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Abstract

Missing values represent one of the most common challenges for data analytics tasks.
For that reason, a lot of techniques have been proposed to fill the missing values
through what is called ”Data Imputation”. Recent studies on generating synthetic
data demonstrate that Generative Adversarial Networks (GANs) can be used to ef-
fectively solve this problem as follows: for each example in the original data generate
a synthetic example that keeps the existing values. The generated example should
contain values for the features with missing values. However, to confirm if GANs can
provide significant improvements over traditional data imputation techniques, we need
a technique to measure the quality of the generated examples. The quality of the gen-
erated example can be measured by determining how realistic the synthetic data is
compared to the original examples. In this project, we develop a tool for successfully
measuring the quality of the synthetic data. We compare the quality of the generated
data using GANs to other synthetic data generation techniques.

Keywords— Synthetic Data, Missing Values, Evaluation, Generative Adversarial Networks
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Chapter 1

Introduction

The technological advances in recent years, together with the digitalization of traditionally
manual processes, have led to the extensive and continuous collection, process, and analysis
of data. According to a report by IBM [1] more than 2.5 quintillion bytes of data are being
created every day. This enormous amount of data has enabled evidence-based methods for
decision-making instead of the traditional experienced-based decision-making. The scope of
this thesis is to evaluate the utility of the data for the evidence-based methods and the
consistency of newly generated data.

Statistical analysis and pattern recognition algorithms have emerged rapidly to find patterns
and new insights from historical data. These methods require high-quality data for the
analysis to be complete and reliable. Low data quality includes incomplete data, inconsistent
data, duplicated data, and poor data security. The most common challenges are incomplete
data and data security. Incomplete data occurs when specific data is not available or not
stored in a given dataset and can lead to misinterpreting the data or even not being able to
use specific algorithms. Reasons for data that are not available (also called missing values) can
vary from user’s mistakes during data collection, poor data maintenance, defective hardware,
and many others. This concerns all the domains where large amounts of data are collected and
later stored and analyzed. Data security refers to the challenge of data to protect sensitive
and private information.

In most cases, users care about the statistical information about the data, and not the sensitive
information. Therefore, a solution that optimizes the trade-off between data quality and
data privacy is synthetic data: an artificial copy of the original data that carries the same
statistical information. Synthetic data can tackle the challenge of incomplete data by taking
the corresponding synthetic value and imputing the missing value, balancing the dataset by
creating samples in the minority groups, and introducing a first layer of data protection since
the synthetic data do not exist in real life.

Various synthetic data generators have been developed in the last years because of their
efficiency and their ability to offer solutions to a variety of challenges. Nevertheless, empirical
evidence of their utility needs to be further explored. In order for synthetic data to be
valuable, it is essential that they are evaluated in terms of utility; their ability to capture the
statistical information, and security; their ability to protect the original data.
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1.1 Motivation

The purpose of this thesis is to create a framework that evaluates synthetic data. The newly
generated data need to be evaluated regarding their ability to copy the statistical features
and to offer privacy guarantees without making assumptions about the original distribution.
Synthetic data with high scores from the framework contains ”realistic” data. This evaluation
framework can be used by synthetic data generators to measure their performance and also
by data analysts to decide whether they can use the synthetic data in a meaningful way.

There are several cases where synthetic data can be extremely useful and therefore it is crucial
to measure their utility. First, missing values can be imputed with values that derive from
newly generated synthetic samples. The imputed values need to be evaluated on how much
they ”agree” with the rest of the original data. Secondly, synthetic data can balance datasets
that consist of classes with fewer examples than others. These synthetic samples need to have
the same distribution as the rest of the minority group.

Figure 1.1: Missing values imputation using synthetic data

1.2 Research Questions

The main research of this thesis is to develop a framework that evaluates synthetic data and
their utility. Depending on the task of the synthetic data, the framework needs to determine
whether the imputed missing values are realistic and typical considering the rest of the original
data. Thus the main research questions are the following:

Research Question 1: How can we develop a framework to evaluate synthetic data?

Research Question 2: How can the implemented framework take into account both cate-
gorical and numerical variables?

Research Question 3: How can we evaluate each synthetic sample individually?

1.3 Outline

The thesis consists of 5 chapters, which are the introduction, related work, theoretical back-
ground, proposed framework, experimental evaluation, and conclusion. After the introduc-
tion, related work includes detailed research on the literature review and relevant work that
has been conducted until now on the subject. The theoretical analysis chapter introduces
the algorithms and the theory that the reader of the thesis needs to be familiar with. In
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the proposed framework chapter the structure of the framework and the methodology that
was followed are explained in detail. The experimental evaluation chapter shows the experi-
ments that were conducted and the evaluation of the framework. The last chapter includes
conclusions of the thesis and future work to be done.

