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Abstract—Acquiring multiple clinically relevant MR 
image contrasts from a single scan is an emerging trend in  
MR imaging to reduce the total scan time of an exam. A 
deep learning-based approach that takes this idea one step 
further is BoneMRI, which generates synthetic CT images 
from MR images. These images are generated using a 3D 

RF-spoiled T1‐‐‐‐weighted multiple Gradient-Echo sequence 
(GE), but the sequence is often combined with a 2D T1-
weighted Turbo Spin Echo (TSE), because the latter 
provides better T1 contrast from a clinical perspective. To 
reduce the total scan time, we investigate a deep learning-
based approach to generate synthetic TSE images from the 
GE images. We propose a training approach, called the 
High-to-low approach, to keep the high through-plane 
resolution of the GE images, while still applying the 
contrast transformation using only the lower resolution 
TSE as target data. Additionally, we implement a network 
architecture, called HighResNet, and redesign it for the 
synthesis of TSE images from GE images. The proposed 
approach and network do not necessarily need to be used 
together and both were validated against a more often used 
approach and network, respectively. Experiments using 
scans of the cervical spine showed that the High-to-low 
approach was capable of keeping the higher through-plane 
resolution of the GE images, while also achieving 
significantly higher image similarity to the lower resolution 
ground-truth TSE after downsampling. The experiments 
also demonstrated that HighResNet synthesized high 
resolution synthetic TSE images with fewer artifacts than 
the often used U-Net. The results show that a neural 
network is capable of learning an MR contrast 
transformation between a higher resolution input image 
and lower resolution output image without sacrificing 
performance or image resolution. 

 
Index Terms—Convolutional neural networks, deep 

learning, image synthesis, Magnetic Resonance Imaging 

I. INTRODUCTION 

AGNETIC Resonance Imaging (MRI) is a versatile 

imaging modality, which allows for the visualization of 

both structural and functional properties of tissues. Although 

many sequences exist with different applications and 

visualization abilities, a trade-off often has to be made between 

the amount of information gathered, e.g. by employing multiple 
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different sequences, and the amount of time spent scanning. 

Shorter sequences, and by extension shorter total scan time, 

were traditionally achieved by sacrificing some Signal to Noise 

Ratio (SNR) and/or resolution. A new trend is emerging, 

however, where instead of shortening the duration of individual 

scans, the total number of sequences is reduced with sequences 

and/or processing techniques that are capable of generating 

multiple contrasts. 

Underlying all of the standard MRI contrasts are physical 

properties of the imaged tissues, like the longitudinal relaxation 

time ��, transverse relaxation time ��,  and proton density �. 

These properties, among others, largely determine the signal 

intensities and image contrasts. In light of using one sequence 

to generate many contrasts one could argue that this is best 

achieved using quantitative MRI (qMRI), which measures these 

physical properties. The necessary contrasts could then in 

principle be synthesized using signal equations.  

Two examples of qMRI are Magnetic Resonance 

Fingerprinting (MRF) [1] and Magnetic Resonance Spin 

TomogrAphy in Time-domain (MR-STAT) [2]. MRF uses a 

pseudorandomized sequence, varying e.g. the flip angle and 

repetition time, which creates a distinct signal for materials with 

different physical properties. This signal can then be matched 

to a precomputed dictionary of possible combinations of 

physical properties with their simulated signal evolution [1]. In 

contrast to MRF, MR-STAT is directly applied to the k-space 

data, performing both the localization and parameter estimation 

simultaneously. MR-STAT promises fast acquisitions with 

scan times on the order of seconds per 2D slice. Most of the 

time required for acquiring the final parameter estimation in 

MR-STAT is spent on the computation of the parameters, but 

the philosophy behind MR-STAT is that this compute time is 

much less expensive than scan time [2]. Another qMRI method 

is Quantification of Relaxation times And Proton density by 

Multiecho Acquisition of a Saturation-recovery using Turbo 

spin-Echo Readout (QRAPMASTER), which is used 

commercially in the creation of Synthetic MRI (SyntheticMR, 

Linköping, Sweden). The synthesis consists of the quantitative 

measures from a roughly 6 minute scan, which are directly used 

to generate multiple synthetic contrasts with 1 minute of post-
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processing time [3], [4]. 

The qMRI methods rely on physics-driven synthesis, but 

data-driven approaches using deep learning have also seen a lot 

of research interest recently, which is another way of reducing 

the amount of sequences (and thus total scan time) needed to 

generate multiple contrasts. Examples include the translation 

from T1-weighted images (T1w) to T2-weighted images (T2w), 

T1w to T2 Fluid-Attenuated Inversion Recovery (T2-FLAIR), 

T2w to T2-FLAIR, Proton Density weighted (PDw) to T1w and 

other permutations of these contrast combinations [5]–[9].  

The synthesis of contrasts need not be limited to MRI-to-

MRI contrast pairs. Another active area of research is the 

synthesis of Computed Tomography (CT) images from MRI 

[10]–[12]. In addition to making more efficient use of scan 

time, these methods have the potential to render the use of a CT 

scan redundant in some cases. These methods would 

significantly decrease the radiation burden on the patient by 

facilitating the use of radiation-free workflows and would also 

simplify workflows for which both MRI and CT need to be 

acquired for soft- and hard tissues [13]. 

One might assume that mapping from the quantitative MRI 

maps to CT would perform better, because it is more robust to 

which type of scanner is used [14] and because it would mean 

mapping from one quantitative measurement of the tissues to 

another, instead of mapping from a qualitative to a quantitative 

one. Because non-quantitative MRI sequences use the physical 

properties of the tissues to generate contrast, however, these can 

be tuned to create more salient features to distinguish important 

tissue types for synthetic CT (sCT) generation. Better contrast 

between e.g. air, soft tissue and bone might help deep learning-

based approaches in detecting relevant features.  

Although qMRI methods do allow for the synthesis of 

additional MRI contrasts, which could then be used for sCT 

generation, they have one big drawback, which is their 

relatively large slice thickness. This slice thickness is often 

required for SNR considerations for accurate parameter 

estimation, ranging from 3 to 5 mm in the previously mentioned 

MRF, MR-STAT and QRAPMASTER/Synthetic MRI  [1]–[4]. 

This is far above the common submillimetre resolution of CT 

scans [15], which makes CT’s so attractive, and would in turn 

limit the usefulness of the sCT created from qMRI-derived 

images.    

Our research will focus specifically on BoneMRI 

(MRIGuidance, Utrecht, The Netherlands), which is a 

commercialized deep learning-based implementation of MRI-

based CT synthesis. It makes use of a 3D RF-spoiled T1‐

weighted multiple Gradient‐Echo sequence, with an almost in 

phase- (aIP) and almost opposed phase (aOP) component [11]. 

These will be referred to simply as (aIP/aOP) GE for the rest of 

the paper.  

The BoneMRI sequence is often performed in combination 

with a 2D T1-weighted Turbo Spin Echo (referred to as TSE 

henceforth) sequence, because this is often the preferred T1-

weighted contrast in the clinic. Ideally, the TSE could somehow 

be substituted for the sake of total scan time efficiency.   

A natural extension of the BoneMRI workflow to achieve 

this goal would be to not only synthesize CT images, but 

improved T1w contrast like in the TSE images as well. The 

mapping from one T1-weighted contrast image to another is 

conceptually simpler than mapping from MRI contrast to 

Hounsfield Units, which was shown to be possible.  

Therefore, we investigate different methods of generating 

TSE images from the BoneMRI GE images with a dataset of 

cervical spine scans. To the best of our knowledge no research 

has been performed on generating TSE images from GE 

images, which is expected, because one could simply substitute 

a GE for a TSE in most cases if the latter were preferred. 

