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Abstract

Python is an interpreted, interactive and object-oriented program-
ming language that stresses code readability. In Python, objects interact
with each other to accomplish various tasks. Such interaction is usually
achieved by attribute lookup, storage and deletion.

We consider whether Python’s attribute access semantics with dif-
ferent precision affect the precision of type analysis. Type inference for
Python is hard due to the extensive use of external libraries and the dy-
namic language features. In this thesis we propose an object-sensitive
type analysis for Python based on an extension of the notion of monotone
frameworks to deal with dynamic flow manipulation. In addition, we also
implement a type parser to partially support retrieving types from Python
stub files. Our results show that the analysis precision is not improved
substantially when employing sophisticated attribute access semantics.
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1 Introduction

The attractiveness of dynamically typed languages like Python and Ruby
stems from the flexible programming features they support. These include al-
lowing one variable to take values of different types in different program loca-
tions. However, this comes at a price of losing the advantages of static typing.
Programmers using these languages often suffer from the lack of type informa-
tion during development. The enforcement of static typing may bring some
benefits to dynamically typed languages:

� Static typing can make programs easier to read. In large projects, code is
constantly modified and types can serve as documentation.

� Static typing can detect program bugs earlier. For instance, a portion of
type errors will be reported before execution.

� Static typing can assist development tools like Integrated Development
Environment (IDE). For example, IntelliJ IDEA can offer the information
of refactoring candidates based on types.

We would like to mitigate the problems of dynamically typed languages
described above and gain the advantages of static typing by performing type in-
ference at compile time. The enforcement of static typing for dynamic languages
has been widely studied in the academic world. In this thesis our contributions
are summarized as follows:

1. We introduce the notion of a dynamic monotone framework to deal with
dynamic flow discovery during data flow analysis.

2. We purpose a type analysis for Python as an instance of a dynamic mono-
tone framework.

3. We implement a type inferencer on the basis of the type analysis for
Python.

4. We evaluate the precision of the analysis result based on the coarseness of
attribute access semantics.

The result of our work may be beneficial to type-related tools for Python.
A majority of these tools are gradual type checkers. A gradual type checker
[Siek and Taha, 2007] only type checks statically typed part of a program.
Dynamically typed part of a program is considered to have a special type Any

which is consistent with every type and vice versa. Our type inferencer is capable
of inferring types from dynamically typed part of a program.
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2 The Python Programming Language

Python1 is a high-level, general-purpose programming language that stresses
code readability. It supports procedural, object-oriented and functional pro-
gramming paradigms. Python is considered versatile and widely used in artifi-
cial intelligence, web development, desktop programs and system applications.
Python is now maintained by the Python Software Foundation.

2.1 History

Python was created in the early 1990s by Guido van Rossum at Stichting
Mathematisch Centrum in the Netherlands. It was a successor of a language
called ABC2 but equipped with a simpler runtime.

The first release (version 0.9.0) was published in 1991. It had features such
as classes, exception handling, and the core data types of list, dict and so on.
In 1994, version 1.0 was released. The major new features of this release were
the functional programming tools such as lambda, filter and reduce.

Python 2.0 released in 2000 introduced list comprehensions which were pre-
sented in functional programming languages like Haskell. In addition, it also
added a full garbage collector. At this time, Python was evolving towards a
reliable language.

Python 3.0 (also known as Python 3000 and Py3K) was available from De-
cember 3, 2008. The emphasis in Python 3.x had been on rectifying fundamen-
tal design flaws in Python 2.x, which made it backward-incompatible. However,
Python 3.x came close to fulfilling a law of the Zen of Python3: “There should
be one – and preferably only one – obvious way to do it.”. Now the latest stable
Python version is 3.10.6 released on August 2, 2022.

2.2 Implementations

CPython4 is the reference implementation of Python written in C and Python.
It can be regarded as both a compiler and an interpreter as it compiles Python
code into bytecode which is then interpreted by the CPython virtual machine.
There are a number of alternative implementations as well. For instance,
Jython5 is an alternative implementation written in Java and provides Python
with a Java Virtual Machine Environment. PyPy6 is another implementation
that usually runs faster than CPython because it uses a just-in-time compiler.

In the rest of this thesis, if not mentioned explicitly, CPython is used as the
default implementation.

1https://www.python.org/
2https://homepages.cwi.nl/~steven/abc/
3https://peps.python.org/pep-0020/
4https://github.com/python/cpython
5https://www.jython.org/
6https://www.pypy.org/
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2.3 Data model

A data model arranges data elements and specifies how the data elements
interact with one another in the course of computing.

2.3.1 Objects, values and types

In Python, data elements are abstracted as objects. Namely, everything is
an object. Code Listing 1 defines a function object and an int object. On the
contrary, Java does distinguish primitive types (int, float, etc.) from object
types (Integer, Float, etc.).

Listing 1 Everything in Python is an object

1 # a_func is a function object

2 def a_func():

3 pass

4

5 # a_value is an int object

6 a_value = 1

Each object has an identity, a type and a value. An object’s identity can
never change since its creation. The is operator compares the identity of two
objects. For CPython, the identity of an object is its memory address.

An object’s type determines the operations it supports. For instance, an int

object and a float object can both be cast to a bool object but they both do
not support random access.

The value of some objects may be unchangeable. Such objects are called
immutable. Other objects are classified as mutable. An object’s type determines
mutability. As an example, int objects are immutable, while list objects are
mutable. One special case is tuple. A tuple object is an immutable container
but it may contain a reference to a mutable object. Therefore its value changes
if the mutable object is changed.

An object in Python can not be destroyed manually. The Python garbage
collector is in charge of reclaiming an object’s memory resource when the object
becomes unreachable. Currently, CPython uses a reference-counting scheme to
decide when to garbage-collect objects.

2.3.2 Special methods

Special methods are a set of predefined methods that programmers can use to
enrich class behaviors. Since they start and end with double underscores, such as
__init__ or __len__, special methods are also called dunder methods or magic
methods. The functionality of special methods is similar to operator overloading,
which allows the same operator to have different semantics. For instance, a
custom class instance can perform addition by supporting the __add__ special
method.
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Emulating numeric types

Table 1 and 2 display three sets of special methods of Python to emulate
numeric types. The first column is the representation of arithmetic operators in
the Python abstract syntax tree. The last column gives the arithmetic operators
used by programmers. Other columns are the special methods used by Python
under the hood to support arithmetic operations.

Abstract syntax node Ordinary name Reversed name Symbol
ast.Add __add__ __radd__ +

ast.Sub __sub__ __rsub__ -

ast.Mult __mul__ __rmul__ *

ast.Div __truediv__ __rtruediv__ /

ast.FloorDiv __floordiv__ __rfloordiv__ //

ast.Mod __mod__ __rmod__ %

ast.Pow __pow__ __rpow__ **

ast.Lshift __lshift__ __rlshift__ <<

ast.RShift __rshift__ __rrshift__ >>

ast.BitAnd __and__ __rand__ &

ast.BitXor __xor__ __rxor__ ^

ast.BitOr __or__ __ror__ |

Table 1: Ordinary and reversed arithmetic operators

Abstract syntax node Augmented name Symbol
ast.Add __iadd__ +=

ast.Sub __isub__ -=

ast.Mult __imul__ *=

ast.Div __itruediv__ /=

ast.FloorDiv __ifloordiv__ //=

ast.Mod __imod__ %=

ast.Pow __ipow__ **=

ast.Lshift __ilshift__ <<=

ast.RShift __irshift__ >>=

ast.BitAnd __iand__ &=

ast.BitXor __ixor__ ^=

ast.BitOr __ior__ |=

Table 2: Augmented arithmetic operators

Emulating rich comparison

Table 3 shows six special methods to support comparison operations. It
is worthwhile to mention that is and is not are predefined in the Python
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interpreter. So they do not have corresponding special methods.

Abstract syntax node Name Symbol
ast.Lt __lt__ <

ast.Le __le__ <=

ast.Eq __eq__ ==

ast.NotEq __ne__ !=

ast.Gt __gt__ >

ast.Ge __ge__ >=

ast.Is is

ast.IsNot is not

Table 3: Rich comparison operators

Emulating container types

Table 4 shows special methods for emulating container types. The first
column denotes the cases where calls to these methods may happen.

Statement Name
len(container) __len__

length_hint(container) __length_hint__

container[i] __getitem__

container[i] = b __setitem__

del container[i] __delitem__

container[i] __missing__

iter(container) __iter__

reversed(container) __reversed__

elt in container __contains__

Table 4: Special methods for emulating container types

As an example, executing container[i] leads to the special method call
__getitem__(container, i). Code Listing 2 shows a rough implementation
of __getitem__(). It can be seen that if i is not present in container,
__getitem__(container, i) will internally invoke __missing__(container, i)

(if present) to obtain the missing value and then store the value into container

with key i.

2.3.3 Special attributes

Special attributes are attributes that are usually accessed by the implemen-
tation and are not intended for general use. Programmers should not depend
on these attributes since they are not guaranteed to be stable in future versions.
Table 5 shows some frequently used special attributes in Python.
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Listing 2 How getitem works

1 def __getitem__(self, key):

2 if key is not in self:

3 # if key is not found

4 obj = object()

5 # retrieve __missing__

6 __missing__ = getattr(type(self), "__missing__", obj)

7 # if __missing__ is not found in self

8 if __missing__ is obj:

9 raise KeyError

10 else:

11 # if __missing__ is found

12 value = __missing__(self, key)

13 __setitem__(self, key, value)

14 return self[key]

Name Meaning
__bases__ a tuple containing the base classes
__mro__ a tuple containing the superclass linearization

__module__ the name of the module in which the object is defined
__class__ the class to which the class instance belongs
__dict__ a dictionary storing an object’s attributes

Table 5: Some special attributes

2.3.4 Class creation

A class is a blueprint that defines what data and methods its instances
have. A class definition defines a user-defined class object. By default a class is
constructed by means of the metaclass type. Metaclasses are classes that create
other classes. That is, they are classes’ classes.

From the perspective of types, the type hierarchy in Python is shown in
Figure 1. A class instance’s type is its class. A class’s type is its metaclass. A
metaclass’s type is the metaclass itself.

From the perspective of instances, the instance hierarchy in Python is shown
in Figure 2. A metaclass can create a class object. A class object can create a
class instance. A class object named A_Class can be created by a class definition
class A_Class: pass or by a metaclass type("A_Class", (), {}).

Classes support multiple inheritance. Python follows the method resolution
order (MRO) constructed by applying the C3 linearization algorithm7 to search
for a specific attribute. The output of the algorithm is stored in the special
attribute __mro__ of the class being initialized.

7https://www.python.org/download/releases/2.3/mro/
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metaclasses

classes

class instances

Figure 1: The type hierarchy of metaclasses, classes, and class instances

metaclasses

classes

class instances

instnace of

instnace of

Figure 2: The instance hierarchy of metaclasses, classes, and class instances

2.3.5 Built-in functions

The Python interpreter has a set of built-in functions8 (listed in Table 6) that
are readily available for use. Most functions are extensions of special methods.
For instance, a = x.y is equivalent to a = getattr(x, "y"). But the latter is
more powerful since it has the third parameter default, which is returned if x
has no y. In this way, conditional statements can be eliminated. Code Listing
2 has demonstrated one usage of getattr. In addition, some built-in functions
are used to access system resources, such as open() to read or write system
files.

2.4 The Python execution model

A Python program consists of code blocks. A code block is a group of state-
ments executed as a unit. For instance, a Python script file is a code block. A
function body is also a code block. A code block is executed in an execution
frame. An execution frame records run-time information affecting the execution
of a code block.

8https://docs.python.org/3.7/library/functions.html
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abs() delattr() hash() memoryview() set()
all() dict() help() min() setattr()
any() dir() hex() next() slice()
ascii() divmod() id() object() sorted()
bin() enumerate() input() oct() staticmethod()
bool() eval() int() open() str()

breakpoint() exec() isinstance() ord() sum()
bytearray() filter() issubclass() pow() super()
bytes() float() iter() print() tuple()
callable() format() len() property() type()
chr() frozenset() list() range() vars()

classmethod() getattr() locals() repr() zip()
compile() globals() map() reversed() import ()
complex() hasattr() max() round()

Table 6: Built-in functions

2.4.1 Naming and binding

An identifier in Python is called a name. A name is simply a human-readable
string connected to an object. Names are introduced by name binding opera-
tions. Some constructs that could bind names are listed below. For instance,
the statement import mod binds name mod to a module object.

� function parameters.

� class definitions.

� function definitions.

� assignment statements.

� import statements.

A namespace is a mapping from names to objects. Namespaces play a very
import role in Python. As the Zen of Python said, “Namespaces are one honking
great idea – let’s do more of those!”. Different namespace can co-exist at a
given time but they are completely separated. Adding a name to a namespace
is called binding. Changing the mapped object of a name in a namespace is
called rebinding and removing a name is called unbinding. At present Python’s
namespaces are implemented as dictionaries.

2.4.2 Name resolution

The scope of a name defines a region where the name can be accessed un-
ambiguously. The LEGB rule is a name lookup procedure and determines the
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order in which the namespaces are searched during name resolution. The let-
ters in LEGB stand for Local Scope, Enclosing Scope, Global Scope and Built-in
Scope:

� Local scope is the current namespace.

� Enclosing scope is any namespace that encloses the current namespace,
which may or may not exist.

� Global scope is the module-level namespace.

� Built-in scope is the namespace that is built into the Python interpreter.
All built-in functions exist in the built-in scope.

When searching for an object by name, let’s say x, Python first searches
the local namespace. If x is not present, Python then searches any enclosing
namespaces, starting from the enclosing namespace of the local namespace.
Once all enclosing namespaces are searched but x is still not found, Python
performs the search in the global namespace. If x is not defined in the global
namespace, Python looks x up in the built-in namespace as a last resort. At
last, if Python can not find x, an exception NameError would be raised. Figure
3 shows how the searching works. Code Listing 3 shows when executes d = a,
a will be found in the outermost enclosing namespace.

Local

Enclosing

Global

Built-in

Figure 3: The LEGB rule

Python defines three types of variables based on how they are created and
used. A name is a local variable in a block if it is bound to that block, unless
declared as nonlocal or global. Nonlocal variables refer to those names defined
within the nesting functions. Any name bound at the module level is a global
variable. In the rest of this thesis, we use names and variables interchangeably.

One thing merits a mention. Though scopes are used dynamically, they are
determined statically. That is, each variable in a program has been resolved at
compile time by inspection only of the program’s text.
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Listing 3 Searches in enclosing namespaces

1 # Two enclosing namespaces for the body of enclosing3

2 # (1) the body of enclosing1 containing an int object a

3 # (2) the body of enclosing2 containing an int object b

4 def enclosing1():

5 a = 1

6 def enclosing2():

7 b = 2

8 def enclosing3():

9 c = 3

10 d = a

11 enclosing3()

12 enclosing2()

13 enclosing1()

2.5 Type annotations and type hints

PEP 31079 introduced syntax for function annotations but the semantics
were left undefined. Code Listing 4 shows an annotated function. Afterwards,
PEP 48410 standardized the syntax for type annotations and thus introduced
type hints. Type hints are used to hint what the type of a variable should be
expected to be. In this regard, Code Listing 4 states that the expected type of
name and the return of print_brand are both str.

Listing 4 A function annotation

1 def print_brand(name: str) -> str:

2 return "This is " + name

Sometimes it is more appropriate to represent type hints in separately files
ended with “.pyi”. Such files are named stub files. They contain type hints
that are only used by type checkers. Stub files basically have the same syntax
as regular Python modules. Code Listing 5 defines a small stub file for Code
Listing 4. In the rest of this thesis, we will use type hints to denote the type of
a variable.

Listing 5 A stub file for print brand

1 def print_brand(name: str) -> str: ...

9https://peps.python.org/pep-3107/
10https://peps.python.org/pep-0484/
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2.6 Language features

This section gives an overview of the Python programming language, in
particular those features that are relevant to type analysis.

2.6.1 Type system

Python is a strongly, dynamically typed language. Strong typing means
Python keeps track of all variable types. Dynamic typing means Python does
not know the type of an object before the execution of code. Code Listing 6
demonstrates the above two properties.

Listing 6 Strong and dynamic typing

1 # strong typing

2 res: str = "str"

3 res: int = 1 + 3

4

5 # dynamic typing

6 def different_return_value(flag) -> int | str:

7 if flag:

8 return 1

9 else:

10 return "string"

11

12 res: int = different_return_value(True)

13 res: str = different_return_value(False)

In addition, Python employs duck typing to determine whether an object
can be used for a particular operation. The name comes from the duck test —
“If it looks like a duck and it quacks like a duck, then it must be a duck”. In
short, in duck typing, only what objects can do are of interest, instead of what
they are.

2.6.2 Function definitions

A function is a group of statements that performs a specific task. A function
definition defines a user-defined function object. When a function definition is
executed, the function name is bound to the function object in the current local
namespace. Populating a function definition does not involve executing the
function body. The latter will only be executed when the function gets called.

