
Faculty of Science
Department of Information and Computing Sciences

CREATED: The Generation of viable Counterfactual
Sequences using an Evolutionary Algorithm for Event

Data of Complex Processes

Master Thesis

Olusanmi A. Hundogan

Supervisors:
dr. ir. Xixi Lu

Yupei Du, M. Sc.
August 15, 2022



Abstract

Within the field of Process Mining, deep recurrent networks (such as LSTM)
have been used to predict the next state or the outcome of a multivariate
sequence. However, these models tend to be complex and are difficult for
users to understand of the underlying process model. Counterfactuals an-
swer ”what-if” questions, which are used to understand the reasoning behind
the predicted outcome of a process. Current methods to generate counter-
factual explanations do not take the structural characteristics of multivariate
discrete sequences into account. In this work we propose a framework that
uses evolutionary methods to generate counterfactuals, while incorporating
criteria that ensure their viability. Our results show that it is possible to gen-
erate counterfactuals that are viable and automatically align with the factual.
The generated counterfactuals outperform baseline methods in viability and
yield comparable results compared to other methods in the literature.
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Chapter 1

Introduction

1.1 Motivation

Many processes, often medical, economical, or administrative in nature, are
governed by sequential events and their contextual environment. Many of
these events and their order of appearance play a crucial part in the determi-
nation of every possible outcome[54]. With the rise of AI and the increased
abundance of data in recent years, several techniques emerged that help to
predict the outcomes of complex processes in the real world. A field that
focuses on modelling processes is Process Mining (PM).

Research in the Process Mining discipline has shown that it is possible to
predict the outcome of a particular process fairly well[31, 51]. For instance, in
the medical domain, models have been shown to predict the outcome or tra-
jectory of a patient’s condition[37]. In the private sector, process models can
be used to detect faults or outliers. The research discipline Deep Learning
has shown promising results within domains that have been considered dif-
ficult for decades. The Moravex Paradox[2], which postulates that machines
are capable of doing complex computations easily while failing in tasks that
seem easy to humans such as object detection or language comprehension,
does not hold anymore. Meaning that with enough data to learn, machines
are capable of learning highly sophisticated tasks better than any human.
The same holds for predictive tasks. However, while many prediction models
can predict certain outcomes, it remains a difficult challenge to understand
their reasoning.

This difficulty arises from models, like neural networks, that are so-called
blackbox models. Meaning, that their inference is incomprehensible, due to
the vast amount of parameters involved. This lack of comprehension is unde-
sirable for many fields like IT or finance. Not knowing why a loan was given,

4



makes it impossible to rule out possible biases. Knowing what will lead to
a system failure will help us knowing how to avoid it. In critical domains
like medicine, the reasoning behind decisions becomes crucial. For instance,
if we know that a treatment process of a patient reduces the chances for sur-
vival, we want to know which treatment step is the critical factor we ought
to avoid. To summarise, knowing the outcome of a process often leads us to
questions on how to change it. Formally, we want to change the outcome of
a process instance by making it maximally likely with as little interventions
as possible[42]. Figure 1.1 is a visual representation of the desired goal.

Figure 1.1: This figure illustrates a model, that predicts a certain trajectory of the process. However, we
want to change the process steps in such a way, that it changes the outcome.

One way to better understand the Machine Learning (ML) models lies within
the eXplainable AI (XAI) discipline. XAI focuses the developments of theo-
ries, methods, and techniques that help explaining blackbox models models
to humans. Most of the discipline’s techniques produce explanations that
guide our understanding. Explanations can come in various forms, such as
IF-THEN rules[42, p.90] or feature importance[42, p.45], but some are more
comprehensible for humans than others.

A prominent and human-friendly approach are counterfactuals [42, p. 221].
Counterfactuals within the AI framework help us to answer hypothetical
”what-if” questions. Basically, if we know what would happen if we changed
the execution of a process instance, we could change it for the better. In this
thesis, we raise the question how we can use counterfactuals to change the
trajectory of a process models’ prediction towards a desired outcome. Know-
ing the answers not only increases the understanding of blackbox models,
but also help us avoid or enforce certain outcomes.
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1.2 Problem Space

In this thesis, we approach the problem of generating counterfactuals for
processes. The literature has provided a multitude of techniques to generate
counterfactuals for AI models, that are derived from static data1. However,
little research has focussed on counterfactuals for dynamic data2.

For process data, the literature often uses terms like structured and semi-
structured, as they are related to the staticity and dynamicity. Both, struc-
turedness and semi-structuredness, often relate to the data model, in which
we structure the information at hand. As static data neither changes over
time nor changes its structure, we can use structured data-formats such as
tables to capture the information where each data point is an independent en-
tity. We can take the MNIST dataset[17] or Iris dataset[4, 18] as examples for
structured and static data. In both datasets, all data points are independent
and have the same amount of attributes. In contrast, semi-structured data
does not have to follow these strict characteristics. Here, data points often
belong to a group of data points which constitutes the full entity. Further-
more, the attributes of each data point may vary. The grouping mechanism
could take the form of associative links, class associations or temporal cause-
effect relationships. Examples of these are Part-of-Speech datasets like Penn
Treebank set[38]. Here, we often associate each data point with a sentence.
However, the temporal relationship between words is debatable and hence,
whether the data is dynamic, as well. So, not all semi-structured datasets
are dynamic and vice versa. However, structured data will almost always be
static, with the exception of time-series. Lastly, there is also unstructured
data, which does not incorporate any specific data model. Corpora like the
Brown dataset[20], for instance, are collections of text heavy unstructured
information. In Figure 1.2, we show various examples of data.

A major reason, why there has not been much research on counterfactuals
for dynamic semi-structured data, emerges from a multitude of challenges,
when dealing with counterfactuals and sequences. Three of these challenges
are particularly important.

First, counterfactuals within AI attempt to explain outcomes which never
occured. What-if questions often refer to hypothetical scenarios. Therefore,
there is no evidential data from which we can infer predictions. Subsequently,
this lack of evidence further complicates the evaluation of generated counter-
factuals. In other words, you cannot validate the correctness of a theoretical
outcome that has never occured.

1With static data, we refer to data that does not change over a time dimension.
2With dynamic data, we refer to data that has a temporal relationship as a major

component, which is also inherently sequential
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(a) An excerpt of the MNIST dataset. This is a structured
dataset.

(b) A number of heterogenous documents. A dataset like
this is unstructured.

(c) Multiple seqeuences of words. Each word forms a sentence of different lengths.
Therefore, this data is semi-structured.

Figure 1.2: Schematic examples of static structured, dynamic semi-structured data and unstructured data.
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Second, sequential data is highly variable in length, but process steps
have complicated factors, too. The sequential nature of the data impedes the
tractability of many problems due to the combinatorial explosion of possible
sequences. Furthermore, the data generated is seldomly one-dimensional or
discrete. Henceforth, each dimension’s contribution can vary in dependance
of its context, time and magnitude.

Third, process data often requires knowledge of the causal structures that
produced the data in the first place. However, these structures are often
hidden and it is a NP-hard problem to elicit them[57].

These challenges make the field, in which we can contribute, a vast en-
deavor.

1.3 Related Literature

Many researchers have worked on counterfactuals and PM. Here, we combine
the important concepts and discuss the various contributions to this thesis.

1.3.1 Generating Counterfactuals

The topic of counterfactual generation as explanation method was introduced
by Wachter, Mittelstadt, and Russell in 2018[56]. The authors defined a loss
function which incorporates the criteria to generate a counterfactual which
maximizes the likelihood for a predefined outcome and minimizes the distance
to the original instance. However, the solution of Wachter, Mittelstadt, and
Russell did not account for the minimisation of feature changes and does not
penalize unrealistic features. Furthermore, their solution cannot incorporate
categorical variables.

A newer approach by Dandl et al. incorporates four main criteria for
counterfactuals (see section 2.3) by applying a genetic algorithm with a multi-
objective fitness function[14]. This approach strongly differs from gradient-
based methods, as it does not require a differentiable objective function.
However, their solution was only tested on static data.

1.3.2 Generating Counterfactual Sequences

When it comes to sequential data most researchers work on ways to gener-
ate counterfactuals for natural language. This often entails generating uni-
variate discrete counterfactuals with the use of Deep Learning techniques.
Martens and Provost and later Krause, Perer, and Ng are early examples
of counterfactual NLP research[32, 39]. Their approach strongly focuses on
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the manipulation of sentences to achieve the desired outcome. However, as
Robeer, Bex, and Feelders puts it, their counterfactuals do not comply with
realisticness [48].

Instead, Robeer, Bex, and Feelders showed that it is possible to generate
realistic counterfactuals with a Generative Adversarial Model (GAN)[48].
They use the model to implicitly capture a latent state space and sample
counterfactuals from it. Apart from implicitly modelling the latent space
with GANs, it is possible to sample data from an explicit latent space. Ex-
amples of these approaches often use an encoder-decoder pattern in which the
encoder encodes a data instance into a latent vector, which will be peturbed
and then decoded into a similar instance[40, 58]. By modelling the latent
space, we can simply sample from a distribution conditioned on the origi-
nal instance. Bond-Taylor et al. provide an overview of the strengths and
weaknesses of common generative models.

Even though, a single latent vector model can theoretically produce mul-
tivariate sequences, it may still be too restrictive to capture the combinatorial
space of multivariate sequences. Hence, most of the models within Natural
Language Processing (NLP) were not used to produce a sequence of vectors,
but a sequence of discrete symbols. For process instances, we can assume a
causal relation between state vectors in a sequential latent space. We call
models that capture a sequential latent state-space, which has causal rela-
tions, dynamic[35]. Early models of this type of dynamic latent state-space
models are the well-known Kalman-Filter for continuous states and Hidden
Markov Model (HMM) for discrete states. In recent literature, many tech-
niques use Deep Learning to model complex state-spaces. The first models
of this type were developed by Krishnan, Shalit, and Sontag[32, 33]. Their
Deep Kalman Filter (DKF) and subsequent Deep Markov Model (DMM) ap-
proximate the dynamic latent state-space by modelling the latent space given
the data sequence and all previous latent vectors in the sequence. There are
many variations[11, 19, 35] of Krishnan, Shalit, and Sontag’s model, but
most use Evidence Lower-Bound (ELBO) of the posterior for the current Zt
given all previous {Zt−1, . . . , Z1} and Xt[22].

1.3.3 Generating Counterfactual Time-Series

Within the multivariate time-series literature two recent approaches yield
ideas worth discussing.

First, Delaney, Greene, and Keane introduce a case-based reasoning to
generate counterfactuals[16]. Their method uses existing counterfactual in-
stances, or prototypes, in the dataset. Therefore, it ensures, that the pro-
posed counterfactuals are realistic. However, case-based approaches strongly
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depend on the representativeness of the prototypes[42, p. 192]. In other
words, if the model displays behaviour, which is not captured within the
set of prototypical instances, most case-based techniques will fail to provide
viable counterfactuals. The likelihood of such a break-down increases due to
the combinatorial explosion of possible behaviours if the true process model
has cycles or continuous event attributes. Cycles may cause infinite possible
sequences and continuous attributes can take values on a domain within infi-
nite negative and positive bounds. These issues have not been explored in the
paper of Delaney, Greene, and Keane, as it mainly deals with time series clas-
sification[16]. However, despite these shortcomings, case-based approaches
may act as a valuable baseline against other sophisticated approaches.

The second paper within the multivariate time series field by Ates et al.
also uses a case-based approach[6]. However, it contrasts from other ap-
proaches, as it does not specify a particular model but proposes a general
framework instead. Hence, within this framework, individual components
could be substituted by better performing components. Describing a frame-
work, rather than specifying a particular model, allows to adapt the frame-
work, due to the heterogeneous process dataset landscape. In this paper,
we also introduce a framework that allows for flexibility depending on the
dataset.

1.3.4 Generating Counterfactuals for Business Processes

So far, none of the techniques have been applied to process data.
Within PM, Causal Inference has long been used to analyse and model

business processes. Mainly, due to the causal relationships underlying each
process. However, early work has often attempted to incorporate domain-
knowledge about the causality of processes in order to improve the process
model itself[7, 27, 49, 59]. Among these, Narendra et al. approach is one
of the first to include counterfactual reasoning for process optimization[44].
Oberst and Sontag use counterfactuals to generate alternative solutions to
treatments, which lead to a desired outcome[45]. Again, the authors do not
attempt to provide an explanation of the models outcome and therefore, dis-
regard multiple viability criteria for counterfactuals in XAI. Qafari and van
der Aalst published the most recent paper on the counterfactual generation of
explanations[47]. The authors use a known Structural Causal Model (SCM)
to guide the generation of their counterfactuals. However, this approach re-
quires a process model which is as close as possible to the true process model.
For our approach, we assume that no knowledge about the dependencies are
known.

Within the XAI context, Tsirtsis, De, and Gomez-Rodriguez develop the
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first explanation method for process data[53]. However, their work closely
resembles the work of Oberst and Sontag and treat the task as Markov De-
cision Process (MDP)[45]. This extension of a regular Markov Process (MP)
assumes that an actor influences the outcome of a process given the state.
This formalisation allows the use of Reinforcement Learning (RL) methods
like Q-learning or SARSA. However, this often requires additional assump-
tions such as a given reward function and an action-space. For counterfactual
sequence generation, there is no obvious choice for the reward function or the
action-space.

Nonetheless, both Tsirtsis, De, and Gomez-Rodriguez and Oberst and
Sontag contribute an important idea. The idea of incrementally generating
the counterfactual instead of the full sequence. Hsieh, Moreira, and Ouyang
has recently published an approach that builds on the same notion of in-
cremental generation. Their approach has a very similar structure to our
approach and appears to be the only one that we can compare our counter-
factuals against.

For this reason, this thesis highlights some key differences and similari-
ties. However, to understand the differences and similarities, we first have to
establish some core concepts. In this section, we only discuss their approach,
briefly.

The authors recognised that some processes have critical events which
govern the overall outcome. Hence, by simply avoiding the undesired outcome
from critical event to critical event, it is possible to limit the search space
and compute viable counterfactuals. They use an extension of DiCE[43] to
generate counterfactuals. However, their approach requires concrete knowl-
edge about these critical points. We propose a Framework that avoids this
constraint.

To our knowledge, the authors are also the first authors that try to op-
timize their counterfactual process generation based on criteria that ensure
their viability. However, in our approach, we use different operationalisations
to quantify the criteria.

1.4 Research Question

As we seek to make data-driven process models interpretable, we have to
understand the exact purpose of this thesis. Hence, we establish the open
challenges and how this thesis attempts to solve them.

Having discussed the previous work on counterfactual sequence genera-
tion, a couple of challenges emerge. First, we need to generate on a set of
criteria and therefore, require complex loss and evaluation metrics, that may
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or may not be differentiable. Second, they cannot to be logically impossible,
given the dataset. Hence, we have to restrict the space to counterfactu-
als of viable solutions, while being flexible enough to not just copy existing
data instances. Third, using domain knowledge of the process significantly
reduces the practicality of any solution. Therefore, we have to develop an
approach, which requires only the given log as input while not relying on
process specific domain knowledge. This begs the question, whether there
is a method to generate sequential counterfactuals that are viable, without
relying on process specific domain knowledge. In terms of specific research
questions we try to answer:

RQ: How do we generate counterfactual sequences while incorporating struc-
tural differences between the factual sequence and the counterfactual
sequence?

RQ1: How can we employ existing methods to compute viability so that
its optimization incorporates information about the structure of
the sequence?

RQ2: To what extent can we generate counterfactuals that fulfill the
criteria to be viable?

RQ3: How does an algorithm, which optimizes multiple viability quality
metrics, perform against other approaches?

We approach these questions, by proposing a schematic framework which
allows the exploration of several independent components. Figure 1.3 shows
the conceptual framework of the base approach visually.

Figure 1.3: A simplified schematic representation of the framework which is explored in this thesis.

The framework contains three parts. First, we need a pre-trained predictive
component, which we aspire to explain. The component should accurately
predict the outcome of a process at any step. The accuracy-condition is fa-
vorable, but not necessary. If the component is accurately modelling the real
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world, we can draw real-world conclusions from the explanations generated.
If the component is inaccurate, the counterfactuals only explain the predic-
tion decisions and not the real world. The second part requires a generative
component. The generative component needs to generate viable sequential
counterfactuals which are logically plausible. A plausible counterfactual is
one whose outcome can be predicted by the predictive component. If the
predictive component cannot predict the counterfactual sequence, we can as-
sume that the generative model is unfaithful to the predictive component
that we want to explain. The third component is the evaluation metric upon
which we decide the viability of the counterfactual candidates.

For the evaluation, we have to show the following:

RQ2-H1: If we use a viability function which incorporates multiple criteria to
determine counterfactuals, we consistently retrieve more viable coun-
terfactuals, than choosing the counterfactuals the at random.

RQ2-H2: The generated counterfactuals consistently outperform the most viable
counterfactuals among examples in the dataset.

RQ3-H1: The results of the counterfactual are comparable to other existing lit-
erature.

1.5 Outline

The remainder of the thesis is outlined as follows: In chapter 2, we introduce
all of the important concepts that are crucial to this thesis. Most importantly,
we introduce the main research discipline PM and the subject of our research:
Counterfactuals. Furthermore we cover some necessary background required
to understand the methods, we employ.

The chapter 3, introduces our methodological framework in further detail.
The chapter explains all the important components and methods, we apply,
to answer the research question. Among these methods, we introduce the
methodological architecture, a modified version of the Damerau-Levenshstein
distance.

chapter 4 covers the main approach behind our experimental setup. We
discuss how we attempt to answer our research questions and introduce the
datasets we are using and how we conduct the preprocessing.

In chapter 5 we report on the results and insights we gain from executing
our research approach.

All the results are summarised in chapter 6. Here, we summarize and
interpret our results. We discuss limitations and possible improvements. We
also discuss implications for future research endeavors.
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The chapter 7 summarizes the thesis and the implications for the PM
research field.
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Chapter 2

Background

This chapter explores the most important concepts for this work. Hence, we
focus on the problem domain, starting with an overview about PM. After-
wards, we discuss the nature of the data, we handle in this thesis by discussing
Multivariate Discrete Time-Series. Next, we introduce counterfactuals and
establish how we characterise viable counterfactuals.

2.1 Process Mining

This thesis focuses on processes and the modelling of process generated data.
Hence, it is important to establish a common understanding for this field.

2.1.1 A definition for Business Processes

Before elaborating on Process Mining, we have to establish the meaning of
the term process. The term is widely-used and therefore, has a rich semantic
volume. A process generally refers to something that advances and changes
over time[15]. Despite, legal or biological processes being valid interpreta-
tions, too, we focus on business processes.

An example is a loan application process in which an applicant may re-
quest a loan. The case would then be assessed and reviewed by multiple
examiners and end in a final decision. The loan might end up in an approval
or denial. The business part is misleading as these processes are not confined
to commercial settings alone. For instance, a medical business process may
cover a patients admission to a hospital, followed by a series of diagnostics
and treatments and ending with the recovery or death of a patient. Another
example from a Human Computer Interaction (HCI) perspective would be
an order process for an online retail service like Amazon. The buyer might
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start the process by adding articles to the shopping cart and proceeding with
specifying their bank account details. This order process would end with the
submission or receival of the order.

All of these examples have a number of common characteristics. They
have a clear starting point which is followed by numerous intermediary steps
and end in one of the possible sets of outcomes. For this work, we mainly
follow the understanding outlined in van der Aalst et al.[54]. Each step,
including start- and end-points, is a process event which was caused by an
activity. Often, both terms, event and activity, are used interchangeably.
However, there are subtle differences. We understand an event as something
that happens at a specific point in time. The driving question is when the
event happens. In contrast, an activity is related to the content of an event.
Here, we ask what happens at a point in time. For instance, if we apply
for a loan that requires an approval by one person and afterwards a second
approval, we can call both activities APPROVAL. Although both activ-
ities are fundamentally the same, they happen at different points in time.
Henceforth, both events remain different. Mainly, because one can argue
that both events have varying time dependent contexts. For instance, an ap-
proval at daytime might be caused by different reasons, than an event caused
at night-time.

Each process event may contain additional information in the form of
event attributes. If a collection of events sequentially relate to a single run
through a process, we call them process instance or trace. These instances
do not have to be completed. Meaning, the trace might end prematurely.
In line with the aforementioned examples, these process instances could be
understood as a single loan application, a medical case or a buy order. We can
also attach process instance related information to each instance. Examples
would be the applicants location, a patients age or the buyers budget. In
its entirety, a business process can be summarised as a graph, a flowchart or
another kind of visual representation. Figure 2.1’s graphical representation
is an example of such a process map[54].

In conclusion, in this thesis a business process refers to

A finite series of discrete events with one or more starting points,
intermediary steps and end points. Each intermediate step has at
least one precedent and at least one antecedent step.

However, we have to address a number of issues with this definition.
First, it excludes infinite processes like solar system movements or con-

tinuous processes such as weather changes. There may be valid arguments
to include processes with these characteristics, but they are not relevant for
this thesis.
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Figure 2.1: This graph shows an example of a Business Process Modell Notation (BPMN) process map.

Second, in each example, we deliberately used words that accentuate
modality such as may, can or would. It is important to understand that each
process anchors its definition within an application context. Hence, what
defines a business process is indisputably subjective. For instance, while an
online marketplace like Amazon might be interested in the process start-
ing from the customers first visit until the successful shipment, an Amazon
vendor might only be interested in the delivery process of a product.

Third, the example provided in Figure 2.1 may not relate to the real un-
derlying data generating process. As process models are inherently simplified,
they may or may not be accurate. The true process is often unknown. There-
fore, we distinguish between the true process and a modelled process. The
true process is a hypothetical concept whose true structure remains unknown.
In, contrast, a process model simplifies and approximates the characteristics
of the true process.