7



Chapter 2

Related Work

Humanity is collecting an enormous amount of data - and very often there are missing values.
Missing values are data that are not stored or present for specific variables in a given dataset
and is the most common problem across different disciplines, such as medical research, gov-
ernment agencies, and private companies. With growing interest in data-driven tools like
machine learning, data quality becomes essential for the results of the analysis. Therefore,
missing values adversely impact the data quality and the accuracy of the final outcome [2].
Reasons for missing values in a dataset may vary: data corruption due to improper main-
tenance, intentional error from the user at the time of data entry, hardware errors, and so
on.

Missing values are categorized into three main groups. Missing Completely At Random
(MCAR), where there is the same probability of data being missed for all the observations.
In this case, there is no correlation between the missing value and any other observed or
unobserved values. Missing At Random (MAR), where the missing values depend on other
observed variables; and Missing Not at Random (MNAR), where missing values depend on
unobserved data [3].

2.1 Techniques for Handling Missing Values

Many approaches from statistical models to deep learning algorithms have been developed over
the years to handle missing values. The most popular techniques are deletion, imputation,
maximum likelihood techniques, and the creation of synthetic data.

Deletion: Deleting all rows that consist of missing values is the easiest and simplest approach.
Deletion can be ’complete deletion’ or ’list-wise deletion’, where all rows which have missing
values are deleted, ’specific deletion’ in which only rows that have more missing values than a
predefined percentage are deleted, and ’pair-wise deletion’ where only rows that have missing
values in the variables that are used for the analysis are deleted [4].

Imputation: Imputation techniques replace missing values with newly created ones, based
on the existing information of the dataset. The new values can be mean, mode, median,
predicted by a classifier or by using K Nearest Neighbors (KNN) [5]. In mean and mode
imputation techniques, values are replaced by the mean or mode of the non-missing values
of the same attribute. In techniques involving a classifier, a model is trained on the existing
values of an attribute and then it predicts new values to replace the missing data. Methods
based on KNN algorithms, use the k nearest samples to impute missing data [6].
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Synthetic Data: Recently synthetic data has attracted attention because of the variety
of challenges that aims to solve. Data privacy, unbalanced datasets, and missing values are
only a few of the areas in that synthetic data generators can provide significant results. We
next provide a brief description of the main approaches for creating synthetic data: Bayesian
Networks, Categorical latent Gaussian process, Synthetic Minority Over-Sampling Technique,
and Generative Adversarial Networks.

Bayesian Networks (BN) are probabilistic graphical models where each variable is represented
as an edge and the nodes represent the dependencies between the variables. For synthetic
data, the graph represents the real data and the relationships among them and offers a
visual representation of them. To generate new data we sample from the inferred Bayesian
network. BN can provide useful insights about relationships among the variables and in a
computationally efficient way [7].

Categorical Latent Gaussian Process(CLGP) is a model for generating multivariate categorical
data [8]. By using a non-linear transformation of a continuous latent space it produces
vectors of categorical variables. This approach combines the linear categorical Gaussian
model, the Gaussian process latent variable model, and the Gaussian process classification.
This approach has a rich latent non-linear mapping that can capture complex distributions
but scales poorly with data size.

Synthetic Minority Over-Sampling Technique (SMOTE) is a way to create synthetic data by
duplicating samples in the minority class[9]. SMOTE selects samples that are close in the
feature map, draws a line between them in the feature space, and creates a new point along
that line.

Generative Adversarial Networks (GANs) have spurred the discussion about unsupervised
machine learning tasks and specifically for creating synthetic data [10]. GANs are essentially
two different neural networks that are trained jointly in a competitive manner. The first one
tries to create realistic synthetic data, whereas the second one tries to distinguish between
real and synthetic data. Each network pushes the other to perform better. Although GANs
initially could not handle categorical variables many extensions have been suggested to deal
with mixed data types. GANs provide significant results in synthetic data generation but
training them and tuning the hyper-parameters remain difficult tasks.

2.2 Evaluation of Synthetic Data

A wide variety of synthetic data generators have been developed in recent years to meet the
ever-growing demands for inclusive data sharing, data privacy, and handling missing values
in large datasets. However, more research needs to be conducted in order to evaluate their
utility. In this section, we present the main suggestions and advances in evaluation metrics
in synthetic data.

Utility measures have been categorized into two main groups: narrow metrics and broad
metrics [11]. Narrow metrics evaluate the performance of synthetic data on a specific task
on the original data, whereas broad measures capture general characteristics of the entire
dataset (differences in marginal distribution, similarity between two datasets). Snoke et al.
[12] had categorized measures by the same philosophy referring to them as specific and general
measures accordingly.