The acquired TSE images have thicker sagittal slices than the 

GE images. The thicker slices means that although the TSE has 

a generally preferable contrast, it does come at a cost in the 

amount of spatial through-plane information contained in the 

images. Ideally, the extra information contained in the GE 

images would be kept, while applying the contrast 

transformation from GE to TSE, resulting in a synthetic TSE 

with a higher resolution than the ground-truth TSE, equal to the 

resolution of the input images. This higher resolution synthetic 

TSE could allow radiologists to investigate certain structures 

like the neuroforamina much better with the option for 

multiplanar reformation. The challenge here is that we only 

have the thicker slice ground-truth TSE images for training, so 

a new approach is needed to learn the contrast transformation 

while keeping the higher through-plane resolution of the GE 

image. In this paper we developed a method to achieve exactly 

this, which we call the High-to-low approach. 

The main contributions of this paper are two-fold: 

 We redesign an existing Convolutional Neural 

Network architecture, called HighResNet to fit the 

TSE synthesis problem at hand. 

 We introduce a new training strategy (the High-to-low 

approach), which makes more optimal use of the 

information included in the input images and allows 

for the reconstruction of synthetic TSE images at a 

four times higher resolution than the ground-truth 

TSE images.  

The remainder of the paper is structured as follows: the 

network architecture and training strategy described in the 

contributions will be discussed in section II with the results 

provided in section III and ending with the discussion and 

conclusion in section IV and V, respectively. 

II. METHODS 

This section covers the data and data (pre)processing, the 

network architectures, the training procedures for the Low-to-

low approach, the High-to-low approach, and the evaluation 

metrics. In contrast to the High-to-low approach, the Low-to-

low approach does not keep the higher through-plane resolution 

of the GE images and instead resamples the GE images to the 

TSE resolution. The Low-to-low approach mimics the more 

generally used approach in image synthesis, where both the 

input- and target images have the same resolution. 
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II. A. Data 

The cervical spine data used in this study were acquired on a 

1.5T scanner (Ingenia; Philips Healthcare, Best, Netherlands) 

and consisted of GE and TSE images from 25 patients over the 

age of 50 with cervical radiculopathy. A 3D RF-spoiled T1‐

weighted multiple gradient‐echo sequence was used for the 

BoneMRI images, for which the first echo was acquired almost 

opposed phase and the second almost in phase. The GE images 

were acquired at a voxel size2 of 0.744 mm  0.744 mm  1.8 

mm with a SENSE factor of 1.3 and reconstructed at 0.744 mm 

 0.744 mm  0.9 mm. The 2D T1-weighted TSE images were 

acquired in a sagittal orientation with a saturation slab applied 

to most of the anatomy anterior to the trachea. The TSE images 

were acquired and reconstructed with a voxel size of 0.488 mm 

 0.488 mm  3 mm with a slice gap of 0.3 mm and an echo 

train length of nine. The rest of the acquisition parameters are 

summarized for both scans in Table I. 

 
TABLE I 

ACQUISITION PARAMETERS FOR THE GE AND TSE IMAGES 

Acquisition 

parameter 
GE TSE 

TR 7 ms 506 ms 

TE 2.1 ms / 4.2 ms 7 ms 

Flip angle 10° 90° 

FOV 
250  250  90 

mm3 

250  250  36 

mm3 

Bandwidth 542 Hz/pixel 322 Hz/pixel 

Acquisition time 3 min 53 sec 2 min 3 sec 

 

In addition to the GE and TSE images, the dataset also 

contained bone masks, which were created outside of this 

research from CT images from the same patients and manually 

refined and subsequently registered to the GE images. 

II. B. Data pre-processing 

All 25 image pairs were visually inspected, leading to the 

exclusion of one patient’s data, which contained motion 

artifacts. Body masks were automatically created based on the 

TSE images for all remaining patients by thresholding and 

binary filling. The interface between the saturation slab and the 

anatomy posed a challenge for this method, however, so the 

saturation slab was removed from the mask manually. 

Additionally, because the scans were mostly focussed on the 

spine, most of the image volume anterior to the trachea was 

manually cropped out.  

The GE images were registered to the TSE images for both 

the Low-to-low and High-to-low approach, so the target data 

would remain intact and devoid of resampling artifacts. To 

allow the registration algorithm to take the back/neck and 

 
2 Any sequence of numbers relating to the three spatial dimensions in this 

paper will be written in the order: superior-inferior, anterior-posterior, left-right 

table/air interface into account, the aforementioned body masks 

were dilated on the posterior side.   

Registration was performed using Elastix [16], consisting of 

a translation and a multi-resolution nonrigid B-spline transform 

with MI as the similarity metric. The latter was regularized by 

a rigidity penalty, which enforced the bones and a small area 

around it to stay rigid using the bone masks. The penalty 

partially prevents the registration from applying nonrigid 

transformations locally on the bones, because these are only 

able to move rigidly in the body. Because the bone masks were 

based on CT scans they did not completely cover the same 

anatomy as the MRI scans due to a difference in patient position 

and FOV. The registrations of six patients visibly failed near 

these missing parts of the bone mask with bones bending in 

physically impossible ways. Therefore, these  patients’ bone 

masks were manually edited to include all of the 

skull/vertebrae, where necessary. Note that these were of a 

lower quality than the existing bone masks and were therefore 

only used for registration and not during evaluation.  

All registration parameters were qualitatively tuned by 

visually assessing the registration quality in three representative 

patients. During this process one additional patient was 

excluded, because they lacked a bone mask, which was needed 

for proper registration, leaving 23 patients. 

After registration, the GE images were resampled to the 

TSE’s resolution of 0.488 mm  0.488 mm  3.3 mm for the 

Low-to-low approach and to a resolution of 0.488 mm  0.488 

mm  0.825 mm for the High-to-low approach.  

To sample useful voxels, the aforementioned body masks 

were also used for training. They were dilated on the posterior 

side to include the body/background interface with a kernel size 

equal to the patch size. The dilation ensures that a sampled 

patch contains a maximum of ~50% background, so the 

network is not trained on purely background.  

Because the GE images were registered to the TSE images, 

the GE would sometimes get pushed inwards near the edges, 

leaving “empty” voxels, which were automatically set to a 

value of -1, allowing them to be easily detected and masked out 

as well.  

Finally, a threshold was applied to the GE images to set any 

negative values from the 3rd order B-spline interpolation to 0 

and both the GE and TSE images were normalized by dividing 

by the 99th percentile intensity out of all values inside the 

sampling mask. 

II. C. Networks 

1) U-Net 

We used two distinct network architectures to perform the  GE 

to TSE translation. We used a standard implementation of the 

well-known U-Net as a baseline [17], with one small addition: 

a configurable Batch Normalization (BN) layer after each 

333 convolution. U-Net was chosen, because it was used 

successfully for medical image synthesis by itself or inside a 

Generative Adversarial Network (GAN) as the generator [9], 

[12], [18], [19]. 
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2) HighResNet 

Our proposed network was a network derived from HighResNet 

as described in [20], which is a residual network. The basic idea 

behind residual networks that makes them attractive for the GE 

to TSE mapping is that they have identity mappings built into 

them. This built-in identity mapping is something other types 

of networks do not have and struggle to learn [21]. This 

property should allow the network to propagate information 

contained in the GE images more easily, which could be 

beneficial for training, because the (aIP) GE images and TSE 

images are already relatively similar. 

