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Abstract 
 
A rare disease is an illness that affects less than one in every 2,000 individuals. There are more than 
6,000 recognized rare diseases in the European Union. Collectively, rare diseases affect thirty million 
people in the European Union. Many doctors do not have sufficient experience and knowledge to 
diagnose such a diverse and rare group of diseases. As a result, rare disease patients often wait for 
years before receiving a definite diagnosis. Electronic health records of diagnosed patients can guide 
the diagnosis process of current and future rare disease patients. However, extracting relevant clinical 
information from millions of EHRs is challenging, especially when most diagnosis information is 
recorded in unstructured texts. Different clinicians may use different terms to describe the same 
disease and symptoms. Additionally, contexts, such as negation and cues for familial history, may 
affect diagnosis interpretation. BERT is one of the current state-of-the-art natural language processing 
(NLP) models that have been shown to understand linguistic contexts and perform NLP tasks well. This 
review aims to explore how BERT can improve rare disease diagnosis by processing clinical notes in 
EHRs. The ability of BERT to learn contextualized embeddings from data helps it to identify important 
words for rare disease diagnoses, such as symptoms and clinical signs, reliably. Additionally, BERT can 
also predict the most probable diagnosis given all information recorded in clinical notes. This 
information can help doctors restrict their diagnosis search space and expedite the diagnosis process 
of rare diseases. The use of contextualized embedding also allows BERT to be trained with imperfect 
labels in the fine-tuning phase. This skips the need to use labeled rare disease datasets for BERT fine-
tuning process. BERT shows potential to be used in diagnosis support. However, class imbalance and 
limited training data for certain diseases must be sorted to improve BERT performance further.  
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Laymen Summary  
 
A rare disease is a health condition that affects less than one in every 2,000 individuals. It is a term 
used to describe a wide range of diseases, including but not limited to cancer, developmental issues, 
and neurological disorders. There are more than 6,000 rare diseases recognized in the European Union 
(EU). Each of these rare diseases may only affect a few individuals, but collectively they affect about 
thirty million people in the EU alone. These people often wait for years before getting a definite 
diagnosis due to the rarity and heterogeneity of their disease. The lack of knowledge and experience 
to diagnose rare diseases among doctors is one of the causes of the delay. Doctors cannot remember 
the symptoms of thousands of diverse diseases by heart. Doctors need a support system that can help 
them recognize signs of rare diseases quickly. 
 
Electronic health records (EHRs) of patients diagnosed with rare diseases can guide future diagnosis. 
They contain information regarding symptoms or signs that could be associated with rare diseases. 
However, extracting relevant clinical information from millions of EHRs is challenging, especially when 
most diagnosis information is documented in unstructured clinical notes. Doctors or nurses can use 
abbreviations or multiple synonyms to describe the same symptoms or diseases in clinical notes. As a 
result, we cannot extract relevant information from EHR accurately unless we know all possible 
abbreviations, synonyms, and potential errors in typing. Additionally, we must differentiate correct 
diagnoses from negated diagnoses and family history. In other words, context matters in extracting 
clinical information from EHRs. 
 
Natural language processing (NLP) allows computers to learn and understand human language. BERT 
is a state-of-the-art NLP model that has been shown to extract information from texts reliably. In fact, 
the biggest search engine on our planet uses BERT to understand our queries and return better search 
results. BERT is so popular and reliable because it can generate mathematical representations of 
words that carry contextual and usage information. This review aims to explore how BERT can improve 
rare disease diagnoses. The ability of BERT to understand context allows it to identify important terms 
for rare disease diagnoses, such as symptoms and clinical signs, reliably. Additionally, BERT can also 
predict the most probable diagnosis given all information recorded in clinical notes. This information 
can help doctors restrict their diagnosis search space and expedite the diagnosis process of rare 
diseases. However, it has to be noted that BERT does not predict all rare diseases equally well. 
Extremely rare diseases often do not have enough documents to train BERT properly. Therefore, they 
are more likely to be misclassified.  
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Introduction 
 
