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Part B Scientific Proposal

1 Basic Details
1.1 Title

Framework for integrating scRNA-seq and scATAC-seq to reveal signatures and trajectories of
immune cells

1.2 Abstract

Studying the dynamics and epigenetic signatures of immune cells is important to understand the
differences in immune response of individuals. Vast amount of scRNA-seq and scATAC-seq data
are available and computational tools exist to integrate these two data modalities. However, most
computational tools are performing poorly when both measurements were done on parallel samples
and lack keeping all the dynamics in the data after integration. Thus, to use the already existing
data, we propose a framework designed for trajectory and comparison analysis. For integration
we build on an already published neural network-based tool scDART and propose improvements
in construction of the gene-activity matrix similar to MAESTRO to provide higher accuracy.
In addition, we suggest implementation of further downstream analyses such as differential gene
and accessibility analysis and gene set enrichment analysis specifically picked for immunological
comparison studies.

1.3 Laymen Summary

In recent years much knowledge was gained in immunology due to new arising datatypes. These new
measurements all provide vital information on their own, but even possess more informative value
when they can be combined to build a holistic view. Combining or integrating of measurements is
already a difficult computational task when they are measured at the same time.

However, currently most existing data was measured on similar samples, but not at the same
time and in our case not in the same cell, but a similar cell in a parallel sample. This makes
it difficult to combine the measurements together and we need to find reliable tools to find the
similar cells from both measurements in order to combine the different measured properties for a
complete picture. Computational tools are needed to tackle this problem and different tools have



been developed, but all have their own advantages and disadvantages. There is not one single best
tool, but the suitability of the tool depends on the biological question at hand.

In this proposal we focus on an immunological question. We want to reveal how the immune
response differs between healthy and sick individuals after an event such as vaccination. To decide,
which tool is the best one, we need to take the intrinsic values of the immune system into account.
In particular, we want to keep the dynamic nature of the immune system in our measurements
and not mask them by applying computational tools, who are not able to capture these dynamic
and changing structures.

For this we look at already existing computational tools and propose how we can achieve better
capturing of the dynamic structures by combining ideas from different tools together. Further,
we propose a full framework of analysis steps to be done in order to answer the immunological
questions at hand. By this we want to provide an addition to the existing tools in the bioinformatics
community and provide a specialized tool for the vast amount of already existing data. Thus, we
can take advantage of the data made available from researchers all around the world and hopefully
provide new insights, which were not able to be captured before.

1.4 Keywords

Integration, neural networks, multi-model, immunology, single cell

2 Scientific Proposal

2.1 Research topic
Immunological studies rely on many different datatypes

Immunological studies try to elucidate the complex interplays present in our immune system.
One main focus is how the immune response differs between individuals. In particular in cur-
rent COVID-19 vaccine studies, it was seen that the immune response is often times significantly
smaller in already immune compromised individuals such as cancer[1] or B-cell depleted patients|2].
Understanding how this immune response develops and how it interacts with the administration
of the treatment medicine is important, so that optimal administration protocols can be imple-
mented around the timing of the vaccine. In that way the immune response in risk patients can
be maximized.

To understand how the immune response differs, recent studies have focused on using single-cell
techniques. Some studies focus on combining transcriptomic analysis (scRNA-seq) and collecting
T- or B-cell receptor sequencing (T-/ BCR-seq) from the same cells[3, 4, 5|. Other studies in
the field of systems vaccinology focus on including epigenomic datatypes as well. The study by
Wimmers et al.[6] did collect different data modalities from healthy subjects before and after
receiving vaccination against influenza. By also collecting epigenomic data such as scATAC-seq,
they revealed persisting epigenetic signatures and found persisting chromatin state changes even
six months after vaccination. Another study compared healthy individuals against individuals,
which recovered from SARS-CoV-2[7]|. They found that in the innate as well as adaptive immune
cells chromatin remodeling took place after a COVID-19 infection. The emerging chromatin profile
in SARS-CoV-2-specific CD8+ T-cells shows promoting differentiation of effector or memory cells.
This suggest that the immune memory is established by changes in the landscape of chromatin
accessibility. Thus, to understand how our immune system adapts to pathogens and is able to be
better prepared for the next invasion, it is vital to include epigenetic datatypes into the study.

Further, the immune system is also characterized by dynamic changes as immune cells maturate
from the bone marrow to fully developed and specialized immune “fighters”. Therefore, studies
have focused on understanding these trajectories[8]. Studying a human hematopoiesis scRNA-
seq dataset, the differentiation and branching of human stem cells to megakaryocytic-erythroid
progenitors and common myeloid progenitors was shown. However, full lineage analysis until full
maturation of for example T-cells could not be tackled in this analysis as only bone marrow samples
were included, and maturation of some immune cells occurs only after leaving the bone marrow[9].

