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Abstract 

Introduction: To render a reconstructed image acquired with PET as quantitatively accurate, corrections for the 

scattered coincidences have to be applied. Their contribution tends to introduce a low-frequency additive component 

to the acquired data, which ultimately leads to loss of contrast and erroneous SUV measurements in the reconstructed 

images. Despite Monte Carlo (MC)-based methods being considered the most accurate for scatter corrections, their 

computational demands prevent them from being clinically in use. In this work, the use of Deep Learning (DL) was 

investigated as a method to provide MC-grade scatter corrections within clinical timeframes. 

 

Materials & Methods: MC simulations of two types of phantoms, 9 analytical and 24 voxelized-patients, were 

performed in GATE. With the resulting sinogram data of prompt coincidences and attenuation factors as input and the 

scattered coincidences as output, a 2D U-Net was trained. Independent network trainings were performed on 18 unique 

datasets. Each of them was constructed by using a different subset of simulated phantoms, a different input-output 

pre-processing, and a different 2D view over the same sinogram data. The performances of the trained networks were 

evaluated on a test dataset, which was consisted of 5 simulated phantoms excluded from the trainings, using 

Normalized Root Mean Squared Error (NRMSE) as a metric. 

 

Results: The best-performing network achieved an NRMSE (mean ± standard deviation) of (4.94 ± 1.88) % overall, 

and (3.91 ± 1.21) % specifically for voxelized patient phantom cases. It was trained using the projection views of the 

sinogram data, with no input-output blurring. With input-output blurring applied, comparable results were obtained. 

Full scatter estimations of a single bed position were generated within 4.8 seconds. In 64% of the test cases, using the 

projection views of the sinogram data resulted in a lower mean NRMSE. The inclusion of analytical phantoms decreased 

the performance of the network on the voxelized-phantom tests by an NRMSE of 1% on average. 

 

Conclusions: The feasibility of using DL for scatter estimation can be claimed. Improved accuracy is achieved by 

using the projection views instead of the sinogram views for trainings. Valid DL methods to generate a scatter 

estimation can be based on both unprocessed and blurred MC-generated training data. Which of the two constitutes 

the optimal strategy remains inconclusive, as their quantitative accuracy must be evaluated on the final reconstructed 

images. 
 

Keywords: Positron Emission Tomography, Scatter Corrections, Monte Carlo Simulations, Deep Learning 

 

1. Introduction 

Over the last decades, Positron Emission Tomography 

(PET) has proven to be one of the most acclaimed tools for 

non-invasive functional imaging techniques through its 

successful implementation in applications of clinical 

diagnostics (oncology, cardiology, neurology, and psychiatry) 

and many preclinical studies. To compensate for physical 

phenomena that affect the acquisition in PET and to render a 

reconstructed image as quantitatively accurate, several 

corrections need to be applied to the acquired data. Among 
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these, the corrections for the falsely registered coincidence 

events due to scatterings have to be applied.  

In principle, image reconstruction in PET is based on the 

assumption that from the detection of two photons within a 

short time frame, we can assign the location of a positron-

electron annihilation between the two detectors. This 

assumption is violated when at least one of the two 

annihilation photons undergoes at least one Compton 

scattering process, changing their original trajectory. A 

successful detection of such coincidence will not be 

representative of the activity distribution between the 

detectors. 

In clinical scans, the contribution of scattered events is 

estimated to be in the range of 30-40% of the prompt events 

and 20-200% of true events [1], depending on the bed position. 

Simulations show that 90% of them are caused by scatterings 

happening within patients, with the rest due to the hardware 

components of the scanner and the bed [2].   

In the reconstructed images, this contribution tends to 

introduce a low-frequency additive component with little 

structural information [1], which is more prominent towards 

the center of the image [1]. This ultimately leads to lower 

image contrast and erroneous SUV measurements. 

Techniques to estimate the scatter contribution and correct 

its effects have been developed. Generally, these are 

characterized by a trade-off between the accuracy and the 

computational cost of the estimation. The ones most 

commonly used are based on Single Scatter Simulation (SSS) 

algorithm [3, 4], and the Monte Carlo Scatter simulations 

(MCS) [5]. 

 SSS is a model-based scatter correction algorithm that 

estimates the scatter distribution using analytical calculations. 

These involve Compton-scattering cross-sections and ray 

tracing through the reconstructed image volumes of the 

emission (PET) and the transmission (CT or pseudo-CT) 

scans. For subsequent scatter correction the estimated 

distribution of scatter events can be incorporated during 

(iterative) image reconstruction. 

In 3D PET, these operations require several simplifications 

to achieve a scatter estimation within clinical timeframes. 

Among them are the omissions of the contributions due to 

multiple scatterings and due to from Out-of-Field of View 

(OoFoV) activities. To compensate for these, an error-prone 

scaling of the scatter contribution is applied to match the 

acquired data, which tends to overestimate the scatter 

contribution [6]. Inaccuracies in scatter correction using SSS 

are reportedly causing severe photopenic (halo-) artifacts to 

the reconstructed images. That is especially prominent around 

anatomies with typically high activity concentrations, such as 

the bladder and the kidneys [7]. 

Improvements to the SSS algorithms have been proposed 

such as the MC-SSS, which uses low-count Monte-Carlo 

simulations to estimate more accurate scaling factors [8], or 

the inclusion of double-scattered events in the calculations [9]. 

These however are sophisticated models that increase the 

computational cost. 

Conversely, the MCS method can successfully address 

these weaknesses of SSS [7]. Due to its ability to include the 

physical and stochastic nature of the entire acquisition, it is 

considered the most accurate estimation method of the 

contribution of scatter. However, this comes with a high 

computational cost, which renders it unusable for clinical 

workflows. Acceleration methods by running the MC 

simulations on Graphics Processing Units (GPUs) can be 

found [10] but implementation on clinical scans with high 

enough counts has not been reported yet. 

Recent advancements in GPUs have also enabled rapid 

progress in Machine Learning (ML) and Deep Learning (DL). 

Tasks in medical imaging, such as classification and 

regression, have become a source of inspiration for the 

development of various architectures of Neural Networks 

(NNs). Especially Convolutional NNs (CNNs), through their 

superior capability to recognize patterns in images, can be 

considered the primary type of NNs used in medical imaging. 

The most popular architecture of such CNNs is the U-Net [11], 

with huge success in image segmentation tasks. ML and DL 

methods for PET imaging have also been actively 

investigated, as a means to obtain faster and quantitatively 

more accurate PET images with lower doses. Applications 

vary from smaller PET instrumentation and image acquisition 

tasks to solving the image reconstruction inverse problem with 

a sinogram-to-image mapping [12]. 

Scatter correction using DL has also been a target for 

investigations. Joint attenuation and scatter correction by 

training with corrected and uncorrected reconstructed images 

has been proposed [13,14]. This could potentially compensate 

for the lack of transmission scanning in hybrid PET/MRI 

systems. Correction methods exclusively for scatter using 

CNNs can be found, such as the use of a 2D U-Net to directly 

generate projections of the scatter contribution from emission 

and transmission projections [15]. While the accuracy and the 

speed of the inferences were promising, it was trained only on 

SSS as the scatter ground truth. This leaves the evaluation of 

the performance of a CNN on MCS an open question. 