Rare diseases are a diverse set of diseases that affect millions of people every year. In the European 
Union (EU), rare diseases are defined as illnesses that affect less than 1 in every 2,000 individuals  (1). 
Each rare disease may affect a few individuals, but collectively rare diseases can pose a substantial 
challenge to society. Currently, there are more than 6,000 recognized rare diseases reported in 
approximately thirty million people in the EU  (1). As many as 50% of these people do not have a 
diagnosis for their conditions at the moment  (2). Diagnosing individuals with rare diseases is 
complicated due to limited knowledge and expertise  (3,4). Many doctors may never encounter the 
majority of rare diseases throughout their practice. A survey of the Orphanet database, a curated 
database of rare diseases, revealed that 84.5% of rare diseases are present in less than one individual 
per 1,000,000  (3). Due to the heterogeneity and paucity of rare diseases, some patients may receive 
at least one misdiagnosis and wait between 4 and 5 years before getting a diagnosis (5,6). The delay 
may result in decreased quality of life and shortened life expectancy as care could be postponed until 
patients receive definite diagnoses  (2,6). Assisting doctors in recognizing patterns and identifying 
symptoms of rare diseases can expedite diagnosis process (6). This means that patients can receive 
crucial treatments earlier. 
 
Most visits to physicians generate clinical documents that reflect one’s medical history. Electronic 
health records (EHR) contain a wealth of information regarding the physical conditions and complaints 
of an individual. The records may contain clinical notes, laboratory test results, images, and treatment 
plans. Extracting information from these records may help us identify the phenotypes associated with 
rare diseases. However, most information is documented in an unstructured manner  (7). Clinicians 
use narratives to describe observed phenotypes, diagnoses, and treatment processes  (7). These types 
of data are not directly machine-readable or -computable  (7). Information from the texts must be 
extracted and made into structured data to be statistically tested. However, this conversion task is not 
straightforward either. Word extraction programs must be able to differentiate negated diagnosis or 
family history from the diagnosis of patients  (8). In other words, the tool must capture the relationship 
between disease name and other linguistic components accurately to extract information from EHRs 
reliably.  
 
Computers use mathematical models to learn patterns from data. This pattern-learning ability of 
computers can be defined as machine learning. Natural language processing (NLP) is a branch of 
machine learning that focuses on the analysis and understanding of human language  (9). NLP models 
have been integrated into virtual assistants on mobile phones and search engines to understand the 
queries of users. Bidirectional Encoder Representation from Transformer (BERT) is a state-of-the-art 
NLP model  (10). BERT employs an artificial neural network, called a transformer encoder, to learn the 
relationship between each word in a sequence and understand language (10,11). The understanding 
of the relationship between words can help BERT incorporate linguistic meaning into its numerical 
representation of words.   
  
General NLP methods, including BERT, can be repurposed to study massive amounts of EHRs. Mining 
information from EHRs may improve rare disease diagnosis by assisting doctors in recognizing 
symptoms and patterns associated with rare diseases. However, some modifications may be 
necessary for the general NLP models to mine EHR data reliably. This literature study aims to explore 
how NLP, specifically BERT, can support rare disease diagnoses based on historical EHRs.   
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Overview of BERT-based method 
 
BERT background  
  
People typically interact with search engines using the language that they use regularly. They can make 
queries by writing a sentence without following any set of rules. Computers behind the services must 
be able to interpret the queries accurately to return the answers that users expect. BERT was created 
by Google Artificial Intelligence (AI) researchers to improve computer understanding of human 
language  (10). BERT is based on an artificial neural network model called transformer encoder (10,11). 
Encoder learns the meaning of a word by capturing contextual information associated with it in a text  
(7). The context in this setting can be understood as the usage patterns and relevance of other words 
in a text to the interpretation of a word of interest  (7). 
 
