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Abstract

Tides are important for the mixing and transport of sediments, salinity and nutrients in most
estuaries around the world. Therefore, a precise understanding of the tides in estuaries is
needed to predict changes over time. This research focuses on hydrodynamics and specifically
on the mechanisms that result in nonlinear tides in networks of interconnected channels, which
are known as estuarine networks.

To investigate this, a 2DV semi-analytical idealised model was developed that solves the
hydrodynamics in estuarine networks. Here, two different networks were examined. First,
the model was applied to an idealised three-channel network and subsequently the model was
extended to the Rhine-Meuse estuarine network in the current state. Next, two scenarios
are examined, studying the effect of respectively opening one of the Haringvliet sluices and
2-meters of sea-level rise on tides.

The results demonstrate that the model has been successfully applied to both networks.
A comparison with observations for the Rhine-Meuse network showed good agreement for
the linear tides (M2). A fair agreement was found for the nonlinear tides (M4). Here, the
divergence of excess mass due to Stokes drift and no-stress condition have been proven as rhe
most dominant mechanisms for the internal generation of nonlinear tides in this system. In
addition, the externally forced M4 tide was found to be a factor of 5-15 stronger than the
internally generated M4 tide.

Quantification of tidal asymmetry within the Rhine-Meuse has indicated that this system
exhibits particularly flood dominant behaviour for both the water level and current velocity.
Duration asymmetry showed strong flood dominance leading toward the middle part of the
estuary, and then a decrease followed in the river part. Even stronger asymmetry was found
for the velocity asymmetry throughout almost the whole system. Mixed behaviour was found
for the flood-to-ebb ratio, with still predominantly flood dominant behaviour in most of the
channels. It was also discovered that velocity asymmetry increases with the depth of the
channels and the flood-to-ebb ratio decreases with depth. This emphasizes the importance of
a 2DV model.

Concerning the two scenarios, the opening of one of the Haringvliet sluices demonstrated
generally a slight increase in M2 and M4 elevation amplitudes and a combination of a slight
increase/decrease for the current amplitudes, depending on the position in the network. The
sea-level rise scenario revealed overall less impact on the tides than opening one of the Har-
ingvliet sluices. Especially in the Haringvliet, an increase in M2 elevation amplitude was found
for this scenario. The M4 elevation amplitude increased particularly in the Nieuwe Maas. The
M2 current amplitude showed an overall minor increase in the network, whereas for the M4

current amplitude a combination of both minor increases/decreases was found.
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1 | Introduction

1.1 Hydrodynamics of estuarine networks

An estuary is a partially enclosed coastal body of water where freshwater from the rivers and
saltwater from the ocean mix (Cameron and Pritchard, 1963; Valle-Levinson, 2010). Estuaries
are one of the planet’s most productive ecosystems because they are home to numerous plant
and animal species. Many animals rely on them for food, and rest stops during migration
and breeding grounds. In addition to ecological value, estuaries also represent great economic
value. Tourism, fishing and leisure activities all profit economically from the commercial value
and resources of these entities. Estuaries, which provide harbours and ports essential for
shipping and transportation, also support significant public infrastructure in their protected
coastal waters. Changes in the hydrodynamical and morphological conditions have an impact
on how well these functions are fulfilled. Such changes are related to both human interventions
and inherent variability. In many estuaries, tides play an important role in the mixing and
transport of sediments, salinity and nutrients. Tides that propagate through an estuary affect
the geometry by eroding and depositing sediments. In addition, human interventions to reduce
flooding and ensure safe naval navigation are influencing the shape and structure of estuaries,
and the latter, in turn, influences the tides.

Most studies focused on the dynamics of single-channel estuaries, e.g., Friedrichs (2010);
Geyer and MacCready (2014). However, many estuaries consist of multiple interconnected
channels. Examples of this are the Rhine-Meuse Estuary in the Netherlands, the Yangtze
Estuary in China and the Ganges river Estuary in Bangladesh. An example of a single-
channel estuary and estuarine network are shown in Figure 1.1. These network systems have
numerous connections to the ocean, and freshwater can be transported via several routes from
the river to the ocean.

Figure 1.1: Example of a single-channel estuary (Charente estuary in France) and estuarine network
(Yangtze estuarine network in China). Source: Google Earth.
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Locations in the estuarine network where different channels branch are described as vertex
points. These vertex points are of pivotal importance to the water motion and distribution
of freshwater in the network. The focus of this thesis is on tides and river flow in estuarine
networks.

Tidal motion originates from the open ocean, where it is generated due to the earth’s
rotation about its axis and the relative motions of the sun, moon, and earth through tidal
forces. As ocean tidal waves enter shallow coastal waters, they become deformed under the
effects of channel convergence, friction and reflection. The principle of conservation of mass
leads to an amplification of the tidal wave height in converging channels. Friction dampens
the amplification of the tidal wave height and is strongly dependent on bed composition, water
depth and internal friction caused by the viscosity and turbidity of the water (Prandle, 1997).
Lastly, when a wave encounters a coastline or tidal weir, reflection occurs. The reflective wave
leads to amplification or dampening of the tidal wave height depending on the phase of both
the incoming and reflective wave.

In the open ocean, the tidal motion can be explained by some sinusoidal components.
Typically, the major component is the semi-diurnal moon tide (M2), in which case the ocean
tide can be adequately characterized by a single sine function. Higher order components, for
example, the M4, can be internally generated by nonlinear processes as tidal waves progress into
shallow coastal waters. The joint action of M2 and M4 tidal waves results in tidal asymmetry,
as shown by, for instance, Parker (1991); Song et al. (2011). Nonlinear processes, such as
the divergence of excess mass due to Stokes drift, the advection of momentum and nonlinear
friction are the drivers of tidal asymmetry (see Parker (1991), for an explanation of these
nonlinear processes). The phase difference between M2 and M4 tidal waves can be used to
indicate tidal asymmetry (Friedrichs and Aubrey, 1988). A distinction must be made here
between tidal asymmetry and tidal skewness. For the wave height, a phase difference between
0◦ and 180◦ lead to flood dominance due to the rising tide being shorter than the falling tide,
whereas a phase difference between 180◦ and 360◦ degrees results in a shorter falling tide and
thus ebb dominance. This type of tidal asymmetry is referred to as duration asymmetry. In
addition to duration asymmetry, a phase difference can also lead to tidal skewness. In the
context of wave height, tidal skewness assumes a tidal wave whose high-water peak is higher
than the low-water peak, or vice versa depending on the phase difference. A pure skewed wave
is found for a phase difference of exactly 0◦ or 180◦. Figure 1.2 indicates both maximum tidal
skewness and tidal asymmetry for the wave height.

Figure 1.2: a) Time series of wave height for M2, M4 and combined wave with a phase difference
of 0°, indicating maximal wave height skewness. b) As a), but a phase difference of 90°, indicating
maximal duration asymmetry.
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Similarly, tidal currents can become asymmetric, which is also called velocity asymmetry. A
phase difference between the M2 and M4 currents in the range between 90◦ and 270◦ degrees
denotes ebb dominance, while a phase difference between -90◦ and 90◦ degrees shows flood
dominance (Friedrichs and Aubrey, 1988). In this case, a pure skewed current wave is found
at exactly 90◦ or 270◦. Skewness in this case leads to higher current velocities in either the
flood or ebb phase of the wave.

Tidal asymmetry and skewness are particularly relevant in the context of sediment trans-
port. One of the key factors in sediment transport and related large-scale morphological
changes in tidal environments, such as estuaries, tidal inlets and coastal waters, is tidal asym-
metry (Groen, 1967; Dronkers, 1986; Friedrichs and Aubrey, 1988). A difference in peak tidal
currents between ebb and flood is a determining factor in net bedload transport of sediments,
as shown by Aubrey (1986). Velocity asymmetry on the other hand also drives suspended
load transport (Groen, 1967). This leads to the implication that both velocity asymmetry and
skewness determine the direction and magnitude of net sediment transport.

While on one side of an estuarine network the tides and thereby salt water enters the
system, on the other side the river, and thereby the freshwater enters. Changes in river
discharge within a tidal cycle are typically small and for this reason, the river discharge is
assumed as constant. The presence of both tidal and river flow within a network leads to
changes in the dynamics due to the interaction between the two (Godin, 1999). This river-tide
interaction results in internal and bottom friction parameters that not only depend on the
horizontal and vertical structure of the network, but also on tides and river flow.

A quantitative understanding of the dominant nonlinear processes in an estuarine network
is necessary to predict its changing behaviour over time and to assure that future human
interventions can take place with higher precision. This thesis focuses on the hydrodynamics
of estuarine networks and as a particular prototype system, the Rhine-Meuse Estuary in the
Netherlands (Figure 1.3) will be studied. The general aim of this thesis is to gain a better
understanding of the nonlinear processes within this particular estuary and to quantify how
the changes affect tidal asymmetry.

Figure 1.3: Satellite image of the Rhine-Meuse estuarine network. The white lines are the channels
considered in this study. The tidal wave enters the Rhine-Meuse at position 1. (Nieuwe Waterweg)
and 2. (Hartelkanaal). At position 3. (Haringvliet) a dam and several sluices are located that close
during flood and open during ebb. Source: Google Earth.
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1.2 Current state of the research

Tidal wave propagation in a network of channels has long been studied and was first mentioned
by Lorentz (1926), who developed a one-dimensional analytical model to predict tides and
study their changes for the future construction of a dyke. Dronkers et al. (1959); Defant
(1961) showed that solving the tidal motion at vertex points requires continuity of water level
and conservation of mass. Hill and Souza (2006) have continued this research by developing a
generic framework to analytically study any arbitrary estuarine network. However, only linear
tides were considered in this study.

The knowledge of the distribution of river discharge at the vertex points was improved
by Buschman et al. (2010); Sassi et al. (2011). Buschman et al. (2010) observed that the
distribution of river discharge at the vertex point is influenced by tides for an idealised network
and Sassi et al. (2011) further quantified the tidal impact on the subtidal discharge distribution
at the vertex points by applying the theory to a real estuarine network. Alebregtse and
de Swart (2016) further revised the theory of tidal wave propagation in an estuarine network
by incorporating also the overtides. However, because this method is one-dimensional, it
cannot resolve the vertical structure of the velocity in the network. Ianniello (1977) was the
first to solve the vertical structure for single channel estuaries of constant width and depth
and later for variable width and depth (Ianniello, 1979). Wang et al. (2021) extended the
work of Ianniello (1977, 1979) by developing a model that resolves the vertical structure of the
velocity in an estuarine network, though only linear tides were considered in this study.