Dankar et al.[13] compare different synthetic data generators by categorizing further the eval-
uation metrics and defining multiple dimensions of utility (quality dimensions). They classify
existing utility metrics based on the measure they attempt to preserve: attribute fidelity,
bivariate fidelity, population fidelity, and application fidelity. Attribute fidelity refers to the
measures that evaluate the basic structural similarity between the data. Synthetic data must
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have the same structure and aggregated statistics (variable types, formats, names, means,
ranges) or similar univariate distributions for continuous and discrete variables. The most
popular techniques to measure attribute fidelity are Hellinger distance [14] and Kullback-
Leibler divergence [15]. Bivariate fidelity covers statistical dependencies between the vari-
ables. It is measured by calculating pairwise correlation using heatmaps [16] or by calculat-
ing pairwise correlation difference [7]. Population fidelity measures the correlation between
the entire distribution. Most popular techniques are cross-classification metric measures [7],
log-cluster metric measures [17] and distinguishability type metrics by using propensity score
[12],[18],[19]. Application fidelity evaluates the performance of synthetic data on prediction
tasks [20]. A machine learning model is trained on synthetic data and real data and then is
tested on the real data to see how it will behave in real life.

Drechler et al. [11] propose the evaluation of data generators based on machine learning
models by their ability to preserve analytical validity. Goncalves et al. [7] evaluate three types
of synthetic data generators (probabilistic models, classification-based imputation models,
and generative adversarial neural networks) by dividing the metrics into two groups: data
utility and information disclosure. Data utility refers to the ability of synthetic data to
capture the statistical features of the real data. The metrics used by this group are Kullback-
Leibler divergence, pairwise correlation difference, log-cluster metric, support coverage metric,
and cross-classification metric. Information disclosure measures how much real data may be
retrieved from the synthetic data. Data utility may be reduced due to an increased need for
data privacy that leads to generalization and smoothing of the synthetic data [21]. Therefore,
both groups of measures need to be taken into consideration.

Alaa et al. [22] underline the importance of fidelity, diversity, and generalization performance
of any generative model and create 3 new dimensions of evaluation metrics: α-precision,
β-recall, and authenticity. They introduce a new approach to evaluating synthetic data
generators where instead of looking at the entire distribution, they evaluate each sample
individually as high or low quality.

• Fidelity: high fidelity means realistic samples

• Diversity: the ability of the model to produce diverse samples

• Generalization: highly generative models avoid over-fitting

Mannino and Abouzied [23] create a tool named Synner, which visualizes the characteristics
of the dataset, such as each field’s statistical distribution, its domain, and its relationship
to other fields. Therefore, it generates real-looking data and gives instant feedback on every
user interaction. Arnold and Neunhoeffer [24] evaluate data quality along two dimensions.
The first dimension is when synthetic data are evaluated on training data or on an underlying
population. In the second one, data quality depends on the general similarity of distributions
or on performance for specific tasks (e.g. inference or prediction).

Hittmeir et al [25] empirically assess the quality of synthetic data by testing them on specific
supervised machine learning tasks on publicly available datasets. For each attribute they plot
the histogram showing the distribution of both the real and the synthetic data, they calculate
correlation and dependencies between attributes, and finally, they calculate the distances
between real and synthetic data.

Finally, Emam [26] summarizes 7 ways that the quality of synthetic data has been evaluated
so far. First, they mention replication of studies, where analysis is performed on the real data
and then replicated on the synthetic data. High quality would mean that the same conclusions
are drawn from both analyses. Subjective assessment by domain experts, where experts can
evaluate the distance between real and synthetic data. General utility metrics, which is the
calculation of the correlation between the variables of synthetic and real data, or the creation
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of a classifier to distinguish them. Bias and stability assessment, is the computation of
general utility metrics on the real dataset, and then the calculation of the variation of these
metrics in different synthetic datasets. Structural similarity, where synthetic data should
have the same variable types and formats, variable names, metadata, and file formats as the
real data. Comparison with public aggregate data, where statistics from synthetic data are
compared with publicly available results to see if they agree. And finally, comparison with
other privacy-enhancing technologies, where assessments can be performed on other methods
of synthetic data generation, and then the results are compared.

In this thesis, a new approach is suggested where mixed-type variables are evaluated and
instead of assessing the whole distribution, we evaluate each sample separately. More specif-
ically the contribution of this work is the following:

1. We introduce two dimensions of data evaluation based on how realistic the samples
are (nonoutliers) and how typical they are (whether a targeted feature is correctly
generated).

2. We apply the method to both categorical and numerical variables. Gower [27] distance
was selected for outlier detection, and decision trees for the supervised part that can
perform both regression and classification tasks.

3. Instead of looking at all the synthetic samples collectively, we evaluate each sample
individually.
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Chapter 3

Theoretical Background

In this chapter, the theoretical background is analyzed. First, we define the problem state-
ment, then we analyze the challenge of missing values and the techniques for handling them,
and finally, we present Deep Learning and Generative Adversarial Networks.