This study aims to continue the investigations regarding the 

use of a U-Net for supervised learning, by using the MC-

estimated scatter contributions as training targets.  Such 

development could be a step towards a more accurate and 

applicable to clinical workflow scatter estimation method 

since it can potentially combine the accuracy of MCS with the 

reported inference speed of CNNs. For that purpose, analytical 

and patient-based phantoms were MC simulated for the 

generation of training datasets consisting of emission, 

transmission, and scatter events. Trainings using different 

views (sinograms and projections) of the same projection data 

were independently examined. Issues raised by the nature of 
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the MC-generated data are addressed, such as the noise & the 

sparsity. These have a big impact on the training process of 

such networks, and finding suitable preprocessing methods 

could be valuable for future studies using similar data 

 

2. Methods 

Monte Carlo simulations for various phantoms were 

performed to emulate PET acquisitions and generate their 

corresponding scatter contributions. For the preprocessing of 

the data, different strategies were followed, creating distinct 

datasets with which NNs were trained independently. The 

performances of the trained networks were evaluated on a set 

of data that has been excluded from the trainings. The 

following sections cover the steps we took to accommodate 

our investigations in detail.  

2.1 Simulated Phantoms 

In the MC simulations, two types of phantoms were used. 

Voxelized phantoms based on patient scans and analytically-

modeled ones. 

For the first, three bed positions were cropped from each of 

8 different whole-body 18F-fluorodeoxyglucose (FDG) 

PET/CT patient scans, creating a set of 24 voxelized phantoms 

in total. To reduce the computation time, the axial size of the 

phantoms was limited to 40 cm, from which only the central 

14 cm belong to the scanner’s FoV (see 2.2).  

Typically challenging body sites for SSS are located on the 

lower torso, due to the high activity concentrations in organs 

of the renal system, such as the bladder and the kidneys. Cases 

of the bladder being located outside the scanner’s axial FoV 

but close to its boundaries can be considered as good cases of 

high scatter to prompts ratios. Additionally, conventional 

methods can only compensate for scatter originating outside 

of the FoV, and not directly estimate it. To investigate the 

response of a DL method to such cases, the selected bed 

positions were centered on sequential sections of the lower 

torso with 1.5 cm of overlap between them. 

The three bed positions obtained from each patient were 

classified based on whether the bladder is included in the 

cropped simulated volume or not (No-Bladder), and whether 

an included bladder is located outside (OoFoV-Bladder) or 

inside (InFoV-Bladder) the scanner’s axial FoV. Details of the 

patients and the simulated phantoms can be found in the 

appendices. 

For the set of analytical phantoms, a total of 9 were 

modeled. These included models of a NEMA-Scatter, a 

NEMA-Uniformity, and a NEMA-IQ phantom used in various 

quality assessment protocols. The rest of them were modeled 

for this study. In general, they consisted of ellipsoidal water 

phantoms that contained simple structures of different 

materials, such as air and bone. As  

 

 
sources, geometric shapes of various activities were 

modeled inside these phantoms. Schematics and details for 

these phantoms can be found in Appendix I. 

 

2.2 Monte Carlo Simulations 

The phantoms were simulated in GATE [16], an emission 

tomography package for Geant4, a Monte Carlo physics 

simulation toolkit. The scanner used for the simulations was 

modeled based on PETMR-U, the PET/MRI scanner 

developed at UMC Utrecht, which is equipped with silicon 

photo-multiplier (SiPM) detectors. The simulation parameters 

and the digitizer settings of the scanner, such as the energy 

resolution of the detectors or the settings of the coincidence 

unit, were based on values found in the literature regarding 

digital photon counting simulations [17].  The diameter and 

the axial FoV of the scanner are 75 cm and 14 cm, 

respectively. That means that only 35% of simulated phantom 

volumes can be considered to be within the axial FoV 

(InFoV). The simulated acquisition times were set to 300s for 

the analytical phantoms and, in line with the clinical 

acquisition times per bed position, to 150s for the voxelized 

ones.  

2.3 Data Format and Pre-Processing 

Figure 1. Example of the three bed positions cropped from the 

PET images of a single patient: No-, OoFoV- and InFoV- Bladder 

in (a), (b) and (c) respectively. The red lines define the total 

simulated volume, and the green lines define the part that is 

located inside the axial FoV of the scanner. 

(a) 

(b) 

(c) 
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From each MC-simulated phantom, full 3D PET 

histograms were acquired of prompts, random, scatter, and 

true coincidences, as well as attenuation coefficients for 511 

keV photons. These histogram data were organized in stacks 

of 1296 direct- and oblique-plane sinograms. These were non-

interpolated, in which each voxel uniquely corresponds to a 

Line-of-Response (LoR) of the scanner. 

To reduce the dimensionality of the data, only direct-plane 

sinograms were used. To minimize the loss of information by 

discarding oblique sinograms, and to increase the statistics of 

the direct sinograms, Single-Slice Rebinning was used [18] to 

rebin up to 8 oblique sinograms to every direct one. Ultimately 

for each simulation, the resulting data were organized in 3D 

arrays formed by stacks of 64 direct-plane sinograms, with 

dimensions of 216 angles by 432 interleaved projection bins. 

In line with conventional scatter correction methods, 

random coincidences were subtracted from the prompts before 

any further processing. The resulting random-corrected 

prompts (prompts(RC)), along with the attenuation (AC were 

further processed to be used as inputs of the NN. MC-

generated scatter coincidences are processed similarly in the 

same 3D format. These will be used as training targets during 

the NN training. During the training and after feeding the 

inputs in the NN, the objective is to match its generated output 

to the MC Scatter, in what is described as “supervised 

learning”. In these types of ML, the terms outputs and targets 

can be used interchangeably. 

As the MC-generated data is by nature sparse and noisy, the 

noise level may have a large influence on the performance of 

the network. To investigate the input of noise practically, three 

combinations of data preprocessing of the inputs-label were 

investigated. Their differences lie in whether the downscaling 

and the blurring were applied to both prompts(RC) and scatter, 

to just the scatter, or to none of them, creating input-target 

pairs that can be described as   

 

 

Pre-

Processing 

Strategy 

Data type 
Downscaling 

Kernel 

Gauss 

Sigma 

RR 

Prompts(RC) - - 

AC - [0.75x1.5x2] 

Scatter - - 

RB 

Prompts(RC) - - 

AC - [0.75x1.5x2] 

Scatter [1x4x6] [3  x  6 x  8] 

BB 

Prompts(RC) [1x4x6] [1.5 x 3 x  4] 

AC [1x4x6] [0.75x1.5x2] 

Scatter [1x4x6] [3  x  6  x  8] 

Table 1. The downscaling and Gaussian blurring kernels are 

applied to different data in each pre-processing strategy. 

 
 

 
  

 

Figure 3. Sinogram examples of the inputs (prompts(RC) and 

attenuation factors) and their respective targets (scatter) in the three 

pre-processing strategies RR, RB and BB. 

Figure 2. Projection examples of the inputs (prompts(RC) and attenuation coefficients) and their respective targets (scatter) in the three 

pre-processing strategies RR, RB and BB. 

 

(RR)

 

(RB)

 

(BB)

 

(RR)

 

(RB)

 
 (a)  (a) 

(BB)

 
 (a) 
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blurred-blurred (BB), raw-blurred (RB), and raw-raw (RR) 

respectively. The applied processing consisted of downscaling 

in the form of sum-pooling with a [1x4x6] kernel while 

maintaining the original dimensions of the arrays. This was 

followed by a gaussian blurring with different standard 

deviations. Specific processing details per data type for each 

combination are summarized in Table 1.  

In all cases, prompts(RC) and scatter were normalized by 

the scan time, converting coincidence event counts into 

counting rates. Additional normalization was applied, by 

using the maximum value present in the 3D array of 

Prompts(RC). AC was normalized by a constant.  