BERT-based workflow 
 
BERT model refers to the stacks of transformer encoder layer that learns language representation. 
However, the overall BERT method involves multiple data processing stages (Figure 1). The process 
begins by tokenizing texts or splitting sentences into individual words or sub-words (Figure 1, the 
second box from the bottom). The tokenization process is followed by initial embedding assignments. 
Embeddings are numerical representations of a word that contain information about its usage pattern  
(7). In the base-BERT model, token embeddings, segment embeddings, and position embeddings are 
summed up to create an initial numeric representation of words in a sentence. Encoder layers 
incorporated context into the initial embeddings to better represent the meaning of words in a text. 
The output of the final encoder layer can be passed to a specialized layer that performs specific tasks, 
such as text classification.  
 

 
Figure 1. Overview of base-BERT method. The main steps are tokenization, initial embedding assignment, adding context to 
embeddings with encoders, and performing specific NLP tasks. The figure is adapted from Devlin et al. and Vaswani et al.  
(10,11). 

 
BERT uses numerical embedding to represent words in a text 
  
Computers do not process words or texts exactly as humans do. Words must be represented as 
numbers for computers to process. Embeddings are numerical values that represent the usage pattern 
and meaning of words in a text to computers (7). The process of assigning numerical representation 
of words begins with tokenization. Tokenization is a process of splitting sentences into smaller 
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functional components. BERT uses WordPiece tokenization that separates texts into sub words or 
morphemes, the smallest meaningful items in languages  (12). Morphemes include prefixes or suffixes 
that can modify the meaning of a base word. BERT also adds a [CLS] token at a beginning of a text and 
a [SEP] token after every sentence  (10). [CLS] tokens are added to contain numerical representations 
of the whole input text  (10). The [SEP] tokens define where sentences end in the text (10). In the base-
BERT method, the sum of three embeddings is used as an initial representation of a token  (10). BERT 
uses pre-calculated WordPiece embeddings for its initial token embedding (10,12). Positional 
embedding represents the order of words in a sentence (10). Segment embeddings imply the border 
of two sentences  (10). In practice, the initial embeddings can be replaced with embeddings that 
contain relevant information for the model purposes, such as age or gender in EHRs. The summed-up 
initial embeddings are updated by the encoder layers to better capture the meaning of words in the 
input text. 
 
Contextualizing initial embeddings with multi-head self-attention layers 
 
Language is complex with many components that interact together to convey information accurately. 
Self-attention learns the usage patterns of words in a text to infer contextual information associated 
with words, phrases, or sentences  (7). The multi-head self-attention layers in BERT improve the 
context-learning process further by focusing on multiple syntactic and semantic components of a 
language simultaneously  (14). Figure 2 shows an example of different linguistic relationships that 
multi-head self-attention layers can capture. The blue self-attention head was able to capture the 
relationship between a verb (sat) and a subject (the cat). The brown self-attention head learned 
identified connections between a verb (sat) and a positional phrase (on the mat). The concatenated 
output values from all attention heads represent the interpretation of the word “sat” in the context 
of “the cat sat on the mat”. The ability of multi-head self-attention layers to capture different 
relationships at the same time allows BERT to assign contextualized embeddings that assist computers 
in interpreting words in a text more accurately.  
 

 
 
Figure 2. Different attention heads can focus on different words in a sentence. The image shows blue and brown attention 
head. The color intensity represents the relevance of words on the right to the word “sat” on the left. Darker color indicates 
greater relevance. Retrieved from (13). 

 
Pre-training and fine-tuning of BERT models 
 
Pre-training and fine-tuning are the two main stages in BERT implementation  (10). In the pre-training 
stage, BERT is trained to recognize a language model and the general relationship between words. The 
pre-training process involves predicting masked words and sentence order  (10). The fine-tuning stage 
allows pre-trained BERT models to perform specific NLP tasks, such as named entity recognition and 
text classification. This flexibility is achieved by adding a task-specific layer after the encoder stacks. 
The fine-tuning stage can improve the performance of BERT in various NLP tasks by changing training 
data and adjusting some layers in the complete model.  
 
