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Abstract 

Despite the notable scientific progress in screening procedures and treatment strategies, breast cancer remains a significant 

cause of mortality, suffering and financial burden. Breast tumor detection, classification and treatment response monitoring 

currently rely on combinations of invasive biopsies and imaging procedures that use contrast agents, which increase the patient 

risks and discomfort. Diffusion MRI (dMRI), as a non-invasive and contrast agent-free imaging method, could be considered 

a viable alternative approach. Conventional dMRI methods already possess a role in breast cancer protocols, due to their 

contribution to the sensitivity and specificity of tumor diagnosis and assessment. This role however has remained purely a 

supplementary one, due to their low capability to resolve sub-voxel tissue heterogeneities that yield low specificity. Novel 

diffusion imaging techniques that claim microstructural imaging capabilities, could only recently be clinically investigated, 

after advancements in MRI software and hardware. By providing microstructural information and measuring biochemical 

properties on cellular scales, the hypothesized higher specificity of the obtained diffusion-based parameters could expand the 

clinical role of dMRI in breast cancer. This hypothesis is investigated in this review article, by presenting a compilation of 

findings from studies that report on breast tumor microstructure obtained by either conventional or microstructural dMRI 

methods. In an attempt to explore the feasibility of dMRI becoming a stand-alone breast cancer approach, the clinical value of 

the microstructural findings reported in each method is highlighted. 
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1. Introduction 

Diffusion Magnetic Resonance Imaging (dMRI) is an 

imaging method that generates image contrast based on the 

microscopic diffusion motion of water molecules contained 

within biological tissues. Its ability to capture diffusion 

properties at the micrometer scale [1] and to produce a plethora 

of parameter maps based on them, renders dMRI a uniquely 

versatile method with successful applications in both 

preclinical and clinical settings. Changes in local diffusion 

properties are indicative of alterations in the microstructure and 

the physiology of certain tissues that are linked to specific 

clinical and even behavioral conditions [2]. One major category 

of such conditions notorious for their capacity to disrupt tissue 

physiology is cancer. 

Initially, the successful applications of dMRI were targeting 

mainly neurological conditions of the brain. The high 

sensitivity of the diffusion signal to microstructural alterations 

eventually has driven the use of dMRI in oncological cases of 

various organs [3]. In fact, over the past two decades, dMRI has 

been proven to provide valid imaging biomarkers for the 

detection and characterization of tumors, the assessment of 

treatment response, as well as survival prognostic markers [4]. 

Breast cancer can be considered a representative example of 

the significant contribution of diffusion MRI on a very relevant 

oncological disease. Despite occurring in women almost 

exclusively (99% of the cases), breast cancer was estimated in 

2020 to be the most prevalently diagnosed form of cancer with 

2.26 million new cases, and responsible for 685.000 deaths, 

rendering it the 5th deadliest cancer (WHO - Global Health 

Estimates 2020.) Overall, the global cumulated burden on 

women due to breast cancer is estimated at 19.8 million 

Disability-Adjusted Life Years (DALYs) [5]. The upwards 

trend of the global average of the Human Development Index 

(HDI) over the last three decades, mainly due to the 

westernization of low- and medium-income countries, has been 

strongly correlated with an increase in incidence and mortality 

rates due to cancer [6]. These, along with the improved 

awareness and screening processes, lead to projections that 

indicate an increase in new annual incidences to 2.7 million in 

2030 (Cancer Tomorrow). 

Current breast cancer protocols are primarily based on 

Dynamic Contrast-Enhanced (DCE) MRI and histological 

analyses of either tissue samples acquired by biopsy, or 

resected tumors. While the sensitivity of DCE-MRI to 

malignant breast lesions has been reportedly found in a meta-

analysis [8] at 90%, its low specificity at 76% can lead to 

multiple unnecessary biopsies to be performed. In addition, 

evidence suggesting the toxicity of gadolinium used in the 

contrast-agents has been gathered [9]. Therefore, an accurate 

and reliable dMRI-based method could provide a non-invasive 

and agent-free approach to breast lesion screening and tumor 

evaluation. In pursuit of this goal, the diagnostic capabilities of 

diffusion MRI in breast lesion screening have been 

acknowledged, which has led to its incorporation into the 

standard breast lesion screening protocols (BI-RADS) [4]. 

However, only the simplest dMRI techniques are clinically 

applied, due to the limited timeframes of medical examinations, 

and the limited availability of the required specialized 

hardware. In principle, all dMRI methods indirectly capture 
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characteristics of tissue microstructures through the properties 

of the water diffusion within tissues. Conventional dMRI 

methods are generally regarded to yield parameters of low 

specificity since their estimation is based on voxel averaging of 

the diffusion signal. With typical voxel sizes of a few milli-

meters, the morphological details of tissues that are on the 

micrometer scales are challenging to be resolved. A 

representative example of this limitation can be the case of 

white matter structures in the brain, which can be seen in Figure 

1. 

Novel dMRI techniques claimed to be capable of resolving 

sub-voxel heterogeneities and providing microstructural 

information and properties on a cellular scale, have been 

developed. Often referred to as Microstructure Imaging, these 

dMRI methods rely on diffusion encoding sequences and 

diffusion signal representation frameworks of high complexity. 

Only recently these methods could be investigated in the clinic, 

after the advancements in the MR scanner hardware, which are 

capable of stronger and faster gradients, as well as higher signal 

sensitivities to the diffusion. 

Only recently these methods could be investigated in clinical 

settings, mainly due to advancements in MRI scanner hardware 

design and image reconstruction methods. In the first, stronger 

and faster magnetic field gradients are now possible, achieving 

higher signal sensitivities to diffusion. The latter, based on 

signal under-sampling techniques and the novel simultaneous 

multi-slice acquisitions, led to acquisition times that fall within 

the clinically-acceptable limits. Despite this progress, the vast 

majority of studies that develop and validate these dMRI 

methods specifically target brain pathologies, with only a few 

focusing on different body sites.  

Following the successes in brain applications, interest in the 

translation of advanced microstructural dMRI techniques to 

breast cancer applications is rising. Essentially, harnessing the 

unique microstructural information obtained by such 

techniques could lead to superior performance over standard 

protocols. An increased specificity, coupled with the non-

invasive and contrast agent-free nature of dMRI, could 

ultimately allow for dMRI-based approaches to replace DCE-

MRI in breast imaging. The additional advantages offered by 

microstructural imaging are potentially numerous [11]. The 

possibility of replacing the invasive histological assessments 

can be hypothesized, provided that sufficient microstructural 

information can reliably be obtained through them. In such a 

scenario, the relative convenience and repeatability of dMRI 

imaging methods would allow the safe use of larger healthy 

control groups, enabling greater progress in breast cancer 

research to be made. 

In this article, the feasibility and the potential of 

microstructural dMRI methods in breast cancer are explored by 

compiling results from studies reporting on breast tumor 

microstructure. To highlight the clinical value of the obtained 

microstructural information, the reported associations between 

diffusion parameters and clinical statuses are listed. Before 

these, a brief overview of the theory of both conventional and 

recently-developed microstructural imaging methods is 

additionally presented. 

 

 

 

2. Breast Tumor Histopathology and Microstructures 

As breast cancer is described the malignant neoplasia, or 

else the abnormal and excessive growth, of any mammary 

tissue. Breast cancer subtypes are formed based on several 

classifications [12], each one of which has distinct risk profiles 

and treatment strategies [13]. Accurate breast lesion screening 

and tumor classification, along with treatment response 

monitoring and prognostic biomarker extraction, are therefore 

of utmost clinical importance. The contribution of dMRI 

methods to these tasks is based on the associations of their 

estimated parameters to the histological and microstructural 

features and, by extension, to their clinical indications. 

Whether the cells of the neoplasm are derived from the 

epithelium that lines the ducts or the lobules, which is the most 

prevalent scenario, leads to the categorization into ductal 

carcinomas (DC) and lobular carcinomas (LC) [12], 

corresponding to 77% and 13% of the breast cancer cases, 

respectively [14]. An additional classification describing the 

localization of the cancerous cells is used. As in-situ (IS) 

carcinoma is described as the confinement of cancerous cells 

within the lobular-duct system, while invasive carcinoma (I) 

their expansion to different tissue compartments, such as the 

lymphatic system [15].  

A molecular classification is based on the presence of three 

antigens in the tissue: estrogen (ER), progesterone (PR), and 

human epidermal growth factor 2 (HER2) hormonal receptors. 

Hormones bind to these receptors, causing changes in the 

cancer cells [16]. Depending on their presence, a further 

division of breast tumors into four major classes is made:  

 

Figure 1. An illustrative example of the root cause of the low of specificity in 

dMRI-derived metrics. (A) Histological images of typical glioma (left) and 

meningioma (right) structures at micrometer scales. The shapes of the water 

diffusion within them are approximately annotated by the blue glyphs. Gliomas 

are characterized by isotropic diffusion of various magnitudes, and 

meningiomas by anisotropic diffusion. (B) Representations of voxels 

containing diffusion patterns of various shapes that can be found in brain, at 

millimeter-scales as typically acquired in dMRI. Despite the obvious 

differences in the underlying microstructure that cause these diverse diffusion 

patterns, conventional dMRI measurements would yield similar results. 