On the Rhine-Meuse specifically, not many studies have been performed yet that investigate
the hydrodynamics here. Van Wijngaarden (1999) developed a 2D model to study sediment
transport in the Southern branch of the Rhine-Meuse. A more recent study was performed
by Cox et al. (2021), in which they investigated the anthropogenic effects on sediment budget
for different scenarios. Also, salt intrusion in the Rhine-Meuse has been an ongoing field of
study within the SALTI-solutions research project (Pietrzak, JD, 2019) since 2019. One of
the discussion points in recent years concerned the opening of the sluices of the Haringvliet
during flood to stimulate the migration of fish in the Rhine-Meuse.

1.3 Objectives and research questions

As can be seen from the summary of the literature on estuarine networks, relatively little
fundamental research has been done on overtides in a network. Only Alebregtse and de Swart
(2016) consider overtides, however, this involves a one-dimensional approach with no focus on
tidal asymmetry. In addition, no analytical studies have yet been conducted on the behaviour
of tides and river flow and their role in tidal asymmetry within the Rhine-Meuse estuarine
network. Analytical models are useful to identify processes or interactions in the simplest
possible explanation (Murray, 2003). In summary, what is particularly missing from the
current literature is studies that resolve overtides in estuarine networks and the subsequent
consequence this has for tidal asymmetry. Motivated by the considerations given above, the
following research questions are formulated:

RQ 1 What are the dominant nonlinear sources for tidal asymmetry in an estuarine
network in each of the channels?
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RQ 2 How does the magnitude of the externally forced M4 tide compares to the
magnitude of the internally generated M4 tide in an estuarine network?

RQ 3 What type of asymmetry phenomena (flood or ebb dominant behaviour)
occur in an estuarine network?

RQ 4 What will be the changes to the tides in the case of

1. the opening of one of the Haringvliet sluices?

2. sea level rise?

To improve the fundamental understanding of estuarine networks, an analytical model is first
developed that solves tides and in particular overtides within a network and this was followed
by applying this network model to the Rhine-Meuse estuarine network to find out which mech-
anisms are dominant in the generation of overtides and what this implies for tidal asymmetry.
To address the research questions, the solution procedure for solving the hydrodynamics of
single-channel estuaries from Ianniello (1977, 1979) will be used. Next, the method of Hill and
Souza (2006) is followed to extend the solution of the hydrodynamics to an estuarine network.
The network is then tested on an idealised three-channel system before being applied to the
current conditions of the Rhine-Meuse. The asymmetry quantification measures introduced
by Alebregtse and De Swart (2014) will be used to evaluate the degree of asymmetry within
these systems. These quantification measures regard tidal range, flood-to-ebb ratio, duration
of the falling tide and duration from flood to ebb. To address research question 4, two scenar-
ios are examined with the Rhine-Meuse network model. First, the effects of opening one of
the Haringvliet sluices on the tides within the Rhine-Meuse will be investigated. Second, the
influence of sea level rise on the tides within the network will be examined. Both experiments
are relevant since first of the intention is to open the Haringvliet sluices during flood more
often. In addition, sea level rise is a current topic of discussion, especially for low-lying areas
such as the Netherlands. An increase in sea level affects the tides within a system (Pickering
et al., 2012) and this in turn changes the morphological conditions.

1.4 Thesis outline

Chapter 2 explains the model and its mathematical basis and methods. It also further de-
tails the different networks and experiments covered in this thesis. Chapter 3 includes the
results of the network model for the different study sites for both tides and river flow as well
as its implication on tidal asymmetry. Lastly, Chapter 4 and 5 contain the discussion and
conclusions.



2 | Model and Methods

2.1 Model formulation

Before going into the equations of motion, it is important to first establish a definition for the

different types of channels within an estuarine network. The following three types of channels

will be defined:

1. Sea channel: This channel is forced on one side by a prescribed tidal elevation and the

other side bounded by a vertex point.

2. Middle channel: This channel is on both sides bounded by a vertex point.

3. River channel: This channel is on one side constrained by a landward boundary and

on the other side bounded by a vertex point.

An example network consisting of two ‘river channels’, one ‘middle channel’ and two ‘sea

channels is shown in Figure 2.1.

Figure 2.1: Example of a simple network consisting of two ‘river channels’, one ‘middle channel’

and two ‘sea channels’. The vertical line denotes a landward boundary, the filled black dot displays a

vertex point and the open black dot represents a seaward boundary.
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To study the water motion in each of the channels, a width-averaged two-dimensional semi-
analytical model will be developed that is based on earlier work for single-channel systems by
Ianniello (1979). The positive x-axis is defined in the seaward direction and the z-axis points
vertically upward. The width profile of every channel with length Lj , where j denotes the
channel index, is assumed to be exponentially converging and is expressed as

Bj(x) = BL,j exp

(

x− Lj

lb,j

)

, (2.1)

where BL,j is the width of the estuary at the seaward side of the channel and lb,j is the length
over which the width of the channel changes by a factor exp . The channel index j is omitted
from now on if the equations are the same for all channels. A sketch of the width profile as a
function of the horizontal coordinate x is shown in Figure 2.2.

Figure 2.2: Sketch of width geometry. With x being the coordinate along the longitudinal direction

and y being the coordinate along the transverse direction.

In this study, the effects of baroclinicity and the influence of tidal flats on the water motion are
assumed to be negligible. Also, the local water depth is assumed to be constant in each channel
and the turbulent transfer of energy is characterized by a spatial and temporal constant eddy
viscosity Av. The equations that describe the water motion are the momentum and continuity
equations. These are the following

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −g

∂η

∂x
+Av

∂2u

∂z2
, (2.2)

∂u

∂x
+

∂w

∂z
+

1

lb
u = 0, (2.3)

where u is the horizontal velocity, w is the vertical velocity, η is the sea surface elevation,
g is the gravitational acceleration and H is the local water depth. On the left hand side of
the momentum equation, the acceleration of the fluid is given by inertia in the first term
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and advection terms are described in the second and third terms. The right hand side of the
equation include respectively the barotropic pressure term and vertical turbulence term. The
boundary conditions in the vertical direction for each channel are represented by

Av
∂u

∂z
= 0 and w =

∂η

∂t
+ u

∂η

∂x
, at z = η, (2.4)

Av
∂u

∂z
=

τb

ρ
and w = 0, at z = −H. (2.5)

Here ρ is the density of the fluid and τb is the bottom stress, which can be calculated by the
quadratic friction law

τb = ρC2

d |ub|ub. (2.6)

In this expression, Cd is the drag coefficient that is related to the roughness of the bed and ub
is the horizontal velocity at z = −H. Although the quadratic friction law applies to most tidal
systems, difficulties in solving the equations arise when using this notation. The nonlinear bed
stress can be circumvented by linearising the relation and relating the bottom stress to the
eddy viscosity Av. This linearisation can be written as

τb = Av
∂ub

∂z
≈ ρsfub (2.7)

where sf is the partial slip-parameter, see, e.g., Csanady (1981). The assumption for this
linearisation is that the total energy dissipation by the bottom friction is the same in the case
of the quadratic stress as it is for the linearised stress. Here, the partial slip-parameter is
assumed as constant in x. The eddy viscosity Av is assumed as constant in x, z and t, but
proportional to the depth of each channel as

Av = constant ·H. (2.8)

Here, the constant is taken as either a common value found in literature or tuned by obser-
vations. The depth-integrated continuity equation is used to solve for the surface elevation in
each channel and it reads

∂η

∂t
+

(

∂

∂x
+

1

lb

)
∫ η

−H

u dz = 0. (2.9)

At the seaward end of the channels that are connected to the open sea, a M2 and M4 tidal
wave are prescribed with amplitude ZM2

and ZM4
respectively. Their respective phases are

given by ϕM2
and ϕM4

. At the river end of the channel, the river discharge Q is prescribed.
This gives the following relations:

η = ZM2
cos (ωt− ϕM2

) + ZM4
cos (2(ωt− ϕM4

)), at x = L for sea channels, (2.10)

B

∫ η

−H

u dz = Q, at x = 0 for river channels, (2.11)

where ω is the angular frequency of the M2 tide. The remaining boundary conditions arise
from the continuity of sea surface elevation and mass conservation on the vertex points. This
can be expressed in the following way

η is continuous, at vertex points (2.12)
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∑

B

∫ η

H

u dz is conserved, at vertex points (2.13)

For the conservation of mass equation, all the channels in which the fluid flow toward the
vertex points are denoted with a plus-sign in front of the terms and all the channels in which
the fluid leaves the vertex point are denoted with a minus sign in front.