2.1.2 What is Process Mining?

Having established a definition for a process, we next discuss Process Min-
ing. This young discipline has many connections to other fields that focus
on the modelling and analysis of processes such as Continuous Process Im-
provement (CPI) or Business Process Management (BPM)[54]. However, its
data-centric approaches originate in Data Mining. The authors van der Aalst
et al. describe this field as a discipline “to discover, monitor and improve real
processes (i.e., not assumed processes) by extracting knowledge from event
logs readily available in today’s (information) systems”[54]. The discipline
revolves around the analysis of event logs. An event log is a collection of
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process instances, which are retrieved from various sources like an Informa-
tion System (IS) or database. Logs are often stored in data formats such as
Comma Seperated Values (CSV) or eXtensible Event Stream (XES)[54].

2.1.3 The Challenges of Process Mining

As mentioned in chapter 1, process data modelling and analysis is a chal-
lenging task. van der Aalst et al. mentions a number of issues that arise from
processes[54].

The first issue arises from the quality of the dataset. Process logs are
seldomly collected with the primary goal of mining information and hence,
often appear to be of subpar quality for information mining purposes. The
information is often incomplete, due to a lack of context information, the
ommision of logged process steps, or wrong levels of granularity[54].

This issue is exacerbated by the second major issue with process data.
Mainly, its complexity. Not only does a process logs’ complexity arise from
the variety of data sources and differing levels of complexity, but also from
the datas’ characteristics. The data can often be viewed as multivariate
sequence with discrete and continuous features and variable length. This
characteristic alone creates problems explored in section 2.2. However, the
data is also just a sample of the process. Hence, it may not reflect the real
process in its entirety. In fact, mining techniques need to incorporate the
open world assumption as the original process may generate unseen process
instances[54].

A third issue which contributes to the datasets’ incompleteness and com-
plexity is a phenomenon called concept drift [54]. This phenomenon relates
to the possibility of changes in the true process. The change may occur sud-
denly or gradually and can appear in isolation or periodically. An expression
of such a drift may be a sudden inclusion of a new process step or domain
changes of certain features. These changes are not uncommon and their like-
lihood increases with the temporal coverage and level of granularity of the
dataset[54]. In other words, the more time the dataset covers and the higher
its detail, the more likely a change might have occurred over the time.

All three issues relate to the representativeness of the data with regards
to the unknown true process that generated the data. However, they also
represent open challenges that require research on their own. For our pur-
pose, we have to assume that the data is representative and its underlying
process is static. These assumptions are widely applied in the body of process
mining literature[31, 51].
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2.2 Multivariate Time-Series Modeling

The temporal and multivariate nature of process instance often turns PM
into a Multivariate Time-Series Modeling problem. Therefore, it is necessary
to establish an understanding for this type of data structure.

The data which is mined in Process Mining is typically a multivariate
time-series. It is important to establish the characteristics of time-series.

2.2.1 What are Time Series Models?

A time series can be understood as a series of observable values and depend
on previous values. The causal dependence turns time-series into a special
case of sequence models. Sequences do not have to depend on previous values.
They might depend on previous and future values or not be interdependent
at all. An example of a sequence model would be a language model. Results
in NLP, that the words in a sentences for many languages do not seem to only
depend on prior words but also on future words[21]. Hence, we can assume
that a human has formulated his sentence in the brain before expressing it
in a sequence of words. In contrast to sequences, time series cannot depend
on future values. The general understanding of time is causal and forward
directed. The notion of time relates to our understanding of cause and effect.
Hence, we can decompose any time series in a precedent (causal) and an
antecedent (effect) part[35]. A time series model attempts to capture the
relationship between precedent and antecedent.

2.2.2 The Challenges of Time Series Modelling

The analysis of unrestricted sequential opens up a myriad of challenges. First,
sequential data introduces a combinatorial set of possible realisations (often
called productions). For instance, a set of two objects {A,B} produces 7
theoretical combinations ({∅}, {A}, {B}, {A,B}, {B,A}, {A,A}, {B,B}).
Just by adding C and then D to the object set increases the number of
combinations to 40 and 341, respectively. Second, sequential data may con-
tain cyclical patterns which increase the number of possible productions to
infinity[57]. Both, the combinatorial increase and cycles, yield a set of a
countable infinite number of possible productions. However, as processes
may also contain additional information a third obstacle arises. Including
additional information extends the set to an uncountable number of possible
productions. With these obstacles in mind, it often becomes intractable to
compute an exact model.
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Hence, we have to include restrictive assumptions to reduce the solution
space to a tractable number. A common way to counter this combinato-
rial explosion is the inclusion of the Granger Causality assumption[3]. This
idea postulates the predictive capability of a sequence given its preceding
sequence. In other words, if we know that C must be followed by D, then
341 the number of possible combinations reduces to 156. All of these possi-
ble 156 combinations are now temporally-related and hence, we speak of a
time-series.

However, the prediction of sequences recontextualises the issue to two
new questions: First, if we know the precedence of a time-series, what is the
antecedent? And second, if we can predict the antecedent accurately, what
caused it? We often use data-driven AI-methods like Hidden-Markov-Models
or Deep Learning to solve the first question. However, the second question
is more subtle. At first glance, it is easy to believe that both questions
are quite similar, because we could assume that the precedent causes the
antecedent. Meaning, that we can use the data available to elicit sequential
correlative patterns. In reality, the latter question is much more difficult as
data often does not include any information about the inter-relationships.
To illustrate this difficulty, we could say that the presence of C causes D.
But if D also appears to be valid in a sequence ’AABD’, it cannot be caused
by the presence of C alone.

Answering this question requires additional tools within the XAI frame-
work. One such method is the focus of this thesis and is further explored in
section 2.3.

2.3 Counterfactuals

Counterfactuals are an important explanatory tool to understand a models’
cause for decisions. Generating counterfactuals is main focus of this thesis.
Hence, we establish the most important chateristics of counterfactuals in this
section.

2.3.1 What are Counterfactuals?

Counterfactuals have various definitions. However, their semantic meaning
refers to “a conditional whose antecedent is false”[12]. A simpler definition
from Starr states that counterfactual modality concerns itself with “what is
not, but could or would have been”. Both definitions are related to linguistics
and philosophy. Within AI and the mathematical framework various formal
definitions can be found in the causal inference[25] literature. A prominent
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figure within the causal inference discipline is Pearl, Glymour, and Jewell,
who postulates that a “kind of statement – an ’if ’ statement in which the ’if ’
portion is untrue or unrealised – is known as a counterfactual”[46]. What
binds all of these definitions is the notion of causality within what-if scenar-
ios.

For this paper, we use the understanding established within the XAI con-
text. Within XAI, counterfactuals act as a prediction which “describes the
smallest change to the feature values that changes the prediction to a pre-
defined output” according to Molnar[42, p. 212]. Note that XAI mainly
concerns itself with the explanation of models, which are always subject to
inductive biases and therefore, inherently subjective. The idea behind coun-
terfactuals as explanatory tool1 is simple. We understand the outcome of a
model, if we know what outcome would occur if we changed its input.

Let us assume, a student is approaching an important deadline, which
she desires to meet. Every day, she has a multitude of options to choose
from. Either, continue with the report (option A), focus on learning more
about the topic (option B), pursue her hobby as a break (option C), meet
up with friends (option D), or procrastinate (option E). Furthermore, we
assume, there are 7 days left and she can either miss (0) the deadline or
meet it (1). The approach she follwos is ABABDEA and she misses the
deadline. Let us refer to this sequence of actions as the factual sequence 1.
Then, a counterfactual ABABDBA that meets the deadline tells us that E
(probably) caused missing the deadline. In other words, if the student had
not procastinated two days before the deadline she could have make it on
time.

As counterfactuals only address explanations of one model result and not
the model as a whole, they are local explanations[42, p. 212]. According to
Molnar Valid counterfactuals satisfy four criteria[42, p. 212]:

Similarity: A counterfactual should be similar to the original instance. If a suc-
sessful counterfactual to sequence 1 was ABABEEA, we would already
have difficulties to discern whether meeting with friends D, procrasti-
nating E or both caused the outcome of missing the deadline 0. Hence,
we want to be able to easily compare the counterfactual with the orig-
inal. We can archive this by minimizing their mutual distance.

Sparcity: In line with the notion of similarity, we want to change the original
instance only minimally. If the sequence had many changes, it would

1There are other explanatory techniques in XAI like feature importances but counter-
factuals are considered the most human-understandable
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similarly impede the understanding of causal relationships in sequence
1.

Feasibility: Each counterfactual should be feasible. In other words, impossible
values are not allowed. As an example, if the student followed a strict
AAAAAAEA would not be feasible if we consider students could burn-
out. Typically, we can use data to ensure this property. However, the
open-world assumption impedes this solution. With open-world, we
mean that processes may change and introduce behaviour that has not
been measured before. A student might only attempt a Bachelor’s
thesis once. Especially, for long and cyclical sequences, we have to
expect previously unseen sequences.

Likelihood: A counterfactual should produce the desired outcome if possible. This
characteristic is ingrained in Molnar’s definition. However, as the model
might not be persuaded to change its prediction, we relax this condi-
tion. We say that we want to increase the likelihood of the outcome
as much as possbile. If the counterfactual ABABDXA hinges on X as
in an earthquake occuring that postpones the deadline, the sequence
would be highly unrealistic. Hence, we cannot be certain of our conclu-
sion for sequence 1. Therefore, we want the counterfactual’s likelihood
to be at least more likely than the factual outcome.

All four criteria allow us to assess the viability of each generated counter-
factual and thus, help us to define an evaluation metric for each individual
counterfactual. However, we also seek to optimise certain qualities on the
population level of the counterfactual candidates.

Diversity: We typically desire multiple diverse counterfactuals. One counterfac-
tual might not be enough to understand the causal relationships in a
sequence. In the example above, we might have a clue that E causes an
outcome of 0, but what if outcome 0 is by more than E? If we are able
to find counterfactuals all counterfactuals that involve E and that lead
to missing the deadline, we get a better understanding of what caused
outcome 0.

Realism: For a real world application, we still have to evaluate their reasonability
within the applied domain. This is a characteristic that can only be
evaluated by a domain expert.

We refer to both sets of viability criteria as individual viability and popu-
lation viability. However, to remains concise, we use viability to refer to the
individual criteria only. We explicitly mention population viability if we refer
to criteria that concern the population.
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2.3.2 The Challenges of Counterfactual Sequence Gen-
eration

The current literature surounding counterfactuals exposes a number of chal-
lenges when dealing with counterfactuals.

The most important disadvantage of counterfactuals is the Rashommon
Effect[42, ch.9.3]. If all of the counterfactuals are viable, but contradict each
other, we have to decide which of the truths are worth considering.

This decision reveals the next challenge of evaluation. Although, the
criteria can support us with the decision, it remains an open research ques-
tion how to evaluate counterfactuals according to Carvalho, Pereira, and
Cardoso[10]. So far, no one was able to establish a standardised evaluation
protocol[28]. Every automated measure comes with implicit assumptions and
they cannot guarantee a realistic explanations. Furthermore, we attempt to
explain something with – in simple terms – experiences that never actually
occured. We still need domain experts to assess their plausibility.

The generation of counterfactual sequences contribute to both former
challenges, due to the combinatorial expansion of the solution space. This
problem is common for counterfactual sentence generation and has been
adressed within the NLP. However, as process mining data not only consist
of discrete objects like words, but also event and case features, the problem
remains a daunting task. So far, little work has gone into the generation of
multivariate counterfactual sequences like process instances.

2.4 Formal Definitions

Before diving into the rest of this thesis, we have to establish preliminary
definitions, we use in this work. With this definitions, we share a common
formal understanding of mathematical descriptions of every concept used
within this thesis.

2.4.1 Process Logs, Cases and Instance Sequences

We start by formalising the event log and its elements. We use a medical
process as an example to provide a better semantic understanding. An event
log is denoted as L. Here, L could be as database which logs the medical
histories of all patients in a hospital.

We assume the database logs all interactions, be it therapeutic or diag-
nostic and store them as an event with a unique identifier. Let E be the
universe of these event identifiers and E ⊆ E a set of events. The set E could
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consist, for instance, of a patients first session with a medical professional,
then a diagnostic scan, followed by therapy sessions, surgery and more.

All of these interactions with one patient make up a case, which has a
unique identifier, too. Let C be a set of case identifiers and πσ : E 7→ C a
surjective function that links every element in E to a case c ∈ C in which
c signifies a specific case. The function allows us to associate every event
within the database to a single patient. The function’s surjective property
ensures for each case there exists at least one event.

For a set of events E ⊆ E , we use a shorthand sc being a particular
sequence sc = 〈e1, e2, . . . , et〉 with c as case identifier and a length of t. Each
s is a trace of the process log s ∈ L. To understand the difference between c
and s, we can say, that c is the ID for the case of patient X. Henceforth, sc

reflects all interactions that the database has logged for patient X.
These events are ordered in the sequence, in which they occurred for

patient X. Therefore, let T be the time domain and πt : E 7→ T a non-
surjective linking function which strictly orders a set of events. In other
words, every event in the database maps to one point in time. If the database
logs every event on a daily basis, then all possible dates in history constitute
T . However, not every day has to be linked to a case as πt is non-surjective.

Let A be a universe of attribute identifiers, in which each identifier maps
to a set of attribute values ai ∈ A. An attribute identifier describes every-
thing the database might store for a patient, such as heart-rate or blood sugar
level. If the database logs the heart-rate, then heart-rates of -42 beats-per-
minute are not possible. Hence, ai can per definition only map to positive
integers.

Let ai correspond to a set of possible attribute values by using a surjective
mapping function πA : A 7→ A. Then, each event et consists of a set et =
{a1 ∈ A1, a2 ∈ A2, . . . , aI ∈ AI} with the size I = |A|, in which each ai refers
to a value within its respective set of possible attribute values. In other
words, every event consists of a set of values. If the event was recorded after
a physio therapeutic session, then a1 might be the specific degree to which
you can move your ligaments and a2 a description for the type of activity. If
the event was recorded after a breast-cancer scan, the a1, a2 and a3 might
relate to the specific diameter, the threat-level and again an indicator for the
activity type. Conversely, we define a mapping from an attribute value to its
respective attribute identifier πa : A 7→ A. Hence, we can map every event
attribute value back to its attribute identifier.

The following part is not necessarily connected with what is stored within
the database symbolically, but rather how it is represented in the database
or during processing.

We require a set of functions F to map every attribute value to a represen-
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tation which can be processed by a machine. Let πd : Ai 7→ N be a surjective
function, which determines the dimensionality of ai and also F be a set of
size I containing a representation function for every named attribute set. We
denote each function fi ∈ F as a mapper to a vector space fi : ai 7→ Rd

i ,
in which d represents the dimensionality of an attribute value d = πd(Ai).
For instance categorical variables will can map to a one-hot-encoded vector.
Numerical values like heart-beat might be recorded in scalar form.

With these definitions, we denote any event et ∈ sc of a specific case c
as a vector, which concatenates every attribute representation fi as ect =
[f1; f2; . . . ; fI ]. Therefore, ect is embedded in a vector space of size D which
is the sum of each individual attribute dimension D =

∑
i πd(Ai). In other

words, we concatenate all representations, whether they are scalars or vectors
to one final vector representing the event. Furthermore, if we refer to a
specific named attribute set Ai, we use the shorthand ai.

Figure 2.4 shows a schematic representation of a log L, a case c and an
event e.

Figure 2.2: This figure shows the representation of a log L which contains a number of cases s. Case s2

contains a number of events et. Each events has attribute values ai, which are mapped to vector spaces
of varying dimensions. At last, all of the vectors are concatenated.

2.4.2 State-Space Models

Generally speaking, every time-series can be represented as a state-space
model[30]. Within this framework the system consists of input states for
subsequent states and subsequent outputs. A mathematical form of such a
system is shown in Equation 2.1.
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zt+1 = h(t, zt,ut) (2.1)

et = g(t, zt,ut)

zt+1 :=
d

dt
zt

Here, ut represents the input, zt the state at time t. The function h maps t,
zt and ut to the next state zt+1. The event et acts as an output computed by
function g which takes the same input as h. The variables zt, ut and et are
vectors with discrete or continuous features. The distinction of zt+1 and et
decouples hidden2 states, from observable system outputs. Figure 2.3 shows
a graphical representation of these equations.

Figure 2.3: This figure shows a simplified graphical representation of a state-space model. Each arrow
represents the flow of information.

The body of literature for state-space models is too vast to discuss them in
detail. However, for process mining, we can use this representation to discuss
the necessary assumptions for process mining. In line with the process-
definition in section 2.1, we can understand the event log as a collection
of the observable outputs of a state-space model. The state of the process
is hidden as the true process which generated the data cannot be observed
as well. The time t is a step within the process. Hence, we treat t as a

2A state does not have to be hidden. Especially, if we know the process and the
transition rules. However, those are often inaccessible if we only use log data. Instead,
many techniques try to approximate the hidden state given the data instead. For an
introduction to state-space models see:[23]
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discrete scalar value to denote discrete sequential time steps. Hence, if we
have σ = {a, b, b, c}, then t, describes the index of each element in σ. The
input ut represents all context information of the process. Here, ut subsumes
observable information such as the starting point and process instance-related
features. The functions h and g determine the transition of a process’ state to
another state and its output over time. Note, that this formulation disregards
any effects of future timesteps on the current timestep. Meaning, that the
state transitions are causal and therefore, ignorant of the future. As we
establish in section 2.1, we can assume that a process is a discrete sequence,
whose transitions are time-variant. In this framework, we try to identify the
parameters of the functions h and g. Knowing the functions, it becomes
simple to infer viable counterfactuals. However, the function parameters are
often unknown and therefore, we require probablistic approaches.

We can formulate Equation 2.1 probablistically as shown in Equation 2.2.

E[p (zt+1 | t, z1:T , u1:T , x1:T , θh)] =

∫
zt+1 · p (zt+1 | t, z1:T , u1:T , x1:T , θh)

(2.2)

E[p (xt | t, z1:T , u1:T , θg)] =

∫
xt · p (xt | t, z1:T , u1:T , θg)

Note, that h and g are substitued with probability density functions
parametrised with θh and θg. T signifies the full sequence including future
timesteps. Both expectations are intractable as they require integrating over
n-dimensional vectors. To solve the intractability, we characterize the sys-
tem as a Hidden Markov Process and Probalistic Graphical Model (PGM).
This framework allows us to leverage simplifying assumptions such as the
independece from future values and d-seperation.

These characteristics change the probabilities in Equation 2.2 to Equa-
tion 2.3:

p (zt+1 | z1:t, u1:t, θh) =
t∏
1

p (zt | z1:t, ut, θh) (2.3)

p (xt | z1:t, θg) =
t∏
1

p (xt−1 | z1:t, θf ) (2.4)

For p (zt+1 | t, z1:T , u1:T , x1:T , θh), we ignore future timesteps, as T changes
into t. d-seperation allows us to ignore all et of previous timesteps. The
graphical form also decomposes the probability into a product of probabilities
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that each depend on all previous states and its current inputs. Previous et
are ignored due to d-seperation. p (xt | t, z1:T , u1:T , θg) only depends on its
current state, which is in line with HMMs. Note, that we deliberately not
assume a strong Markov Property, as the Deep Learning-Framework allows us
to take all previous states into account. The strong Markov Property would
assume that only the previous state suffices. At last, we assume that we do
not model automatic or any other process whose state changes without a
change in the input or previous states. Hence, we remove the dependency
on the independent t variable. Only the previous states z1:T and the input
information ut remain time-dependent.

In this probabilistic setting, the generation of counterfactuals, amounts
to drawing samples from the likelihood of Equation 2.3. We then use the
samples to reconstruct the most-likely a counterfactual e∗1:t. Hence, our goal
is to maximize both likelihoods.

2.5 Representation

To process the data in subsequent processing steps, we have to discuss the
way we encode the data. There are a multitude of ways to represent a
log. We introduce four ways and the reason we choose the hybrid-vector-
representation. Figure 2.4 shows schematically, how we can represent process
data.

e1 e2 e3 e4

a1 a2 a1 a3

f11 f12 f13 f14

f21 f22 f23 f24

f31 f32 f33 f34




Hybrid

Events-Only

Features-Only

Full-Vector

1 2 1 3

0.6 0.75 0.64 0.57

0 0 1 0

1.2 4.5 3.3 3.0




e1 e2 e3 e4

Figure 2.4: All four possible representations on an exemplary process instance.

First, we can choose to concentrate on event-only-representation and ig-
nore feature attributes entirely. However, feature attributes hold significant
amount of information. Especially in the context of using counterfactuals for
explaining models as the path of a process instance might strongly depend
on the event attributes. Similar holds for a feature-only-representation.

The first is a single-vector-representation with this representation we can
simply concatenate each individual representation of every original column.
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This results in a matrix with dimensions (case-index, max-sequence-length,
feature-attributes). The advantage of having one vector is the simplicity with
which it can be constructed and used for many common frameworks. Here,
the entire log can be represented as one large matrix. However, even though,
it is simple to construct, it is quite complicated to reconstruct the former
values. It is possible to do so by keeping a dictionary which holds the mapping
between original state and transformed state. However, that requires every
subsequent procedure to be aware of this mapping. Furthermore, we use
methods, that treat events and their associated features (event attributes)
separately. For instance, if we want to sample from a Markov Model with
transition probabilities and emission probabilities, then it is much easier to
first sample the event trajectory and then, the conditional feature attributes.
Or, if we attempt to compute an edit distance between two sequences, it is
easier to compute those, if we keep events and event attributes separate.

Therefore, we decide to keep the original sequence structure of events
as a separate matrix and complementary to the remaining event attributes.
If required, we turn the label encoded activities ad-hoc to one-hot encoded
vectors. Thus, this hybrid-vector-representation grants us greater flexibil-
ity. However, we now need to process two matrices. The first matrix has
the dimensions (case-index, max-sequence-length) and the latter (case-index,
max-sequence-length, feature-attributes).