3.1 Problem Statement

In this thesis, we propose a framework to evaluate synthetic data that are generated to
impute missing values in the original dataset. Given a dataset D = {X,S, Y }, X is the set
of attributes that do not contain any missing values, S is the set of attributes that contain
missing values, and Y ∈ {0, 1} is the original class label, which indicates the decision outcome.
Let |D| represent the cardinality (number of instances) of the dataset D. We assume without
loss of generality, that D is an imbalanced dataset with missing values where, for example,
G, G′ ∈ Si where G represents the existing values of the instances G′ represent the missing
values. Let DComplete be the subset of D, which excludes all the instances that have at least
one missing value and DIncomplete is the subset of D which includes instances with missing
values. A synthetic data generator can be trained on DComplete, and given as conditions the
existing values X it can generate samples that will impute the missing values G′ with the
generated ones Ĝ. The generated values Ĝ ∈ Si need to be evaluated for whether they carry
the statistical information of the original data.

We denote the real and the generated data as Xr ∼ Pr and Xg ∼ Pg, respectively, where
Xr, Xg ∈ X, with Pr and Pg being the real and generative distributions, and X being the
input space. The real and synthetic datasets are Dreal = {Xr,i}ni=1 and Dsynth = {Xg,i}mj=1,
where each sample follows the real and generative distribution respectively. Our goal is to
construct a metric E{Dreal, Dsynth} that measures the quality of Dsynth in order to evaluate
the performance of the synthetic data generator and audit the model outputs by discarding
(individual) ”low quality” samples. Our evaluation method should be able to tell if any given
(individual) sample Xg ∼ Pg is of high or low quality.

During this research the following problems will be tackled:

• Evaluating synthetic samples based on the original distribution.

• Identifying limitations in existing evaluation techniques.

• Developing a framework that contributes to the limitations of the existing approaches.
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In Chapter 4, we propose a two-dimensional evaluation metric:

E = (Regularity, F idelity)

Regularity expresses how realistic a synthetic sample is, and fidelity measures the probability
that a synthetic sample resides in the real distribution. Let Sr = supp(Pr) be the support of
the real distribution and Sg = supp(Pg) be the support of the generative distribution. The
distribution P is divided into ”normal” samples concentrated in S, and ”outliers” residing in
S̄, where S = S ∪ S̄ [22].

3.2 Missing Values

Data Science involves many underlying fields such as Statistics, Mathematics, and Program-
ming. The main purpose is to extract knowledge and insights from noisy, structured, or
unstructured data by applying scientific methods. Data need to be in a certain form and
fulfill specific requirements regarding data quality. Data quality is mostly achieved through
the handling of missing values.

Data Science starts from cleaning, aggregating, and reformatting the data so that they are
ready for specific ways of processing. The analysis is the stage when data scientists de-
velop algorithms, analytics, and AI models and provide patterns and predictions for business
decision-making. These insights need to be evaluated through scientifically designed experi-
ments.

• Capture: collecting structured or unstructured data from any available source, either
from sensors, web scraping, or manual entry.

• Prepare and maintain: transforming the data into a consistent format. This includes
using ETL (extract, transform, load) technologies to upload the data to a data ware-
house or a data lake.

• Preprocess or process: find biases, statistical features, ranges, and distributions to
determine which methods apply to the data.

• Analyze: apply analytical methods to extract insights, patterns, and predictions.

• Communicate: visualize the results and present the information that was extracted by
using specific tools.

It is clear that when there is incomplete data (instances with missing values) the analysis can
be negatively influenced. Statistical methods and machine learning algorithms rely greatly
on the consistency of the data. Therefore, missing values can lead to low-quality results,
misinterpretation of the patterns within the data, and limitations on the algorithms that can
be used for the analysis.

3.3 Statistical Methods for Imputation

Statistical methods for data imputation use the features and characteristics of the existing
data. One of the most common approaches is through KNN (K-Nearest Neighbors). Config-
uration of the KNN involves selecting the distance metric (e.g. Euclidean) and the number of
contributing neighbors (the k hyperparameter of the algorithm). A new sample is generated
by finding the samples in the real distribution that are closest to it and averaging these nearby
points to fill in the value.

Imputation Using Multivariate Imputation by Chained Equation (MICE) is a method where
missing values are filled in multiple times. Multiple imputations (MIs) are more efficient than
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a single imputation as they measure the uncertainty of the missing values. Finally, stochastic
regression imputation tries to predict missing values by regressing them from other related
variables in the same dataset plus some random residual value.

3.4 Deep Learning

In the last years, a technique that has been proven highly efficient is generating synthetic
data with Deep Learning and then imputing missing values with the new samples. Deep
learning is a sub-field of machine learning that is based on artificial neural networks. The
term ”deep” refers to the use of multiple layers in the network. Since Deep Learning is far
more complicated than the previous techniques, it is worth analyzing how the algorithms
work and how we can generate new data with synthetic data generators.

3.4.1 Deep Neural Networks

As mentioned before artificial neural networks consist of a set of nodes (artificial neurons)
that imitate the functions of the human brain. Nodes are connected through synapses that
transmit a signal to other nodes. Nodes process the signals that are transmitted to them
and generate an output signal through non-linear functions (activation functions). Nodes
and synapses have a weight, which is adjusted during the learning process. The activation
function f : RM −→ R is defined as:

f (x⃗) = act
(∑M

i=1 (xiwi)
)
+ b = w⃗T x⃗+ b

where wi are the synaptic weights, xi the output signals, and b the bias.