The aforementioned 3D format of the data allows for two 

distinct 2D visualizations of the same information. The 

common sinogram view (projection bins – angles), and the 

projection view (projection bins – axial projection bins). This 

enabled the investigation of trainings in both sinograms and 

projections independently. 

2.4 Training Datasets 

Using combinations of the two types of simulated 

phantoms, two types of data representations, and three 

strategies of input-label blurring strategies, 12 datasets were 

generated. Another set of 6 datasets was generated by merging 

the analytical and voxelized phantoms. A method of data 

enhancement specific to the sinogram datasets was applied by  

exploiting the 180° symmetry present in sinograms.  

 

As such, additional copies of the existing sinogram data were 

generated by introducing a random angular shift, which 

doubled the amount of training data for sinogram trainings. 

Ultimately, 18 distinct datasets were created, whose 

characteristics can be found in Table 2. 

 

 

 

 
 

 

Training 

Phantoms  

 

 

Projection 

Type 

Preprocessing 

Strategy 

(Input-Label) 

 

 

Dataset 

no. 
 

Slice 

Dimensions 

Slices per 

Simulation 

(+ sin. enh.) 

 

Training Set  Test Set 

  Simulations 
Total 

Slices 
 Simulations 

Total 

Slices 

              

Analytical 

 

Sinogram 

R-R  1  [216 x 432 ] 64 (+ 64) 7 896(enh.)  5 320 

 R-B  2  [216 x 432 ] 64 (+ 64) 7 896(enh.)  5 320 

 B-B  3  [216 x 432 ] 64 (+ 64) 7 896(enh.)  5 320 
             

             

 

Projections 

R-R  4  [  64 x 432 ] 216 7 1512  5 1080 

 R-B  5  [  64 x 432 ] 216 7 1512  5 1080 

 B-B  6  [  64 x 432 ] 216 7 1512  5 1080 
              

              

Voxelized 

 

Sinograms 

R-R  7  [216 x 432 ] 64 (+ 64) 21 2688(enh.)  5 320 

 R-B  8  [216 x 432 ] 64 (+ 64) 21 2688(enh.)  5 320 

 B-B  9  [216 x 432 ] 64 (+ 64) 21 2688(enh.)  5 320 
             

             

 

Projections 

R-R  10  [  64 x 432 ] 216 21 4536  5 1080 

 R-B  11  [  64 x 432 ] 216 21 4536  5 1080 

 B-B  12  [  64 x 432 ] 216 21 4536  5 1080 
              

              

Analytical 

+ 

Voxelized 

 

Sinograms 

R-R  13  [216 x 432 ] 64 (+ 64) 28 3584(enh.)  5 320 

 R-B  14  [216 x 432 ] 64 (+ 64) 28 3584(enh.)  5 320 

 B-B  15  [216 x 432 ] 64 (+ 64) 28 3584(enh.)  5 320 
             

             

 

Projections 

R-R  16  [  64 x 432 ] 216 28 6048  5 1080 

 R-B  17  [  64 x 432 ] 216 28 6048  5 1080 

 B-B  18  [  64 x 432 ] 216 28 6048  5 1080 
              

Table 2. List of created datasets and their characteristics. 

Figure 4. Introducing a random angular shift on sinograms, a 2-

fold increase of training data was achieved in the training 

datasets of sinograms. Original and shifted sinograms in columns 

(a) and (b) respectively. 

(a) (b) 
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2.5 Neural Network Trainings 

The prompts(RC), along with the attenuation coefficients 

(AC)  were used as inputs of a CNN for supervised learning, 

with scatter being the training target. The architecture of the 

CNN was based on a 2D U-NET [11] and was implemented in 

PyTorch. The encoder of the model consisted of a sequence of 

3x3 kernel convolutional layers, element-wise rectified linear 

units (ReLu), batch normalization layers (BN), and 2x2 max-

pooling operations reaching a latent space of dimensions 

512x54x27 and 512x54x8, for sinograms and projections 

respectively. The decoder was composed of 2x2 kernel 

transposed convolutional layers with the usual concatenation 

of skipped connection volumes. The output layer consists of a 

convolutional layer coupled with a ReLu. The total number of 

trainable parameters in the model was 7.7 million. 

The training process was performed using the Adam 

optimizer with learning rates Lr=1e-04 and weight decay 

10−7, as well as with Mean Square Error (MSE) as the loss 

function. These were chosen after performing a minimal grid 

search over other possible values. Early stopping was used 

with patience of 50 epochs, to terminate the training before it 

reaches overfitting, by monitoring the training and the 

validation losses. 

 

2.6 Evaluation 

From all datasets, the data originating from the simulations 

of the analytical phantoms NEMA-IQ and NEMA-scatter, and 

the three simulated bed positions (No-, OoFoV- and InFoV- 

Bladder) of a single patient, were excluded from the trainings. 

Feeding their prompts(RC) and AC in the trained networks, 

inferences of the scatter contribution were made in the 2D 

form of sinograms or projections. These representations were 

concatenated back to the complete 3D format and then 

compared to the respective MC scatter contributions.  

The evaluations were performed using the Normalized 

Root Mean Squared Error (NRMSE) as a metric. For 𝑆𝑀𝐶 and 

𝑆𝐷𝐿 the MC- and the DL- generated scatter, NRMSE over all 

voxels 𝑛 of the 3D array was calculated based on the formula: 

𝑁𝑅𝑀𝑆𝐸 = 100% 
√𝑀𝑆𝐸

𝑆𝑀𝐶
𝑚𝑎𝑥 − 𝑆𝑀𝐶

𝑚𝑖𝑛   ,

𝑤𝑖𝑡ℎ  𝑀𝑆𝐸 =
∑ (𝑆𝑀𝐶

𝑖 − 𝑆𝐷𝐿
𝑖 )

2

𝑖

𝑛
 

In the cases of the RR strategies, both the target and the 

inferred scatter were downscaled and blurred similarly to the 

RB and BB ones, before the evaluations. 

 

 

 

 

2.7 Analysis 

The optimal training dataset will be chosen based on the 

mean performance of the network over the five cases of the 

test dataset. Grouping the training datasets based on their 

common characteristics and computing their average 

performance was also performed to allow for investigations of 

the overall impact that each characteristic had on the 

performance of the network.  

In some cases, to visually inspect the MC -DL scatter 

mismatch in the entire 3D  array format, we constructed 3 

images. Each one of them was estimated by the maximum 

values of the Normalized Mean Absolute Error (NMAE) along 

a certain dimension, as estimated by: 

𝑁𝑀𝐴𝐸𝑖 = 100%
𝑀𝐴𝐸𝑖

𝑆𝑀𝐶
𝑚𝑎𝑥 − 𝑆𝑀𝐶

𝑚𝑖𝑛 ,

𝑤𝑖𝑡ℎ 𝑀𝐴𝐸𝑖 =
|𝑆𝑀𝐶

𝑖 − 𝑆𝐷𝐿
𝑖 |

𝑛
 

 Essentially, one of the images contains the maximum 

NMAE over all sinogram views of the data, and the other the 

projection views. Such visualization can assist in locating 

cases in which a trained network underperforms. 

