type of ER. On the one hand, the broker variable coefficient is highly significant in the 

wind model and to a lesser extent in the solar model. On the other hand, the one concerning 

the gatekeepers is the opposite, highly significant in the solar model and not at all in the wind 

model. As with the differences between the two SRs in the case of proximity, this may perhaps 

be due to the technological particularities of each. As mentioned above, the choice of the type 

of wind energy and turbine model is more tailored to the settlement where it is to be installed 

than in the case of solar energy. This can make the inventors of a region look more among their 

own network, to adapt to their geographic circumstances. Therefore, it would be more logical 

that brokers, focused on intra-regional knowledge diffusion, would be more relevant than 

gatekeepers that bring external knowledge.  

4.3.3. Robustness checks of the model  

Several complementary analyses were performed in order to check the robustness of our 

findings. Firstly, additional models using the negative binomial regression are presented in Table 

4. These five models correspond to the main database, which is built up from patents covering 

the seven renewable energies under consideration.  The first one includes the control variable 

population density, which was previously removed because it caused multicollinearity problems. 

In its place, the control variable R&D per GDP has been dropped to ensure that this is not a 

problem either. Subsequently, models 2 and 3 present the results of a complete model but 

focusing on periods 1 and 2 respectively. Finally, models 4 and 5 focus on the variables relating 

to the presence of gatekeepers and brokers in the regional network respectively. The difference 

with its equivalent model in the previous section (Model 3 of table 3) is that the variables relating 

to brokers and gatekeepers are categorical. Specifically, 4 levels have been created according to 

the presence of gatekeepers and brokers in each region. Level 0 corresponds to regions without 

any gatekeeper/broker in the network. The following three levels have been defined according 

to the tercile to which the original variables belong, with the first being the one with the lowest 

share of these actors, and the third the one with the highest share. The reason why a model has 

been created for each variable is that together they provide multicollinearity problems. 
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Table 4. Negative binomial robustness regression models 

  (7) (8) (9) (10) (11) 
Model Negative Binomial 

Dependent variable Number of patents in RE 

Density -1.649*** 
(0.449) 

-1.634*** 
(0.447) 

-4.955*** 
(1.464) 

  

Transitivity 0.356** 
(0.150) 

0.649*** 
(0.169) 

0.328 
(0.328) 

  

Geographical proximity -4.816*** 
(1.441) 

-6.785*** 
(1.733) 

-2.103 
(2.668) 

  

Technological proximity 0.427 
(0.324) 

0.497 
(0.392) 

0.130 
(0.575) 

  

Gatekeepers 0.069*** 
(0.0137) 

0.104 
(0.0315) 

0.0491*** 
(0.01702) 

  

Gatekeeper1    0.370*** 
(0.108) 

 

Gatekeeper2    0.400*** 
(0.113) 

 

Gatekeeper3    0.708*** 
(0.129) 

 

Brokers 4.222*** 
(0.897) 

4.186*** 
(1.101) 

2.664* 
(1.442) 

  

Broker1     0.623 *** 
(0.107) 

Broker2     0.685*** 
(0.109) 

Broker3     0.805*** 
(1.085e-01) 

CDD -0.002*** 
(0.000) 

-0.001 
(0.001) 

-0.001 
(0.001) 

-0.003*** 
(0.000) 

-0.002*** 
0.000) 

Human capital 0.034*** 
(0.008) 

0.017* 
(0.010) 

0.038*** 
(0.011) 

0.035*** 
(0.008) 

0.028*** 
(0.008) 

Population  0.000*** 
(0.000) 

0.000*** 
(0.000) 

0.000*** 
(0.000) 

0.000*** 
(0.000) 

0.000 *** 
(0.000) 

Population density -0.000 
(0.000) 

    

R&D by GDP   0.704 
(5.076) 

3.664 
(5.707) 

2.142 
(3.962) 

5.666 
(3.808) 

Theta  2.961 3.862 2.713 2.585 2.823 
Observations  360 180 180 360 360 
Nr of Regions  180 180 180 180 180 
Period dummy Yes No No Yes Yes 
Country dummy Yes Yes Yes Yes Yes 

Note: *Significant at 0.1, **Significant at 0.05 and ***Significant at 0.01. Numbers in parenthesis are standard 
errors of coefficients. Numbers in parenthesis are standard errors of coefficients Numbers in parenthesis are 
standard errors of the variables' coefficients. Theta refers to the overdispersion parameter for negative binomial 
models. 