A function definition may have five types of parameters: positional or key-
word parameters, keyword-only parameters, default parameters, arbitrary posi-
tional parameters and arbitrary keyword parameters. Figure 4 shows four types
of parameters. Figure 5 shows keyword-only parameters that are prefixed with a
*. Be aware that default arguments will be evaluated when a function definition
is encountered.
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def f(a, b, c=1, d=2, *args, **kwargs):

---- ---------- ---- -------

| | | |

positional or keyword| arbitrary|positional

| |

default arbitrary keyword

Figure 4: Positional or keyword, default, arbitrary positional and arbitrary
keyword parameters

def f(a, b, c, *, d, e):

------- -----

| |

positional or keyword |

- keyword-only

Figure 5: Positional or keyword and keyword-only parameters

2.6.3 Function calls

All its arguments are evaluated before a call is made. A call expression may
have two types of arguments: positional arguments and keyword arguments.

Python has a set of rules to process arguments. At first, a list of unfilled
slots is created for the formal parameters. Next, place positional arguments into
these slots. After that, values of keyword arguments are placed into the slots
according to the formal parameter names. If there is still any unfilled slot, it is
filled with the default value from the function definition.

If there are more positional arguments than there are formal parameter slots
and an arbitrary positional parameter is present, that parameter receives a tuple
containing the excess positional arguments. If any keyword argument does not
correspond to a formal parameter name and an arbitrary keyword parameter
is present, that parameter receives a dictionary containing such excess keyword
arguments.

Figure 6 gives an example of how function call semantics work. It is described
in more detail in Calls11.

2.6.4 Modules

A module refers to a file containing Python statements and definitions. A
module name is a file name without the suffix .py. For instance, example.py is
a module named example. A package is a directory that contains a collection
of modules and has one additional __init__.py. A package can be nested into
other packages. If so, nested modules and packages are named by using dotted

11https://docs.python.org/3.7/reference/expressions.html#calls
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1 def func(a, b, c=1, d=2, *args, **kwargs):

2 ...

3

4 # original call expression

5 func(1, 2, d=5, c=1, address="Utrecht")

6

7 # positional arguments a and b are filled

8 a = 1, b = 2

9

10 # keyword arguments c and d are filled

11 c = 1, d = 5

12

13 # arbitrary positional arguments args is filled

14 args = ()

15

16 # arbitrary keyword arguments kwargs is filled

17 kwargs = {"address": "Utrecht"}

18

19 # so the function call is

20 func(1, 2, 1, 5, (), {"address":"Utrecht"})

Figure 6: An example of how Python processes the arguments of a call expres-
sion

module names. Figure 7 shows two packages foo and foo.bar and one module
foo.bar.example. For details, refer to Modules12.

foo # a package named foo

-- __init__.py

-- bar # a package named foo.bar

-- __init__.py

-- example.py # a module named foo.bar.example

Figure 7: Modules and packages

Packages are just special modules. The import keyword can import names
within one module into other modules. For example, import foo introduces
the module foo into the current local scope. In general a module is loaded
only once before the Python interpreter exits. But programmers may use
importlib.reload() to carry out the module initialization process again. The
import system13 and importlib14 provide more information on the semantics of

12https://docs.python.org/3.7/tutorial/modules.html
13https://docs.python.org/3/reference/import.html
14https://docs.python.org/3/library/importlib.html
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import.

2.7 Attribute access

Everything in an object is an attribute. Code Listing 7 shows a class object
Attr with two attributes dummy and version.

Listing 7 A class with two attributes

1 class Attr:

2 def dummy(self):

3 pass

4

5 version = "1.0"

2.7.1 Basic attribute access

In Python an attribute of an object may be called by dotted-syntax. For
instance, obj.attr means looking attr up in obj. When an object does not
contain the attribute, Python will raise AttributeError. For instance, based on
Code Listing 7, Attr.version succeeds but Attr.unknown fails. Since unknown
is not a valid attribute to Attr, Python raises AttributeError.

An attribute can also be created, overwritten or deleted by dotted syntax.
For instance, Attr.unknown = 1 creates the new attribute unknown on Attr,
Attr.dummy = "dummy" overwrites the value of dummy and del Attr.version

deletes version from Attr.
Python’s built-in module provides four functions hasattr, getattr, setattr,

delattr for programmers to perform attribute access uniformly. For instance,
getattr(Attr, "dummy") is semantically equivalent to Attr.dummy.

The default behavior for attribute access is to get, set or delete an attribute
from an object’s dictionary. However, the actual process in Python is more
complex than that. Suppose obj is a class instance, obj.attr has a lookup chain
starting from the method resolution order of its class (type(obj).__mro__) till
the instance dictionary obj.__dict__. Code Listing 8 states how a name is
looked up within __mro__. Code Listing 9 shows the default behavior of an
attribute lookup process of an object in Python.

Listing 8 find_name_in_mro

1 def find_name_in_mro(cls, name, default):

2 for base in cls.__mro__:

3 if name in vars(base):

4 return vars(base)[name]

5 return default
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Listing 9 The default behavior of an attribute lookup process

1 def basic_object_getattribute(obj, name):

2 objtype = type(obj)

3 null = object()

4 cls_var = find_name_in_mro(objtype, name, null)

5

6 if hasattr(obj, '__dict__') and name in vars(obj):

7 return vars(obj)[name] # instance variable

8

9 if cls_var is not null:

10 return cls_var # class variable

11

12 raise AttributeError(name)

2.7.2 Descriptors

It happens very often that the value of an attribute comes from other at-
tributes. Descriptors provide a way to realize this requirement. A descriptor
is an object that fulfills the descriptor protocol which consists of three special
methods __get__, __set__ and __delete__. Code Listing 10 shows the func-
tion signatures of the descriptor protocol.

Listing 10 Descriptor protocol

1 __get__(self, obj, type=None) -> value

2 __set__(self, obj, value) -> None

3 __delete__(self, obj) -> None

An object is considered a data descriptor if it defines __set__ or __delete__
and a non-data descriptor if it defines __get__ only. Data descriptors and non-
data descriptors differ in how Python resolves object’s attribute access.

Descriptor invocation

A descriptor can be invoked directly just like any other function or method.
But the preferred way is to invoke descriptors by an attribute access process au-
tomatically. Code Listing 11 and 12 show Python equivalents of __getattribute__
and __setattr__ of the built-in object class respectively15. It can be seen from
Code Listing 11 and 12 that Python supports descriptors intrinsically and data
descriptors take precedence over non-data descriptors.

The semantics of attribute access fully depend on the object type. As an
example, given an object obj, obj.x searches for x in type(obj).__mro__ and
obj.__dict__.

15These two functions are adapted from Invocation from an instance
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Listing 11 A pure Python equivalent of object.__getattribute__

1 def object_getattribute(obj, name):

2 null = object()

3 objtype = type(obj)

4 cls_var = find_name_in_mro(objtype, name, null)

5 descr_get = getattr(type(cls_var), '__get__', null)

6 if descr_get is not null:

7 if hasattr(type(cls_var), '__set__') or

hasattr(type(cls_var), '__delete__'):↪→

8 # data descriptor

9 return descr_get(cls_var, obj, objtype)

10

11 if hasattr(obj, '__dict__') and name in vars(obj):

12 return vars(obj)[name] # instance variable

13

14 if descr_get is not null:

15 # non-data descriptor

16 return descr_get(cls_var, obj, objtype)

17

18 if cls_var is not null:

19 return cls_var # class variable

20

21 raise AttributeError(name)

Python comes with three descriptor-related built-in functions property,
classmethod and staticmethod. They are also widely used in Python itself.
For instance, object.__new__ is decorated with staticmethod.

2.8 Relevant third-party projects

2.8.1 The project typeshed

Built-in functions like len and hasattr are written in C. So in general
programmers have no type information about such functions. The project type-
shed16 consists of a collection of python stub files for standard libraries, built-ins
and some third-party libraries, which provides a way to get type information
for external code.

The type hints within typeshed can be used for type checking and type
inference. Code Listing 13 is a piece of code excerpted from builtins.pyi. For
instance, if one tries to obtain the type of hasattr(obj, "name"), the type
should be bool.

16https://github.com/python/typeshed
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Listing 12 A pure Python equivalent of object.__setattr__

1 def object_setattr(obj, name, value):

2 null = object()

3 objtype = type(obj)

4 cls_var = find_name_in_mro(objtype, name, null)

5 descr_set = getattr(type(cls_var), '__set__', null)

6 if descr_set is not null:

7 descr_set(cls_var, obj, value)

8

9 if hasattr(obj, '__dict__'):

10 vars(obj)[name] = value

11

12 raise AttributeError(name)

Listing 13 An excerpt from builtins.pyi

1 def hasattr(__obj: object, __name: str) -> bool: ...

2 def hash(__obj: object) -> int: ...

3 def id(__obj: object) -> int: ...

4 def input(__prompt: object = ...) -> str: ...

2.8.2 The project isort

The project isort17 provides functions to automatically recognize the section
of an imported module. By default a module belongs to one of five sections: FU-
TURE, STDLIB, THIRDPARTY, FIRSTPARTY, LOCALFOLDER.
In this thesis we only use the first two sections. They are described below.

� FUTURE. This section currently only contains one module __future__18.
The module __future__ is used to enable new features that will be avail-
able in the newer Python versions.

� STDLIB. It represents The Python Standard Library19. The library
offers a wide range of modules to deal with general programming tasks.

Code Listing 14 shows how to use isort to acquire the section of a module.

2.8.3 The project typeshed-client

The project typeshed-client20 provides a library for retrieving type informa-
tion from typeshed. It can find the path of the stub file for a particular module,

17https://github.com/PyCQA/isort
18https://docs.python.org/3.7/library/__future__.html
19https://docs.python.org/3.7/library/
20https://github.com/JelleZijlstra/typeshed_client
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Listing 14 How isort recognizes the section for a module

1 # import isort module

2 import isort

3

4 # the section of __future__ is FUTURE

5 future_module = isort.place_module("__future__")

6

7 # the section of copy is STDLIB

8 stdlib_module = isort.place_module("copy")

collect all names in a stub file and resolve a name to its definition. Code Listing
15 shows how to utilize it.

However, the features provided by typeshed-client are not capable of ad-
dressing our tasks. How we refactor this project to meet our needs will be
explained in the rest of this thesis.

Listing 15 How to extract type information from typeshed by means of
typeshed-client

1 # import typeshed_client module

2 import typeshed_client

3

4 # get a path to a stub file

5 stub_path = typeshed_client.get_stub_file("copy")

6

7 # get all names defined in a stub file

8 name_dict = typeshed_client.get_stub_names("copy")

9

10 # resolve a name to its definition

11 ## get a resolver

12 resolver = typeshed_client.Resolver()

13 ## the definition corresponding to the name

14 name_info = resolver.get_fully_qualified_name("copy.copy")
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3 Related Work

3.1 Points-to analysis

Points-to analysis or pointer analysis is a program analysis technique that
statically attempts to determine the possible run-time values with respect to
each pointer variable [Smaragdakis, Balatsouras, et al., 2015]. It has many
applications in compiler optimizations and error detection such as dead code
elimination and memory leak detection. Moreover, many analyses like pointer
alias analysis and escape analysis are defined on top of points-to analysis.

However, any static analysis that obtains non-trivial program behavior is
undecidable [Rice, 1953]. For example, Landi proves that finding the alias that
occurs on all executions of a program is not recursively enumerable [Landi,
1992]. Later, with the help of parenthesis-Post’s Correspondence Problem, the
undecidability of context-sensitive inter-procedural analyses has been certified
as well [Reps, 2000]. Therefore, one has to safely approximate the behavior of a
program in terms of precision and performance. For example, one way to make
a good trade-off is to solicit clients’ opinions [Hind, 2001].

3.2 Data flow analysis

Data flow analysis is a technique for gathering information of a program
without actually executing it [Kam and Ullman, 1977]. It consists of three
steps:

1. Construct a control flow graph of the program. A control flow graph is
the graph-based abstract representation of a program. In the graph, each
node attached a label ℓ represents a basic block and each edge indicates a
control flow.

2. Write data flow equations for each node in the graph. These equations are
used for collecting the desired facts. In general two equations are defined
on each node bℓ: one equation specifies which information is true at the
entry to bℓ and the other equation specifies which information is true at
the exit of bℓ.

3. Solve these equations by repeatedly computing output based on the input
at each node until a fixed point is reached.

The precision of data flow analysis can be enhanced by employing sensitivi-
ties. Three kinds of sensitivities are described in the following subsections.

3.2.1 Flow-sensitive analysis

In a flow-sensitive analysis the order the statements matters [Callahan, 1988].
For instance, a flow-sensitive analysis may determine that x in Code Listing 16
may refer to a_list after line 3. Instead, a flow-insensitive analysis may just
determine that x may refer to a_list.

24



Listing 16 An example demonstrating flow-sensitive analysis

1 a_list = list()

2

3 x = a_list

3.2.2 Path-sensitive analysis

A path-sensitive analysis takes the predicates at conditional branches into
account [Bod́ık and Anik, 1998]. For instance, a path-sensitive analysis may
determine that x in Code Listing 17 may have an integer value after line 6.

Listing 17 An example demonstrating path-sensitive analysis

1 condition = True

2

3 if condition:

4 x = 1

5 else:

6 x = "hello"

3.2.3 Context-sensitive analysis

Context sensitivity is a primary approach to enhance the precision of inter-
procedural data flow analysis without too much performance degradation. The
idea is to encode context information to qualify paths taken. Four kinds of con-
text sensitivities are call site sensitivity, object sensitivity, type sensitivity and
hybrid sensitivity.

δ ∈ ∆ context information

In general two contexts are maintained in a context-sensitive points-to anal-
ysis: calling context(also referred to as context) used to qualify local variables
and heap context for storing heap abstractions. Heap specialization is crucial
to the success of points-to analysis since it is critical to the overall quality
of accuracy and scalability [Nystrom, Kim, and Hwu, 2004]. For the sake of
simplicity and uniformity, Smaragdakis, Bravenboer, and Lhoták propose two
functions Record and Merge to manipulate contexts in object-sensitive anal-
ysis [Smaragdakis, Bravenboer, and Lhoták, 2011]. Their function signatures
are:

Record : Lab× Context→ HContext (1)

Merge : Lab×HContext× Context→ Context (2)
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The functionRecord is used whenever an allocation site is encountered so as
to create a new heap context. The function Merge is similar to Record, but it
is invoked at each method invocation site and combines all available information
to create a new calling context.

Call site sensitivity

Recording call sites is the first approach employed as context. The analysis
encodes a sequence of call sites where each call site belongs to a method. By
convention a context of k call sites is maintained, namely, the current call site
of the method, the call site of the caller’s method, etc., up to a constant value
k [Smaragdakis, Balatsouras, et al., 2015].

In [Sharir, Pnueli, et al., 1978], Sharir, Pnueli, et al. consider a tuple of
call blocks as call strings in inter-procedural analyses. Similarly, a variant of
call strings called call cache is applied in Shivers’s dissertation [Shivers, 1991].
Besides, Chapter 2 of [Nielson, Nielson, and Hankin, 2004] also uses call strings
of bounded length as context to make inter-procedural analyses more precise.

By means of Equation 1 and 2, a 2-call-site-sensitive analysis with a 1
context-sensitive heap can be simply defined as:

Record(lab, ctx) = first(ctx)

Merge(lab, hctx, ctx) = pair(lab, first(ctx))

However, the precision of call-site-sensitive analyses is highly dependent on
the syntactic patterns of programming languages. It is found that call-site-
sensitive analyses for Java are less precise than object-sensitive analyses at the
same depth because object-oriented languages usually stress encapsulation and
inheritance, that is, indirect invocations, which weakens the usefulness of call
sites [Lhoták and Hendren, 2008].

Object sensitivity

Milanova, Rountev, and Ryder propose another flavor of context sensitivity
— object sensitivity for Java [Milanova, Rountev, and Ryder, 2002, 2005]. They
utilize the receiver object at each method invocation site to distinguish calling
contexts and then build up a parameterized k-object-sensitive DEF-USE analy-
sis. However, only object sensitivity of depth 1 is implemented in their papers.
The experiment shows that object sensitivity outperforms call-site sensitivity
at the same depth because the former could compensate the precision loss of
features like encapsulation and inheritance.

By 1 and 2, a 2-object-sensitive analysis with a 1-context-sensitive heap can
be expressed as:

Record(lab, ctx) = first(ctx)

Merge(lab, hctx, ctx) = pair(lab, first(hctx))
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Type sensitivity

Type sensitivity is a variant of object sensitivity [Smaragdakis, Bravenboer,
and Lhoták, 2011]. The difference between object sensitivity and type sensitivity
is that instead of qualifying contexts with allocation sites, type information is
encoded. These types represent the classes containing the respective allocation
sites with the help of an auxiliary function T : heap→ ClassName.

By means of types, contexts are coarser since the allocation sites with the
same type will be merged, which avoids the replication of information between
contexts [Smaragdakis et al., 2015]. According to the experiment result of
[Smaragdakis et al., 2011], with insights into choosing appropriate types as
contexts, type-sensitive analyses lead to almost no precision loss and are more
performant than corresponding object-sensitive ones.