 

3. Results 

3.1 Simulations 

The statistics of the data acquired in the Monte Carlo 

simulations varied per phantom. Specifically for the voxelized 

phantoms, on average 1.1 million prompts were acquired in  

150s, composed of 0.5 million true, 0.4 million scattered, and 

0.2 million random coincidences. Higher statistics were 

possible with the analytical phantoms in 300s, with 11.1, 7.1, 

1.9, and 2.1 million coincidences for prompts, trues, scatter, 

and randoms respectively. These numbers regard the full 3D 

PET acquisition, which  contained 121 million LoRs in a set 

 

Figure 5. Architecture of the CNN used 



Phantom 

Type 
Class 

# of 

Sims 

InFoV/ 

Simulated 

Activity[%] 

Prompts Prompts(RC) 

Trues/ 

Prompts(RC) 

[%] 

Scatter/ 

Prompts(RC) 

[%] 

Randoms/ 

Prompts(RC) 

[%] 

   Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std 

Analytical - 9 48.6 24.3 11126783 9395664 9003065 8439554 58.5 20.3 24.8 10.1 22.7 8.8 

Voxelized No Bladder 8 37.67 6.18 1043011 121736 843577 72484 55.94 6.66 41.82 3.16 23.51 6.16 

Voxelized OoFoV Bladder 8 25.93 3.75 912746 257513 683230 215619 52.96 2.05 47.04 2.05 33.46 9.76 

Voxelized InFoV Bladder 8 63.50 5.04 1336589 363021 1173061 287713 60.06 3.72 39.94 3.72 13.92 6.39 

Table 3. Mean and standard deviations of activity and coincidence ratios, as obtained by the MC simulations. 

 
of 1296 sinograms. From these, only 548 were used, after 

SSRB. On average, each simulation required a computation 

time that would be equivalent to 1600 hours in a single 

4.5 𝐺𝐻𝑧 CPU core.  

A summary of important ratios describing the statistics of 

the simulations can be found in Table 3, while the full results 

can be seen in Appendix III. A noteworthy observation could 

be considered the correlation of the InFoV/Simulated activity 

ratio with the number of trues, scatter, and randoms. As 

expected, the OoFoV-Bladder phantoms have the least 

amount of trues, and the maximum number of scatter and 

randoms coincidences.  

 

3.2 Pre-Processing 

The MC-generated sinograms were processed and 

visualized according to their type (prompts(RC), AC or 

scatter) and the preprocessing strategy that they belonged to, 

as seen in Table 1. The different preprocessing operations 

followed in different datasets, created different ranges of 

values between inputs and the target. These however were 

constant and consistent among the examples of the same 

dataset type. Examples of sinograms and projections under the 

different preprocessing strategies can be seen in Figures 3 and 

4 respectively. 

 

3.3 Trainings 
The duration of the model trainings varied depending on 

the projection type, the amount of training data included in 

each dataset and the activation of the implemented early 

stopping. For datasets with the RB and BB strategies, 200-300 

epochs were required for the training to reach a local optimum.  

RR strategies required 20-50 epochs before the validation loss 

started to increase. A few examples of network outputs and 

some evaluation metrics that were plotted during the training 

can be found in Figure 6 and Appendix IV. 

More specifically, in Figure 6 (a) we observe how a single 

projection slice of  RR strategy can be visualized, and the 

degree of mismatch between the target and the output. 

Similarly, in Figure 6 (b) we can observe a better agreement 

between the DL-generated scatter and the blurred target of a 

BB strategy.  

Figure 6. Two examples of the best inferred projection slices of two test 

cases, InFoV and OoFoV-Bladder, for (a) and (b) respectively. These 

examples are from training on dataset 16 and 18, again for (a) and (b) 

respectively. The eight graphs in each of the cases, from the left to right 

columns, and from the upper row to towards down, we see the two inputs 

(prompts(RC) and Attenuation Factors), the scatter contributions (MC- 

and  DL- Scatter, and their difference), a side-by-side comparison of the 

two with inverted colormaps, a profile of the summation over the axial 

dimension of the MC- and DL- Scatter, and finally the NMAE of the two 

for which a thresholding of 1% of the MC- Scatter was used for the 

calculation. 

(a) 

(b) 
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3.4 Inferences and analysis 

Once all networks were trained, evaluations on the five test 

cases were performed. As such, 2D inferences of sinograms 

and projections were made and concatenated to create full 3D 

sets of DL-generated scatter contributions. To obtain one such 

3D set, 1.45 or 4.8 seconds were required, depending on 

whether the network was used to generate 64 sinograms or 

216 projections, respectively. 

The estimated NRMSE between the DL-scatter and the 

MC-scatter, for each dataset and per test case, can be found in 

Table 4. The means and standard deviations of NRMSE over 

all test cases for each dataset are also computed. 

 

Training 

Phantoms  

 

 

Projection 

Type 

 

Preprocessing 

Strategy 

(Input-Label) 

 

 

Dataset 

no. 

 

   Evaluation NRMSE [%]  Analysis NRMSE [%] 

    
Analytical 

Phantoms 
  

Voxelized 

Phantoms 
 Mean ± Std 

Analytical 

Phantoms 
 

Voxelized 

Phantoms 

    NEMA IQ 
NEMA 

Scatter 
  
No 

Bladder 

OoFoV 

Bladder 

InFoV 

Bladder 
Mean ± Std  Mean ± Std 

                    

Analytical 

 

Sinogram 

R-R  1   9.5 5.6   22.1 7.1 12.6  11.4 ±   6.6 7.5 ± 2.0  13.9 ±   6.2 

 R-B  2   9.0 12.7   52.6 13.3 18.3  21.2 ± 17.9 10.9 ± 1.8  28.1 ± 17.5 

 B-B  3   14.3 3.4   18.6 6.0 11.2  10.7 ±   6.1 8.8 ± 5.4  11.9 ±   5.2 
                   

                   

 

Projections 

R-R  4   7.9 10.6   40.0 11.8 17.0  17.5 ± 13.0 9.2 ± 1.4  23.0 ± 12.3 

 R-B  5   8.3 18.4   34.3 9.5 13.1  16.7 ± 10.6 13.3 ± 5.0  19.0 ± 11.0 

 B-B  6   12.7 10.7   18.8 6.1 9.5  11.6 ±   4.7 11.7 ± 1.0  11.5 ±   5.4 
                    

                    

Voxelized 

 

Sinograms 

R-R  7   17.2 10.5   6.3 4.1 2.8  8.2 ± 5.8 13.8 ±  3.3  4.4 ± 1.4 

 R-B  8   33.7 5.9   7.8 7.2 5.3  12.0 ± 12.2 19.8 ± 13.9  6.8 ± 1.1 

 B-B  9   8.9 9.8   6.1 5.4 3.1  6.7 ± 2.7 9.3 ± 0.4  4.9 ± 1.3 
                   

                   

 

Projections 

R-R  10   22.1 11.7   4.4 4.1 2.8  9.0 ± 8.1 16.9 ± 5.2  3.8 ± 0.7 

 R-B  11   27.8 12.9   6.3 4.9 5.1  11.4 ± 9.8 20.4 ± 7.5  5.4 ± 0.6 

 B-B  12   13.4 9.3   5.4 3.4 3.2  6.9 ± 4.4 11.4 ± 2.1  4.0 ± 1.0 
                    

                    

Analytical 

+ 

Voxelized 

 

Sinograms 

R-R  13   9.2 11.2   8.4 5.3 2.7  7.4 ± 3.4 10.2 ± 1.0  5.5 ± 2.4 

 R-B  14   8.7 6.8   7.9 7.8 4.7  7.2 ± 1.6 7.7 ± 1.0  6.8 ± 1.5 

 B-B  15   11.4 9.4   7.9 5.9 4.0  7.7 ± 2.9 10.4 ± 1.0  5.9 ± 1.6 
                   

                   

 

Projections 

R-R  16   5.5 7.4   5.6 3.6 2.6  4.9 ± 1.9 6.5 ± 1.0  3.9 ± 1.2 

 R-B  17   8.3 13.0   6.4 5.0 3.8  7.3 ± 3.6 10.6 ± 2.4  5.0 ± 1.1 

 B-B  18   13.4 6.1   5.7 3.6 2.7  6.3 ± 4.2 9.7 ± 3.7  4.0 ± 1.2 
                    

Table 4. NRMSE as computed between the DL-generated scatter estimations and the MC-scatter ground truth, for each of the five 

test cases. 