 

Starting with the first of these models (1), we can see that the results are very similar to those 

of the original model (Model 4 of Table 3). Indeed, all coefficients of the variables have the same 

sign, close values and the same level of significance. Secondly, the objective with models 2 and 

3 is to test how the density variable varies from period to period. In the theory section, it was 

argued that over time the level of density beneficial to the innovativeness of the RE region would 

decrease. The reason being that the more mature the sector becomes, the greater the 

circulation of existing knowledge if the density of the region remains unchanged or increases, 

which hampers innovation. If we look at models 2 and 3 we see that the coefficient of this 

variable in the second period (-4.955) is indeed lower than in the first (-1.634), which confirms 

this effect and reinforces the robustness of the model. Lastly, with models 4 and 5 we found 
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that changing the way the gatekeepers and brokers variables are calculated does not change the 

results either. In both cases, the coefficients of the variables are positive and significant in all 

categories, and their value increases as the share of brokers and gatekeepers increases. Thus, 

the greater the presence of gatekeepers and brokers in the network, the greater the innovation 

in RE, as seen in model 3 (Table 3).  

Additionally, in table 5 the three initial models are calculated using the Quasi-Poisson regression 

instead of the negative binomial regression. As it was mentioned, like the negative binomial, the 

Quasi-Poisson regression is suitable for dealing with over-dispersed count data of our analysis 

(Hoef et al., 2007). Model 12 corresponds to the baseline database while model 13 corresponds 

to solar and model 14 to wind. In all three cases, the same variables are included as in the 

equivalent model of the negative regression analysis. 

Table 5. Quasi-Poisson robustness regression models 

  (12) (13) (14) 
Model Quasi-Poisson 

Dependent variable Number of patents in RE 

Density -6.026*** 
(1.210) 

-3.196*** 
(0.637) 

-5.153*** 
(1.021) 

Transitivity 0.129 
(2.257e-01) 

0.486** 
(2.3465e-01) 

5.586e-01** 
(2.463e-01) 

Geographical proximity -8.416*** 
(2.591) 

-5.056** 
(2.001) 

-9.210*** 
(3.069) 

Technological proximity 0.560 
(0.481) 

0.434 
(0.493) 

1.094** 
(0.448) 

Gatekeepers 0.052*** 
(0.012) 

0.0797*** 
(0.008) 

0.062 
(0.103) 

Brokers 1.076 
(0.953) 

1.498 
(1.039) 

0.576 
(1.039) 

CDD -0.001 
(0.001) 

 -0.004* 
(0.002) 

Human capital -0.005 
(0.010) 

0.012 
(0.009) 

-0.018 
(0.017) 

Population  0.000*** 
(0.000) 

0.000*** 
(0.000) 

0.000*** 
(0.000) 

Population density  -0.000** 
(0.000) 

0.000 
(0.000) 

R&D by GDP  2.607e+00 
(4.392) 

16.554*** 
(3.766) 

-19.882** 
(8.374) 

Observations  360 332 324 
Nr of Regions  180 166 162 
Period dummy Yes Yes Yes 
Country dummy Yes Yes Yes 
Note: *Significant at 0.1, **Significant at 0.05 and ***Significant at 0.01. Numbers in parenthesis are standard 
errors of coefficients. Numbers in parenthesis are standard errors of coefficients Numbers in parenthesis are 
standard errors of the variables' coefficients. Theta refers to the overdispersion parameter for negative binomial 
models. 

 

While it is true that some coefficients lose significance with the Quasi-Poisson regression, such 

as the transitivity coefficient, which is significant in the baseline model (4), or the share of 

brokers in the wind one (6), none of the coefficients change their sign. Overall, the results of the 

various sensitivity analyses support our findings. 