The counterpart of the aforementioned 2-object-sensitive analysis with a 1-
context-sensitive heap is:

Record(lab, ctx) = first(ctx)

Merge(lab, hctx, ctx) = pair(T (lab), first(hctx))

Hybrid sensitivity

Hybrid sensitivity combines several context sensitivities into one analysis
[Kastrinis and Smaragdakis, 2013]. The intuition is to adjust different contexts
based on different language features. For instance, static function calls in object-
oriented languages may favor call-site sensitivity. Instead, virtual function calls
may prefer object sensitivity. Such ideas can greatly extend the design space,
which in turn allows more optimization [Smaragdakis, Balatsouras, et al., 2015].

One kind of context combination leads to uniform hybrid analysis where both
object and call site contexts are maintained. The precision of this combination
is at least as accurate as those non-hybrid equivalent ones such as uniform
1-object-sensitive hybrid analysis versus 1-object-sensitive analysis. But the
overhead is also evident since two contexts are kept during analysis. Another
flavor is selective hybrid analysis. In this way, different contexts are formed in
line with different language features inside the same analysis.

Kastrinis and Smaragdakis present a more uniform representation ofRecord
and Merge which takes invocation sites into account [Kastrinis and Smarag-
dakis, 2013]:

Record : Lab× Context→ HeapContext

Merge : Lab×HeapContext× Invocation× Context→ Context

In the evaluation of hybrid analyses in [Kastrinis and Smaragdakis, 2013], se-
lective hybrid analyses surpass the corresponding base analyses being enhanced
in both performance and precision. Besides, though selective ones can be unno-
ticeable less precise than uniform ones because of possible context information
loss, the speed of the former is much higher than that of the latter. In addition,
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as [Lhoták and Hendren, 2006, 2008] suggest, call-site sensitivity is better to be
added as extra context over object sensitivity and [Kastrinis and Smaragdakis,
2013] holds the same opinion that object-sensitive heap is more attractive than
call-site-sensitive heap.

3.3 Type inference for dynamic languages

3.3.1 Python

Fritz and Hage present a static analysis to infer type information for Python
programs [Fritz and Hage, 2017]. They focus on finding a sweet spot between
cost and precision so that the analysis is suitable for interactive tools. The
proposed analysis is a data flow analysis and the precision is controlled by three
parameters of the widening operator: (1) the maximum number of types a
variable may have, (2) the maximum number of attributes that the dictionary
of an object may have, (3) the maximum nesting depth of types.

Fromherz, Ouadjaout, and Miné implement an analysis to compute abstract
values of variables in a program [Fromherz, Ouadjaout, and Miné, 2018]. The
analysis is also able to analyze generators by means of continuation-bases se-
mantics. For this purpose, it maintains a tuple Gen(cont, frame, body, vars)
representing each generator object. The resume location upon the following
next() is stored in cont. Local variables are stored in vars. The mapping from
local variables to values is stored in frame and body is the generator function
body.

3.3.2 PHP

Van der Hoek and Hage present an object-sensitive type analysis for PHP
[Van der Hoek and Hage, 2015]. The algorithm is based on an extended mono-
tone framework which is able to discover call graphs dynamically during fixed
point iteration. The analysis variants are parameterized by two context manip-
ulation functions: Record and Merge. They specify full-object, plain-object
and type sensitivities in their experimentation. The result shows full-object
sensitive analysis is as least as fast as plain-object sensitive analysis. However,
in terms of precision, they both yield basically the same result.

3.3.3 Javascript

Jensen, Møller, and Thiemann propose a static analysis that can infer de-
tailed and sound type information for Javascript programs by means of abstract
interpretation [Jensen, Møller, and Thiemann, 2009]. The analysis not only sup-
ports the full language defined in the ECMAScript standard but also all built-in
functions. The analysis result can be used to detect common programming er-
rors such as confusing numbers with booleans.

The analysis is implemented as an instance of a monotone framework with
an elaborate lattice. The precision of the analysis result is further improved
by employing recency abstraction [Balakrishnan and Reps, 2006]. With recency
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abstraction, each allocation site ℓ keeps track of two abstractions: singleton
abstraction ℓ@ referring to the most recently allocated object from ℓ and ℓ∗

referring to a summary abstraction of all older objects related to ℓ.
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4 Research questions

When an attribute access is executed, Python under the hood performs a
sequence of operations to get, set or delete the expected attribute. One inter-
esting question arises: will attribute access semantics with different precision
affect the analysis precision of our type inferencer?

In this section we first describe four special methods used in Python to carry
out attribute access (Section 4.1) and then list 3 research questions related to
attribute access (Section 4.2).

4.1 Attribute access semantics

Python has by default implemented 4 attribute access methods. These meth-
ods are embedded in built-in classes so that programmers are able to use them
implicitly.

� object.__getattribute__. The method is called when the Python in-
terpreter performs attribute lookup on a class instance.

� object.__setattr__. The method is called when the Python interpreter
performs attribute storage and deletion on a class instance.

� type.__getattribute__. The method is called when the Python inter-
preter performs attribute lookup on a class object.

� type.__setattr__. The method is called when the Python interpreter
performs attribute storage and deletion on a class object.

Code Listing 11 is a Python equivalent of object.__getattribute__. It
states that the retrieved attribute may come from any of (data/non-data) de-
scriptors, instance dictionaries or class dictionaries. For the stake of simplicity
in implementation, one type inferencer may merge all three possible results. We
define such analysis that merges all possible results as crude analysis. On the
contrary, refined analysis refers to the analysis sticking to the default (path-
sensitive) Python attribute access semantics.

4.2 Questions

4.2.1 Research question 1

Is refined analysis (substantially) slower than crude analysis?

4.2.2 Research question 2

Is refined analysis (substantially) more precise than crude analysis?

4.2.3 Research question 3

If the conclusion of research question 2 is true, which features may lead to
such consequences?
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5 Data Flow Analysis for Python

The type analysis described in this thesis is based on data flow analysis.
In this section we first introduce monotone framework, embellished monotone
framework [Nielson, Nielson, and Hankin, 2004] and extended monotone frame-
work [Van der Hoek and Hage, 2015]. Then we describe how to adapt extended
monotone framework to dynamic monotone framework.

Throughout the thesis we will use P∗ to denote the program to be analyzed,
Lab∗ to denote all program labels in P∗.

5.1 Basic definitions

Definition 1 (Partially ordered set21). A partially ordered set (L,⊑) is a set
L with a partial ordering ⊑: L× L→ {true, false} that is reflexive (∀l : l ⊑ l),
transitive (∀l1, l2, l3 : l1 ⊑ l2 ∧ l2 ⊑ l3 ⇒ l1 ⊑ l3), and anti-symmetric (∀l1, l2 :
l1 ⊑ l2 ∧ l2 ⊑ l1 ⇒ l1 = l3).

A subset Y of L has l ∈ L as an upper bound if ∀l′ ∈ Y : l′ ⊑ l and as a
lower bound if ∀l′ ∈ Y : l′ ⊒ l. An upper bound l is called a least upper bound
of Y if for all upper bounds l′, l ⊑ l′ and a greatest lower bound of Y if for all
lower bounds l′ ∈ Y , l′ ⊑ l.

Definition 2 (Complete lattice22). A complete lattice L = (L,⊑) = (L,⊑
,⊔,⊓,⊥,⊤) is a partially ordered set (L,⊑) such that all subsets have least
upper bounds and greatest lower bounds.

Definition 3 (Ascending chain condition23). A partially ordered set P is said
to satisfy the ascending chain condition if for every increasing sequence l1 ≤
l2 ≤ l3 ≤ ... with li ∈ P , there is n ∈ N such that ln = ln+1 = ....

5.2 Monotone framework

A Monotone framework allows a general pattern for data flow analysis by
abstracting the commonalities and parameterizing the differences of different
analyses.

An instance24 of a monotone framework (L,F , F, E, ι, fℓ.) consists of:

� a complete lattice L that satisfies the ascending chain condition.

� a set of monotone functions F from L to L that includes the identity
function and is closed under function compositions.

� a finite set of flow F .

� a finite set of extremal labels E.

21adapted from Appendix A of [Nielson, Nielson, and Hankin, 2004]
22adapted from Appendix A of [Nielson, Nielson, and Hankin, 2004]
23adapted from Appendix A of [Nielson, Nielson, and Hankin, 2004]
24borrowed from Section 2.3 of [Nielson, Nielson, and Hankin, 2004]
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� an extremal value ι ∈ L for the extremal labels.

� a mapping fℓ. from labels in Lab∗ to transfer functions in F .

The instance gives rise to a set of equations25 of the form:

A◦(ℓ) =
⊔
{A•(ℓ

′) | (ℓ′, ℓ) ∈ F} ⊔ ιℓE

where ιℓE =

{
ι if ℓ ∈ E

⊥ if ℓ /∈ E

A•(ℓ) =fℓ(A◦(ℓ))

5.3 The worklist algorithm

The worklist algorithm26 listed in Algorithm 1 is a general iterative algo-
rithm to compute the least solution to the data flow equations for monotone
frameworks.

The algorithm maintains a worklist W which contains a list of pairs obtained
from F . The presence of each pair (ℓ, ℓ′) indicates the analysis information has
changed at the exit of the block labeled with ℓ. Therefore, the analysis infor-
mation attached on the entry of the block labeled with ℓ′ has to be recomputed
to see if the information should be propagated.

5.4 Widening

The worklist algorithm always terminates if the analysis lattice satisfies the
ascending chain condition. If this is not the case, widening operators can be em-
ployed to ensure termination. With a widening operator∇27, the construction of
an iterative sequence is changed from l1, l1⊔l2, (l1⊔l2)⊔l3 to l1, l1∇l2, (l1∇l2)∇l3.
The latter one guarantees stabilization.

When the worklist algorithm employs a widening operator, the analysis re-
sult is not necessarily the least fixed point. The precision of the approximated
fixed point and the cost of computing both depend on the choice of the widening
operator.

5.5 Interprocedural data flow analysis

Almost all modern programming languages support functions in some form.
In a control flow graph, they are represented as follows: for each function defi-
nition f , there are two nodes ℓn denoting the entry to the body and ℓx the exit
from the body. Each call to f also has two labels: ℓc marking the call and ℓr
the return.

In the rest of this thesis we will employ and adapt the way of how [Fritz
and Hage, 2017] represents control flow graphs. Figure 8 shows a function func

25borrowed from Section 2.3 of [Nielson, Nielson, and Hankin, 2004]
26borrowed from Section 2.4 of [Nielson, Nielson, and Hankin, 2004]
27see Section 4.2.1 of [Nielson, Nielson, and Hankin, 2004]
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with the entry label 2 and the exit label 3. In addition, each function call site
of func has two labels such as 8 and 9 corresponding to the call and exit labels
respectively.

[def]1 [func(x)]23:

[return x]4

[result1 = [func(1)]56]
7

[result2 = [func("str")]89]
10

(a) A program

1

5 2

4

3

6

7

8

9

10

(b) The control flow graph

Figure 8: A program and its control flow graph

However, naively applying intra-procedural techniques described in Section
5.2 may harm the analysis precision. Expressed in term of Figure 8b, nothing
prevents the analysis from pushing information from ℓ3 to ℓ9. Thus the analysis
may infer that result2 may have types str and int. But in fact result2 only
has one type str.

5.6 Embellished monotone framework

By taking context ∆ into account, a monotone framework turns into an
embellished monotone framework. The following tuple represents an instance28

of an embellished monotone framework:

(L̂, F̂ , F, E, ι̂, f̂ℓ.)

� a complete lattice L̂ = ∆→ L that satisfies the ascending chain condition.

� a set of monotone functions F̂ from ∆ → L to ∆ → L that includes the
identity function and is closed under function compositions.

� F and E remain the same.

� an extremal value ι̂ = ∆→ ι in L̂ for the extremal labels.
28borrowed from Section 2.5 of [Nielson, Nielson, and Hankin, 2004]
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� a mapping f̂ℓ. from contexts in ∆ and labels in Lab∗ to transfer functions
in F̂ .

5.7 Dynamic monontone framework

Based on an embellished monotone framework, Van der Hoek and Hage
propose an extended monotone framework for PHP which supports dynamic flow
adding [Van der Hoek and Hage, 2015]. Our work is similar to Van der Hoek
and Hage’s since Python and PHP both are dynamic languages and functions
in them are first-class.

Our dynamic monotone framework29 for Python supports adding and col-
lecting inter-procedural control flow edges on the fly. An instance of a dynamic
monotone framework consists of a tuple described below. In our setting, labels
in F or E in a dynamic monotone framework are replaced with program points
PP∗.

program point ∈ PP∗ = {(ℓ, δ) | ℓ ∈ Lab∗, δ ∈ ∆}
(L,F , F, E, ι, f.,Ψ,Φ)

� a complete lattice L = λℓ→ λδ → Lℓ,δ that satisfies the ascending chain
condition.

� a set of monotone functions F = λℓ → λδ → Lℓ,δ → Lℓ,δ that includes
the identity function and is closed under function compositions.

� a finite set of flow F = λℓ→ λδ → Fℓ,δ.

� a finite set of extremal program points E = λℓ→ λδ → PP∗.

� an extremal value ι = λℓ → λδ → ιℓ,δ in L for the extremal program
points.

� a mapping f. = λℓ→ λδ → fℓ,δ from labels in Lab∗ and context elements
in ∆ to transfer functions in F .

� a mapping Ψ = λℓ→ λδ → Ψℓ,δ from labels in Lab∗ and context elements
in ∆ to dynamic inter-procedural flow creating functions in Ψℓ,δ.

� a mapping Φ = λℓ→ λδ → Φℓ,δ from labels in Lab∗ and context elements
in ∆ to flow collecting functions in Φℓ,δ.

Then the data flow equations30 become:

A◦(ℓ, δ) =
⊔
{A•(ℓ

′, δ′) | ((ℓ′, δ′), (ℓ, δ)) ∈ F} ⊔ ιℓ,δE

where ιℓ,δE =

{
ι if ℓ ∈ E ∧ δ = Λ

⊥ if ℓ /∈ E

(3)

29adapted from Section 4.5 of [Van der Hoek, 2014]
30adapted from Section 4.6 of [Van der Hoek, 2014]
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Equation 3 specifies how information flows from exits from program points
to an entry to a program point.

A•(ℓ, δ) = fℓ,δ(A◦(ℓ, δ)) (4)

Equation 4 specifies how information flows from the entry to the exit of a
node except program points of function return.

A•(ℓr, δr) =f(ℓc,δc),(ℓr,δr)(A◦(ℓc, δc), A◦(ℓr, δr))

∀ (ℓr, δr) ∈ ReturnProgramPoints
(5)

Equation 5 specifies given a return program point, how information flows
from the entry to the exit of the node. The signature of the transfer function
is f(ℓc,δc),(ℓr,δr) = L → L → L. The first parameter L represents the data flow
information at the entry of a call and the second L represents the data flow
information at the exit of the callee. The resulted lattice element depends on
the semantics of a language.

IF = Ψℓ,δ(ℓ, δ) ∪ IF , ∀ (ℓ, δ) ∈ F (6)

Equation 6 specifies how Ψℓ,δ : λℓ→ λδ → IF adds inter-procedural flow to
IF .

F = {Φℓ,δ(e,Λ) | e ∈ E} ∪ {Ψℓ,δ(ℓ
′, δ′) | ((ℓ, δ), (ℓ′, δ′)) ∈ F} (7)

Equation 7 specifies how all program flow is generated. It at first computes
all initial edges related to extremal program points and then expands the flow
by Φℓ,δ : λℓ→ λδ → F until a fixed point is reached.

Equations 3 to 7 are mutually dependent. Since the program flow F depends
on the inter-procedural flow IF , the inter-procedural flow IF depends on the
effect value A•, the effect value A• depends on the context value A◦ and the
context value A• depends on the program flow F .

5.8 The worklist algorithm for dynamic monotone frame-
work

The worklist algorithm31 for dynamic monotone frameworks is listed in Al-
gorithm 2. Given an instance of a dynamic monotone framework, it computes
the least fixed point.

