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Abstract 

Introduction: Online adaptive radiation therapy (ART) relies on high-quality in-room volumetric imaging. Conventional linear 

accelerators (linac) are generally equipped with onboard orthovoltage cone beam computed tomography (CBCT) systems. Due 

to their suboptimal image quality, however, their use is limited to patient positioning tasks. Deep learning-based methods can 

potentially generate synthetic-CTs (sCT) directly from CBCT projection data, and enable CBCT-based online ART to be 

brought to conventional treatment delivery systems. Designed for solving inverse problems, invertible recurrent inference 

machines (iRIM) can be considered a suitable candidate for this task. To this end, the feasibility of using iRIM frameworks for 

CBCT image reconstruction is examined in this work. 

Materials & Methods: 2D and 3D iRIM models were implemented and trained on datasets composed of CBCTs from sixty-

two head and neck patients who underwent head and neck image-guided radiation therapy (IGRT). In the 2D models, the CBCT 

inverse problem was approximated as a parallel-beam CT, while in their 3D counterparts, a CBCT geometry was emulated. In 

parallel, trainings using sparse CBCT data were performed on both 2D and 3D models by applying two-fold and four-fold 

reductions in acquisition angles. Utilizing the structural similarity index measure (SSIM) as a metric, the performances of the 

trained models were evaluated and subsequently compared using the paired Mann-Whitney U test. 

Results: The 2D and 3D iRIMs respectively achieved SSIMs (mean ± std) of (0.96 ± 0.02) and (0.94 ± 0.04) in the case of the 

complete CBCT acquisitions. The two-fold and four-fold reduction in acquisition angles yielded (0.94 ± 0.04) and (0.93 ± 0.05) 

for the 2D iRIM, and (0.93 ± 0.05) and (0.92 ± 0.05) for the 3D iRIM, respectively. In all cases, the performances of the 2D 

iRIMs were superior to their corresponding 3D ones, with the differences not being found significant. 

Conclusion: iRIMs can be used for CBCT reconstruction in 2D and 3D cases, even for undersampled acquisitions. This makes 

iRIM an excellent candidate to obtain high-quality CT-grade reconstructions from CBCT data, and potentially bring online 

ART to conventional clinical linacs. 

 

 

Keywords: adaptive radiotherapy, cone beam computed tomography, image reconstruction, deep learning 

 

Introduction 

Since the inception of the therapeutic potential of ionizing 

radiation in 1896 [1], [2], radiation therapy (RT) has 

progressively become one of the most important treatment 

strategies for oncological disorders. Globally, 50% of cancer 

patients receive RT as part of their treatment [3]. The most 

common RT delivery system is the electron linear accelerator 

(linac), with over 10,000 currently in use worldwide [4]. 

Adaptive RT (ART) [5] is a process in which irradiation 

treatment plans are adapted to anatomical or functional 

variations based on regular imaging [6]. Patient-specific 

variations can be of physiologic origins, such as organ 

deformation, filling change, respiratory and peristaltic motion 

[7], or they can be radiation-induced, such as tumor shrinkage, 

weight loss, and morphological changes in organs [8]. 

Adapting the original treatment plan to address these changes 

maximizes the dose delivered to the target and minimizes the 

treatment-related toxicity while sparing the organs at risk 

[7].These characteristics have been linked to a lower risk of late  

 

 

 

complications and the potential to improve disease-free 

survival [8]. 

Treatment replanning, dose calculations, and patient-

specific quality assurance performed in ART require high-

quality volumetric imaging, which can take place at multiple 

time points throughout a treatment that might take weeks. In 

offline ART, treatment replanning takes place between 

treatment fractions using computed tomography (CT) or 

magnetic resonance imaging (MRI) scans. This method mainly 

addresses systematic and progressive variations due to the 

elapsed time between imaging and treatment delivery [7]. 

Adaptations in online ART take place immediately before the 

treatment fraction using in-room imaging, allowing the 

incorporation of temporal and stochastic anatomy variations 

[7]. It requires the use of in-room imaging which most 

commonly involves either a dedicated on-rails CT system or 

makes use of the imaging modality integrated into specialized 

high-end linacs [9]. 
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Simultaneously, the majority of the conventional linacs have 

integrated orthovoltage (kV) cone beam CT (CBCT) systems. 

kV-CBCT is a volumetric imaging technique that relies on a 

pair of X-ray tubes, producing a two-dimensional collimated 

cone-shaped beam and a flat panel detector. Mounted on 

robotic arms perpendicularly to the radiation beam, the 

transaxial rotation of the pair acquires projections from 

multiple directions. The reconstructed images provide adequate 

spatial resolution and allow for precise target localization [10] 

and are therefore used for patient position verification and 

minimization of setup errors [10]. 

Despite CBCT providing volumetric imaging, it is primarily 

used in the context of image-guided RT (IGRT). CBCT is 

generally considered not suitable for online ART, due to the 

inferior image quality it provides [7], [9]. Comparisons with CT 

found CBCT to be less capable of producing noise-free and 

anatomically correct images and of providing inferior soft 

tissue contrast [11]. Multiple image artifacts also plague 

CBCT, with the most notable ones being caused by scatter, 

beam hardening, and metallic implants [12]. 

Different possible directions can be followed to bring CBCT 

to a CT-grade quantitative accuracy required for online ART. 

Improving the image quality of CBCT is one of them. Several 

methods have been proposed, among which notable are the 

statistical iterative reconstruction methods [13], the use of total 

variation penalty terms for edge preservation and noise 

suppression [14], and Monte Carlo -based scatter correction 

methods [15]. Post-reconstruction mapping to CT using 

deformable image registrations or Hounsfield Unit (HU) 

quantification using look-up tables can be used [16]. 