Adapted from (Reymbaut & Descoteaux 2019, [10]). 
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luminal-A, luminal-B, and HER2+ carcinomas and triple-

negative breast cancer (TNBC) [17].  

Depending on the tumor subtype characterization, anatomic 

cancer stage and patient preferences, different treatment 

strategies of neoadjuvant and adjuvant chemotherapies (NACT 

and ACT) are followed [13]. Currently, for the characterization 

of a lesion that shows up in imaging as malignant or as benign 

dense fibroglandular tissue (FBGT), tissue samples or the 

entirety of the lesion are excised in an operating room. After 

the sample preparation process of formalin fixation and 

embedding in paraffin blocks, sections of 3-5 μm are generated 

using microtomes to be examined microscopically [18]. 

Immunohistochemistry (IHC) tests are then used as a staining 

technique to highlight the cell organization, extra- and intra-

cellular structures, such as cell membranes and nuclei. 

Ultimately, quantitative histological features such as the ones 

found are then estimated based on which inferences about the 

tumor are made. 

Breast lesions have distinct morphological features on milli- 

and micro-meter scales, that influence the diffusion properties 

that dMRI is sensitive to. A synoptic list of the most notable of 

these features as found in the literature is listed in Table 2. 

Tumors inherently disrupt normal cell organization and 

differentiation due to their rapid cell division [16], and present 

increased cellularity compared to healthy FBGT. Water 

diffusion tends to be restricted and anisotropic within the 

healthy mammary ducts and lobules, with the degree of 

restriction being increased in case of malignancy due to 

blockages by malignant cells [19]. On the microscopic scale, 

cellular properties such as size, nuclei uniformity membrane 

permeability to water are also affected [16]. 

Water contained in tissues is of particular interest for dMRI, 

and it approximately accounts for 60% of the human body 

contents. Physiologically, body water can be broken down into 

two major compartments [20]. Intracellular fluid (ICF) is 

contained within cells and accounts for 70% of the total body 

water [21], and the rest is Extracellular fluid (ECF), which is 

contained in areas outside of cells. One of the sub-

compartments of the ECF is the interstitial fluid by 80% [22] 

that is located between blood vessels and cells, and the rest is 

plasma located in the blood. 

Neoplasms have been found [23] to distort the physiological 

size and the shapes of these compartments on a microscopic 

level. A prevalent example is the increased presence of blood 

perfusion in tumors, which is related to the angiogenesis that 

comes with their growth [24]. Inspired by these findings, 

multiple dMRI techniques make biophysical assumptions using 

compartments to achieve improved interpretations of the dMRI 

signal and specificity of their derived estimates. Within each 

voxel, the sizes and the shapes of these tissue compartments 

contained are therefore considered microstructural features of 

major importance. The dMRI techniques with that aim, such as 

compartmental models and microstructure imaging methods, 

will be covered in Chapters 4.2 and 5. of this review, 

respectively. 

3. Diffusion Encoding Methods 

Signal acquired in conventional MRI methods is mainly 

generated by the spin precession of hydrogen nuclei, primarily 

the ones forming water molecules. For the signal to contain 

sufficient localization information for image reconstruction, 

magnetic field gradients are used to encode the 3D position of 

the molecules.  A parallel could be drawn with the case of 

dMRI. To harness information based on the characteristics of  

 

Cells 

Ductal Carcinomas (DC) 

Lobular Carcinomas (LC) 

Localization 

In Situ Carcinoma (IS) 

Invasive Carcinoma (I) 

Molecular 

Classification 

Estrogen Receptor (ER) 

Progesterone Receptor (PR) 

Human epidermal growth 

factor 2 (HER2) 

Proliferation 

Rate 
Ki-67 

Tumor Grade 

(I): Well differentiated 

(II): Moderately differentiated 

(III): Poorly differentiated 

Cancer Stage 

(TNM)  

Stage 0: pre-cancerous or 

marker condition 

Stages 1-3: within the breast or 

regional lymph nodes 

Stage 4: Metastatic cancer 

Table 1. Breast Cancer Characteristics. 

 

Figure 2. Graphical representations of microstructural and microenvironmental characteristics of healthy and 

cancerous breast tissues. Adapted from (Moccia et al. 2021, [24]). 
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Table 2. Microstructural features and their relevance to breast tumors. 
 

Microstructural Features Description  Reasons 

Cellularity Cell or packing density 
Increased cell density or heterogeneities can indicate malignancy [25]. 

Necrotic tissue has decreased density. 

Cell Size Cell diameter 

Cellular size is one of the most quickly affected parameters in chemotherapies. 

Tumor status and its response to treatments can be observed by size changes of tumor 

cells [26]. 

Cell Shape Eccentricity and directionality It can be used to distinguish the cell of origin and tumor aggressiveness. 

Cell Membrane Permeability 

Permeability of cell membrane that allows the 

molecular water exchange between the intra- and 

extra-cellular compartments 

Cell membrane permeability depends on cancer subtypes, tumor microenvironment, 

proliferation, drug delivery [27] and treatment-induced apoptosis [26].  

Transcytolemmal Water 

Exchange 

The water exchange between the cellular-interstitial 

water compartments  

It is predicted associated with intracellular water lifetime, which reflects the status of the 

cellular metabolism, which is a characteristic of cancer aggressiveness [28].  

Tumor Vascularity  Presence of micro capillaries 
Hypervascularity and angiogenesis are observed in or around malignant tumors. They 

can influence cancer development and can act as a prognostic factor [24]. 

Stroma Types 
Prevalence of collagen, fibroblasts, and lymphocytes 

stroma types 

Stroma type ratios and the dominant stroma type can be independent prognostic factors 

in mammary cancer [29], [30].  

Subcellular Architecture 
Sizes of nuclei and organelles, [Jiang 2021] and 

nuclei uniformity [Iima 2019] 
Cell nuclei become less uniform [16].  

the water diffusion in a tissue, an additional 3D encoding is 

needed for each voxel [31], which we describe as diffusion 

encoding. 

Diffusion encoding sequences are composed of time-

varying magnetic field gradients. These are applied before the 

signal readout, for which Echo-Planar-Imaging (EPI) -based 

sequences are most commonly used [32]. With these 

acquisition schemes, the acquired signal is sensitized to the 

diffusion motion of the water molecules within tissues, 

unveiling characteristics of its underlying structure. Therefore, 

a brief overview of such encodings is necessary before any 

attempt to estimate any microstructural or compartmental 

parameters based on the diffusion signal. As such, the encoding 

schemes used in dMRI studies of breast tumors are briefly 

covered in this section. 

3.1    Linear Diffusion Encoding (SDE) 

The majority of dMRI acquisitions rely on the Pulsed-

Gradient Spin-Echo (PGSE) sequence as introduced by [33] in 

1965 for diffusion encoding. Diffusion encodings using non-

spin-echo sequences of pulsed gradients also exist, such as the 

pulsed-gradient stimulated-echo [34] sequences. Therefore, we 

will adopt the nomenclature introduced by [35] and refer to this 

family of diffusion encoding sequences as Single Diffusion 

Encodings (SDE).  

The most commonly used form of SDEs is the one depicted 

in Figure 3. They are composed of pairs of diffusion weighting 

gradient pulses with identical magnitudes, 𝐺, and time 

durations,  𝛿, that are applied before and after a refocusing 

pulse. With the ramp times of the pulses neglected, the time 

interval between the onset of the two gradient pulses is Δ. The 

sensitivity of the acquisition to the diffusion motion is referred 

to as 𝑏-value and is defined by these scalar parameters 

according to the equation: 

𝑏 = (𝛾𝐺𝛿)2𝜏𝑑 

where 𝛾 the proton gyromagnetic ratio, and 𝜏𝑑 the diffusion 

time is defined as 𝜏𝑑 = (Δ − 𝛿/3).  The spatial orientation of 

the applied gradient pulses is determining the axis along which 

the signal is sensitive to diffusion, which renders SDEs a linear 

diffusion encoding method. In dMRI experiments, 

measurements of multiple orientations are always performed, 

to probe diffusion characteristics along different directions.  

By varying the encoding parameters and, by extent, the 

amount of diffusion weighting in an acquisition as described by 

the 𝑏 value, one attempts to obtain morphological features of 

tissues [11]. In most of the SDE-based acquisitions, this is 

achieved by varying 𝐺 while keeping 𝛿 and Δ constant [36]. 

The capabilities of SDEs however are limited, since different 

diffusion characteristics, such as anisotropy, orientation 

dispersion and variance can not be resolved [37]. 

 

Figure 3. Sequence diagrams of the conventional PGSE (top) and the 

oscillating gradients (bottom) diffusion encodings.  