 

Comparison 

 

Categories 

 

  NRMSE [%] (mean ± standard deviation) 

  
Analytical 

Phantoms 
 

Voxelized 

Phantoms 

Included 

Datasets 
 
NEMA 

IQ 

NEMA 

Scatter 
 

No 

Bladder 

OoFoV 

Bladder 

InFoV 

Bladder 
          

Trained 

Phantom Types 

Analytical 1-6  10.3 ± 2.6 10.2 ± 5.3  31.1 ± 13.7 9.0 ± 3.1 13.6 ± 3.4 

Voxelized 7-12  20.5 ± 9.2 10.0 ± 2.4  6.0 ± 1.1 4.9 ± 1.4 3.7 ± 1.1 

An.+Vox. 13-18  9.4 ± 2.7 9.0 ± 2.7  7.0 ± 1.2 5.2 ± 1.6 3.4 ± 0.9 
          

          

Data Representation 
Sinograms 1-3,7-9,13-15  13.5 ± 8.1 8.4 ± 3.1  15.3 ± 15.1 6.9 ± 2.6 7.2 ± 5.5 

Projections 4-6,10-12,16-18  13.3 ± 7.3 11.1 ± 3.6  14.1 ± 13.9 5.8 ± 3.0 6.7 ± 5.3 
          

          

Preprocessing 

Strategy 

(InputsTarget) 

RR 1,4,7,10,13,16  11.9 ±   6.4 9.5 ± 2.4  14.5 ± 14.1 6.0 ± 3.1 6.8 ± 6.4 

RB 2,5,8,11,14,17  16.0 ± 11.6 11.6 ± 4.6  19.2 ± 19.7 7.9 ± 3.1 8.4 ± 6.0 

BB 3,6,9,12,15,18  12.3 ±   1.9 8.1 ± 2.8  10.4 ±   6.5 5.1 ± 1.3 5.6 ± 3.7 
          

Table 5. Mean and standard deviations of NRMSE, as calculated for the test cases, over datasets that share the same characteristics. 

Three types of comparisons are made, in each of which the 18 datasets are grouped depending on the category they belong to.  



To promote further investigations of the effects of 

individual choices in the datasets, the results of their 

evaluations were also grouped according to the characteristics 

that the datasets have in common. As such, three comparisons 

were made. These are targeting the phantom types included in 

the training, the data representation used by the network to 

generate the scatter estimate, and the blurring strategy. The 

mean and standard deviations of the NRMSE of those groups 

were estimated and can be found in Table 5. These NRMSE 

values were kept separate for each test case. 

 

3.5 Optimal Dataset 
Based on the methods that were followed in the current 

study, we obtained two different candidates for the best-

performing datasets for using DL for scatter corrections. 

The first one is based on the direct evaluation of the 

NRMSE over the chosen test cases, as listed in Table 4. As 

such, the network that was trained with both analytical and 

voxelized phantoms, using projections and with the RR 

preprocessing strategy (dataset 16), generated scatter with the 

best overall agreement with the MC scatter based on a mean 

NRMSE value (± standard deviation) of (4.9 ± 1.9)%. 

By grouping the results according to the characteristics of 

the datasets, and by calculating their mean NRMSE over all 

test cases, we obtain Table 5. In this, the overall effect that the 

chosen type of phantoms used in the training, the 2D view of 

the projection data, and the blurring strategy category, have on 

the overall performance of the NN are summarized. From 

these estimations, we can observe that using both types of 

phantoms, the mean NRMSE in 3 out of 5 cases got decreased 

over the other choices. Similarly, in 4 out of 5 cases, training 

on and generating projections was more accurate than using 

sinograms, with only in the NEMA-Scatter phantom 

performing worse. Lastly, we observe that the BB strategy was 

optimal in all test cases over the RR and RB ones. Using the 

combinations of the optimally performing categories, dataset 

18 (from Table 5) can be deducted as another optimal one. 

Coincidently, this dataset ranks as second best on the first 

ranking method of Table 4. 

The common characteristics of these two candidates 

already indicate the most promising directions. Their only 

difference, the preprocessing strategy followed, was the target 

for the next investigation. 

 

3.6 Visualizations of scatter 

To further investigate the best-performing networks, and to 

identify any potential regions of the 3D scatter volumes in 

which our DL methods underperform, we proceeded with the 

visualization that was described in 2.7. As such, we selected 9 

cases to visualize in Figure 7. 

Noteworthy observations include the difference in the 

ranges of errors in each case. The pre-evaluation 

visualizations that compare the unblurred MC- and DL- 

Scatters reach values of 74% error, showcasing the inability of  

Figure 7. The maximum NMAE values of the MC-Scatter and the DL-Scatter are projected on the 3 directions that define the 3D array 

of our data. One of them resembles the maximum value over all sinogram slices, and another one over all projection slices. The two optimal 

datasets, 16 and 18, were selected. Since dataset 16 belongs to the RR strategies, the visualizations before and after the blurring that is 

described in 2.6 are included. For each case, the maximum errors on the three voxelized phantoms of the test dataset are visualized. 
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the networks to reproduce the exact sparse information of 

raw MC-generated data. However, with the application of 

blurring used in the evaluation, we observe that the mismatch 

is reduced significantly, to the level of becoming comparable 

with the mismatch present in the BB strategies. 

Inspecting the locations that present the highest amount of 

errors, we observe that for the No-Bladder cases, these were 

located on large axial Z, for OoFoV-Bladder on small axial Z, 

and for InFoV on middle axial Z. These are in line with the 

positions of high activity organs in those phantoms, such as a 

heart for the first one, and the bladder for the other two 

 

4. Discussion 

4.1 Phantom Types 

Analytical and voxelized phantoms have very distinct 

inputs, which also reflect on their scatter distributions. 

Analytical phantoms have homogeneous attenuation images 

and localized activity distributions. On the opposite side, 

voxelized phantoms based on patients show very 

inhomogeneous attenuation coefficients and activity 

distributions. 

Due to these differences, by including both types of 

phantoms in the same training dataset, we can expect a 

decrease in performance in individual test phantoms of a 

certain type when compared to training datasets that 

exclusively contained that type of phantoms. 

This was partially verified by our results. In Table 5, for the 

trained phantom types comparisons, we can observe a 

decrease of NRMSEs for the No-Bladder and the OoFoV-

Bladder cases with the mixed phantom type datasets over the 

ones exclusively containing voxelized phantoms. 

Interestingly, this was not the case for the InFoV-Bladder 

phantom. We suspect that the reason behind this is the high 

resemblance of the InFoV bladder phantoms to multiple 

analytical phantoms that were designed for this study, which 

contained spherical regions of high activity at the center of the 

FoV (see Appendix I). 

On the opposite side, in the analytical phantom (NEMA) 

test cases, the inclusion of voxelized patient phantoms in the 

training had a positive effect, by decreasing the mean NRMSE 

when compared to the datasets with only analytical phantoms. 