Typically neurons are aggregated into layers. The signals travel from the first layer (input
layer) to the last layer (output layer). The output of the network is:

y⃗ = act(Wx⃗+ b⃗)

where W is the MxN array of weights, and b is the bias.

In order for the network to be optimized and learn from the training data, an optimization
algorithm must be chosen. Backpropagation is the algorithm that is most commonly used in
the training process of artificial neural networks. The method computes the gradient of the
loss function concerning the weights of the network for a single input-output example.

The loss function computes the error between the predicted and the actual values of the
output layer of the network. The most commonly used loss functions are:

1. Mean Squared Error:

JMSE = 1
M

∑M
i=1 (y − ŷi)

2

where yi,c are the network’s predictions

2. Cross Entropy Loss:

JCrossEntropy = −
∑

i yi,clog(pi,c)
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where yi,c is the binary variable of whether class c is the correct prediction for the
observation i and pi,c is the probability that i belongs at class c.

The error of the network between the desired output pi,c and the predicted output pi,c
is calculated through the loss function C:

E = C(y, ŷ)

Next, for every node j with an activation function ϕ and netj the weighted sum of the
previous outputs, we define the output oj :

oj = φ (netj) = φ(
∑n

k=1 wkjok)

The derivative of the error of the loss function is calculated by applying the chain rule
twice:

∂E
∂wij

= ∂E
∂oj

∂oj
∂wij

= ∂E
∂oj

∂oj
∂netj

∂netj
∂wij

φ

threshold

activation

activation  
function

inputs weights

transfer 
function

Figure 3.1: Calculation of a neural network output

3.4.2 Generative Adversarial Network

Generative Adversarial Networks (GANs) are an approach of generative modeling using deep
artificial neural networks. The specific architecture was designed by Ian Goodfellow et al.
[10] in June 2014.

Generative modeling is an unsupervised learning task where the algorithm needs to discover
and learn the regularities and patterns of the training data and automatically generate new
samples.

GANs are an architecture that transforms the task into a supervised problem by creating two
sub-models that compete with each other: the generator and the discriminator. The gener-
ator (generative network) generates new candidates while the discriminator (discriminative
network) tries to classify the examples as either real (from the training data) or fake (gen-
erated). The two sub-models are trained at the same time in a zero-sum game, adversarial,
until the generator can fool the discriminator by generating realistic data.
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Figure 3.2: Basic GAN architecture

Both of the sub-models are neural networks. The discriminator (D) is connected directly to
the output of the generator (G). Through backpropagation, the discriminator’s classifications
inform the generator on how to update its weights. D is trained to maximize the probability
of correctly classifying training examples and samples from G. G on the other hand, is trained
to minimize the same probability. The function that the two sub-models play in the minimax
game is the following:

Ex[log(D(x))] + Ez[log(1−D(G(z)))]

In this function:

• Ex is the expected value over all real data instances.

• D(x) is the discriminator’s estimate that a real instance x is real.

• G(z) is the generator’s output when given noise z.

• D(G(z)) is the discriminator’s estimate that a fake instance is real.

• Ez is the expected value over all random inputs to the generator.

• The formula derives from the cross-entropy between the real and generated distribu-
tions.

GANs have been increasingly used in many applications due to their high performance in
generating realistic examples. The main domains that GANs are used for are image creation
and audio synthesis.
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Chapter 4

Proposed Framework

The methodology that was followed in this thesis, is divided into two parts (a) Outlier De-
tection, (b) Feature Classification. Firstly, by introducing Gower distance we calculate the
distance between all the mixed type variables, and then by applying a clustering algorithm
(DBSCAN) we determine whether a sample is considered an outlier. This represents how
”realistic” a synthetic sample is. Secondly, we train a decision tree algorithm (TensorFlow
Decision Trees - TFDF) on the original data, and we evaluate the generated sample by predict-
ing the targeted column. This represents how ”typical” the synthetic sample is and whether
it agrees with the statistical distribution of the original dataset.

To evaluate the synthetic data we introduce a two-dimension metric to quantify whether a
sample is considered an outlier and whether the targeted feature is correctly generated by
the SGD, thus answering the first research question in Chapter 1. Our method is applied at
sample-level evaluation instead of assessing a collection of synthetic data.

Figure 4.1: Implemented framework

4.1 Methodology

The detailed methodology that was followed can be seen in the flowchart below. Each step
of the process aims to the evaluation of the synthetic sample as of high or low quality.
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Figure 4.2: Methodology that as followed

4.2 Preprocessing

As mentioned before, the implemented framework of this thesis considers both numerical and
categorical variables. Gower distance is used to measure how different two records are, and
therefore to offer a solution to the second research question in Chapter 1.1. The general form
of the coefficient is the following:

DGower(x1, x2) = 1− ( 1
p

∑p
j=1 sj(x1, x2))

For each feature k = 1, 2, .., p we define a score sijk ∈ [0, 1]. If xi and xj are close to each
other along feature k, then sijk is close to 1. Conversely, if they are far apart along feature
k, the score is close to 0.