Adapted from (Afzali et al. 2021, [11]).  

 



Breast Tumor Microstructure Imaging with Diffusion MRI                                                                                                 K.D. Vrakidis 

  5 

3.2    Variations of Linear Diffusion Encoding 

The potential of varying the gradient durations and the 

diffusion times of the linear diffusion encodings has been 

explored in the quest for higher tumor conspicuity and 

specificity in the inferences about histological features of the 

micrometer scale. In the context of breast tumor imaging, most 

of the novel imaging methods aiming at microstructures rely on 

the SDE-based encodings of Oscillating Gradient Spin-Echo 

(OGSE) [38] and Time-Dependent Diffusion (TDD) [39]. 

  

Oscillating Diffusion Encoding (ODE) 

By replacing the pulse gradient pair of an SDE with a series 

of oscillating pulsed gradients as seen in Figure 3, we obtain 

OGSE diffusion encodings. Adopting [35] once again, these are 

also referred to as Oscillating Diffusion Encodings (ODE). The 

number of oscillations 𝑁, and their frequency 𝜔, are 

characteristic parameters of the ODE encodings, with optimal 

values being under investigations [40]. In practice, values of 30 

repetitions and 1 𝐾𝐻𝑧 are typical [40], however since the 𝑏-

value is proportional to 𝐺/𝜔2, strong gradients are required to 

compensate for increased frequencies [40], which limits the use 

of ODE to advanced MR-scanners. 

In general, achieving high b-values with ODEs is 

challenging, due to the limited duration of the applied gradients 

in each oscillation. In contrast, [11] claims that ODEs are 

capable of maintaining such high b-values with short diffusion 

times.  This capability allows for increased diffusion sensitivity 

to small pores, which ultimately renders ODEs a suitable 

encoding scheme for cell size estimation [41]. Microscopic 

variations in tumors can be revealed by methods using ODEs 

[42], and multiple microstructural methods applied in breast 

cancer rely to a certain extent on them. 

  

Time-Dependent Diffusion (TDD) 

Diffusion time 𝜏𝑑 indicates the amount of time during which 

water molecules diffuse and sense the microstructure before 

taking a measurement [43]. Based on this principle, a variation 

of SDEs is increasingly in use by varying the diffusion time 𝜏𝑑 

to increase the specificity of dMRI to specific microstructural 

features. Different diffusion times are acquired by using 

combinations of the 𝛿 and Δ time parameters, while 

maintaining the same gradient strength 𝐺. These methods, 

which are named Time-Dependent Diffusion (TDD) encodings 

[41], have been described by [39] as "a strong candidate" for 

characterizing tumors with high specificity, after implementing 

and testing several TDD-dependent models that estimate 

microstructural features on various tumors, with breast ones 

among them. 

A dependency on diffusion time is added to all diffusion-

derived metrics, which often leads to the use of the term 

"temporal spectroscopy" to describe TDD in the literature. This 

dependency is characterized by the presence of restricted 

structures, the permeability of barriers, and the length scale of 

barriers compared to diffusion length range [44], and multiple 

signal representations and models exist to leverage it, some of 

which will be covered in the following chapters. The time-

dependent scheme of TDD can also be applied to other 

diffusion encodings such as the ODE ones. Information 

acquired with the time-dependent extension of any encoding 

requires the generalization of the traditional 𝑏-value of the 

SDEs with a more versatile 𝑏-tensor to describe the complexity 

of the acquired signal [1]. 

3.3   Multidimensional Diffusion Encoding (MDE) 

Alternative approaches that encode diffusion along multiple 

orientations simultaneously are increasingly being applied in 

dMRI research. By assigning characteristic shapes to the 

sensitivity of the diffusion motion, increased signal specificity 

is achieved, which enables the resolution of signal ambiguities 

[45]–[47] that result in entangled measurements of orientation 

coherence, microscopic anisotropy and isotropic heterogeneity. 

These approaches are described as Multidimensional Diffusion 

Encodings (MDE), and rely on pulse sequences that involve 

more than one diffusion orientation encoding before the 

readout. According to such schemes, encoding of diffusion 

with 𝑏-tensors that resemble planes or spheres is possible by 

using combinations of two or three pairs of orthogonal 

gradients. These gradient forms are named Double Diffusion 

Encoding (DDE) and Triple Diffusion Encoding (TDE), 

respectively, and can be seen in Figure 4.  

Optimizations towards more efficient MDE sequences have 

led to very powerful encodings whose gradient waveforms 

deviate from the conventional pulsed gradient designs. These 

encodings use multiple complex waveforms of magnetic 

gradient intensity that give complex shapes to the diffusion 

sensitivity. Relying on the use of 𝑏-tensors, combinations of 

optimized free gradient waveform encoding acquisitions were 

Figure 4. Sequence diagrams of different MDEs and their shapes of b-tensors they 

generate. The linear (G), planar (H), and spherical (I) b-tensors can be generated 

by applying the simplistic single (A), double (B) and triple (C) diffusion 

gradients, or their free gradient waveform equivalent ones (D-F). 

Adapted from (Afzali et al. 2022, [37]). 
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found to unveil microstructural information [48]. In Figure 4, 

the free gradient waveform variants of the MDE encodings 

along with the b-tensors they generate can be seen. The signal 

interpretation of such encodings relies on the mathematical 

framework of Q-space, the details of which are beyond the 

scope of this article, however, an exhaustive review of the 

formulation can be found in [10]. In a nutshell, the Q-space 

framework allows for diffusion measurements and 

interpretations using arbitrary trajectories of gradient 

waveforms. The use of the framework is free of assumptions 

and restrictions [31], which provides alternative diffusion 

interpretations non-parametrically. 

 

4. Conventional Diffusion Representation and 

Biophysical Tissue Models based on Pulsed-Gradient 

SDEs 

Once sufficient diffusion data are collected using the 

appropriate encodings, their interpretation takes place using 

diffusion signal representation frameworks and biophysical 

tissue models [49]. These methods, based on various physical 

and histological assumptions, provide the diffusion-based 

metrics used for inferences of morphological and functional 

features of tissues.   

As described in [50], representations and models are being 

used in conjunction to increase sensitivity and specificity to 

microstructural features, respectively. Several representations 

and models pose additional requirements, such as limited 

ranges of 𝑏-values, a minimal number of gradient orientations, 

as well as specific diffusion encodings. These aspects are 

briefly covered in this chapter, while many publications and 

their findings relevant to BC and their conclusions about tumor 

microstructures are presented. 

 

4.1  Representations 

Trace Diffusion Weighted Imaging (DWI) 

Post diffusion encoding, the acquired MRI signal exhibits a 

decaying intensity with an increase in diffusion sensitivity. The 

simplest approximation can be then made by fitting the 

diffusion-weighted signal 𝑆𝐷𝑊𝐼 with a monoexponential decay 

function using the following equation: 

𝑆𝐷𝑊𝐼 = 𝑆0 exp(−𝑏 𝐴𝐷𝐶)      (1) 

where 𝑆0 is the diffusion-unweighted signal (b=0) acquired 

with no encoding gradients, and 𝐴𝐷𝐶 is the apparent diffusion 

coefficient of the tissue that describes the amount of diffusivity 

per voxel. This technique is referred to as Diffusion Weighted 

Imaging (DWI), and it is most commonly used with SDE 

encodings. Therefore, in practice, a minimum of 3 orientations 

of measurements are required to capture the spatial distribution 

of diffusion. A minimum of one non-zero b-value measurement 

is necessary, with two often being chosen within the range 500-

1000 s/mm2. 

In a perfectly homogeneous medium, water diffusion is 

random and isotropic, and can be described by a Gaussian 

distribution. In this case, an accurate fitting of the above 

representation to the diffusion data can be achieved.  Human 

tissues, however, have complex cellular configurations and 

present a large heterogeneity in the sub-millimeter scale of 

voxels in MRI. For this reason, signal deviations from the 

equation (1) are observed in high b-values, which limit the use 

of this method to b-values in the range of 0-1000 𝑠/𝑚𝑚2. In 

general, even within the optimal b-value ranges, ADC is 

generally considered a low-specificity metric, since multiple 

distinct structures can lead to the same ADC values. Despite 

these limitations, the relative simplicity of DWI has led to 

numerous extensive performance investigations of ADC over 

the decades, concerning its ability to distinguish breast lesions, 

characterize tumors, provide prognostic factors and monitor the 

effects of treatments.  

The malignancy detection capabilities of ADC in breast 

lesions have been showcased. The improved specificity 

achieved by acquiring DWI along with DCE MRI has led to the 

inclusion of DWI in breast screening protocols. Tumors 

generally presented a lower ADC value than lesions [51]. In 

response to treatment, the increase in tumor ADC has been 

found to be detectable earlier than changes in size and 

vascularity as measured by DCE MRI [52], offering indications 

about the treatment efficiency earlier. In the opposite direction, 

an extensive metanalysis [53] comprising 2990 breast tumors 

that studied the associations of ADC and the classification into 

molecular subtypes, concluded that ADC is unable to 

discriminate between different molecular subtypes. Moreover, 

the association of ADC values with tumor proliferative 

markers, such as Ki-67 expression and response to neoadjuvant 

chemotherapy is controversial [54]. 