This can be interpreted as the network becoming more robust, 

despite the different geometries. This highlights the 

importance of using multiple types of phantoms. 

In conclusion, including analytical phantoms in the training 

datasets should only be considered when there are already 

sufficient voxelized patient phantoms, to ensure that no 

significant decrease in performance on test cases of the latter 

type.  

 

4.2 Data Representation 

An overall improvement in the performance of the network 

when using projections over sinograms for the same imaging 

volume can be deducted from the comparisons in Table 4. 

Except for the NEMA-scatter, the networks trained with 

projections had lower mean NRMSEs over the rest four test 

cases. 

We believe that the key to that performance difference is 

the ranges of pixel intensities within each sinogram or 

projection slice. To further elaborate, after normalizing the 

entire 3D array of MC scatter with the maximum value of 

prompts(RC) (as mentioned in 2.3), we constructed a set of 64 

sinograms and 216 projections. However, despite them 

representing the same data overall, we observed that the 

ranges of values within the 64 sinogram slices vary a lot when 

compared to the ranges of values within 216 projections. This 

is because each sinogram contains very little information from 

the axial FoV, while the projections have more, rendering their 

values more consistent. Using DL with images of highly 

inconsistent contrast, can make the training process less stable 

and ultimately worsen the networks’ performance. 

The decreased spatial correlation between adjacent pixels 

in sinogram views when compared to projections, could also 

manifest itself through this difference. Both dimensions in a 

projection slice have a linear spatial correlation (projection 

bins – axial Z), while a sinogram slice has linear (projection 

bins) and angular (angles) spatial correlation between adjacent 

voxels. This deviation from spatial correlation uniformity 

might pose a challenge for a CNN to learn. 

Another explanation for this performance difference can be 

deducted from the different number of slices per training 

dataset. In general, as seen in Table 2, projection datasets had 

60% more slices than the equivalent projection ones, even 

after doubling the number of sinograms by the data-enhancing 

method that we described in 2.4. 

 

4.3 Blurring Strategy 

The motivation behind the investigation of different 

blurring strategies should be mentioned. After obtaining our 

data from the MC simulations and visualizing them, it became 

clear that applying DL by training a CNN on them would be 

very challenging. This notion was even though these types of 

networks have proven to be very capable of complex pattern 

recognition and robust on both regression and classification 

tasks. The low counts and the sparsity of information on both 

sinograms and projection, combined with the embedded noise, 

were rendering a raw-inputs to raw outputs as a task that 

would resemble more of a voxel-to-voxel classification. In a 

task as such, each voxel would have to be classified in the 

correct discrete value of scattered coincidences that it 

contains. And indeed, CNN was challenged in this task. 
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Evidence of that can be observed in Figure 6 and Figure 7 

which contain comparisons of raw-raw MC- and DL-Scatter. 

Despite the network managing to reproduce the sparsity and 

the noise-like nature of the unblurred targets, a pixel-to-pixel 

match could not be achieved. 

At that point, one important realization was made, specific 

to the task that we aimed to solve. Matching precisely the 

distribution of the raw scatter coincidences is of no interest to 

us. Both the MC-generated inputs-targets or even the real-

scenario prompts(RC), will always be products of highly 

stochastic processes, either due to the pseudo-random number 

generator used in MC or due to the Poisson nature of the 

acquisition. Additionally, the effect of scatter contribution has 

a low frequency on the reconstructed image, which could 

imply that the scatter correction method is less sensitive to 

pixel-wise comparisons of noisy data. These ideas are 

supported by the methodology used in MCSC, which requires 

blurring and scaling of the scatter estimate before it gets 

subtracted from the acquired data.  

Consequently, inspired by MCSC and our initial skepticism 

on the raw-raw training, it was decided to investigate the RB 

and the BB strategies in parallel to the RR. Additionally, to 

reliably compare these strategies based on a metric, such as 

the NRMSE, the DL-Scatter obtained from the RR strategies 

had to be blurred similarly to the others. 

 However, despite these investigations, the optimal choice 

of blurring remains inconclusive, with the RR and BB 

strategies being included in datasets 16 and 18 of the two best-

performing networks. A way to interpret this ambiguity could 

be through the way a CNN, like our model, processes input 

data. The sequential convolution and max-pooling operations 

over the input data during training can result in a loss of high-

frequency information that can resemble blurring. 

Specifically, in the RR strategies, a form of sampling from 

these blurred distributions seems to take place in the network, 

generating output similar to the targets as result. These 

resulted in noisy-like and sparse outputs that were once 

sampled from a pool of blurred distributions, which can be 

partially restored when the evaluation blurring is applied. 

In future investigations, more educated choices should be 

made on the amount of blurring applied, since the values used 

in MCSC are not reported in the literature. Interestingly, in the 

RR strategies, only a relatively small number of epochs was 

required before the validation loss started to increase, 

indicating quick overfitting of the network’s parameters to the 

training data. This implies that the network was not suitable 

for this task, and one with fewer learnable parameters could 

perform even better by using datasets with the RR strategy. 

  

 

4.4 Simulations results 

As expected, simulations generated very sparse data, in 

which valuable information was often indistinguishable from 

noise. Especially the voxelized simulations can be 

characterized as low-count MC simulations since the number 

of the acquired prompt coincidences was on average ~15% of 

the ones in a typical clinical scan of the same lower-torso 

regions. The attempts to increase the statistics by only 

considering direct sinograms and applying SSRB could only 

partially compensate for that. Ideally, higher statistics would 

be needed for a highly accurate scatter correction method 

using DL. 

The visualizations of the attenuation factors exhibit some 

very distinct artifacts. These are caused by the combination of 

using non-interpolated projections and sinograms acquired in 

a scanner geometry with occasional gaps between the 

detectors. Despite these intense artifacts, several networks 

managed to perform decently and no artifacts were observed 

in the generated outputs. This could imply that a CNN might 

be able to learn to ignore such systematic anomalies. 

As expected, scatter and random coincidences were the 

highest in the OoFoV-Bladder phantoms, as seen in Table 3. 

 

4.5 In and out of FoV activities 

In our investigations, no signs of overall performance 

decrease in cases of OoFoV-Bladder phantoms were 

observed. Such phantoms measured the highest number of 

scattered coincidences, as seen in Table 3. Additionally, since 

the inputs of prompts and attenuation factors do not include 

any direct information about the contribution of OoFoV 

scatter, we would expect that the worst-performing cases 

would be the ones with an OoFoV-Bladder. Despite the 

analysis and the maximum NMAE values of Figure 7 

indicating that the OoFoV-Bladder cases include some of the 

worst underperformance of the networks trained with the 

datasets 16 and 18, the overall NRMSE of those cases was 

consistently lower than the No-Bladder phantom ones. 

The implications of these observations could be of great 

importance. We could hypothesize that despite the lack of 

direct OoFoV information to the network from these regions, 

such as the activity or the attenuation mediums, the network 

could be trained to able to predict a pattern of OoFoV scatter 

only through the input of prompts(RC) and the target image of 

scatter, the latter of which is a subset of the first. Since on a 

high level and for low-resolution information such as the 

scatter contribution, human anatomies can be considered very 

similar, the OoFoV scatter could potentially be learned by the 

network.  

Since conventional SSS methods only partially account for 

OoFoV scatter through scaling, such development could be a 

key advantage of a DL method over them. It could render a 

DL method for scatter as either a complementary tool towards 
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a more accurate scaling of existing scatter correction methods, 

or as an entire replacement of them. 