2.6 Long-Short-Term Memory Models

In order to explain the decisions of a prediction we have to introduce a pre-
dictive model, which needs to be explained. Any sequence model suffices.
Additionally, the model’s prediction do not have to be accurate. However,
the more accurate the model can capture the dynamics of the process, the
better the counterfactual functions as an explanation of these dynamics. This
becomes particularly important if the counterfactuals are assessed by a do-
main expert.

In this thesis, the predictive model is an Long Short-Term Memory (LSTM)
model. LSTMs are well-known models within Deep Learning, that use their
structure to process sequences of variable lengths[26]. LSTMs are an exten-
sion of Recurrent Neural Networks (RNNs). We choose this model as it is
simple to implement and can handle long-term dependencies well.

Generally, RNNs are Neural Networks (NNs) that maintain a state ht+1.
The state is computed and then propagated to act as an additional input
alongside the next sequential input of the instance xt+1. The hidden state h
is also used to compute the prediction ot for the current step. The formulas
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attached to this model are shown in

ht+1 = σ(V ht + Uxt + b) (2.5)

ot = σ(Wht + b) (2.6)

Here, W , U and V are weight matrices that are multiplied with their
respective input vectors ht, xt. b is a bias vector and σ is a non-linearity
function. LSTM fundamentally work similarly, but have a more complex
structure that allows to handle long-term dependencies better. They manage
this behaviour by introducing additional state vectors, that are also propa-
gated to the following step. We omit discussing these specifics in detail, as
their explanation is not further relevant for this thesis. For our understand-
ing it is enough to know that ht holds all the necessary state information.
Figure 2.5 shows a schematic representation of an RNN.

Figure 2.5: A schematic representation of an RNN viewed in compact and unfolded form.

2.7 Damerau-Levenshtein

The Damerau-Levenshstein distance function is a modified version of the Lev-
enshstein distance[36], which is a widely used to compute the edit-distance
of two discrete sequences[5, 41]. The most important applications are within
the NLP discipline and the Biomedical Sciences. Within these areas, we of-
ten use the Levenshtein distance to compute the edit-distance between two
words, two sentences or two DNA sequences. Note, that the elements of
these sequences are often atomic symbols instead of multidimensional vec-
tors. Generally, the distance accounts for inserts, deletions and substitutions
of elements between the two serquences. Damerau modified the distance
function to allow for transposition operations. For Process Mining, trans-
positions are important as one event can transition into two events that are
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processed in parallel and may have varying processing times[13]. In Fig-
ure 2.6, we schematically show two sequences and their distance.

Figure 2.6: Two arbitrary sequences and their edit difference according to Damerau. The edit distance is
the sum of each operation necessary to transform the sequence to another sequence. Blue shows an insert,
red a deletion, purple a substitution and green a transposition. Therefore, the edit distance is 4.

Equation 2.7 depicts the recursive formulation of the distance. The distance
computes the costs of transforming the sequence a to b, by computing the
minimum of five seperate terms.

da,b(i, j) = min



da,b(i− 1, j) + 1 if i > 0

da,b(i, j − 1) + 1 if j > 0

da,b(i− 1, j − 1) + 1 if i, j > 0

da,b(i− 2, j − 2) + 1 if i, j > 1 ∧ ai = bj−1 ∧ ai−1 = bj

0 if i = j = 0

(2.7)

The recursive form da,b(i, j) for sequences a and b with respective elements i
and j takes the minimum of each allowed edit operation. In particular, no
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change, deletion, insertion, substitution and transposition. For each opera-
tion, the algorithm adds an edit cost of 1.

We cannot use the Damerau-Levenshstein distance for process mining if
the process carries additional information about event attributes. Mainly,
because two events may be emitted by the same activity, but they may still
carry different event attributes.

To illustrate the issue, we explore a couple of examples. Let us assume, we
have two strings s1 = aaba and s2 = acba. Using the Damerau-Levenshstein
distance, the edit distance between both sequences is 1, as we can recognise
a substitution at the second position in both strings. However, this repre-
sentation is insufficient for process instances. Therefore, we now characterise
the two sequences as process events rather than strings in Equation 2.8.

s1 = {a, a, b, a} (2.8)

s2 = {a, a∗, b, a} (2.9)

s3 = {a, c, b, a} (2.10)

s4 = {a, a, b} a, b, c ∈ R3 (2.11)

a =

2
1
4

 a∗ =

3
3
4

 b =

1
1
0

 c =

3
1
4

 (2.12)

If we do not consider attribute values, it becomes clear that s2, s3 and s4

have an edit-distance to s1 of 0, 1 and 1. However, with attribute values
in mind, s1 and s2 display clear differences. Similarly, s1 and s3 not only
differ in terms of activity but also attribute value. Lastly, s1 and s4 are the
same in attribute values, but one element still misses entirely. It appears
unintuitive that each of these differences are associated with the same cost.
The examples show that we can neither disregard attribute values nor events,
while computing the edit distance of two process instances.

Instead, we have to define a cost function which takes attribute variables
into account. Therefore, we modify the Damerau-Levenshstein distance by
introducing a cost function instead of a static cost. Here, the cost of each
edit-type is determined by a distance-function, which considers the difference
between event-attributes. Therefore, we propose an edit-function, which cap-
tures structural sequence differences, as well as, content related differences.
Going back to our example, if assume our cost function to only count dif-
ferences in attributes, then the difference between s1 and s2 shall be 2 as
their activities are the same, but the first two event attributes are different.
To illustrate the structural elements, the difference between s1 and s3 shall
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be 3 instead of 2. Even if both a and c have two common event attributes,
the activities they represent are still different. For instance, if both s1 and
s3 were medical processes and a and c represented taking a cancer drug or
a placebo, anyone would understand both activities are different even if the
patient took the same dosage.

2.8 Evolutionary Algorithms

Many of our generative models are based on Evolutionary Algorithms. This
section provides a small overview about this optimization technique.

All evolutionary algorithms use ideas that resemble the process of evolu-
tion. There are four broad categories: A Genetic Algorithm (GA) uses bit-
string representations of genes, while Genetic Programming (GP) uses binary
codes to represent programs or instruction sets. Evolutionary Strategy (ES)
require the use of vectors. Lastly, Evolutionary Programming (EP), which
closely resembles ES, without imposing a specific data structure type[34, 55].
Our approach falls into the category of GA. We refer to the literature review
of Vikhar for more insights into the field. The most vital concept in this
category is the gene representation.

For the algorithm, we follow a rigid structure of the operations as outlined
in 1. As 1 shows, we define 5 fundamental operations. Initiation, Selection,
Crossover, Mutation and Recombination. The core idea is to generate new
individuals every generation while discarding those who are not deemed fit
enough for the next iteration cycle. This optimization method differs from
gradient-based methods such as Deep Learning, because it does not require us
to use differentiable functions. This makes evolutionary algorithms tremen-
dously useful but also highly dependent on the composition of the fitness
function.

The initiation operator refers to the creation of the initial set of candidates
for the selection process in the first iteration of the algorithm. Often, this
amounts to the random generation of individuals. However, choosing among
a subset of the search space can allow for a faster convergence.

The selection operator chooses a set of individuals among the population
according to a selection procedure. These individuals go on to act as material
to generate new individuals. This operator can strongly influence the level
with which the algorithm explores the search space. For instance, if an
algorithm only selects the best individuals it is easy to get stuck within an
local maximum. Figure 2.7 displays why local maxima should be avoided.
Mainly, if we get stuck, we may not be able to find the absolute best solution.

Within the crossover procedure, we select random pairing of individuals
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Algorithm 1 The basic structure of an evolutionary algorithm.

Require: Hyperparameters
Ensure: The result is the final population
population← INIT population;
while not termination do

parents← SELECT population;
offspring ← CROSSOVER parents;
mutants← MUTATE offspring;
survivors← RECOMBINE population ∪mutants;
termination← DETERMINE termination
population← survivors

end while

F
it

n
es

s

Place in search space

Local maxima trap

Global maximum

Figure 2.7: Schematic example showing various local optima.

to pass on their characteristics. We can often generate at least two additional
offsprings, if we have two parents and just reverse the operation.

Mutations introduce random pertubations to the offsprings. This extends
the search space beyond what is available by the parents.

The Recombination operation decides which individuals remain in the
population for the next iteration1. This operator-type is a second source
that determines the exploration space of the evolutionary algorithm. For
instance, if we only allow the best 10 individuals to move on to the next
iteration and only select the top 3 individuals for the crossover phase, we
quickly converge towards one solution. Hence, both operators interact, which
is why the literature often treat these operations as identical. However,
splitting them allows us to control the number of sampled off spring and the
population size separately.
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We name the strict selection of the best individuals among the offsprings
and the previous population Fittest-Survivor-Recombination. This recom-
biner strictly optimizes the population and is susceptible to getting stuck in
local minima. In contrast, we name the addition of the top-k best offsprings
to the initial population Best-of-Breed-Recombination. The former will guar-
antee, that the population size remains the same across all iterations but is
prone to local optima. Furthermore, we propose one additional recombina-
tion operator. The operator selects the new population in a different way
than the former recombination operators. Instead of using the viability di-
rectly, we sort each individual by every viability component, separately. This
approach allows us to select individuals regardless of the scales of every indi-
vidual viability measure. We refer to this method as Ranked-Recombination.

1We have to point out that in the literature, recombination is often synonymous with
crossover. Both steps are similar in their filtering purpose. However, the selector filters
potential parents while the recombiner filters the population. However, in this thesis
recombination refers to the update process which generates the next population.
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Chapter 3

Methods

In this chapter, we describe details of our framework and discuss advantages
and limitations. Therefore, we provide a more detailed overview and ad-
ditionally describe all components. As the framework resembles the work
of Hsieh, Moreira, and Ouyang[hsieh˙DiCE4ELInterpretingProcess], we
also discuss differences and similarities between both solutions.

3.1 Methodological Framework: CREATED

3.1.1 Architecture

To generate counterfactuals, we need to establish a conceptual framework
consisting of three main components. The three components are shown in
Figure 3.1.

The first component is a predictive model. As we attempt to explain
model decisions with counterfactuals, the model needs to be pretrained. We
can use any model that can predict the probability of a sequence. This
condition holds for models trained for process outcome classification and
next-activity prediction. The model used in this thesis is a simple LSTM
model using the process log as an input. The model is trained to predict the
next action given a sequence.

The second component is a generative model. The generative model pro-
duces counterfactuals given a factual sequence. In our approach, each gen-
erative model should be able to generate a set of counterfactual candidates
given one factual sequence. Specifically, we compare an evolutionary ap-
proach against 3 different generative baseline approaches. The baselines do
not iteratively optimise towards viability criteria. All approaches allow us to
use a factual sequence as a starting point for the generative production of
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Figure 3.1: The methodological framework of this thesis. The input is the process log. The log will be
used to train a predictive model (Component 1) and the generative model (Component 2). This process
produces a set of candidates which are subject to evaluation via the validity metric (Component 3).

counterfactuals. Furthermore, they also generate multiple variations of the
final solution.

The generated candidates are subject to the third major component’s
scrutiny. To select the most viable counterfactual candidate, we evaluate
their viability score using a custom metric. The metric incorporates all main
criteria for viable counterfactuals mentioned in section 2.3. We measure the
similarity between two sequences using a multivariate sequence distance met-
ric. The delta between the likelihood of the factual and the counterfactual.
For this purpose, we require the predictive model, which computes a pre-
diction score reflecting the likelihood. We measure sparsity by counting the
number of changes in the features and computing the edit distance. Lastly,
we need to determine the feasibility of a counterfactual. This requires split-
ting the feasibility into two parts. First, the likelihood of the sequence of
each event and second, the likelihood of the features given the event that
occurred.

As we heavily rely on evolutionary algorithms to generate our counter-
factuals, we refer to this framework as CREATED. The name describes
the CounteRfactual Sequence generation with Evolutionary AlgoriThms on
Event Data. The name reflects how our model CREATEs new counterfac-
tuals.
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3.1.2 Differences to DiCE4EL

Hsieh, Moreira, and Ouyang has recently published a paper on the counter-
factual generation of process data. They call their framework DiCE4EL and
share many ideas with our framework. Therefore, we want to highlight the
key differences and similarities.

In their approach, they attempt to solve various issues that we have also
highlighted in section 1.2. Furthermore, they do so by incrementally gen-
erating the model in sequential order. However, unlike Oberst and Sontag,
whose solution creates counterfactuals for every step in the sequence, Hsieh,
Moreira, and Ouyang focus on critical decision points they call milestones.

To gain a better understanding, it is important to outline the event log the
authors use briefly. It was taken from a Dutch bank which processes loan
applications in which customers request a certain amount of money. The
activities are related to either application states or manual work activities.
The application states consist of tasks generated by a machine and manual
work activities produced by humans. Hence, the manual work items occur
in reference to the application state. For instance, if the loan application is
in a pre accepted state, then the next events are often produced by humans
reviewing the state. Those events are essentially sub-events of the application
state. Human activities do not have to happen sequentially. They can occur
in parallel. The moment all manual work items conclude marks the decision
for the next application state. For instance, from pre accepted to accepted.
Now, to understand why the milestone approach works requires knowing that
an application loan process will change to a rejection state, for instance, if
all manual work items are completed. There will not be applications that
suddenly switch to another state, although the work items of a previous
state have not concluded yet. Thus, one can split the entire sequence into
subsequences or ignore the sub-events, reducing the search space significantly.

One issue with this approach is the fact that one would first have to iden-
tify these milestones. Hence, a crucial distinction to our proposed framework
is their dependence on knowledge about the true process, as displayed in this
section. Our framework does not leverage structural information about the
true process model in question. We believe this is the core contribution in
contrast to their approach.

However, similarities between both frameworks do exist. Mainly, our
approach also relies on the prediction scores of the model we attempt to
explain. Similar to Hsieh, Moreira, and Ouyang, we incorporate these scores
into our quality measure.
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Figure 3.2: Milestones of loan application process captured in BPIC2012 as identified in [8]

3.2 Semi-Structured Damerau-Levenshtein

Distance

Before discussing the viability function, we have to introduce an edit-distance
for sequences. An edit-distance is used to compute distance between two
sequences. Therefore, they take their structural patterns like the length or
deletions or inserts into account. However, most approaches tend to focus
on the sequence of items (letters or words) without taking into account that
each item may have additional attributes. Therefore, we propose a custom
edit-distance measure.

3.2.1 Semi-Structured Damerau-Levenshtein

In order to reflect these differences in attribute values, we introduce a mod-
ified version of the Damerau-Levenshstein distance, that not only reflects
the difference between two process instances, but also the attribute values.
We achieve this by introducing a cost function costai,bj , which applies to a
vector-space. Concretely, we formulate the modified Damerau-Levenshstein
distance as shown in Equation 3.1. For the remainder, we refer to this edit-
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distance as Semi-strucured Damerau-Levenshtein distance (SSDLD).

da,b(i, j) = min



da,b(i− 1, j) + cost(0, bj) if i > 0

da,b(i, j − 1) + cost(ai,0) if j > 0

da,b(i− 1, j − 1) + cost(ai, bj) if i, j > 0

& ai = bj

da,b(i− 1, j − 1) + cost(ai,0) + cost(0, bj) if i, j > 0

& ai 6= bj

da,b(i− 2, j − 2) + cost(ai, bj−1) + cost(ai−1, bj) if i, j > 1

& ai = bj−1

& ai−1 = bj

0 & i = j = 0

(3.1)

Here, da,b(i, j) is the recursive form of the Damerau-Levenshtein-Distance. a
and b are sequences and i and j specific elements of the sequence. cost(a, b)
is a cost function which takes the attribute values of a and b into account.
The first two terms correspond to a deletion and an insertion from a to b.
The idea is to compute the maximal cost for that the wrongfully deleted or
inserted event. The third term adds the difference between two events with
identical activities ai and bj. As mentioned earlier, two events that refer to
the same activity can still be different due to event attributes. The distance
between the event attributes determines how different these events are. The
fourth term handles the substitution of two events. Here, we compute the
substitution cost as the sum of an insertion and a deletion. The fifth term
computes the cost after transposing both events. This cost is similar to term
3 only that we now consider the differences between both events after they
were aligned. The last term relates to the stopping criterion of the recursive
formulation of the Damerau-Levenshstein distance.

3.2.2 Discussion

There are two noteworthy discussion points, as they might incite disagree-
ments with the validity of our viability measure.

If we assess the first two terms, we use cost(x, 0) to denote the maximal
distance of inserting and deleting x. cost(x, 0) can be read as cost between x
and a null-vector of the same size. However, it is noteworthy to state that this
interpretation does not hold for any arbitrary cost function. For instance,
the cosine distance does not work with a null vector, as it is impossible to
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compute the angle between x and a null vector. Here, the maximum distance
would just amount to 1. In contrast, the family of Minkowsky distance works
well with this notion because they compute a distance between two points
and not two directions.

Furthermore, the intuition behind most terms requires an established no-
tion between events and their attribute. Generally, we can have two notions
of this relationship.

We consider the event and its attributes separate entities for the first
relationship. This notion is reasonable, as some attributes remain static
throughout the process. If we take a loan application process as an example,
an applicant’s ethnic background does not change regardless of the event.
This characteristic can be considered a case attribute, which remains static
throughout the process run. This understanding would require us to mod-
ify the viability measures, as they treat the activity independently from its
attribute values. In other words, if the activities of two events are a and b,
but their attribute values are ( 2

3 ) and ( 2
3 ), these events may be seen as more

similar than two a and a with attribute values ( 2
3 ) and ( 5

0 ).
In contrast, a second notion would treat each event as an independent

and atomic point in time. Hence, a and b would be considered completely
different even if their event attributes are the same. This understanding is
also a valid proposition, as you could argue that an event which occurs at
nighttime is not the same as a daytime event. Here, the time domain is the
main driver of distinction, and the content remains a secondary actor.

All the terms described in the SSDLD follow the second notion. There
are two reasons for this decision. First, treating event activities and event
attributes separately would further complicate the SSDLD, as we would have
to expand the cost structure to account for unchangeable event attributes.
Second, the unmodified Damerau-Levenshstein distance applies to discrete
sequences, such as textual data with atomic words or characters. By treating
each event as a discrete sequence element, we remain faithful to the original
function.

3.3 Viability Measure

Earlier, in section 2.3, we have discussed what determines good counterfac-
tuals. However, we have not introduced our approach to operationalize the
notion of viability. To recall, a counterfactual is hardly useful, if it is vastly
different from the factual example or, if it requires changes that are logically
implausible. For instance, if patients are required to vastly change their be-
havior in many aspects of their life or change their race these counterfactuals
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are hardly useful for the patient or a medical professional. We are more
interested in what we have to change at least. Also, if the counterfactual
is, per se, unrealistic or bears no change in outcome, we lack any interest
in those counterfactuals, as well. For processes, these issues become even
more complicated as they are semi-structured and often multivariate. How
we operationalize these criteria is explained in the following.

3.3.1 Similarity-Measure

We use a function to compute the distance between the factual sequence and
the counterfactual candidates. Here, a low distance corresponds to a small
change. For reasons explained earlier (section 3.2), we want to consider the
structural and feature distances. Henceforth, we use the previously estab-
lished SSDLD. The similarity distance uses a cost function as specified in
Equation 3.2.

cost(ai, bj) = L2(ai, bj) (3.2)

ai, bj ∈ Rd

Here, dist(x, y) is an arbitrary distance metric. i and j are the indices of the
sequence elements a and b, respectively. L2 denotes the euclidean distance.

3.3.2 Sparsity-Measure

Sparsity refers to the number of changes between the factual and counter-
factual sequence. We typically want to minimize the number of changes.
However, sparsity is hard to measure, as we cannot easily count the changes.
There are two reasons why this is the case: First, the compared sequences
can have varying lengths. Second, even if they were the same length, the
events might not line up, so we can simply count the changes to a feature.
Hence, we use the previously established SSDLD to solve this issue. The
sparsity distance uses a cost function as specified in Equation 3.3.

cost(ai, bj) =
∑
d

I(aid = bjd) (3.3)

ai, bj ∈ Rd

Here,
∑

d I(aid = bjd) is an indicator function, that is used to count the
number of changes in a vector.
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3.3.3 Feasibility-Measure

To determine the feasibility of a counterfactual trace, it is important to
recognise two components.

First, we have to compute the probability of the sequence of event tran-
sitions. This is a difficult task, given the Open World assumption. In theory,
we cannot know whether or not any event can follow after another event.
However, if the data is representative of the process dynamics, we can make
simplifying assumptions. For instance, we can compute the first-order tran-
sition probability by counting each transition. However, the issue remains
that longer sequences tend to have a zero probability if they have never been
seen in the data.

Second, we have to compute the feasibility of the individual feature values
given the sequence. We can relax the computation of this probability using
the Markov Assumption. In other words, we assume that each event vector
depends on the current activity but none of the previous events and features.
Meaning, we can model density estimators for every event and use them to
determine the likelihood of a set of features.

There are many ways to estimate the density of a dataset. For our pur-
poses, we incorporate the sequential structure of the log data and make sim-
plifying assumptions. First, we consider every activity as a state in the case.
Second, each state is dependent on its immediate predecessor and neither
on future nor on any states prior to its predecessor. Third, the collection
of attributes within an event depends on the activity which emits it. The
second assumption is commonly known as Markov Assumption. With these
assumptions in place, we can model the distribution by knowing the state
transition probability and the density to emit a collection of event attributes
given the activity.

e0 e1 e2 . . . eT

f0 f1 f2 fT

Figure 3.3: The feasibility model in graphical form. et represents an event and ft the features it emits.

Here, et represents the transition from one event state to another. Likewise,
f represents the emission of the feature attributes. Hence, the probability of
a particular sequence is the product of the transition probability multiplied
by the state emission probability for each step. Note that this is the same as
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the feasibility measure in Equation 3.4.

p (e0:T , f0:T ) = p (e0) p (f0 | e0)
T∏
1

p (et | et−1) p (ft | et) (3.4)

To conclude this section, we must stress again that many ways to define
feasibility exists. We chose a probabilistic approach. There is an issue with
this approach. Shorter sequences naturally have higher probabilities. Hence,
we introduce a bias into our viability measure towards short sequences. This
bias can be beneficial or detrimental depending on the use case. For instance,
a medical process model might favour shorter counterfactual explanations
mainly because we want to understand how we can effectively reduce the
time of illness. However, if we want to explain a highly standardised manu-
facturing process that went wrong in one instance, we would rather keep the
counterfactual as close as possible to the factual.