2.2 Scaling and perturbation expansion

To evaluate the contribution of the individual terms, the dimensional system is transformed
to a non-dimensional system by using the following dimensionless quantities:

x = Ltidex̃, η = ZM2
η̃, t = ω−1t̃, z = H0z̃,

H = H0H̃, u = U0, w = W0w̃, B = B0B̃,

where the variables with a tilde are the dimensionless variables, Ltide is the horizontal length
scale, defined as Ltide =

√

gH0ω
−1, H0 is the largest channel depth, B0 is the largest width of

the channel and U0 and W0 are the scales for respectively the horizontal and vertical velocity.
The value for U0 follows from the assumed approximate balance between inertia (∂u

∂t
) and

pressure gradient (g ∂η
∂x

) and substituting the definition for Ltide gives U0 =
ωZM2

Ltide

H0
. The

scaling for w follows from the approximate balance between the first two terms in the width-
averaged continuity equation (∂u

∂x
and ∂w

∂z
), which are of the same order, and give W0 =

H
Ltide

U0.
Inserting these relations in the momentum and continuity equations and then simplifying yields
the final results of the scaling in the following non-dimensional system

∂ũ

∂t̃
+ ε

(

ũ
∂ũ

∂x̃
+ w̃

∂w̃

∂z̃

)

= −

∂η̃

∂x̃
+ Âv

∂2ũ

∂z̃2
, (2.14)

∂ũ

∂x̃
+

∂w̃

∂z̃
+

Ltide

lb
ũ = 0, (2.15)

∂η̃n

∂t̃
+

(

d

dx̃
+

Ltide

lb

)
∫ εη̃n

−H̃

ũn dz̃ = 0. (2.16)

With the non-dimensional boundary conditions in the vertical plane

Âv
∂ũ

∂z̃
= 0 and w̃ =

∂η̃

∂t̃
+ ϵũ

∂η̃

∂x̃
, at z̃ = εη̃, (2.17)

Âv
∂ũ

∂z̃
= ŝf ũ and w̃ = 0, at z̃ = −H̃, (2.18)

and in the horizontal plane

η̃ = cos (t̃− φM2
) + Z̃M4

cos (2(t̃− φM4
)), at x̃ = ℓ for sea channels, (2.19)

B̃

∫ η̃

−H̃

ũ dz̃ = Q̃, at x̃ = 0 for river channels, (2.20)

η̃ is continous, at vertex points, (2.21)
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∑
B̃

∫ εη̃

H̃

ũ dz is conserved, at vertex points. (2.22)

In equation 2.14 to 2.20, the following non-dimensional parameters appear

ε =
ZM2

H
, (2.23)

Âv =
Av

H2ω
, (2.24)

Q̃ =
Q

U0B0H0

, (2.25)

ℓ =
L

Ltide

, (2.26)

Z̃M4
=

ZM4

ZM2

, (2.27)

ŝf =
sf
Hω

. (2.28)

Here, ε is the Froude number that defines the relative importance of the different terms, Âv

is the non-dimensional eddy viscosity, Q̃ is the non-dimensional river discharge, ℓ is the non-
dimensional horizontal location at the seaward end of each channel, Z̃M4

is the non-dimensional
M4 elevation amplitude at ℓ of the sea channels and ŝf is the non-dimensional slip-parameter.
Next, it is important to describe the typical magnitudes for the derived non-dimensional
variables. The parameter ε is much smaller than one, ε = ZM2

/H ≪ 1. The other parameters
are compared to this ε. The variables with their assumed orders are provided in table 2.1.

Table 2.1: Non-dimensional variables with their order of magnitude.

Non-dimensional variable Order

ε ≪ 1 O(ε)

Ãv O(1)

Ltide

lb
O(1)

Q̃ O(ε)

s̃f O(1)

Z̃M4
O(ε)

The non-dimensional discharge term Q̂ is assumed here to be at order ε. This physically
means that the river flow is much weaker than the tidal flow. Perturbation analysis allows the
non-dimensional variables ũ, w̃ and η̃ to be described as power series of the variable ε as:

ũ = ũ0 + εũ1 +O(ε2), (2.29a)

w̃ = w̃0 + εw̃1 +O(ε2), (2.29b)
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η̃ = η̃0 + εη̃1 +O(ε2). (2.29c)

In these expressions, O denotes the respective order. Substitution of these variables in the
equations of motion and boundary conditions and then subsequently collecting terms of equal
order, leads to a representation of the system in which the dynamics can be studied at different
orders.

2.3 Leading order system and solutions

For the leading order equations, the perturbation expansion is inserted in the non-dimensional
momentum and continuity equations, then terms with O(1) are collected. The equations are
made dimensional again with the use of the derived scaling arguments. From now on, the
variables u, w and η will be denoted with two subscripts. The first subscript denotes the order
of ε and the second subscript denotes the frequency of the examined tidal constituent. So,
u02, for example, represents the leading order horizontal velocity under examination of the M2

tidal forcing. The dimensional equations of motion for the leading order read

∂u02

∂t
= −g

∂η02

∂x
+Av

∂2u02

∂z2
, (2.30)

∂u02

∂x
+

∂w02

∂z
+

1

lb
u02 = 0, (2.31)

∂η02

∂t
+

(

∂

∂x
+

1

lb

)
∫

0

−H

u02 dz = 0, (2.32)

with the following dimensional boundary conditions

Av
∂u

∂z
= 0 and w =

∂η

∂t
, at z = 0, (2.33)

Av
∂u

∂z
= sfu and w = 0, at z = −H, (2.34)

η = cos (ωt− ϕM2
), at x = L for sea channels, (2.35)

B

∫ η

−H

u dz = 0 at at x = 0 for river channels, (2.36)

η is continuous, at vertex points, (2.37)

∑

B

∫

0

H

u dz is conserved, at vertex points. (2.38)

The leading order equations allow the following solutions for u02, w02 and η02:

(u02, w02, η02) = ℜ{(û02, ŵ02, η̂02)e
−iωt}, (2.39)

where ℜ. represents the real part of the variables and a hat denotes the complex amplitude of
the variable that solely depends on the spatial structure. The solutions for û02(x, z), ŵ02(x, z)
and η̂02(x) read after applying the vertical and horizontal boundary conditions

û02(x, z) =
ig

ω

dη̂02
dx

(αM2
cosh (γM2

z)− 1) , (2.40)
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ŵ02(x, z) = −
ig

ω

(
αM2

γM2

sinh (γM2
z)− z

)(
∂2η̂02
∂x2

+
1

lb

∂η̂02
∂x

)

− iωη̂02 (2.41)

η̂02(x) = C1e
k1x + C2e

k2x (2.42)

where γM2
=

√

−iω/Av and αM2
= sf (AvγM2

sinh (γM2
H)+ sf cosh (γM2

H))−1. The complex
wavenumbers k1 and k2 are given by:

k1,2 =

−
1
lb
±

√(
1
lb

)2
+ 4ω2

g

(

αM2

γM2

sinh (γH)−H

)

2
. (2.43)

Here, C1 describes the structure of the horizontal wave travelling in the positive x-direction and
C2 describes the structure of the wave in the negative x-direction. Values for the integration
constants C1 and C2 can be found by applying boundary conditions of equations 2.10, 2.11 2.12.
For sea channels, this means at the seaward end a tidal elevation is prescribed and a vertex
points on the other side. Middle channels have vertex points on both sides and river channels
have a vertex point on one side and on the other side, the current velocity goes to zero.
When doing so, analytical expressions for the integration constants appear that depend on
the elevation at the vertex point. The only unknowns in these equations is then ηvi , with i
the index of the vertex point. When these values are known, the whole system can be solved.
To find these values, the analytical expressions for each type of channel are substituted in the
mass conservation relation of equation 2.38. This system of linear equations can be solved
numerically to obtain the values of the surface elevation at the vertex points. For a system
with i-number of vertex points, this translates to the following matrix notation








D1,v1 D2,v1 · · · Dn,v1

D1,v2 D2,v2 · · · Dn,v2
...

...
. . .

...
D1,vi D2,vi · · · Dn,vi







·








ηv1
ηv2
...
ηvi







=








Ev1

Ev2
...

Evi ,







, (2.44)

where the constants Dn,vi and Evi are independent of the value of η at the vertex point and n
is the index for the constants in the mass conservation relation. The constants Evi are solely
determined by the characteristics of the sea channels in the case of linear tides.

Furthermore, the amplitudes for the elevation and current velocities can be found by taking
the absolute value of the complex solutions. In addition, the phase is identified by computing
the angle between the real and imaginary parts of the complex solutions. A full solution
procedure for the leading order can be found in appendix A.1.

2.4 First order system

For the first order system of equations, all the terms with O(ϵ) are collected. The dimensional
first order system is given by

∂u1
∂t

+ g
∂η1
∂x

−Av
∂2u1
∂z2

= −u02
∂u02
∂x

− w02
∂u02
∂z

︸ ︷︷ ︸

advection

, (2.45)
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∂u1

∂x
+

∂w1

∂z
+

1

lb
u1 = 0, (2.46)

∂η1

∂t
+

(
∂

∂x
+

1

lb

)




∫
0

−H

u1 dz + u02η02|z=0
︸ ︷︷ ︸

Stokes



 = 0, (2.47)

The dimensional boundary conditions in the vertical are:

Av
∂u1

∂z
+Avη02

∂2u02

∂z2
|z=0

︸ ︷︷ ︸

no−stress

= 0 and w1 =
∂η1

∂t
, at z = η, (2.48)

Av
∂u1

∂z
= sfu1 and w1 = 0, at z = −H, (2.49)

with the dimensional boundary conditions in the horizontal as:

η1 = ZM4
cos (2(t− ϕM4

))
︸ ︷︷ ︸

external M4

, at x = L for sea channels, (2.50)

∫
0

−H

u1 dz + u02η02|z=0 =
Q

B
︸︷︷︸

river flow

at x = 0 for river channels, (2.51)

η is continuous, at vertex points, (2.52)

∑

B

∫ η

H

u dz is conserved, at vertex points. (2.53)

The underbraces denote the different nonlinear contributions in the equations that arise due to
leading order interactions. This includes the contribution of advection of horizontal momen-
tum, no-stress condition at the surface and the divergence of excess mass that compensates
for the correlation between the horizontal velocity and sea surface elevation (Stokes drift), and
the contribution due to river flow. Besides these internally created contributions to the first
order flow, the system is forced by an externally prescribed overtide. Each of the different
terms can be evaluated separately to study their relative importance. The first order contribu-
tions consist of a time-dependent and time-independent part. To illustrate this, the following
solutions

u02 =
1

2
û02e

−iωt +
1

2
û∗02e

iωt, (2.54a)

η02 =
1

2
η̂02e

−iωt +
1

2
η̂∗02e

iωt, (2.54b)

where an asterisk denotes the complex conjugate, will be substituted in the horizontal advective
contribution, this gives

−u02
∂u02

∂x
= −

(
1

2
û02e

−iωt +
1

2
û∗02e

iωt

)
∂

∂x

(
1

2
û02e

−iωt +
1

2
û∗02e

iωt

)

= −
1

4

(

û02
∂û∗

02

∂x
+ û∗02

∂û02

∂x

)

︸ ︷︷ ︸

time-independent

−
1

4

(

e−2iωtû02
∂û02

∂x
+ e2iωtû∗02

∂û∗
02

∂x

)

︸ ︷︷ ︸

time-dependent
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In this study, only the time-dependent part of advection, no-stress condition and the Stokes
will be examined. The following notation can be made

(η14, u14) = (η14, u14)internal + (η14, u14)external, (2.55a)

(η14, u14)internal = (η14, u14)Stokes + (η14, u14)no−stress
+ (η14, u14)advection (2.55b)

In these expressions, the subscript 14 denotes the time-dependent part of each term. The
contribution of river flow only has a time-independent part, since the change in river discharge
during one tidal cycle is typically small.