Deep learning-based CT synthesis is considered an 

alternative direction, in which synthetic-CTs (sCT) are 

generated based on CBCTs. Multiple neural network (NN) 

architectures have been applied for this task. Cycle generative 

adversarial networks (CyleGAN) [17] have been used for 

unpaired unsupervised learning in multiple studies [16], [18], 

from which the dose accuracies based on the sCTs were found 

comparable to the ones based on CT ones. Two studies [19], 

[20] that compared U-Net [21], CycleGAN and pix2pix [22] 

models for CT-synthesis for breast cancer RT and 

nasopharyngeal carcinoma RT, found the U-Net and the 

CycleGAN as the best-performing models, respectively. 

Novel data-driven methods have recently achieved CT 

synthesis directly based on CBCT projection data. A significant 

such method is the iterative CBCT (iCBCT) model [23]. 

iCBCT combines a statistical iterative CBCT algorithm with a 

trainable total variation penalty for noise suppression. Based on 

a variation of iCBCT, a commercial CBCT-linac system was 

recently introduced capable of CBCT-based online ART [24]. 

Invertible recurrent inference machines (iRIM) [25], [26] 

were recently introduced as frameworks for solving inverse 

problems. iRIMs combine characteristics of recurrent neural 

networks (RNNs), such as multiple steps and hidden memory 

states, with physics-informed forward-model operators to 

iteratively learn to reconstruct from the training data. Notable 

performances have been demonstrated with iRIMs in 

accelerated MRI reconstructions [26]–[29], in reconstructions 

of astronomical observations [30], and in parallel-beam CT 

reconstructions using simulated low-dose data [31].  

Inspired by the recent clinical adoption of iCBCT, and the 

potential of iRIM frameworks, we wish to investigate the use 

of iRIM-based frameworks for an end-to-end CT synthesis 

approach using CBCT projection data. Provided that sufficient 

HU accuracy can be achieved, this approach could enable the 

use of onboard kV CBCT integrated, rendering the 

dependencies to CT replanning. 

As an intermediate step towards that objective, the 

feasibility of using iRIM frameworks for CBCT 

reconstructions is investigated in this work. iRIM models with 

2D and 3D architectures were trained to generate CBCT 

reconstructions using synthetic CBCT projection data. 

Additional investigations by training with sparse projection 

data were used to assess the learning capacity of the iRIM 

models. 

 

Background 

The CBCT inverse problem 

Image reconstruction belongs to the class of inverse 

problems, in which the acquired information is used to recover 

the spatial distribution of the imaged object. In essence, the 

CBCT inverse problem can be formulated using a linear system 

of equations in which projections, 𝑦, are generated from X-rays 

passing through an object, 𝑥. The forward model is then defined 

as: 

y = ℱx + n 

Where n is the additive noise inserted into the acquisitions, 

and ℱ the forward projection operator that models the 

acquisition. Image reconstruction aims to find a back projection 

operator ℬ that by acting on the projections yields the spatial 

distribution of the object as: 

x = ℬy 

Tasks as such are not trivial. Accurate modeling of the 

stochastic nature of the acquisition and finding suitable forward 

and backward operators is the subject of a broad field in 

mathematics and physics. The computational sequences that 

approximate the backward operator ℬ are called image 

reconstruction algorithms, for which more details for the case 

of CBCT can be found in [32], [33].  

 

Conventional CBCT reconstruction 

In CT, analytical reconstruction algorithms use the Radon 

transform ℛ as a forward operator of the acquisition, which 

estimates the line integrals through the imaged object. The 

filtered backprojection algorithm (FBP) is the simplest form of 

reconstruction and backward operator, which involves the 

adjoint Radon transform ℛ−1 (backprojection) along with a 

filtering process. FBP is regarded as a highly efficient and 

reliable algorithm suitable for many imaging applications [12]. 

However, it is also prone to generate noisy reconstructions with 

image artifacts. The Feldkamp-Davis-Kress (FDK) [34] 

algorithm, which is an extension of FBP for circular CBCT 
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geometry, is considered the most important algorithm for 

CBCT image reconstruction [12]. Despite the inheritance of 

many FBP issues, FDK has a highly parallelized structure and 

exhibits enough robustness to render it the most used algorithm 

in clinical applications  [12].  

 

iRIM 

Invertible recurrent inference machines (iRIM) [25], [26] 

were introduced for the fastMRI challenge [35], and are RNN-

based frameworks for solving inverse problems. Imitating 

iterative reconstruction methods, they unroll the inference 

procedure into multiple RNN steps. Each step consists of a 

group of convolutional layers that process an input to produce 

an output and an update of a hidden memory state [30]. The 

mismatch between the output of each RRN step and the ground 

truth contributes to the final loss function. iRIMs are designed 

to optimize towards a maximum a posteriori (MAP) solution 

without the explicit use of a likelihood function or a prior 

within each time step. Instead, these are considered implicit 

learnable parameters of the model. Their gradients over time 

steps, however, are stored and used during model training in 

backpropagation. The estimation of the likelihood gradients is 

a key component of iRIMs and requires the direct comparison 

of acquired data and image estimates of each RRN step. This is 

enabled by the integration of a pair of forward and backward 

operators into the model architecture. The additional feature of 

invertibility allows for memory saving and it removes training 

instabilities when using large training datasets [26]. For a 

detailed description of the technical aspects of iRIM 

frameworks, the reader is referred to [25], [26], [31]. 

 

Materials & Methods 

Data 

In this study, we collected kV-CBCT from 62 patients who 

underwent head and neck IGRT, and divided them into groups 

of 44 training, 5 validation, and 13 test patients. CBCTs were 

acquired using the Elekta XVI system v5.0.2.b72 (Elekta, AB, 

Sweden) equipped with a Si-flat panel detector with an active 

imaging area of 409.6 x 409.6 mm positioned at the distances 

of 536 mm from the axial isocenter, and 1536 mm from the kV 

X-Ray source [36]. CBCTs were acquired using the S20 

collimator, a field-of-view (FOV) of 276.7 x 276.7 x 276.7 mm 

at the isocenter, and the center of the kV detector aligned to the 

center axis of the kV source. 