3.3.4 Delta-Measure

For this measure, we evaluate the likelihood of a counterfactual trace by de-
termining whether a counterfactual leads to the desired outcome or not. For
this purpose, we use the predictive model, which returns a prediction for each
counterfactual sequence. As we are predicting process outcomes, we typically
predict a class. However, forcing a deterministic model to produce a different
class prediction is often difficult. Therefore, we can relax the condition by
maximising the prediction score of the desired counterfactual outcome[42]. If
we compare the difference between the counterfactual prediction score with
the factual prediction score, we can determine an increase or decrease. Ide-
ally, we want to increase the likelihood of the desired outcome. We refer to
this value as delta. However, the binary case introduces some noteworthy
considerations.

Within this task setting, we have to consider multiple cases. First, the
prediction score is typically limited to a domain within 0 and 1, which we
can interpret as a probability distribution. Hence, if the model score is 0.6,
then the model has the confidence of 60% that the input can be categorised
as belonging to class 1. For instance, within a medical process, we could
say the model is 75% confident that the patient can be cured. Conversely,
there’s a 25% confidence that the process instance belongs to class 0. We can
make decisions by using a threshold. Typically, this threshold lies at 50%.
Hence, we determine that a patient can make decisions by using a threshold.
Typically this threshold lies at 50%. Figure 3.4 illustrates how this threshold
behaves given the factual prediction score.

44



Figure 3.4: An example of which points yield a positive delta given the factual predictions score. Green
means the delta is an improvement. Red points signify a negative improvement.
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We identify 2 cases:

Case 1: A counterfactual generator flips the prediction score to the opposite
side of the decision threshold. Then, we achieve our general aim, and
the difference between the scores directly indicates the counterfactual’s
success. If we look at Figure 3.4, the two quadrants with only positive
delta values cover this case.

Case 2: A counterfactual has the same decision as the factual. For instance,
when the counterfactual and factual prediction scores for a patient’s
recovery chance are below 0.5 or above 0.5. Then, we must consider
whether the counterfactual predictions score is moving towards the
desired outcome or away from it.

[2.1] If the prediction for the factual decides an outcome of 0, but
the predictions score for the counterfactual is even lower, then we did
not change the prediction at all. In fact, we increase the chance of
the actual factual outcome. That situation is worse than what we de-
sire. For instance, a patient would not want to pursue a counterfactual
situation in which his odds of recovery are worse than his current.

[2.2] In contrast, if a prediction model’s score leads to an outcome
of 0 but the counterfactual returns a higher prediction score than the
factual predictions score, a patient might still be interested in the coun-
terfactual. In some situations, even a small improvement is desirable.

The sub-cases of case 2 go in both ways. Hence, we have to incorporate each
case differently in the delta score. The two quadrants in Figure 3.4 that have
positive and negative deltas reflect how we interpret these cases.

delta =


|p(o|s∗)− p(o|s)| if p(o|s) > 0.5 & p(o|s) > p(o|s∗)
−|p(o|s∗)− p(o|s)| if p(o|s) > 0.5 & p(o|s) < p(o|s∗)
|p(o|s∗)− p(o|s)| if p(o|s) < 0.5 & p(o|s) > p(o|s∗)
−|p(o|s∗)− p(o|s)| if p(o|s) < 0.5 & p(o|s) < p(o|s∗)

(3.5)

3.3.5 Discussion

Given the current viability measure, we can already determine the optimal
counterfactual:

0Obviously, the domain of the application decides where this threshold lies. One can
always argue that confidence of 51% is close to randomly guessing.
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The optimal counterfactual flips a model’s strongly expected fac-
tual outcome to the desired outcome, maintaining the same tra-
jectory as the factual in terms of events, with minimal changes
in its event attributes, while remaining feasible according to the
data.

The elements that fulfil these criteria make up the Pareto surface of this
multi-valued viability function. If each value is scaled with a range between 0
and 1, the theoretical ceiling is 4. This value is only possible if we flip a factual
sequence’s outcome without changing it. As this is naturally impossible for
deterministic model predictions, the viability has to be lower than 4.

Furthermore, we can already postulate that a viability of 2 is a critical
threshold. If we score the viability of a factual against itself, a normalised
sparsity and similarity value have to be at its maximal value of 1. In contrast,
the improvement has to be 0. The feasibility is 0 depending on whether
the factual were used to estimate the data distribution or not. With these
observations in mind, we determine that any counterfactual with a viability
of at least 2 is already better than the factual.

3.3.6 Differences to DiCE4EL

Hsieh, Moreira, and Ouyang follow a similar pattern of assessing the qual-
ity of their counterfactuals. The authors also focus on similarity, sparsity,
feasibility and likelihood-improvement. However, they incorporate and op-
erationalise them differently. Their approach is most apparent in their loss
function.

Similarity: Similar to our approach, the authors use a distance function and op-
timise it using gradient descent. They evaluate the quality of their
counterfactuals using the same function1. However, we use a modified
Damerau-Levenshstein distance algorithm to incorporate structural dif-
ferences such as the sequence lengths or transposed events.

Sparsity: The DiCE4EL approach does not consider this.

Feasibility: This quality criterion is embodied by two loss functions: Category loss
and scenario loss. The category loss ensures that categorical variables
remain categorical after generation. The scenario loss adds emphasis
on only generating counterfactuals that are in the event log. Unlike our
probabilistic interpretation, they treat the existence of feasible coun-
terfactuals as a binary criterion2.

1They call it proximity during evaluation
2They call it plausibility during evaluation
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Likelihood: Similar to the authors’ scenario loss, they treat the improvement of a
class as a binary state. Either the counterfactual changes the model’s
prediction of the desired outcome, or it does not.

The details of each criterion’s operationalisation are explained in [28]. By
assessing their interpretation of quality criteria, we see the clear distinction
between our approach and the approach of Hsieh, Moreira, and Ouyang.

First, their viability measure decisively discourages the generation of
counterfactuals that are not present in the dataset. In contrast, our ap-
proach treats this aspect as a soft constraint.

Second, while our approach acknowledges general improvements in likeli-
hoods, DiCE4EL treats all counterfactuals that do not lead to better desires
as detrimental solutions. However, one can argue that improving the likeli-
hood of the desired outcome just slightly is already beneficial.

Third, Hsieh, Moreira, and Ouyang do not optimise sparsity, while we
include it within our framework. One can argue that similarity automatically
incorporates aspects of sparsity, but we disagree with this notion. We can see
this by employing a simple example: Let factual A have features signifying
the biological sex (binary), the income (normalised) and the age (normalised)1

1
1

 as event attributes. Let counterfactual B have the same event attributes

with

0
1
1

. Let’s assume the distance measure uses the L1-norm. Then, a

counterfactual C with event attributes

 1
0.5
0.5

 would have the same distance

to factual A as B has. However, C requires the change of two event attributes,
while B only requires 1 change. In a scenario in which we seek to reduce the
number of edits, B is preferable to C, regardless of the distance to A.

The last difference stems from the fact that Hsieh, Moreira, and Ouyang
do not include structural sequence characteristics in their similarity measure.

3.4 Prediction Model: LSTM

The architecture of the prediction model is shown in Figure 3.5. The model
architecture is inspired by Hsieh, Moreira, and Ouyang. However, we do not
separate the input into dynamic and static features.

One input consists of a 2-dimensional event tensor containing integers.
The second input is a 3-dimensional tensor containing the remaining feature
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attributes. The first dimension in each layer represents the variable batch
size, and None acts as a placeholder.

The next layer is primarily concerned with preparing the full vector rep-
resentation. We encode each activity in the sequence into a vector space. We
chose a dense-vector representation instead of a one-hot representation. We
also create positional embeddings. Then we concatenate the activity embed-
ding, positional embedding and the event attribute representation to a final
vector representation for the event that occurred.

Afterwards, we pass the tensor through a LSTM module. We use the
output of the last step to predict the outcome of a sequence using a fully
connected neural network layer with a sigmoid activation as this is a binary
classification task.

Figure 3.5: The different components of the LSTM architecture. Each element contains information about
the input and output of a layer. None is a placeholder for the batch size.
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3.5 Counterfactual Generators

3.5.1 Generative Model: Evolutionary Algorithm

We introduced most operator types in section 2.8. In this section, we describe
the concrete set of operators and select a subset that we want to explore
further.

For our purposes, the gene of a sequence consists of the sequence of events
within a process instance. Hence, if an offspring inherits one parent gene, it
inherits the activity associated with the event and its event attributes.

a b a

0.6 0.25 0.70

0 0 1

1.2 4.5 2.3




Parent 1

Genes passed on

+

a b a c

0.6 0.75 0.64 0.57

0 0 1 0

1.2 4.5 3.3 3.0




Parent 2

Genes passed on

=

a b a c

0.6 0.25 0.64 0.57

0 0 1 0

1.2 4.5 3.3 3.0




Inherited Inherited

Offspring

Figure 3.6: A newly generated offspring inheriting genes in the form of activities and event attributes
from both parents.

Our goal is to generate candidates by evaluating the sequence based on our
viability measure. Our measure acts as the fitness function. The candidates
that are deemed fit enough are subsequently selected to reproduce offspring.
This process is explained in Figure 3.6. The offspring is subject to mutations.
Then, we evaluate the new population and repeat the procedure until a
termination condition is reached. We can optimise the viability measure
established in section 3.3.

Operators

We implemented several different evolutionary operators. Each one belongs
to one of five categories. The categories are initiation, selection, crossing,
mutation and recombination.

Inititation

RI: The Random-Initiation generates an initial population entirely ran-
domly. The activity is just a randomly chosen integer, and each event
attribute is drawn from a normal distribution.
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Algorithm 2 The basic structure of an evolutionary algorithm.

Require: factual
Require: configuration
Require: sample-size
Require: population-size
Require: mutation-rate
Require: termination-point
Ensure: The result is the final counterfactual sequences
counterfactuals← initialize(factual)
while not termination do

cf-parents← select(counterfactuals, sample-size)
cf-offsprings← crossover(cf-parents)
cf-mutants← mutate(cf-offsprings,mutation-rate)
cf-survivors← recombine(counterfactuals, cf-mutants, population-size)
termination← determine(cf-survivors, termination-point)
counterfactuals← cf-survivors

end while

SBI: The Sampling-Based-Initiation generates an initial population by sam-
pling from a data distribution estimated from the data directly.

CBI: Case-Based-Initiation samples individuals from a subset of the Log
(Case-Based-Initiation). Those individuals are used to initiate the pop-
ulation.

The initiation procedure might be the most important operation in terms of
computation time. The reason is that we expect more sophisticated initiation
procedures like Sampling-Based-Initiation and Case-Based initiation to start
with much higher viability and reach their convergence much sooner.

Selection

RWI: Roulette-Wheel-Selection Selects individuals randomly. However, we
compute each individual’s fitness in the population and choose a ran-
dom sample proportionate to their fitness values. Hence, sequences
with high fitness values have a higher chance to crossover their genes,
while fewer fit individuals also occasionally get their chance.

TS: Tournament-Selection compares two or more individuals and selects
a winner among them. We choose two competing individuals we ran-
domly sample with replacement. Hence, some individuals have multiple
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chances to compete. The competing individuals are randomly chosen
as winners in proportion to their viability. Hence, if an individual with
a viability of 3 is pitted against an individual with a viability of 1, then
there’s a 3:1 chance that the first individual will move on to crossover
its genes.

ES: Elitism-Selection selects each individual solely on their fitness. In other
words, only a top-k amount of individuals are selected for the next
operation. There is no chance for weaker individuals to succeed. This
approach is deterministic and, therefore, subject to getting stuck in
local minima.

Crossing

UCx: We can uniformly choose a fraction of genes of one individual (Parent
1 ) and overwrite the respective genes of another individual (Parent
2 ). The result is a new individual. We call that (Uniform-Crossover).
Figure 3.7 shows a simple schematic example. By repeating this pro-
cess in the opposite direction, we create two new offsprings that share
both individuals’ characteristics. The number of inherited genes can
be adjusted using a rate factor. The number of selected positions is de-
termined by a crossing rate between 0 and 1. The higher the crossover
rate, the higher the risk of disrupting possible sequences. If we turn to
Figure 3.7 again, we see how the second child has 2 repeating genes at
the end. If a process does not allow the transition from activity 8 to
another activity 8, then the entire process instance becomes infeasible.

OPC: One-Point-Crossing is an approach suitable for sequential data of the
same lengths. We can choose a point in the sequence and pass on genes
of Parent 1 onto the Parent 2 from that point onwards and backwards
(One-Point-Crossover). Thus, creating two new offsprings as depicted
in Figure 3.8.

TPC: Two-Point-Crossing resembles its single-point counterpart. However,
this time, we choose two points in the sequence and pass on the overlap,
and the disjoints to generate two new offsprings. Again, Figure 3.9 de-
scribes the procedure visually. We can increase the number of crossover
points even further. However, this increase comes at the risk of dis-
rupting sequential dependencies.
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0 1 2 3 4 5 6 7 8 9

5 8 9 4 2 3 5 7 5 8

Parents

0 8 2 3 4 5 6 7 5 9

5 1 9 4 2 3 5 7 8 8

Children

Figure 3.7: A crossing process of uniformly applying characteristics of one sequence to another.

0 1 2 3 4 5 6 7 8 9

5 8 9 4 2 3 5 7 5 8

Parents

5 8 7 8 9 3 5 7 8 9

0 1 2 3 4 5 6 7 5 8

Children

Figure 3.8: A One-Point example of applying characteristics of one sequence to another using one split
point

Mutation Before elaborating on the details, we have to briefly discuss
four modification types we can apply to data sequences. Reminiscent of
edit distances, which were introduced earlier in this thesis, we can either
insert, delete, change and transposition a gene. These edit types are the
fundamental edits we use to modify sequences. For a visual explanation of
each edit-type we refer again to Figure 2.6 in section 2.7.

However, we can change the extent to which each operation is applied
over the sequence. We call these parameters mutation-rates. In other words,
if the delete rate equals 1, every individual experiences a modification which
results in the deletion of a step. The same applies to other edit types.

As we chose the hybrid encoding scheme, we must define what an insert
or a change means for the data. Aside from changing the activity, we also
have to choose a new set of data attributes. This necessity requires defining
two ways to produce them. We can either choose the features randomly or
choose to take a more sophisticated approach.

RM: Random-Mutation creates entirely random features for inserts and sub-
stitution. The activity is just a randomly chosen integer, and each event
attribute is drawn from a normal distribution.

0 1 2 3 4 5 6 7 8 9

5 8 9 4 2 3 5 7 5 8

Parents

0 1 9 4 2 3 5 7 8 9

5 8 2 3 4 5 6 7 5 8

Children

Figure 3.9: The process of applying characteristics of one sequence to another using two split points.
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SBM: Sampling-Based-Mutation creates sampled features based on data dis-
tribution for inserts and substitution. We can simplify the approach
by invoking the Markov Assumption and sample the feature attributes
given the activity in question (Sample-Based-Mutation).

There are still two noteworthy topics to discuss.
First, these edit types are disputable. One can argue that change and

transpose are just restricted versions of delete-insert compositions. For in-
stance, if we want to change the activity Buy-Order with Postpone-Order at
timestep 4, we can first delete Buy-Order and insert Postpone-Order at the
same place. Similar holds for transpositions, albeit more complex. Hence,
these operations naturally occur over repeated iterations in an evolutionary
algorithm. However, these operations follow the structure of established edit
distances like the Damerau-Levenshstein distance. Furthermore, they allow
us to restrict their effects efficiently. For instance, we can restrict delete op-
erations to steps that are not padding steps. In contrast, insert operations
can be limited to padding steps only.

Second, we can apply different edit rates for each edit type. However,
this adds additional complexity and increases the search space for hyperpa-
rameters.

Third, using the random sampler automatically disrupts the feasibility
for most offspring if either of the two conditions is met. First, if the log
contains categorical/binary event attributes, Gaussian samples cannot reflect
these types of random variables. Second, if the vector space with which event
attributes are represented is too large, it becomes less and less likely to sample
something within the correct bounds. For instance, let us again consider the
example on 2. However, instead of having 3 event attributes, each event had
100. Then, it becomes extremely difficult to randomly sample a set that fits
the event attribute vectors.

Recombination

FSR: Fittest-Survivor-Recombination strictly determines the survivors among
the mutated offsprings and the current population by sorting them in
terms of viability. The operator guarantees that the population size
remains the same across all iterations. Nonetheless, this approach is
subject to getting stuck in local maxima. This is mainly because this re-
combination scheme does not allow for the exploration of unfavourable
solutions that may evolve into better ones in the long run.

BBR: Best-of-Breed-Recombination Determines mutants that are better than
the average within their generation and adds them to the population.
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The operator only removes individuals after the maximum population
size is reached. Afterwards, the worst individuals are removed to make
way for new individuals.

RR: Ranked-Recombination selects the new population differently than the
former recombination operators. Instead of using the viability directly,
we sort each individuum by every viability component separately. This
approach allows us to select individuals regardless of the scales of ev-
ery individual viability measure. We refer to this method as Ranked-
Recombination. In our order, we choose to favour feasibility first. Fea-
sibility values are by far the lowest as they are joint probability values
that become smaller with every multiplication. Second, we favour delta,
then sparsity and at last similarity. Mainly because it is more impor-
tant to flip the outcome than to change as little as possible, and it is
more important to change as little as event attributes as possible than
to become more similar to the factual.

Naming-Conventions

We use abbreviations to refer to them in figures, tables, appendices, etc. For
instance, CBI-RWS-OPC-RM-RR refers to an evolutionary operator config-
uration that samples its initial population from the data, probabilistically
samples parents based on their fitness, crosses them on one point and so on.
For the Uniform-Crossing operator, we additionally indicate its crossing rate
using a number. For instance, CBI-RWS-UC3-RM-RR is a model using the
Uniform-Crossing operator. The child receives roughly 30% of the genome
of one parent and 70% of another parent.

Hyperparameters

The evolutionary approach comes with a number of hyperparameters.
We first discuss the model configuration. As shown in this section, there

are a 54 to combine all operators. Depending on each operator combination,
we might see very different behaviours. For instance, it is obvious that ini-
tiating the population with a random set of values can hardly converge at
the same speed as a model which leverages case examples. Similarly, select-
ing only the fittest individuals is heavily prone to local optima issues. The
decision of the appropriate set of operators is by far the most important in
terms of convergence speed and result quality.

The next hyperparameter is the termination point. Eventually, most cor-
rectly implemented evolutionary algorithms will converge to a local optimum.
Especially if only the best individuals are allowed to cross over. If we choose

55



the termination point too early, the generated individual most likely under-
performs. In contrast, selecting a termination point too far in the future
might yield optimal results at the cost of time performance. Furthermore,
the existence of local optima may result in very similar solutions in the end.
Optimally, we find a termination point, which acts as a reasonable middle
point.

The mutation rate is another hyperparameter. It signifies how much a
child can differ from its parent. Again, choosing a rate that is too low does
not explore the space as much as it could. In turn, a mutation rate that is too
high significantly reduces the chance to converge. The optimal mutation rate
allows for exploring novel solutions without immediately pursuing subopti-
mal solution spaces. Our case is special, as we have four different mutation
rates to consider. The change rate, the insertion rate, the deletion rate and
the transposition rate. Naturally, these strongly interact. For instance, if the
deletion rate is higher than the insertion rate, there’s a high chance that the
sequence will be shorter, if not 0, at the end of its iterative cycles. Mainly be-
cause we remove more events than we introduce. However, we cannot assume
this behaviour across the board as other hyperparameters interplay. Most
prominently, the fitness function. Let us assume we have a high insertion
rate, but the fitness function rewards shorter sequences. Subsequently, both
factors cancel each other out. Hence, the only way to determine the best set
of mutation rates requires an extensive search.

3.5.2 Baseline Model: Random Generator

This model acts as one of the baseline methods. Here, we generate a random
sequence of events. Afterwards we generate event attributes, randomly. This
approach is reasonably fast, but expected to perform poorly.

As explained earlier, any possible sequence of events becomes more and
more unlikely the longer the sequence is. One generally has a chance of
#UniqueTraces

AT to randomly find an event sequence, that is the process log. The
chances decrease even more if one also generates event attributes randomly.
Therefore, we expect most models to perform better that this model. If a
model happens to be worse, it would indicate that it is more likely to just
randomly pick numbers and get a better counterfactual.

3.5.3 Baseline Model: Sample-Based Generator

This baseline resembles the random baseline. However, we use the feasibility
model to guide the random search for the generation of counterfactuals. We
refer to the model specified in Equation 3.4. The sampling procedure utilises
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the model structure for the sampling process. We first generate a random
seed of possible starting events (p (e0)). Afterwards, we randomly sample
subsequent events by iteratively sampling new activities according to the
transition probabilities we gathered from the data (

∏T
1 p (et | et−1)). Given

the sequence, we simply sample the features per event from p (ft | et).

3.5.4 Baseline Model: Case-Based Generator

Case-based techniques leverage the data by using example instances. The
idea is to find suitable candidates that best fulfil the counterfactual criteria.
We treat this model as a baseline. Therefore, we keep this approach simple.
We find candidates by searching by randomly sampling cases from the log
and then evaluating them using the viability measure.

Inherently, this approach is restricted by the representativeness of the
data. It is not possible to generate counterfactuals that have not been seen
before. This method works for cases where the data hold enough information
about the process. If this condition is not met, it is impossible to produce
suitable candidates.