The way that the score sijk is computed is determined by the type of the feature k. A quantity
δijk is also defined: if xi and xj can be compared along feature k, then δijk = 1. If xi and xj

cannot be compared along feature k (e.g. because of missing values), then δijk = 0. Gower’s
distance follows the formula below:

sijk =
∑p

k=1
sijkδijk∑p

k=1
δijk

The score sijk can be computed for either quantitative variables (categorical variables) or
qualitative variables (categorical variables):

1. Quantitative variables: sijk = 1 − |xik − xjk| / Rk , where Rk is the range of feature
k

2. Qualitative variables: sijk = 1, xik = xjk

If sijk defines how similar xi and xj are, then
√
1 − sij is the distance between them. If

there are no missing values, the distance satisfies the triangle inequality and can therefore be
considered as valid distance. For any 3 observations xi, xj and xl :
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√
1 − sij +

√
1 − sjl ≥

√
1 − sil

After having calculated the Gower distance between every sample and for every feature, we
get the distance matrix (two-dimensional array) that contains the distances, taken pairwise,
between the elements of the set. This allows us to use specific clustering algorithms for outlier
detection.

Distance Matrix =

 0 · · · dij
...

. . .
...

dji · · · 0


where dij is the distance between xi and xj .

4.3 Main Components

4.3.1 Outlier Detection

It is crucial to determine whether the generated sample can exist in real life. This is done
through anomaly detection and more specifically outlier detection algorithms. Clustering
algorithms that can perform with distance matrices as input, are k-medoids, hierarchical
clustering algorithms, and DBSCAN. DBSCAN has been proven to detect more efficient out-
liers ([28], [29] , [30] ). DBSCAN algorithm views clusters as areas of high density, separated
by areas of low density. Due to this rather generic view, clusters found by DBSCAN can be
any shape, and therefore the algorithm performs well for outlier detection. The core charac-
teristic of DBCAN is the core samples that are at the center of high-density areas. Therefore,
a cluster consists of a set of core samples, each close to each other (measured by some distance
measure) and a set of non-core samples that are close to a core (but not core samples them-
selves). The two main parameters of the algorithm are minSamples and epsilon. MinSamples
is the number of samples in a neighborhood for a point to be considered as a core sample and
epsilon is the maximum distance for two points to be considered in the neighborhood of the
other.

The figure below shows how DBSCAN creates clusters with minSamples = 3. A circle with
radius epsilon is drawn around every data point. All data points with at least 3 neighbors are
considered core samples and represented by green. Samples that have less than 3 neighbors
but greater than 1 are considered border samples and are represented by yellow. Finally,
samples that have no neighbors are considered noise (outliers) and are represented by red.

Core Point

Border Point

Noise

ε

Figure 4.3: Clusters created by DBSCAN with minSamples = 3

19



4.3.2 Feature Prediction

After having determined whether the generated sample is considered a non-outlier and there-
fore is realistic, we have to investigate further whether the sample is typical. The newly
generated samples have to be typical in terms of following the statistical characteristics and
the distribution of the original dataset. In order to do that we use decision trees. Decision
trees are a non-parametric supervised learning algorithm, which is utilized for both classifica-
tion and regression tasks. It consists of a hierarchical tree structure with root, node, branches,
internal nodes, and leaf nodes.

Root 
Node

Internal 
Node

Internal 
Node

Leaf Node Leaf Node Leaf Node Leaf Node

Figure 4.4: Decision tree

As it is shown above, a decision starts from the root node, which connects with the outgoing
branches to the internal nodes (or decision nodes). Based on the available features, both root
and internal nodes divide the data to form homogenous subsets, which are denoted by leaf
nodes. Leaf nodes show all possible outcomes of the dataset.

In this way, we can predict the class or value of a target variable by learning decision rules
inferred from training data. To evaluate synthetic data with decision trees, we define a
target variable of the original data to train the decision tree. Afterward, we mask the target
variable of the generated synthetic sample, and we predict it using the rest of the features.
If the prediction of the decision tree and the actual value of the synthetic sample agree, then
we evaluate the sample as high quality, otherwise as low quality.

Decision trees’ high accuracy and flexibility allow us to evaluate the synthetic sample by pre-
dicting any feature of the sample. This can be particularly useful when we are generating new
samples to fill in missing values. Therefore, we are only interested in one feature and whether
the generated value of this feature ”makes sense” considering the statistical distribution of the
original data. We use as a target variable the one which contains missing values, and check
whether the prediction and the value of the generated sample agree. In addition, decision
trees are robust in predicting the target value for minority groups. Finally, the algorithm’s
ability to perform both classification and regression is an excellent way to handle mixed-type
variables.