The raw data from each scan consisted of a set of 2D 

projections acquired in gantry angles ranging from 190 to 210 

projections, with the size of each projection being 504 x 504 

pixels. Sinograms are constructed by concatenating the 

projection slices for all angles along a third dimension and re-

slicing the resulting 3D array along a different direction. As a 

result, each scan obtained a set of 504 sinograms of sizes 504 x 

(190-210) pixels. Apart from the inconsistency in angular 

dimensions of the sinograms, additional inconsistencies were 

present, which are showed in Appendix I.  Different acquisition 

arcs with total lengths in the range of 190° to 220°, clockwise 

and counterclockwise rotation directions and inhomogeneous 

angular sampling were observed across different scans. 

 

Data preprocessing 

Two variations of datasets were created based on the 

available data: the 2D and the 3D ones. With the exemption of 

an additional interpolation step at the end of the preprocessing 

of the 2D dataset, the same preprocessing steps were followed. 

The inconsistencies in size and contextual information 

contained in raw sinograms generated highly heterogeneous 

training data. To simplify iRIM trainings, we standardized the 

input by simulating acquisitions with a fixed number of 

projections and acquisition arcs across different scans 

according to the pre-processing steps found in Figure 1. 

Starting from the raw sinogram data and their corresponding 

angular sampling information, we generated CBCTs by 

employing the FDK analytical reconstruction algorithm. The 

algorithm implementation was based on the Reconstruction 

Toolkit (RTK) v2.3 Python package [37]. Parker-weighting 

[38] was applied to compensate for the partial arc of acquisition 

and truncation correction to suppress artifacts outside the FoV 

of interest. To be in line with clinical reconstructions, the 

chosen size of final image volumes was 270x264x270 of 

isotropic voxels of sides 1 mm, and the smaller dimension 

corresponds to the axis of the XVI gantry rotation. 

Figure 1. (top) Schematic flow diagram of the preprocessing 
pipeline. (bottom) An example of a visualization of the results of 

each of the preprocessing steps. Sinograms (A), and (C) 

respectively correspond to the raw ones and the synthetic that were 

used as inputs in iRIM trainings. CBCTs (B) and (D) correspond to 
the high- and low-quality images used for ground truth and priors 

in trainings, respectively.  
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Synthetic sinograms are generated by imitating a simplified 

acquisition process using a Forward Projection operator on the 

reconstructed image volume. For this purpose, the Radon 

transformation as implemented in the Operator Discretization 

Library (ODL) v1.0 [39] was used, which also required the 

construction of a geometric model of the XVI system. For the 

acquisition process, a fixed set of 200 projection angles equally 

spaced at an angle interval of 0° to 234° was selected across all 

scans. Ultimately, projection data consisted of a set of 504 

sinograms with sizes of 200x504 were obtained. 

Since iRIMs optimize towards a MAP solution, the use of 

an initial estimate of the image to be used as a prior is 

recommended, to reduce the solution space [25]. As such, low-

quality CBCTs were provided as additional inputs for the 

training and the inferences of the iRIM models. Henceforth, 

these CBCT images are referred to as priors. These were 

reconstructed using an ODL implementation of the Parker-

weighted FDK algorithm on the synthetic sinograms with a 

Hann filter with a relative cut-off frequency of 0.6. Their grid 

and voxel sizes were identical to that of the target images. As 

can be seen in Figure 1.D, image artifacts [12] were present due 

to the lack of truncation correction. 

For the training of the 3D iRIM, the complete 3D sinogram 

of size 200x504x504 was used along with an image estimate 

and ground truth of size 270x264x270 each, to be obtained 

from each original scan and, subsequently, to be used for the 

3D training. The 2D case requires further preprocessing of the 

sinogram and image data.  From both types of data, 2D slices 

along the axis of the gantry rotation were generated. Since 

images have lower resolution than their corresponding 

sinograms along this dimension, nearest-neighbor interpolation 

was used to match their dimensions. As a result, 2D data 

comprised of 504 sinograms of sizes 200x504 were obtained 

for each original scan, along with 504 initial image estimates 

and ground truths of sizes 270x270. 

For the 2D datasets, the split of scans into training, 

validation, and test datasets led to iRIM trainings over 22176 

sets of sinogram, prior and ground truth image slices, and 

parameter tuning on 2520 slices. For the 3D dataset, the number 

of patients in each dataset also represented the number of data 

used. 

 

Network Architecture 

The core architecture for the 2D and 3D networks used was 

based on the iRIM model implemented for a submission [40] to 

the fastMRI challenge [35], which dealt with undersampled 

MRI data for accelerated MRI reconstruction. Further 

modifications to the original model were made separately for 

the 2D and 3D iRIMs. Developed with different architectural 

choices and operators, these networks approach the CBCT 

inverse problem with distinct strategies and thus were used 

independently.  

The 2D iRIM model approximated the task as a simplified 

2D parallel-beam CT problem. This was inspired by previous 

work on modifying the original iRIM model for image 

reconstruction of low-dose 2D CT data [31]. That change in 

imaging modality, and the dependence of the likelihood 

gradient estimations on modality-specific forward and 

backward projection operators, required the replacement of the 

Fourier-based operators necessary for the MRI inverse problem 

with Radon-based ones that are utilized in transmission 

tomography. For the implementation of the 2D Radon 

transformations and model of the parallel-beam CT geometry, 

the ODL library was chosen. The latter is due to ODL's 

gradient-preserving capabilities, which render it suitable for 

back-propagation operations during neural network training. 

The 2D iRIM model was constructed with 4 RNN steps, 

with each step composed of 12 convolutional layers. The 

number of channels in these layers was kept constant at 64, 

while the number of channels of the hidden states varied, as 

noted in Table 1.  Multiplicity, a factor determining the number 

of iterations over the likelihood gradient at every time step, was 

set to 4. Weight sharing across different iRIM steps that would 

limit the depth of the network and, by extension, the number of 

trainable parameters was not used. The resulting 2D iRIM 

consisted of 138 million parameters in total. With float32 

precision, the VRAM requirements were 8.1 GiB. 