Note that this approach will automatically fulfil the criterion of being
feasible, as the counterfactuals are drawn from the log directly. Hence, we
expect their feasibility to be often higher than other methods.
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Chapter 4

Evaluation

In this chapter, we discuss the datasets, the preprocessing pipeline, and the
final representation for each of the algorithms. All the experiments were run
on a Windows machine with 12 processor cores (Intel Core i7-9750H CPU
2.60GHz) and 32 GB Ram. The main programming language was python.
The models were mostly developed with Tensorflow[1] and NumPy[24]. We
provide the full code on Github[29]. There, you will find instructions on how
to install and run the experiments yourself.

4.1 Datasets

In this thesis, we use ten publicly available datasets. All of the datasets were
taken from Teinemaa et al. Each dataset consists of log data and contains
labels that signify a process’s outcome. We focus on binary outcome predic-
tions. Hence, each dataset provides a binary label for each process instance
that indicates the outcome of that process instance.

BPIC12: The first dataset is the popular BPIC12 dataset. This dataset was
originally published for the Business Process Intelligence Conference
and contains events for a loan application process. Each case relates to
one loan application process and can be accepted (regular) or cancelled
(deviant).

Sepsis: The next dataset is the Sepsis-Dataset. It is a medical dataset that
records patients with life-threatening sepsis conditions. The outcome
describes whether the patient returns to the emergency room within 28
days from initial discharge.

TrafficFines: Third, we apply our approach to the Traffic-Fines-Dataset. This dataset
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contains events related to notifications sent related to a fine. The
dataset originates in a log from an Italian local police force.

DiCE4EL: Lastly, we include a variation of the BPIC dataset. It is the dataset
which was used by Hsieh, Moreira, and Ouyang. The difference between
this dataset and the original dataset is two-fold. First, Hsieh, Moreira,
and Ouyang omit most variables except two. Second, it is primarily
designed for next-activity prediction and not outcome prediction. We
modified the dataset to fit the outcome prediction model.

#Cases Min Len Max Len % Unique Traces #Unique Ev. #Data Columns #Event Attr #Regular #Deviant
Dataset

DiCE4EL 3 051 12 25 0.000328 23 9 7 1 853 1 198
BPIC12-25 3 051 12 25 0.000328 23 23 21 1 853 1 198
BPIC12-50 4 587 12 50 0.000218 23 23 21 2 405 2 182
BPIC12-75 4 677 12 75 0.000214 23 23 21 2 436 2 241
BPIC12-100 4 685 12 96 0.000213 23 23 21 2 442 2 243
Sepsis-25 707 5 25 0.001414 15 75 73 610 97
Sepsis-50 770 5 47 0.001299 15 76 74 662 108
Sepsis-75 777 5 66 0.001287 15 76 74 667 110
Sepsis-100 779 5 88 0.001284 15 76 74 669 110
TrafficFines 129 615 2 20 0.000008 10 40 38 70 602 59 013

Table 4.1: All datasets used within the evaluation. DiCE4EL is used for the qualitative evaluation, and
the remaining are used for quantitative evaluation purposes.

For more information about these datasets we refer to Teinemaa et al.’s
comparative study[52]. We list all the important descriptive statistics in
Table 4.1.

precision recall f1-score support
Subset test training validation test training validation test training validation test training validation
Dataset

BPIC12-100 1.000 0.999 0.999 1.000 0.999 0.999 1.000 0.999 0.999 60.000 1000.000 841.000
BPIC12-25 0.808 0.770 0.765 0.750 0.742 0.733 0.738 0.733 0.723 60.000 1000.000 1000.000
BPIC12-50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 60.000 1000.000 819.000
BPIC12-75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 60.000 1000.000 841.000
DiCE4EL 0.780 0.806 0.821 0.700 0.755 0.749 0.677 0.744 0.739 60.000 1000.000 1000.000
Sepsis-100 0.259 0.246 0.250 0.509 0.496 0.500 0.343 0.329 0.333 55.000 123.000 42.000
Sepsis-25 0.478 0.511 0.528 0.483 0.508 0.519 0.449 0.482 0.495 60.000 1000.000 873.000
Sepsis-50 0.250 0.240 0.261 0.500 0.490 0.511 0.333 0.322 0.346 60.000 1000.000 1000.000
Sepsis-75 0.207 0.254 0.300 0.455 0.504 0.548 0.284 0.338 0.388 55.000 123.000 42.000
TrafficFines 1.000 0.987 0.984 1.000 0.987 0.983 1.000 0.987 0.983 60.000 1000.000 1000.000

Table 4.2: The evaluation metrics for the prediction component on all datasets. Includes precision, recall
and f1 score for test, training and validation data.

We list the predictions of our prediction component in Table 4.2. The
F1-Scores on the test sets are generally higher for the BPIC dataset. Further-
more, in the case of the BPIC datasets, the length of the dataset determines
whether the prediction model always predicts correctly or not. It is fair to
assume that the length of a loan application process determines the chance
of getting rejected or not.
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4.2 Preprocessing

To prepare the data for our experiments, we employed basic tactics for pre-
processing. First, we split the log into a training and a test set. The test
set will act as our primary source for evaluating factuals entirely unknown to
the model. We split the training set into a training set and a validation set.
This procedure is a common tactic to employ model selection techniques. In
other words, Each dataset is split into 25% Test and 75 remaining, and from
the remaining, we take 25% validation and 75% training data.

First, we filter out every case whose’ sequence length exceeds 25. We keep
this maximum threshold for most experiments focusing on the evolutionary
algorithm. The reason is the polynomial computation time of the viability
measure. The similarity and sparsity components of the proposed viability
measure have a run time complexity of at least N2. Hence, limiting the
sequence length saves a substantial amount of temporal resources.

Next, we extract time variables if they are provided in the log. Then, we
normalise the values. For a time format, we encode all information from sec-
onds to a year. If the complete log occurs within one time unit only, e.g. every
event that happened within a year, drop the extracted column—afterwards,
we standard scale all remaining time features.

Each categorical variable is converted using binary encoding. Binary
encoding is very similar to one-hot encoding. However, it is still distinct.
The binary encoding uses a binary representation for each class encoded.
This representation saves a lot of space as binary encoded variables are less
sparse than one-hot encoded variables.

We also add an offset of 1 to binary and categorical columns to introduce
a symbol which represents padding in the sequence. All numerical columns
have a zero mean and a standard deviation of 1.

We omit the case id, the activity and the label column from this pre-
processing procedure for reasons explained in section 2.5. The activity is
label-encoded. Hence, every category is assigned to a unique integer. The
label column is binary encoded, as we focus on outcome prediction.

4.3 Experimental Setup

As mentioned in section 2.3, counterfactual generation is notorious for lacking
a standardised evaluation procedure. Nonetheless, we attempt to address our
research questions with the following experiments.
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Experiment 1: Model Selection

Before comparing models, we reduce the number of possible models that can
be compared. In terms of operators, we introduced three initiators, three
selectors, three crossers, two mutators and three recombiners. Hence, com-
paring all possible evolutionary operator combinations requires examining a
total of 54 different models. Furthermore, each model has hyperparameters
we have to define, too. Therefore, the first set of experiments is dedicated to
choosing among a subset of operator combinations and selecting appropriate
hyperparameters.

First, we compute all possible configurations without changing any hyper-
parameter. We refer to each unique operator combination as a model config-
uration to avoid confusion. For instance, one model configuration would con-
sist of a Sampling-Based-Initiator, an Elitism-Selector, a One-Point-Crosser,
Sampling-Based-Mutator and a Fittest-Survivor-Recombiner. For the sake of
brevity, we refer to a specific model configuration in terms of its abbreviated
operators. For instance, the earlier example is denoted as SBI-ES-OPC-
SBM-FSR.

Afterwards, we explore the hyperparameters of the model. We start with
the termination point. Hence, we want to examine the effects of the iterative
cycles that each evolutionary algorithm will run. The goal is to find a stop-
ping criterion which yields reasonably good counterfactuals while reducing
the computation time. We will only consider the number of iterative cycles
as a stopping criterion. We refer to each different criterion as a termina-
tion point. Hence, a termination point at 5 means the algorithm will not
proceed to optimise its results further after reaching the fifth iteration. We
can choose the termination point by inspecting how the average population
viability evolves across each cycle. We keep every other experimental setting
as established beforehand.

For determining the mutation rate for every mutation type, we choose the
best evolutionary algorithm and run the configuration with six rates from 0
to 0.5 in steps of 0.1. We omit everything beyond 0.5 to preserve information
about the parent. For instance, if we use a change rate of 0.9, we mutate
90% of the genes the child inherited. This would defeat the purpose of
evolving better counterfactuals through breeding. We use the termination
point established in the prior experiment. We keep every other experimental
setting as set beforehand.

After executing all preliminary experiments, we choose the evolutionary
generators and compare them with all baseline models in all subsequent ex-
periments.
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Experiment 2: Comparing with Baseline Generators

In this experiment, we assess the viability of all the chosen evolutionary and
baseline generators. For this purpose, we sample 10 factuals and use the
models to generate 50 counterfactuals. We determine the median viability
across the counterfactuals. With this experiment, we show that a model that
optimises counterfactual quality criteria produces better results than models
that do not. Hence, we expect the evolutionary algorithm to perform best,
as it can directly optimise multiple viability criteria. We move on with the
best-performing models.
Under RQ1-H1 and RQ1-H2 we expect the evolutionary algorithms to out-
perform the baselines when it comes to viability.

Experiment 3: Comparing with alternative Literature

The model comparison is not enough to establish the validity of our solu-
tion, as we defined the viability measure ourselves. Therefore, we also assess
each model based on the evaluation criteria of an alternative work. More
precisely, we quantify the viability of our models using the metrics employed
by Hsieh, Moreira, and Ouyang. Hence, we measure the sparsity by comput-
ing the average Levenshstein difference and proximity using the L2-Norm.
Furthermore, we compute the average intra-list-diversity and plausibility

Similar to Hsieh, Moreira, and Ouyang, we focus on the activities that are
generated by each model and its accompanying resource event-attribute. For
diversity and plausibility, we remain close to the original evaluation protocol
by Hsieh, Moreira, and Ouyang as we also treat each counterfactual trace
sequence as a symbol. Hence, a sequence ABC is treated as a completely
different symbol than ABCD.

The goal is to show that models, which optimise viability criteria, perform
better, even if viability is assessed differently, as stated in RQ2-H1 of our
research question (section 1.4).

Experiment 4: Qualitative Assessment

For the last assessment, we follow Hsieh, Moreira, and Ouyang’s procedure
of assessing the models qualitatively. We use the dataset as the authors do.
However, as we focus on outcome prediction, we attempt to answer one of
two questions:

1. what would I have had to change to prevent the cancellation/rejection
of the loan application process
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2. what would I have had to change to cause a cancelled/rejected loan
application process

The goal is to show that the results are viable despite not having a stan-
dardised protocol to measure their viability.
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Chapter 5

Results

This chapter presents the results of each evaluation step. Furthermore, we
analyse the results.

5.1 Experiment 1: Model Selection

5.1.1 Model Configuration

Results

As there are many ways to combine each configuration, we select a few con-
figurations by examining them through simulations.

The set of model-configuration contains 54 elements. We choose to run
each model configuration for 100 evolution cycles. For all model configu-
rations, we use the same four factual process instances randomly sampled
from the test set. We ensure that the outcomes of these factuals are evenly
divided. We decide to limit the population size to a maximum of 1000 coun-
terfactuals. Within each evolutionary cycle, we generate 100 new offspring.
We keep the mutation rate at 0.01 for each mutation type. Hence, across
all cases that are mutated, the algorithm deletes, inserts, and changes 1% of
events per cycle. We collect the mean viability and its components across
the iterative cycles of the model.

Figure 5.1 shows the bottom and top-5 model configurations based on
the viability after the final iterative cycle. We also show how the viability
evolves for each iteration. The results reveal a couple of patterns. First,
all top-5 algorithms use either Case-Based-Initiator as initiation operation.
In contrast, the bottom-5 use Random-Initiator as initialisation. Hence,
the initialisation appears to be majorly important for the algorithm. The
complete table of results is in Table A.1.
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Figure 5.1: This figure shows the average viability of the five best and worst model configurations. The
x-axis shows how the viability evolves for each evolutionary cycle.

In Figure 5.2, we see the effects of each operator type.
Starting with some commonalities, across operator-type and measure, the

figure shows that the initiator heavily determines the starting point for each
measure. For instance, the Random-Initiator starts well below the other
initiator operations regarding sparsity and similarity. Similarly, most of the
RI-x model configurations begin at much lower viability than the other model
configurations. This pattern is evident in Figure 5.1.

Another noteworthy general observation is the delta measure. Here, we
see a movement towards the highest possible delta value for each operator
type. Hence, most configurations are capable of changing the source outcome
to the desired outcome.

Regarding feasibility, Figure 5.2 shows an increase for most operators.
This is especially true if the operator has a random component or if it opti-
mises for feasibility. Similar holds for recombination with Fittest-Survivor-
Recombiner. The feasibility has not reached convergence yet. In many cases,
the feasibility monotonously increases.

Among the top-5 CBI-ES-OPC-SBM-FSR grows the fastest in terms of
viability and reaches convergence the earliest. On the opposite side, we find
CBI-RWS-OPC-SBM-BBR to have the slowest growth. However, it is also
the only one not reaching convergence at that point.

When it comes to the crossing operation, the results indicate that the
differences between One-Point-Crosser and Two-Point-Crosser are incon-
clusive for all viability measures except feasibility. One can explain that by
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Figure 5.2: The evolution of each viability measure over the entire span of iterative cycles. Each figure
adjust the respective operator type by taking the average over all other operator types.
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noting that both operations are very similar. However, cutting the sequence
only once produces fewer impossible sequences for the child sequences.

Discussion

The results show us that the initiation procedure heavily determines the
starting point of the algorithm. Hence, this result is hardly surprising. We
have discussed the reasons in subsection 3.5.1. Namely, more sophisticated
methods than random initiation can heavily influence the starting point of
the evolutionary algorithm and determine how fast the algorithm reaches
convergence.

Interestingly, among the top-5 configurations, only the 5th operation has
the Elitism-Selector and the Fittest-Survivor-Recombiner. Both operators
heavily focus on deterministic selections of the very best individuals. The
fact that only one of these approaches reached the top tells us that this
combination is naturally prone to local maxima. We can also see how much
faster it ran and converged at its highest viability. Therefore, CBI-RWS-
OPC-SBM-BBR is much more interesting as it did not converge after 100
iterative cycles. Hence, it is likely it may reach higher viability scores if we
choose to let it run longer.

It is equally interesting that the best model turned out to be the one that
sorts the individuals based on a given sorting order. As we chose the order
in favour of the least impactful viability component (feasibility), this may
suggest that ranked sorting may act as a suitable balancing mechanism.

The monotonous increase of the feasibility may have two possible reasons.
Either, this behaviour displays the bias within the feasibility component. We
mentioned that the feasibility is biased towards shorter sequences. Hence,
the feasibility might increase until only one event is left. Therefore, there
might not even be a convergence. Another reason could be that the more
dominant viability components are optimised first and, afterwards, the fea-
sibility. Hence, after 100 iterations, there is still much room to improve.
In other words, we would have to increase the termination point before en-
countering convergence. The results with regards to the recombiners provide
a clue. Here, we see that the Fittest-Survivor-Recombiner and Best-Breed-
Recombiner do converge on feasibility, while the Ranked-Recombiner does
not. In other words, we lose a lot of potential because the algorithm priori-
tises other components.
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5.1.2 Model Termination Point

Results

For the experiment, we chose a termination point of 200 which is twice the
length of the previous simulation. We keep the mutation rate at 0.01 for
each mutation type. The remaining procedure follows the process described
in section 5.1.1.

Figure 5.3: This figure shows the viability across the iteration cycles.

In Figure 5.3, we see a general increase in viability for each termination
point. It shows that increasing the termination point also yields better results
at the end of the generation process. We see that CBI-ES-UC3-SBM-RR
returns the best results in the shortest time span. The model converges
after roughly 50 iterative cycles. CBI-RWS-OPC-SBM-BBR appears to have
not reached convergence. The randomly initiated models have not reached
convergence as well. However, they remain far below models that use a more
sophisticated method to initialise their population.

Figure 5.4 shows a decomposed view on how the viability measure evolves.
Furthermore, we show the average amount of events within a generated coun-
terfactual. In terms of similarity and sparsity, all models behave similarly.
This is no surprise as both measures are inherently interlinked. We see
that the randomly initiated models (RI-x) decrease the number of events
they generate. Case-based initiated models appear to gain more viability
slightly. Although, CBI-RWS-OPC-SBN-BBR appears that reaches its sat-
uration point significantly later (100 th cycle). Interestingly, the CBI-RWS-
OPC-SBM-BBR model struggles to maintain feasibility and collapses to near
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Figure 5.4: This figure shows the remaining measure components. Additionally, we show the ratio of
events within the population. We also show a magnified version of the feasibility measure.

0 after the 100th iterative cycle. Another surprise is the steep ascension of
the only model that uses tournament selection (RI-TS-TPC-SBM-RR) to-
wards the end of the generation process. The model even overtakes the model
that leads the model configurations in terms of viability. Furthermore, we
see that CBI-ES-UC-SBM-RR has the highest feasibility among all models.
However, it also quickly converges after 50 iterative cycles.

Discussion

The results are not surprising. The longer the algorithm runs, the closer it
gets to a local minimum. We expect every evolutionary algorithm to converge
at some point, as only the best within the population are chosen for the next
iteration. If the model does not include enough non-deterministic compo-
nents, the results collapse to one optimal case in terms of structure. Hence,
the counterfactual activities remain unchanged for the rest of the generation
process. The events ratio should optimally approach a number around 0.5 if
the factuals are evenly distributed in length. All model configurations seem-
ingly follow this trajectory. However, models (RI-TS-TPC-SBM-RR) falls
below this level. This coincides with its sharp rise in feasibility. We assume
this behaviour relates to a bias of the feasibility measure towards shorter
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sequences. The rise and decline of CBI-RWS-OPC-SBM-BBR shortly be-
fore overtaking all other models in terms of similarity and sparsity indicate
a trade-off between how close the counterfactual is to the factual and how
feasible it is.

For the following experiments, we use 50 as a termination point. It
appears to be a reasonable point in which most models reach their highest
viability yield and have not converged yet. We do not seek convergence, as
we want to maintain the diversity of our counterfactuals.

5.1.3 Model Parameters

Results

As explained earlier, we run the same configuration as previously established
for this simulation. However, we vary the rate with which we apply a muta-
tion type this time.

Figure 5.5: This figure shows the viability for each model and mutation rate per iterative cycle. The first
plot shows the average across models. The second figure shows the same information per model. The
x-axis shows how the viability evolves for each evolutionary cycle. The colour indicates the mutation rate.
The line-type marks each model tested.

As we can see in Figure 5.5, a mutation rate of 0 yields better results on aver-
age. We are suggesting that mutating the children might impede the model.
For model configurations that use the Fittest-Survivor-Recombination, we
observe a sharp pattern of convergence before the 10th iterative cycle.

Figure 5.6 reveals the reason for this behaviour. In all plots of a sharp
change right before the 10th iterative cycle. However, the feasibility measure
also displays a sudden stop of improvement for all mutation rates except 0.0
and 0.4. These exceptions also change their growth rate but improve shortly
after the 30th iterative cycle. The figure also shows that a mutation rate of
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Figure 5.6: Shows all components of the viability measure.

0.2 reaches the highest feasibility among the other edit rates. However, after
48 cycles, the mutation rate of 0.0 overtakes 0.2.

Discussion

While it is expected that every rate configuration eventually converges to-
wards an optimal value, it remains surprising that most configurations sud-
denly converge around the 10th iteration. There are several possible reasons
for this phenomenon. As the viability measure incorporates structural and
event-related information, we assume that the algorithm first focuses on find-
ing a structural optimum.

Hence, the algorithm first prioritizes finding the best sequence in terms
of activities. After finding an activity sequence, the model primarily focuses
on improving the event attributes. Another explanation could be the ratio
between the number of generated children and the population threshold. In
this experiment, we generated 200 new children while limiting the population
size to 1000.

With these observations in mind, we choose to set the mutation rate to
0.01. This decision implicates that mutations occur very rarely. Therefore,
the main driving force for finding the best counterfactual is now the crossing

71



operation. With this setting, we maintain the model’s ability to improve
beyond 50th iterative cycle.

5.1.4 Model Candidates

To conclude this section, we summarize the model selection by choosing the
models and their respective hyperparameters. Furthermore, we provide a
quick overview of their characteristics. All models use the same mutator, the
Sample-Based-Mutator.

1. CBI-ES-UC3-SBM-RR: This model initializes the first population
using process instances from the data. For each iterative cycle, the indi-
viduals with the highest viability will go on to cross over their genome.
Every child will receive 30% and 70% of its parents, respectively. After
the mutation phase, the generator re-ranks the entire population and
discards all individuals who have not met the threshold. We choose
this model as it promises to return the most feasible counterfactuals.
However, the model most likely does not return the highest viability
compared to other generators.

2. CBI-RWS-OPC-SBM-FSR: This model initializes the first popula-
tion using actual process instances. For each iterative cycle the indi-
viduals that pass on their genes are probabilistically selected based in
proportion to their viability. For every child, a crossover point decides
how much of a parent’s genome is inherited. After the mutation phase,
the generator selects the most viable individuals as the next popula-
tion. We choose this model as it promises to return the highest value in
terms of viability. However, the model is prone to reaching convergence
very quickly.

5.2 Experiment 2: Comparing with Baseline

Generators

In this section we examine the results of each model’s average viability across
all datasets.

5.2.1 Results

In this comparison, we employ the baseline models mentioned in section 3.5.
Namely, the Case-Based Generator, the Sample-Based Generator and the
Random Generator.
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We randomly sample 20 factuals from the test set and use the same factu-
als for every generator. We ensure that the outcomes are evenly divided. The
remaining procedure follows the established practice of previous experiments.

Figure 5.7: This figure shows boxplots of the viability of each model’s generated counterfactual.