BERT models learn syntax and semantics associated with languages in the pre-training stage  (10,14). 
A large amount of training data is necessary in this stage to make sure BERT captures syntax and 
meaning associated with a language accurately (10). Masked language model (MLM) and next 
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sentence prediction (NSP) tasks train BERT to capture the relationship between words and sentences 
(10). In the MLM training task, a fraction (commonly 15%) of tokens in the training have an 80% chance 
to be replaced with [MASK] token, 10% chance to be replaced with random tokens, and 10% chance 
to be unchanged. The MLM task trains BERT to understand word context in a bi-directional manner 
by predicting the masked tokens from other tokens that come after and before the masked terms(10). 
Bidirectionality is important as the interpretation of a word relies on contexts provided by words that 
come after and before it in a sentence  (10). The NSP tasks are very different from MLM tasks. In NSP 
tasks, BERT is trained to predict if a sentence follows a selected sentence in the input text (10). This 
training helps BERT to understand the contexts involved between sentences.  
 
Unlike the pre-training phase, fine-tuning phase requires labels to train a BERT model. The training 
data and its associated labels must be tailored to tasks that need to be performed. A task-specific layer, 
such as a classifier layer, can be added after the top-most encoder layer in the fine-tuning stage  (10). 
The weights in some layers of BERT models could be adjusted to perform specific tasks. During the 
pre-training stage, BERT layers are specialized to identify masked tokens  (15). The fine-tuning phase 
allows users to create a specialized BERT workflow that performs NLP tasks, other than MLM  (15). For 
instance, fine-tuning would allow BERT to identify word categories and classify texts. Fine-tuning stage 
typically conserves the language model that BERT learns but adjusts the top layers that are more 
specialized to perform MLM tasks  (15). Because pre-trained BERT models are already aware of general 
contexts associated with a language, BERT fine-tuning can be done with a smaller amount of data. 
However, fine-tuning cannot improve the performance of a pre-trained BERT model if the task involves 
texts from different domains  (15).   
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Weak supervision to improve BERT training 
 
Labels are important in fine-tuning BERT to classify texts or recognize concepts, such as diseases and 
disorders, in clinical narratives. Traditionally, experts label data manually to make gold-standard 
training or test datasets. However, obtaining such labels for millions of EHRs is impractical and time-
consuming  (16,17). As a compromise, weak or imperfect labels can be assigned to training examples 
based on a set of rules  (16,17). Domain experts can determine the relevant set of rules to label texts. 
Additionally, medical ontology can be utilized in training BERT for concept recognition in EHRs  (17). 
An ontology represents a word or concept with types and relationships with other concepts. Based on 
this relationship, words or tokens in the training dataset can be assigned a supergroup or concepts, 
such as diseases or organs.  
 
Training models with imperfect labels is often referred to as weak supervision (Figure 3). The process 
starts with annotating texts with multiple labeling functions (Figure 3). These functions are built based 
on rules defined by domain experts or knowledge bases, such as ontologies. Majority vote or 
probabilistic model can be used to aggregate the labels. Majority vote simply selects labels that are 
supported by the most labeling functions. However, this approach can be erroneous because both 
accurate and erroneous labeling functions have equal influence (17). The use of a probabilistic 
aggregator would be a better option. A probabilistic aggregation function determines the most 
probable label by estimating the accuracy of all labeling functions in all training data points  (17,18). A 
label is considered to be correct if it is agreed by most labeling functions  (18).  The probabilistic 
aggregation function assigns more weights to labeling functions that are correlated with the majority 
vote at each data point but not strongly correlated with other labeling functions  (18).  
 