What separates HighResNet from most other residual 

networks is that it does not perform any downsampling on the 

input or feature maps. Instead, it uses dilated convolutions to 

capture information at increasingly larger scales. The potential 

benefit of the dilated convolutions is that the feature maps 

remain at the resolution of the input images, which can prevent 

blurring from downsampling operations, like the max pooling 

used in U-Net  [10].  

The architecture of HighResNet as used in this paper is 

shown in Fig. 1, which has some modifications compared to the 

one from [20]. Firstly, the original implementation contained a 

333 convolution before all of the residual blocks, which 

would not allow for the information contained in the GE to flow 

through the network unhindered, so this layer was removed. 

Secondly, if the number of channels increases after a 333 

convolution before the element-wise addition,  a mechanism is 

needed to increase the number of channels of the data that flows 

through the residual connection. In the original network the 

increase in channels was achieved by zero-padding along the 

channel dimension with the extra amount of channels 

necessary. The zero-padding was replaced by a 111 

convolution (indicated by the dark blue arrows), because this 

so-called projection shortcut was found to perform slightly 

better in [21]. Finally, whereas the original network used 

dilation factors of 1 (no dilation), 2 and 4 along every 

dimension, we implemented dilations that would result in the 

most isotropic kernels possible. Note that the Low-to-low 

training procedure and the High-to-low approach used input 

data with different resolutions, resulting in dilation factors of 

(4, 4, 1) and (4, 4, 2), respectively. 

Both networks were implemented in Python 3.7 using 

PyTorch 1.5.0/1.10. 

II. D. Training for the Low-to-low approach 

To train the networks using the Low-to-low approach, 3D 

patches were sampled at random locations inside the sampling 

mask from the GE- and TSE images. Each batch contained 

patches sampled from as many different patients as possible, by 

cycling through the patients after sampling each patch. 

 The aIP- and aOP GE patches were concatenated along the 

channel dimension to form the input, which were forwarded 

through the network to finally be compared to the TSE patches 

via a simple L1 loss, which computes the mean absolute error 

between the output- and the target data. The L1 loss is one of 

the most used loss functions in image synthesis and creates less 

blurry images than an L2 loss (mean squared error) [10].   

The patches had a size of 56568 voxels (27.3 mm  27.3 

mm  26.4 mm), which was chosen with U-Net’s max pooling 

layers in mind. These force all of the dimensions of the data to 

be divisible by 2#max pooling layers, because each of these layers 

reduces the size by a factor two. Because the data only 

contained eleven voxels in the left-right direction, the 

maximum patch size was constrained to eight along this 

dimension. The number of voxels in the other two directions 

were chosen such that the patches were as isotropic as possible, 

while being divisible by 2#max pooling layers in all three dimensions. 

1) Hyperparameter search 
To find the best set of hyperparameters for HighResNet and U-

Net a grid search was employed to search for the best learning 

rate, number of channels C (as in Fig. 1; directly influences the 

number of trainable parameters), and batch size. On top of 

training a regular U-Net, we also trained a U-Net with a Batch 

Normalization (BN) layer after each 333 convolution to 

more closely match HighResNet, which also employs BN 

layers. 

The different batch size- and learning rate values were chosen 

based on preliminary tests with U-Net. The number of trainable 

parameters were chosen to match as closely as possible between 

U-Net and HighResNet and were constrained by HighResNet’s  

larger memory footprint. The possible values for these 

hyperparameters during the grid search are summarized in 

Table II. 

 

 

 

 
 

 

 
Fig. 1.  Schematic overview of HighResNet’s architecture. The cuboids denote feature maps, which double in number of channels every time the 

dilation factor changes. Note that although the projection shortcuts/residual connections connect to the arrows of the Batch Normalization (BN), 

Rectified Linear Unit (ReLU) and convolution, they do not act on the output of these, but on their input. 
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TABLE II 

HYPERPARAMETER VALUES FOR THE GRID SEARCH 

Model Batch 

size 

Learning 

rate 

#Trainable 

Parameters (M) 

HighResNet 16, 

32,  

64 

1×10-3,  

5×10-3,  

1×10-2 

2.446, 2.998, 3.397 

U-Net* 2.563, 3.050, 3.579 

* Note that the BN layers contain additional trainable parameters, but 
these increase the total number of trainable parameters by a negligible 
amount 
 

All three networks (HighResNet, U-Net, U-Net+BN) were 

trained with all 27 possible combinations of the selected 

hyperparameters with the Adam optimizer and a weight decay 

of 1×10-5.  

To constrain the amount of time needed for these experiments 

and to evaluate the different combinations at similar points in 

their training trajectories in terms of convergence, an early 

stopping criterium was used. The criterium was defined as 

follows: if the validation loss does not decrease with 0.1% with 

respect to the lowest validation loss measured so far for 80 

epochs in a row, the training is stopped. To smooth out random 

variations in the validation loss a Gaussian kernel with a 

standard deviation of 10 was applied to the loss values before 

evaluating the early stopping criterium. 

Normally, an epoch is defined as having trained the network 

on all of the training data once (and optionally validated on all 

the validation data), but because we randomly sample patches 

from the training data this definition is not applicable. Instead, 

an epoch was defined as 800 training patches and 160 validation 

patches, which corresponds roughly to the amount of voxels 

that fall inside the training- and validation sampling masks, 

respectively. 

All 27 hyperparameter combinations were used to train each 

network once until convergence (according to the early 

stopping criterium) with the same set of 15 training patients and 

3 validation patients. To compare the hyperparameter 

combinations more robustly, a five-fold cross-validation was 

performed with the top 10 hyperparameter combinations from 

the aforementioned 27 runs. The top 10 was chosen based on 

the median validation loss across 3200 validation patches, 

which is roughly 20 times the amount of voxels eligible for 

sampling in the validation set. Only the top 10 of these runs 

were cross-validated to save on runtime. The same early 

stopping criterium as before was used.  

The median loss across 3200 validation patches was 

computed for each of these 510 runs. The mean of the five 

medians from the cross-validations was computed to determine 

which of the combinations achieved the lowest validation loss. 

The resultant best hyperparameter combinations are shown in 

Table III. These were used to train all three networks five more 

times for 1500 epochs, which is roughly double the maximum 

amount of epochs needed to trigger the early stopping criterium 

out of all 150 cross-validation runs. Additionally, all but one of 

the 18 patients used for training/validation in the previous 

experiments were used for training. One patient’s data, which 

contained motion artifacts was excluded, with the remaining 5 

patients used as the test set.  

 
TABLE III 

BEST HYPERPARAMETER COMBINATIONS PER NETWORK 

 Learning 

rate 
Batch size  

#Trainable 

parameters 

HighResNet 0.001 16 2.446 M 

U-Net 0.0001 16 3.579 M 

U-Net+BN 0.0001 16 2.563 M 

 

Another difference compared to the other experiments for the 

final runs is that reflection padding was used instead of zero 

padding, because it was found to work better in the High-to-low 

approach. The reflection padding also resulted in both visual 

and quantitative improvements for the Low-to-low approach. 

We did not repeat the earlier experiments with reflection 

padding because of time limitations, but we do not expect much 

of an effect from the padding on which hyperparameter 

combination works best.  

II. E. High-to-low approach 

The High-to-low approach makes use of the fact that the GE 

images contain a lot of information that is partially lost when 

downsampling to the TSE resolution (0.744 mm  0.744 mm  

0.9 mm → 0.488 mm  0.488 mm  3.3 mm) as was done in 

the Low-to-low approach. Instead, the GE images were 

resampled to an intermediate resolution of  0.488 mm  0.488 

mm  0.825 mm, foregoing the 3.67 downsampling in the left-

right direction and therefore maintaining more of the 

information contained in the GE. Because the target data has 

only been acquired with thicker sagittal slices, a different 

strategy is necessary to be able to train a network on these input- 

and target data. An overview of the approach is shown in Fig. 