Microstructurally, ADC has been inversely correlated to 

tissue cellularity of breast tumors in many studies [3], [51]. 

This is commonly attributed to the hindrance and restrictions 

experienced by diffusing molecules in high cellularity tissues, 

such as dense breast tumors [55]. However, in [55] skepticism 

is expressed about the increased cellularity being the sole 

contributor to a decrease in ADC, after citing many studies with 

weak to moderate ADC correlations with cellular density. The 

integrity of cell membranes is also reported to have an 

association with ADC in a study using the DWI method with 

reduced Field-of-View that enabled a sub-millimeter resolution 

[56]. Overall, the ADC hypo-intensity remains informative as 

it is considered to be represented by voxels with high water 

content and low cell density [57]. Concerns however about the 

lack of specificity due to the signal contribution from blood 

flow and tissue heterogeneities on a sub-voxel scale, 

repeatability, and validation of the findings are raised [58]. 

These concerns are often regarded as indicative of the limited 

potential of ADC to reliably capture microstructural features. 

 

Diffusion Tensor Imaging (DTI) 

A method named Diffusion Tensor Imaging (DTI) extends 

the representation of DWI by replacing ADC with a tensor, 

providing a mathematically more versatile framework to 

describe diffusivity along the orientation of the used gradients. 

The signal then follows the equation: 

SDTI = 𝑆𝑜 exp(−𝑏𝒈
𝑇 𝑫𝑫𝑻𝑰 𝒈)      (2) 
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where 𝑫𝑫𝑻𝑰 is a rank-2 tensor that contains 6 independent 

parameters, and 𝒈 = (𝑔1, 𝑔2, 𝑔3) the gradient direction vector. 

Thus, for a DTI application, we estimate 7 parameters 

(including 𝑆0), at least 2 b-values, and 6 gradient directions. In 

practice, multiple measurements are acquired, especially since 

it has been shown that the angular precision of the signal is 

increased [59]. The choice of one 𝑏 = 0 with over 15 

measurements at 𝑏 = 1000𝑠/𝑚𝑚2 is commonly used. Using 

singular value decomposition methods, diffusion signal is 

decomposed to three mutually orthogonal eigenvectors that 

describe the spatial orientation of the ADC. Based on their 

eigenvalues, the diffusion measures of Mean Diffusivity (MD) 

and Fractional Anisotropy (FA) are usually acquired. With 

MD, the average amount of diffusivity along all directions is 

calculated per voxel, while FA reflects the degree of diffusion 

anisotropy. Due to the directional versatility of the diffusion 

tensor introduced, MD and FA are considered more reliable 

diffusion metrics over the conventional ADC. 

Leveraging the increased specificity of DTI for breast 

screening has been the goal of multiple studies. Based on the 

principal eigenvectors obtained by DTI, a study using 

tractography on breast tumors obtained comparable sensitivity, 

specificity, and accuracy to DCE MRI [60]. A characteristic 

lack of organization in the tractography paths of tumors was 

also identified in the same study. Further evidence showing the 

lesion characterization abilities of FA, led the authors to 

support the use of DTI-Tractography as a breast screening 

method. The presence of studies finding significantly lower FA 

and MD in breast tumors than in healthy FBGT [60], [61], 

combined with studies claiming the opposite [44], has led to the 

dispute of the added value of DTI to the existing screening 

protocols [19].  

Investigating FA and MD for tumor classifications, it has 

been reported that MD can discriminate between in-situ and 

invasive ductal carcinomas, but also that MD and FA are unable 

to distinguish their molecular subtypes [61]. Features that 

indicate a poor prognosis, such as tumor size, histological 

grade, and lymph node metastasis, were also associated in the 

same study with lower MD values. 

The microstructural interpretations of DTI metrics were not 

extensively reported. The lower FA in tumors found in [60] was 

attributed to the structural organization disruption of the normal 

breast tissue. Similarly, the associations of the lower diffusion 

magnitude, as expressed by MD, with tumor aggression that 

was reported in [61], were attributed to blockages of the ductal-

lobular network. 

 

Diffusion Kurtosis Imaging (DKI) 

In the high b-value regimes of 2000 − 3000 𝑠/𝑚𝑚2, the 

potential of DTI for higher specificity to sub-voxel 

microstructures is limited due to the imposed mono-

exponential signal behavior. To address this deviation from the 

Gaussian behavior, Diffusion Kurtosis Imaging (DKI) was 

introduced. DKI is an extension of DTI to higher cumulants of 

the Taylor expansion of the exponential signal equation, 

leading to a signal equation with the following form: 

𝑆𝐷𝐾𝐼 = 𝑆0 exp

{
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The added terms to the DTI equation (2) capture the 

deviation of the DTI representation from the Gaussian 

diffusion. An additional rank-4 kurtosis tensor 𝑾 is introduced, 

which adds another set of 15 independent parameters to the 6 

pre-existing ones of DTI. This translates to a total of at least 21 

diffusion encoding orientations to be acquired, with two 

different non-zero b-values. In practice, approximately 50 

orientations are typical for a DKI analysis. A parametric form 

of equation (3) is often used, that uses the kurtosis coefficient 

𝐾 and the diffusivity, 𝐷𝐷𝐾𝐼 as follows: 

𝑆𝐷𝐾𝐼 = 𝑆𝑜 exp(−𝑏 𝐷𝐷𝐾𝐼 + 𝑏
2 𝐷𝐷𝐾𝐼

2  𝐾2/6)      (4) 

Through the DKI framework, a set of metrics is estimated in 

addition to the ones of DTI, with mean Kurtosis (MK) being 

the most notable among them. DKI is characterized as highly 

sensitive to microstructural properties, at the same time 

sensitive to noise and image artifacts, and the interpretation of 

its metrics is not intuitive [43]. 

The lesion malignancy detection was claimed to be possible 

based on MK and DKI-estimated MD, with superior diagnostic 

performance to ADC [62]. Agreeing results were reported in 

another study [63]. In particular, MK and MD have been 
 

 
Figure 5. Acquired signal dependence to diffusion sensitivity as characterized 

by the b-value, and signal modeling. In (A), the decay of the diffusion signal is 

observed with increasing b-values. Approximations of this decay are the 

purpose of signal representations and models found in (B-D). DWI, as seen in 

(B) models the signal with a mono-exponential decay, which is acceptable only 

in the ranges of (0-1000 s/mm^2). In (C), DKI models the deviation from the 

Gaussian assumption made by DWI and DTI, allowing measurements at higher 

b-values. In the shorter b-value rangers, IVIM offers more accurate modeling 

that accounts for the contribution of the microperfusion to the signal.  

Adapted from (Nilsson et al. 2018, [84]). 
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consistently found significantly higher and lower in malignant 

lesions, respectively [63], [62], [64]. Two of the studies 

obtained an improved specificity when DCE-MRI is used in 

conjunction with DKI, however, only one of them [64] 

proceeded to suggest the use of DKI as a potential replacement 

for DCE-MRI, after the necessary validations. On the opposite 

side, a study [44] comparing conventional DWI, DTI, and DKI 

for lesion differentiation, found that ADC to had a superior 

discriminative ability to the ones added by DTI and DKI. The 

differentiation between IDC and DCIS based on the 

significantly higher value of MK in the first has been reported 

[62]. In addition, the ability to distinguish molecular subtypes, 

histological grade, and lymph node status based on MK and 

DKI-estimated MD has been reported by the same study. 

Similarly, histologic grade and the expression of the Ki-67 

protein were found negatively correlated to 𝐷𝐷𝐾𝐼 [62], [63].  

Only general microstructural interpretations of the above 

results could be found, with concrete correspondence of 

microstructural features with specific DKI metrics to be absent. 

The deviation from the Gaussian assumption in breast tumors 

at high b-values has been interpreted in [62] and attributed to 

cellular and microenvironmental changes due to the malignant 

status. Generally, DKI is claimed to be sensitive to cellular 

membranes and intracellular organelles [57]. 

4.2  Models 

As discussed in chapter 2, the water content is 

physiologically categorized into compartments. The shapes and 

the sizes of them, which are on a micrometer scale, are 

influencing the dMRI signal from which the voxels are on a 

millimeter scale. Therefore, adapting the signal representations 

to models that a-priori include such compartmentalization, 

allows for the ability to resolve further sub-voxel 

heterogeneities. However, biophysical assumptions about the 

tissues are often made for the application of these models, 

which may introduce ambiguous and biased results. 

 

Intra-Voxel Incoherent Motion (IVIM) 

Blood perfusion contributes to the diffusion signal, 

introducing further deviation from the Gaussian assumption. 