The results shown in Figure 5.7 show that the evolutionary algorithm CBI-
ES-UC3-SBM-RR slightly returns better results when it comes to the median
viability. The worst model is the randomly generated model. The Case-
Based model appears to be evenly and normally distributed at a viability
of 2.25. The CBI-RWS-OPC-SBM-FSR has outliers that far exceed and
underperform against other evolutionary algorithms on both ends.

Figure 5.7 also displays the vast difference in computation time for the
evolutionary algorithms. Only the model using the Ranking-Recombination
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seems slightly faster than the ones using Best-Breed and Fittest-Survivor as
recombination methods.

Table 5.1 shows the detailed results.

Table 5.1: The result of Experiment 4. The colours indicate the model configurations that were examined.
The results are based on the average viability over each counterfactual a model produces across all factuals
that were tested.

Prediction Score Viability Sparcity Similarity Feasibility Delta Num. Paddings Processing Time (sec.) Max. Seq. Length
Model (Abbr. Name)
CBG-CBGW 0.514867 2.230507 0.764022 0.818115 0.014585 0.633786 14.584000 9.414627 27.000000
CBI-ES-UC3-SBM-RR 0.497746 2.678977 0.870874 0.896964 0.087737 0.823403 15.448000 588.550365 27.000000
CBI-RWS-OPC-SBM-BBR 0.445966 2.612767 0.851280 0.882271 0.095409 0.783807 15.560000 631.307437 27.000000
CBI-RWS-OPC-SBM-FSR 0.463966 2.728961 0.870071 0.899039 0.160373 0.799478 15.432000 625.714404 27.000000
RG-RGW 0.569685 1.554904 0.338077 0.578003 0.000000 0.638824 1.034000 8.175288 27.000000
SBG-SBGW 0.487669 2.151321 0.717582 0.755577 0.171964 0.506198 25.016000 9.927904 27.000000

Figure 5.8 displays the results of running each algorithm on a set of
different datasets. The figure shows a clear dominance of the evolutionary
models across all datasets.

Figure 5.8: Boxplots of the viability of each model’s generated counterfactuals across a heterogeneous
collection of datasets.

Here, CBI-ES-UC3-SBM-RR and CBI-RWS-OPC-SBM-FSR display a
higher median of viability across all datasets. This is unsurprising as the evo-
lutionary algorithm uses initiators based on the baselines. However, it is sur-
prising that the evolutionary models consistently outperform the Casebased-
Search Generator (green) across all datasets. In 6 out of 9 datasets, we see an
improvement of at least 0.15. From Table B.1 we see that the gap often occurs
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because of much higher similarity and sparsity scores. The highest median is
reached for CBI-RWS-OPC-SBM-FSR at 2.94. The Random-Search Gener-
ator never manages to come even close to the case-based model. Except for
the BPIC12-100 dataset, the Random-Search Generator has a median below
2.

Factual Seq. Our CF Seq. DiCE4EL CF Seq.
Amount Activity Outcome Resource Amount Activity Outcome Resource Activity Resource Amount

15 500 A-SUBMITTED 0 112
15 500 A-PARTLYSUBMITTED 0 112
15 500 A-PREACCEPTED 0 112
15 500 W-Completeren aanvraag 0 112
15 500 W-Completeren aanvraag 0 111
15 500 W-Completeren aanvraag 0 889
15 500 W-Completeren aanvraag 0 889
15 500 W-Completeren aanvraag 0 9
15 500 A-ACCEPTED 0 9
15 500 A-FINALIZED 0 9 15 500 A-SUBMITTED 1 112
15 500 O-SELECTED 0 9 15 500 A-PARTLYSUBMITTED 1 112
15 500 O-CREATED 0 9 15 500 A-PREACCEPTED 1 112 A-SUBMITTED 112 15 500
15 500 O-SENT 0 9 15 500 W-Completeren aanvraag 1 111 A-PARTLYSUBMITTED 112 15 500
15 500 W-Completeren aanvraag 0 9 15 500 W-Completeren aanvraag 1 111 A-PREACCEPTED 112 15 500
15 500 W-Nabellen offertes 0 9 15 500 A-ACCEPTED 1 111 A-ACCEPTED 1 15 500
15 500 W-Nabellen offertes 0 9 15 500 A-FINALIZED 1 111 O-SELECTED 1 15 500
15 500 O-SENT-BACK 0 129 15 500 O-SELECTED 1 111 A-FINALIZED 1 15 500
15 500 W-Nabellen offertes 0 129 15 500 O-CREATED 1 111 O-CREATED 1 15 500
15 500 W-Valideren aanvraag 0 138 15 500 O-SENT 1 111 O-SENT 1 15 500
15 500 O-DECLINED 0 138 15 500 W-Completeren aanvraag 1 111 W-Completeren aanvraag 1 15 500
15 500 A-DECLINED 0 138 15 500 O-SENT-BACK 1 149 O-SENT-BACK 11259 15 500
15 500 W-Valideren aanvraag 0 138 15 500 W-Nabellen offertes 1 149 W-Nabellen offertes 11259 15 500

15 500 O-ACCEPTED 1 629 O-ACCEPTED 9 15 500

Table 5.2: A comparison between the Casebased-Search Generator and D4EL

Factual Seq. Our CF Seq. DiCE4EL CF Seq.
Amount Activity Outcome Resource Amount Activity Outcome Resource Activity Resource Amount

15 500 A-SUBMITTED 0 112
15 500 A-PARTLYSUBMITTED 0 112
15 500 A-PREACCEPTED 0 112
15 500 W-Completeren aanvraag 0 112
15 500 W-Completeren aanvraag 0 111
15 500 W-Completeren aanvraag 0 889
15 500 W-Completeren aanvraag 0 889
15 500 W-Completeren aanvraag 0 9
15 500 A-ACCEPTED 0 9 15 000 A-SUBMITTED 1 112
15 500 A-FINALIZED 0 9 15 000 A-PARTLYSUBMITTED 1 112
15 500 O-SELECTED 0 9 15 000 A-PREACCEPTED 1 112
15 500 O-CREATED 0 9 15 000 A-ACCEPTED 1 861 A-SUBMITTED 112 15 500
15 500 O-SENT 0 9 15 000 A-FINALIZED 1 861 A-PARTLYSUBMITTED 112 15 500
15 500 W-Completeren aanvraag 0 9 15 000 O-SELECTED 1 861 A-PREACCEPTED 112 15 500
15 500 W-Nabellen offertes 0 9 15 000 O-CREATED 1 861 A-ACCEPTED 1 15 500
15 500 W-Nabellen offertes 0 9 15 000 O-SENT 1 861 O-SELECTED 1 15 500
15 500 O-SENT-BACK 0 129 15 000 W-Completeren aanvraag 1 861 A-FINALIZED 1 15 500
15 500 W-Nabellen offertes 0 129 5 000 W-Nabellen offertes 1 11189 O-CREATED 1 15 500
15 500 W-Valideren aanvraag 0 138 15 210 W-Nabellen offertes 1 861 O-SENT 1 15 500
15 500 O-DECLINED 0 138 15 000 O-SENT-BACK 1 129 W-Completeren aanvraag 1 15 500
15 500 A-DECLINED 0 138 15 363 W-Nabellen offertes 1 912 O-SENT-BACK 11259 15 500
15 500 W-Valideren aanvraag 0 138 14 537 W-Valideren aanvraag 1 129 W-Nabellen offertes 11259 15 500

15 000 O-ACCEPTED 1 138 O-ACCEPTED 9 15 500

Table 5.3: A comparison between the CBI-ES-UC3-SBM-RR and D4EL

Factual Seq. Our CF Seq. DiCE4EL CF Seq.
Amount Activity Outcome Resource Amount Activity Outcome Resource Activity Resource Amount

15 500 A-SUBMITTED 0 112
15 500 A-PARTLYSUBMITTED 0 112
15 500 A-PREACCEPTED 0 112
15 500 W-Completeren aanvraag 0 112 5 000 A-SUBMITTED 1 112
15 500 W-Completeren aanvraag 0 111 5 000 A-PARTLYSUBMITTED 1 112
15 500 W-Completeren aanvraag 0 889 5 000 A-PREACCEPTED 1 112
15 500 W-Completeren aanvraag 0 889 5 000 W-Completeren aanvraag 1 861
15 500 W-Completeren aanvraag 0 9 7 500 W-Completeren aanvraag 1 861
15 500 A-ACCEPTED 0 9 7 500 W-Completeren aanvraag 1 861
15 500 A-FINALIZED 0 9 7 500 A-ACCEPTED 1 861
15 500 O-SELECTED 0 9 7 500 A-FINALIZED 1 861
15 500 O-CREATED 0 9 7 500 O-SELECTED 1 861 A-SUBMITTED 112 15 500
15 500 O-SENT 0 9 7 500 O-CREATED 1 861 A-PARTLYSUBMITTED 112 15 500
15 500 W-Completeren aanvraag 0 9 7 500 O-SENT 1 861 A-PREACCEPTED 112 15 500
15 500 W-Nabellen offertes 0 9 7 500 W-Completeren aanvraag 1 861 A-ACCEPTED 1 15 500
15 500 W-Nabellen offertes 0 9 7 500 W-Nabellen offertes 1 109 O-SELECTED 1 15 500
15 500 O-SENT-BACK 0 129 7 500 W-Nabellen offertes 1 861 A-FINALIZED 1 15 500
15 500 W-Nabellen offertes 0 129 O-CREATED 1 15 500
15 500 W-Valideren aanvraag 0 138 7 500 O-SENT-BACK 1 789 O-SENT 1 15 500
15 500 O-DECLINED 0 138 7 500 W-Nabellen offertes 1 789 W-Completeren aanvraag 1 15 500
15 500 A-DECLINED 0 138 O-SENT-BACK 11259 15 500
15 500 W-Valideren aanvraag 0 138 5 000 W-Valideren aanvraag 1 138 W-Nabellen offertes 11259 15 500

7 500 O-ACCEPTED 1 11289 O-ACCEPTED 9 15 500

Table 5.4: A comparison between the CBI-RWS-OPC-SBM-FSR and D4EL
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Factual Seq. Our CF Seq. DiCE4EL CF Seq.
Amount Activity Outcome Resource Amount Activity Outcome Resource Activity Resource Amount

11 247 A-PARTLYSUBMITTED 1
10 159 A-FINALIZED 1
13 939 O-SENT 1

15 500 A-SUBMITTED 0 112 10 550 A-APPROVED 1
15 500 A-PARTLYSUBMITTED 0 112 25 608 A-APPROVED 1
15 500 A-PREACCEPTED 0 112 29 560 W-Nabellen offertes 1
15 500 W-Completeren aanvraag 0 112 4 665 O-CANCELLED 1
15 500 W-Completeren aanvraag 0 111 19 918 O-SELECTED 1
15 500 W-Completeren aanvraag 0 889 16 922 W-Completeren aanvraag 1
15 500 W-Completeren aanvraag 0 889
15 500 W-Completeren aanvraag 0 9 19 969 A-SUBMITTED 1
15 500 A-ACCEPTED 0 9 13 066 A-PREACCEPTED 1
15 500 A-FINALIZED 0 9
15 500 O-SELECTED 0 9 25 535 A-DECLINED 1
15 500 O-CREATED 0 9 A-SUBMITTED 112 15 500
15 500 O-SENT 0 9 21 437 O-CREATED 1 A-PARTLYSUBMITTED 112 15 500
15 500 W-Completeren aanvraag 0 9 17 469 W-Beoordelen fraude 1 A-PREACCEPTED 112 15 500
15 500 W-Nabellen offertes 0 9 A-ACCEPTED 1 15 500
15 500 W-Nabellen offertes 0 9 29 395 W-Completeren aanvraag 1 O-SELECTED 1 15 500
15 500 O-SENT-BACK 0 129 9 053 O-SENT-BACK 1 A-FINALIZED 1 15 500
15 500 W-Nabellen offertes 0 129 O-CREATED 1 15 500
15 500 W-Valideren aanvraag 0 138 11 627 A-FINALIZED 1 O-SENT 1 15 500
15 500 O-DECLINED 0 138 41 470 W-Valideren aanvraag 1 W-Completeren aanvraag 1 15 500
15 500 A-DECLINED 0 138 16 381 O-SENT-BACK 1 O-SENT-BACK 11259 15 500
15 500 W-Valideren aanvraag 0 138 2 828 A-ACCEPTED 1 W-Nabellen offertes 11259 15 500

8 834 O-ACCEPTED 1 O-ACCEPTED 9 15 500

Table 5.5: A comparison between the Random-Search Generator and D4EL

In tables 5.2, 5.3, 5.4 and 5.5 we show generations of all models and
compare them to DiCE4EL. We see that all models return reasonable coun-
terfactuals, except the Random-Search Generator . This model does not
seem to follow any pattern.

5.2.2 Analysis

These results show that the model CBI-RWS-OPC-SBM-FSR outperforms
the other models. This result is unsurprising, as the baselines do not actively
search for an optimal solution. Furthermore, we see that most evolutionary
models surpass their baselines by a wide margin.

The difference in computation time is most likely due to the similarity
and sparsity measures. The computation of the Damerau-Levenshstein dis-
tance is quadratic. As we also apply an additional custom cost function,
the longer the sequence, these computation times increase. The evolution-
ary algorithm, as described in section 2.8 is a sequential operation that also
increases with the sequence length. However, we can deduce that the time dif-
ference between the CBI-ES-UC3-SBM-RR stems from either the Ranking-
Recombination or the Uniform-Crossing operation. As those two are the
only discernible operators.

In contrast, the baselines have been implemented in ways that vectorise
most operations using NumPy. Meaning they can vastly decrease their com-
putation time. On the other hand, the evolutionary algorithms are subject
to python’s notorious slow-looping procedures. However, this is not a vital
issue for two reasons. First, it is possible to run evolutionary algorithms in
a parallel manner. Second, we have not explored more optimised implemen-
tations of either the SSDLD or the evolutionary algorithm. However, we are
confident that there are better and fast implementations available.

Knowing these results, a couple of questions remain, namely, whether the
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results remain consistent for longer sequences and other datasets. Further-
more, how does this procedure compare to other methods in the literature?
The remaining experiments will address these questions.

The results for Figure 5.8 show that both evolutionary algorithms out-
perform the competition across all datasets and against all baselines. The
fact that sparsity and similarity are the main drivers for this consistent im-
provement indicates a higher structural alignment between counterfactual
and factual.

This remarkable result shows that the algorithm can outperform baselines
regardless of the process log and its length.

The underperformance of the random model was expected. In section 3.3,
we indicated that viable algorithms must at least reach a viability of 2.

Furthermore, we expected the search space for the Random-Search Gen-
erator is too vast to find viable results.

The fact that 8 of 9 datasets showed that the random model cannot
exceed the threshold of two supports this claim. Additional support is the
observation that every Casebased-Search Generator reaches at least 2.

7 All suggestions

5.3 Experiment 3: Evaluation under a differ-

ent Viability Measure

5.3.1 Results

Table 5.6 shows how each model performs under the evaluation metrics cho-
sen by Hsieh, Moreira, and Ouyang. All of them apply separately to the
sequence of resources and the sequence of activities. Each evaluation metric
is the mean across all counterfactual results per model.

First, plausibility measures whether the sequence of activities or resources
was found in the data—next, proximity is the normalised euclidian similarity
between two sequences. The third is sparsity, computed using the normalised
Levenshtein similarity.

We see that the evolutionary models are often comparable and sometimes
even better than the DiCE4EL solution by Hsieh, Moreira, and Ouyang. We
see that, for instance, for proximity. If the proximity of our model is lower
than the proximity of the DiCE4EL solution, we can say that our models
are, on average, closer to the factual. Similar holds for sparsity. We see this
behaviour for both evolutionary generators. However, the Casebased-Search
Generator also displays better proximity and sparsity scores than DiCE4EL.
Only the Random-Search Generator appears to show worse results.
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Model CREATED D4EL
Property Diversity Plausibility Proximity Sparsity Diversity Plausibility Proximity Sparsity

Generator Dimension Factual

CBG-CBGW-IM Activity 0 0.972000 1.000000 0.063218 0.046497 0.000000 1.000000 0.000000 0.000000
1 0.976000 1.000000 0.059401 0.129841 0.000000 1.000000 0.000000 0.214286
2 0.976800 1.000000 0.086785 0.077784 0.000000 1.000000 0.000000 0.000000
3 0.972800 1.000000 0.058631 0.053378 0.000000 1.000000 0.000000 0.055556
4 0.976800 1.000000 0.059257 0.050848 0.000000 1.000000 0.000000 0.000000
5 0.978400 1.000000 0.047923 0.132316 0.000000 1.000000 0.000000 0.052632

Resource 0 0.980000 1.000000 0.506296 0.242407 0.000000 0.000000 0.277778 0.111111
1 0.980000 1.000000 0.511616 0.249226 0.000000 1.000000 0.642857 0.214286
2 0.979200 1.000000 0.527694 0.180480 0.000000 1.000000 0.642857 0.142857
3 0.978400 1.000000 0.479959 0.222916 0.000000 1.000000 0.500000 0.222222
4 0.980000 1.000000 0.446653 0.193787 0.000000 1.000000 0.409091 0.181818
5 0.980000 1.000000 0.438579 0.201254 0.000000 0.000000 0.473684 0.157895

ES-EGW-CBI-ES-UC3-SBM-RR-IM Activity 0 0.000000 1.000000 0.055556 0.000000 0.000000 1.000000 0.000000 0.000000
1 0.320000 0.000000 0.062500 0.362500 0.000000 1.000000 0.000000 0.214286
2 0.112800 0.000000 0.000000 0.347143 0.000000 1.000000 0.000000 0.000000
3 0.039200 0.000000 0.165556 0.001111 0.000000 1.000000 0.000000 0.055556
4 0.000000 1.000000 0.045455 0.045455 0.000000 1.000000 0.000000 0.000000
5 0.000000 0.000000 0.052632 0.157895 0.000000 1.000000 0.000000 0.052632

Resource 0 0.000000 0.000000 0.666667 0.277778 0.000000 0.000000 0.277778 0.111111
1 0.640800 0.000000 0.875000 0.550000 0.000000 1.000000 0.642857 0.214286
2 0.792000 0.000000 0.714286 0.490000 0.000000 1.000000 0.642857 0.142857
3 0.936000 0.000000 0.832222 0.294444 0.000000 1.000000 0.500000 0.222222
4 0.420000 0.000000 0.636364 0.227273 0.000000 1.000000 0.409091 0.181818
5 0.554400 0.000000 0.631579 0.315789 0.000000 0.000000 0.473684 0.157895

ES-EGW-CBI-RWS-OPC-SBM-FSR-IM Activity 0 0.000000 0.000000 0.055556 0.055556 0.000000 1.000000 0.000000 0.000000
1 0.000000 0.000000 0.000000 0.357143 0.000000 1.000000 0.000000 0.214286
2 0.000000 0.000000 0.000000 0.571429 0.000000 1.000000 0.000000 0.000000
3 0.000000 1.000000 0.111111 0.166667 0.000000 1.000000 0.000000 0.055556
4 0.000000 1.000000 0.090909 0.045455 0.000000 1.000000 0.000000 0.000000
5 0.000000 0.000000 0.052632 0.210526 0.000000 1.000000 0.000000 0.052632

Resource 0 0.000000 0.000000 0.666667 0.444444 0.000000 0.000000 0.277778 0.111111
1 0.000000 0.000000 0.785714 0.428571 0.000000 1.000000 0.642857 0.214286
2 0.000000 0.000000 0.714286 0.714286 0.000000 1.000000 0.642857 0.142857
3 0.000000 0.000000 0.777778 0.388889 0.000000 1.000000 0.500000 0.222222
4 0.584800 0.000000 0.772727 0.181818 0.000000 1.000000 0.409091 0.181818
5 0.000000 0.000000 0.684211 0.210526 0.000000 0.000000 0.473684 0.157895

RG-RGW-IM Activity 0 0.980000 0.000000 0.021696 0.000000 0.000000 1.000000 0.000000 0.000000
1 0.980000 0.000000 0.031518 0.000000 0.000000 1.000000 0.000000 0.214286
2 0.980000 0.000000 0.021023 0.000000 0.000000 1.000000 0.000000 0.000000
3 0.980000 0.000000 0.034096 0.000000 0.000000 1.000000 0.000000 0.055556
4 0.980000 0.000000 0.039796 0.000000 0.000000 1.000000 0.000000 0.000000
5 0.980000 0.000000 0.042676 0.000000 0.000000 1.000000 0.000000 0.052632

Resource 0 0.000000 0.000000 0.122198 0.000000 0.000000 0.000000 0.277778 0.111111
1 0.000000 0.000000 0.151669 0.000000 0.000000 1.000000 0.642857 0.214286
2 0.000000 0.000000 0.151084 0.000000 0.000000 1.000000 0.642857 0.142857
3 0.000000 0.000000 0.130005 0.000000 0.000000 1.000000 0.500000 0.222222
4 0.000000 0.000000 0.092543 0.000000 0.000000 1.000000 0.409091 0.181818
5 0.000000 0.000000 0.121023 0.000000 0.000000 0.000000 0.473684 0.157895

Table 5.6: A comparison between our model and D4EL

5.3.2 Analysis

Based on these results, we can see that our model does seem to optimize prop-
erly under our viability function. If we compare our results with a different
set of results, we see they often compare or even outperform the alterna-
tive solution. Unsurprisingly, the Casebased-Search Generator achieves the
highest plausibility as all the counterfactuals were drawn from the data.

5.4 Experiment 4: Qualitative Assessment

5.4.1 Results

In the result tables, you can see some of the factuals generated by our model
and the model of [28].