2.4.1 First order solutions

M4 solutions

In this section, a solution procedure will be provided for solving the first order (ε) system of
equations in any of the channels in a network. The first order equations allow the following
solutions for u14, w14 and η14:

(u14, w14, η14) = ℜ{(û14, ŵ14, η̂14)e
−2iωt}, (2.56)

For the internally and externally generated overtide the following second-order non-homogeneous
Ordinary Differential Equation (ODE) for the water level is found

∂η̂2
14

∂x2
+

1

lb

∂η̂14
∂x

−
4ω2

g
(
αM4

γM4

sinh (γM4
H)−H

) η̂14 = F, (2.57)

where γM4
=

√

−2iω/Av and αM4
= sf (AvγM4

sinh (γM4
H) + sf cosh (γM4

H))−1 and F is an
additional forcing term. This differential equation is similar to the differential equation for the
leading order elevation. The difference here is the addition of the forcing term F , which differs
per contribution. For the externally prescribed M4 tide, the equation is still homogeneous
with F is 0. The higher frequency of the M4 tide is incorporated in αM4

and γM4
. A complete

derivation for each of the forcing terms F per contribution as well as the solution for the
horizontal velocity u14 can be found in Dijkstra et al. (2017a).

The solution for the sea surface elevation for each of the first order contributions has the
following form

η̂14(x) = C1e
p1x + C2e

p2x

︸ ︷︷ ︸

homogeneous solution

+A1(x)e
p1x +A2(x)e

p2x

︸ ︷︷ ︸

particular solution

. (2.58)

Obtaining values for the integration constants C1 and C2 is essentially the same procedure as
for the leading order. The functions A1(x) and A2(x) of the particular solutions are already
completely determined by the vertical structure of each channel. The constants in the homo-
geneous solution now must be chosen such that they satisfy the boundary conditions where
η14(x) is determined by the sum of the homogeneous and particular solutions of the first order.
If these relations are substituted in the mass conservation equation of equation 2.13, then the
same matrix will appear for the first order network. The difference with the leading order is
that the constants Evi are not solely determined by the sea channels, but now also depend on
the characteristics of the middle and river channels in the network.
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River flow

The river velocity in the network can be determined using the following derived equation

ûriver = g

(

z2 −H2

2Av
−

H

sf

)

∂η̂river

∂x
(2.59)

The expression for ∂η̂river
∂x

follows from the substitution of the river velocity in the depth-
integrated continuity equation and reads

∂η̂river

∂x
= −

Q

gB(x)
(

H3

3Av
+ H2

sf

) (2.60)

Now integrating equation 2.60 leads to an expression for the river surface elevation. A full
solution procedure for the river flow can be found in Dijkstra et al. (2017a). In a network, Q
for each channel is found by conservation of discharge at the vertex point.

2.5 Quantification of tidal asymmetry

In order to evaluate the degree of tidal asymmetry in the system, the spatial solutions for the
leading and first order contributions need to be converted to time series as

η(x, t) = |η̂02| cos (ωt− arg (η̂02)) + |η̂14| cos (2ωt− arg (η̂14)) + η̂river, (2.61a)

u(x, t) = |û02| cos (ωt− arg (û02)) + |û14| cos (2ωt− arg (û14)) + ûriver, (2.61b)

where η(x, t) and u(x, t) are the full solutions in space and time with contributions from the
leading order, first order and river flow. In these expressions, |·| denotes the amplitude of the
solutions and arg(·) denotes the phase. The river elevation and velocity only influence the
skewness of the full solutions and do not affect the degree of tidal asymmetry and skewness
within each channel. Following (Alebregtse and De Swart, 2014), four quantities are introduced
to determine the degree of asymmetry of the system. These quantities are:

• Tidal range: Defined as the difference in sea surface elevation between flood and ebb
during one tidal cycle for every position in the network.

• Duration of the falling tide (DFT): Defined as the duration between peak flood
elevation and peak ebb elevation on every position in the network. Relative to the tidal
period, this quantity shows for values larger than 0.5 that flood crests move faster than
ebb troughs, resulting in flood dominance. For values smaller than 0.5 this reveals that
the ebb troughs propagate faster than the high water crests, resulting in ebb dominance.
This quantity is also referred to as duration asymmetry.

• Flood-to-ebb ratio: Defined as the ratio between maximum flood current velocity and
maximum ebb current velocity on every position in the network. Values higher than 1
reveal that flood currents move faster than ebb currents, and the flow is referred to as
flood dominant. Values smaller than 1 reveal ebb dominant flows.
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• Duration between max flood and max ebb (DFE): Defined as the duration be-

tween peak flood current velocity and peak ebb current velocity on every position in the

network. Relative to the tidal period, this quantity shows for values larger than 0.5 that

a longer transition period is needed going from flood to ebb than the other way around.

The opposite is the case for values smaller than 0.5. This quantity is also referred to as

velocity asymmetry.

In figure 2.3, examples of the four quantities is given.

Figure 2.3: Time series of water level and current velocity to illustrate tidal asymmetry quantification
(Tidal range, Flood-to-ebb ratio, Duration of the falling tide (DFT) and Duration from flood to ebb
(DFE)), adopted from (Alebregtse and De Swart, 2014).

2.6 Settings of study sites

This subsection contains the regions of interest for this thesis. First a three channel system

is modeled and analysed. This will be done to get acquainted with the model on a ‘simple’

network, before moving to a more complex estuarine network. Thereafter, the Rhine-Meuse

estuarine network will be studied and results will be compared with in-situ data.

2.6.1 Three channel network

The three channel network that is considered in this first study is shown in Figure 2.4.

Figure 2.4: Sketch of the three channel network, consisting of one river channel and two sea channels.
Colour coding and labels are consistent in further figures.
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Here, channel 1 is the river channel, constrained by the landward boundary at x = 0 and
channels 2 and 3 are both sea channels with a prescribed tidal forcing at x = L. The values
for the variables H, B and L at each of the channels are found in table 2.2. The convergence
length scale lb is not shown, since all channels are considered to be straight. The eddy viscosity
is taken as a constant in both the vertical and horizontal direction and proportional to the
channel depth H, as Av = 0.0005 H (ms−1). The partial slip-parameter sf is assumed to
be constant throughout the network with a value of 0.001 m s−1. The values for all the
parameters in this model are based on work by Wang et al. (2022). This network acts as a
prototype system before studying a more complex network.

Table 2.2: Values for the variables H, B and L at each of the channels in the idealised network.

H (m) B0 (m) L (km)

Channel 1 13.0 1000 1040

Channel 2 15.0 500 40

Channel 3 11.0 500 40

2.6.2 Rhine-Meuse estuarine network

The Rhine-Meuse estuarine network will be used as the second network for this study. This
estuary is located in the west of the Netherlands and is connected to the open sea through the
Nieuwe Waterweg and Hartelkanaal. On the other end, freshwater enters the system through
the Maas river and through some rivers connected to the Rhine, e.g., the Waal.

The hydrodynamics of the Rhine-Meuse estuarine network is considered on the domain
shown schematically and in a satellite image in Figure 2.5. This network consist of two
sea channels, three middle channels, one river channels and one special channel. Here, the
Haringvliet (HV) used to be a sea channel but has been closed since the year 1971 with a dam
and several sluices to protect the land around the Rhine-Meuse estuary. However, the sluices
open during ebb to discharge water from the river to the sea. For this study, the channels
that are expected to make a significant contribution to the hydrodynamics of the Rhine-Meuse
are included. Some smaller channels and passages considered as not important to the overall
hydrodynamics in this network are not evaluated. Also, the Waal river (WL) is the only
connected river in this model, since this river conveys the largest part of the discharge.
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Figure 2.5: First panel: schematic diagram for the Rhine-Meuse estuarine network with prescribed
tidal forcings and phases on the left of the sea channels. The arrows point in the direction of the
positive x-axis in every channel. Second panel: Satellite image of the Rhine-Meuse (Source: Google
Earth). The color coding will be consistent in further figures.

Note that the positive x is towards the left. The water motion in the network is forced by M2

and M4 tides at the seaward boundaries, with amplitudes of respectively 0.8 and 0.2 meters.
At the river end of network, a river discharge of 850 m

3
s
−1 is prescribed. This value is based

on the average discharge of monitoring stations in September 2022 (Rijkswaterstaat, 2022a).
The values for the variables H, B, L and lb at each channel is found in table 2.3.
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Table 2.3: Values for the variables H, B, L and lb at each of the channels. Source: N. Vellinga, pers.

comm. and Google Earth. Note that some channels are the combination of multiple channels.

H (m) B0 (m) L (km) lb (km)

Nieuwe Waterweg (NW) 15.0 700 16.4 -217.3

Hartelkanaal (HK) 7.6 331 21.7 -298.0

Nieuwe Maas / Noord / Beneden
Merwede (NM)

8.0 450 47.5 56.0

Nieuwe Merwede (NE) 5.0 420 23.4 53.9

Oude Maas / Dordtsche Kil (OM) 10.0 320 35.8 160.4

Boven Merwede / Waal (WL) 5.0 450 95.0 296.5

Haringvliet / Hollands Diep (HV) 8.0 2200 44.5 -146.0

2.6.3 Optimization with measurement stations

Along the Rhine-Meuse, eleven Rijkswaterstaat monitoring stations have been positioned to
track local water levels over time. Data from these monitoring stations over the past two
months are used to determine the amplitude of the M2 and M4 tides at the seaward end on
one hand and to optimize the friction parameters Av and sf on the other hand. This data
is available through Rijkswaterstaat (2022b). A harmonic analysis using the Python library
Ttide (Pawlowicz et al., 2002) is used here to translate the local water level to each of the
frequency components. After obtaining the M2 amplitudes at each of the monitoring stations,
the network model is run for one hundred variations in Av in a range between 0.0001 and
0.01·H (m s

−1) and one hundred variations in sf in the range 0.001 and 0.1 m s
−1, yielding a

total number of ten thousand model runs. From each of the runs, the Root-Mean-Square-Error
(RMSE) between model and observations is determined. The combination of Av and sf for
which the RMSE is minimized is then adopted as friction parameters in the remainder of this
report.