 

Figure 3. Weak supervision workflow. Multiple labelling functions are used to annotate text based on domain knowledge. 
The labels are then aggregated and used for machine learning training. Adapted from Lison et al. (16) 

 
Labeling functions can essentially perform various NLP tasks themselves. However, this approach is 
undesirable as the functions may lack generalizability (18). Labeling functions that are based on 
heuristics, dictionaries, or domain knowledge may miss information due to erroneous spellings, 
abbreviations, or word choices in the text. BERT is less affected by these issues due to its use of 
contextualized embeddings. The embeddings that BERT assigns to words with similar meaning and 
usage should have similar values (10,17,18). For instance, all synonyms and abbreviations of a word 
should have comparable values in their embeddings. This flexibility could help BERT learn additional 
rules and classify more EHR documents despite the imperfect labeling functions. 
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Supporting rare disease diagnosis with BERT and weak supervision 
 
The majority of clinical information of patients diagnosed with rare diseases is contained within clinical 
narratives. Doctors can describe symptoms, family history, and diagnosis journey more extensively 
with narratives than pre-defined sets of code. However, extracting relevant information from clinical 
narratives accurately can be challenging. Context matters in extracting information from narratives, 
especially when the diagnosis of rare disease patients may change. False positives can make up to 70% 
of rare disease queries from EHRs without taking negation and family history cues into account  (8,19). 
The importance of context is where the ability of BERT to generate contextualized embeddings may 
help in improving information extraction from EHRs of rare disease patients. 
 
Pre-trained BERT model can generate word embeddings that better capture contexts surrounding 
disease mentions  (20). However, the numbers contained within BERT embeddings are not meaningful 
to doctors in clinical settings. The embeddings produced by the encoder stacks must be passed to a 
classifier to convert all mathematical vectors into meaningful information for physicians. The 
translation process can involve named entity recognition (NER) or text classification. In NER tasks, NLP 
models identify words or terms that convey certain concepts (7).Text classification tasks determine 
which rare disease is the most probable given the clinical text supplied to the model.  
 
People use certain groups of words to describe certain concepts in communication. In supporting rare 
disease diagnosis, NER can be trained to identify terms that describe rare diseases, disorders, and 
symptoms. Doctors can then identify documents that mentions certain diseases or disorders names 
more easily. Segura-Bedmar et al. attempted to identify rare disease names from texts that describe 
diseases (20). BERT performed well with an F1 score of 0.8526 for rare disease term identification  (20). 
The author suggested that BERT could achieve such a high F1 score due to its use of contextualized 
embeddings  (20). This result indicates that with the right training data and labels, BERT should be able 
to identify rare disease mentions in text reliably. 
 
Clinical text classification can help doctors to narrow down possible diagnoses for the patients. The 
classification (CLS) token is a special token in BERT that contains aggregated numerical representation 
of sentences or texts  (10). This value can be extracted and passed to a classifier layer on top of the 
BERT encoder layers. Classifiers are trained to learn patterns from data and assign a label to it. In 
supporting rare disease detection, classifiers assign the most probable diagnosis to a clinical text based 
on its CLS embeddings. Li et al. used BERT with a classifier layer to predict rare diseases from two sets 
of clinical texts written in Chinese  (21). The model had an F1 score of 0.9 when there were about 200 
training documents for a disease  (21). However, the F1 score dropped below 0.6 when there were 
less than 50 training examples available for a disease  (21). The result indicates that BERT with a 
classifier layer can reliably diagnose rare diseases from clinical notes given that the model is trained 
with enough data.  
 
Labels are necessary for fine-tuning BERT models to recognize rare disease terms or predict the most 
probable diagnoses from input clinical notes. When manual labels are not available for training, then 
weak labels can be assigned to the training data for rare disease prediction or recognition  (18). 
Multiple labeling functions can be created with different rules to maximize the amount of labeled 
training data. In addition to expert opinions, knowledge bases can be used as a source of labeling rules. 
For instance, mentions of symptoms reported on Orphanet could be a sign of a rare disease  (22). A 
study used BERT with weak supervision to identify terms that describe COVID19-related disorders 
from 2,500 clinical notes (17). The author labels disorder terms based on dictionaries, regular 
expression, heuristics, and terms mentioned in medical ontologies  (17). Surprisingly, the weakly 
supervised BERT performed slightly better than the fully supervised BERT in recognizing disorders from 
clinical notes. The F1 score for weakly supervised BERT was 1.5 points higher than that of the fully 
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supervised variant  (17). This result indicates that the BERT training process is quite robust to imperfect 
labels, possibly due to its use of contextualized embeddings that give similar values to similar words. 
The same approach could be implementable in training BERT models to identify rare disease terms or 
predict diagnoses from clinical texts. 
 