For the 3D iRIM, complete 3D CBCT acquisitions were 

regarded for the inverse problem by implementing the 3D 

CBCT operators for the likelihood gradient in ODL. To 

maintain training stability, the outputs of the forward and 

backward operators were always divided by 100. For practical 

limitations, the extension of the model to the third dimension 

requires different architectural hyperparameters. While the 

number of RNN steps was kept the same as the 2D iRIM, the 

channels of both the convolutional layers and the hidden states 

were halved, and multiplicity was set to 1. Despite these 

changes, the resulting 3D iRIM was larger than the 2D version, 

with 167 million parameters in total. The 3D model occupied 

31.5 GiB of VRAM with float32 precision. 

 

Training 

The models were developed and trained using PyTorch 

v1.8.1, enabled with CUDA v11.1, on an NVIDIA Tesla V100 

Tensor Core GPU equipped with 32 GB of VRAM. The 

training process was performed on the training datasets for 80 

epochs using the Adam optimizer [41]. The mean squared error 

(MSE) was chosen as the objective function, which for images 

with 𝑛 number of voxels it is given by:  

𝑀𝑆𝐸(𝑥,�̂�) =
1

𝑛
∑(𝑥𝑖 − 𝑥�̂�)

2

𝑛

𝑖=1

 

Where 𝑥𝑖 and 𝑥�̂� the ground truth and the estimated images, 

respectively. The learning rate was initially set at 10−4 and was 

scheduled to decay by a factor of 10 every 30 epochs. Due to 

memory limitations, the batch size was set to 8 for the 2D 

iRIMs and 1 for the 3D iRIMs. In each epoch during training, 

the MSE loss was additionally estimated on the validation 

dataset. The best-performing model was selected based on the 

epoch with the lowest validation loss to prevent overfitting. 

Early stopping was used in cases of slow convergence with a 

trigger of a smaller than 1% change in the validation loss for 

three consecutive epochs. 
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 Architectural Hyperparameters   Training Hyperparameters 

Architecture 
Conv. Layer 

Channels 

Hidden state  

channels 

RNN 

steps 

Shared 

weights 
Multiplicity 

Number of 

Parameters 

VRAM 

(float32) 

Batch  

size 

Loss 

Function 
Optimizer 

Initial 

Learning 

Rate 

2D 
[64, 64, 64, 64, 

64, 64, 64, 64, 

64, 64, 64, 64] 

[64, 64, 128, 128, 

256, 1024, 1024, 256, 

128, 128, 64, 64] 
4 False 

4 138 mil. 8.1 GB 8 

MSE Adam 10−4 

3D 

[32, 32, 32, 32, 

32, 32, 32, 32, 

32, 32, 32, 32] 

[32, 32, 64, 64, 
128, 512, 512, 128, 

64, 64, 32, 32] 
1 167 mil. 31.5 GB 1 

Table 1 The chosen options of hyperparameters of the 2D and 3D iRIM models used. 

 

Evaluation 

The performance of the networks was assessed based on the 

13 scans of the reserved test dataset. For the case of the 2D 

iRIM model, the generated output and ground truth images 

were additionally concatenated into image volumes of size 

270x504x270 voxels, which were subsequently resized to 

270x264x270 using bilinear interpolation. The generated 

image volumes were quantitatively compared with their 

corresponding ground truth using three metrics.  

Mean absolute error (MAE) is a metric used for regression 

tasks and quantifies the dissimilarity of the estimated image �̂� 

to the ground truth 𝑥 based on the mean absolute difference 

between their corresponding voxels. For images of 𝑛 voxels, it 

is defined as: 

𝑀𝐴𝐸(𝑥,�̂�) =
1

𝑛
∑|𝑥𝑖 − 𝑥�̂�|

𝑛

𝑖

 

Peak signal-to-noise ratio (PSNR) is a computer vision 

metric used to measure reconstruction loss. It is defined as the 

ratio between the maximum possible value of a signal, and the 

amount of noise present in an image, as described by the MSE. 

PSNR is expressed in terms of a logarithmic decibel scale, with 

higher values representing a better match between images, and 

it is estimated by: 

𝑃𝑆𝑁𝑅(𝑥,�̂�) = 10 ⋅ log10 (
max(𝑥)2

𝑀𝑆𝐸(𝑥,�̂�)
) 

The structural similarity index measure (SSIM) [42] is a 

metric based on the similarity of two images as perceived by 

humans. The perceptual quality is modeled using the means 

𝜇, �̂�, the variances 𝜎, �̂�, and the covariance 𝜎𝑥�̂� of the two 

images 𝑥, �̂� as follows: 

𝑆𝑆𝐼𝑀(𝑥,�̂�) =
(2𝜇�̂� + 𝑐1)(2𝜎𝜇�̂� + 𝑐2)

(𝜇2 + �̂�2 + 𝑐1)(𝜎2 + �̂�2 + 𝑐2)
 

The two variables are given as 𝑐1 = (0.01 ⋅ 𝐿)2 and 𝑐2 =
(0.03 ⋅ 𝐿)2, with 𝐿 the dynamic ranges of the voxel values. The 

single-scale SSIM was used, as implemented in the Scikit-

Image v0.19.2 [43] Python package. The estimation was 

applied regionally within a window of 7x7x7 voxels moving 

pixel-by-pixel over the entire image volumes, with the mean 

SSIM value being reported. 

All metrics used for the quantitative comparison were 

estimated within a cylindrical volume with a height of 230 mm 

and diameter of 256 mm, aligned with the rotation axis. This 

mask is in line with the clinical reconstructions, limiting the 

FoV and eliminating reconstruction artifacts [44] from the 

evaluation. In addition, the metrics were also used to compare 

the low-resolution CBCT before the ground truth, which will 

act as the baseline comparison. Whisker plots based on these 

metrics were created, with the median, the 1st (Q1), and 3rd 

(Q3) quartile ranges of the distributions being annotated.  