2. The High-to-low approach trains a network to use the extra 

information contained in the GE images, while also 

synthesising the TSE images at a higher resolution than the 

target data. 

To achieve the higher resolution, the network operates fully 

at the resolution of the GE images, resulting in a high resolution 

synthetic TSE (sTSEHR) as the output of the network, which is 

subsequently downsampled by a factor of four in the left-right 

direction by using a strided convolution with a 3D 

downsampling kernel of size 114. The downsampled/low 

resolution synthetic TSE (sTSELR) is subsequently compared to 

the target TSE via an L1 loss like in the Low-to-low approach. 

Additionally, the sTSEHR image is optionally compared to the 

aIP GE image with a structural consistency loss that keeps some 

of the structure present in the aIP GE. 
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Fig. 2. Overview of the High-to-low approach during training. Patches are extracted from both GE images, which both have a  four times smaller 

voxel size in the left-right direction than the TSE, indicated by the four sagittal slices (note that all operations are performed in 3D). The network 

operates at the resolution of the GE images throughout, resulting in a high resolution synthetic TSE (sTSEHR), which is subsequently downsampled 

with a factor of four in the left-right direction. The  high resolution output of the network is optionally compared to the aIP GE patch via the ℒMIND  

term, which is applied to the 3D Sobel filtered patches. The low resolution output is compared to the target TSE image with an L1 loss. 

 

1) Downsampling kernel 
The downsampling kernel is an important part of the High-to-

low approach. Due to the way the data was resampled, each 

sagittal TSE slice has four corresponding GE slices. Because 

there is a slice profile over the actual spatial extent of each TSE 

slice, however, it is more similar to some of those four GE slices 

than others. Using the similarity metrics Structural Similarity 

Index Measure (SSIM) and Mutual Information (MI), we found 

that the two left-most of these slices were always more similar 

to the TSE, followed by the two neighbouring slices on either 

side (extending into a different set of four GE slices on the left 

side). 

Therefore, the downsampling kernel would ideally weight 

the most similar slices the most when downsampling. In Python 

this could correspond to a kernel with the weights of e.g. [1/2, 

1/2, 0, 0]. But when a kernel of this form is used, the network 

learns to recognize the fact that two of the slices are irrelevant 

to the loss and it starts to exhibit slice-dependent behaviour 

such that every two sagittal slices the sTSEHR looks very 

different. The learning of spatial locations is a known 

phenomenon in deep learning and can even happen with fully 

convolutional neural networks like HighResNet, although it is 

much more likely to happen with networks that include e.g. max 

pooling and transposed convolutions like U-Net [22]. 

To circumvent the slice-dependent behaviour it is also not 

possible to use a kernel that takes all slices into account even if 

all of the weights are the same, e.g. [1/4, 1/4, 1/4, 1/4]. From 

experiments we noticed that the networks were able to learn that 

the two left-most slices were more similar to the TSE image, 

which lead the network to create images where these slice pairs 

in the sTSEHR became slightly brighter than the others. 

To make it impossible for the network to learn which slice is 

which, we shifted the GE patch—and by extension the sTSEHR 

patch—with a random offset of a few voxels to the left or right 

for each iteration and moved the kernel weights with it as shown 

in Fig. 3. The top right shows the average weighting per image 

slice, where the two slices that are weighted by ⅓ represent the 

slices that are most similar to the TSE. 

 

 

 

 



 7 

  

 
Fig. 3. The random offset applied to the sTSEHR patch (squares) in relation to the sTSELR patch (rectangles) to make it impossible for the network 

to learn which spatial location contains which sagittal slice. The average weighting per slice shows how much each of the  slices is weighted on 

average from the image’s perspective.

Fig. 3 shows all of the possible kernel/offset combinations on 

the bottom right, which have the important properties that the 

average weighting of each location is 1/4 from the network’s 

perspective and that each location is included and excluded 

equally across multiple iterations. From the image’s 

perspective, however, the two slices that are more similar to the 

TSE are weighted twice as much as the other two, as evident 

from the average slice weighting on the top right of Fig. 3.  

Note that on average the orange voxel in the sTSELR is 

computed by weighting the two top-most orange voxels in the 

sTSEHR by a factor of 1/3 and the orange and blue voxel above 

and below those two with a factor of 1/6. This is because the 

location of the aforementioned blue voxel in the GE is more 

similar to the orange location in the TSE than the lowest of the 

four orange voxel locations. Therefore, with an offset of -1 this 

average weighting could be described as a kernel with weights 

[1/6, 1/3, 1/3, 1/6], but for an offset of 0 the blue voxel on top 

would not be taken into account with a kernel of size 114. 

Finally, another type of data augmentation that was applied 

during the High-to-low approach was flipping of the patches 

along the left-right direction every other iteration. 

2) Structural consistency loss 
The structural consistency loss term forces the network to keep 

some of the detail present in the aIP GE and was implemented 

using the Modality Independent Neighbourhood Descriptor 

(MIND) and Sobel filters. Note that this loss term is a more 

general concept and can also be applied to the images 

themselves and/or using a different metric like the MI or SSIM. 

The Modality Independent Neighbourhood Descriptor 

(MIND) loss was based on [23], in which it was used to guide 

the optimization of multi-modal deformable image registration. 

The MIND loss enforces the edges of the sTSEHR to correlate 

locally to those of the aIP GE image. We hypothesized that this 

could be beneficial visually, because a lot of detail is lost when 

only an L1 loss is used, creating smooth-looking images. 

To compute the loss a MIND map of both tensors is created, 

which serves as a modality independent intermediate 

representation of the images, allowing their differences to be 

minimized without affecting the underlying contrast of the 

sTSEHR. The MIND map has a size B6CDHW (batch size, 

channels, depth, height, width), where BCDHW are the 

original tensor dimensions of e.g. the Sobel features (C=3). It 

has six times as many channels, each of which tell us something 

about how similar a small 333 area around each of those 

voxel’s six neighbours are to its own surrounding area, 

quantified by a weighted  square of differences between all the 

voxel values. For a more in-depth formulation of the MIND 

map, see [23]. 

With the MIND maps of both tensors determined, the MIND 

loss is defined as the MSE between both MIND maps: 

 

ℒ��	
 � 
�

|ℛ|
∑ |����������,������     �����!�"�#$,������|�

%&ℛ ,  (1) 

 

where �����,����� and !�"�#$,�����  are the tensors containing 

a batch of patches from the aIP GE and sTSEHR images after 

application of the Sobel filters, respectively, with ℛ 

representing all of the voxels. 

With the MIND loss in place the total loss is defined as: 

 

                                    ℒ � ℒ'� ( ) ℒ��	
, (2) 
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where ) is set to 0 for experiments with only the L1 loss 

(referred to as L1-only) and set to 0.1 for all experiments using 

the MIND loss (referred to as MIND). A weighting of 0.2 was 

also used, but this deteriorated the metrics too much, so it was 

fixed at 0.1.  

3) Training 
Both HighResNet and U-Net were trained with the High-to-low 

approach. Training was performed on patches of size 565632 

(27.3 mm  27.3 mm  26.4 mm) voxels, which have the same 

spatial extent as in the Low-to-low approach, but with more 

voxels.  