Opportunities to implement BERT for rare disease diagnosis support 
 
Publicly available BERT models can be used as a basis to build BERT model for rare disease EHRs quickly 
 
Training of machine learning models, such as BERT, may require a large amount of data. This 
requirement is difficult to fulfill in tasks involving rare diseases due to the extreme rarity of some 
diseases. Fortunately, contexts learned from general EHR data during pre-training can be transferred 
to rare disease classification tasks  (10). Transfer learning allows pre-trained models to be adjusted to 
perform new tasks quickly with fewer training data. Less data is required because most relationship 
between medical terms has been learned during pre-training. Multiple pre-trained biomedical BERT 
models have been made available to the public. BioBERT, Med-BERT, and BEHRT are examples of 
biomedical-specific BERT models that perform NER or classification tasks on biomedical data well  (23-
25).  
 
BioBERT was pre-trained on PubMed abstracts and PubMed Central (PMC) articles (24). Despite the 
similarity in architecture, BioBERT performs better than base BERT in identifying disease names from 
texts. BioBERT showed a 3.73 increase in F1 score compared to base-BERT in identifying disease names 
from the NCBI disease dataset that contains 793 PubMed abstracts with disease annotations (26). The 
improvement in performance results from improved context understanding of biomedical concepts, 
such as genes and mutations. Fine-tuning failed to improve the performance of base-BERT on the NCBI 
disease dataset due to differences in word distribution between biomedical texts and general texts 
used to pre-trained base-BERT(24,26). Changing or adding pre-training data can improve BERT 
performance in domain-specific texts, such as EHR.  
 
Med-BERT was created to predict disease from, among others, diagnoses codes, recorded treatments, 
laboratory results, and frequencies of certain events  (23). Med-BERT was pre-trained on the Cerner 
Health Facts database with de-identified EHRs from 600 hospitals or clinics in the United States  (23). 
The database contains various structured data associated with patients, such as demographics, 
treatment records, lab results, and diagnosis codes  (23). In the pre-training process, Med-BERT tried 
to predict a masked diagnosis code from each patient  (23). The authors reported that Med-BERT was 
able to predict diagnosis codes with an AUC of between 79.98 to 85.18%  (23). This value means that 
Med-BERT was able to predict disease from data well.   
 
BERHT is a variant of BERT that uses previous diagnoses of patients to predict conditions that may 
arise in the next visit  (25). BEHRT was trained and evaluated using care data recorded by 674 general 
practitioners in the United Kingdom  (25). A sentence in BEHRT training is defined as all diagnoses 
recorded in a visit  (25). It uses diagnosis code embeddings, age embeddings, positional embeddings, 
and segment embeddings to represent input texts  (25). The model was trained to predict possible 
diagnoses of patients in their future visits  (25). Impressively, BEHRT was able to achieve an AUC of 
95.4% for the disease prediction task  (25). This value shows that BEHRT is excellent in predicting 
future diseases from historical EHRs of a patient.  
 
BioBERT, Med-BERT, and BEHRT performed disease recognition and disease prediction tasks well. This 
means that the models can recognize the concepts that are important in EHRs. In theory, these models 
can be fine-tuned to identify diseases or predict diagnoses from EHRs of rare disease patients. Because 
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they have been performing well in their benchmarks, repetition of the pre-training process should not 
be necessary. 
 
Publicly available knowledge bases are usable in weak supervision  
 
Labeling functions for weak supervision can be built based on information contained within knowledge 
bases  (18). Biomedical resources for rare diseases, such as ontologies, are easily accessible on the 
internet. Human Phenotype Ontology (HPO) and Orphanet contain the symptoms or signs and names 
of rare diseases  (22,27). This information contained within these ontologies can be used to create 
weak labels for BERT fine-tuning.  
 