2.6.4 Experiments on the RM network

To address the fourth research question, two additional scenarios are conducted on the Rhine-
Meuse network to find out how much influence these experiments have on the evolution of the
tides.

Opening of the Haringvliet sluice during high tide

Since their construction in the early 1970s, the Haringvliet sluices have kept the southwestern
Netherlands safe from flooding. However, the sluices act as a fish barrier between the North
Sea and the Haringvliet. This prevents migratory fish like eels, salmon, and sea trout from
swimming to their spawning grounds, which are either upstream or in the sea. By opening
the Haringvliet sluices at high tide, migratory fish can swim downstream pf the Haringvliet
with the salty water. For this experiment, one of the Haringvliet sluices will be opened, whose
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influence on tidal propagation will be investigated. This means for the estuarine network that
this channel is converted from a river channel to a sea channel. The width of the opening
is taken as 57.5 meters (source: Rijkswaterstaat, pers. comm.), the length of the sluice is
determined at 70 meter (source: Google Earth).

A one-dimensional approximation will be made to determine the corresponding M2 ampli-
tude at the seaward side of the Haringvliet. Given the fact that the opening of the sluice is
small relative to the width of the Haringvliet, it is assumed that in the sluice friction dominates
over inertia. This gives a balance between pressure gradient and friction as

− g
∂η

∂x
= λu, (2.62)

where λ is a one-dimensional friction parameter. Furthermore, continuity of sea surface eleva-
tion and conservation of mass apply here

η1 = η2, (2.63)

u1B1 = u2B2, (2.64)

where the subscripts 1 and 2 represent respectively the position at the beginning of the sluice
and at the end of the sluice. The velocity at the beginning of the sluice can also be found by
integrating the momentum balance, this gives

u1 = (η1 − η2)
g

λLsluice

(2.65)

where η1 = 0.8 meters is the amplitude at the seaward side. To start, an arbitrary value for
u1 is chosen. A value for u2 can found by using the mass conservation balance. The network
model is then used to find a value for η2. Lastly, equation 2.65 is used to find a new value
for the velocity at the beginning of the sluice. The absolute value between the difference of
the initial velocity and the new velocity is used as a error tolerance. This procedure repeats
until the error tolerance in the velocity converges to a value smaller than 10−5 m s−1. The
final velocity, using this method, is determined at 2.46 m s−1. This translates to a sea surface
elevation of 0.095 meters. The external M4 amplitude at the seaward end is taken with the
same relative decrease as the M2, this gives 0.024 meters. This value will now be used as the
amplitude at the seaward side of the Haringvliet.

Consequence of sea-level rise (SLR)

Long-term average sea-level rise relative to local land level, as measured by coastal tide gauges,
is referred to as sea-level rise. Global sea level rise is currently estimated to be between 3 and 4
millimetres per year, with an acceleration of 0.12 ± 0.07 mm yr−2 (Oppenheimer et al., 2019).
In this experiment, the influence of 2-meter sea level rise on the tides in the Rhine-Meuse is
investigated. A rise of 2 meters is assumed as an upper limit by the year 2100 (Pfeffer et al.,
2008) and as a higher probability scenario for the year 2200 (Vellinga et al., 2009). The sea
level rise scenario is modeled by deepening each channel of the Rhine-Meuse by 2 meters.
Also, the amplitude of the M2 and M4 tide on the seaward side is increased by 6 and 1.5 cm,
respectively, (Pickering et al., 2012).
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3.1 Results for the idealised network

(a) (b)

(c)

Figure 3.1: a) M2 (solid lines) and M4 (dashed lines) elevation amplitudes as a function of position
in the network. b) As a), but for elevation phases. c) As a), but for current amplitudes.

24
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The results for the idealised network are shown in Figure 3.1. In these panels, 50 km before
the vertex point and 40 km after the vertex point in the horizontal direction are shown to
capture the behaviour of the tides around this point.

Figure 3.1 shows a decrease in M2 elevation amplitude in every channel towards the land-
ward boundary. Part of the decrease in amplitude can be attributed to the dissipation of
energy to the higher harmonics. This is evidenced by the increase in the internally generated
M4 amplitude, which increases towards the landward boundary. The elevation phases for M2

and M4 in Figure 3.1b illustrates propagating behaviour in the landward direction for every
channel (negative dφ/dx, where φ is the elevation phase) with increasing phase towards neg-
ative x. Figure 3.1c shows similar behaviour for M2 and M4 current amplitudes as was found
for the M2 and M4 elevation, with decreasing amplitude for the M2 component and increasing
amplitude for the M4 amplitude towards the landward boundary.

This exact set up is also used by Wang et al. (2022). The only difference is that this
study also included the influence of dynamic pressure as a source of internally generated
M4. Comparison of the results, however, shows that the influence of that source is small
compared to the other nonlinear contributions. The M2 elevation and current amplitudes are
almost identical in both studies. This thesis expands on the work by Wang et al. (2022) by
connecting the results to tidal asymmetry. For this three-channel system the quantification of
asymmetry is shown in Figure 3.2.

(a) (b)

(c) (d)

Figure 3.2: a) Tidal range as function of the position in the network. b) As a), but for DFT. c) As
a), but for Flood-to-ebb ratio. d) As a, but for DFE.
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Figure 3.2a shows the tidal range as a function of the position in the network. The
pattern shows similarities with the M2 elevation amplitude, with decreasing values towards
the landward boundary. Figure 3.2b shows the DFT. This figure reveals flood dominant
behaviour, with DFT greater than 0.5 everywhere in the network. This means that high water
crests propagate faster than low water troughs. Mixed behaviour is found for the currents.
The Flood-to-ebb ratio in Figure 3.2c shows ebb dominant behaviour in the entire channel
3 and the first half of channel 2. Flood dominant currents are found in the second half of
channel 2 and the majority of channel 1. This means that, when only considering M4 tides as
source of asymmetry, bedload transport of sediment occurs in the ebb direction for channel 3
and the majority of channel 2. For channel 1, bedload transport would occur in the opposite
direction. Finally, Figure 3.2d illustrates the DFE as a function of the position in the network.
This figure shows flood dominance for every channel, with DFE greater than 0.5 throughout
the network. This means that it takes more time for the system to transition from flood to
ebb than the other way around. Velocity asymmetry is important for suspended sediment
transport. This means that in this system transport of suspended sediments landward would
occur. The remainder of the results in this chapter will address the extension of the network
to the Rhine-Meuse.

3.2 Results for the Rhine-Meuse estuarine network

3.2.1 M2 tide

The values of the eddy viscosity Av and partial slip-parameter sf are chosen such that the
Root Mean Square Error (RMSE) between modelled and observed elevation amplitudes is
minimized. This calibration resulted in values of 0.00144·H (m s

−1) and 0.06555 m s
−1 for

respectively the eddy viscosity and the partial slip-parameter. The eddy viscosity scales with
the depth of the channels, meaning that the eddy viscosity is the largest in the deepest channel
(NW) and the smallest in the shallowest channel (WL). The results for the leading order in
the Rhine-Meuse are presented in Figure 3.3.

The M2 elevation amplitudes in Figure 3.3a show that there is a good agreement between
the modelled elevation amplitudes and the observed elevation amplitudes, with a RMSE of
0.048 meters. The largest discrepancy between the model and observations in the network can
be found at the second point of the Nieuwe Maas (NM). This difference can be attributed to the
fact that in the modelled network both the sea channels and the NM and OM channels branch
at the same vertex point, whereas in reality there exists a short passage that connects the vertex
point between the NM and the NW with the vertex point of the HK and OM. The overall
modelled tidal damping in the network agrees good with the observed tidal damping. The
elevation phases in Figure 3.3b indicate a propagating wave in the direction of the landward
boundary (negative phase speed) for both the sea channels, the NM and OM middle channels
and the WL river channel. A propagating wave in the direction of the seaward boundary
is shown for the HV channel (positive phase speed). Lastly, the NE shows a change from a
negative phase speed at the seaward end to a positive phase speed at the landward end of the
channel. This indicates the presence of a dominant reflective wave in this channel. Typical
phase speed values in the network range from 3 m s−1 (large dφ/dx) to 13 m s−1 (small dφ/dx).
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3: a) M2 elevation amplitudes as a function of position in the Rhine-Meuse network The
coloured dots in a) represent M2 elevation amplitude observations. b) As a), but for elevation phases.
c) As a), but for depth-averaged current amplitudes. d) As a), but for river surface elevation. e) As a),
but for river velocity. f) As a) but for river discharge. The percentages are a measure for the relative
discharge after a vertex point. Note: the figures are horizontally flipped with respect to the schematic
figure shown in Figure 2.5 because the network model is built on a seaward side on the right side.
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Figure 3.3c indicates differences in increase or decrease of M2 current amplitude per chan-
nel. The complexity can be mainly attributed to the differences in convergence length per
channel and its interplay with friction. The M2 current amplitude in the Nieuwe Merwerde
(NE) is much lower than was found for the other two middle channels. With almost no dif-
ference in velocity between both sides of the channel, just as for the elevation amplitude in
this channel. This shows that this particular channel is not so important for the overall hy-
drodynamics in the system. Figure 3.3d shows the river elevation in the Rhine-Meuse. This
figure reveals that the influence of the river on the total elevation small is compared to the
influence of the M2 tide in the majority of the network. However, an opposite pattern to the
M2 elevation is visible with increasing values towards the landward end. This means that the
influence of the river, as expected, becomes more important as the tide progresses land in-
wards. The depth-averaged river velocity is shown in Figure 3.3e. This figure reveals a similar
pattern as was shown for the river surface elevation, with increasing velocities towards the
landward end of the network. Finally, Figure 3.3f demonstrates the distribution of freshwater
in the network. The percentages are a measure of the relative discharge after a vertex point.
The largest difference in distribution is found between the two sea channels, with a relative
contribution of 91.5% and 8.5% for respectively the Nieuwe Waterweg (NW) and Hartelkanaal
(HK). This can be explained by the difference in width and depth between the two channels.
The Nieuwe Waterweg is approximately twice as wide and deep as the Hartelkanaal. The river
discharge is strongly dependent on both of these factors. It is shown here that the opening of
the Haringvliet during ebb is important for the discharge of river water, with also a significant
amount of the total discharge.