31adapted from Algorithm 2 of [Van der Hoek, 2014]
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Algorithm 1 The worklist algorithm

Input: An instance of a monotone framework: (L,F ,F ,E , ι, fℓ.)
Output: MFP◦, MFP•
Method:

Step 1: Initialization
W ← nil
for all (ℓ, ℓ′) in F do

W ← cons((ℓ, ℓ′),W )
end for
for all ℓ in F or E do

if ℓ ∈ E then
A[ℓ]← ι

else
A[ℓ]← ⊥L

end if
end for

Step 2: Iteration
while W ̸= nil do

ℓ, ℓ′ ← fst(head(W )), snd(head(W ))
W ← tail(W )
if fℓ(A[ℓ]) ̸⊑ A[ℓ′] then

A[ℓ′]← A[ℓ′] ⊔ fℓ(A[ℓ])
for all ℓ′′ with (ℓ′, ℓ′′) in F do

W ← cons((ℓ′, ℓ′′),W )
end for

end if
end while

Step 3: Presenting
for all ℓ in F or E do

MFP◦ ← A[ℓ]
MFP• ← fℓ(A[ℓ])

end for
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Algorithm 2 The worklist algorithm for dynamic monotone frameworks

Input: An instance of a dynamic monotone framework: (L,F , F, E, ι, f.,Ψ,Φ)
Output: MFP◦, MFP•
Method:

Step 1: Initialization
W ← nil
IF ← ∅
for all ℓ in E do

A[ℓ, Λ]← ι
for all ((ℓ, δ), (ℓ′, δ′)) in Φℓ,δ(ℓ, Λ) do

W ← cons(((ℓ, δ), (ℓ′, δ′)), W )
end for

end for

Step 2: Iteration
while W ̸= nil do

(ℓ, δ), (ℓ′, δ′)← fst(head(W )), snd(head(W ))
W ← tail(W )
if (ℓ, δ) ∈ ReturnProgramPoints then

ℓc ← IF (ℓr)
Effect ← f(ℓc,δc),(ℓr,δr)(A◦(ℓc, δc), A◦(ℓr, δr))

else
Effect ← fℓ,δ(A◦(ℓ, δ))

end if

if Effect ̸⊑ A[ℓ′, δ′] then
A[ℓ′, δ′]← A[ℓ′, δ′] ⊔ Effect
IF ← Ψℓ,δ(ℓ

′, δ′) ∪ IF
for all ((ℓ′, δ′), (ℓ′′, δ′′)) in Φℓ,δ(ℓ

′, δ′) do
W ← cons(((ℓ′, δ′), (ℓ′′, δ′′)), W )

end for
end if

end while

Step 3: Presenting
for all (ℓ, δ) in F or E do

MFP◦(ℓ)← A[ℓ, δ]
if (ℓ, δ) ∈ ReturnProgramPoints then

ℓc ← IF (ℓr)
MFP•(ℓ, δ)← f(ℓc,δc),(ℓr,δr)(A◦(ℓc, δc), A◦(ℓr, δr))

else
MFP•(ℓ, δ)← fℓ,δ(A◦(ℓ, δ))

end if
end for
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6 Control flow graphs for Python

A control flow graph represents all possible execution paths in a program.
In this section we first describe how to simplify Python by desugaring it into
its core language. Then we exhibit the supported core language constructs and
their control flow graphs. At last, some core constructs are further destructed
to cater for the Python data model.

6.1 Desugaring of Language constructs

Syntactic sugar is high-level constructs that make code easier to read. Static
analyzers often distill languages with those sugared constructs into their core
languages before analyzing. By reducing a programming language to its essence,
one analysis tool may have simpler implementation and thus is able to focus on
crucial details.

This section describes how our control flow graph generator handles various
high-level constructs. In the following discussion, we use special names such as
_tmpvar1, _tmpvar2, ... to denote temporary variables. The desugaring order
is in accordance with the evaluation order32 of Python. The evaluation order is
determined by the Python abstract syntax tree.

6.1.1 The assignment statement

The assignmen statement33 is used to (re)bind names to values. Figure 9
shows how to transform a compound assignment statement into a sequence of
simple statements.

1 def func(x):

2 return x

3

4 a = b = c = func(1)

(a) Original form

1 def func(x):

2 return x

3

4 a = func(1)

5 b = func(1)

6 c = func(1)

(b) Desugared form

Figure 9: How to desugar a compound assignment statement

A del statement34 can have more than one expression such as del a, b, c.
If so we desugar the del statement to make sure each del statement only has
one expression.

32https://docs.python.org/3/reference/expressions.html#evaluation-order
33https://docs.python.org/3.7/reference/simple_stmts.html#assignment-statements
34https://docs.python.org/3.7/reference/simple_stmts.html#the-del-statement
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6.1.2 The augassign statement

The augassign statement35 combines an arithmetic operator with an assign-
ment operator, which eliminates the need to define a temporary variable. For
instance, a = a + 1 can be shortened as a += 1. We transform all augassign
statements into plain assignment statements. Figure 10 shows our approach of
desugaring an augassign statement.

1 size += 5

(a) Original form

1 size = size + 5

(b) Desugared form

Figure 10: How to desugar an augassign statement

6.1.3 The annassign statement

The annassign statement36 allows attaching type annotations to normal vari-
ables. An annassign statement has an optional right-hand-side expression. If
the expression is not present, the whole statement is ignored since it has no
effect in our analysis. Figure 11 shows two kinds of annassign statements.

1 name: str

2

3 address: str = "Utrecht"

(a) Original form

1 # name: str is ignored

2

3 address = "Utrecht"

(b) Desugared form

Figure 11: How to desugar two annassign statements

6.1.4 The expression statement

The expressio statement37 is a sole expression without any target. We shall
add a temporary variable to act as the target so that the analysis can handle
expression statements and assignment statements uniformly. Figure 12 shows
how to address an expression statement.

6.1.5 The assert statement

The assert statement38 allows programmers to test if certain assumptions
remain True while developing. Figure 13 shows the desugaring of an assert

35https://docs.python.org/3.7/reference/simple_stmts.html#

augmented-assignment-statements
36https://docs.python.org/3.7/reference/simple_stmts.html#

annotated-assignment-statements
37https://docs.python.org/3.7/reference/simple_stmts.html#expression-statements
38https://docs.python.org/3.7/reference/simple_stmts.html#the-assert-statement
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1 a_func_call()

(a) Original form

1 _tmpvar1 = a_func_call()

(b) Desugared form

Figure 12: How to desugar an expression statement

statement.

1 assert number > 0

(a) Original form

1 if not number > 0:

2 raise AssertionError

(b) Desugared form

Figure 13: How to desugar an assert statement

6.1.6 The import statement

The import statement39 is used to find and load modules. Figure 14 shows
how to desugar an import statement.

1 import mod1, mod2.mod3 as mod4

(a) Original form

1 import mod1

2 pass

3

4 import mod2.mod3 as mod4

5 pass

(b) Desugared form

Figure 14: How to desugar an import statement

6.1.7 The with statement

The with statement40 is used to wrap the execution of a block with the help
of a context manager. It simplifies the management of resources such as file
resources. Figure 15 shows how to desugar a with statement.

Multiple items in a with statement is also possible. Figure 16 shows how to
transform a complex with statement into its simpler form.

39https://docs.python.org/3.7/reference/simple_stmts.html#the-import-statement
40https://docs.python.org/3.7/reference/compound_stmts.html#the-with-statement
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1 with EXPRESSION as TARGET:

2 BODY

(a) Original form

1 manager = EXPRESSION

2 enter = type(manager).__enter__

3 exit = type(manager).__exit__

4 value = enter(manager)

5 hit_except = False

6

7 try:

8 TARGET = value

9 BODY

10 except:

11 hit_except = True

12 if not exit(manager,

*sys.exc_info()):↪→

13 raise

14 finally:

15 if not hit_except:

16 exit(manager, None,

None, None)↪→

(b) Desugared form

Figure 15: How to desugar a with statement

1 with A() as a, B() as b:

2 BODY

(a) Original form

1 with A() as a:

2 with B() as b:

3 BODY

(b) Desugared form

Figure 16: How to desugar a complex with statement

6.1.8 The for statement

The for statement41 is used for iterating over iterable objects. Iterable ob-
jects are those objects that implement __iter__ special method. Figure 17
shows the standard desugaring of a for statement. The evaluation process is as
follows: at first b is evaluated into an iterator object. Then c is executed once
for each target a until the iterator raises a StopIteration exception.

We shall transform all for statements into while statements in order to sim-
plify the analysis. Figure 18 shows the desugaring in our analysis.

41https://docs.python.org/3.7/reference/compound_stmts.html#the-for-statement

41
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1 for a in b:

2 c

(a) Original form

1 _iter = iter(b)

2 while True:

3 try:

4 a = next(_iter)

5 except StopIteration:

6 break

7 else:

8 c

9 del _iter

(b) Desugared form

Figure 17: How to desugar a for statement in the standard way

1

2 a_list = [1,"hello", True]

3 another_list = []

4 for elt in a_list:

5 another_list.append(elt)

6

(a) Original form

1

2 a_list = [1,"hello", True]

3 another_list = []

4

5 a_list_iter = iter(a_list)

6 while a_list_iter:

7 elt = next(a_list_iter)

8 another_list.append(elt)

9

(b) Desugared form

Figure 18: How to desugar a for statement in our analysis

6.1.9 The lambda expression

The lambda expression42 is a small anonymous function with only one ex-
pression. Figure 19 shows how to transform a lambda expression into an ordi-
nary function.

1 lambda x, y = x + y

(a) Original form

1 def _tmpvar1(x, y):

2 return x + y

(b) Desugared form

Figure 19: How to desugar a lambda expression

42https://docs.python.org/3.7/reference/expressions.html#lambda

42
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6.1.10 Decorators

Decorators are functions which modify the functionality of other functions
or classes without modifying their structures. Figure 20 shows how to desugar
a function with two decorators.

1 @f1

2 @f2

3 def func(x):

4 return x

(a) Original form

1 def func():

2 return x

3

4 func = f2(func)

5 func = f1(func)

(b) Desugared form

Figure 20: How to desugar a function with two decorators

We deal with the decorator property in a different manner. It is desugared
in two steps. In the first step, our control flow generator collects all possible
getters, setters and deleters. In the second step, an assignment statement is
created with these getters, setters and deleters. One example can be seen in
Figure 21.

1 @property

2 def name():

3 ...

4

5 @name.setter

6 def name():

7 ...

8

9 @name.deleter

10 def name():

11 ...

(a) Original form

1 def name():

2 ...

3

4 def name1():

5 ...

6

7 def name2():

8 ...

9

10 name = property(name, name1,

name2)↪→

(b) Desugared form

Figure 21: How to desugar property decorators

6.1.11 Expressions

Expressions are representations of values. The difference between expres-
sions and statements is that a statement does something but an expression al-
ways yields a value. Expressions can also be chained. Such chained expressions
may complicate the implementations of static analyzers. Therefore we decon-
struct complex expressions into simpler ones. Code Listing 18 and 19 show how
to desugar a complex expression.
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Listing 18 Original form

1 length = to_integer('3').bit_length()

Listing 19 Desugared form of Code Listing 18

1 _tmpvar1 = '3'

2 _tmpvar2 = to_integer(_tmpvar1)

3 _tmpvar3 = _tmpvar2.bit_length

4 _tmpvar4 = _tmpvar3()

5 length = _tmpvar4

The expressions which have the form x and y or x or y are further desug-
ared into if statements. The reason is these two kinds of expressions return the
value of x or y rather than a bool object as the final evaluated value.

Similarly, each conditional expression test if expression1 else expression2

is also transformed into a plain if statement.

6.1.12 Comprehensions

List comprehensions, set comprehensions, dict comprehensions and generator
comprehensions provide a functional way to create lists, sets, dictionaries and
generators respectively. They are more efficient and readable than equivalent
loops. In our analysis, we shall translate them into verbose forms. Since they
have basically the same structure, only desugaring a list comprehension is shown
(refer to Figure 22).

1 even_nums = [

2 x for x in range(20)

3 if x % 2 == 0

4 ]

(a) Original form

1 _tmpvar1 = list()

2 for x in range(20):

3 if x % 2 == 0:

4 _tmpvar1.append(x)

5 even_nums = _tmpvar1

(b) Desugared form

Figure 22: How to desugar a list comprehension

6.1.13 Literal collections

Python provides four kinds of literal collections: list literals, tuple literals,
set literals and dict literals. Since they are very similar, we only explain list
literals here. A list literal can store heterogeneous items. The values in a list
literal are separated by a comma and enclosed within square brackets. Figure
23 shows how to desugar a list literal.
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1

2 hybrid = [

3 "Netherlands",

4 1,

5 True,

6 1.0

7 ]

8

(a) Original form

1

2 _tmpvar1 = list()

3 _tmpvar1.append("Netherlands")

4 _tmpvar1.append(1)

5 _tmpvar1.append(True)

6 _tmpvar1.append(1.0)

7 hybrid = _tmpvar1

8

(b) Desugared form

Figure 23: How to desugar a list literal

6.2 Supported language constructs

After applying the desugaring described in Section 6.1, we have only a set
of core language constructs. In this section we describe our approach to repre-
senting each core construct in a control flow graph respectively.

6.2.1 The if statement

The if statement43 is used for decision making. It selects exactly one body
of code whose test expression is evaluated to True. Figure 24 shows a simple if
statement and its control flow graph.

if [test expression]1:

[a = 1]2

else:

[a = True]3

(a) The code

1

2

3

(b) The control flow graph

Figure 24: A simple if statement and its control flow graph

An if statement may have zero or more elif clauses, which allows program-
mers to check multiple conditional expressions. The elif is a short notation
for else if. Figure 25 shows an if statement with one elif clause and its control
flow graph.

6.2.2 The while statement

The while statement44 is used to iterate over a block of code as long as
the test expression is evaluated to True. In addition, a while loop may have

43https://docs.python.org/3.7/reference/compound_stmts.html#the-if-statement
44https://docs.python.org/3.7/reference/compound_stmts.html#the-while-statement
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if [test expression1]1:

[a = 1]2

elif [test expression2]3:

[a = 2]4

else:

[a = 3]5

(a) The code

1

2

3 4

5

(b) The control flow graph

Figure 25: A complex if statement and its control flow graph

an optional else block. In general the else block will be executed if the test
expression is evaluated to False. Figure 26 shows a while loop with an else

part.

while [test expression]1:

[a = 1]2

else:

[a = 2]3

(a) The code

1

2

3

(b) The control flow graph

Figure 26: A while statement and its control flow graph

The break statement45 and the continue statement46 are used to alter the
control flow of a loop. The break statement terminates the current loop. The
continue statement skips the rest of the code of the loop body in the current
iteration.

In a while loop, the else block will be ignored if the loop is terminated by
a break. Figure 27 demonstrates the effects of break and continue.

6.2.3 The try statement

The try statement47 allows programmers to take actions in case an error
occurs. It is intrinsically hard to deal with in data flow analysis since excep-
tions break out of the normal control flow. To represent exception handling in
the control flow graph, the analysis has to first identify program points where
exceptions could occur, then locate the corresponding catch clauses and add
edges from the former to the latter.

45https://docs.python.org/3.7/reference/simple_stmts.html#the-break-statement
46https://docs.python.org/3.7/reference/simple_stmts.html#

the-continue-statement
47https://docs.python.org/3.7/reference/simple_stmts.html#

the-continue-statement

46

https://docs.python.org/3.7/reference/simple_stmts.html#the-break-statement
https://docs.python.org/3.7/reference/simple_stmts.html#the-continue-statement
https://docs.python.org/3.7/reference/simple_stmts.html#the-continue-statement
https://docs.python.org/3.7/reference/simple_stmts.html#the-break-statement
https://docs.python.org/3.7/reference/simple_stmts.html#the-continue-statement
https://docs.python.org/3.7/reference/simple_stmts.html#the-continue-statement
https://docs.python.org/3.7/reference/simple_stmts.html#the-continue-statement
https://docs.python.org/3.7/reference/simple_stmts.html#the-continue-statement


while [test1]1:

if [test2]2:

[continue]3

elif [test3]4:

[break]5

[y = True]6

else:

[a = True]7

(a) The code

1

2

34

5

6

7

(b) The control flow graph

Figure 27: A complex while statement and its control flow graph

However, analyzing exceptions would complicate the analysis a lot. In our
setting, we assume that exceptions happen in rare cases so catch clauses are
ignored by the analysis. Figure 28 shows how to deal with a try statement.

try:

[result = x // y]1

except ZeroDivisionError:

[result = -1]2

else:

[y = 0]3

finally:

[x = 0]4

(a) The code

1

3

4

(b) The control flow graph

Figure 28: A try statement without considering exception handling

In addition, since the raise statement48 may appear outside a try block. We
observe that the pass statement49 is just a null statement. So each raise is
simply transformed into a pass. Figure 29 shows such a transformation. The
exception handling part of each assert statement is handled similarly.

1 if x != 0:

2 raise ValueError

(a) Original form

1 if x != 0:

2 pass

(b) Transformed form

Figure 29: How to transform a raise statement

48https://docs.python.org/3.7/reference/simple_stmts.html#the-raise-statement
49https://docs.python.org/3.7/reference/simple_stmts.html#the-pass-statement
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6.2.4 The global and nonlocal statements

The global statement50 is used to tell Python to relate the listed identifiers to
bound variables in the global scope. The nonlocal statement51 causes the listed
identifiers to refer to previously bound variables in the nearest enclosing scope.
Figure 30 shows a control flow graph containing a global and a nonlocal.

[def]1 [func()]23:

[global a]4

[nonlocal b]5

[func()]67

(a) The Code

1

6

2

4

5

3

7

(b) The control flow graph

Figure 30: A program containing a global and a nonlocal and its control flow
graph

6.2.5 The classdef statement

When the Python interpreter encounters a class definition, its class body is
executed in a new execution frame. When the class body finishes execution,
the execution frame is discarded but the local namespace is saved. In data
flow analysis, we shall set up a call label ℓc and a return label ℓr for each class
definition and an entry label ℓn and an exit label ℓx for its class body. Figure
31 shows a class definition.

6.2.6 The functiondef statement

The control flow graph for a function definition is similar to that for a class
definition except that the function body will only be executed when called.
Figure 32 shows a control flow graph for a function definition. The flow 2 →
4→ 5→ 3 corresponds to the function body of func.

6.2.7 The return statement

The return statement52 is used to end the current execution of a function
and return the result to its caller. Accordingly, in Figure 33, there is an edge
5→ 3 denoting that the execution has ended after a return.