The learning rate and batch size that were found to work best 

for HighResNet and U-Net in the Low-to-low approach were 

transferred to the High-to-low approach, but the number of 

trainable parameters for HighResNet had to be reduced from its 

best setting (as found in the grid search) to 1.797 M to fit the 

model on the GPU’s. U-Net’s number of trainable parameters 

were scaled down with roughly the same factor to account for 

HighResNet’s reduction in parameters. Additionally, the 

networks were only trained for 1000 epochs instead of 1500, 

because training at this higher resolution is much slower. Like 

in the final runs of the Low-to-low approach, each of the High-

to-low runs was repeated five times with 17 patients in the 

training set and 5 patients in the test set. 

4) Comparison to the Low-to-low approach 
To compare the High-to-low approach to the Low-to-low 

approach, a few adjustments were made to the latter. The High-

to-low approach makes use of the prior knowledge that some of 

the GE slices correspond more to the TSE image than others 

and effectively uses a convolutional downsampling kernel with 

weights [1/6, 1/3, 1/3, 1/6] (note that this kernel only works for 

an offset of -1) as demonstrated in Fig. 3.  

Therefore, training was performed again, this time using the 

Low-to-low approach with GE images resampled to the TSE 

resolution using the weighted downsampling by convolution 

(after resampling to a resolution of 0.488 mm  0.488 mm  

0.825 mm with 3rd order B-spline interpolation during 

registration). This resampling scheme resulted in significantly 

higher SSIM and MI between the GE and TSE as compared to 

resampling directly to the TSE resolution using a 3rd order B-

spline interpolation.  

Training was performed for 1000 epochs with the same 

parameter count as used in the High-to-low approach. 

Additionally, because the High-to-low approach used flipping 

along the left-right direction as extra data augmentation, this 

was also applied for the comparison. 

5) Validation of the MIND loss 
The High-to-low approach produces high resolution synthetic 

TSE images, for which no ground-truth image exists. To 

validate the use of the MIND loss and its effect on the sTSEHR, 

we designed a separate experiment. Here, we also used the 

weighted GE downsampling scheme as described in the 

previous section. 

Using this version of the GE data, the network operates at the 

resolution of the actual TSE data, which is 0.488 mm  0.488 

mm  3.3 mm. The data is subsequently downsampled by a 

downsampling kernel that operates in the superior-inferior 

direction, resulting in a low resolution synthetic TSE with 

voxels of size 1.952 mm  0.488 mm  3.3. The new sTSELR 

image is subsequently compared to a downsampled version of 

the real TSE image, downsampled with average kernel weights 

of [1/6, 1/3, 1/3, 1/6] as before. By training in this way, we have 

a ground-truth image to which we can directly compare the 

sTSEHR to see if the MIND loss assists in creating better images 

at the higher resolution. Note that only the downsampled TSE 

images are used during training in this approach, so the network 

is never trained on the actual TSE images in any way. 

6) Training the downsampling kernel 
During training the downsampling kernel weights are fixed and 

randomly chosen in correspondence with the offset as shown in 

Fig. 3. These weights might not be optimal for inference, 

because they are subject to certain constraints to prevent the 

network from showing slice-dependent behaviour. To find the 

most optimal downsampling kernel, the weights of the network 

were frozen after training and the downsampling kernel was 

trained with the same hyperparameters as the network, but 

without weight decay, flipping and random offsets, and with a 

lower learning rate of 0.0001. The offset was fixed at 0 such 

that no padding was required. The weights were initialized at 

[1/2, 1/2, 0, 0]. 

II. F. Evaluation 

1) Inference 
Patches were randomly sampled from the image volumes 

during training, but during inference a different sampling 

strategy was applied. Patches were sampled with a fixed stride 

that was smaller than the patch size, creating overlap between 

patches such that most voxel intensities were predicted multiple 

times. Each patch was weighted by an isotropic Gaussian kernel 

with sigma’s heuristically set to 1/6th of the patch size (in 

voxels) in each dimension. This kernel decreases the number of 

potential artifacts near the edges of the patch resulting from 

padding, because these locations are weighted less than the 

centre of each patch.  

 The aforementioned weighted fusion is also applied in the 

High-to-low approach, but is slightly more intricate there. The 

sTSELR image is not created by downsampling the sTSEHR after 

weighted fusion, but both the sTSEHR and sTSELR images are 

constructed simultaneously by weighted fusion. In practice, this 

means that each sTSEHR patch is predicted by the network and 

subsequently downsampled to be put into its corresponding 

location in the sTSELR image. Therefore, the stride for sampling 

the GE patches has to be equal to four in the left-right direction 

to keep the 4-to-1 correspondence between the sTSEHR and 

sTSELR slices. During inference two different kernels were 

used: (1) a kernel with weights [1/2, 1/2, 0, 0] and (2) the trained 

downsampling kernel as described in the previous section. 

 The strides were originally set to a third of the patch size, 

resulting in a stride of (18, 18, 2) for the Low-to-low approach. 

But as mentioned before, the stride had to have a value of four 

in the left-right direction for the High-to-low approach, giving 

a stride of (18, 18, 4) for the sTSEHR, which translates to a stride 

of (18, 18, 1) for the sTSELR. Therefore, in the comparison 

between the Low-to-low- and High-to-low approach, a stride of 

(18, 18, 1) was used for the Low-to-low approach.  
2) Metrics 

Three evaluation metrics were evaluated on the normalized data 

inside the body mask and the bone mask for all comparisons: 
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the Mean Absolute Error (MAE),  Mutual Information (MI) and 

Structural Similarity Index Measure (SSIM). The MAE shows 

how well the networks have been able to learn the GE to TSE 

translation as formulated during training, because this is always 

a part of the loss function.  

 Because the MAE is (part of) the loss function, the other two 

metrics give a more training-independent evaluation of the 

performance. The MI gives a global measure of the nonlinear 

correlation between the sTSE and TSE, which is more forgiving 

to systematic under- or overestimations than the MAE. These 

systematic under- or overestimations could leave the overall 

contrast roughly the same, as long as they are small enough, so 

it is important to have a metric that allows for this. In all cases 

the MI is evaluated with 128 histogram bins. Finally, the SSIM 

looks at the local image structure and was originally developed 

to quantify perceived image quality; it is maximized when both 

input images are identical [24]. The original paper used a 

window of size 1111 pixels, which was increased to a size of 

21213 voxels to take the 3D image structure into account, 

while keeping a roughly isotropic window size. 

3) Statistical analysis 
To assess differences between networks or approaches a paired 

Student’s t-test was used to compare the means of all five 

patient metrics from two networks/approaches, indicating if the 

means over the patients and repetitions were significantly 

different. For all tests P<0.05 was considered as a statistically 

significant difference between the two means. 

III. RESULTS 

III. A. Low-to-low approach 

In the Low-to-low approach, the hyperparameters of 

HighResNet, U-Net and U-Net+BN were all tuned via a 

partially cross-validated grid search with the resulting best 

hyperparameter combinations shown in Table III. Using these 

hyperparameter combinations all three networks were trained 

five times resulting in the evaluation metrics in Fig. 4. These 

were evaluated inside the entire body mask and inside the bone 

mask (denoted by the bone subscript). 

 Fig. 4 clearly demonstrates that HighResNet significantly 

outperformed both U-Net variants on five of the six evaluation 

metrics. Additionally, it shows only a significant difference 

between the two U-Net variants on the MIbone metric, indicating 

that the addition of the BN layer does not affect the results 

much. 

 A visual comparison between HighResNet and U-Net is 

shown in Fig. 5, with U-Net+BN left out, because of the 

similarity of its results to U-Net. Because each network was 

trained five times, the images were generated using the network 

from the run that achieved the median metric value most often. 