From the resulting mean and standard deviations of all 

metrics, SSIM was chosen as the representative metric to be 

reported. Any discrepancies with the rest of the metrics will be 

explicitly noted. The performances of the trained models on the 

test data were compared by using the paired Mann-Whitney U 

test on their calculated metrics, for which the SciPy v1.7.3 

library [45] in Python was used.  A difference in performance 

is characterized as significant for p-values smaller than 0.05. 

 

Experiments 

In parallel to the training and the assessment of the 

previously described 2D and 3D iRIMs, several experiments 

were performed to find the optimal training parameters and to 

assess the learning capabilities of models with iRIM 

architectures. Several additional iRIM models were trained and 

evaluated using the 2D and 3D datasets previously described. 

The objectives and the evaluation procedures followed in these 

investigations are described in the following sections. 

 

Loss Function 

A separate 2D iRIM training took place using a SSIM-based 

loss function instead of the MSE loss. Contrary to the SSIM 

metric used for evaluations, a sliding window was not used for 

the estimation of the SSIM loss. The performance of the SSIM-

trained 2D iRIM was compared against the original MSE-

trained model. 

 

iRIM depth 

To assess the impact of the relatively increased depth of the 2D 

architecture when compared to the 3D one, a 2D iRIM model 

was trained using the architectural hyperparameters used for 

the 3D iRIM. The resulting 2D network had 34.4 million 

parameters and was trained with a batch size of 8. It required 

4.3 GB of VRAM with float32 precision. The significance of 

the decreased network depth was evaluated based on the 

performances of the trained model against the original 2D 

iRIM. 
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Sparse CBCT acquisitions 

Investigations on the impact of the number of projection 

angles chosen for the generation of synthetic sinograms were 

performed. While 200 projections are typical for clinical CBCT 

acquisition, the learning capability of the iRIM architecture 

would be further tested in cases of heavily undersampled 

acquisitions. The preprocessing steps described in the data pre-

processing section were repeated for 50 and 100 projection 

angles, creating four additional datasets of both 2D and 3D 

types. After adapting their operators to the new projection 

angles, a corresponding number of IRIM models were trained 

with these datasets. The outputs of the trained networks and the 

priors used for each training were compared against the related 

ground truth, and their differences were statistically analyzed. 

A plethora of combinations of inputs and outputs were 

statistically assessed to evaluate the effects of undersampling 

in image reconstruction using iRIMs. 

 

iRIM: 2D vs 3D 

Since different approaches were followed for the 2D and 3D 

iRIMs using distinct forward and backward operators, finding 

the best-performing approach was of special interest. 

Therefore, the similarities of the 2D and 3D outputs to the 

ground truth were statistically evaluated. To gather further 

evidence of any performance difference, this assessment was 

also extended to the undersampled cases of 100 and 50 

projection angles. 

 

Feasibility 

In this work, the 2D and 3D iRIM models were implemented 

to investigate the feasibility of using iRIM frameworks for 

CBCT reconstruction. This feasibility was determined by 

gathering evidence of significant improvements in the iRIM-

generated reconstructions, over the low-quality CBCTs that 

were used as priors in the training process. To that end, parallel 

comparisons of priors and iRIM outputs against the ground 

truth were performed using the evaluation metrics previously 

described. Subsequently, their differences were statistically 

compared to measure their significance. This process was 

performed on all cases of 2D and 3D iRIMs trained with the 

datasets of 200, 100 and 50 projection angles. 

The time required for the generation of a full 3D 

reconstruction was also assessed. The average inference speed 

was measured over inferences of 1000 slices for the 2D iRIMs 

and of 13 full scans for the 3D iRIM. Lastly, a qualitative visual 

assessment of the full inferred iRIM outputs was performed on 

the second-best, median, and the second worst performing 

patient scans, as measured by SSIM. From these, random axial 

slices and mid-sagittal slices were chosen to showcase the 

characteristics of the generated reconstructions. 

 

Results 

Due to the early stopping, the number of iterations over the 

training data varied within models. Similarly, the mean 

inference speed also depended on the architecture of the trained 

models. These numbers are reported in Table 2. MAE, PSNR, 

and SSIM exhibited very similar behavior over all the 

experiments, which validates the choice of reporting mainly on 

SSIM. The complete set of results in tabular forms can be found 

in Appendices II and III. 

 

iRIM 

Model 

Trained 

Epochs 

Mean Inference Times 

Per slice 

[ms] 

Per volume 

(264 slices) 

[s] 

2D SSIM 11 152.5 40.3 

2D Reduced 7 54.5 14.4 

2D 200 16 154.2 40.7 

2D 100 16 150.7 39.8 

2D 50 18 150.9 39.8 

3D 200 34 - 12.1 

3D 100 33 - 10.2 

3D 50 30 - 9.5 

Note: The accuracy of inference speed measurements between the 2D and 

the 3D models might be influenced by external factors, such as CPU and 

GPU processes running in the background. 

Table 2. Trained epochs and mean inference speeds of the trained 

iRIM models. 

 

2D iRIM loss function and depth 

The use of the SSIM loss function for the training of the 2D 

iRIM accelerated the convergence of the learning when 

compared to the MSE-trained one, with early stopping being 

triggered at the 10th epoch down from the 15th one. As can be 

seen in Figure 3, with the SSIM-trained model we obtained a 

Figure 2. A showcase example of the priors of the undersampled datasets. In (A), the ground truth of an axial slice from the 

training dataset is shown, while in (B), (C), and (D), the training priors are shown as generated with 200, 100, and 50 projection 

angles, respectively. 
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mean (±std) SSIM of 0.96 (±0.22). No significance (p-value = 

0.88) was found between them and the original MSE-trained 

model, which also obtained 0.96 (±0.22).  

As seen in Figure 3, inferences with the reduced iRIM 

achieved the mean SSIM value of 0.96 (±0.23). Comparison 

with the corresponding value of the 2D iRIM was found to be 

statistically insignificant (p-value = 0.76). A notable change in 

the speed of inferences was observed between the reduced and 

the original models, with 14.4s and 40.7s mean time for 

inference of 264 slices, respectively.  