Álvaro González Mateo   

43 
 

5. Summary and conclusions  
Innovation in RE is crucial to combat climate change and accelerate the energy transition. In this 

thesis, we examined how the structural, geographical, and actor-specific characteristics of a 

region´s renewable energy knowledge network influences its innovation performance in this 

sector, being this our main research question. The analysis covers 270 NUTS 2 regions of the EU 

countries (except the Republic of Cyprus) and UK, Norway and Switzerland, between 2003 to 

2017. 

We started by conducting a descriptive analysis of RE innovation in Europe. From this analysis 

we have been able to deepen the relationship between RE innovation and the region's current 

performance in the sector. In particular, we found empirical evidence supporting the idea that 

innovation favours RE production. Comparing the regions´ number of patents in RE and their 

generation of energy from RE sources, it has been found that in general the most inventive 

regions are also the ones that generate more RE. The growth in the number of solar PV solar and 

wind energy patents over the years also coincides with the boom they have experienced in 

Europe over the last two decades. In addition, it was observed that in general, the most patented 

source of renewable energy in the region is also the most or one of the most produced in the 

region, reinforcing the idea that RE energy generation and innovation are closely related. 

Following the descriptive analysis, the regression analysis was conducted, with the aim of 

contrasting our hypotheses on the relation between different characteristics of regional RE 

knowledge networks and the region's innovation performance in this sector. Each network 

characteristic is linked to a hypothesis, and in turn each hypothesis is linked to one of the three 

sub-research questions of the thesis.   

The first sub-research question addresses how the structural characteristics of a regional 

knowledge network impact on its performance in RE. Specifically, the characteristics analysed 

are the overall connectedness of the network and the cohesion of its subgroups, measured 

through the density and transitivity of the network respectively. The results of the regression 

analysis indicate that both characteristics affect the innovative performance of the European 

regions in RE, albeit in opposite ways. From what has been described in previous studies (R. A. 

Boschma, 2005; Innocenti et al., 2020) and contrary to predictions (Hypothesis 1), it can be 

deduced that an overconnected network may lead to technological lock-in in the region due to 

the recirculation of redundant knowledge. In addition, some studies (Crespo et al., 2014; 

Kauffeld-Monz & Fritsch, 2013) suggested that its negative impact may be accentuated by the 

passing of time, as the technology matures and often requires new knowledge flows to reinvent 

itself. Our results also point in this direction, where from one period to another the density 

favouring a higher number of patents in RE is lower. In contrast, greater connectedness of the 

network subgroups appears to foster innovation in RE. Hence, it is important to stress that a 

region can be highly connected and exhibit a low presence of cohesive groups, and vice versa. 

These findings are in line with theories claiming that the existence of subgroups in the network 

facilitates innovation (Fritsch & Kauffeld-Monz, 2009; Innocenti et al., 2020). These subgroups 

tend to be characterized by a more recurrent collaboration, where the actors know each other 

better and there is more trust. This allows the transmission of information to be more efficient 

and facilitates its recombination in new innovations. 

With the second sub-research question we explore how the proximity of cross-regional 

collaborations, in terms of geographical and technological proximity, influences a region's RE 

innovation performance. On the one hand, contrary to predictions (Hypothesis 3), it has been 
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found that those regions where collaboration with other more distant regions prevails have 

turned out to be more innovative in RE. Some authors point out that differences in the social 

and economic environment can lead to semantic differences in referring to a technology that 

complicate collaborations between distant regions (Kalapouti & Varsakelis, 2015; Marrocu et al., 

2013). Therefore, we suggest that the reason why collaboration between distant regions is 

preferable in the particular case of RE may be because the global scope of RE energies has led 

to a more standardized and codified language, which minimizes or eliminates semantic barriers, 

facilitating the transfer of tacit knowledge. Once communication is easier, collaborating with 

distant regions can be beneficial to the region by bringing new refreshing ideas for the 

generation of new innovations. Regarding technological proximity, although with less 

significance than the other characteristics analysed, the sharing of certain knowledge base in RE 

among actors when they collaborate seems to foster regional innovation in the sector 

(Hyptothesis 4). In this case, our prediction is correct, and technological proximity seems to help 

cooperation between actors to develop more smoothly (Marrocu et al., 2013; Pan et al., 2020; 

Verdolini & Galeotti, 2011).  