In this section, we show how both models (CBI-ES-UC3-SBM-RR and
CBI-RWS-OPC-SBM-FSR) are capable of changing the outcome of the fac-
tual. Both models also return reasonable counterfactuals. However, CBI-
ES-UC3-SBM-RR appears to be more consistent with the counterpart of
[28]. Especially in terms of the activity sequence. For instance, both our
counterfactual and the D4EL counterfactual recognize that after O-SENT,
there appears at least one W-Completeren aanvraag and one W-Nabellen of-
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Factual Seq. Our CF Seq. DiCE4EL CF Seq.
Amount Activity Outcome Resource Amount Activity Outcome Resource Activity Resource Amount

5 000 A-SUBMITTED 0 112 15 105 A-SUBMITTED 1 112
5 000 A-PARTLYSUBMITTED 0 112 14 214 A-PARTLYSUBMITTED 1 112
5 000 A-PREACCEPTED 0 101 14 716 A-PREACCEPTED 1 112
5 000 W-Afhandelen leads 0 101 15 373 A-ACCEPTED 1 9 A-SUBMITTED 112 5 000
5 000 A-ACCEPTED 0 111 15 038 O-SELECTED 1 912 A-PARTLYSUBMITTED 112 5 000
5 000 O-SELECTED 0 111 14 962 A-FINALIZED 1 912 A-PREACCEPTED 112 5 000
5 000 A-FINALIZED 0 111 14 887 O-CREATED 1 111 A-ACCEPTED 1 5 000
5 000 O-CREATED 0 111 14 597 O-SENT 1 103 O-SELECTED 1 5 000
5 000 O-SENT 0 111 15 236 W-Completeren aanvraag 1 111 A-FINALIZED 1 5 000
5 000 W-Completeren aanvraag 0 111 15 474 W-Nabellen offertes 1 111 O-CREATED 1 5 000
5 000 W-Nabellen offertes 0 111 O-SENT 1 5 000
5 000 O-CANCELLED 0 111 W-Completeren aanvraag 1 5 000
5 000 A-CANCELLED 0 111 O-SENT-BACK 11259 5 000
5 000 W-Nabellen offertes 0 111 14 474 W-Nabellen offertes 1 111 W-Nabellen offertes 11259 5 000

14 716 A-REGISTERED 1 111 O-ACCEPTED 9 5 000

Table 5.7: A comparison between the CBI-ES-UC3-SBM-RR and D4EL

Factual Seq. Our CF Seq. DiCE4EL CF Seq.
Amount Activity Outcome Resource Amount Activity Outcome Resource Activity Resource Amount

5 000 A-SUBMITTED 0 112 7 000 A-SUBMITTED 1 112
5 000 A-PARTLYSUBMITTED 0 112 7 000 A-PARTLYSUBMITTED 1 112
5 000 A-PREACCEPTED 0 101 7 000 A-PREACCEPTED 1 112
5 000 W-Afhandelen leads 0 101 A-SUBMITTED 112 5 000
5 000 A-ACCEPTED 0 111 A-PARTLYSUBMITTED 112 5 000
5 000 O-SELECTED 0 111 7 000 A-ACCEPTED 1 111 A-PREACCEPTED 112 5 000
5 000 A-FINALIZED 0 111 7 000 O-SELECTED 1 111 A-ACCEPTED 1 5 000
5 000 O-CREATED 0 111 7 000 A-FINALIZED 1 111 O-SELECTED 1 5 000
5 000 O-SENT 0 111 7 000 O-CREATED 1 111 A-FINALIZED 1 5 000
5 000 W-Completeren aanvraag 0 111 7 000 O-SENT 1 111 O-CREATED 1 5 000
5 000 W-Nabellen offertes 0 111 7 000 W-Completeren aanvraag 1 111 O-SENT 1 5 000
5 000 O-CANCELLED 0 111 W-Completeren aanvraag 1 5 000
5 000 A-CANCELLED 0 111 7 000 W-Nabellen offertes 1 111 O-SENT-BACK 11259 5 000
5 000 W-Nabellen offertes 0 111 7 000 W-Nabellen offertes 1 111 W-Nabellen offertes 11259 5 000

7 000 O-ACCEPTED 1 629 O-ACCEPTED 9 5 000

Table 5.8: A comparison between the CBI-RWS-OPC-SBM-FSR and D4EL

fertes that eventually leads to an acceptance of the counterfactual. Both
generate the latter activity correctly aligned with the factual. For instance,
both evolutionary algorithms start the process with the correct sequence of
A-SUBMITTED, A-PARTLYSUBMITTED and A-PREACCEPTED.

Furthermore, our model appears to be much closer in terms of sequences
than the model by Hsieh, Moreira, and Ouyang. CBI-RWS-OPC-SBM-FSR
(the model that only chooses the fittest survivors) has gaps. These gaps
indicate that the model also attempts to align toward the correct structure
of the factual model. We do not see that in CBI-ES-UC3-SBM-RR, as it
ranks feasibility above similarity and sparsity. The introduction of gaps in
the sequence automatically reduces the feasibility of the model.

We also see that the value for Amount fluctuates for the evolutionary
generators. Similar holds for the resource field. The model focuses on event
structure first and event attributes second. This might be seen as a limiting
factor when it comes to event attributes. However, one could argue that
the most revealing information the counterfactuals provide for sequences is
within the sequence structure and less the event attributes.

5.4.2 Analysis

Most of the results are reasonable. Surprisingly, the models did not neces-
sarily create counterfactuals much shorter than their factual counterparts.
In fact, most of Hsieh, Moreira, and Ouyang’s counterfactuals are shorter
in length. This characteristic can be an advantage for use cases, such as
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medicine. The fluctuations in the loan amount were expected, as well. We
did not implement any safeguard option to keep certain attributes fixed. The
values our generative models produce are more or less an indication of what
the prediction model deems as a useful change to turn over the outcome at
a specific step in the process.

We are also not surprised that all models manage to capture the first
few activities. These are mostly the same across all cases. If our generative
models had not recognised these, one could question their utility.

All models successfully flip the outcome of the prediction model and are
surprisingly close to the factual compared to the model by Hsieh, Moreira,
and Ouyang. However, we must remember that these observations tell us
more about the model than the true process. More specifically, our model
can show which events and attributes have to be present at a specific point
within the process.

All in all, we claim that the generator model can teach us more about
the prediction model primarily. Further improvement might show even more
nuance in the model’s behaviour. We discuss some of them in the discussion
chapter.
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Chapter 6

Discussion

In this chapter, we are going to reexamine many of the past decisions we
made. We critically assess the results of experiments and how we interpret
them. We also propose possible improvements and opportunities for future
reasearch.

6.1 Interpretation of Results

In the following, we discuss the results in three aspects:

1. The quality in terms of the viability of the counterfactual sequences
generated by our models.

2. Their quality compared to two baseline approaches and the state-of-
the-art DICE4EL approach.

3. Their implications in terms of the general utility of our solution.

Our first two experiments show that we can optimise towards viability
successfully. We defined four criteria for the viability of counterfactuals (sim-
ilarity, sparsity, feasibility, and delta in likelihood) and showed that a model
optimising towards those criteria can return superior results. Furthermore,
we created models capable of optimising complicated operationalisations of
these criteria without the limitation of a function with a clearly defined gra-
dient.

Based on the results, we have seen in the latter experiments that we can
confidently say the models can generate viable counterfactuals. Compared
to other methods in the literature, we show that our counterfactuals attempt
to be closer to the factual we desire to understand. We have to note that

81



these counterfactuals are primarily a reflection of the underlying prediction
model. One might argue that this does not translate to a real-world scenario.
However, a model never truly does. If our framework attempts to explain
how a prediction model behaves, then its applicability to real-world scenarios
depends on that model’s viability. But regardless of the prediction model’s
performance, we can clearly gain an understanding of its internal reasoning
pattern.

The viability measure we proposed shows that structural difference can
help us better understand when and where we must apply counterfactual
changes. Other approaches often seem to overlook the importance of the
sequence structure. However, the CBI-RWS-OPC-SBM-FSR model shows
that it may be reasonable to incorporate structural differences in our viability
measures. Especially, if we talk about sequences and processes. The gaps
within the counterfactuals our models produced clearly indicate that. If a
model attempts to align sequences, it becomes much easier to compare them
side-by-side.

In contrast to the closest alternative approach by Hsieh, Moreira, and
Ouyang, we show that we can create these counterfactuals without incor-
porating domain-specific knowledge such as an understanding of milestone
patterns. Domain knowledge can always help us create better solutions.
However, we do not always have access to them. We believe that show-
ing it is possible to create viable counterfactuals without domain-specific
knowledge is our most significant contribution. Furthermore, our models can
generate solutions not currently present within the data. Case-based solu-
tions often overlook this aspect, as they are heavily biased towards the data
input. Second, they can fail to deliver the necessary structural nuance when
understanding sequences.

6.2 Limitations

There were also several limitations to our approach. We begin with the most
obvious flaw. The generation of counterfactuals is always hard to gauge
when it comes to their usefulness. There is no standardised way to evalu-
ate the viability of a counterfactual. In fact, this is still an open research
question[28, 43]. Therefore, we often have to evaluate the counterfactuals in
some subjective and qualitative way. In this thesis, we decided to compare
the counterfactuals with another approach in the literature and the factual
themselves. Because our counterfactuals did not produce nonsensical results,
we deemed them viable. A domain expert might strongly disagree. There-
fore, we advise also to incorporate experts to evaluate such an approach. The
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lack of domain expertise is a clear limitation of our approach, and we must
acknowledge it.

Next, we introduced a novel way to measure the viability of a multivariate
sequence. However, we did not compare its result to other approaches in
the literature. Mainly because very few researchers have touched upon this
topic. This lack of good multivariate sequence distances needs to be explored
further. However, our viability measure does introduce new ideas to this
sphere of research. Mainly the idea of incorporating structure. We believe
that this might benefit disciplines such as Process Mining the most.

The viability components we chose showed they can lead to an optimised
solution, but there are most likely better ways to operationalize viability
criteria. However, what makes an excellent counterfactual and how we can
quantify that is still a subject of debate. Many researchers fall back on defin-
ing their custom evaluation methods. However, we believe a good approach
is a direct and qualitative comparison between two different approaches.

Furthermore, we did not take diversity into account. Our models strictly
optimize towards the optimization goal. However, as we discussed, diversity
can help us better understand factuals.

When it comes to the evolutionary algorithm, we have to admit that there
are most likely more advanced and more efficient algorithms that utilise the
notion of evolution. Our approach mainly followed the basic structure of
an evolutionary algorithm. However, there are methods such as CMA-ES
capable of improving the efficiency of the evolutionary generation.

6.3 Improvements

There are several improvements we propose. First, the feasibility metric often
resulted in far lower values than other metrics. The small probabilities we saw
are emblematic of the probabilistic sphere. However, it would undoubtedly
help to find ways to operationalise feasibility and make it comparable to other
viability components. Our ranking-based method showed that it is possible
to overcome this issue. However, a less opinionated solution would be more
beneficial.

Furthermore, we would like to stress that our approach is only as good
as the prediction model it attempts to explain. To gain further insights into
true process models, one must make sure that the prediction model accurately
reflects the real world. Again, a domain expert might help to deduce which
model is the best reflection of natural phenomena.
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6.4 Future Work

Regarding future directions, it is worth pointing out whether employing other
components of the viability structure is beneficial. The measure described
here clearly operationalised a set of criteria. However, there may be more
aspects to consider and generate even better counterfactuals. A good exam-
ple would be diversity. In terms of other evolutionary approaches, applying
modern state-of-the-art methods with the same viability measure would be
interesting.
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Chapter 7

Conclusion

In conclusion, we researched how we generate counterfactual sequences
while incorporating structural differences between the factual se-
quence and the counterfactual sequence. We showed it is possible to
use a viability measure and incorporate structural differences. We can also
use an evolutionary algorithm to optimise this viability measure.

Concerning RQ11, we can design a SSDLD that can compute distances
even if the semi-structured data is multivariate. We employ an evolutionary
model to achieve this goal in Experiment 1 (section 5.1).

For RQ22, we see the extent to which our counterfactuals fulfill viability.
We show that by conducting Experiment 2 (section 5.2), which confirms the
hypothesis that our models outperform both random-based (RQ1-H1) and
case-based approaches (RQ1-H2).

For RQ33, we showed that our counterfactuals are viable. We confirm
that in Experiment 3 (section 5.3) and Experiment 4 (section 5.4). These
experiments show that our counterfactuals are not only comparable to ex-
isting work in the literature (RQ3-H1) but can even align with factuals to
make both more comparable.

To summarize, we answered all research questions and confirmed all hy-
potheses. Domain experts can still contest the viability of the counterfactu-
als. However, we believe that counterfactuals primarily explain the model
we attempt to understand. Therefore, they are a valid and transparent re-
flection of a particular model. Furthermore, we show it is worth pursuing
more research and insights into the counterfactual generation of processes.
Examples within this thesis showed that processes are a ubiquitous part of
our life. Many things can be understood as a process. Hence, shying away
from complicated problems like multivariate sequence problems heavily lim-
its our progress and understanding of the cause and effect relations within
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our daily lives.

1How can we employ existing methods to compute viability so that its optimization
incorporates information about the structure of the sequence?

2To what extent can we generate counterfactuals that fulfill the criteria to be viable?
3How does an algorithm which optimizes multiple viability quality metrics perform

against other approaches?
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Viability Similarity Sparcity Feasibility Delta
Model

CBI-ES-UC3-SBM-RR 2.66118 0.84486 0.80308 0.07130 0.78572
CBI-RWS-OPC-SBM-FSR 2.62349 0.85549 0.82418 0.07316 0.75921
CBI-RWS-OPC-SBM-BBR 2.61877 0.88696 0.86045 0.00002 0.76198
CBI-TS-UC5-SBM-FSR 2.61015 0.85335 0.81731 0.06491 0.79353
CBI-ES-OPC-SBM-FSR 2.60429 0.86149 0.83654 0.03168 0.76312
CBI-RWS-UC3-SBM-FSR 2.60367 0.88608 0.84478 0.00000 0.76134
CBI-ES-OPC-SBM-RR 2.59154 0.85741 0.82000 0.04736 0.73604
CBI-TS-UC3-SBM-FSR 2.58850 0.87189 0.84202 0.00000 0.76312
CBI-ES-TPC-SBM-BBR 2.58653 0.87538 0.84066 0.00000 0.78771
CBI-TS-OPC-SBM-FSR 2.56709 0.87257 0.82418 0.00000 0.78723
CBI-TS-TPC-SBM-FSR 2.56522 0.85784 0.82967 0.00716 0.78988
CBI-ES-UC5-SBM-RR 2.55554 0.85878 0.82442 0.00788 0.78204
CBI-TS-TPC-SBM-BBR 2.55246 0.85815 0.82389 0.00003 0.79177
CBI-ES-TPC-SBM-FSR 2.54985 0.84140 0.81181 0.00080 0.79442
CBI-TS-OPC-SBM-BBR 2.54920 0.85965 0.81686 0.00003 0.79165
RI-ES-TPC-SBM-BBR 2.54487 0.85614 0.81593 0.00000 0.79182
CBI-RWS-TPC-SBM-FSR 2.54477 0.83566 0.79533 0.05887 0.79370
CBI-ES-TPC-SBM-RR 2.54252 0.83858 0.79325 0.00824 0.76208
CBI-ES-UC3-SBM-FSR 2.53951 0.84658 0.79945 0.00000 0.78945
CBI-ES-OPC-SBM-BBR 2.53740 0.86714 0.83104 0.00006 0.76583
RI-ES-TPC-SBM-RR 2.51766 0.84639 0.80341 0.00000 0.78070
RI-ES-OPC-SBM-FSR 2.51618 0.84531 0.79815 0.00000 0.79040
CBI-ES-UC5-SBM-FSR 2.51521 0.84234 0.80220 0.00000 0.78945
RI-TS-TPC-SBM-FSR 2.51498 0.84653 0.79562 0.00000 0.79079
CBI-RWS-TPC-SBM-BBR 2.51481 0.84031 0.80052 0.00047 0.76255
CBI-RWS-UC5-SBM-FSR 2.51386 0.84378 0.79808 0.00000 0.79069
CBI-ES-UC1-SBM-FSR 2.50817 0.84128 0.79533 0.00089 0.75882
CBI-TS-UC1-SBM-FSR 2.50251 0.83845 0.79533 0.00000 0.78797
RI-RWS-TPC-SBM-FSR 2.49714 0.83670 0.78765 0.00000 0.79215
RI-ES-TPC-SBM-FSR 2.49644 0.83953 0.78571 0.00000 0.78974
RI-RWS-OPC-SBM-FSR 2.49393 0.83822 0.78303 0.00000 0.79256
RI-ES-OPC-SBM-BBR 2.49230 0.83011 0.78742 0.00000 0.79202
RI-ES-OPC-SBM-RR 2.46153 0.82297 0.76893 0.00005 0.78845
CBI-RWS-UC1-SBM-FSR 2.44119 0.81281 0.78022 0.00000 0.75396
RI-TS-OPC-SBM-FSR 2.44023 0.81189 0.75555 0.00000 0.79430
CBI-ES-UC1-SBM-RR 2.43606 0.80179 0.74464 0.05600 0.74707
CBI-TS-OPC-SBM-RR 2.43052 0.71766 0.65189 0.38183 0.52642
RI-TS-TPC-SBM-BBR 2.37833 0.79317 0.71618 0.00000 0.78850
RI-TS-OPC-SBM-BBR 2.34904 0.78288 0.69569 0.00000 0.79099
CBI-TS-TPC-SBM-RR 2.30704 0.72372 0.65059 0.23762 0.62945
SBI-ES-OPC-SBM-BBR 2.30070 0.77014 0.67545 0.27585 0.47892
SBI-TS-UC3-SBM-FSR 2.29177 0.76759 0.66346 0.28567 0.47892
SBI-ES-UC5-SBM-FSR 2.28987 0.76139 0.66758 0.28563 0.47892
RI-RWS-OPC-SBM-BBR 2.28440 0.75409 0.65878 0.00000 0.78900
SBI-RWS-UC5-SBM-FSR 2.27213 0.75523 0.65721 0.28677 0.47892
SBI-ES-TPC-SBM-FSR 2.27211 0.74890 0.64973 0.14054 0.63466
SBI-ES-OPC-SBM-FSR 2.26844 0.76069 0.65934 0.26800 0.47892
SBI-RWS-UC3-SBM-FSR 2.25962 0.68937 0.54533 0.28529 0.47892
CBI-TS-UC1-SBM-RR 2.25780 0.70895 0.63729 0.24984 0.55352
RI-RWS-TPC-SBM-BBR 2.25240 0.73938 0.64059 0.00000 0.79106
SBI-RWS-UC1-SBM-FSR 2.24998 0.74966 0.64143 0.28211 0.47892
SBI-ES-TPC-SBM-BBR 2.24751 0.68169 0.55580 0.28360 0.47892
SBI-ES-UC1-SBM-FSR 2.24749 0.74512 0.64286 0.28432 0.47892
SBI-TS-UC5-SBM-FSR 2.24734 0.68785 0.54808 0.28715 0.47892
SBI-RWS-OPC-SBM-FSR 2.24542 0.68333 0.54945 0.28374 0.47892
CBI-TS-UC3-SBM-RR 2.24049 0.72809 0.64668 0.18033 0.59767
SBI-TS-TPC-SBM-FSR 2.23796 0.68951 0.55632 0.28257 0.47892
SBI-RWS-TPC-SBM-FSR 2.23719 0.68365 0.54533 0.27987 0.47892
SBI-TS-UC1-SBM-FSR 2.23693 0.69126 0.54945 0.28020 0.47892
CBI-RWS-UC1-SBM-RR 2.21699 0.71479 0.64218 0.27214 0.51526
SBI-ES-UC3-SBM-FSR 2.21240 0.73524 0.61699 0.28591 0.47892
CBI-RWS-OPC-SBM-RR 2.20077 0.68292 0.60434 0.33130 0.45315
SBI-TS-OPC-SBM-BBR 2.19867 0.67912 0.54902 0.28293 0.47892
SBI-TS-TPC-SBM-BBR 2.19828 0.72657 0.61318 0.28223 0.47892
SBI-RWS-OPC-SBM-BBR 2.18794 0.67908 0.54705 0.27981 0.47892
CBI-RWS-TPC-SBM-RR 2.16928 0.68129 0.58437 0.25030 0.56462
CBI-TS-UC5-SBM-RR 2.14290 0.69587 0.58038 0.17733 0.54193
SBI-TS-OPC-SBM-FSR 2.14127 0.70937 0.57555 0.28050 0.47892
CBI-RWS-UC3-SBM-RR 2.13215 0.68748 0.59240 0.20311 0.51134
SBI-RWS-TPC-SBM-BBR 2.13043 0.70009 0.57056 0.26289 0.49857
RI-TS-OPC-SBM-RR 2.06890 0.65869 0.54032 0.00032 0.78923
SBI-TS-UC3-SBM-RR 2.06769 0.68302 0.54670 0.28801 0.47892
SBI-ES-UC3-SBM-RR 2.06660 0.68338 0.54670 0.28612 0.47892
SBI-TS-UC5-SBM-RR 2.06615 0.68331 0.54533 0.28722 0.47892
SBI-ES-UC1-SBM-RR 2.06493 0.68334 0.54670 0.28465 0.47892
SBI-RWS-UC5-SBM-RR 2.06473 0.67978 0.54670 0.28806 0.47892
SBI-TS-UC1-SBM-RR 2.06449 0.68385 0.54533 0.28602 0.47892
SBI-TS-OPC-SBM-RR 2.06321 0.68310 0.54533 0.28470 0.47892
SBI-RWS-TPC-SBM-RR 2.06276 0.67884 0.54673 0.28508 0.47892
SBI-ES-OPC-SBM-RR 2.06266 0.68425 0.54533 0.27892 0.47892
SBI-RWS-UC3-SBM-RR 2.06257 0.67961 0.54605 0.28683 0.47892
SBI-RWS-OPC-SBM-RR 2.06199 0.68136 0.54671 0.28383 0.47892
SBI-ES-UC5-SBM-RR 2.06193 0.68510 0.54533 0.28658 0.47892
SBI-TS-TPC-SBM-RR 2.06155 0.68308 0.54533 0.28357 0.47892
SBI-ES-TPC-SBM-RR 2.06137 0.67921 0.54716 0.28155 0.47892
SBI-RWS-UC1-SBM-RR 2.06070 0.68026 0.54808 0.28309 0.47892
CBI-RWS-UC5-SBM-RR 2.05446 0.68720 0.58785 0.12538 0.53619
RI-TS-TPC-SBM-RR 1.93362 0.60004 0.46606 0.00008 0.78331
RI-RWS-TPC-SBM-RR 1.58686 0.48738 0.33767 0.00001 0.73471
RI-RWS-OPC-SBM-RR 1.55142 0.46039 0.31034 0.00003 0.64124