50https://docs.python.org/3.7/reference/simple_stmts.html#the-global-statement
51https://docs.python.org/3.7/reference/simple_stmts.html#

the-nonlocal-statement
52https://docs.python.org/3.7/reference/simple_stmts.html#the-return-statement
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[class]12 [Test]34:

[class variable = 1]5

[def]6 [ init (self)]78:

[pass]9

(a) The code

1 (ℓc)

3 (ℓn)

5

6

4 (ℓx)
2 (ℓr)

(b) The control flow graph

Figure 31: A class definition and its control flow graph

[def]1 [func()]23:

[x = 1]4

[y = 2]5

[pass]6

(a) The code

1

6

2 (ℓn)

4

5

3 (ℓx)

(b) The control flow graph

Figure 32: A function definition and its control flow graph

6.2.8 The import statement

The import statement53 is used to load modules and define names within
an import statement. Figure 34 shows an import statement and its control flow
graph.

6.3 Special language constructs

Everything in Python is an object. The operations that an object supports
are determined by its class. For instance, to evaluate the expression x < y, the
Python interpreter first looks up the special method __le__ on type(x). If
found, the interpreter will execute x.__le__(y) to get the comparison result.
If not, TypeError will be raised. Code Listing 20 shows how the Python inter-

53https://docs.python.org/3.7/reference/simple_stmts.html#the-import-statement

49

https://docs.python.org/3.7/reference/simple_stmts.html#the-import-statement
https://docs.python.org/3.7/reference/simple_stmts.html#the-import-statement


[def]1 [func()]23:

if [test expression]4:

[return 1]5

[a = True]6

[pass]7

(a) The code

1

7

2 (ℓn)

4 5

3 (ℓx)

6

(b) The control flow graph

Figure 33: A program containing a return statement and its control flow graph

[from mod import var]1

[pass]2

(a) The code

1

2

(b) The control flow graph

Figure 34: An import statement and its control flow graph

preter retrieves and calls the special method __le__ for x < y under the hood.

Since a special method could be invoked when an expression is being evalu-
ated, we shall reflect this fact in our control flow graph. Our approach is to set
up two nodes for each expression evaluation. In this section we describe how to
create control flow graphs for these special constructs.

6.3.1 An expression on the right-hand side of an assignment

Evaluating the expression on the right-hand side of an assignment may result
in a method call. Figure 35 shows the code block of a desugared assignment
statement. Figure 36 shows two kinds of control flow graphs for code in Figure
35b. The idea is when the subscript expression a_container[i] is encountered,
the analysis will try to retrieve the special method __getitem__. If found,
the inter-procedural flow edges will be created such as 1 → __getitem__ and
__getitem__→ 2.

6.3.2 An expression on the left-hand side of an assignment

Evaluating the target of an assignment could also lead to a special method
invocation. For instance, performing a[i] = b implicitly invokes __setitem__.
To reflect this, we also extend our control flow graph. Figure 37 shows an
example for that. Figure 38 shows how to deal with the desugared expression
in Figure 37.
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Listing 20 How a special method is called implicitly

1 # get the class of the object x

2 x_class = type(x)

3

4 if hasattr(x_class, "__le__"):

5 # if x_class defines the special method __le__

6 # obtain __le__

7 le_method = getattr(x_class, "__le__")

8 # perform the special method with two arguments x and y

9 return le_method(x, y)

10 else:

11 # if not found, x does not support < operation

12 raise TypeError

[result = a container[i]]1

(a) Original form

# call node of a getitem

[a container[i]]1

# return node of a getitem

[ tmpvar1]2

[result = tmpvar1]3

(b) Desugared form

Figure 35: how to desugar a subscript expression on the right-hand side of an
assignment statement

6.3.3 An expression in a del statement

Executing a del statement may be accompanied by a special method invoca-
tion as well. Figure 39 shows how to desugar a del statement. Figure 40 shows
how to deal with the desugared del statement in Figure 39.

6.3.4 The call expression

Python does not distinguish a class instantiation call from a function call.
They both have the form of A_Name(*args, **kwargs). In the following sec-
tion we describe how to create control flow graphs for these two kinds of calls
respectively.

A function call

Figure 41 and 42 show how to desugar a function call and its two possible
control flow graphs.
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1

2

3

__getitem__

(a) A getitem is found

1

2

3

(b) A getitem is not found

Figure 36: Two control flow graphs of a subscript expression

[a[i] = v]1

(a) Original form

# call node of a setitem

[a[i]]1

# return node of a setitem

[ tmpvar1]2

[result = tmpvar1]3

(b) Desugared form

Figure 37: how to desugar a subscript expression on the left-hand side of an
assignment statement

A class initialization call

A class initialization call undergoes two method calls. The first is __new__
to reserve a memory region for the new class instance. The second is __init__
which initializes the instance attributes. Figure 43 and 44 show how to desugar
a class initialization call and its two possible control flow graphs.

It is possible that __new__ or __init__ is missing . In this situation we use
artificial types explained in Section 7.2.3 to achieve the goal.

The uniform representation of a call

The control flow graph for a call can be represented as Figure 45. Edges
are added dynamically during analyzing. However, functions such as built-in
function len() have no function bodies. We address this issue by setting up
dummy nodes in the control flow graph. The dummy nodes are used to receive
the return value of a function call without the function body. Therefore we
further extend Figure 45 to Figure 46.
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1

2

3

__setitem__

(a) A setitem is found

1

2

3

(b) A setitem is not found

Figure 38: Two control flow graphs of a subscript expression

[del a[i]]1

(a) Original form

# call node of a delitem

[a[i]]1

# return node of a delitem

[ tmpvar1]2

[result = tmpvar1]3

(b) Desugared form

Figure 39: How to desugar a del statement

6.4 Elimination of temporary variables

After desugaring, the control flow graph may contain a large number of
temporary variables. For instance, Code Listing 19 contains four temporary
variables _tmpvar1 to _tmpvar4. We observe each temporary variable is used
only once and has no effect in the future. Therefore, we enable deleting tem-
porary variables in the desugared code. Our approach is to add del statements
in the control flow graph. In this way, the analysis would handle temporary
variable deletion by itself. Code Listing 21 shows a piece of desugared code
with temporary variables deleted.
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1

2

3

__delitem__

(a) A delitem is found

1

2

3

(b) A delitem is not found

Figure 40: Evaluating a del a[i] invokes __delitem__ implicitly

[res = func(*args, **kwargs)]1

(a) Original form

# call node of a function

[func(*args, **kwargs)]1

# return node of a function

[ tmpvar1]2

[res = tmpvar1]3

(b) Desugared form

Figure 41: How to desugar a function call

1

2

3

function

(a) The body of a function is found

1

2

3

(b) The body of a function is not found

Figure 42: Two kinds of control flow graphs for a function call
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[res = Class()]1

(a) Original form

# call node of new

[Class. new (Class)]1

# return node of new

[ tmpvar1]2

# call node of init

[Class. init ( tmpvar1)]3

# return node of init

[ tmpvar2]4

[res = tmpvar2]5

(b) Desugared form

Figure 43: How to desugar a class initialization call

1

2

3

4

5

__new__

__init__

(a)

1

2

3

4

5

(b)

Figure 44: Two kinds of control flow graphs for a class initialization

55



1

2

3

4

5

Figure 45: The uniform control flow graph for a call

1

2

3 dummy

4

5

6 dummy

7

Figure 46: The extended uniform control flow graph for a call

Listing 21 Desugared code with temporary variables deleted

1 _tmpvar1 = '3'

2 _tmpvar2 = to_integer(_tmpvar1)

3 _tmpvar3 = _tmpvar2.bit_length

4 _tmpvar4 = _tmpvar3()

5 length = _tmpvar4

6

7 del _tmpvar1

8 del _tmpvar2

9 del _tmpvar3

10 del _tmpvar4
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7 Type analysis for Python

Type analysis determines which types a variable may have at the exit of each
program point [Van der Hoek and Hage, 2015]. However, Python is slightly
different since the type of a variable in Python is the type of its bound value.
Furthermore, in statically-typed languages such as Haskell or C, the type of
a variable is determined at compile time. Python is dynamically typed, which
means our type analysis is a kind of approximation. Our strategy is to statically
collect all types of variables at each program point.

In this section we shall explain the type analysis operating on the control flow
graphs described in Section 6. At first we describe an abstract value representing
the run-time value with the help of a lattice. Secondly we formulate the type
analysis as an instance of a dynamic monotone framework.

7.1 Points-to analysis

Code Listing 33 shows a method call generate on two different class in-
stances list_generator and set_generator. In order to model such method
calls in data flow analysis, the type of the receiver object should be known.
We use points-to analysis to statically compute heap approximations. In fact,
Python allocates all objects on the heap and these objects are recycled auto-
matically by the Python garbage collector.

7.2 The analysis lattice

An abstract value is described by a Value tuple:

Value = AnalysisType×TypeshedType×ArtificialType

Each component of the tuple is described in the following sections.

7.2.1 AnalysisType

AnalysisType models types occurring in the source code to be analyzed.
The analysis distinguishes six kinds of types. As an example, we create a
Python file named analysis module.py. Code Listing 34 shows the content
of analysis module.py and the comments explain which abstract types they
have in our analysis.

1. AnalysisModule. Each represents a module object occurring in the
source code.

2. AnalysisClass. Each represents a class object occurring in the source
code.

3. AnalysisFunction. Each represents a function object or a generator
object occurring in the source code.
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4. AnalysisMethod. Each represents a method object occurring in the
source code.

5. AnalysisDescriptor. Each represents a descriptor object occurring in
the source code.

6. AnalysisInstance. Each represents a class instance occurring in the
source code.

7.2.2 TypeshedType

TypeshedTypemodels types occurring in the Python standard library. We
retrieve the types from the project typeshed.

1. TypeshedModule. Each represents a module object occurring in the
Python standard library.

2. TypeshedClass. Each represents a class object occurring in the Python
standard library.

3. TypeshedFunction. Each represents a function object occurring in the
Python standard library.

4. TypeshedDescriptorGetter. Each represents a descriptor object oc-
curring in the Python standard library. We only implement the descrip-
tors that support attribute lookup since attribute storage and deletion
have no meaning in typeshed.

5. TypeshedInstance. Each represents a class instance occurring in the
Python standard library.

Some types are used during parsing the typeshed project. They are described
as follows:

1. TypeshedAssign. Each represents an assignment statement occurring
in the typeshed project.

2. TypeshedImportedModule. Each represents an imported module mod-
ule within a module occurring in the typeshed project.

3. TypeshedImportedName. Each represents an imported name within
a module occurring in the typeshed project.

As an example, we create a Python stub file named typeshed module.pyi.
Code Listing 35 shows the content of typeshed module.pyi and the comments
explain which abstract types they have in our analysis.
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7.2.3 ArtificialType

ArtificialType models some built-in types that we would like to enhance.
For instance, according to typeshed, the built-in function sum has the signature
listed in Code Listing 36. However, the return type is inferred as Any since our
analysis has limited support for typing.TypeVar. We investigated our example
projects and found that the return type of sum must be int. Our approach is
to use an artificial function to represent sum to get more precise analysis result.
Code Listing 37 shows the effect of an artificial class.

1. ArtificialClass. Each represents an enhanced class occurring in the type-
shed project.

2. ArtificialFunction. Each represents an enhanced function occurring in
the typeshed project.

3. ArtificialMethod. Each represents an enhanced method occurring in
the typeshed project.

7.3 The analysis components

Abstract addresses

A variable may be bound to an abstract value that is allocated on heap.
Every time a class instance is created, the Record function is used to create a
heap context. Abstract addresses are elements of the set P(HContext).

hcontext ∈ P(HContext)

Abstract scopes

A variable in Python can be classified into three scopes. They are:

scope ∈ Scope = {local, nonlocal, global}

Abstract names

An abstract name consists of the identifier of a variable and a scope.

name ∈ Name = Identifier× Scope

Abstract namespaces

An abstract namespace maps abstract names to abstract values.

namespace ∈ Namespace = Name 7→ Value
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Abstract frames

An abstract frame is a four-tuple (Locals×Back×Globals×Builtins) .
The type of each component is described as follows:

frame ∈ Frame = (Namespace× Frame×Namespace×Namespace)

7.3.1 Abstract stacks

An abstract stack is a list of abstract frames. Code Listing 38 shows some
operations supported by an abstract stack.

stack ∈ Stack = [Frame]

7.3.2 Abstract heaps

An abstract heap maps heap context elements to tuples of field names and
abstract values. Each heap context element is abstraction of heap address. For
simplicity, we use Address to denote heap context elements.

heap ∈ Heap = Address 7→ (FieldName×Value)

7.3.3 Abstract states

The analysis will operate on an abstract state which consists of an abstract
stack. Meanwhile, all heap objects share an abstract global heap.

state ∈ State =Stack

with a global Heap

Some nodes may be unreachable during data flow analysis. We use a least
element ⊥ to capture such cases. Therefore our new abstract state is define as:

state ∈ State =Stack⊥

with a global Heap

The list of operations supported by an abstract state is listed in Code Listing
40.

7.4 The analysis instance

Our analysis54 is an instance of a dynamic monotone framework.

(State, FState , F, E, ι, f., Ψ, Φ)

The instance gives rise to the following set of equations:

54adapted from Section 4.2 of [Van der Hoek and Hage, 2015]
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A◦(ℓ, δ) =
⊔
{A•(ℓ

′, δ′) | ((ℓ′, δ′), (ℓ, δ)) ∈ F} ⊔ ιℓ,δE

where ιℓ,δE =

{
ι if ℓ ∈ E ∧ δ = Λ

⊥ if ℓ /∈ E

A•(ℓ, δ) = fℓ,δ(A◦(ℓ, δ))

A•(ℓr, δr) = f(ℓc,δc),(ℓr,δr)(A◦(ℓc, δc), A◦(ℓr, δr))

where (ℓr, δr) ∈ ReturnProgramPoints

IF = Ψℓ,δ(ℓ, δ) ∪ IF

where (ℓ, δ) in F

F = {Φℓ,δ(e,Λ) | e ∈ E} ∪ {Ψℓ,δ(ℓ
′, δ′) | ((ℓ, δ), (ℓ′, δ′)) ∈ F}

The analysis instance is represented as an instance of class Analysis. Code
Listing 41 shows some operations supported by an Analysis.

7.5 The extremal value ιTA
ℓ,δ

The extremal value ιTA
ℓ,δ specifies the available information when the analysis

starts. It is an empty state which consists of an empty stack and an empty heap.

ιTA
ℓ,δ = []

with a global Heap = {}

7.6 The transfer function fTA
ℓ,δ

The transfer function fTA
ℓ,δ = State→ State specifies how type information

flows from the entry to the exit of a node based on ℓ and δ.

fTA
ℓ,δ (state) =

{
⊥ if state = ⊥
ΩTA

ℓ,δ (state) otherwise

The type information should not be propagated if the state is ⊥, which
means the node is unreachable. Otherwise, fTA

ℓ,δ delegates the computation to

ΩTA
ℓ,δ : State→ State.
For simplicity, we use var_name to represent a plain variable name, func_name

to represent a function name and class_name to represent a class name.

7.6.1 Transfer functions for statements

Transfer functions for statements are used to deal with nodes with respect
to intra-procedrual flow.
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The transfer function for [ast.FunctionDef]ℓ

Code Listing 42 describes the transfer function for a function definition.
The function performs a sequence of operations. At first it checks the function
control flow graph out and adds the graph into the analysis. Secondly, the
function default arguments, the function module and the function property (a
generator function or a plain function) are computed. At last, it binds the
function name to a value containing the function.

The transfer function for [ast.Return]ℓ

Code Listing 43 describes the transfer function for a return statement. The
function first computes the value node.value to be returned and then writes
the value into a special variable RETURN_FLAG.

The transfer function for [ast.Delete]ℓ

Code Listing 44 describes the transfer function for a del statement. The
function first retrieves the name to be deleted and then performs a deletion by
setting the written value to None.

The transfer function for [ast.Assign]ℓ

Code Listing 45 describes the transfer function for an assignment statement.
The function proceeds by first identifying the type of target and then perform-
ing operations based on the type. Assigning value to a list or tuple is hard to
deal with since value unpacking fully depends on run-time information. There-
fore, if target has type ast.List or ast.Tuple, the function extracts all names
within the target expression. These names will all be bound to Any.

The transfer function for [ast.Import]ℓ

Code Listing 46 describes the transfer function for an import statement. The
function first extracts the imported module name and the module alias name.
Then modules are loaded and returned by calling import_a_module. At last the
name is bound to the module value. According to the language reference55, if
the alias name is not specified, the imported module will be a top-level module.
For instance, import a.b.c actually binds name a to the module corresponding
to a.

The transfer function for [ast.ImportFrom]ℓ

Code Listing 47 describes the transfer function for an importfrom state-
ment. The function is more complex than that for the import statement be-
cause it allows both absolute importing and relative importing. The function
first transforms stmt.module into an absolute module name. Second, it imports

55https://docs.python.org/3.7/reference/simple_stmts.html#the-import-statement
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the module as that for [ast.Import]ℓ. At last it finds and binds names listed
in stmt.names. It is possible that a name does not exist in the module. If so,
the function will regard that name as a submodule and try to import it.