This is also the case for the rest of the qualitative results.  

The two columns on the right show the Relative Error (RE) 

and Structural Dissimilarity Index Measure (dSSIM), which is 

simply 1 – SSIM. Notice that areas in the RE and dSSIM maps 

that light up in one network often also light up in the other 

network’s output, indicating that most of these areas are 

difficult for both networks. An example of this is the area 

indicated by the arrow in the top right of the sTSEs, where both 

HighResNet and U-Net struggle. This area is actually 

hyperintense in the GE images, but dark in the TSE images. 

HighResNet correctly predicts the lower intensity, but 

overestimates the extent of this darker area. U-Net on the other 

hand fails to predict the lower intensity. 

Another important aspect of the images is the area indicated 

by the arrow on the top left, which shows an artifact related to 

the image registration. As mentioned before, when the GE was 

pushed inward near the image edges, the “empty” space was 

filled with an image intensity of -1, which is subsequently set 

to 0 during pre-processing. This thresholding will sometimes 

leave a dark strip/area near the image edges, which is a feature 

the network does not recognize from the training data, resulting 

in artifacts.  

A clear difference between the two networks is pointed out 

by the lowest arrow, where a thin fatty structure is almost absent 

on U-Net’s output and much more pronounced in HighResNet’s 

output. The arrow also points at a dark interface between the 

muscle and fat, which is also much more visible on 

HighResNet’s output than on U-Net’s.  

Finally, the dSSIM maps show a slightly higher intensity in 

the centre of most of the upper vertebrae for both networks. This 

demonstrates the fact that the networks tend to create more 

smooth images, thereby reducing the detail and speckle present 

inside the vertebrae. 

 

 
Fig. 4. Results of training all three networks five times using the Low-

to-low approach. Each datapoint represents a patient with the standard 

deviation over five repetitions. Horizontal bars indicate the mean over all 

patients and repetitions. All metrics were evaluated inside the entire 

body mask (no subscript) and inside the bone mask (bone subscript). 
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Fig. 5. Qualitative results from HighResNet and U-Net trained using the Low-to-low approach. The ground-truth TSE and predicted sTSE are 

shown along with the Relative Error (RE) and Structural Dissimilarity Index Measure (dSSIM), where the latter two are masked by the body mask. 

Each of the image slices (excluding the RE and dSSIM maps) is individually normalized by clipping the intensities to the 1st- and 99th-percentile and 

subsequently mapping to the interval 0-1. 

  

III. B. High-to-low approach 

Both HighResNet and U-Net were trained using the High-to-

low approach, with U-Net+BN left out because of the 

unsignificant performance change compared to U-Net on five 

of the six evaluation metrics. The results of the sTSELR to TSE 

comparison from five repetitions are summarized in Table IV. 

Downsampling was performed using a fixed kernel with 

weights [1/2, 1/2, 0, 0]. The table clearly shows that (1) the two 

networks perform similarly when using only the L1-loss, except 

for a significant difference in the MAE. (2)  Using the MIND 

loss, U-Net actually performs significantly better  in five out of 

the six metrics. (3)  The MIND term degrades performance  on 

the (low resolution) TSE prediction. 

Although U-Net outperforms HighResNet on one out of the 

six metrics using L1-only and on five out of the six metrics 

using MIND, this performance comes at a cost to the sTSEHR 

images. The cost is demonstrated in Fig. 6, where slice-

dependent behaviour is clearly present in both image pairs, 

although the MIND term of the loss regularizes the network and 

slightly prevents it. 

Because of these artifacts, which make the sTSEHR hard to use 

for clinical interpretation, the rest of the experiments were only 

performed using HighResNet. 
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TABLE IV 

EVALUATION METRICS FOR NETWORKS TRAINED USING THE HIGH-TO-LOW APPROACH WITH TWO DIFFERENT LOSS FUNCTIONS. SIGNIFICANTLY BETTER 

CONFIGURATIONS ARE INDICATED IN BOLD PER LOSS FUNCTION AND METRIC. 

Loss  Network MAE MAEbone MI MIbone SSIM SSIMbone 

L1 
HighResNet 0.037 ± 0.005 0.033 ± 0.002 1.473 ± 0.070 1.168 ± 0.081 0.888 ± 0.016 0.902 ± 0.017 

U-Net 0.035 ± 0.004 0.033 ± 0.003 1.482 ± 0.059 1.163 ± 0.078 0.892 ± 0.015 0.902 ± 0.018 

L1 + 

0.1MIND 

HighResNet 0.038 ± 0.005 0.035 ± 0.002 1.431 ± 0.066 1.131 ± 0.081 0.873 ± 0.017 0.888 ± 0.019 

U-Net 0.035 ± 0.004 0.034 ± 0.002 1.461 ± 0.059 1.147 ± 0.080 0.882 ± 0.015 0.894 ± 0.019 

 

 
Fig. 6. Coronal and axial slices from training U-Net with MIND and 

with L1-only using the High-to-low approach. Both image pairs show 

strong slice-dependent behaviour, although it is suppressed by the 

MIND term. 

 

1) Comparison to the Low-to-low approach 
To see if the extra information from the higher resolution input 

in the High-to-low approach helps performance on the contrast 

transformation, HighResNet was retrained with all 

hyperparameters and configurations matched to the High-to-

low approach. Fig. 7 shows the comparison between the two 

methods, in which the downsampling kernel in the High-to-low 

approach has been trained with the network weights frozen. The 

resultant kernel weights are shown in Table A1. 

Fig. 7 demonstrates that (1) the High-to-low approach 

significantly outperforms the Low-to-low approach in four out 

of the six metrics when used with L1-only. (2) The addition of 

the MIND term significantly degrades the High-to-low 

performance to below that of the Low-to-low approach in terms 

of the SSIM in the entire body and bone. 

Not only does the High-to-low approach increase 

performance (when using L1-only) on the TSE synthesis 

because of the better utilization of the available data, it also 

creates a synthetic TSE at a higher resolution  than the ground-

truth TSE. These are shown along with the aIP GE (which is 

used for the MIND loss computation and is part of the input 

images) and the ground-truth TSE in Fig. 8. 

 

 
Fig. 7. Results of training HighResNet with the Low-to-low approach 

matched to the High-to-low approach parameters vs. HighResNet 

trained using the High-to-low (abbreviated as HtL) approach. Each 

datapoint represents a patient with the standard deviation over five 

repetitions and horizontal bars indicate the mean over all patients and 

repetitions. 
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Fig. 8. Comparison between the two High-to-low approach variants using HighResNet with L1-only and with MIND. The input aIP GE is also 

shown along with the ground-truth TSE, where the latter is of a four times lower resolution in the left-right direction as evident in the coronal and 

axial slices. Each slice is individually normalized by clipping the intensities to the 1st- and 99th-percentile and subsequently mapping to the interval 

0-1. 

 

Starting with the axial slices, we clearly see the effect of the 

MIND term in helping with maintaining some of the structure 

present in the aIP GE, where the red arrow points at a V-shaped  

muscle structure bordering the spinal cord, which is much better 

represented in the MIND variant than in the L1-only variant. 

This same mechanism can also lead to negative effects, 

however, which is shown in the sagittal slices with the arrows. 

Here, the fat anterior to the vertebra is hard to distinguish in the 

aIP GE, which propagates into the sTSEHR when using the 

MIND term. Using L1-only, the contrast and shape correspond 

better to  the actual TSE. Finally, the arrow on the coronal slice 

shows that even with the random offsets and flipping 

augmentation, the L1-only variant still exhibits some slice-

dependent behaviour. Again, this behaviour is much less 

prominent/almost absent when using MIND. 