This contribution is significant in the small b-value regimes 

(0 − 200 𝑠/𝑚𝑚2), at which the characteristic diffusion times 

acquired become comparable to slow perfusion. A popular 

biophysical tissue model that can discern the contribution of the 

microcapillary perfusion to the diffusion signal, without the use 

of contrast agents is Intra-Voxel Incoherent Motion (IVIM) 

[65]. IVIM extends the mono-exponential diffusion signal to 

the following form: 

𝑆𝐼𝑉𝐼𝑀 = 𝑆𝑜[𝑓 exp(−𝑏𝐷
∗) + (1 − 𝑓) exp(−𝑏𝐷)]     (5) 

where the pseudo-diffusion coefficient 𝐷∗ reflects the 

contribution of slow perfusion effects to the acquired signal, 

weighted by the volume fraction of the vasculature in a voxel 

𝑓. IVIM parameters provide an indirect measure of tissue 

microvasculature and perfusion effects, and they have also been 

associated with tumor angiogenesis [58]. 

Since sensitivity in perfusion effects is claimed by both 

IVIM and DCE-MRI, the first is being increasingly 

investigated for malignancy detection in breast lesions [66] and 

often compared to DCE-MRI. A summary of 15 studies that 

include a total of 1089 women regarding lesion discrimination 

has been reported in [23]. Among the studies, 8 and 7 showed 

a significant decrease in 𝐷 and an increase in 𝑓 in malignant 

lesions, respectivelly. Comparing 𝐷 and 𝑓 against ADC in the 

same study, IVIM parameters were claimed to be diagnostically 

superior. Lastly, a study using IVIM along with DKI, observed 

a pattern of tumors being surrounded by a combination of 

increased 𝑓, 𝐾 and 𝐷, with the opposite was observed within 

necrotic tissue and fibroadenoma [57]. Despite the 

development of IVIM dating for a few decades, the 

characteristic perfusion information provided by IVIM was 

claimed to be increasingly acknowledged recently [23]. 

Studies with findings based on IVIM-estimated parameters 

to microstructural features could be found, that could 

potentially be used in tumor classification, monitoring, and 

treatment prognosis.  𝐷 and 𝑓 were found in a study [30] to be 

significantly associated with the tumor-stroma ratio and 

capable to distinguish collagen-dominant tumors among 

fibroblast or lymphocyte ones. An additional comparison of 

𝐷 and 𝑓 with DCE-MRI biomarkers showed a moderate 

correlation [67]. Using a combination of DKI and IVIM, the 

area ratios of interstitium and cancer cell nuclei were found in 

[68] significantly correlated with 𝐴𝐷𝐶 and 𝐾. The prediction 

of tumor response to NACT was also claimed in [69].  The 

dependence of the overall quantification accuracy of IVIM on 

the chosen echo time, was showcased in a recent study [70]. A 

significant overestimation of pseudo-diffusion fraction using 

the conventional IVIM was reported, by comparing it with an 

echo-time-corrected variant of IVIM. However, the 

improvement in accuracy was believed not to justify the 

increased scan-time required. 

 

Multiple-Compartment Gaussian Models 

Multiple alternative biophysical tissue models exist that 

attempt to unveil intra-voxel heterogeneities toward increasing 

the specificity of dMRI. In general, they share similar 

principles with IVIM, with compartmental assumptions and 

multi-exponential components. 

A combination of bi-exponential and tri-exponential models 

in b-values up to 4000 s/mm2 was used in a study within the 

Restricted Spectrum Imaging (RSI) framework. Comparisons 

between the two showed an improvement in the fitting of breast 

dMRI signal using the tri- over the bi-exponential model. In the 

same study, it was concluded that the slower diffusion 

component of the models could be used for tumor diagnosis 

since they were found larger in malignant lesions. The 

discrimination of breast tumors from healthy FBGT using a tri-

exponential model has been also investigated in [71]. After 

comparisons with conventional DWI and DKI, its superior 

screening accuracy led the authors to claim the method as a 

potential screening alternative to DCE-MRI.  

A bi-exponential model of diffusion that regards the signal 

as originating from fast and slow water diffusion compartments 

has been used to investigate the influence of collagen content 

at high b-values [55]. Higher ADC values and associations with 

the fast signal fraction were reported to be indicative of the 
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stromal collagen content in the tumor, which is of high clinical 

value. The response of breast tumors to NACT, as assessed by 

DWI, IVIM, and Stretched-Exponential models, was compared 

in a study [72]. The findings indicated that only a small number 

of the model-estimated parameters could predict any 

pathological response. 

5. Novel Diffusion Methods for Microstructure Imaging 

5.1  Filter Exchange Imaging 

Cell permeability can be characterized using Filter 

Exchange Imaging (FEXI) [73] that relies on DDE with a 

specific mixing time between the pair of diffusion blocks. 

Sensitizing the signal to the water exchange between intra- and 

extracellular compartments, and subsequently fitting it using a 

mono-exponential decay of diffusion, the Apparent Exchange 

Rate (AXR) is estimated, which is claimed to quantify the 

molecular water exchange across cell membranes [74]. 

Studying the use of FEXI for tumor classification on 4 

patients with IDC, [27] was able to estimate AXR only on the 

breast tumor ROI, with AXR in normal tissue being outside the 

experimental range. In parallel, an in vitro study using breast 

tumor cell suspensions of various subtypes was conducted, in 

which a low AXR was associated with less invasive cancer 

subtypes. They concluded that since relatively low AXR values 

for tumor cells were reported in both in vivo and cell 

suspension experiments, AXR value can potentially distinguish 

different cancer subtypes. However, the low SNR of the in vivo 

protocol poses limitations on the resolution capabilities of the 

method. 

 

5.2  Diffusion-Time Dependence 

IMPULSED 

A microstructural imaging method that aims to estimate the 

mean cell size, which can be indicative of biological tissue 

alterations, is IMPULSED (Imaging Microstructural 

Parameters Using Limited Spectrally Edited Diffusion) [75]. 

IMPULSED combines the use of conventional SDEs with 

varying diffusion times 𝜏𝑑 that allow measurements at long 

diffusion times, with ODEs of different frequencies that are 

capable to measure shorter diffusions times. Since each of their 

acquired signals, 𝑆(𝑆𝐷𝐸) or 𝑆(𝑂𝐷𝐸), naturally generates a 

unique set of diffusion estimates, their differences are claimed 

[26] to be experimentally associated with the length scales of 

major restrictions to diffusion through which inferences of the 

cell sizes can be made [41]. Based on this principle and on the 

compartmental modeling, in which the diffusion-encoded 

signal is modeled as the sum of signals originating from an 

intracellular and an extracellular compartment, 𝑆𝑖𝑛 and 𝑆𝑒𝑥,  

IMPULSED estimates their corresponding diffusion 

coefficients 𝐷𝑖𝑛 and 𝐷𝑒𝑥 respectively. Additional parameters 

obtained by this modelling are the intracellular volume fraction 

𝑓𝑖𝑛 and the volume-weighted mean cell size 𝑑, which relies on 

the chosen model of cellular shape. The cell density is also 

estimated based on the 𝑓𝑖𝑛 and 𝑑. 

Only one study was found in the literature applying 

IMPULSED to breast imaging by [26], that claims the 

feasibility of mean cell size and density estimations. Using the 

diffusion data acquired and analyzed from 7 patients of various 

tumor types and grades, along with in vitro breast cancer cells 

and breast cancer xenografts in mice, the robustness of the 

method was showcased. Investigations suggested that the 

extracellular diffusion coefficient remains unaffected by 

diffusion times and incited the authors to model it by a constant 

𝐷𝑒𝑥. All validations suggested that IMPULSED is capable to 

provide accurate and reliable measurements of mean cell size, 

alterations of which are valuable for tumor progression during 

treatment. 

Caution was advised in the interpretation of cell density 

acquired from IMPULSED, since 𝑓𝑖𝑛 might be compromised 

by the increased cell-membrane permeability due to therapy-

induced apoptosis. A bias in the estimation of the cell density 

was speculated to be introduced since water exchange between 

the compartments was ignored [26]. The article concludes that 

further investigation towards optimization of the experimental 

parameters should be performed with a stricter patient selection 

protocol. Additional concerns stated in IMPULSE-based 

studies are the increased scan time that limits its clinical use 

[76], and the need for stronger gradients and higher slew rates 

to achieve greater diffusion weighting [26]. Despite these, the 

ability of IMPULSED to estimate mean cell size variations 

could lead the way for accurate and reliable monitoring of the 

tumor response to therapies, once properly validated. 

 

MRI-Cytometry 

Addressing the inability of IMPULSE to characterize cell 

size heterogeneity, which may itself be a diagnostic biomarker, 

a follow-up study based on the data acquired [26] was 

conducted [77]. They introduced a framework termed MRI-

Cytometry that is claimed to estimate cell size distributions, 

without assumptions based on parametric distributions. It is a 

Figure 6. Dependence of the acquired signal to the b-value, to the diffusion time, 

𝜏𝑑. In diffusion-time dependent microstructural methods, acquisitions with 

different diffusion times are combined to resolve microstructural features such 

as the mean cell size (A,B) or the permeability of the cellular membranes (C). 