The transfer function for [ast.Global]ℓ

Code Listing 48 describes the transfer function for a global statement. The
function first gets the name in the statement and then writes the name to
state with an argument "global" indicating the analysis to find the name in
the global scope.

The transfer function for [ast.Nonlocal]ℓ

Code Listing 49 describes the transfer function for a nonlocal statement.
The function first gets the name in the statement and then writes the name to
state with an argument "nonlocal" indicating the analysis to find the name
in the enclosing scope.

The transfer function for [ast.While]ℓ, [ast.If]ℓ, [ast.Pass]ℓ, [ast.Break]ℓ

and [ast.Continue]ℓ

In the Python abstract syntax tree, the test condition of a while statement
or an if statement has type ast.expr which can not introduce new bindings.
After desugaring, the test condition of a while statement or an if statement is
just a name. So it has no effect on an abstract state. Therefore Ωℓ,δ is an
identity function.

The pass statement acts as a placeholder and causes no modification to an
abstract state. In addition, break and continue alter the control flow graph
but themselves have no effect on an abstract state.

To sum up, the transfer functions for these five statements are listed in Code
Listing 50.

7.6.2 Transfer functions for inter-procedural counterparts

Transfer functions for statements are used to deal with nodes with respect
to inter-procedrual flow.

The transfer function for [ast.ClassDef]ℓc

Code Listing 51 describes the transfer function for the call node of a class
definition. The function prepares a new frame for executing the class body.

The transfer function for [ast.Call]ℓc

Code Listing 52 describes the transfer function for a function call node. The
function obtains the call expression call_expr and prepares arguments in the
local scope of the newly created frame.
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In Python, ∗ can be used for unpacking positional arguments and ∗∗ can be
used for unpacking keyword arguments. For instance, if a = [1, "1", True],
func(*a) is actually equivalent to func(1, "1", True). In our analysis, all
parameters of the function will be set to Any if there is any unpacking.

The transfer function for a right-hand-side expression [expr]ℓc

Code Listing 53 describes the transfer function for a call node of a right-
hand-side expression. The branch isinstance(call_expr, ast.Attribute)

corresponds to preparing arguments for possible descriptors. The other branches
correspond to preparing arguments for possible special methods.

The transfer function for a left-hand-side expression [expr = value]ℓc

Code Listing 54 describes the transfer function for a call node of a left-hand-
side expression. The function distinguishes two cases — ast.Attribute and
ast.Subscript. In the former case, a descriptor setter may be called. In the
latter case, __setitem__ may be called.

The transfer function for a del statement [del expr]ℓc

Code Listing 55 describes the transfer function for a del statement. The
function distinguishes descriptors and __delitem__.

The transfer function for an entry node [node]ℓn

Code Listing 56 describes the transfer function for an entry node of an
inter-procedural call. If the entry node contains an ast.arguments, function
arguments will be parsed based on the function parameters. Otherwise, the
transfer function is just an identity function.

The transfer function for an exit node [node]ℓx

Code Listing 57 describes the transfer function for an exit node of an inter-
procedural call. The function first calls state.get_return_value() to ob-
tain return_value which is the value of the special variable RETURN_FLAG. If
return_value is empty, it means the inter-procedural function will return the
default value None.

The transfer function for [ast.ClassDef]ℓr

Code Listing 58 describes the transfer function for a return node which con-
tains an ast.ClassDef. The function sequentially computes the class module,
the class bases, the class body frame and the tuple containing the entry and
exit labels of the class body.
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The transfer function for [ast.Name]ℓr

Code Listing 58 describes the transfer function for a return node which
contains an ast.Name. The function retrieves the value of RETURN_FLAG and
writes it into the name stmt.id.

The transfer function for other return nodes [node]ℓr

Code Listing 60 describes the transfer function for other return nodes. The
function just pops the last frame on the stack.

7.7 The flow creation function ΨTA
ℓ,δ

The ΨTA
ℓ,δ function not only enables the analysis instance to discover new

inter-flow edges and set up contexts during iteration, but also handles types
that have no flows.

7.7.1 Context sensitivity manipulation functions

Section 3.2.3 has described how to apply context sensitivity by means of
Equation 1 and 2. It works well in Java since every function belongs to some
class. However, a function in Python can be declared outside a class so that it
has no receiver object. We use the third function MergeOrphan to create a
context when a function is called without a receiver object [Kashyap, Dewey,
Kuefner, Wagner, Gibbons, Sarracino, Wiedermann, and Hardekopf, 2014].

MergeOrphan : Lab×HContext× Context→ Context (8)

7.7.2 ΨTA
ℓ,δ for [ast.ClassDef]ℓc

The function (Code Listing 61) is responsible for creating inter-procedural
flows for a class definition.

7.7.3 Ψℓ,δ for [func_name(*args, **kwargs)]ℓc

This function (Code Listing 62) is responsible for creating flows for stan-
dalone functions.

7.7.4 Ψℓ,δ for [class_name(*args, **kwargs)]ℓc

This function (Code Listing 63) is responsible for creating flows for class
initialization calls.

7.7.5 Ψℓ,δ for a right-hand-side expression [expr]ℓc

This function (Code Listing 64) is responsible for creating inter-procedural
flows for special methods on the right-hand side of an assignment.
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7.7.6 Ψℓ,δ for a left-hand-side [expr = value]ℓc

This function (Code Listing 65) is responsible for creating inter-procedural
flows for special methods on the left-hand side of an assignment.

7.7.7 Ψℓ,δ for a del statement [del expr]ℓc

This function (Code Listing 66) is responsible for creating inter-procedural
flows for special methods within a del assignment.

7.8 The flow collecting function ΦTA
ℓ,δ

Given a program point (ℓ, δ), the ΦTA
ℓ,δ function enables collecting all flow

edges within intra-procedural flow and inter-procedural flow . It behaves differ-
ently depending on the property of the node corresponding to ℓ.

Φℓ,δ for a call node [node]ℓc

This function (Code Listing 67) collects flows corresponding to a call node.

Φℓ,δ for an exit node [node]ℓx

This function (Code Listing 68) collects flows corresponding to an exit node.

Φℓ,δ for any other node [node]ℓ

This function (Code Listing 69) collects flows corresponding to any other
node.

Φℓ,δ for every node [node]ℓ

In the control flow graph, a label ℓ can only belong to one kind of above
three nodes. Therefore, our Φℓ,δ function is defined as the function in Code
Listing 70.

7.9 Typeshed types in the type analysis

We use typeshed to retrieve type information of objects within the Python
standard library. Since typeshed-client is just a typeshed parser, we further
extend it to support type information retrieval. Code Listing 71 gives a general
idea of how we improve typeshed-client.

7.10 Artificial types in the type analysis

Artificial types are used to represent types that have effects during analysis.
For instance, object.__new__(cls) is to create a class instance which has type
cls. In our analysis, the return of object.__new__(cls) is an abstract heap
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address which represents an object allocated on heap. Code Listing 72 gives a
general idea of how we make use of artificial types.
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8 Experimental Evaluation

We at first made the following modifications to the example projects in order
to circumvent some unsupported language features:

� Rewrite super(). In Python, each call to super() is transformed into
super(type1, type2)56. We transform them manually since it is tough
to perform the transformation in our analysis.

� Remove Python 2.x code. Some modules in Python 2.x do not exist in
Python 3.7.

� Rewrite import * to a list of imported names based on the special at-
tribute __all__57.

We here describe a case where crude and refined analyses yield different
values using Code Listing 22. In crude analysis, ins.cls_var returns a value
containing cls_var which comes from the class body of Cls and an int object
which comes from a call to __get__. On the contrary, in refined analysis,
ins.cls_var returns cls_var only since instance variables take precedence over
non-data descriptors.

Listing 22 Refined analysis and crude analysis yield different analysis results

1 class ClsVar:

2 def __get__(self, obj, type=None):

3 return 1

4

5 class Cls:

6 # a non-data descriptor

7 cls_var = ClsVar()

8

9 ins = Cls()

10 attr_value = ins.cls_var

In this section we describe the implementation of our type inferencer, the
projects to be tested, the evaluation results and the answers to research ques-
tions.

8.1 The implementation

The implementation consists of three phases. In the first phase, an abstract
syntax tree is obtained by first calling ast.parse58 and then by desugaring each
complex construct described in Section 6.1. In the second phase, the abstract

56https://docs.python.org/3.7/library/functions.html#super
57https://stackoverflow.com/questions/44834/what-does-all-mean-in-python
58https://docs.python.org/3.7/library/ast.html#ast.parse
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syntax tree is transformed into a control flow graph with the help of our control
flow graph generator. In the last phase, the control flow graph is read by the
type inferencer which is written in Python.

The open source project is available at dmf59. It consists of three components
which implement the phases described above.

8.2 The example projects

No. Name LOC
1 pyshorteners 522
2 google-api-python-client 2618
3 sqlparse 2614
4 feedparser 4089
5 configobj 1047
6 html2text 1359
7 twitter 2480

Table 7: Example projects

1. The project pyshorteners60. It is a Python library to shorten and expand
urls.

2. The project google-api-python-client61. It provides developers with simple
access to many Google’s discovery based APIs.

3. The project sqlparse62. It is a SQL parser that offers support for parsing,
splitting and formatting SQL statements.

4. The project feedparser63. It is a library for downloading and parsing
syndicated feeds.

5. The project configobj64. It is a powerful ini file reader and writer.

6. The project html2text65. It is used to convert a HTML page into plain
ASCII text.

7. The project twitter66. It is is an API access tool for Twitter that has a
command-line program and an IRC bot.

59https://github.com/LayneInNL/dmf
60https://github.com/ellisonleao/pyshorteners
61https://github.com/googleapis/google-api-python-client
62https://github.com/andialbrecht/sqlparse
63https://github.com/kurtmckee/feedparser
64https://github.com/DiffSK/configobj
65https://github.com/aaronsw/html2text
66https://github.com/python-twitter-tools/twitter
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8.3 Result

The experiments were performed on an machine with a Intel(R) Core(TM)
i5-1035G1 CPU @ 1.00GHz processor with 15.2 GiB of RAM running Fedora
Linux 35.

8.3.1 Run time

As for each example project, we separately performed a 1-object-sensitive
type analysis with a 1-context-sensitive heap and a 2-object-sensitive type anal-
ysis with a 1-context-sensitive heap. The results are shown in Table 8 and 9.

The second column and the third column of Table 8 and 9 show the run
time of crude and refined analyses respectively. All run time is measured in
seconds. N/A denotes the analysis can not finish the analyzing in 90 minutes
(5400 seconds).

Name Crude Refined
pyshorteners 0.32 0.28

google-api-python-client 482.06 498.37
sqlparse N/A N/A

feedparser N/A N/A

configobj 125.58 113.75
html2text 160.01 166.45
twitter 214.73 221.86

Table 8: The run time of the 1-object-sensitive type analysis with a 1-context-
sensitive heap

Name Crude Refined
pyshorteners 0.28 0.23

google-api-python-client 481.06 497.83
sqlparse N/A N/A

feedparser N/A N/A

configobj 115.25 115.87
html2text 158.31 165.63
twitter 216.03 222.91

Table 9: The run time of the 2-object-sensitive type analysis with a 1-context-
sensitive heap

8.3.2 Type difference

Table 10 records two metrics ‘Difference with temps’ and ‘Difference with-
out temps’ produced by our type inferencer taking each example project as
input. We aim to calculate how many variables will have different types under
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crude analysis and refined analysis. We also would like to know how temporary
variables affect the statistics.

For simplicity, we define a variable occurring in the analysis as a considered
variable. A variable is a distinct variable if the inferred types are different be-
tween crude analysis and refined analysis. Each metric is a tuple containing the
count of distinct variables and the count of considered variables. For instance,
the cell (45704, 400344) in row 7 and column 2 of Table 10 states that in all
400344 considered variables, there are 45704 distinct variables.

We use a simple program to explain how our metrics are computed. Code
Listing 23 shows the possible analysis results of program point 1 and program
point 2 in crude analysis and refined analysis respectively. There are two vari-
ables _tmpvar1 and res. So the number of considered variables is 2. Fur-
thermore, since only the temporary variable _tmpvar1 has different types in
two analyses, the number of distinct variables is 1. Therefore ‘Difference with
temps’ in Code Listing 23 is (1, 2). The metric ‘Difference without temps’ is
computed similarly except that all temporary variables are not considered.

Listing 23 How metrics are counted in type difference

1 # curde analysis:

2 # program point 1

3 local_namespace1 = {_tmpvar: {AnalysisFunction, AnalysisMethod}}

4 # program point 2

5 local_namespace2 = {res: {int}}

6

7 # refined analysis:

8 # program point 1

9 local_namespace1 = {_tmpvar: {AnalysisMethod}}

10 # program point 2

11 local_namespace2 = {res: {int}}

Name Difference with temps Difference without temps
pyshorteners (0, 1157) (0, 390)

google-api-python-client (22738, 346600) (0, 82563)
sqlparse N/A N/A
feedparser N/A N/A
configobj (45704, 400344) (0, 54855)
html2text (6240, 241895) (0, 37249)
twitter (61452, 301663) (0, 23640)

Table 10: Type difference
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8.4 Discussions

8.4.1 The answers to research question 1

It can be seen from Table 8 or 9 that except sqlparse and feedparser,
our type inferencer can finish the analyzing in 500 seconds. In addition, though
google-api-python-client, sqlparse and twitter have similar lines of code,
the run time for google-api-python-client is at least two times longer than
that for twitter. To make the situation worse, the analysis for sqlparse is even
unfinished. After investigating these two projects, we found that sqlparse has
a large number of configuration modules. The inferencer has to first initialize
these modules and the classes within them. This process takes a very long time.

Comparing Table 8 with 9, the run time still remains stable under different
object sensitivity depths. One possible reason is the example projects employ
a large amount of external code so that the inferred types turns to Any in most
cases.

We came to the conclusion that in general the running time of our analysis
highly depends on the source code to be analyzed.

8.4.2 The answers to research question 2

The experimental result listed in the third column of Table 10 shows that
crude analysis and refined analysis produced basically the same types. Espe-
cially the number of distinct variables were all 0. Therefore we came to the
conclusion that as far as these example projects were considered, crude analysis
and refined analysis were the same.

8.4.3 The answers to research question 3

After looking into the implementation of Python and the example projects,
we found out several possible answers.

Python attribute lookup operations

A method call usually has the form receiver.method(*args, **kwargs).
We will use an example code to illustrate this situation. Code Listing 24 shows
the type of result is determined by a_ins.a_func(). Crude analysis may infer
that a_ins.a_func has two types AnalysisFunction and AnalysisMethod.
However it will not affect the type of result since the call to AnalysisFunction
fails due to no enough arguments.

Desugaring of language constructs

Due to desugaring, the method call a_ins.a_func() in Code Listing 24
is desugared into Code Listing 25. The inferencer only cares about variables
occurring in the original programs. That is, the type of result is the same in
both two kinds of analyses, though two _tmpvar1 have different types.
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Listing 24 The behavior of function calls may reduce type difference

1 class AClass:

2 def a_func(self):

3 ...

4

5 a_ins = AClass()

6 # a_ins.a_func is actually a method

7 result = a_ins.a_func()

Listing 25 Desugaring may reduce type difference

1 _tmpvar1 = a_ins.a_func

2

3 # in crude analysis

4 _tmpvar1: AnalysisFunction | AnalysisMethod = a_ins.a_func

5 # in refined analysis

6 _tmpvar1: AnalysisMethod = a_ins.a_func

7

8 result = _tmpvar1()

Python programming style

Python is dynamically typed and programmers may perform attribute access
operations on almost any object. Code Listing 26 demonstrates a piece of valid
Python code. The class instance a_ins has two attributes with the same name
a_field: one is in the instance dictionary and the other is in the class dictionary.

However such a programming style may impair the readability. Program-
mers have to spend time on understanding which one will be used at each pro-
gram point. In practice, programmers tend to use different names to represent
variables of classes and variables of class instances.

Listing 26 Python programming style may reduce type difference

1 class AClass:

2 a_field = 1

3 def __init__(self):

4 self.a_field = 1

5 a_ins = AClass()

In addition, Python programmers tend to import and call external libraries
to finish programming tasks, which complicates the type inference since our
analysis does not support the external projects.
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Incomplete class information

Our type inferencer can not infer all class type information statically. For
instance, in Code Listing 27, AClass inherits from deque. Since the inferencer
may know nothing about the bases of deque, AClass.__mro__ is marked as
incomplete. To keep sound, AClass.__mro__ is replaced with (AClass, Any).
Besides, the class __mro__ is accessed every time attribute access takes place.
With incomplete class information, the resulted type of an attribute access
operation tend to be Any. Any attribute access related to Any always returns
Any.

Listing 27 Incomplete class information may reduce type difference

1 from collections import deque

2

3 # AClass.__mro__ is incomplete

4 class AClass(deque):

5 pass

6

7 a_ins = AClass()

8 result: Any = a_ins.a_field

Not often used advanced features

Python is a scripting language and is designed for implementing new func-
tionality quickly. Nevertheless, programmers usually use Python to deal with
ordinary tasks which do not require advanced features. As a consequence, re-
fined analysis contributes no precision enhancement to the analysis result.