However, there is hesitance on drawing solid conclusions 

on this. More investigations are needed that target more 

methodically the OoFoV-activity contribution aspect of 

scatter corrections. Our method and our conclusions were 

based on a minimum amount of test cases. The next logical 

improvement in the methodology would be the cross-

validation of these results by using different subsets of 

simulated test cases each time.  

  

4.6 Over the evaluation method 

For results of higher clinical relevance, training and 

evaluation only on voxelized patient phantoms would suffice. 

A study as such, with a rich dataset from multiple bed 

positions, would be very promising, as shown in this current 

work and in [15]. The methods of this work deviated 

deliberately from such a patient-oriented setup, by including 

analytical phantoms.  

This choice was primarily driven by the ambition of 

achieving a physics-informed NN, which would capable to 

approximate a physical relationship between the inputs and the 

target. As such, we hypothesize that a well-trained network 

could be robust enough to generate scatter contributions from 

even very distinct and unseen, by the network, phantom 

geometries. Additional motivation for including analytical 

phantoms was to work towards a sufficiently robust scatter 

correction method that could be applied to protocols of PET 

acquisition and image quality assessment, such as the NEMA 

ones. 

However, the inclusion of analytical phantoms in the test 

cases influences the dataset evaluation process that was 

applied in this work, in an unintuitive way. This influence can 

be observed when attempting to perform cross-comparisons of 

the categories defined in Table 5. For example, the optimal 

preprocessing strategies were BB, BB, and RR in 70%, 50% 

and 60% of the cases using datasets trained with analytical, 

voxelized and both types of phantoms, respectively. 

For these reasons, depending on the resources available to 

future studies, and also depending on whether their goal is 

generalisability over specificity, analytical phantoms should 

be included in the test set only if the dataset is large and 

diverse enough already. 

 

4.7 Future work 

Several improvements could be implemented at different 

points along the sequence of methods that was followed.  

In line with most DL methods, the most impactful way to 

improve the learning capabilities of the network is by 

improving the training datasets. In our case, in which we 

generate our training data by Monte Carlo simulations, this 

could be done in multiple ways. The most obvious is to 

increase the simulated patients and the bed positions. 

Increasing the acquisition time to achieve higher numbers of 

coincidences would positively impact the performance since 

more information would be present in each image. At least 7-

10 times more counts per bed position to match the clinical 

standards would be ideal. Similarly, including the entire 

voxelized phantom in the simulation instead of cropping a 

section of it would greatly improve the validity of the method. 

On the NN aspect, we see multiple directions toward 

improvement. Hyperparameter tunings of the network and the 

optimizer were not exhausted in this current work. It could 

however have a significant impact on the performance of the 

network. In case a strategy resembling the RR one is followed 

in the future, a network with fewer learnable parameters would 

be the best choice since severe overfitting was observed with 

the current network. In case a large dataset is available, the use 

of a 3D NN  architecture could achieve higher accuracy than 

its 2D counterpart. Training on full 3D sinogram data to 

minimize the loss of information by using only direct-plane 

ones would be challenging due to the higher sparsity and 

noise, but it could become a topic of investigation.  

Of crucial importance before these improvements would be 

the validation of the DL-generated scatter. The way that a 

potential mismatch of scatter estimation in projection space 

can manifest itself in the post-reconstruction image space can 

not be predicted. As such, we believe that the evaluation of a 

DL scatter method should be ultimately performed in the final 

reconstructed images. In this context, and following the 

conclusions drawn in this study about the phantom types (4.1), 

the validation of such a method should take place on a 

commercial scanner using two types of phantoms. In line with 

the standard PET quality assessment protocols, NEMA 

phantoms should be one of them. To ensure performance in 

clinical cases, anthropomorphic phantoms should be the other 

one. The validation should be based on the quantification 

accuracy (SUV) in the final, scatter-corrected, reconstructed 

images. Additional validation by comparisons with the 

standard SSS could also be of great interest. 

Lastly, scatter corrections in combination with other 

corrections such as attenuation and randoms using DL could 

also be of interest. One could hypothesize that the correlations 

between the prompts, attenuation coefficients, randoms and 

scatter, could be approximated accurately through a DL 

method.

 

5. Conclusions 
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The ability to use a 2D U-Net to generate Monte Carlo- estimated scatter contributions was showcased, rendering the use of 

a DL method to generate MCSC-grade within clinical timeframes feasible. The use of projections provided more accurate 

scatter estimates than with sinograms. Including training data from analytical phantoms along with patient-based ones, should 

only be considered if resources allow it and only if the objective is a more generalized scatter correction method. Both processed 

and unprocessed MC-generated inputs-targets can be considered for training purposes, provided that blurring of the MC-

generated scatter is eventually required for the scatter correction to be applied to the acquired data. Further work and validation 

of the method on the reconstructed images should be performed.
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Appendix I: Analytical Phantoms 

  

 

 

 

 

Appendix II: Technical Implementation 

The GATE simulations were run on a workstation equipped with an AMD Ryzen Threadripper 3970X Processor (2x32 

cores, 128GB memory). The network models were implemented in Python (v3.8.3) using PyTorch (v1.8.1+cu102) and an 

NVIDIA Quadro P6000 (3840 CUDA cores, 24GB memory). 



Appendix III: MC Simulations Statistics 

Analytical Phantom & Simulation Information  Acquired Coincidences  Coincidence Ratios [%] 

Name 

Sim. 

Time 

[s] 

Sim. 

Activity 

[MBq] 

InFoV 

Act. 

[MBq] 

OoFoV 

Act. 

[MBq] 

InFoV/ 

Sim.Act. 

[%] 

InFoV/ 

OoFoV 

Act. [%] 

 Prompts Trues Scatters Randoms 
Prompts 

(RC) 
 

Trues 

/ 

Prompts 

Scatter 

/ 

Prompts 

Randoms 

/ 

Prompts 

Scatter 

/ 

Trues 

Ra/Tr % Sc/Ra % 

                    

G001 240 50 50 0,0 100,0   6691290 3868641 1944661 877988 5813302  57,8 29,1 13,1 50,3 22,7 221,5 

G003 180 100 50 50,0 50,0   8191456 3855025 1942806 2393625 5797831  47,1 23,7 29,2 50,4 62,1 81,2 

G011 180 30,5 6,7 23,8 22,0 28,2  2329063 939212 892517 497334 1831729  95,0 38,3 21,4 95,0 53,0 179,5 

G012 240 61 37,2 23,8 61,0 156,3  27486141 22140856 2086161 3259124 24227017  80,6 7,6 11,9 9,4 14,7 64,0 

G013 240 61 37,2 23,8 61,0 156,3  27489636 22144510 2085195 3259931 24229705  80,6 7,6 11,9 9,4 14,7 64,0 

G014 240 67 18,5 48,5 27,6 38,1  14817975 5071450 4704422 5042103 9775872  34,2 31,7 34,0 92,8 99,4 93,3 

                    

NEMA-

Uniformity 
300 50 17 33,0 34,0 51,5  4147973 1685086 1088842 1374045 2773928  40,6 26,2 33,1 64,6 81,5 79,2 

NEMA-

IQ 
300 23 14,3 8,7 62,2 164,4  5743274 2419512 1518117 1805645 3937629  42,1 26,4 31,4 62,7 74,6 84,1 

NEMA-

Scatter 
300 31 6,2 24,8 20,0 25,0  3244237 1578327 1062247 603663 2640574  48,7 32,7 18,6 67,3 38,2 176,0 

                    

 