Adapted from (Nilsson et al. 2018, [84]). 
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2-step fitting method that is based on the 2 compartment intra- 

and extra-cellular models and assuming the free water is 

included in the extra-cellular one, from which their size 

distributions are being estimated 𝑃(𝐷𝑖𝑛),  𝑃(𝐷𝑒𝑥), respectively.  

In addition, the cell density distribution 𝑃(𝑑) is estimated, the 

diffusion dispersion rate 𝛽𝑒𝑥 is introduced with its distribution 

𝑃(𝛽𝑒𝑥). 

Validation of the method was claimed after correlating cell 

size distributions obtained by computer simulations, in vitro 

cell cultures, and mice xenografts with histological data. An 

additional significant correlation between the mean of the MRI-

Cytometry-estimated cell size distributions and the 

IMPULSED-estimated mean cell sizes were reported. It was 

concluded that the ability of the method to map and distinguish 

different cell populations, can potentially assist in the 

monitoring of anticancer treatments. 

 

5.3 Conventional dMRI Methods with Diffusion-Time 

Dependence 

As hinted in chapter 3.2, the microstructural imaging 

potential of conventional dMRI methods, when coupled with 

diffusion time 𝜏𝑑 investigations have been showcased in 

several studies. In a nutshell, these used acquisition schemes 

with multiple diffusion times; i.e., mapping conventional 

measures such as ADC as a function of diffusion time rather 

than relying on an overarching time-dependent model. The rate 

of change in their values as a function of diffusion time is then 

estimated, with a subsequent search of correlations with 

histopathological features. With the majority of them being 

applied in the brain and the prostate, only a handful of 

applications on breast imaging could be found that were based 

on TDD-variants of DWI [78], [79], DKI [28], [79] and IVIM 

[79] which are being synopsized.  

 

Diffusion-Time Dependent DWI 

A recent study that investigated the diffusion-time 

dependency of 𝐴𝐷𝐶 as a potential biomarker for breast cancer 

screening, subtype classification, and prognostic value was 

found in the literature [78]. A combination of SDE and ODE 

was used for a single b-value at a 3T scanner. The diffusion-

time dependency was investigated by using one short and one 

long diffusion time, based on which an 𝐴𝐷𝐶𝑠h𝑜𝑟𝑡 and an 

𝐴𝐷𝐶𝑙𝑜𝑛𝑔 were obtained respectively. Their difference, Δ𝐴𝐷𝐶 

that indicates the rate of change in 𝐴𝐷𝐶 values due to diffusion 

time, was also estimated.  

The characterization of breast lesions using TDD-DWI was 

performed on a cohort of 86 malignant and 46 benign tumors, 

and its performance was compared to both conventional DWI 

and DCE-MRI. The specificity of the TDD-DWI derived 

metrics of 𝐴𝐷𝐶𝑙𝑜𝑛𝑔/𝑠h𝑜𝑟𝑡 and ΔADC was superior to those 

obtained by conventional methods, with 87.0%, 95.7%, and 

73.9% respectively. However, a lower sensitivity was reported 

with 87.2%, 90,7%, and 100%, again, respectively. The 

potential of the TDD-DWI-derived metrics for distinguishing 

the molecular subtype of breast tumors was investigated by 

estimating their correlation with hormone receptor statuses 

present in the malignant tumors. The presence of the ER was 

correlated with lower 𝐴𝐷𝐶𝑠h𝑜𝑟𝑡 and 𝐴𝐷𝐶 values. Similarly, the 

presence of the PR showed a lower 𝐴𝐷𝐶𝑠h𝑜𝑟𝑡, 𝐴𝐷𝐶𝑙𝑜𝑛𝑔 and 

𝐴𝐷𝐶 values. Lastly, the prognostic value of the metrics was 

assessed by comparing them to the presence of the Ki-67 

protein, which is related to the tumor proliferation status. Δ𝐴𝐷𝐶 

values were found higher in Ki-67-positive tumors, which was 

considered a notable finding towards improved breast cancer 

management. 

 

Diffusion-Time Dependent DKI 

The monitoring potential in breast tumors based on 

estimations of the transcytolemmal water exchange time was 

investigated in a time-dependent DKI (TDD-DKI) [28]. 

Acquisitions from 2 biopsy-proven IDC patients and using a 3T 

scanner were used, whose scan time was approximately 5 mins. 

The protocol in more detail included SDEs of only one 

orientation, five diffusion times in the ranges of 120-650 ms, 

and 3 different b-values (200, 1000, and 2000 𝑠/𝑚𝑚2). By 

fitting the diffusion-time-encoded data to the DKI 

representation and a two-compartment model, the dependence 

of diffusivity 𝐷(𝜏𝑑) and kurtosis 𝐾(𝜏𝑑) on diffusion time could 

be leveraged to estimate the cellular-interstitial water exchange 

time 𝑡𝑒𝑥 , with an average ROI-median value of 86 ms being 
reported. Additionally, a 30% decrease in 𝐾(𝑡) was observed 

with increasing diffusion time while 𝐷(𝑡) remained constant. 

This behavior was consistent with in vivo experiments on mice 

that were injected with brain and breast cancer cells that were 

conducted in parallel by the authors. Observations of the 

estimated exchange time being much longer than the 

characteristic times in intracellular diffusion of 𝜏𝑐 = 10 𝑚𝑠, 
led the authors to the validation of the Kaerger model that 

considers cell membranes to be permeable to water molecules. 

Since τ𝑒𝑥  is related to intracellular water lifetime that in 
turn is reportedly correlated to the metabolic activity of 
cells, the findings of the study suggest that TDD-DKI could 

potentially provide accurate prognostic biomarkers of tumor 

aggressiveness and response to therapies. 

Despite the study eventually claiming that transcytolemmal 

water exchange can be estimated in both clinical and preclinical 

settings, a lack of validation of the τ𝑒𝑥 measured by the TDD-

DKI method should be noted. The assumption that the diffusion 

is isotropic in a tumor that led to the application of diffusion 

weighting gradient in only one direction can raise questions. An 

additional assumption was made regarding the differences in 

the 𝑇1 values between the two compartments and their resulting 

influences on the measurements concerned the authors. 

 

Diffusion-Time Dependent DKI with IVIM 

The associations of several conventional dMRI parameters 

acquired by TDD with histological biomarkers in breast 

xenograft mice models were investigated in a recent study [79]. 

For tumor differentiation, 7 xenograft mice with the estrogen-

dependent tumor line MCF-7 and 15 with the aggressive TN 

breast tumor MDA-MB-231, were used with a 7T scanner. 

Both SDEs and ODEs were used with 4 values of 𝜏𝑑 in the 
range of 2.5 − 27.6 𝑚𝑠. From the data, a plethora of time-
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dependent diffusion parameters 𝐴𝐷𝐶,  𝐾,  𝑓and 𝐷∗, from DWI, 

non-Gaussian DWI, and IVIM were estimated, respectively. 

Previous studies [80] showing that a "shifted ADC" (sADC) 

based on two key b-values showing increased sensitivity to 

diffusion, non-Gaussian diffusion and perfusion effects, led the 

authors to include it in their analyses. Differences between 

𝐴𝐷𝐶 and 𝑠𝐴𝐷𝐶 of different diffusion times, and specifically 

the ones 𝐴𝐷𝐶2.5𝑚𝑠 − 𝑠𝐴𝐷𝐶27.6𝑚𝑠 and 𝑠𝐴𝐷𝐶9𝑚𝑠 − 𝑠𝐴𝐷𝐶27.6𝑚𝑠 
in the b-value range of 200 − 1500 𝑠/𝑚𝑚2, showed 

statistically significant differentiation between the two 

xenograft groups. Similar differentiation abilities were found in 

𝐾9𝑚𝑠. It was also observed that 𝑠𝐴𝐷𝐶 and 𝐴𝐷𝐶, in line with 

findings reporterd in the literature, decreased with diffusion-

time in breast tumors. Notable is the authors' observation that 

despite the MCF-7 and the MDA-MB-231 cell lines having 

very distinct histopathological features, their distinction was 

not feasible by using quantitative parameters obtained by any 

diffusion measurement or model using a single diffusion time. 

5.4 Multidimensional Encoding Methods 

Microstructural imaging approaches that rely on advanced 

gradient waveforms and b-tensor diffusion encoding schemes, 

such as MDE and free gradient waveforms, have only recently 

been feasible at clinical MRI scanners [48]. These methods 

combine diffusion information acquired by multiple b-tensors 

of different but complementary shapes, and in multiple 

directions. This increases the sensitivity of the diffusion signal 

to very specific microstructural properties and disentangles 

sub-voxel structures [1], [48]. The capabilities of b-tensor 

encodings to resolve complex breast tumor structures have only 

recently been investigated using Diffusion Tensor Distribution 

(DTD) [46] and Q-Space Trajectory Imaging (QTI) [45], [47], 

[81]. 