Genetic test for rare diseases can help monitor BERT performance 
 
Genetic testing is recommended for patients that are suspected to suffer from rare diseases (4,5). 
Genetic testing is necessary because approximately 80% of rare diseases are associated with genetic 
alterations (4). BERT models can help identify rare disease patients who are eligible for genetic testing. 
The genetic test results can then confirm or contradict the diagnoses predicted by BERT or other 
classifiers. If the proportion of diagnosis that are supported by genetic testing drops below a threshold, 
then BERT should be re-trained with old and new EHRs.  
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Suggestions for implementing BERT in rare disease diagnosis 
 
Solve class imbalance issue to minimize prediction bias 
 
Previous studies on propaganda detection with BERT indicated that BERT is quite robust to class 
imbalance  (28). In that study, 28% of the entries in the training dataset were labeled as propaganda  
(28). BERT was able to achieve F1 score of 0.78 without any modifications to the training data  (28). 
However, class imbalance can be extreme in rare disease diagnoses. The frequency of a rare disease 
can range from less than 1 case per one million to approximately one case per 2 thousand individuals  
(3). The extreme class imbalance would cause BERT model to favor diseases with larger sample sizes. 
If the class imbalance issue is not addressed, less frequent rare diseases are more likely to be classified 
incorrectly. 
 
The proportion of rare diseases in BERT training data could be made more equal by super-sampling 
minority labels and under-sampling majority labels. Under-sampling randomly excludes some samples 
with more common labels from training data  (28). Super-sampling means that the training process is 
repeated for some samples in the minority class  (28). Additional training data can also be generated 
for rarer diseases by data augmentation. Data augmentation can create copies of EHRs with slight 
modifications. The modification can include replacing words with their synonyms, reordering words 
in a sentence, inserting synonyms randomly, and deleting random words in the text  (29). Data 
augmentation may introduce noise, especially in shorter sequences  (29). Therefore, the number of 
modifications in data augmentation must be scaled with the length of a sentence (29). 
 
Adjustment of cost functions can be an alternative to data resampling and data augmentation. Cost 
functions are used to assess the performance of BERT during its training process. In model training, 
weights in models are updated to minimize the value produced by the cost function. Cost functions 
can be modified to give heavier penalties when less common classes, such as rarer diseases, are 
classified incorrectly  (28). This would force classifiers to adjust their weights and improve the 
classification of rare classes, achieving a similar outcome to data resampling  (28).  
 
Data imbalance can inadvertently introduce bias in classification tasks. Classifiers are inclined to assign 
clinical notes of exceedingly rare diseases to larger classes. There exist multiple strategies to improve 
BERT training when data is imbalanced. Depending on the dataset properties and tasks, a strategy 
might improve classifier performance more than the others. Performance metrics, such as the F1 score, 
should be checked to select the most appropriate approach to dealing with class imbalance. 
 
Include structured data in the diagnosis/prediction process 
 
Electronic health records are not limited to clinical notes written by doctors. They may contain 
laboratory test results, medication lists, billing codes, and other structured data. These types of data 
can complement the information extracted from clinical notes in predicting rare diseases from data. 
Combining both structured and unstructured data from EHRs may improve the predictive power of 
the BERT classifier layer.   
 
Complement BERT with rule-based approach 
 
Doctors may write measurements, such as blood pressure and heart rate, on clinical notes. 
Measurements can be useful predictors of rare diseases. Unfortunately, it has been reported 
previously that BERT struggles in generating an accurate representation of numbers in texts  (30). BERT 
uses WordPiece tokenizer to split sentences into individual tokens or sub words  (10,12). 
Unfortunately, the tokenizer can also split identical numbers into multiple different sub words, 
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resulting in inaccurate data representation  (30). In this case, rule-based approach, such as regular 
expression, can complement BERT in extracting information from different types of data in EHRs. 
 