Finally, our third sub-research question concerns the actors who are assumed to be key in the 

circulation of knowledge spillovers in the regional network, namely brokers and gatekeepers. 

With this question we have tried to determine how their presence influence the performance 

of the regions in RE. Consistent with previous studies, by transmitting knowledge between 

groups, brokers may prevent groups of inventors from becoming too isolated in their own 

knowledge base, (R. A. Boschma, 2005). Intermediaries, such as brokers, but among actors 

internal and external to the region, the presence of gatekeepers has also resulted to be 

favourable for the region's innovativeness in RE. Their role as a supplier of external knowledge 

within the regional network seems to be critical for the renewal of the regions' knowledge base 

(Gallo & Plunket, 2020). Moreover, in both cases, their experience as mediators can help to 

ensure that information is conveyed in an effective and understandable way (Gallo & Plunket, 

2020; Kauffeld-Monz & Fritsch, 2013). 

In addition, by means of specific models for solar and wind energy, we have been able to verify 

whether an approach focused on one technology reveals differences in the influence of the 

network characteristics. According to our results we can say that there are no major changes in 

the case of wind and solar energy. What we have observed is a difference in the relevance of 

some variables with respect to others. Our results showed that in wind energy innovation, 

technological proximity gains relevance to the detriment of collaborating with distant regions. 

Moreover, brokers are also more significant than gatekeepers. In the case of solar energy, the 

exact opposite is true. We associate it with the technical peculiarities of each technology as both 

are in a similar stage of development. Wind energy is somewhat more dependent on 

geographical and climatic conditions to function properly than solar energy. Furthermore, it 

requires further modification of its components to adapt to a given environment (Estruga, 2020). 

Thus, we believe that wind energy innovation can benefit more from knowledge within its own 

network and from collaborations with closer and more technologically similar regions, which 

have more experience in what technology to deploy in order to be as efficient as possible in the 

region.  

In conclusion, this thesis provides a new perspective from which to face the great challenge of 

innovating in renewable energy, which is key to achieving the ambitious climate targets that lie 

ahead in the coming years. When it comes to explaining the innovative performance of 

European regions in the renewable sector, regional knowledge networks have proven to play a 
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fundamental role. Thus, we hope that our findings have served to expand the factors to be taken 

into account when addressing innovation in renewable energy, and that they inspire future 

studies to continue exploring this avenue of research. 

6. Discussions 

6.1. Contributions 

We believe that this thesis provides several contributions to the extant literature on regional 

knowledge networks and regional policy aiming to improve the region performance on the RE 

sector.  

Starting with the literature contributions. To the best of our knowledge, most empirical studies 

on regional knowledge networks are focused on a particular type of characteristics of the 

network. Although it has been demonstrated that several of them influence the technological 

innovativeness of the network, the different types of characteristics analysed in this study have 

not been studied together before. Then, it may happen that some of them are no longer as 

relevant as expected when evaluated in combination. What we have done is bringing together 

in a single analysis several of these characteristics assessed by different authors, grouping them 

into structural (Innocenti et al., 2020), proximity (Marrocu et al., 2013; Pan et al., 2020) and 

actor-specific (Gallo & Plunket, 2020; Kauffeld-Monz & Fritsch, 2013). Interestingly, all the 

variables considered show some kind of significance in one of the three full models considered 

(general baseline model, solar model and wind model). This reveals, on the one hand, the 

important role of the network in the innovative performance of the region, but also its 

complexity, where multiple of its characteristics have an influence.  