 

Diffusion Tensor Distribution (DTD) 

An interpretation of the MDE-acquired signals was 

performed in [1] by using a representation-model hybrid of 

DTD. This technique is claimed to estimate intra-voxel 

distributions of the diffusion tensors non-parametrically [1]. 

This is achieved by employing a quasi-genetic algorithm to 

computationally estimate the likelihood of measured signals 

being explained by a set of hundreds of different b-tensors. As 

a result, the means and the variances of shapes and sizes based 

on the tensor distributions are estimated using the Isotropic 

Diffusivity 𝐷𝑖𝑠𝑜, and the Diffusion Anisotropy 𝐷𝛥
2, which are 

associated with cellular shapes and sizes respectively. Signal 

fractions based on 𝐷𝑖𝑠𝑜 and 𝐷Δ
2  are used to created distinct size-

shape bins of diffusion distributions, each of which can 

correspond to specific microstructural properties. 

Distinguishing the signals coming from elongated cells, 

isotropic cells and free water is considered feasible using these 

bins. The microstructural fractional anisotropy 𝜇𝐹𝐴 is 

introduced, which is claimed to be the 𝐹𝐴 variant that excludes 

the the effects of orientation dispersion [48]. Based on the   

𝐹𝐴/𝜇FA  ratio,  the  orientational  order   parameter  (𝑂𝑃),  is 

 
Figure 7. The generated signal from tissue model simulations of voxels 

containing variable levels of diffusion anisotropy and isotropic heterogeneity 

can be resolved using Multidimensional Diffusion Encodings. Acquisitions 

using multiple different b-tensors, such as LTEs and STEs, can obtain diffusion 

metrics with higher specificity, such as 𝑀𝐾𝐼 and 𝑀𝐾𝐴.  

Adapted from (Szczepankiewicz et al. 2016, [81]). 

 

is defined as the ratio (𝐹𝐴/𝜇𝐹𝐴) that is believed to reflect the 

degree of alignment of elongated cells within a voxel. 

In the breast study published by [1], multiple uses of the 

above method were investigated. To distinguish between 

healthy FGT and tumor tissue, as well as characterization of a 

tumor as invasive or as in-situ, a group of 16 patients with these 

types of breast carcinomas was imaged using a 3T scanner. The 

MDE data were acquired using free gradient waveforms of 37 

isotopically-distributed LTEs and 73 STEs were used for a set 

of five b-values in the 0-2000s/mm2 range. The bin-based 

analysis of DTD was showcased to be able to distinguish 

between malignant tumors and healthy FBGT, as well as 

significantly higher values of FA and mean 𝐷Δ
2 in the former. 

The mean 𝐷𝑖𝑠𝑜, which corresponds to the conventional 𝐴𝐷𝐶, 

and a number of binned-signal fractions were found as capable 

to distinguish invasive carcinomas with in-situ ones. In 

conclusion, the MDE-based DTD method was  
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Author - Date Methods Encoding Estimated Parameters Related Microstructural 

Features 

Study Group Potential in 

Lasič et al. 2016 

[27] 
FEXI DDE 𝐴𝑋𝑅 Cellular Membrane Permeability 

Patients: 8 

IDC 

Classification (Cell 

Types) 

Xu et al. 2020  

[26] 
IMPULSED TDD (SDE, ODE) 

𝑑 

𝑣𝑖𝑛 

𝐷𝑒𝑥 

Mean Cell Size 
Patients: 7 

Tumors>1cm 
Monitoring 

Xu et al. 2021  

[77] 

MRI-

Cytometry 
TDD (SDE, ODE) 

𝑃(𝑑) 
𝑃(𝑣𝑖𝑛) 
𝑃(𝐷𝑒𝑥) 
𝛽𝑒𝑥 

Cell (and Compartment) Size 

Distributions 

Patients: 7 

Tumors>1cm 
Monitoring 

Iima et al. 2021 

[78] 
TDD(DWI) TDD (SDE) 

𝐴𝐷𝐶𝑠h𝑜𝑟𝑡 
𝐴𝐷𝐶𝑙𝑜𝑛𝑔 

𝛥𝐴𝐷𝐶 

- 

Patients: 132  

(86 mal., 46 ben.) 

IDC 

Screening 

Classification 

(molecular subtype) 

Prognosis (Ki-67) 

Zhang et al. 2021 

[28] 
TDD(DKI) TDD (SDE) 

𝐷(𝑡) 
𝐾(𝑡) 
𝜏𝑒𝑥 

Transcytolemmal Water Exchange 

Cellular Membrane Permeability 

Patients: 2 

IDC 

Monitoring 

Prognosis 

Naranjo et al. 2021 

[1] 
DTD 

Free Gradient 

Waveforms 

(LTE,STE) 

     𝑀𝑒𝑎𝑛[𝐷𝑖𝑠𝑜] 
       𝑉𝑎𝑟[𝐷𝑖𝑠𝑜] 

 𝑀𝑒𝑎𝑛[𝐷Δ
2] 

 𝐹𝐴,  𝑂𝑃 
 𝑓𝑏𝑖𝑛1 , 𝑓𝑏𝑖𝑛2 , 𝑓𝑏𝑖𝑛3 

Cell Shape (Elongation/Eccentricity) 

Cell Orientational Order 

Patients: 16, 

various subtypes 

Screening 

Classification 

(Invasive - In-Situ) 

Cho et al. 2022  

[48] 
QTI 

SDE + 

Free Gradient 

Waveforms 

(LTE,STE) 

𝑀𝐷 , 𝐹𝐴 
𝑀𝐾𝑇   
𝑀𝐾𝐴  
𝑀𝐾𝐼  
𝜇𝐹𝐴 

Cellularity 

Tumor Growth Patterns 

Patients: 29, IDC, 

various mol. 

subtypes 

Screening 

Monitoring 

Screening: Characterization of a breast lesion as benign (e.g. FBGT) or malignant (tumor) 

Classification: Categorization of a malignant tumor into the multiple tumor histological types, subtypes, molecular classes, and stages 

Monitoring: Tumor response to Neoadjuvant (NACT) or Adjuvant (ACT) Chemotherapies. 

Prognosis: Provide prognostic biomarkers of tumor aggressiveness (e.g. stage, Ki-67). 

Table 3. Microstructural Methods in In-Vivo Breast Imaging Studies   

    

able to provide qualitative and quantitative maps of the 

composition and the orientational order of the breast tissues 

with high clinical value. The authors conclude that 𝐹𝐴 and 

mean 𝐷Δ
2 could be appropriate for breast cancer diagnosis. 

However, low in-plane resolutions and a few methodological 

limitations were reported that need to be addressed in a 

validation study of the method. 

 

Q-Space Trajectory Imaging (QTI) 

A very extensive breast tumor study using b-tensor encoding 

was published recently by [48] by applying a  Q-Space-based 

acquisition strategy with efficient free gradient waveform 

MDEs. In QTI, the total diffusional variance described by the 

mean kurtosis 𝑀𝐾𝑇 is decomposed into isotropic, 𝑀𝐾𝐼, and 

anisotropic, 𝑀𝐾𝐴. The first one has been linked to the 

heterogeneous isotropic diffusivity present in voxels containing 

multiple cell densities and tissue mixtures [48]. The second one 

is claimed to be correlated to diffusion anisotropy on the 

microscopic level such as in eccentric cells and tissue structures 

[48]. In addition to 𝑀𝐷 and 𝐹𝐴, microscopic fractional 

anisotropy 𝜇𝐹𝐴 is also estimated. 

These parameters were estimated in a cohort of 29 IDC cases 

of various molecular subtypes. Analyses including parameter 

comparisons between IDC and healthy FGBT, and their 

association with histopathologic features were performed. For 

the diffusion acquisition, a combination of SDE data of 2 b-

values and 29 directions, with LTE and STE gradient 

waveforms of 3 b-values and 26 directions was used. The 

comparisons showed a significant increase of 

𝑀𝐾𝑇, 𝑀𝐾𝐼 , 𝑀𝐾𝐴,  𝐹𝐴 and 𝜇𝐹𝐴 in IDC when compared to 

FGBT, while 𝑀𝐷 showed a significant decrease in the same 

comparisons. For the cases of 𝐹𝐴 and 𝜇𝐹𝐴, the results are 

interpreted to be caused by the disorganized growth and cell 

density of IDC. It was noted that 𝜇𝐹𝐴 was the dominant cause 

of restriction in IDC that captures the high cellularity and 

prominent nucleoli present in them. Only 𝑀𝐾𝐼 was found to be 

positively correlated to the size of the tumor, without any 

conclusions being drawn about its interpretation. In addition, 

𝑀𝐾𝑇, 𝑀𝐾𝐴 and 𝜇𝐹𝐴 were significantly higher in a group with 

lymph node metastasis. The findings of the study show the 

potential of QTI for breast tumor screening, as well as 

monitoring based on 𝜇𝐹𝐴 could be considered an imaging 

biomarker for evaluating the status of breast tumors before 

surgery or chemotherapy. It is also noted that the lack of post-

processing corrections applied to the data might have 

undermined the accuracy of the method. However, a significant 

increase in scan time to counter the low SNR was also 

necessary. 