The M2 current amplitudes over both the vertical and horizontal direction for the Nieuwe
Waterweg (a) and Nieuwe Maas (b) are presented in Figure 3.4.

(a) (b)

Figure 3.4: Contour plots of M2 current amplitudes profiles over x and z for Nieuwe Waterweg (a)
and Nieuwe Maas (b).

Figure 3.4 indicates for both channels a clear gradient in the M2 current amplitude over the
vertical direction of the channel. The lowest currents are found near the bed of the channels
(partial slip) and highest currents are located near the surface. These current amplitude
figures stress the usefulness of a 2DV modelling approach. When considering the transport
of sediments in estuaries it is important to understand the vertical structure of the current
amplitude, as this is what drives the transport.
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3.2.2 Internally created M4 tide

This study differentiates between an internally and externally generated M4 tide. The re-
sults for the internally generated M4 tide in the Rhine-Meuse including the contribution of
divergence of excess mass due to Stokes drift, no-stress condition and advection of horizon-
tal momentum are shown in Figure 3.5 for the M4 elevation amplitude, M4 elevation phase,
depth-averaged M4 current amplitude and M4 current phase.

(a) (b)

(c) (d)

Figure 3.5: a) M4 elevation amplitudes as a function of position in the Rhine-Meuse network. b) As
a), but for elevation phases. c) As a), but for depth-averaged current amplitudes. d) Phase difference
between leading order surface amplitude and depth-averaged current velocity.

The M4 elevation amplitude in Figure 3.5a shows a build-up of M4 elevation amplitude from
the seaward boundary to an approximate local position of 20 km in the network, after which
the M4 elevation amplitude dampens towards the landward boundary. The maximum M4 ele-
vation amplitude is found in the Nieuwe Maas (NM) with a value of 0.0139 meters. Figure 3.5b
shows similar behaviour as was found for the M2 elevation amplitude, with propagating tidal
waves towards the landward boundary in both sea channels and the Nieuwe Maas and Oude
Maas (OM). In the Nieuwe Merwede (NE), again a strong reflective wave relative to the incom-
ing wave is found and the phase of the Haringvliet (HV) shows propagating wave behaviour
towards the seaward boundary. Figure 3.5c indicates a different distribution for the M4 cur-
rent amplitude as was found for the M2 current amplitude. Both the Nieuwe and Oude Maas



Chapter 3: Results 30

show a strong increase in current amplitude towards the second vertex point. To evaluate

which nonlinear contribution dominant is in the Rhine-Meuse and to address the first research

question, each of the individual contributions will be shown. Figures 3.6a, 3.6c and 3.6e show

respectively the contributions of the return flow due to Stokes drift, no-stress and advec-

tion of momentum as a function of the position in the network to the elevation amplitude.

Figures 3.6b, 3.6d and 3.6f display the current amplitude of the respective contributions.

(a) (b)

(c) (d)

(e) (f)

Figure 3.6: a) M4 elevation amplitudes for the contribution of Stokes as a function of position in
the Rhine-Meuse network. b) M4 current amplitude for the contribution of Stokes as a function of
position in the Rhine-Meuse network. c) As a), but for the contribution of the no-stress condition. d)
As b), but for the contribution of no-stress condition. e) As a), but for the contribution of advection
of momentum. f) As b), but for the contribution of advection of momentum.
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Figure 3.6 show that the M4 amplitudes due to Stokes and no-stress are the most dominant

contributions in the network. It is also shown that Stokes and no-stress have a higher maximum

than the total internal contribution shown in Figure 3.5a. This can be explained by the phase

of the contributions. If one contribution has a phase with the opposite sign compared to the

other, dampening of the tidal wave rather than amplifying occurs.

The divergence of excess mass due to Stokes drift is forced by the product between the M2

elevation and current amplitude and thus strongly dependent on the phase difference between

the M2 elevation and current amplitude. A phase difference of -90◦ results in transport due

to Stokes drift, whereas a phase difference of 0◦ or -180◦ results in a maximum return flow.

The phase difference between elevation and current is presented in Figure 3.5d. This figure

confirms the theory that the divergence of excess mass due to Stokes drift larger is for channels

where the phase difference between elevation and current amplitude goes towards -180◦ or 0◦.

The current amplitude due to Stokes as shown in Figure 3.6b reveals an inverted pattern

relative to the elevation amplitude. The elevation and current amplitude due to the no-stress

condition show similar behaviour as for Stokes, as indicated by Figures 3.6c and 3.6d. The

no-stress contribution is driven by the product between the M2 elevation amplitude and the

curvature of the M2 current amplitude and represents the depth-dependent friction. The

advection of momentum shows the lowest contribution, as presented in Figures 3.6e and 3.6f.

This contribution becomes important when the M2 current amplitude changes substantially

over a relatively small distance.
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3.2.3 Externally created M4 tide

Besides an internally generated M4 tide, also an externally created M4 tide is present in the
Rhine-Meuse. This external tide has a value of 0.2 meters at the seaward boundaries of both
sea channels. The phase difference with the prescribed M2 tide (2φM2

− φM4
) is 5.4◦. The

results for the Rhine-Meuse external M4 elevation amplitudes, elevation phase, depth-averaged
current velocity and ratio between internal and external M4 elevation amplitudes are shown
in Figure 3.7.

(a) (b)

(c) (d)

Figure 3.7: a) Externally created M4 elevation amplitudes as a function of position in the Rhine-
Meuse network. b) As a), but for elevation phases. c) As a), but for current amplitudes.

The results in Figure 3.7 indicate similar behaviour as was found for the leading order M2

elevation and current. The elevation amplitude is about 4 smaller than the M2 throughout
the network. A relatively small difference between both is that in the case of the external M4

tide amplification of the elevation amplitude occurs for both the sea channels towards the first
vertex point. The current amplitude is about 3-5 times smaller than the M2 current.

Comparing the magnitude of the elevation amplitude for the externally forced M4 tide
with the internally generated M4 tide in Figure 3.7d, reveals that the externally generated
M4 tide is about 5-15 times larger than the internally generated M4 tide depending on the
position in the network. It is also shown that the relative contribution of the internal tide
increases towards the landward boundary, as the principal tide dissipates parts of its energy
to the generation of internal higher harmonics.



Chapter 3: Results 33

3.2.4 Full M4 tide

The total M4 tide is the sum of the total internally generated tide and externally generated

tide. The results for the full elevation and current amplitude, and elevation phase are found in

Figure 3.8. For the amplitudes, the results of the harmonic analysis of the measuring stations

along the Rhine-Meuse are shown as filled dots in Figure 3.8a.

(a) (b)

(c)

Figure 3.8: a) Full M4 (internally and externally) elevation amplitudes as a function of position in
the Rhine-Meuse network. b) As a), but for elevation phases. c) As a), but for current amplitudes.

Figure 3.8 resembles by a large amount the contribution of the externally prescribed M4 tide.

The internally generated M4 is only marginally important in the total M4 contribution in the

Rhine-Meuse. Figure 3.8a shows a fair correlation between model and observations, with an

RMSE of 0.019 meters. This RMSE is 2.5 times lower in absolute terms than the RMSE for

the M2, however the measurements and model outputs are 4 times lower as well, so the relative

error is about 1.5 times higher for the M4 results than for the M2.

3.2.5 Asymmetry in the Rhine-Meuse

The generation of both the internal and external M4 has implications for tidal asymmetry

as discussed earlier. The four tidal asymmetry quantities for the Rhine-Meuse are shown in

Figure 3.9.
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(a) (b)

(c) (d)

Figure 3.9: a) Tidal range as function of the position in the network for the Rhine-Meuse estuary.
b) As a), but for DFT. c) As a), but for Flood-to-ebb ratio. d) As a, but for DFE.

The tidal range in Figure 3.9a reveals the pattern of the M2 and external M4 elevation am-
plitude, with a dampening of the tidal range towards the landward boundary. Figure 3.9b
shows the DFT in the network. This figure illustrates flood dominant behaviour throughout
most of the network. Meaning the tide travels faster in the flood phase than in the ebb phase.
However, as the influence of tides on the landward side decreases, flood dominant behaviour
also decreases and a shift to ebb dominance is observed at the further end of the river. Also,
the Haringvliet (HV) shows for a short distance ebb dominant behaviour. The flood-to-ebb
ratio in Figure 3.9c reveals a mix of ebb dominance and flood dominance for most of the chan-
nels. The river channel the Waal (WL) indicates an increase in ebb dominance towards the
landward boundary. This can be related to the relatively strong river velocity and diminishing
tides in this channel. The sharp transition to ebb dominant behaviour for the Haringvliet can
be explained by the fact that the tidal current velocities go to zero at the seaward bound-
ary, while a river velocity greater than zero does exist at these locations. This favours ebb
dominant behaviour for the current velocities. Figure 3.9d shows flood dominant behaviour in
most of the network, meaning that the transition from flood to ebb takes more time than the
transition from ebb to flood.

Concerning the relation with sediment transport, these result would imply that the trans-
port of suspended sediments occurs in landwards in the Rhine-Meuse. For bedload transport
different behaviour would occur. The presence of a relatively strong river velocity in the river
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channel indicates seaward bedload transport of sediments. This is also the case for part of the
Nieuwe Merwede, Haringvliet and Oude Maas. The other channels reveal landward transport.
The change from flood dominance to ebb dominance for DFE in the Nieuwe Merwede results
from two low water peaks in the ebb phase consisting of two maxima separated by a small
depression in the current velocity, also called double tide. This behaviour and the shift from
flood dominant to ebb dominant is shown in Figure 3.10.

(a) (b)

Figure 3.10: a) Current velocity as a function of time for the Nieuwe Merwede (NE) in the case of
ebb dominance. b) As a) but for flood dominance. The red star indicates the highest ebb peak. Note:
positive currents mean ebb phase, negative currents mean flood phase.