The results of the other four folds are shown in the appendix 

in Fig. A1 for comparison, where it can be seen that the 

severeness of this slice-dependent behaviour varies across the 

runs. It also shows two images containing incorrectly predicted 

hyperintensities in the posterior subcutaneous fat for both the 

MIND and L1-only variants. 

Going back to the slice-dependent behaviour, there is a simple 

solution to this problem: going from a stride of (18, 18, 4) to 

(18, 18, 1) in the sTSEHR reconstruction. The smaller stride in 

the left-right direction smears out the artifact, making it less 

visible. Examples of this technique are shown in Fig. A2 in the 

appendix for the same folds as in Fig. 8 for all test set patients, 

with the second row corresponding to the same patient as in Fig. 

8. Note that although this stride increases the quality of the 

sTSEHR images, it masks an underlying issue in the 

reconstruction and does not allow for a fair comparison to the 

Low-to-low approach because of the smaller stride, which 

would correspond to an undefined stride of (18, 18, 1/4) for the 

sTSELR reconstruction.   

2) Validation of the MIND loss 
To validate the use of the MIND loss, the TSE images were 

downsampled with a factor four in the superior-inferior 

direction to have a ground-truth TSEHR image for evaluation 

and a TSELR image to train on. The results of the comparison 

between the TSEHR and sTSEHR (note that the former is simply 

the original TSE) are summarized in Table V. 

Table V shows what is also reflected in the earlier results in 

regard to the MIND variant, which is that it underperforms on 

the TSE synthesis. Not only does this apply to the sTSELR, but 

also to the sTSEHR as shown here, which is to be expected. 
 

TABLE V 

COMPARISON BETWEEN THE TWO LOSS FUNCTIONS FOR HIGHRESNET 

TRAINED USING THE HIGH-TO-LOW APPROACH. SIGNIFICANTLY BETTER 

CONFIGURATIONS ARE INDICATED IN BOLD PER LOSS FUNCTION  

 MAE MI SSIM 

L1-only 0.038 ± 0.004 1.419 ± 0.055 0.876 ± 0.015 

MIND 0.038 ± 0.004 1.397 ± 0.056 0.865 ± 0.015 

 MAEbone MIbone SSIMbone 

L1-only 0.037 ± 0.003 1.079 ± 0.074 0.879 ± 0.020 

MIND 0.037 ± 0.002 1.065 ± 0.078 0.873 ± 0.020 

IV. DISCUSSION 

IV. A. Experimental results 

In this study, we investigated the possibility of translating from 

GE to TSE images. A dataset of cervical spine data was used to 

train a well-established network architecture, U-Net, and a 

network architecture designed specifically for the GE to TSE 

translation, HighResNet. Additionally, a new approach was 

implemented to keep the higher through-plane resolution 

offered by the GE images. 

 The results demonstrate that HighResNet outperforms U-Net 

and U-Net+BN when using the Low-to-low approach (Fig. 4). 

This confirms our hypothesis that the use of residual 
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connections and/or the lack of downsampling of the feature 

maps (e.g. by max-pooling) boosts performance for the GE to 

TSE translation. Although U-Net is used in much of the image 

synthesis research due to its good performance and flexibility 

[9], [12], [18], [19], we have shown that a specifically tailored 

network architecture like HighResNet might be better in some 

cases.  

 As mentioned in section II. C. 1), U-Net is often used inside 

a GAN. The reason GANs were not used in this study is that 

although the adversarial loss helps with creating more visually 

appealing results, they can also hallucinate features that are not 

in the actual source data  [25]. An example could be a GAN that 

has only been trained on image data from healthy patients, 

which subsequently removes a tumour from an image during 

inference, because the network has been trained to match the 

healthy training set distribution [26]. This type of behaviour is 

of course unwanted when dealing with medical images that are  

meant for clinical interpretation. 

 The hypothesis that HighResNet’s architecture allows it to 

outperform U-Net does not hold true in the High-to-low 

approach, where U-Net and HighResNet perform similarly with 

an L1-only loss. Using the MIND term U-Net even outperforms 

HighResNet significantly on a majority of the similarity metrics 

(Table IV). 

 An explanation of this could be that it actually seems 

advantageous for the networks to create the slice-dependent 

behaviour to optimize for performance on the sTSELR synthesis. 

This is why even with the random offsets and flipping of the 

training data to combat this behaviour, it is still present in the 

sTSEHR for both loss variants of U-Net and for the L1-only 

variant of HighResNet (Fig. 6 and Fig. 8). The behaviour is 

much better supressed for HighResNet on the other hand, which 

might actually hinder its performance on the sTSELR, but it 

creates qualitatively better sTSEHR’s than U-Net. 

 For both networks the benefit of using the High-to-low 

approach are two-fold: (1) the performance on the TSE 

synthesis is improved when using the L1-only loss as compared 

to the Low-to-low approach (Fig. 7) and (2) it results in a 

fourfold increase in the amount of sagittal slices as compared to 

the ground-truth TSE (Fig. 8). The improvement in 

performance on the TSE synthesis shows indirectly that, 

although there is no ground-truth high resolution TSE to 

compare the sTSEHR against, it still contains reliable 

information. Additionally, the fact that two of the four GE slices 

are more similar to the corresponding TSE slice shows that the 

GE contains more information than is present in the TSE image. 

This same principle applies to the sTSEHR, which is also 

reflected in the trained weights of the downsampling kernel, 

where these two slices are weighted ~5-6 as much as one of 

their neighbouring voxels (Table A1). 

 The performance boost of the High-to-low approach 

compared to the Low-to-low approach is negated when using 

the MIND term in the loss function and results in a significant 

decrease in performance compared to the Low-to-low approach 

in terms of the SSIM inside the body and the bone (Fig. 7). This 

performance decrease is related to the fact that the GE images 

are generally noisier, which is smoothed out when using only 

the L1 loss, but is preserved more when adding the MIND loss, 

because the MIND loss increases the similarity to the aIP GE. 

The decrease in performance in relation to the L1-only variant 

would most likely also be present in the sTSEHR if a ground-

truth image were available (Table V). 

 Although the MIND loss decreases the correspondence 

between the sTSE and TSE, it does give more realistic looking 

images by keeping some of the noise and detail present in the 

GE. 

IV. B. Limitations 

The reason of the performance decrease from the MIND loss is 

tied to one of the main limitations of the GE to TSE translation, 

namely that some of the features present in the TSE are 

completely absent and therefore unlearnable in the GE. This is 

most clearly visible in Fig. 8, where the thin fatty structures 

anterior to the vertebra with the red arrow and anterior to the 

three vertebrae below it in the TSE are almost completely 

absent from both sTSEHR's. Note that although four of the 

sTSEHR slices correspond to the one TSE slice and only one of 

these is shown, this feature is absent among all four of them.  

 The missing fatty structures are a direct result of this feature 

being mostly absent in the aIP GE (and also in the aOP GE, not 

shown in Fig. 8). In some cases the L1-only network might be 

able to reconstruct features like these based on the aOP GE 

image as these sometimes do vaguely show features absent in 

the aIP GE image. The network with the MIND loss term is 

forced to keep its sTSE images close to the aIP GE image, 

however, which further exacerbates this mismatch in features. 