 

Undersampled CBCT 

The complete set of the results of the undersampled 

experiments can be found in Appendices II-IV. A statistical 

comparison over the priors used as inputs showed that only the 

50 projections priors had a significant (p-value = 0.036) 

degradation over the 200 projections prior, with mean SSIMs 

of 0.8643 (±0.0583) and (0.9041+/-0.0406), respectively. The 

effect of reducing the 200 projection angles by half an 

insignificant (p-value=0.38) effect, which yielded the SSIM of 

0.8943 (±0.0460). MAE was in line with these findings, while 

PSNR showed no significant impact on any undersampled 

prior. 

Significance tests to assess the 2D iRIM outputs of the 

undersampled training against the complete acquisition prior 

measured p-values of 0.006 and 0.003 for the SSIMs, 

respectively for the 100 and 50 projection angles datasets. 

Therefore, the outputs of the 2D iRIM trained with 100 and 50 

projection angles were significantly superior to the prior 

generated with the full 200 projection angles. Similar 

comparisons for the 3D iRIM measured p-values of 0.028 and 

0.24 for the 100 and 50 projection angles datasets, respectively. 

In the 3D case, only the iRIM trained with 100 projection 

angles was found significantly superior to the full acquisition 

prior. 

Lastly, a cross-comparison was performed between the 

outputs of the 200, 100, and 50 projections cases. For the 2D 

iRIM model, only the 50 projection outputs were found 

significantly (p-value) inferior to their 200 projection 

counterparts using SSIM. With MAE, the 100 projections case 

was also found significantly (p-value) inferior to the complete 

acquisition, and with PSNR, no significance was found in any 

of the patients. In the 3D iRIM model outputs, all differences 

were insignificant across all metrics. 

 

iRIM: 2D vs 3D 

For the full acquisition, the 2D iRIM achieved an average 

SSIM of 0.96 (±0.02), while the 3D iRIM a 0.94 (±0.04). In the 

100 projections case, the 2D network achieved the mean values 

of SSIM 0.94 (±0.04). Similarly, for the heaviest 

undersampling case of 50 projections, a mean SSIM of 0.93 

(±0.05) was obtained with the 2D iRIM, and 0.92 (±0.05) with 

the 3D iRIM. None of these 2D-3D differences per sample case 

were found significant using SSIM, PSNR and, with one 

exemption, MAE. In the case of the 200 projection angles, 

using MAE the 2D iRIM was found significantly (p-

value=0.005) superior to the 3D iRIM, with 0.009 (±0.001) and  

0.0102 (±0.012), respectively. 

Figure 3. Whisker plots of the results of the 2D iRIM Experiments. 

Statistical comparisons using the paired Mann-Whitney U test are 

annotated with brackets on the top of the plots. With ns, p-values 

greater than 0.05 are signified. 

Figure 4. Whisker plots of the quantitative performance evaluation of the 2D and 3D iRIM models trained with datasets of 200, 100, 

and 50 projections against the ground truth. 
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Feasibility 

As found in Appendix II, the outputs of the 2D models 

yielded mean SSIMs of 0.96 (±0.02), 0.94 (±0.04), and 0.93 

(±0.05 were obtained for the 200, 100, and 50 projection angle 

datasets, respectively. Similarly, the respective SSIM values 

for the 3D iRIM outputs were 0.94 (±0.04), 0.93 (±0.05) and 

0.92 (±0.05). Comparisons of these outputs with their 

corresponding priors used as inputs consistently found their 

superior quantitative resemblance to the ground truth 

significant.  

 

Qualitative analysis 

Several observations could be noted from the qualitative 

assessment performed, the results of which can be found in 

Appendix V. As can be seen in the examples of Figure 5, the 

ground truth images contained a considerable amount of noise. 

Noise with similar characteristics could be observed in the 2D 

iRIM reconstructions. On the opposite side, the 3D iRIM 

reconstructions appeared to have smoother distributions with 

less noise.  

A large number of the patients inspected had metallic 

implants in their oral cavities. These were found to introduce 

image artifacts such as streaking ones or the loss of contrast in 

the vicinity of the implants. The iRIM-based reconstructions 

qualitatively appeared to inherit these artifacts to an extent. In 

the qualitative comparison of their differences with their 

respective ground truths, however, the oral cavities with metal 

implant accumulated larger degrees of errors. These errors were 

observed to be propagated in the transaxial slices containing the 

implants. 

Focusing on the effects of undersampling, image quality 

degradation could be observed across all cases. Increasing the 

degree of undersampling, increasingly made the noise and the 

streaking artifacts more prominent. The perceived image 

resolution was observed to be degrading with undersampling, 

with the effect being more visible in the axial slices and less 

visible in sagittal ones. Accurate edge preservation appeared to 

increasingly pose a challenge with undersampling. This was 

particularly prominent in high-contrast interfaces, such as 

between the soft tissue and air or bone. 

Generally, a particularly clear visual difference between the 

second-best and median-performing patient scans could not be 

observed. In the sagittal slice of the second-worst-performing 

case, band patterns were observed in the extreme ends of the 

axial direction. 

 

 

Figure 5. (Top) Sagittal slices from the 2nd best performing sample from the test dataset. (Bottom) Axial slices from the median performing 

sample from the test dataset. In the grayscale figures, the ground truth and the outputs of 2D and 3D iRIM models are sequentially depicted for 

all 200, 100 and 50 projection angle datasets. In the color-scaled images, their corresponding differences are depicted by subtracting them from 

the ground truth. 
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Discussion 

CBCT reconstructions to the ones used as priors in model 

trainings. Similar was the case when two-fold and four-fold 

CBCT data undersamplings were used. Visual investigations 

verified the high level of agreement of the iRIM-based 

reconstructions to the FDK-generated ground truth, in the case 

of the full data. Full CBCT inferences were obtained within 12 

s and can potentially be further reduced with hyperparameter 

tuning, as shown in this work, or pruning techniques. This is 

faster than typical FDK-based reconstruction which requires 

approximately 20 s for similar grid and voxel sizes [46]. It is 

therefore evident that an iRIM-based CBCT reconstruction 

method could be possible in the future. 