As was indicated by Figure 3.4, large gradients in the current amplitude over the vertical
distance occur in this system. Therefore, it is important to examine the degree of asymmetry
in the current amplitude as a function of the depth of the channels. This has been done for two
channels, namely the Nieuwe Waterweg and Nieuwe Maas. Both velocity asymmetry (DFE)
and flood-to-ebb ratio on both channels are investigated. The results are shown in Figure 3.11.
The upper two panels indicate the degree of velocity asymmetry (DFE) in both the channels.
These reveal that the DFE is slightly larger near the bottom of the channels than near the
surface. For the flood-to-ebb ratio in the lower two figures, an inverse pattern is shown. The
largest values for the flood-to-ebb ratio appear to be near the surface of the channels and a
decrease in magnitude is found deeper in the channel.
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(a) (b)

(c) (d)

Figure 3.11: a) DFE as a function of x and z for the Nieuwe Waterweg b) As a), but for Nieuwe
Maas. c) Flood-to-ebb ratio as a function of x and z for the Nieuwe Waterweg d) As c), but for Nieuwe
Maas.
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3.3 Opening of one of the Haringvliet sluices

The difference in M2 and M4 sea surface elevation, elevation phase, depth-averaged current

amplitude and velocity phase between an open and closed scenario of the Haringvliet sluice is

shown in Figures 3.12.

(a) (b)

(c) (d)

(e) (f)

Figure 3.12: a) Difference in M2 elevation amplitudes between opening of the Haringvliet sluice and
closed as a function of position in the Rhine-Meuse network. b) As a), but for M2 depth-averaged
current amplitudes. c) As a), but for M4 elevation amplitudes. d) As a), but for M4 depth-averaged
current amplitudes. e) As a), but for M2 elevation phase. f) As a), but for M2 depth-averaged current
phase.
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Figure 3.12a indicates a maximum increase in M2 elevation amplitude of 11.6 cm due to the
opening of one of the sluices of the Haringvliet. The vertex point at around 20 km shows the
highest increase in amplitude. This is as expected since the Haringvliet branches at this vertex
point. This results in a propagating tidal wave in the direction of the vertex point after the
opening, instead of a propagating wave in the direction of the boundary of the Haringvliet.
The initial decrease in amplitude in the Haringvliet after opening, compared with closed, can
possibly be explained by a stronger reflective wave in the case of the fully closed Haringvliet.
The M4 elevation amplitude shows a similar pattern of increase, with especially an increase
at the vertex point at around 20 km. The maximum increase in M4 elevation amplitude
is 3.0 cm and can mainly be contributed due to an increase in external M4. For the current
amplitudes at Figure 3.12b and 3.12d, a mix of both increases an decreases appear. The largest
increase in both M2 and M4 current amplitude is found at the entrance of the Haringvliet,
with respectively an increase of 0.123 and 0.034 m s−1. In the Oude Maas (OM) an decrease
in M2 current amplitude was found of around 25%, compared to a closed Haringvliet. This
decrease is partly compensated at the vertex points at around 20 km. At this location, the
Nieuwe Merwede (NE) shows a strong increase in current velocity. Figure 3.12e indicates
strong changes in the propagating behaviour of the M2 tide in the network. The Haringvliet
demonstrates the largest difference, with now a propagating wave landward. Furthermore, the
strong propagating wave in the Oude Maas in the closed scenario decreased by a fair amount
with the opened scenario. Also, the standing wave behaviour that was found in the Nieuwe
Merwede now transformed to a fully propagating wave landward. Lastly, the difference in M2

current amplitude phase in Figure 3.12f shows especially large differences over distance in the
Nieuwe Merwede.
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3.4 Influence of sea level rise (SLR)

The difference in M2 and M4 sea surface elevation, elevation phase, depth averaged current

amplitude and velocity phase between current and SLR conditions is presented in Figure 3.12.

(a) (b)

(c) (d)

(e) (f)

Figure 3.13: a) Difference in M2 elevation amplitudes between SLR conditions and current conditions
as a function of position in the Rhine-Meuse network. b) As a), but for M2 depth-averaged current
amplitudes. c) As a), but for M4 elevation amplitudes. d) As a), but for M4 depth-averaged current
amplitudes. e) As a), but for M2 elevation phase. f) As a), but for M2 depth-averaged current phase.
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Figure 3.13a shows that the impact of SLR on the M2 elevation amplitude relatively low is.
The largest differences can be found in the Haringvliet (HV) with an increase of around 8
cm. However, that is still a marginal increase, considering the 2-meter SLR in every channel.
In general, making channels deeper can be expected to reduce tidal dampening by lowering
the experience of bottom friction. Thus, the relative impact of SLR on reducing bottom fric-
tion will be experienced most strongly in the shallower channels. However, internal friction
is parameterised with channel depth. This implies that internal friction increases with chan-
nel depth. And so, this effect acts inversely to the decrease in bottom friction on the tide.
Figure 3.13c demonstrates a different pattern than was found for the M2 elevation amplitude.
However, it shows similarities with the pattern found for the total internal M4 tide without
SLR. This reveals that, in this scenario, the increase in the internally generated M4 tide is
stronger than in the scenario with the opening of the Haringvliet sluice. The difference in M2

current amplitude in Figure 3.13b generally shows an increase in M2 current amplitude. The
current now feels less friction compared to the case with the more shallow channels and thus
less dampening occurs. The largest current amplitude increase is found in the Nieuwe Maas,
with an increase of around 25% compared to the current conditions. For the M4 current ampli-
tude in Figure 3.13d, relatively less increase is found compared to the M2 current amplitude.
Here, most channels show a combination of increased and decreased current amplitudes or even
completely decreased. The elevation phase in Figure 3.13e indicates an overall decrease in the
phase speed compared to the current conditions for most of the channels. The Nieuwe Maas,
however, shows an even stronger propagating wave landward in this scenario. The Nieuwe
Merwede reveals now propagating behaviour in the seaward direction, due to the presence of
an even more dominant reflective wave in this scenario. Large differences are also found for
the phase of the M2 current amplitude in Figure 3.13f. In most channels a decrease in phase
in the landward direction occurs. The Nieuwe Merwede again reveals large differences over
distance in the current amplitude phase.
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4.1 General

This study builds on previous work by Wang et al. (2021) with the addition of incorporating
the nonlinear tides in estuarine networks. An idealised model that allows for semi-analytical
solutions have been used here to gain an understanding of the hydrodynamics of these systems.
A different modelling approach would be by developing a numerical model. The difference
between a numerical model and an idealised model is that an idealised model only takes
the processes into account that are necessary to study the subject of choice (Murray, 2003).
This simplified approach makes it convenient to investigate individual processes in detail and
to compare their relative importance to each other. Because of its simplicity, an accurate
representation cannot be obtained as easily as with a numerical model. The complexity of
numerical models makes them better suited for quantitative research. On the other hand, it is
more difficult to investigate the individual processes with a numerical model separately. The
features of both types of models can reinforce each other by, for example, using an idealised
model to first gain insight into the dominant processes within an estuary and then subsequently
applying this knowledge in a numerical model. The results show that the model has been
successfully applied to a three-channel network, with findings in agreement with Wang et al.
(2022). In addition, application of the model to the Rhine-Meuse has also proven successful
when a comparison is made with observations from monitoring stations. The correlation
between model results and observations for the Rhine-Meuse is shown in Figure 4.1.

(a) (b)

Figure 4.1: a) Modelled M2 elevation amplitudes as a function of observed amplitudes for the case in
which the RMSE is minimized. Black line represent the 1:1 ratio fit between modelled and observed.
The dotted and dashed dotted lines are respectively the 1σ and 2σ confidence intervals. b) As a), but
for modelled M4 elevation amplitudes.

41
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The standard deviation represents the spread in absolute error between model and observation.
This shows that a larger standard deviation is found for the M4 tide, compared to the M2 tide.
Furthermore, Figure 4.1a shows that most of the points fall within the 1σ confidence interval
for the M2 tide. Only one point falls outside of the 2σ confidence interval. The results for the
M4 in Figure 4.1b show more spread, with still most of the points within the 2σ confidence
interval and two points outside of the 2σ confidence interval. With regards to the river flow
in the Rhine-Meuse, the distribution of river discharge indicated that the Nieuwe Waterweg
discharges the largest part, followed by the Haringvliet. This was also found by Cox et al.
(2021). However, they did find an even larger contribution for the Nieuwe Waterweg. This
difference can be explained by the fact that the ‘Spui’ passage was not included in the current
study. This passage displaces approximately 20% of the total discharge from the Haringvliet
to the Nieuwe Waterweg, according to Cox et al. (2021).

The importance of a 2DV modelling approach was demonstrated for velocity asymmetry
and flood-to-ebb ratio. Velocity asymmetry (DFE) revealed an increase in asymmetry towards
the bottom of the channels. For the flood-to-ebb ratio, the opposite was found. Flood-to-ebb
ratio is particularly known for bedload transport of sediment, as was show by Aubrey (1986).
An overestimation of the flood-to-ebb ratio would have been discovered if a 1D model, which
only takes the surface current into account, or if a depth-averaged current had been used to
quantify the degree of asymmetry in peak flood and ebb current.

It should be noted that Rhine-Meuse is probably not comparable for most systems in the
world. Due to the geometrical proportions of the North Sea, a strong external M4 tide is
present in this network. Thus, the total M4 (the sum of internal plus external) is dominated
by the external M4. This implies that just by resolving the external M4 in this network, a
relatively good estimate can already be made for the total M4 tide without considering the
internal processes.

4.2 Decisions and assumptions in the model

During the process of developing an idealised model, decisions and assumptions are made that
simplify certain processes and neglect others. Some of those will be discussed in this section.

4.2.1 Model framework

When constructing a 2DV model, negligible variations in the lateral direction in the estuary
are assumed. In reality, lateral currents are present in estuaries, as shown analytically and
numerically by studies such as Huijts et al. (2009); Scully et al. (2009). A more accurate rep-
resentation here would be a 3D framework, however, this complicates the model drastically.
Furthermore, in reality, there are variations in the depth of each channel over distance. For
example, a channel may have a sloping bottom towards or away from a vertex point. Account-
ing for these variations in depth will also result in a more even transition between channels at
vertex points with less discontinuity in current velocities at these positions. However, includ-
ing depth variations in the model results in extra terms in the ODE for the waterlevel due to
the fact that H is now differentiable in x.