 Another example of this feature mismatch is the dark edge  

between the intervertebral disks and the vertebrae 

(discovertebral junction), which extends out further on the TSE 

than on the aIP GE by about one to two voxels. The MIND term 

strongly enforces the edges of the sTSEHR and aIP GE to be 

aligned, so this means that in the sTSEHR these dark edges are 

in the wrong location. The network trained with L1-only on the 

other hand is able to work around this by learning to recognize 

these edges and slightly increasing their size, which is reflected 

by the more defined and thicker dark edges in this variant (Fig. 

8). 

 Although the L1-only network is better able to reconstruct 

some of the TSE features, the fact still remains that some 

features are simply absent from the GE images, making them 

impossible to reconstruct for all networks and for both the Low-

to-low and High-to-low approach. 

 Finally, the reason the MIND loss was applied to the Sobel 

filtered image patches instead of to the patches directly is that 

the former does not allow for mismatches between the edges of 

the aIP GE and sTSEHR as much. This edge mismatch was an 

issue when applying the MIND loss directly to the image 

patches, where the L1 loss would force the edges between e.g. 

the intervertebral disk and vertebra to be in the same location as 

in the TSE, but the MIND loss would force it to be in a different 

location as in the GE, giving an artificial double edge. Applying 

the MIND loss to the Sobel features instead fixes this issue, but 

it simply masks the underlying problem of the GE and TSE 

feature mismatch mentioned before. 

 The SSIM and MI between the aIP GE and sTSEHR were also 

used as a structural consistency loss, but when applied directly 

to patches extracted from both of these images (so without the 

Sobel filters), both losses created artifacts. The MI tended to 
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create images with piecewise-linear intensity profiles with very 

sharp edges between e.g. fat and muscle, which should not be 

present. We hypothesized that this behaviour originated from 

the finite number of histogram bins (32 or 64) used, which 

seemed to force the network to push each voxel intensity to the 

centre of one of these bins, creating a more sparse histogram 

and therefore less realistic images. 

The SSIM presented some artifacts as well, because it is 

maximized when both patches are exactly the same [24]. In 

practice, this meant that the SSIM term pulled the synthetic TSE 

images more towards the original GE aIP contrast, thereby 

hindering the contrast transformation. 

IV. C. Future research 

The sTSE in its current state lacks clinically important features 

due to some of the limitations outlined in the previous section, 

so we do not recommend the sTSE(LR)’s be used in their current 

form clinically. An example of these are the small fatty rims 

along the vertebrae, which are mostly absent from the GE 

images and therefore also from the sTSE.  

For the complete removal of the TSE from the protocol, the 

quality of the sTSEs needs to be improved, which would require 

changes to the BoneMRI sequence, because it simply does not 

represent some of the features needed for the TSE 

reconstruction. The most important change would be an 

increase in the contrast between muscle and fat. This would 

require changes to the repetition time and/or flip angle, but that 

could in turn influence the performance of the sCT synthesis 

and might force the sCT network to be retrained.  

Therefore, if this research direction were explored further, the 

sTSEs resultant from the altered sequence would need to be 

thoroughly clinically validated along with the sCT’s generated 

from this data using a retrained network, while taking total scan 

time into account. 

The quality of the sTSEs can also be slightly improved by 

changing the pre-processing of the data. In both the Low-to-

low- and High-to-low approaches the in-plane resolution of the 

GE was upsampled to 0.488 mm  0.488 mm, which is an 1.5 

increase in the number of voxels in both in-plane directions, 

created from interpolation. This creates voxels that do not carry 

any real information, so the network is not just tasked with 

contrast transformation, but also with learning to transform an 

image, where roughly 57% of the voxels come from 

interpolation (ignoring the through-plane/left-right 

resampling), to a non-interpolated image. 

A better approach would therefore be not to resample the GE 

in the in-plane orientation, but to resample the TSE to the in-

plane GE resolution of 0.744 mm  0.744 mm or, better yet, to 

acquire the TSE with the same in-plane resolution to maximize 

the correspondence between the two and remove the influence 

of interpolation artifacts.  

A TSE with the same in-plane resolution would also alleviate 

some of the feature mismatch discussed in the previous section. 

For example, the mismatch between the dark edges between the 

vertebrae and intervertebral disks is partly determined by partial 

volume effects in the GE, which are exacerbated by the 

resampling in the in-plane direction.  

Finally, the quality of both the sTSELR and sTSEHR from the 

High-to-low approach can be improved by simply reducing the 

stride in the left-right direction to 1 as discussed in the results 

and demonstrated for the sTSEHR in Fig. A2. Although this is a 

simple change for the sTSEHR generation, it requires a rework 

of the creation of the sTSELR, because the sTSEHR is being 

shifted by 1/4th of the sTSELR voxel size with each step in the 

left-right direction. This means that for each of the four 

configurations k, k+1, k+2, k+3,  as shown in Fig. 9, a different 

downsampling kernel has to be used. 

To determine the kernel weights, four different 

downsampling kernels could be trained for each of the four 

different sets of patches with the network parameters frozen. 

Note, however, that the top-most slice out of the four (the left-

most in the actual image) is used in the sTSELR reconstruction 

four times, whilst the one below it is only used thrice, biasing 

the prediction towards the top-most of these two slices. It might 

therefore be better to leave out every fourth patch for the 

sTSELR reconstruction, corresponding to Patch k+3. 

A less computationally expensive method than training a 

kernel for each of the four (or three, ignoring the fourth 

configuration to remove the bias) configurations could be to 

train the network on patches in the Patch k+1 configuration, 

resulting in weights [a, b, c, d], which could then be transferred 

to Patch k as [b, c, d, 0] and to Patch k+2 as [0, a, b, c], where 

the last two would have to be normalized. 

 

 

 
Fig. 9. Schematic overview of the convolutional downsampling from 

the sTSEHR to the sTSELR patches with a stride of one. The orange 

sTSEHR slices that correspond most to the orange sTSELR slice are 

highlighted along with the corresponding kernel locations. 
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V. CONCLUSION 

We studied the synthesis of TSE images from GE images and 

proposed the High-to-low approach. The approach was found 

to be capable of creating significantly higher quality synthetic 

TSE images as compared to the Low-to-low approach, for 

which the input GE images were downsampled to the TSE 

resolution. Furthermore, the High-to-low approach was capable 

of  generating synthetic TSE images at a higher resolution than 

the ground-truth data. Finally, we introduced a fully 

convolutional network architecture, HighResNet, which 

presented fewer artifacts in the high resolution synthetic TSE 

images than a conventional U-Net and outperformed the U-Net 

quantitatively in the Low-to-low approach. 
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Appendix 
TABLE A1 

AVERAGE (± STANDARD DEVIATION) WEIGHTS OF THE DOWNSAMPLING KERNELS AFTER TRAINING FOR ALL FIVE REPETITIONS OF THE HIGH-TO-LOW RUNS 

Index→ 

Loss ↓ 
0 1 2 3 

L1-only 0.4436 ± 0.0585 0.4570 ± 0.0318 0.0790 ± 0.0672 0.0189 ± 0.0390 

MIND 0.4359 ± 0.0973 0.4648 ± 0.0365 0.0810 ± 0.0755 0.0052 ± 0.0283 
 
 

 

 
Fig. A1. Comparison between the two High-to-low approaches with L1-only and with MIND, showing the other four out of the five repetitions 

missing in Fig. 8. 
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Fig. A2. Comparison between the two High-to-low approaches with L1-only and with MIND. All sTSEHR images are reconstructed with a stride of 

(18, 18, 1) instead of a stride of (18, 18, 4) as used in Fig. 8, which shows the same patient as in the second row of this figure. Note that the slice-

dependent behaviour is much less pronounced than in Fig. 8, which is especially apparent at the bottom of the coronal sTSEHR L1-only slice.  