Second, despite it has been already emphasised the importance of regions (IEA, 2019; Larruscain 

et al., 2017) and collaboration to foster innovation in RE (IEA, 2020), this is one of the few studies 

to investigate regional RE innovation from a knowledge network perspective. As a result, we 

have been able to find some contradictions with previous studies investigating the effect of 

networks on innovation in general or in a particular sector other than the energy sector. In 

particular, while authors such as Marrocu et al. (2013) and Pan et al. (2020), found that 

collaborations between actors from neighbouring regions facilitated knowledge transfer and 

thus innovation, in our case we have observed the opposite. This highlights the global nature of 

RE innovations. Our findings also diverge from studies that have found it beneficial for the 

network to be highly connected (Kauffeld-Monz & Fritsch, 2013; Tseng et al., 2016), suggesting 

that this favours the accumulation of redundant knowledge in RE that can lead to technological 

lock-in in the region (Innocenti et al., 2020). 

In addition to contributions to the literature, we believe that our results may also be useful to 

regional policy makers seeking to improve their region's performance in RE. In relation to the 

importance of external knowledge circulating in the region, we can think of several measures. 

First, given the potential benefits of external knowledge spillovers in the regional network, we 

advise regional policy makers to promote the region's integration into international networks. 

One option for regions is to take advantage of the many instruments offered by the European 

Commission (EC) to facilitate international collaborations to jointly plan R&D programs and 

promote knowledge sharing among RE actors (IEA, 2020). These include several industrial 

alliances open to European stakeholders in the renewables sector. The aim of these alliances is 

to bring together actors across the European Union and from different fields (academic, 

research institutes, industry and SMEs etc...) to enhance the development of RE technologies 
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(IEA, 2020). One example is the Clean Hydrogen Alliance, focused on promoting the growth of 

technologies based on the use of hydrogen as RE source (European Commission, n.d.-a).  Second, 

we recommend identifying other regions whose knowledge base in RE is similar, especially in 

the case of wind energy is, and take measures to facilitate cooperation with them. For example, 

by removing possible bottlenecks that hinder these cooperations or by funding or restructuring 

R&D programmes in RE to incentivise more collaboration with their external actors. Third, given 

the importance of gatekeepers in the dissemination of external knowledge in the region, We 

encourage policy makers to identify organizations or individuals that show frequent inter-

regional cooperation in RE and attempt to integrate those into networking activities of the 

region.  

Within the region, we advise creating policies that encourage the formation of dense sub-

networks in which collaborations are more frequent, and where high trust among members 

prevails. One possibility is to establish industry platforms where actors specialized in a given RE 

can share their knowledge and expertise. Moreover, these platforms make it easier to find other 

stakeholders with common interests with whom to initiate new projects together (Marrocu et 

al., 2013). Finally, to enhance knowledge spillovers within the regional network, public 

organizations can be created for the specific purpose of acting as brokers. One example is the 

IMDEA Energy Institute, created by the Madrid Regional Government. In collaboration with 

other research centers and universities, it aims to join efforts in the development of R&D 

activities in the sustainable energy sector and also acts as a link in the transfer of R&D findings 

to the productive sector (IMDEA Energy  Institute, n.d.).  

With this study we have seen the relevance of collaborations and the way in which they are 

produced in order to diffuse knowledge throughout the regional network and thereby stimulate 

innovation in renewable energy. This is why, generally speaking, we urge regions to invest in 

policies aimed at investing in the diffusion of knowledge throughout the region, rather than just 

investing in R&D in RE. 

6.2. Limitations and further research 

At this point it is necessary to underline the limits of the present research. Some of them are 

commonly found in innovation studies based on patent data. To begin with, the links in our 

networks are based solely on co-inventions. The reality is more complex, and there are many 

personal and professional ties that are not reflected in patents collaborations. Moreover, these 

collaborations can be oriented towards other innovative activities such as the improvement of 

RE products and processes that are not reflected in patents. Another limitation related to the 

use of patents in the analysis is that there are fewer patents RE at the regional level (NUTS 2) in 

Europe than originally thought. This has prevented us from having a larger time window of 

analysis to better understand the evolution over time of the network's characteristics. We 

suggest for further conducting a similar research but with an approach at NUTS 3 regional level 

or at the national level, with the objective of accumulating more patents per unit of analysis, 

which could solve this problem. In addition, this broader approach may allow to get a better 

grasp of how the maturing of the technology influences the network characteristics. This 

limitation in the number of patents has also impeded a broader comparative analysis of network 

characteristics between RE types. It has only been possible to make a comparison between wind 

and solar energy, both of which are experiencing their expansion in recent years. The fact that 

both technologies are at a similar stage of development allows us to explore in depth how 

technological differences affect the characteristics of regional knowledge networks. However, it 

would have been interesting to also compare with technologies such as hydro energy, which had 
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their innovation boom many more years ago but still have an important share in the generation 

of renewable energy in Europe, and to see how the maturity of technology influences the 

network. 