 

6. Discussion 

A synopsis of diffusion MRI methods found in the literature 

that yield microstructural information about breast tumors was 

compiled. Due to the large versatility of dMRI with numerous 

techniques and with different nomenclature used, it was proven 

challenging to construct a concise narrative and to highlight the 

modularity of the methods and their interdependencies. To 

address this and for completeness, an introductory tone was 

adopted that covers dMRI prerequisites such as diffusion 

encodings and conventional dMRI representations and models. 
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The current review was focused on in-vivo breast 

microstructural imaging, excluding articles and findings that 

purely rely on in-vitro cell suspensions, xenograft mice, and 

computer simulations. Despite this choice potentially limiting 

the range of novel dMRI methods included, it was deemed 

important to cover applications that studied tumors within their 

native environment, whose importance is highlighted in [82]. 

In addition, novel dMRI methods are often developed in NMR 

in-vitro samples, whose transfer to clinical applications can be 

hindered by hardware limitations. 

Microstructural Methods 

The potential of novel microstructural methods in breast 

tumors could be explored only in a very small subset of 

publications. With the majority of development and validation 

of these methods being performed in the brain, the estimation 

of distinct microstructural features in breast tumors is 

increasingly proven possible. However, further validation of 

the methods and evidence of the added clinical value is 

required. The potential ability of these methods to resolve the 

lower specificity shortcomings that conventional dMRI is 

accused of is evident. Microstructural imaging could assist 

dMRI to assume a leading role in breast cancer imaging. 

In microstructural imaging studies investigating the 

diffusion time dependence of conventional methods, such as 

[79], the degree of parameter correlation to microstructural 

features depended on the chosen diffusion time. The 

significance of this finding should be highlighted and further 

investigated. In the majority of older studies using conventional 

dMRI methods, the values of diffusion times applied were not 

reported. Since different diffusion times yield distinct contrasts, 

contradictory findings found in the literature could be attributed 

to different unreported diffusion times used. To address this, 

[78] and [79] emphasize the importance of reporting diffusion 

time in future studies. An additional recommendation would be 

to retrospectively analyze previous studies and attempt to 

associate the diffusion times used with their findings. 

Microstructural techniques rely on complex diffusion 

encoding schemes and frameworks to interpret the acquired 

signal. The diffusion encodings require medium to high-end 

MRI systems of usually 3T, at least. With the faster and 

stronger gradients that such scanners are capable of, higher b-

values, wider ranges of diffusion times, and more complex 

diffusion encoding waveforms can be obtained. However, these 

requirements currently confine these methods within the 

domain of research, and could potentially hinder the possibility 

of their clinical adoption. 

Breast Tumor Screening 

The potential of dMRI methods to substitute DCE-MRI and 

histological replacement in breast screening protocols by 

providing sufficient microstructural information could be of 

interest. Especially in light of increasing evidence of the 

harmful effects of contrast agents and the invasiveness of 

biopsies, an agent-free non-invasive dMRI-based approach 

could be a potential alternative approach. 

A plethora of studies has reported on the diagnostic 

performance of DWI, which are synopsized in [52]. Despite 

studies that reach up to 89% of sensitivity and excellent 

repeatability [57], DWI has been suggested [52], [57] to be 

Figure 8. A set of parameter maps acquired with different conventional (B-E, I) and microstructural (F-H, J) dMRI techniques in an example case of a stage 

I IDC. The corresponding DCE-MRI (A) and histological assessment (K,L) images are also included. Adapted from (Cho et al. 2022, [48]) 
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used only as a supplement to the current DCE-based protocols, 

maintaining the status quo. To date, any valuable contribution 

to the sensitivity and specificity of DWI using DTI has not been 

found. An exception could be the improvement found using 

fiber tractography in a study [60], however, DTI has been 

claimed to have reproducibility issues [57]. DKI-estimated 

ADC has been reported to have a comparable diagnostic 

performance to DCE-MRI [62], but it was only suggested as a 

complementary approach to it. A similar conclusion had 

another DKI-based study [64]. Parameters based on IVIM were 

found to be superior to ADC, especially when coupled with 

DKI as in [23]. Tumors could be distinguished from normal 

breast tissue based on the parameters of DKI and IVIM. 

Unfortunately, a large parameter overlap between malignant 

and benign lesions was also found, raising skepticism about the 

method's reliability [23]. On the opposite side, the screening 

advantages of tri-exponential models were claimed in two 

studies [71], [83], following comparisons to DWI, DKI, and a 

bi-exponential model. 

An absence of studies directly comparing DCE and diffusion 

MRI diagnostic performances was surprisingly observed, 

especially using more advanced microstructural dMRI 

techniques. The publications found are either focused on 

conventional DWI and DTI methods for diagnostic purposes or 

only on microstructural features obtained by the advanced 

methods without detailed suggestions on their clinical 

relevance in breast tumor screening. Two articles using 

microstructural techniques were found that mentioned their 

potential use for breast malignancy detection. The first one [1] 

using DTD features such as the transcytolemmal water 

exchange and cellular membrane permeability are claimed to 

be quantified. In the latter [48], measurements of cellularity and 

the directionality and eccentricity of tumor growth are claimed. 

With the degree to which these features could be clinically 

valuable still being hypothesized, the translation of these 

microstructural techniques to clinical applications is currently 

unattainable. Obstacles such as the low acquired SNR, longer 

scan times, and the need for stronger gradients for higher b-

values [57] are adding to the validation challenges, which 

eventually could render these methods too complex to be 

clinically adopted. 

General Concerns 

Several practical considerations should be taken into 

consideration for any microstructural information obtained by 

the methods covered. Most of these are inherited from 

shortcomings present in most dMRI methods, such as the low 

SNR, the dependency on b-value selection, post-processing and 

corrections applied [58]. The determination of threshold values 

of diffusion-based parameters is considered important for 

multiple tasks such as lesion screening and tumor classification. 

A method can be claimed as repeatable and reliable after 

sufficient cross-study agreement in threshold values. The 

repeatability and reliability of the novel breast tumor 

microstructural methods are unvalidated, due to the insufficient 

number of studies reporting on threshold values. The 

methodological dependency of the results on ROI selection has 

been also mentioned in multiple studies and highlighted for its 

ability to undermine the quantitative accuracy and repeatability 

of a method. In [58], the whole tumor volume method of slice 

selection for ROI analysis is recommended for optimal 

interobserver consistency and repeatability. An exhaustive and 

highly informative review was found [50] that covers multiple 

topics regarding dMRI modeling for microstructure imaging. 

The dMRI validation concerns are addressed, leading to 

suggestions for methodological approaches for future studies. 

Additional suggestions are presented in [49] and [11], however, 

they focus on brain imaging. 

The methodological approaches found in the existing 

literature could be classified into two groups, the clinical and 

the technical. In the clinical approaches, dMRI-based 

parameters were associated with clinical statuses and 

outcomes, and rarely included any interpretations about the 

underlying microstructure. In the technical ones, the validation 

of the dMRI techniques was sought by using simulations, in-

vitro cell cultures, xenograft mice, in-vivo and ex-vivo tumors, 

for specific microstructural features. The link between the 

breast microstructural features acquired by dMRI and their 

clinical relevance involves medical expertise. Despite that link 

being beyond the scope of this present review, a sparsity of such 

information was observed. As a result, it is suspected that a 

reader with an imaging background struggles to assess the 

status of breast microstructural imaging and the clinical 

relevance of its findings. To address this and to assist the 

transfer of novel dMRI techniques into clinical tasks, further 

systematic and targeted research that involves both medical and 

diffusion experts is needed. Highly recommended is the use of 

more standardized nomenclature, such as the one introduced by 

[35], detailed acquisition characteristics, and findings 

reporting. By offering more clarity to the complex and 

interdependent methods used in dMRI, gaps in the current 

literature could be more easily identified, guiding future dMRI 

research. 

 

7. Conclusions 

Through the broad and non-technical overview of the 

existing literature, microstructural features of breast tumors 

were found obtainable using both conventional and novel 

diffusion MRI techniques. Although conventional techniques 

could provide only a limited number of such features, mostly 

due to their lack of specificity, they remain promising 

alternative approaches for multiple clinical tasks. 

Microstructural imaging techniques were found capable to 

obtain previously unattainable microstructural information. 

Due to their novelty, the reliability of the techniques and the 

clinical value of the obtained microstructural information is yet 

to be proven. Further evidence of the associations of the 

diffusion-estimated parameters to histopathological features is 

needed. [84] 
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