Inter-institutional agreement is necessary to reduce the need for re-training 
 
Electronic health records are often not centralized and standardized. Each institution, country, and 
field can have its preferred EHR program, format, and diagnosis code  (31). Such fragmented data 
could limit the transferability of BERT and other machine learning models  (31). BERT can only 
recognize patterns that are present in their pre-training datasets. If different institutions use different 
jargon or codes, then BERT accuracy will fall because it does not recognize the terms. BERT may have 
to be re-trained for it to learn the contexts of the new terms. Repeating the pre-training process in 
different institutions can be computationally costly and lengthy  (10). Therefore, agreeing on a format 
or a set of diagnosis codes can improve the transferability of BERT and speed up BERT setup in 
different institutions.  
 
Label extremely rare disease examples with disease groups instead of disease name 
 
Rare diseases have a wide range of frequency in the population. More than 80% of rare diseases are 
extremely rare with less than one case in a million individuals  (3). It would be difficult for BERT to 
perform classification tasks on these diseases due to minimal datapoint available for training. It has 
been shown previously that the BERT F1 score dropped below 0.5 for diseases with less than 5 training 
documents  (21). For these diseases, it might be safer to label such cases with disease groups instead 
of specific disease names until more data becomes available. This approach might be able to minimize 
spurious disease prediction by BERT. Medical ontologies can be used as a reference as they contain 
parent-child relationships between disease groups and disease names. When data is insufficient for 
fine-grained separation, a weak label can be taken from a higher level in the hierarchy.  
 
Regular retraining might be required for BERT to help in diagnosing novel rare diseases 
 
Classification models are limited by labels supplied during their training. In other words, they can only 
assign diseases that they have seen in their training datasets. This could be an issue with rare disease 
diagnoses as it has been approximated that there are between 250 to 280 new rare diseases identified 
annually  (32). The estimated number of new rare diseases discovered annually highlights the 
importance of regular performance monitoring and model re-training. If accuracy falls below a 
threshold, then BERT should be retrained from scratch. 
 
Report multiple predicted diseases 
 
Individuals with the same rare disease can present different symptoms  (2,20). It is also possible for 
rare diseases to have overlapping symptoms with other illnesses  (19). It is therefore recommended 
for BERT to report multiple diagnoses and their probabilities. Doctors can investigate the list of 
probable diseases further and confirm diagnoses based on their observations and knowledge.  
 
Generate visualization 
 
Doctors cannot easily decode the calculations behind the result given by BERT models. There could be 
hundreds or thousands of weights and parameters used by BERT to perform NLP tasks. The attention 
visualization (Figure 2) may show which tokens or words are relevant to the contextualized 
representation of a rare disease mention. However, it should be interpreted with care as it is merely 
based on the usage patterns and relationship between words in a text.   
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Conclusion 
 
Many people with rare diseases must wait four to five years before receiving a diagnosis. In theory, 
EHRs of patients diagnosed with rare diseases can help guide the diagnoses of current and future 
patients. However, clinical information from EHRs cannot be retrieved easily as it is contained in 
unstructured clinical narratives. Computers must be able to understand contexts, such as negation 
and family history cues, to minimize false positives in information retrieval. BERT can be pre-trained 
to capture linguistics contexts with its multi-head self-attention layer and create contextualized 
embeddings of words. The benefit of using contextualized embeddings is apparent in the success of 
BERT in retrieving and predicting rare disease mentions from texts. The use of contextualized 
embedding also allows BERT to be trained with imperfect labels in the fine-tuning phase. This skips 
the need to have manually labeled rare disease datasets to fine-tune BERT. BERT shows great potential 
in improving rare diagnoses, especially in helping doctors retrieve relevant information from historical 
EHRs and reducing their diagnosis search spaces. However, class imbalance and data quantity issues 
may hurt the performance of BERT-based methods in identifying extremely rare diseases from clinical 
texts. 
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