In this work, the 3D CBCT inverse problem was approached 

in two different ways by using 3D and 2D iRIMs. In the former 

case, an attempt to accurately model the acquisition was made 

using 3D Radon-based forward and backward operators, and 

modeling the system geometry. In the latter case, the inverse 

problem was grossly approximated as a 2D parallel-beam CT 

inverse problem, using 2D Radon-based transforms as 

operators. Quantitatively, both approaches yielded comparable 

results. An insignificant but repeating pattern of the 2D iRIM 

models outperforming their 3D counterparts was observed. 

Considering the simplifications made in the 2D approach, this 

was unexpected. Visual inspections revealed that the 2D model 

generated reconstructions with similar noise characteristics as 

the provided ground truth, while the 3D ones generated 

smoother distributions. Therefore, it remains unclear as to 

which approach was superior, and training using noise-free 

CBCT images as ground truth is recommended. Noise 

correlation metrics such as the noise power spectrum [12], are 

used generally used for CT-based image reconstructions and 

their use should be considered in the future. 

Regardless of the optimal approach, the overall performance 

of the 2D iRIM models is noteworthy. It might indicate that 

approximate modeling of the operators describing the 

acquisition can suffice and can be compensated for in the iRIM 

framework. Along this line of reasoning, we trained the 2D 

iRIM model with a four-fold parameter reduction. The resulting 

negligible impact on the performance of the model strongly 

indicates that the learning capacity of the original 2D iRIM by 

far exceeds the complexity of this task. To further investigate 

this hypothesis, trainings with further reduced depth are 

suggested. In the opposite direction, an increase in the depth of 

the 3D iRIM model followed by improved performance could 

also validate this hypothesis. Unfortunately, the size of the 3D 

iRIM can not be expanded due to current memory size 

limitations. In any case, the consistent performance after the 

four-fold parameter reduction of the 2D iRIM showcases 

indicates the existence of a large margin for architectural 

hyperparameter tuning. 

To further investigate the robustness of the iRIM 

frameworks, trainings using sparse CBCT data were performed 

with both 2D and 3D models. By observing the increasing 

prevalence of image artifacts and noise in the priors due to the 

undersampling of the CBCT acquisitions, an impact on the 

performance was anticipated. Indeed, the performance of the 

iRIMs became progressively worse with an increasing amount 

of undersampling. Despite that, the inferences of iRIMs 

remained superior to their corresponding priors. Quantitatively, 

even the inferences based on the heaviest undersampled 

datasets were found superior to the full acquisition priors. 

These findings were regarded as evidence of the robustness of 

iRIMs. 

Considerable attention would be interesting to be given to 

heavily undersampled acquisitions with fewer projection data 

than the number of unknowns. In that case, the linear system of 

the inverse problem becomes undetermined and this threshold 

was estimated at 76 projection angles using our current setup. 

Despite the case of 50 projection angles being included in our 

experiments, several more undersampled cases are required for 

such analysis. In this direction, an iRIM-based approach could 

potentially be applied for sparse-view CBCT reconstructions 

that aim to lower the radiation dose delivered to the patients by 

acquiring a limited number of projection angles. Due to its 

clinical relevance in diagnostic and surgical imaging 

applications, it is an actively researched topic with several 

conventional [47] and DL-based approached proposed [48], 

and even sparse-view 4D CBCT reconstruction challenge 

recently taking place [49]. 

With the primary focus of this work being the 

implementation and testing of iRIM models, simplifications 

were made that deviated from a realistic clinical application. 

Most notable is the decision to use synthetic sinograms as 

inputs that were generated based on the high-quality CBCT 

image. This was motivated by the practical limitations of 

directly training on raw sinograms, such as different sinogram 

sizes and acquisition arcs, which ought to be resolved in future 

studies. 

Another concern stems from the absence of a clinic-grade 

high-quality image reconstruction method to base our 

feasibility criteria upon. Clinically implemented reconstruction 

algorithms have embedded, among others,  scatter correction 

[15] and noise suppression algorithms [50]. Such additional 

post-reconstruction steps were not included in the generation of 

ground truth CBCT used in this study. Therefore, steps towards 

a clinically realistic scenario would include the use of raw 

sinograms as inputs and clinic-grade CBCTs as ground truth.  

Specifically for ART purposes, accurate dose calculations 

are based on HU [7]. Therefore, a natural extension of the 

current work would be the use of high-quality CTs as ground 

truths. Due to different acquisition times, FoVs, and patient 

localization, a mismatch of the information present in CTs and 

CBCT projection data is expected. Since overcoming this 

mismatch is the motivation behind the use of unpaired 

unsupervised methods for CT-synthesis, such as GANs [23], 

interesting would be the impact on supervised methods such as 

iRIMs. This added complexity could be proven a valid test case 

for 2D-3D comparisons of iRIM architectures to be based on. 

Eventually, the HU accuracies of the synthetic CTs and their 

impact on dose estimations will determine the viability of any 

iRIM architecture to be used as an end-to-end method. 

 

Conclusions 

In this work, the feasibility of using iRIM frameworks for 

CBCT reconstruction has been showcased in multiple 

investigations. iRIM models with 2D and 3D architectures were 
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able to provide reconstructions with high fidelity to the 

provided ground truth images based on simulated CBCT data. 