In order to obtain the highest accuracy when predicting any feature, TensorFlow Decision
Forests (TFDF) were used. TFDF is a collection of state-of-the-art algorithms for clas-
sification and regression that was introduced by TensorFlow in August 2021. It includes
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algorithms such as random forests, gradient boosted trees, CART, (Lambda)MART, DART,
Extra Trees, greedy global growth, oblique trees, one-side-sampling, categorical-set learning,
random categorical learning, out-of-bag evaluation, and feature importance, and structural
feature importance. All models are trained simultaneously and they vote for the class with
the highest probability. The final prediction is based on the summary of the votes.

Figure 4.5: TensorFlow Decision Forests

4.4 Evaluation

The final part of our framework is to evaluate the synthetic samples individually as of low
or high quality. In this part, we answer the third research question in Chapter 1.1. If a
generated sample is not identified as an outlier by DBSCAN and the target variable agrees
with the prediction of TFDF, then we evaluate the sample as of high quality. On the other
hand, if the sample is identified as an outlier or if the target variable does not agree with the
prediction, then the sample is considered of low quality.
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Chapter 5

Experimental Evaluation

This chapter demonstrates the accuracy of the algorithms that were used and the overall
performance of the implemented framework. First, we perform experiments for analyzing
the outlier detection algorithm, and then we test the TensorFlow decision forests. Since our
goal is to impute missing values with generated samples, TensorFlow decision forests need to
predict accurately multiple features (that are most likely minority classes).

5.1 Datasets

The experiments were conducted mainly on two datasets: the swiss banknote and the german
credit dataset. The swiss banknote dataset consists of 200 banknotes in total, 100 genuine,
and 100 counterfeits. It is suited for testing outlier detection algorithms. The German credit
dataset consists of 1000 instances, 20 attributes, and 1 binary decision label. There are 7
numerical, and 13 categorical attributes and the dataset is imbalanced. These characteristics
provide us an excellent opportunity to perform experiments and optimize our classifier to
predict both categorical and numerical variables and use as labels different attributes with
imbalanced data.

(a) Imbalanced (b) Imbalanced
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5.2 Metrics

In this section, we explain the metrics that were used to evaluate our algorithms and the
overall performance of the framework.

1. Confusion Matrix: a matrix that visualizes and summarizes the performance of a classi-
fication algorithm for each feature. Each row of the matrix represents the real samples,
and each column represents the predicted samples.

Figure 5.2: Confusion matrix

where TP (True Positives): when the algorithm predicted positively and the output
was positive. When there are multiple classes, this is the case where the class that was
predicted was the same as the real one.

TN (True Negatives): when the algorithm predicted negative and the output was neg-
ative.

FP (False Positive): when the algorithm predicted positive but the output was negative.

FN (False Negative): when the algorithm predicted negative but the output was posi-
tive.

2. Accuracy = TruePositives + TrueNegatives
TotalNumberofSamples

3. Precision = TruePositives
TruePositives + FalsePositives

4. Recall = TruePositives
TruePositives + FalseNegatives

5. F1Score = Precision × Recall
Precision+Recall

6. Mean Square Error (MSE): for numerical variables, we use the metric MSE

MSE = 1
n

∑n
i=1 (Yi − Ŷi)

where Y are the observed values, Ŷ are the predicted values, and n are the total samples.

5.3 Outlier Detection Results

DBSCAN was fine-tuned and tested on the swiss dataset, in order to detect outliers (counter-
feit) banknotes. Samples that are annotated at cluster -1, are considered to be outliers by the
algorithm. As we can see from the classification report below, the algorithm’s performance
was significantly high.
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Classification Report

Precision Recall f1-score

genuine 0.98 0.92 0.95
counterfeit 0.92 0.98 0.95

accuracy 0.95

5.4 Classification Results Using Different Target Vari-
ables

In order to see the model’s behavior, we trained it multiple times, and each time we used a
different column as a target variable. TFDF algorithm trains 4 decision forests (Random For-
est Model, Gradient Boosted Trees Model, CartModel, Distributed Gradient Boosted Trees
Model), and each one of them votes for the class with the highest probability. After summa-
rizing all the votes, we choose the optimal prediction. To compare our approach we use the
CartModel alone, as a baseline. Below we can see the accuracy for the classification results
(the highest the better), and on the second diagram, we can see the MSE for the regression
results (the lowest the better).

Figure 5.3: TFDF accuracy on categorical target variables

Figure 5.4: TFDF MSE on numerical target variables

As we can see above, TFDF in general does not drop below 70% accuracy and outperforms
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almost with any given variable the baseline model. In addition, as shown in the figures
below, the algorithm performs well even for the minority classes where our dataset is highly
imbalanced. The confusion matrix is normalized over the true (rows) so that its performance
is more clearly illustrated.