One investigated project rich67 whose lines of code are 19230 employs data
descriptors. It is supposed that refined analysis would be more precise than
crude analysis when taking such a feature into account.

67https://github.com/Textualize/rich
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9 Conclusions

In this thesis we described a object-sensitive type analysis for Python. The
feature of dynamic method resolution in Python implies the control flow graph
is being constructed by means of data flow information. Furthermore, points-
to information enriches the data flow information, which in turn expands the
control flow graph. To this end we established a dynamic monotone framework
by borrowing ideas from [Nielson, Nielson, and Hankin, 2004; Fritz and Hage,
2017; Van der Hoek and Hage, 2015].

We specified the type analysis as an instance of a dynamic monotone frame-
work. On top of that, we simulated object-oriented design in Python to support
all commonly used special methods.

Our experimental evaluation mainly aimed to answer whether crude analysis
and refined analysis would yield significantly different types. If not, other type
inference tools may just implement crude analysis. Our experiments showed that
refined analysis did not improve the analysis precision a lot. At last we discussed
some possible answers to why refined analysis failed to make an improvement
based on our observations and experience.

10 Limitations

Python does not support tail recursion elimination68. The Python inter-
preter stack has the default maximum recursion depth of 1000. If the depth of
function calls exceeds this number, a RecursionError will be raised. For in-
stance, the maximum recursion depth may be exceeded when parsing a control
flow graph. Users may change the limit69 by calling sys.setcursionlimit().

For memory-intensive applications, Python may crash due to stack overflow.
Users may change the thread stack size by calling resource.setrlimit()70 on
Linux.

Our type inferencer now has only implemented a small set of methods of
some built-in container types such as list, tuple and set. Supporting all of
them takes great effort.

68https://neopythonic.blogspot.com/2009/04/tail-recursion-elimination.html
69https://docs.python.org/3.7/library/sys.html#sys.setrecursionlimit
70https://docs.python.org/3/library/resource.html#resource.setrlimit
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11 Future Work

In this section we shall describe some features that can be improved or
implemented in the future. Section 11.1 introduces three functions may be
beneficial to the enhancement of the analysis precision. Section 11.2 introduces
a helper tool that could make our tool more user-friendly. The last subsection
lists some unsupported Python language features.

11.1 Enhancement of analysis precision

Recency abstraction

Our type inferencer only allows weak updates on fields of heap allocated ob-
jects. It is unknown that whether recency abstraction [Balakrishnan and Reps,
2006] could improve analysis precision for Python projects, although [Jensen,
Møller, and Thiemann, 2009] has demonstrated that recency abstraction helps
the analysis yield good precision for Javascript projects.

Exception analysis

Our type inferencer does not take exception handling into account and thus
the analysis may be unsound. To make it sound, it would be good to add
exception analysis. Actually exception analysis and points-to analysis rely on
each other. The former depends on call graph information constructed in points-
to analysis to complete exception handling. The points-to set produced by
the latter is also influenced by exception analysis because of exception object
assignments.

Due to significant overhead of exception-chain analysis [Fu and Ryder, 2007],
Bravenboer and Smaragdakis purpose to embed an on-the-fly exception analy-
sis in context-sensitive points-to analyses [Bravenboer and Smaragdakis, 2009].
However, the result shows that it results in a disproportionate amount of time
being spent on exception analysis in consequence of a large number of exception
objects [Smaragdakis, Bravenboer, and Lhoták, 2011]. So in practice, exception
objects are coarsened relative to ordinary objects.

Class inheritance in typeshed

Our type inferencer can not handle class inheritance in typeshed. Therefore
the tool may raise AttributeError if an attribute is not found. Adding support
in class inheritance in typeshed eliminates such attribute lookup errors. Code
Listing 28 shows the class array has two base classes MutableSequence and
Generic. If the desired attribute is array.__len__, the analysis would find it
in the base class MutableSequence.
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Listing 28 An excerpt from array.pyi

1 from typing import Generic, MutableSequence, TypeVar

2

3 _T = TypeVar("_T", int, float, str)

4

5 class array(MutableSequence[_T], Generic[_T]):

6 ...

11.2 Enhancement of tool usefulness

In general the type information inferred by our tool is incomplete due to
insufficient information. One approach to enhancing the precision is to take
type hints provided by programmers into account. Code Listing 29 shows the
return value res is annotated with the intended return type int. However it
is risky since user-provided type hints may be different from types inferred by
type-related tools.

Listing 29 An excerpt from types.pyi

1 # user specifies the return type of eval as int

2 res: int = eval("1")

11.3 Type information integration

For now our type inferencer is only able to infer types of each variable at
each program point. The project pytype71 supplies a tool merge-pyi to merge
stub files into the Python source code. To this end, the inferencer should first
dump type information into stub files.

11.4 Unsupported Python language features

11.4.1 Closures

A closure is a function that has access to a free variable from the nesting
function. Code Listing 30 demonstrates a closure printer. Under the hood,
the Python interpreter makes use of co_freevars that is a tuple of names of
free variables and co_cellvars that is a tuple of names of cell variables. Some
detailed explaination can be found in Anatomize Python’s Closures72 and How
are python closures implemented?73. It is nontrivial for a static analysis tool to
keep track of free variables used in a closure.

71https://github.com/google/pytype
72https:\/\/medium.com/swlh/anatomize-pythons-closures-dbf0fa217d38
73https://stackoverflow.com/questions/70773695/how-are-python-closures-implemented
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Listing 30 A closure in Python

1 def outer():

2 version = "1.0"

3 def printer():

4 print(version)

5

6 return printer

7

8 printer = outer()

9 printer()

11.4.2 Metaclasses

Programmers may create custom metaclasses by inheriting from the built-in
metaclass type. Code Listing 31 shows a custom metaclass.

Listing 31 A custom metaclass in Python

1 class NewMetaclass(type):

2 pass

11.4.3 The ast.YieldFrom Expression

The expression yield from enables delegating part of its evaluations to
another generator. Its full semantics can be found in PEP 38074. Code Listing
32 shows the value of res is yielded from generator1().

Listing 32 An example of yield from

1 # suppose generator1 is a generator

2 def generator1(): ...

3

4 # suppose generator2 is also a generator

5 def generator2():

6 res = yield from generator1()

11.4.4 Coroutines with async and await syntax

The introduction of async def, async for, async with and await makes
coroutines a native Python language feature. All example projects in the ex-
perimentation contain no asynchronous code.

74https://peps.python.org/pep-0380/
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Ondřej Lhoták and Laurie Hendren. Evaluating the benefits of context-sensitive
points-to analysis using a bdd-based implementation. ACM Transactions on
Software Engineering and Methodology (TOSEM), 18(1):1–53, 2008.

Ana Milanova, Atanas Rountev, and Barbara G Ryder. Parameterized object
sensitivity for points-to and side-effect analyses for java. In Proceedings of
the 2002 ACM SIGSOFT international symposium on Software testing and
analysis, pages 1–11, 2002.

Ana Milanova, Atanas Rountev, and Barbara G Ryder. Parameterized object
sensitivity for points-to analysis for java. ACM Transactions on Software
Engineering and Methodology (TOSEM), 14(1):1–41, 2005.

Flemming Nielson, Hanne R Nielson, and Chris Hankin. Principles of program
analysis. Springer Science & Business Media, 2004.

Erik M Nystrom, Hong-Seok Kim, and Wen-Mei W Hwu. Importance of heap
specialization in pointer analysis. In Proceedings of the 5th ACM SIGPLAN-
SIGSOFT workshop on Program analysis for software tools and engineering,
pages 43–48, 2004.

Thomas Reps. Undecidability of context-sensitive data-dependence analysis.
ACM Transactions on Programming Languages and Systems (TOPLAS), 22
(1):162–186, 2000.

Henry Gordon Rice. Classes of recursively enumerable sets and their decision
problems. Transactions of the American Mathematical society, 74(2):358–366,
1953.

Micha Sharir, Amir Pnueli, et al. Two approaches to interprocedural data
flow analysis. New York University. Courant Institute of Mathematical Sci-
ences . . . , 1978.

Olin Grigsby Shivers. Control-flow analysis of higher-order languages or taming
lambda. Carnegie Mellon University, 1991.

Jeremy Siek and Walid Taha. Gradual typing for objects. In European Confer-
ence on Object-Oriented Programming, pages 2–27. Springer, 2007.

Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. Pick your con-
texts well: understanding object-sensitivity. In Proceedings of the 38th an-
nual ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pages 17–30, 2011.

80



Yannis Smaragdakis, George Balatsouras, et al. Pointer analysis. Foundations
and Trends® in Programming Languages, 2(1):1–69, 2015.

Henk Erik Van der Hoek. Object sensitive type analysis for php. Master’s thesis,
Utrecht University, 2014.

Henk Erik Van der Hoek and Jurriaan Hage. Object-sensitive type analysis of
php. In Proceedings of the 2015 Workshop on Partial Evaluation and Program
Manipulation, pages 9–20, 2015.

81



A All Code Listings in Section 7

Listing 33 Two class instances and two method calls

1 class ListGenerator:

2 def generate(self): return list()

3

4 class SetGenerator:

5 def generate(self): return set()

6

7 list_generator = ListGenerator()

8 set_generator = SetGenerator()

9

10 a_list = list_generator.generate()

11 a_set = set_generator.generate()
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Listing 34 The content of analysis module.py

1 # Cls is an instnace of AnalysisClass

2 class Cls:

3 # func is an instance of AnalysisFunction

4 def func(self):

5 pass

6

7 # name is an instance of AnalysisFunction

8 def name(self):

9 return "name"

10

11 # name is an instance of AnalysisDescriptor

12 name = property(name)

13

14 # ins is an instance of AnalysisInstance

15 ins = Cls()

16

17 # method is an instance of AnalysisMethod

18 method = ins.func

Listing 35 The content of typeshed module.pyi

1 # sys is an instance of TypeshedImportedModule

2 import sys

3

4 # ABC is an instance of TypeshedImportedName

5 from abc import ABC

6

7 # Cls is an instnace of TypeshedClass

8 class Cls:

9 # func is an instance of AnalysisFunction

10 def func(self) -> Any: ...

11

12 # alias is an instance of TypeshedAssign

13 alias = func

14

15 # name is an instance of TypeshedDescriptorGetter

16 @property

17 def name(self) -> str: ...

18

19

20 # ins is an instance of TypeshedInstance

21 ins = Cls()
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Listing 36 The function signatures of the built-in function sum

1 _AddableT1 = TypeVar("_AddableT1", bound=SupportsAdd[Any, Any])

2 _AddableT2 = TypeVar("_AddableT2", bound=SupportsAdd[Any, Any])

3

4 @overload

5 def sum(

6 __iterable: Iterable[bool | _LiteralInteger],

7 __start: int = ...

8 ) -> int: ...

9 @overload

10 def sum(

11 __iterable: Iterable[_AddableT1], __start: _AddableT2

12 ) -> _AddableT1 | _AddableT2: ...

Listing 37 The effect of the artificial function sum

1 # without ArtificialFunction, res has type Any.

2 res: Any = sum([1, 2, 3])

3

4 # with ArtificialFunction, res has type int.

5 res: int = sum([1, 2, 3])
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Listing 38 The operations supported by a stack

1 class Stack:

2 # write local name to stack

3 def write_local_name(self, name: str,

4 value: Value) -> None: ...

5

6 # write nonlocal name to stack

7 def write_nonlocal_name(self, name: str,

8 value: Value) -> None: ...

9

10 # write global name to stack

11 def write_global_name(self, name: str,

12 value: Value) -> None: ...

13

14 # read name from stack

15 def read_name(self, name: str) -> Value: ...

16

17 # delete name from stack

18 def delete_name(self, name: str) -> None: ...

19

20 # add a new frame to stack

21 def add_new_frame(self) -> None: ...

22

23 # pop the last frame from stack

24 def pop_frame(self) -> None: ...

25

26 # check if the function body is related to generator

27 def is_generator(self) -> bool: ...

Listing 39 The operations supported by a heap

1 class Heap:

2 # write name to heap based on address

3 def write_name(self, address: Address,

4 name: str, value: Value) -> None: ...

5

6 # read name from heap based on address

7 def read_name(self, address: Address,

8 name: str) -> Value: ...

9

10 # delete name from heap based on address

11 def delete_name(self, address: Address,

12 name: str) -> None: ...

85



Listing 40 The operations supported by a state

1 class State:

2 # write name to stack, None represents deleting

3 def write_name_to_stack(self, name: str,type: str, value:

Value | None) -> None: ...↪→

4

5 # read name from stack

6 def read_name_from_stack(self, name: str) -> Value: ...

7

8 # write name to heap, None represents deleting

9 def write_name_to_heap(self, address: Address, name: str,

value: Value | None) -> None: ...↪→

10

11 # read name from heap

12 def read_name_from_heap(self, address: Address, name: str) ->

Value: ...↪→

13

14 # evaluate an expression expr

15 def compute_expr(self, expr: ast.expr) -> Value: ...

16

17 # evaluate function default arguments

18 def compute_func_defaults(self, function: ast.FunctionDef) ->

Tuple: ...↪→

19

20 # evaluate function call arguments

21 def compute_func_args(self, expr: ast.Call) -> Tuple: ...

22

23 # parse function call arguments

24 def parse_call_args(self, expr: ast.arguments, args: Tuple)

-> None: ...↪→

25

26 # evaluate class bases

27 def compute_class_bases(self, stmt: ast.ClassDef) -> List:

...↪→

28

29 # get current module name

30 def get_curr_module(self) -> str: ...

31

32 # get current package name of the current module

33 def get_curr_package(self) -> str: ...

34

35 # get the value of the special variable RETURN_FLAG

36 def get_return_value(self) -> Value: ...
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Listing 41 The operations supported by an analysis

1 class Analysis:

2 flow: Set[Tuple]

3 inter_flow: Set[Tuple]

4

5 def checkout_cfg(self, program_point: ProgramPoint) -> CFG:

...↪→

6 def add_cfg(self, cfg: CFG) -> Tuple[int, int]: ...

7 def get_stmt_or_expr(self, program_point: ProgramPoint) ->

ast.stmt | ast.expr: ...↪→

8 def name_extractor(self, expr: ast.List | ast.Tuple) ->

Set[str]: ...↪→

9

10 # import a module based on name

11 def import_a_module(self, name: str) -> Value: ...

12 # resolve a relative module name to its absolute name

13 def resolve_name(self, name: str | None, package: str, level:

str) -> Value: ...↪→

14

15 # attribute access storage or deletion on a set of objects

16 def analysis_setters(self, receiver: Value, attr: str, value:

Value | None) -> Value: ...↪→

17 # attribute access storage or deletion on a single object

18 def analysis_setter(self, receiver: Value, attr: str, value:

Value | None) -> Value: ...↪→

19 # attribute access lookup on a set of objects

20 def analysis_getters(self, receiver, attr: str) -> Value:

21 # attribute access lookup on a single object

22 def analysis_getter(self, receiver, attr: str) -> Value:

23

24 def get_call_label(self, return_label: int) -> int: ...

25 def get_return_label(self, call_label: int) -> int: ...