Table A.1: The average results of the final iterative cycle for each of the tested configurations.
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Appendix B

Results of Experiment across
all Datasets

Viability Max. Seq. Length Similarity Sparcity Feasibility Delta
Experiment Model (Abbr. Name)

OutcomeBPIC12Reader100 CBG-CBGW 2.77416 98 0.94897 0.83947 0.00000 0.99956
CBI-ES-UC3-SBM-RR 2.91225 98 0.98094 0.85518 0.09044 0.99970
CBI-RWS-OPC-SBM-FSR 2.94006 98 0.98327 0.82474 0.11588 0.99970
RG-RGW 2.00681 98 0.59779 0.43814 0.00000 0.99940

OutcomeBPIC12Reader25 CBG-CBGW 2.18498 27 0.87208 0.69093 0.00000 0.66193
CBI-ES-UC3-SBM-RR 2.55466 27 0.94740 0.75641 0.00003 0.84891
CBI-RWS-OPC-SBM-FSR 2.60469 27 0.95683 0.79716 0.00000 0.84895
RG-RGW 1.42620 27 0.51937 0.30769 0.00000 0.67606

OutcomeBPIC12Reader50 CBG-CBGW 2.60365 52 0.89108 0.71289 0.00000 0.99942
CBI-ES-UC3-SBM-RR 2.76743 52 0.97435 0.77801 0.00133 0.99937
CBI-RWS-OPC-SBM-FSR 2.79875 52 0.98214 0.81559 0.00000 0.99933
RG-RGW 1.81144 52 0.50692 0.35294 0.00000 0.99851

OutcomeBPIC12Reader75 CBG-CBGW 2.74518 77 0.94097 0.81328 0.00000 0.99916
CBI-ES-UC3-SBM-RR 2.89721 77 0.98029 0.85119 0.06070 0.99916
CBI-RWS-OPC-SBM-FSR 2.88389 77 0.98306 0.86623 0.05508 0.99916
RG-RGW 1.97980 77 0.57818 0.42105 0.00000 0.99857

OutcomeSepsisReader100 CBG-CBGW 2.22515 90 0.95588 0.93463 0.00000 0.33338
CBI-ES-UC3-SBM-RR 2.31406 90 0.99181 0.92792 0.00308 0.39246
CBI-RWS-OPC-SBM-FSR 2.22498 90 0.95422 0.93600 0.00000 0.33335
RG-RGW 1.41725 90 0.58970 0.46629 0.36302

OutcomeSepsisReader25 CBG-CBGW 2.03462 27 0.85988 0.83483 0.00000 0.33333
CBI-ES-UC3-SBM-RR 2.27703 27 0.99252 0.90411 0.00000 0.37895
CBI-RWS-OPC-SBM-FSR 2.29638 27 0.99649 0.92268 0.00000 0.37815
RG-RGW 1.23387 27 0.48999 0.38462 0.00000 0.36615

OutcomeSepsisReader50 CBG-CBGW 2.16087 49 0.92685 0.89576 0.00000 0.33333
CBI-ES-UC3-SBM-RR 2.30242 49 0.99765 0.95242 0.00026 0.35187
CBI-RWS-OPC-SBM-FSR 2.32371 49 0.99953 0.98247 0.00000 0.34458
RG-RGW 1.34915 49 0.55488 0.45833 0.00000 0.33658

OutcomeSepsisReader75 CBG-CBGW 2.14753 68 0.92208 0.88887 0.00000 0.33338
CBI-ES-UC3-SBM-RR 2.32043 68 0.98698 0.89310 0.00081 0.44190
CBI-RWS-OPC-SBM-FSR 2.16209 68 0.92677 0.88861 0.00000 0.33338
RG-RGW 1.28770 68 0.52691 0.41791 0.33945

OutcomeTrafficFineReader CBG-CBGW 2.80354 22 0.92197 0.89850 0.00000 0.98938
CBI-ES-UC3-SBM-RR 2.90400 22 0.98128 0.93672 0.00016 0.98731
CBI-RWS-OPC-SBM-FSR 2.91929 22 0.98439 0.95269 0.00000 0.98867
RG-RGW 1.98641 22 0.59397 0.47619 0.00000 0.95136

Table B.1: The median values in terms of viability per dataset and model.
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Appendix C

Counterfactual Results

Factual Seq. Our CF Seq. DiCE4EL CF Seq.
Amount Activity Outcome Resource Amount Activity Outcome Resource Activity Resource Amount

15 500 A-SUBMITTED 1 112
15 500 A-PARTLYSUBMITTED 1 112
15 500 A-PREACCEPTED 1 112
15 500 W-Completeren aanvraag 1 111
15 500 W-Completeren aanvraag 1 111 15 423 A-SUBMITTED 0 112
15 500 A-ACCEPTED 1 111 15 519 A-PARTLYSUBMITTED 0 112
15 500 A-FINALIZED 1 111 15 009 A-PREACCEPTED 0 112
15 500 O-SELECTED 1 111 15 105 A-ACCEPTED 0 972
15 500 O-CREATED 1 111 15 062 A-FINALIZED 0 other
15 500 O-SENT 1 111 15 274 O-SELECTED 0 912
15 500 W-Completeren aanvraag 1 111 15 294 O-CREATED 0 111
15 500 O-SENT-BACK 1 149 15 973 O-SENT 0 101
15 500 W-Nabellen offertes 1 149 14 964 W-Completeren aanvraag 0 789 A-SUBMITTED 112 17 190
15 500 O-ACCEPTED 1 629 14 487 O-SENT-BACK 0 149 A-PARTLYSUBMITTED 112 17 190
15 500 A-APPROVED 1 629 A-PREACCEPTED 881 17 190
15 500 A-REGISTERED 1 629 15 504 W-Nabellen offertes 0 899 W-Afhandelen leads 881 17 190
15 500 A-ACTIVATED 1 629 W-Completeren aanvraag 881 17 190
15 500 W-Valideren aanvraag 1 629 15 833 W-Valideren aanvraag 0 899 W-Completeren aanvraag 881 17 190

W-Completeren aanvraag 11119 17 190

Table C.1: A comparison between the CBI-ES-UC3-SBM-RR and D4EL

Factual Seq. Our CF Seq. DiCE4EL CF Seq.
Amount Activity Outcome Resource Amount Activity Outcome Resource Activity Resource Amount

15 500 A-SUBMITTED 1 112
15 500 A-PARTLYSUBMITTED 1 112
15 500 A-PREACCEPTED 1 112
15 500 W-Completeren aanvraag 1 111
15 500 W-Completeren aanvraag 1 111 15 000 A-SUBMITTED 0 112
15 500 A-ACCEPTED 1 111 15 000 A-PARTLYSUBMITTED 0 112
15 500 A-FINALIZED 1 111 15 000 A-PREACCEPTED 0 112
15 500 O-SELECTED 1 111 15 000 W-Completeren aanvraag 0 929
15 500 O-CREATED 1 111 15 000 W-Completeren aanvraag 0 932
15 500 O-SENT 1 111 15 000 A-ACCEPTED 0 111
15 500 W-Completeren aanvraag 1 111 15 000 A-FINALIZED 0 111
15 500 O-SENT-BACK 1 149 15 000 O-SELECTED 0 111
15 500 W-Nabellen offertes 1 149 15 000 O-CREATED 0 111 A-SUBMITTED 112 17 190
15 500 O-ACCEPTED 1 629 15 000 O-SENT 0 111 A-PARTLYSUBMITTED 112 17 190
15 500 A-APPROVED 1 629 15 000 W-Nabellen offertes 0 11259 A-PREACCEPTED 881 17 190
15 500 A-REGISTERED 1 629 15 000 A-DECLINED 0 138 W-Afhandelen leads 881 17 190
15 500 A-ACTIVATED 1 629 W-Completeren aanvraag 881 17 190
15 500 W-Valideren aanvraag 1 629 15 000 W-Valideren aanvraag 0 138 W-Completeren aanvraag 881 17 190

W-Completeren aanvraag 11119 17 190

Table C.2: A comparison between the CBI-RWS-OPC-SBM-FSR and D4EL
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Factual Seq. Our CF Seq. DiCE4EL CF Seq.
Amount Activity Outcome Resource Amount Activity Outcome Resource Activity Resource Amount

14 868 A-SUBMITTED 1 112
14 659 A-PARTLYSUBMITTED 1 112
14 289 A-PREACCEPTED 1 112

5 000 A-SUBMITTED 0 112 14 967 A-ACCEPTED 1 112
5 000 A-PARTLYSUBMITTED 0 112 12 000 A-FINALIZED 1 112
5 000 A-PREACCEPTED 0 112 15 485 O-SELECTED 1 103
5 000 A-ACCEPTED 0 112 15 343 O-CREATED 1 881 A-SUBMITTED 112 5 000
5 000 A-FINALIZED 0 112 14 823 O-SENT 1 112 A-PARTLYSUBMITTED 112 5 000
5 000 O-SELECTED 0 112 A-PREACCEPTED 112 5 000
5 000 O-CREATED 0 112 12 000 W-Completeren aanvraag 1 112 A-ACCEPTED 1 5 000
5 000 O-SENT 0 112 13 526 O-SENT-BACK 1 899 O-SELECTED 1 5 000
5 000 W-Completeren aanvraag 0 112 15 615 W-Nabellen offertes 1 789 A-FINALIZED 1 5 000
5 000 O-SENT-BACK 0 899 13 914 O-DECLINED 1 9 O-CREATED 1 5 000
5 000 W-Nabellen offertes 0 899 11 614 A-DECLINED 1 129 O-SENT 1 5 000
5 000 O-DECLINED 0 138 15 945 W-Valideren aanvraag 1 112 W-Completeren aanvraag 1 5 000
5 000 A-DECLINED 0 138 15 000 A-REGISTERED 1 138 O-SENT-BACK 11259 5 000
5 000 W-Valideren aanvraag 0 138 16 506 W-Valideren aanvraag 1 111 W-Nabellen offertes 11259 5 000

O-ACCEPTED 9 5 000

Table C.3: A comparison between the CBI-ES-UC3-SBM-RR and D4EL

Factual Seq. Our CF Seq. DiCE4EL CF Seq.
Amount Activity Outcome Resource Amount Activity Outcome Resource Activity Resource Amount

5 000 A-SUBMITTED 1 112
5 000 A-PARTLYSUBMITTED 1 112
5 000 A-PREACCEPTED 1 112
5 000 A-ACCEPTED 1 11181

5 000 A-SUBMITTED 0 112 5 000 A-FINALIZED 1 11181
5 000 A-PARTLYSUBMITTED 0 112 5 000 O-SELECTED 1 11181
5 000 A-PREACCEPTED 0 112 5 000 O-CREATED 1 11181
5 000 A-ACCEPTED 0 112 5 000 O-SENT 1 11181 A-SUBMITTED 112 5 000
5 000 A-FINALIZED 0 112 5 000 W-Completeren aanvraag 1 11181 A-PARTLYSUBMITTED 112 5 000
5 000 O-SELECTED 0 112 A-PREACCEPTED 112 5 000
5 000 O-CREATED 0 112 5 000 O-SENT-BACK 1 899 A-ACCEPTED 1 5 000
5 000 O-SENT 0 112 5 000 W-Nabellen offertes 1 899 O-SELECTED 1 5 000
5 000 W-Completeren aanvraag 0 112 5 000 W-Valideren aanvraag 1 138 A-FINALIZED 1 5 000
5 000 O-SENT-BACK 0 899 O-CREATED 1 5 000
5 000 W-Nabellen offertes 0 899 O-SENT 1 5 000
5 000 O-DECLINED 0 138 W-Completeren aanvraag 1 5 000
5 000 A-DECLINED 0 138 O-SENT-BACK 11259 5 000
5 000 W-Valideren aanvraag 0 138 W-Nabellen offertes 11259 5 000

2 500 A-REGISTERED 1 9 O-ACCEPTED 9 5 000

Table C.4: A comparison between the CBI-RWS-OPC-SBM-FSR and D4EL

Factual Seq. Our CF Seq. DiCE4EL CF Seq.
Amount Activity Outcome Resource Amount Activity Outcome Resource Activity Resource Amount

5 000 A-SUBMITTED 0 112
5 000 A-PARTLYSUBMITTED 0 112
5 000 A-PREACCEPTED 0 112 15 107 A-SUBMITTED 1 112
5 000 W-Completeren aanvraag 0 111 15 532 A-PARTLYSUBMITTED 1 112
5 000 A-ACCEPTED 0 111
5 000 A-FINALIZED 0 111
5 000 O-SELECTED 0 111 5 000 A-PREACCEPTED 1 112
5 000 O-CREATED 0 111 15 041 W-Completeren aanvraag 1 138 A-SUBMITTED 112 5 000
5 000 O-SENT 0 111 15 155 A-ACCEPTED 1 129 A-PARTLYSUBMITTED 112 5 000
5 000 W-Completeren aanvraag 0 111 14 966 O-SELECTED 1 11289 A-PREACCEPTED 112 5 000
5 000 W-Nabellen offertes 0 111 15 156 O-CREATED 1 861 A-ACCEPTED 1 5 000
5 000 W-Nabellen offertes 0 111 14 744 O-SENT 1 179 O-SELECTED 1 5 000
5 000 W-Nabellen offertes 0 11119 15 222 W-Completeren aanvraag 1 A-FINALIZED 1 5 000
5 000 O-SENT-BACK 0 129 15 883 W-Nabellen offertes 1 111 O-CREATED 1 5 000
5 000 W-Nabellen offertes 0 129 15 303 W-Nabellen offertes 1 11181 O-SENT 1 5 000
5 000 O-DECLINED 0 9 5 000 W-Nabellen offertes 1 11119 W-Completeren aanvraag 1 5 000
5 000 A-DECLINED 0 9 15 391 O-SENT-BACK 1 109 O-SENT-BACK 11259 5 000
5 000 W-Valideren aanvraag 0 9 5 000 W-Nabellen offertes 1 129 W-Nabellen offertes 11259 5 000

16 019 W-Valideren aanvraag 1 119 O-ACCEPTED 9 5 000

Table C.5: A comparison between the CBI-ES-UC3-SBM-RR and D4EL

Factual Seq. Our CF Seq. DiCE4EL CF Seq.
Amount Activity Outcome Resource Amount Activity Outcome Resource Activity Resource Amount

5 000 A-SUBMITTED 0 112
5 000 A-PARTLYSUBMITTED 0 112
5 000 A-PREACCEPTED 0 112
5 000 W-Completeren aanvraag 0 111 10 000 A-SUBMITTED 1 112
5 000 A-ACCEPTED 0 111 10 000 A-PARTLYSUBMITTED 1 112
5 000 A-FINALIZED 0 111 10 000 A-PREACCEPTED 1 112
5 000 O-SELECTED 0 111 10 000 A-ACCEPTED 1 11119
5 000 O-CREATED 0 111 10 000 A-FINALIZED 1 11119 A-SUBMITTED 112 5 000
5 000 O-SENT 0 111 10 000 O-SELECTED 1 11119 A-PARTLYSUBMITTED 112 5 000
5 000 W-Completeren aanvraag 0 111 10 000 O-CREATED 1 11119 A-PREACCEPTED 112 5 000
5 000 W-Nabellen offertes 0 111 10 000 O-SENT 1 11119 A-ACCEPTED 1 5 000
5 000 W-Nabellen offertes 0 111 10 000 W-Completeren aanvraag 1 11119 O-SELECTED 1 5 000
5 000 W-Nabellen offertes 0 11119 10 000 W-Nabellen offertes 1 11119 A-FINALIZED 1 5 000
5 000 O-SENT-BACK 0 129 10 000 W-Nabellen offertes 1 111 O-CREATED 1 5 000
5 000 W-Nabellen offertes 0 129 10 000 W-Nabellen offertes 1 111 O-SENT 1 5 000
5 000 O-DECLINED 0 9 10 000 O-SENT-BACK 1 11259 W-Completeren aanvraag 1 5 000
5 000 A-DECLINED 0 9 10 000 W-Nabellen offertes 1 11259 O-SENT-BACK 11259 5 000
5 000 W-Valideren aanvraag 0 9 10 000 W-Valideren aanvraag 1 9 W-Nabellen offertes 11259 5 000

10 000 O-ACCEPTED 1 9 O-ACCEPTED 9 5 000

Table C.6: A comparison between the CBI-RWS-OPC-SBM-FSR and D4EL
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Factual Seq. Our CF Seq. DiCE4EL CF Seq.
Amount Activity Outcome Resource Amount Activity Outcome Resource Activity Resource Amount

15 500 A-SUBMITTED 0 112
15 500 A-PARTLYSUBMITTED 0 112
15 500 A-PREACCEPTED 0 112
15 500 W-Completeren aanvraag 0 112
15 500 W-Completeren aanvraag 0 111
15 500 W-Completeren aanvraag 0 889
15 500 W-Completeren aanvraag 0 889
15 500 W-Completeren aanvraag 0 9
15 500 A-ACCEPTED 0 9 15 000 A-SUBMITTED 1 112
15 500 A-FINALIZED 0 9 15 000 A-PARTLYSUBMITTED 1 112
15 500 O-SELECTED 0 9 15 000 A-PREACCEPTED 1 112
15 500 O-CREATED 0 9 15 000 A-ACCEPTED 1 861 A-SUBMITTED 112 15 500
15 500 O-SENT 0 9 15 000 A-FINALIZED 1 861 A-PARTLYSUBMITTED 112 15 500
15 500 W-Completeren aanvraag 0 9 15 000 O-SELECTED 1 861 A-PREACCEPTED 112 15 500
15 500 W-Nabellen offertes 0 9 15 000 O-CREATED 1 861 A-ACCEPTED 1 15 500
15 500 W-Nabellen offertes 0 9 15 000 O-SENT 1 861 O-SELECTED 1 15 500
15 500 O-SENT-BACK 0 129 15 000 W-Completeren aanvraag 1 861 A-FINALIZED 1 15 500
15 500 W-Nabellen offertes 0 129 5 000 W-Nabellen offertes 1 11189 O-CREATED 1 15 500
15 500 W-Valideren aanvraag 0 138 15 210 W-Nabellen offertes 1 861 O-SENT 1 15 500
15 500 O-DECLINED 0 138 15 000 O-SENT-BACK 1 129 W-Completeren aanvraag 1 15 500
15 500 A-DECLINED 0 138 15 363 W-Nabellen offertes 1 912 O-SENT-BACK 11259 15 500
15 500 W-Valideren aanvraag 0 138 14 537 W-Valideren aanvraag 1 129 W-Nabellen offertes 11259 15 500

15 000 O-ACCEPTED 1 138 O-ACCEPTED 9 15 500

Table C.7: A comparison between the CBI-ES-UC3-SBM-RR and D4EL

Factual Seq. Our CF Seq. DiCE4EL CF Seq.
Amount Activity Outcome Resource Amount Activity Outcome Resource Activity Resource Amount

15 500 A-SUBMITTED 0 112
15 500 A-PARTLYSUBMITTED 0 112
15 500 A-PREACCEPTED 0 112
15 500 W-Completeren aanvraag 0 112 5 000 A-SUBMITTED 1 112
15 500 W-Completeren aanvraag 0 111 5 000 A-PARTLYSUBMITTED 1 112
15 500 W-Completeren aanvraag 0 889 5 000 A-PREACCEPTED 1 112
15 500 W-Completeren aanvraag 0 889 5 000 W-Completeren aanvraag 1 861
15 500 W-Completeren aanvraag 0 9 7 500 W-Completeren aanvraag 1 861
15 500 A-ACCEPTED 0 9 7 500 W-Completeren aanvraag 1 861
15 500 A-FINALIZED 0 9 7 500 A-ACCEPTED 1 861
15 500 O-SELECTED 0 9 7 500 A-FINALIZED 1 861
15 500 O-CREATED 0 9 7 500 O-SELECTED 1 861 A-SUBMITTED 112 15 500
15 500 O-SENT 0 9 7 500 O-CREATED 1 861 A-PARTLYSUBMITTED 112 15 500
15 500 W-Completeren aanvraag 0 9 7 500 O-SENT 1 861 A-PREACCEPTED 112 15 500
15 500 W-Nabellen offertes 0 9 7 500 W-Completeren aanvraag 1 861 A-ACCEPTED 1 15 500
15 500 W-Nabellen offertes 0 9 7 500 W-Nabellen offertes 1 109 O-SELECTED 1 15 500
15 500 O-SENT-BACK 0 129 7 500 W-Nabellen offertes 1 861 A-FINALIZED 1 15 500
15 500 W-Nabellen offertes 0 129 O-CREATED 1 15 500
15 500 W-Valideren aanvraag 0 138 7 500 O-SENT-BACK 1 789 O-SENT 1 15 500
15 500 O-DECLINED 0 138 7 500 W-Nabellen offertes 1 789 W-Completeren aanvraag 1 15 500
15 500 A-DECLINED 0 138 O-SENT-BACK 11259 15 500
15 500 W-Valideren aanvraag 0 138 5 000 W-Valideren aanvraag 1 138 W-Nabellen offertes 11259 15 500

7 500 O-ACCEPTED 1 11289 O-ACCEPTED 9 15 500

Table C.8: A comparison between the CBI-RWS-OPC-SBM-FSR and D4EL
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