(a) Class Distribution (b) Confusion matrix

(a) Class Distribution (b) Confusion matrix

(a) Class Distribution (b) Confusion matrix
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5.5 Framework Performance

Finally, for the overall evaluation of the framework, 100 new samples were generated with
CTGAN (Conditional GAN). For each sample, all the values of the attributes were given as a
condition, and only the final label was generated with CTGAN. This allowed us to annotate
the samples with ”0” if the generated label was different from the original sample, and ”1” if
the generated label was the same. Afterward, we evaluated the samples as high or low quality
using the framework, and we test whether the framework’s score and the annotated labels
agree. The accuracy of the framework was 78.55%. Below we can see the confusion matrix
for each class.

Figure 5.8: Framework performance evaluation
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Chapter 6

Conclusion

In this chapter, the conclusions from the experiments and the proposed framework are pre-
sented.

6.1 Summary

In this thesis, the topic of synthetic data evaluation is researched. Evaluating synthetic data
is a difficult and subjective task. Nevertheless, it is crucial to calculate the utility of the
newly generated data so that we can determine whether they can replace the original data or
whether they can be used for further analysis. The ultimate goal of the synthetic data that
is examined in this thesis is imputing missing values with values that derive from synthetic
samples. Most of the existing approaches do not consider datasets with mixed-type variables
and emphasize only on numerical values. Furthermore, most techniques evaluate the synthetic
distribution by looking at all the synthetic samples.

The proposed framework of this thesis offers a two-dimensional evaluation of mixed-type
variables and assesses each sample individually as being of high or low quality. The proposed
framework does not assume the type of the variables of the dataset and can evaluate a
synthetic sample based on every feature. This can be of great significance since it allows us to
emphasize on the feature that contains missing values and that we ultimately want to impute.
It consists of two main components: outlier detection and feature classification.

First, Gower distance is calculated from synthetic data so that we can later perform techniques
for mixed-type variables. The distance matrix is a matrix that consists of the distance of each
element pair-wise. We use the distance matrix input to the DBSCAN, and we detect outliers
so that we can determine whether a generated sample is considered an outlier regarding the
original dataset. Afterward, we train a classifier multiple times, using as target variable all
the features of our dataset. Therefore, we can predict any column of synthetic samples and
evaluate whether they agree with the prediction. So overall, the proposed framework achieves
a two-dimensional score of the quality of the synthetic sample by emphasizing a specific
feature.

Multiple experiments are conducted to determine the optimal techniques for each component
of the framework and evaluate the overall performance. Several outlier detection techniques
were tested and DBSCAN was selected based on their performance and the literature. Exper-
iments on the Gower distance were also performed to fine-tune the weights of each variable
and not give a higher weight to categorical variables. Classifiers for mixed-type variables were
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tested and an ensemble method was chosen combining many decision tree algorithms using
the TensorFlow TFDF library. Finally, new samples are generated to evaluate the frame-
work’s performance. The proposed framework is flexible and robust in evaluating synthetic
data.

6.2 Answers to Research Questions

The answers to the research questions in this thesis are found in Chapter 4 and can be
confirmed by the results in Chapter 5. In order to answer the first and third research questions,
this thesis followed the methodology in [22] where a three-dimensional evaluation metric is
proposed. Similarly, we propose a two-dimensional evaluation metric where we evaluate the
regularity of a synthetic sample (non-outlier) and its fidelity (the probability that the sample
resides in the real distribution). The framework classifies each sample individually as being
of high or low quality. Finally, we answer the second question in Chapter 4 were to take into
account both categorical and numerical variables we use Gower distance. Most of the existing
approaches in the literature analyze numerical variables without giving an efficient solution
to mixed-type variables.

6.3 Limitations

There are several limitations identified to the proposed framework. The first limitation con-
cerns datasets with significant-high dimensionality which can affect the Gower distance. The
more dimensions are inserted in the formula, the lower weight is given to each feature, and
therefore the harder it gets to identify outliers that exceed the range of only a few variables.
Another limitation of the framework is related to the choice of outlier detection as the main
component. If the goal of the synthetic data is to create outliers, then evaluating them as
low-quality samples will not be useful for our main goal. Finally, the classification algorithms
that were used, need to be fine-tuned for every different dataset to obtain the highest per-
formance. This means that if we want to predict every feature of a given dataset (and thus
evaluate a synthetic sample) we need analyze the dataset and properly fine-tune the decision
trees that are used.

6.4 Future Work

There are several directions to be investigated further to improve the proposed framework.
The first direction would be to research more synthetic data generators for the final evaluation
of the framework. Generating more realistic synthetic samples could improve the analysis
and evaluation of the proposed framework. Another direction would be to evaluate separately
categorical and numerical data so that evaluate the framework’s performance for each variable
type and apply changes accordingly. Finally, another future direction could be to evaluate
more classifiers to predict different features. Choosing the right algorithm can affect crucially
the utility of the proposed framework. The features of a given dataset could be divided
into categories based on statistical characteristics (numerical, categorical, range, standard
deviation) and the optimal algorithm for each category will be chosen.
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