Voxelized Phantom & Simulation Information  Acquired Coincidences  Coincidence Ratios 

      Activity [%]             

Patient Position of 

Center [cm] 

Class Sim Time System  Simulated In FoV Out FoV In/Tot % In/Out % Prompts Trues Scatters Randoms Prompts (RC)  Tr/Pr % Sc/Pr % Ra/Pr % Sc/Tr % Ra/Tr % Sc/Ra % 

                       

1 41 No Bladder 150s Snellius  33,47 15,22 18,25 45,5 83,4 1178158 536212 421520 220426 957732  45,5 35,8 18,7 78,6 41,1 191,2 

53 OoFoV Bladder 150s Snellius  47,35 12,54 34,81 26,5 36,0 1070817 405630 347349 317838 752979  37,9 32,4 29,7 85,6 78,4 109,3 

65 InFoV Bladder 150s Local  42,48 23,59 18,89 55,5 124,9 1349813 551174 498296 300343 1049470  40,8 36,9 22,3 90,4 54,5 165,9 

2 54 No Bladder 150s Local  38,89 13,85 25,04 35,6 55,3 1446047 452979 445267 351922 1094125  31,3 30,8 24,3 98,3 77,7 126,5 

66 OoFoV Bladder 150s Snellius  43,16 8,91 34,25 20,6 26,0 1058284 370538 337218 350528 707756  35,0 31,9 33,1 91,0 94,6 96,2 

78 InFoV Bladder 150s Local  36,04 22,39 13,65 62,1 164,0 1891051 1003891 629742 257418 1633633  53,1 33,3 13,6 62,7 25,6 244,6 

3 36 No Bladder 150s Local  28,65 13,67 14,98 47,7 91,3 1461340 777142 470507 213691 1247649  53,2 32,2 14,6 60,5 27,5 220,2 

48 OoFoV Bladder 150s Snellius  29,96 7,84 22,11 26,2 35,5 968214 430657 326882 210675 757539  44,5 33,8 21,8 75,9 48,9 155,2 

60 InFoV Bladder 150s Local  19,54 11,09 8,45 56,8 131,2 1135116 666738 373151 95227 1039889  58,7 32,9 8,4 56,0 14,3 391,9 

4 56 No Bladder 150s Snellius  18,2 6,9 11,3 37,9 61,1 785698 432311 264908 88479 697219  55,0 33,7 11,3 61,3 20,5 299,4 

68 OoFoV Bladder 150s Snellius  25,67 6,41 19,26 25,0 33,3 790611 353398 295709 141504 649107  44,7 37,4 17,9 83,7 40,0 209,0 

80 InFoV Bladder 150s Local  21,69 14,71 6,98 67,8 210,7 1308118 771961 433793 102364 1205754  59,0 33,2 7,8 56,2 13,3 423,8 

5 56 No Bladder 150s Local  36,02 12,94 21,08 35,9 61,4 1345077 631814 423978 289285 1055792  47,0 31,5 21,5 67,1 45,8 146,6 

68 OoFoV Bladder 150s Snellius  34,01 10,3 23,71 30,3 43,4 1003062 406908 361629 234525 768537  40,6 36,1 23,4 88,9 57,6 154,2 

80 InFoV Bladder 150s Snellius  24,63 15,67 8,96 63,6 174,9 1102804 570895 405402 126507 976297  51,8 36,8 11,5 71,0 22,2 320,5 

6 48 No Bladder 150s Local  31,07 9,76 21,31 31,4 45,8 497399 225468 172058 99873 397526  45,3 34,6 20,1 76,3 44,3 172,3 

60 OoFoV Bladder 150s Snellius  31,96 10,17 21,79 31,8 46,7 858301 344576 330497 183228 675073  40,1 38,5 21,3 95,9 53,2 180,4 

72 InFoV Bladder 150s Snellius  24,7 16,55 8,14 67,0 203,3 1103471 578023 410296 115152 988319  52,4 37,2 10,4 71,0 19,9 356,3 

7 48 No Bladder 150s Snellius  34,65 12,94 20,71 37,3 62,5 934986 392603 341386 200997 733989  42,0 36,5 21,5 87,0 51,2 169,8 

60 OoFoV Bladder 150s Snellius  45,89 10,13 35,76 22,1 28,3 831386 301712 284251 245423 585963  36,3 34,2 29,5 94,2 81,3 115,8 

72 InFoV Bladder 150s Snellius  36,17 24,9 11,27 68,8 220,9 1580280 844545 546566 189169 1391111  53,4 34,6 12,0 64,7 22,4 288,9 

8 58 No Bladder 150s Snellius  26,29 7,88 18,41 30,0 42,8 695383 315131 249455 130797 564586  45,3 35,9 18,8 79,2 41,5 190,7 

70 OoFoV Bladder 150s Snellius  29,34 7,35 21,99 25,1 33,4 721290 288359 280530 152401 568889  40,0 38,9 21,1 97,3 52,9 184,1 

82 InFoV Bladder 150s Snellius  24,99 16,56 8,43 66,3 196,4 1222058 667450 432568 122040 1100018  54,6 35,4 10,0 64,8 18,3 354,4 

 

 

 

 

 

 



Appendix IV: Training Results  - Best Test Cases in 2D 

Examples of inferred sinograms and projections of the five cases of the test dataset: the NEMA-IQ (a,f), NEMA-Scatter 

(b,g),  and Voxelized No-Bladder (c,h), OoFoV-Bladder (d,i), InFoV-Bladder (e,j), with sinograms in the first column 

(a,b,c,d,e) and projections on the second one (f,g,h,i,j). These examples are of the same slices, however from different networks. 

The second best performing network was chosen for each case, as ranked by the NRMSE of  Table 4. In each of the cases, from 

the left column towards the right, we see the two inputs (prompts(RC) and Attenuation Factors), the scatter contributions (MC-

ground truth, DL and their difference), a comparison 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(d) 

(b) 

(c) 

(e) (j) 

(i) 

(h) 

(g) 

(f) 



Investigations of Scatter Correction Methods in Quantitative PET using Deep Learning K.D. Vrakidis  

 17  
 

Appendix V: Dataset 16 Evaluation 

• The training dataset from which the optimal network performance occurred was estimated to be Dataset 16. It was 

trained using both analytical and voxelized phantoms, the projection views over the data, and with the RR 

preprocessing strategy.  

• The following 5 groups of graphs correspond to the test cases used for the performance evaluation of the networks: 

NEMA-IQ, NEMA-Scatter, No-, OoFoV- and  InFoV-Bladder phantoms, with (a),(b),(c),(d) and (e) respectively.  

• As discussed, the outputs (DL Scatter) of the networks trained with RR datasets along their targets (MC Scatter), were 

blurred for the evaluation metric (NRMSE) to be estimated.  

• In each of the following graphs, the top row corresponds to the pre-evaluation blurring and the bottom one to the post-

evaluation blurring. 

• The grayscale graphs represent MC and DL Scatter 3D arrays, whose mean scatter rates are being projected along the 

3 different dimensions. For example, in each 3D plot, the mean scatter rates over the entire set of sinograms are visible 

on the bottom of the rectangle. 

• The redscale graphs represent the MC-DL difference, as measured with the NMAE. The maximum values are being 

projected along the 3 different dimensions. For example, in each 3D plot, the mean scatter rates over all sinograms is 

visible on the bottom of the rectangle. This visualization is made to assist the locate the areas that contribute to the 

MC-DL scatter difference the most. 

(a) 

(b) 

(c) 

(d) 

(e) 