An simplified representation of the Rhine-Meuse has been used with three vertex points.
In actuality, there are still a number of other small passages and channels in the network that
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lead to additional vertex points. However, it was found in this study, that not including some
small channels did not have a major impact on the overall hydrodynamics in the network when
looking at the correlation with observations. This consideration is strengthened by the role
of the Nieuwe Merwede in the network. This channel acts as a passage between two vertex
points and shows relatively little change over distance for both the elevation amplitude as well
as the current velocity. An inference based on this observation would be, for example, that it
is pointless to build a dam in this channel considering the role of the tides here.

Bottom friction and turbulence are parameterized with constant values per channel. In
reality, the value of these friction parameters are different for each location in the horizon-
tal direction. Besides, eddy viscosity is also variable in the vertical direction and typically
expressed as a parabolic function, for instance, Burchard and Hetland (2010); Zitman and
Schuttelaars (2012) have studied this. This allows the vertical structure of the current veloc-
ity and thereby tidal asymmetry to be modelled more accurately. Additionally, eddy viscosity
is time dependent due to varying current velocities between flood and ebb. Av is generally
larger during flood than during ebb because of tidal straining (Simpson et al., 1990).

The influence of wind on tides was not included in this study. However, this does influ-
ence the tides locally. For example, an inland wind parallel to the horizontal direction in a
certain channel exaggerates high tide and attenuates low tide. Additionally, wind straining
in estuaries can be important for estuarine circulation, as was found by Lange and Burchard
(2019). Furthermore, this research focuses on the time-dependent part of Stokes, no-stress and
advection were examined. As was shown earlier in this report, also a time-independent part, a
so-called residual flow, of these processes exists. This residual flow is especially important in
the context of circulation patterns when considering the behaviour of the system for periods
longer than one tidal cycle.

4.2.2 Nonlinear processes

In addition to decisions in the framework of the model, there are several processes not included
in this study that generate overtides in estuaries. This concerns, for example, the already
mentioned transverse currents can also provide nonlinear tide generation, in the form of a
transverse contribution to the advection of momentum, as shown by Huijts et al. (2009). Also,
temporal variations in eddy viscosity during a tidal cycle results in tidal and gravitational eddy
viscosity-shear covariance circulation (ESCO), causing interactions between M2 tidal flow and
M2 eddy viscosity (Dijkstra et al., 2017b). These processes are not addressed if an eddy
viscosity constant in time is used. Furthermore, an estuary is stratified with layers of different
densities. This stratification is particularly driven by salt and temperature differences that
can be modelled by adding a baroclinic pressure term to the momentum equation, in addition
to the static pressure term. This results in a nonlinear contribution due to baroclinic pressure,
shown in, for example, Dijkstra et al. (2017a). Moreover, tidal flats are also known to be a
source of nonlinear tides. Typically ebb dominance occurs when tidal flats are flooded during
high tide and subsequently release this water during low tide (see: Speer and Aubrey (1985);
Friedrichs and Aubrey (1994)). Additionally, tidal flats can act as momentum sinks, as shown
by Alebregtse et al. (2012). Lastly, on this topic, the earlier mentioned river-tide interaction
has not been evaluated in this study. The river-tide interaction can be modelled through the
bottom stress, which is in this current study linearised. However, solving for each harmonic



Chapter 4: Discussion 44

component result in tidal distortion, as proven by Godin (1999).

4.3 Further work

This study demonstrated that a 2DV idealised model is capable of achieving meaningful results
for both linear and non-linear tides. The Rhine-Meuse is identified as a flood dominant system.
For future research, it is valuable to also test this identification in a sediment dynamics model.
Also, in view of the SALTI-solutions project, this model can be further extended to study
other ecological applications, such as phytoplankton or salt. The model has also been shown
to be useful for studying scenarios. For follow-up research related to water management, the
influence of, for instance, deepening or closing specific channels can be studied. Some model
choices and assumptions were explained in the previous subsection. Follow-up research can
reveal the exact influence of these assumptions and identify which sources of non-linearity
are relevant for this system. The most logical extension is an improved turbulence model,
in which the friction parameters include the various harmonic components and the river-tide
interaction, allowing this model to be applied accurately to systems with few or no monitoring
stations.
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This study concerns identifying the dominant internal mechanisms that contribute to the

internal generation of the M4 tide and subsequently examining how this internally generated

M4 tide compares to the externally forced M4 tide in rhw estuarine network. In doing so, the

type of tidal asymmetry resulting from the presence of these overtides in the system was also

investigated.

To study this, a 2DV semi-analytical idealized model was developed that allows for in-

dividual contributions to be easily examined and sensitivity studies to be quickly applied.

Two networks were examined here: an idealized three-channel network and the Rhine-Meuse

estuarine network. The chosen research questions are being addressed on the Rhine-Meuse

network. The findings show that for both systems, the model produces results for both the

M2 and the M4 are consistent with previous research or observations.

To address the first research question, the internal mechanisms causing internally generated

M4 tide has been examined separately in the Rhine-Meuse. This revealed that the divergence

of excess mass due to Stokes drift and then followed by the no-stress condition make the largest

contribution to the total internally generated M4 tide. Advection of horizontal momentum was

overall of less importance in this network.

To address the second research question, the externally forced M4 tide was determined and

compared to the internally generated M4 tide in the Rhine-Meuse network. Results showed

that the elevation amplitude for this external tide is a factor 5-15 times larger than the elevation

amplitude of the internally generated M4 tide depending on the position in the network. The

current amplitude of the externally forced M4 tide was found to be a factor 3-5 times larger

than the internally generated M4 current amplitude.

To address the third research question, in the Rhine-Meuse network, flood dominant be-

havior has been found as a consequence of the presence of overtides. Velocity and duration

asymmetry in this system have both been shown to be equally dominant in the upper part

of the estuary. However, a decrease in flood dominant duration asymmetry is observed as

the tide moves further inland. The flood-to-ebb ratio reveals both ebb and flood dominant

behavior. It is further shown that velocity asymmetry becomes more dominant lower in the

water column and flood-to-ebb ratio demonstrated higher values near the surface than near

the bottom. These findings demonstrate the importance of a 2DV model.

To address the fourth research question, the opening of one of the Haringvliet sluices

during flood and sea level rise have been conducted as sensitivity studies on the Rhine-Meuse

network. The results of opening one of the sluices shows a sharp increase in M2 and M4

elevation amplitude especially in the Haringvliet and Oude Maas, with maximum increases

of 11.6 and 3.0 cm, respectively. The M2 and M4 current velocities reveal a mix of increases
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and decreases at opening. Here the increase and decrease for the vast majority of the system

is ±0.10 m s−1 for the M2 and 0.01 m s−1 for the M4. A sea level rise of 2 meters in the

Rhine-Meuse leads to a maximum increase of 0.04 m/m SLR and 0.01 m/m SLR for the M2

and M4 elevation amplitude, respectively. For the M2 current amplitude an increase was found

overall, with maximum value of 0.06 m s−1/m SLR. The M4 current amplitude shows increases

and decreases in the range of ±0.01 ms−1/m SLR. Furthermore, the results indicated that

opening of the one of the Haringvliet sluices generally increases the phase speed of the M2 tide

in the landward direction and a decrease of phase speed, on the other hand, was found for the

scenario of 2-meter SLR.
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A.1 Leading order full solution

The non-dimensional equations of motion for the leading order read

∂u0
∂t

= −
∂η0
∂x

+ Âv
∂2u0
∂z̃2

, (A.1)

∂u0
∂x

+
∂w0

∂z
−

Ltide

lb
u0 = 0, (A.2)

∂η0

∂t̃
+

∂

∂x̃

∫

0

−H

u0dz̃ −
Ltide

lb

∫

0

−H

u0dz̃ = 0, (A.3)

The leading order equations allow the following solutions for u02, w02 and η02:

(u02, w02, η02) = ℜ{(û02, ŵ02, η̂02)e
−it}, (A.4)

where ℜ. represents the real part of the variables. Substituting these expressions in the mo-
mentum equation removes the time dependence and transforms it into an ordinary differential
equation (ODE) with only a spatial dependence, as:

− iû02 = −g
∂η̂02
∂x

+Av
∂2û02
∂z2

, (A.5)

The general solution of equation A.5 is:

û02 = C1e
γz + C2e

−γz −
ig

ω

∂η̂02
∂x

(A.6)

where γ =
√

−iω/Av. The solution to this equation can be found by applying boundary
conditions in the vertical. The first boundary condition simplifies the equation as:

û02 = C cosh γz −
ig

ω

∂η̂02
∂x

(A.7)

Now, applying the second boundary condition in the vertical gives the full expression for the
leading order horizontal velocity:

û02(x, z) =
ig

ω

∂η̂02
∂x

(α cosh (γz)−H) , (A.8)
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where α = sf (Avγ sinh (γH) + sf cosh (γH))−1. The solution for ŵ02 is found by substituting
A.8 in the continuity equation, integrating over z and by making use of the second boundary
condition at z = 0:

ŵ02(x, z) = −
ig

ω

(

α

γ
sinh (γz)− z

)(

∂2η̂02

∂x2
+

1

lb

∂η̂02

∂x

)

− iη̂02 (A.9)

The second boundary condition at z = −H transforms the solution for ŵ02 in a ODE for η̂02:

∂2η̂02

∂x2
+

1

lb

∂η̂02

∂x
−

ω2

g
(

α
γ
sinh (γH)−H

) η̂02 = 0 (A.10)

This equation has the general solution of the form:

η̂02(x) = A1e
k1x +A2e

k2x (A.11)

The wavenumbers k1 and k2 are the roots of the ODE in η̂02 and given by:

k1,2 =

−
1
lb
±

√

(

1
lb

)2
+ 4ω2

α
γ
sinh (γH̃)−H̃

2
(A.12)

Now with the use of the boundary condition in the horizontal direction at the seaward side, it
follows that A1 +A2 = ZM2

. From the boundary condition at x = 0, it follows that ∂η̂02
∂x

= 0.
This leads to the following algebraic expressions for the constants A1 and A2:

A1 =
k2

k2ek1L + k1ek2L
,

A2 = −
k1

k2ek1L + k1ek2L
.