26 def get_two_return_labels(self, call_label: int) -> Tuple:

...↪→

27

28 def add_classdef_flow(program_point: ProgramPoint,

return_label: int): ...↪→

29 def add_function_flow(program_point: ProgramPoint, function:

AnalysisFunction, return_label: int): ...↪→

30 def add_method_flow(program_point: ProgramPoint, method:

AnalysisMethod, return_label: int): ...↪→

31 def add_descriptor_flow(program_point: ProgramPoint,

descriptor: AnalysisDescriptor, return_label: int): ...↪→
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Listing 42 The sketch of transfer_FunctionDef

1 def transfer_FunctionDef(

2 analysis: Analysis, program_point: ProgramPoint,

3 state: State, node: ast.FunctionDef

4 ) -> State:

5 tp_cfg: CFG = analysis.checkout_cfg(program_point)

6 tp_code: Tuple = analysis.add_cfg(tp_cfg)

7

8 tp_defaults: Tuple = state.compute_func_defaults(node)

9 tp_module: str = state.get_curr_module()

10 tp_is_generator: bool = func_cfg.is_generator

11

12 value: Value = Value()

13 analysis_functioin: AnalysisFunction = AnalysisFunction(

14 tp_module, tp_code,

15 tp_defaults, tp_is_generator

16 )

17 value.inject(analysis_function)

18

19 state.write_name_to_stack(node.name, "local", value)

20

21 return state

Listing 43 The sketch of transfer_Return

1

2 def transfer_Return(

3 analysis: Analysis, program_point: ProgramPoint,

4 state: State, node: ast.Return

5 ) -> State:

6 tp_return: Value = state.compute_expr(node.value)

7 state.write_name_to_stack(RETURN_FLAG, "local", tp_return)

8

9 return state
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Listing 44 The sketch of transfer_Delete

1 def transfer_Return(

2 analysis: Analysis, program_point: ProgramPoint,

3 state: State, node: ast.Delete

4 ) -> State:

5 # get the name in the return statement

6 tp_name:str = node.targets[0].id

7

8 state.write_name_to_stack(tp_name, "local", None)

9

10 return state

Listing 45 The sketch of transfer_Assign

1 def transfer_Assign(

2 analysis: Analysis, program_point: ProgramPoint,

3 state: State, node: ast.Assign

4 ) -> State:

5 target: ast.expr = node.targets[0]

6 if isinstance(target, ast.Name):

7 value: Value = state.compute_expr(node.value)

8 state.write_name_to_stack(target.id, "local", value)

9 # list or tuple can not be handled perfectly

10 elif isinstance(target, (ast.List, ast.Tuple)):

11 names: Set[str] = analysis.name_extractor(target)

12 for name in names:

13 state.write_name_to_stack(name, "local", Any)

14

15 return state
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Listing 46 The sketch of transfer_Import

1 def transfer_Import(

2 analysis: Analysis, program_point: ProgramPoint,

3 state: State, node: ast.Import

4 ) -> State:

5 # absolute module name

6 name: str = node.names[0].name

7 # possible alias name

8 asname: str | None = node.names[0].asname

9

10 module: Value = analysis.import_a_module(name)

11

12 if asname:

13 name: str = asname

14 else:

15 name: str = name.partition(".")[0]

16 module: Value = import_a_module(name)

17

18 state.write_name_to_stack(name, "local", module)

19

20 return state
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Listing 47 The sketch of transfer_ImportFrom

1 def transfer_ImportFrom(

2 analysis: Analysis, program_point: ProgramPoint,

3 state: State, stmt: ast.ImportFrom

4 ) -> State:

5 # possible relative module name

6 name: str | None = stmt.module

7 # if it's a relative import

8 if node.level > 0:

9 package: str = state.get_curr_package()

10 name: str = analysis.resolve_name(stmt.module, package,

stmt.level)↪→

11

12 module: Value = import_a_module(name)

13

14 # the name in the fromlist

15 sub_name = stmt.names[0].name

16 # the possible alias name in the fromlist

17 sub_asname = stmt.names[0].asname

18

19 if sub_name not in module:

20 # sub_name is not found in the current module

21 sub_module: str = f"{name}.{sub_name}"

22 module: Value = import_a_module(sub_module)

23 else:

24 module: Value = getattr(module, sub_name)

25

26 if sub_asname:

27 name: str = sub_asname

28

29 state.write_name_to_stack(name, "local", module)

30

31 return state
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Listing 48 The sketch of transfer_Global

1 def transfer_Global(

2 analysis: Analysis, program_point: ProgramPoint,

3 state: State, node: ast.Global

4 ) -> State:

5 name: str = names[0]

6 value: Value = state.compute_expr(ast.Name(id=name))

7 state.write_name_to_stack(name, "global", value)

8

9 return state

Listing 49 The sketch of transfer_Nonlobal

1 def transfer_Nonlocal(

2 analysis: Analysis, program_point: ProgramPoint,

3 state: State, node: ast.Nonlocal

4 ) -> State:

5 name = names[0]

6 value = state.compute_expr(ast.Name(id=name))

7 state.write_name_to_stack(name, "nonlocal", value)

8

9 return state

Listing 50 The sketch of transfer_Identity

1 def transfer_Identity(

2 analysis: Analysis, program_point: ProgramPoint,

3 state: State, node: ast.While | ast.If | ast.Pass | ast.Break

| ast.Continue↪→

4 ) -> State:

5

6 return state

Listing 51 The sketch of transfer_call_classdef

1 def transfer_call_classdef(

2 analysis: Analysis, program_point: ProgramPoint,

3 state: State

4 ) -> State:

5 state.stack.add_new_frame()

6

7 return state
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Listing 52 The sketch of transfer_call_normal

1 def transfer_call_normal(

2 analysis: Analysis, program_point: ProgramPoint,

3 state: State

4 ) -> State:

5 call_expr: ast.Call =

analysis.get_stmt_or_expr(program_point)↪→

6

7 state.stack.add_new_frame()

8 args: Tuple = state.compute_func_args(call_expr)

9 state.parse_call_args(call_expr.arguments, args)

10

11 return state

Listing 53 The sketch of transfer_call_right_magic

1 def transfer_call_right_magic(

2 analysis: Analysis, program_point: ProgramPoint,

3 state: State

4 ) -> State:

5 call_expr: ast.expr =

analysis.get_stmt_or_expr(program_point)↪→

6 state.stack.add_new_frame()

7

8 if isinstance(call_expr, ast.BinOp):

9 rhs_value: Value = state.compute_expr(call_expr.right)

10 state.write_name_to_stak("1", "local", rhs_value)

11 elif isinstance(call_expr, ast.Attribute):

12 receiver_value: Value =

state.compute_expr(call_expr.value)↪→

13 descriptors: Value = getattrs(receiver_value,

call_expr.attr)↪→

14 for descriptor in descriptors:

15 for idx, arg in enumerate(descriptor.args, 1):

16 state.write_name_to_stack(str(idx), "local", arg)

17 elif isinstance(call_expr, ast.Subscript):

18 slice_value: Value = state.compute_expr(call_expr.slice)

19 state.write_name_to_stack("1", "local", slice_value)

20

21 return state
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Listing 54 The sketch of transfer_call_left_magic

1 def transfer_call_left_magic(

2 analysis: Analysis, program_point: ProgramPoint,

3 state: State

4 ) -> State:

5 assign_stmt: ast.Assign =

analysis.get_stmt_or_expr(program_point)↪→

6 state.stack.add_new_frame()

7

8 target: ast.expr = assign_stmt.targets[0]

9 if isinstance(target, ast.Attribute):

10 receiver_value: Value = state.compute_expr(target.value)

11 rhs_value: Value = state.compute_expr(call_expr.value)

12 descriptors: Value = analysis_setters(receiver_value,

call_expr.attr, rhs_value)↪→

13 for descriptor in descriptors:

14 for idx, arg in enumerate(descriotpr.args, 1):

15 state.write_name_to_stack(str(idx), "local", arg)

16 elif isinstance(target, ast.Subscript):

17 receiver_value: Value = state.compute_expr(target.value)

18 rhs_value: Value = state.compute_expr(call_expr.value)

19 slice_value: Value = state.compute_expr(call_expr.slice)

20 state.write_name_to_stack("1", "local", slice_value)

21 state.write_name_to_stack("2", "local", rhs_value)

22

23 return state
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Listing 55 The sketch of transfer_call_del_magic

1 def transfer_call_del_magic(

2 analysis: Analysis, program_point: ProgramPoint,

3 state: State

4 ) -> State:

5 del_stmt: ast.Delete =

analysis.get_stmt_or_expr(program_point)↪→

6 state.stack.add_new_frame()

7

8 target: ast.expr = del_stmt.targets[0]

9 if isinstance(target, ast.Attribute):

10 receiver_value: Value = state.compute_expr(target.value)

11 rhs_value: Value = state.compute_expr(call_expr.value)

12 descriptors: Value =

analysis.analysis_setters(receiver_value,

call_expr.attr, None)

↪→

↪→

13 for descriptor in descriptors:

14 for idx, arg in enumerate(descriotpr.args, 1):

15 state.write_name_to_stack(str(idx), "local", arg)

16 elif isinstance(target, ast.Subscript):

17 slice_value: Value = state.compute_expr(target.slice)

18 state.write_name_to_stack("1", "local", slice_value)

19

20 return state

Listing 56 The sketch of transfer_entry

1 def transfer_entry(

2 analysis: Analysis, program_point: ProgramPoint,

3 state: State

4 ) -> State:

5 expr: ast.Pass | ast.arguments =

analysis.get_stmt_or_expr(program_point)↪→

6

7 target: ast.expr = del_stmt.targets[0]

8 if isinstance(target, ast.arguments):

9 state.parse_call_args(target)

10

11 return state
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Listing 57 The sketch of transfer_exit

1 def transfer_exit(

2 analysis: Analysis, program_point: ProgramPoint,

3 state: State

4 ) -> State:

5 return_value: Value = state.get_return_value()

6

7 if len(return_value) == 0:

8 # means no explicit return statement in the function body

9 # None_Instance is a special type corresponding to None

in our analysis↪→

10 return_value.inject(None_Instance)

11 state.write_name_to_stack(RETURN_FLAG, "local",

return_value)↪→

12

13 return state

Listing 58 The sketch of transfer_return_classdef

1 def transfer_return_classdef(

2 analysis: Analysis, program_point: ProgramPoint,

3 state: State

4 ) -> State:

5 stmt: ast.ClassDef = analysis.get_stmt_or_expr(program_point)

6

7 module: str = state.get_curr_module()

8 bases: List = state.compute_class_bases()

9 frame: Frame = state.stack.pop_frame()

10 return_label: int = program_point[0]

11 call_label: int = analysis.get_call_label(return_label)

12 code: Tuple = (call_label, return_label)

13 analysis_class: AnalysisClass = AnalysisClass(module, bases,

frame, code)↪→

14

15 value: Value = Value()

16 value.inject(analysis_class)

17 state.write_name_to_stack(stmt.name, "local", value)

18

19 return state
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Listing 59 The sketch of transfer_return_name

1 def transfer_return_name(

2 analysis: Analysis, program_point: ProgramPoint,

3 state: State

4 ) -> State:

5 expr: ast.Name = analysis.get_stmt_or_expr(program_point)

6

7 return_value: Value = state.read_name(RETURN_FLAG)

8 state.stack.pop_frame()

9 state.write_name_to_stack(expr.id, "local", value)

10

11 return state

Listing 60 The sketch of transfer_return_others

1 def transfer_return_others(

2 analysis: Analysis, program_point: ProgramPoint,

3 state: State

4 ) -> State:

5 state.stack.pop_frame()

6

7 return state

Listing 61 The sketch of detect_classdef_flow_edges

1 def detect_classdef_flow_edges(

2 analysis: Analysis, program_point: ProgramPoint

3 ) -> None:

4 call_label, call_context = program_point

5 entry_label, exit_label = analysis.add_cfg(call_label)

6 return_label: int = analysis.get_return_label(call_label)

7 analysis.add_classdef_flow(program_point, return_label)
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Listing 62 The sketch of detect_func_flow_edges

1 def detect_func_flow_edges(

2 analysis: Analysis, program_point: ProgramPoint,

3 state: State, dummy_value: Value

4 ) -> None:

5 call_label, call_context = program_point

6 entry_label, exit_label = analysis.add_cfg(call_label)

7 return_label, dummy_return_label =

analysis.get_two_return_labels(call_label)↪→

8

9 call_expr: ast.expr =

analysis.get_stmt_or_expr(program_point)↪→

10 func_value: Value = state.compute_expr(call_expr.func)

11

12 for function in func_value:

13 analysis.add_function_flow(program_point, function,

return_label)↪→

Listing 63 The sketch of detect_class_flow_edges

1 def detect_class_flow_edges(

2 analysis: Analysis, program_point: ProgramPoint,

3 state: State, dummy_value: Value

4 ) -> None:

5 call_label, call_context = program_point

6 return_label, dummy_return_label =

analysis.get_two_return_labels(call_label)↪→

7

8 call_expr: ast.Call = analysis.get_stmt(program_point)

9 class_value: Value = state.compute_expr(call_expr.func)

10

11 for cls in class_value:

12 new_methods: Value = analysis.analysis_getattr(cls,

"__new__")↪→

13 for new_method in new_methods:

14 analysis_method: AnalysisMethod =

AnalysisMethod(new_method, cls)↪→

15 analysis.add_method_flow(program_point, function,

return_label)↪→
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Listing 64 The sketch of detect_right_magic_flow_edges

1 def detect_right_magic_flow_edges(

2 analysis: Analysis, program_point: ProgramPoint,

3 state: State, dummy_value: Value

4 ) -> None:

5 call_label, call_context = program_point

6 return_label, dummy_return_label =

analysis.get_two_return_labels(call_label)↪→

7

8 expr: ast.expr = analysis.get_stmt(program_point)

9 if isinstance(expr, (ast.BinOp, ast.UnaryOp)):

10 if isinstance(expr, ast.BinOp):

11 receiver_value: Value = state.compute_expr(expr.left)

12 operator_name: str = numeric_methods[type(expr.op)]

13 else:

14 receiver_value = state.compute_expr(expr.operand)

15 operator_name = unary_methods[type(expr.op)]

16 special_methods: Value =

analysis.analysis_getattrs(receiver_value,

operator_name)

↪→

↪→

17 for special_method in special_methods:

18 analysis.add_method_flow(program_point,

special_method, return_label)↪→
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Listing 65 The sketch of detect_left_magic_flow_edges

1 def detect_left_magic_flow_edges(

2 analysis: Analysis, program_point: ProgramPoint,

3 state: State, dummy_value: Value

4 ) -> None:

5 call_label, call_context = program_point

6 return_label, dummy_return_label =

analysis.get_two_return_labels(call_label)↪→

7

8 stmt: ast.Assign = analysis.get_stmt(program_point)

9 target: ast.expr = stmt.targets[0]

10 if isinstance(target, ast.Attribute):

11 receiver_value: Value = state.compute_expr(target.value)

12 rhs_value: Value = state.compute_expr(stmt.value)

13 descriptors: Value =

analysis.analysis_setattrs(receiver_value,

target.attr, rhs_value)

↪→

↪→

14 for descriptor in descriptors:

15 analysis.add_descriptor_flow(program_point,

descriptor, return_label)↪→

16 elif isinstance(target, ast.Subscript):

17 receiver_value: Value = state.compute_expr(target.value)

18 special_methods: Value =

analysis.analysis_getattrs(receiver_value,

"__selitem__")

↪→

↪→

19 for special_method in special_methods:

20 analysis.add_method_flow(program_point,

special_method, return_label)↪→
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Listing 66 The sketch of detect_del_magic_flow_edges

1 def detect_del_magic_flow_edges(analysis: Analysis,

program_point: ProgramPoint,↪→

2 state: State, dummy_value: Value

3 ) -> None:

4 call_label, call_context = program_point

5 return_label, dummy_return_label =

analysis.get_two_return_labels(call_label)↪→

6

7 stmt: ast.Delete = analysis.get_stmt(program_point)

8 target: ast.expr = stmt.targets[0]

9 if isinstance(target, ast.Attribute):

10 receiver_value: Value = state.compute_expr(target.value)

11 descriptors: Value =

analysis.analysis_setattrs(receiver_value,

target.attr, None)

↪→

↪→

12 for descriptor in descriptors:

13 analysis.add_descriptor_flow(program_point,

descriptor, return_label)↪→

14 elif isinstance(target, ast.Subscript):

15 receiver_value: Value = state.compute_expr(target.value)

16 special_methods: Value =

analysis.analysis_getattrs(receiver_value,

"__delitem__")

↪→

↪→

17 for special_method in special_methods:

18 analysis.add_method_flow(program_point,

special_method, return_label)↪→

Listing 67 The sketch of collect_call_flow_edges

1 def collect_call_flow_edges(

2 analysis: Analysis, program_point: ProgramPoint

3 ) -> List[Flow]:

4 edges: List[Flow] = []

5

6 for call, entry, exit, return in analysis.inter_flow:

7 if call_point == program_point:

8 edges.append((call, entry))

9 edges.append((exit, return))

10

11 return edges
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Listing 68 The sketch of collect_exit_flow_edges

1 def collect_exit_flow_edges(

2 analysis: Analysis, program_point: ProgramPoint

3 ) -> List[Flow]:

4 edges: List[Flow] = []

5

6 for call, entry, exit, return in analysis.inter_flow:

7 if exit == program_point:

8 edges.append((exit, return))

9

10 return edges

Listing 69 The sketch of collect_intra_flow_edges

1 def collect_intra_flow_edges(

2 analysis: Analysis, program_point: ProgramPoint

3 ) -> List[Flow]:

4 edges: List[Flow] = []

5

6 label, context = program_point

7 for first_label, second_label in analysis.flow:

8 if first_label == label:

9 edges.append(

10 ((first_label, context), (second_label, context))

11 )

12

13 return edges

Listing 70 The sketch of collect_flow_edges

1 def collect_flow_edges(

2 analysis: Analysis, program_point: ProgramPoint

3 ) -> List[Flow]:

4 call_flow: List[Flow] =

collect_call_flow_edges(program_point)↪→

5 exit_flow: List[Flow] =

collect_exit_flow_edges(program_point)↪→

6 intra_flow: List[Flow] =

collect_intra_flow_edges(program_point)↪→

7

8 all_flow: List[Flow] = intra_flow + call_flow + exit_flow

9

10 return all_flow
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Listing 71 How does our typeshed parser work on math.floor

1 import math

2

3 # type signature of math.floor

4 def floor(__x: _SupportsFloatOrIndex) -> int: ...

5

6 # without typeshed, result has type Any since we know nothing

about module math.↪→

7 result: Any = math.floor(7.5)

8

9 # without typeshed but with typeshed-client, result has type Any

since we only know math.floor is a function.↪→

10 result: Any = math.floor(7.5)

11

12 # with our typeshed parser, result has type int since we retrieve

the return type from math.floor.↪→

13 result: int = math.floor(7.5)

Listing 72 How does artificial object.__new__ work

1 class Cls:

2 ...

3

4 # without artificial types, according to typeshed,

allocated_object has type Any.↪→

5 allocated_object = object.__new__(Cls)

6

7 # with artificial types, allocated_object has type Cls.

8 allocated_object = object.__new__(Cls)
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