Our dependent variable is also a limitation in itself. As we have already discussed, not all patents 

have the same relevance and not all innovations are patented. To solve the first problem, we 

suggest using patents weighted by family size (Guan & Liu, 2016) or number of citations 

(Miguelez & Moreno, 2018). As for the second, it would be interesting to use an alternative to 

the use of patents for the creation of regional knowledge networks in order to corroborate our 

results. A different option could be the use of R&D research projects in RE, which have already 

been used in other studies using SNA (Larruscain et al., 2017). 

Furthermore, when analysing inter-regional collaboration through proximity and gatekeepers 

we have not differentiated whether the collaborations have taken place within the country or 

outside its boundaries. For future studies it would be interesting to include this distinction, for 

example by adding a categorical variable that distinguishes between external collaborations 

within the NUTS 1 region level boundaries, within the same country and at the international 

level. This would allow us to more precisely narrow down the distance at which inter-regional 

collaborations benefit regional innovation in RE, adding a layer of complexity to our results. 

Future research could also examine the dynamics of regional knowledge networks in RE using 

not only intra- and inter-regional EU collaborations, but also interactions with countries outside 

the EU, such as the regions of North America, Asia or developing countries.  

Moreover, for this analysis we have tried to include several control variables that have been 

demonstrated to influence both RE innovation and especially innovation in general. We believe 

that the availability of more comprehensive datasets oriented towards the RE could improve the 

results. Some of these may be regional R&D expenditures in RE or number of regional projects 

in this field. Additionally, there are aspects such as the legislative framework for the promotion 

of renewable energies at the national or regional level which presumably also influence their 

innovative performance in the sector, and which are very difficult to transfer into an empirical 

study. 

Finally, although we have tried to combine several types of network characteristics in the same 

study, there are still more which have been relevant in other studies that have not been 

considered. For instance, Miguelez et al. (2018) found direct external ties boost the innovative 

capacity of regions. From our results, where collaborating with distant regions is a positive 

factor, it seems that it is be beneficial for the region. However, it would be interesting to 

compare this with the indirect connections to the external regions mediated by the gatekeepers 

and see what is most worthwhile for the region. 
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Appendix A: Descriptive statistics of the variables in the solar and 

wind models.  
Descriptive statistics 

Table 6. Descriptive statistics of the variables in the solar model. Note: The results have been rounded to two 
significant figures. 

Variables Mean Median Min. Max. SD 

Number of patents in RE (DV) 32 15 0 320 46 

Density (IV) 0.12  0 0.78 0.13 

Transitivity (IV) 0.80 0.93 0 1 0.31 

Geographical proximity (IV) 0.0045 0.0037 0.00029 0.020 0.032 

Technological proximity (IV) 0.75 0.76 0 1 0.12 

Brokers (IV) 0.026 0 0 0.29 0.040 

Gatekeepers (IV) 1 0 0 28 3.0 

 

 

Table 7. Descriptive statistics of the variables in the wind model. Note: The results have been rounded to two 
significant figures. 