The hypothesized potential of iRIMs for an end-to-end 

approach was verified. Further investigations to integrate 

iRIMs into current clinical workflows for further assessment 

should be performed in prospective studies. 
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Appendix I – Angular sampling inhomogeneity 

For the figure below, 10 CBCT scans were selected randomly out of our datasets. For each scan, the angles of the projections 

acquired are indicated with a single line, color-coded for the orientation of the gantry rotation. We can observe that despite the 

use of a standardized preset, each acquisition was characterized by a unique set of projection angles, ultimately leading to 

inconsistent geometric information contained in sinograms across different scans. As can be observed in figure below, multiple 

inconsistencies can be noted. Different directions of the gantry rotation across scans, as well as differences in the starting and 

ending angles of the acquisition arc, induce a large variability in sinograms that correspond to virtual rotations of the imaged 

geometry along the axis of the system. In addition, inhomogeneous angular sampling during the gantry rotation is observed. This 

is caused by missing samples or decelerations of the rotation, which are especially pronounced towards the last samples of the 

acquisition. As a result, sinograms have different dimensions across different scans, with numbers of angular samples within the 

range of 190 and 210, and different acquisition arcs in the range of 190-220 degrees. 

 

Appendix II – iRIM evaluation results  
 

Results of performance evaluation, as defined by the output - ground truth difference, are listed in the following table for all iRIM 

cases used in this study. 

         

Samples: 

13 
 

 
MAE PSNR SSIM 

Projections 

Angles 

Type of Data 

compared 

to GT 

Training Mean Std Mean Std Mean Std 

200 

Prior - 0.0184 0.0022 35.99 3.52 0.9041 0.0406 

iRIM 

Outputs 

2D 0.0085 0.0010 42.95 3.81 0.9613 0.0231 

2D, SSIM 0.0085 0.0010 42.92 3.84 0.9617 0.0229 

2D, Reduced 0.0088 0.0010 42.67 3.81 0.9614 0.0219 

3D 0.0102 0.0012 41.34 3.77 0.9423 0.0362 

100 

Prior - 0.0189 0.0023 35.76 3.53 0.8943 0.0460 

iRIM 

Outputs 

2D 0.0103 0.0012 41.34 3.81 0.9408 0.0377 

3D 0.0112 0.0013 40.50 3.77 0.9289 0.0455 

50 

Prior - 0.0209 0.0023 34.94 3.58 0.8643 0.0583 

iRIM 

Outputs 

2D 0.0113 0.0013 40.43 3.79 0.9276 0.0463 

3D 0.0123 0.0013 39.59 3.77 0.9156 0.0532 
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Appendix III – P-tables 

The results (p-values) of all comparisons using paired Mann-Whitney U tests are listed in the following tables. 

 

200 

Prior          

2D 1.7e-5         

3D 1.4e-5 3.5e-3        

100 

Prior 4.4e-1         

2D 1.7 e-5 2.5e-3  1.7e-5      

3D 1.7 e-5  5.1e-2 7.3e-2 7.3e-2     

50 

Prior 1.3e-1   8.1e-1      

2D 9.7e-5 9.7e-5     1.7e-5   

3D 1.7 e-5  1.5e-3   5.8e-2 1.7e-5 8.1e-2  

  Prior 2D 3D Prior 2D 3D Prior 2D 3D 

MAE  200 100 50 

 

200 

Prior          

2D 5.9e-4         

3D 2.1e-3 2.0e-1        

100 

Prior 7.2e-1         

2D 2.5e-3 2.0e-1  1.8e-3      

3D 3.5e-3  3.8e-1 2.9e-3 3.8e-1     

50 

Prior 2.8e-2   4.1e-1      

2D 3.5e-3 6.4e-2   4.4e-1  2.1e-3   

3D 7.7e-3  1.8e-1   3.7e-1 2.9e-3 4.1e-1  

  Prior 2D 3D Prior 2D 3D Prior 2D 3D 

PSNR  200 100 50 

 

200 

Prior          

2D 3.3e-4         

3D 4.8e-3 6.5e-2        

100 

Prior 3.8e-1         

2D 5.6e-3 5.8e-2  3.5e-3      

3D 2.7e-2  2.8e-1 1.0e-2 3.6e-1     

50 

Prior 3.6e-2   5.8e-2      

2D 3.1e-2 1.4e-2   3.3e-1  3.5e-3   

3D 2.4e-1  8.1e-2   3.6e-1 5.6-3 3.8-1  

  Prior 2D 3D Prior 2D 3D Prior 2D 3D 

SSIM  200 100 50 
 

 

 

 

 

Original 

MSE 
1.7e-5  

Original 

SSIM 
1.7e-5 4.7e-5 

Reduced 

MSE 
1.7e-5 9.6e-1 

MAE 
Prior 

200 

Original 

MSE 
 

Original 

MSE 
5.9e-4  

Original 

SSIM 
7.1e-4 5.7e-1 

Reduced 

MSE 
5.9e-4 9.6e-1 

PSNR 
Prior 

200 

Original 

MSE 
 

Original 

MSE 
3.1e-4  

Original 

SSIM 
2.7e-4 8.8e-1 

Reduced 

MSE 
3.3e-4 7.6e-1 

SSIM 
Prior 

200 

Original 

MSE 
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Appendix IV – Undersampled investigations 

To assist the analysis of the undersampled investigation on the overall results of Figure 4, Appendix II and III, a series of whisker 

plots were made, with annotated statistical significance as estimated on the paired Mann-Whitney U test. These were grouped as: 

i) Comparison of the Priors(angles), for angles in 200, 100, 50. 

ii) Prior(angles)-Output(angles), for angles in 200, 100, 50, and both 2D and 3D. 

iii) Prior(200)-Output(angles), for angles in 100, 50, and both 2D and 3D. 

iv) Comparison of the Outputs(angles), for angles in 200, 100, 50, and both 2D and 3D. 
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Appendix V – Visualizations  

Axial and sagittal slices from the second-best, median, and second-worst rated patient scan out of the test data of 13 patient scans 

are visualized, as rated by SSIM. The axial slices were selected arbitrarily, while the mid-slice was selected for the sagittal ones. 

For each example, the ground truth and the outputs of the 2D, 3D iRIM models trained with the 200, 100, and 50 projection angles 

datasets are visualized, along with their differences from the ground truth (ground truth-output). 

 

Axial Slices 

2nd Best Case  

 
Median Case 

 
2nd Worst Case 
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Sagittal Slices 

2nd Best Case  

 
Median Case 

 

 
2nd Worst Case  

 

 