Variables Mean Median Min. Max. SD 

Number of patents in RE (DV) 25.81 9 0 740 71 

Density (IV) 0.13 0.078 0 0.90 0.15 

Transitivity (IV) 0.77 0.92 0 1 0.34 

Geographical proximity (IV) 0.0047 0.0040 0 0.00043 0.0022 

Technological proximity (IV) 0.66 0.71 0 1 0.21 

Share of brokers(IV) 0.025 0 0 0.50 0.059 

Gatekeepers index by number of 
inventors (IV) 

0.18 0 0 6.94 0.54 
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Boxplots 

 

 

 

   

   
Figure 10. Boxplots of the dependent and independent variables of the solar model dataset in the period 2003 - 
2017. 
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Figure 11. Boxplots of the dependent and independent variables of the wind model dataset in the period 2003 - 
2017. 
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Appendix B: Correlation tables 
Table 8. Correlation matrix of the baseline model database variables 

 nPatents Density Transitivity Geo 
prox 

Tec 
prox 

Gatekeeper Brokers  CDD 
index 

Human 
capital 

Population Population 
density 

R&D/GDP 

nPatents 1            
Density -0.29 1           

Transitivity -0.04 -0.2 1          
Geo prox -0.06 0.14 0.09 1         
Tec prox 0.27 -0.32 0.11 0.06 1        

Gatekeepers 0.23 -0.15 -0.2 0.01 0.25 1       
Brokers  0.3 -0.28 -0.28 0 0.28 0.2 1      

CDD index -0.14 0.16 0.03 -0.25 
-

0.07 
-0.1 -0.24 1     

Human 
capital 

0.06 -0.23 0.06 -0.01 0.01 0.04 0.05 -0.27 1    

Population 0.26 -0.14 0.06 -0.27 0.06 -0.01 0 0.42 -0.1 1   
Population 

density 
0.03 -0.1 0.07 0.01 0.06 0.01 0.05 0.01 0.27 0.14 1  

R&D/GDP 0.19 -0.22 0.05 -0.05 0.11 0.09 0.07 0.09 0.2 0.02 -0.05 1 

 

Table 9. Correlation matrix of the solar model database variables 

 nPatents Density Transitivity Geo 
prox 

Tec 
prox 

GK 
index 

Brokers 
share 

CDD 
index 

Human 
capital 

Population Population 
density 

R&D/GDP 

nPatents 1            
Density -0.29 1           
Transitivity 0.015 0.24 1          
Geo prox -0.039 -0.02 -0.03 1         
Tec prox 0.26 -0.21 0.04 0.13 1        
Gatekeepers 0.43 -0.15 -0.15 0.03 0.30 1       
Brokers 0.22 -0.22 0.01 -0.02 0.10 0.18 1      
CDD index -0.09 0.09 -0.01 -0.22 -

0.15 
-0.08 -0.18 1     

Human 
capital 

0.05 -0.13 0.01 0.11 -
0.25 

0.06 0.13 -0.26 1    

Population 0.37 -0.17 0.10 -0.25 0.04 -0.01 0.05 0.42 -0.12 1   
Population 
density 

0.01 -0.09 0.06 0.09 0.13 0.01 0.07 0.02 0.29 0.11 1  

R&D/GDP 0.33 -0.21 0.08 -0.10 0.03 0.09 0.15 -0.28 0.16 0.04 -0.01 1 

 

Table 10. Table 3. Correlation matrix of the wind model database variables 

 nPatents Density Transitivity Geo 
prox 

Tec 
prox 

GK 
index 

Brokers 
share 

CDD 
index 

Human 
capital 

Population Population 
density 

R&D/GDP 

nPatents 1            
Density -016 1           
Transitivity 0.10 0.30 1          
Geo prox -0.06 0.03 -0.03 1         
Tec prox 0.13 -0.01 0.34 -0.05 1        
Gatekeepers 0.18 -0.10 0.08 -0.05 0.22 1       
Brokers  0.22 0.02 0.04 -0.01 0.15 0.36 1      
CDD index -0.10 0.06 -0.13 -0.16 -

0.15 
-0.12 -0.14 1     

Human 
capital 

0.01 -0.04 0.20 -0.07 0.15 0 -0.08 -0.13 1    

Population 0.03 -0.01 0.13 -0.16 0.05 -0.03 -0.01 0.32 -0.11 1   
Population 
density 

0.01 -0.06 0.03 0.05 -
0.05 

0.08 0.02 -0.04 0.26 0.15 1  

R&D/GDP 0.02 -0.05 0.17 -0.07 0.26 0.05 -0.04 -0.25 0.15 0.05 -0.03 1 
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