The maturation of the immune cells such as Natural Killer (NK), CD8+ T- and T-regulatory
(Treg) cells was shown in another study conducting a pseudo time cell trajectory analysis by using
the clustering results of scRNA-seq analysis from the various cell types[10] . These trajectory
analyses show also utility when predicting the outcome of potential therapeutic intervention such



as seen in treating gastric cancer[11]. In this paper scRNA-seq was integrated with bulk RNA-seq
from gastric cancer cells to find risk signatures of gastric cancer differentiation-related genes.

However, a trajectory analysis of the current datasets integrating not only analyzing the gene
expression context but also integrating the chromatin accessibility landscape and thus immune
memory is currently missing.

Looking at the computational tools currently available, it becomes clear that a tool is missing to
use existing unmatched scRNA-seq and scATAC-seq datasets of immunological studies and study
the trajectory of these immune cells.

Existing tools lack integration and trajectory analysis

There are existing tools to integrate scRNA-seq and scATAC-seq. Both are closely related datatypes
and can be measured on the same platform such as 10X Genomics and thus share many steps of
computational preparation and analysis such as removing non-biological variations by normalizing
the count matrices, and a subsequent dimensionality reduction[12].

There are then different methods to integrate the data. One can use manifold alignment such
as MATCHER][13], which shows good results while the different modalities stem from the same
tissue. However, the distribution must match globally as well. This is a big limitation for analyzing
different datatypes from different tissues and thus a limitation in the immunological context when
integrating bone marrow with lymphocyte samples.

Other tools have explored the integration using matrix factorization such as LIGER[14] and
coupled-NMF|[15], whereas other tools such as Conos[16] and Seurat[17] focus on finding corre-
lations to identify cells in each other neighborhood across the different datatypes. Both these
approaches show good results for matched cells, meaning that scRNA-seq and scATAC-seq were
measured in the same cell.

These measurements are becoming more and more common, but measuring all these quantities
from a single cell at once is often limited due to experimental restrictions. Not only are these
measurements significantly more expensive than single modal measurements, but also might require
different sample preparation methods, thus not allowing simultaneous measurements.

And as we have seen in the studies mentioned above such as from Wimmers et al.[6] many
datasets already exist, where different multi-omics profiles are measured not on the same cell, but
on a similar cell from the same cell type in a parallel sample. To use this vast amount of already
available data requires diagonal integration of unmatched cells, which is argued to be the most
difficult integration[18].

For this diagonal integration neural networks have shown promising results. Most existing
neural network approaches are based on autoencoders, but most of them require paired data
to integrate cells. Two recently published methods scJoint[19] and scDART[20] are two neural
network-based methods specifically developed for integrating unmatched cells from scRNA-seq
and scATAC-seq. ScJoint transfers cell type labels from scRNA-seq to scATAC-seq by leveraging
the many atlas-scale single-cell RNA data using a semi-supervised neural network. ScDART on
the other hand, focuses on keeping the original cell trajectory structures in the data, thus it is
defined for datasets with continuous trajectories in their data and not for discrete clusters. This
thus is from particular interest for trajectory studies seen in immunological studies as described
above.

The developers of both scJoint and scDART compared their new approach against Seurat and
Signac[12], arguably the two most popular tools based on canonical correlation analysis. Seurat and
Signac first perform a clustering of the cells based on their transcriptomics or accessibility infor-
mation and then integrate the cells based on shared neighbors. In contrast, both mentioned neural
network approaches first integrate scRNA-seq and scATAC-seq and then can perform clustering.
Therefore, the advantages of clusters can still be utilized for downstream analysis.

In this research, we propose a method which allows the integration of scRNA-seq and scATAC-
seq. We are aiming to explore the strengths of using a neural network approach for the latent
embedding of both datatypes specifically for trajectory analysis. Combined with selected down-
stream analysis, this should be specifically designed for comparison studies in the immunological
context, but also applicable to other contexts with a similar design in question. By this, we want
to tackle the problem of lacking analysis tools for the existing vast amounts of data.
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Figure 1: Overview of framework.A Overview of the proposed integration of scATAC-seq and
scRNA-seq. A regulatory potential score per gene in each cell is calculated from scATAC-seq using
an algorithm described in MAESTRO|21]. The three-layer neural network gene-activity module
uses this binary matrix and scATAC-seq to create a pseudo RNA-seq count matrix in a non-
linear fashion. The projection module then integrates the scRNA-seq to combine both into the
same latent embedding. The overall structure of the neural network is based on scDART|[20]. B
Overview of the proposed downstream analyses.

2.2 Approach

We propose the development of a computational tool specifically designed for the analysis and
integration of unmatched scRNA-seq and scATAC-seq data in regard to follow the dynamics of
cells and compared between different individual groups. This tool thus is of specific relevance for
long-term clinical immunological studies trying to understand the immune response and differences
between patients and healthy individuals. But will also be applicable to a similar experimental
design.

To develop such a tool, we want to implement principles and ideas from current neural network-
based integration approaches as these methods have outperformed other existing methods in inte-
grating unmatched cell types.

By optimizing specific input and biological assumptions, we hope to improve the algorithm fur-
ther leading to even higher accuracy. The output of this tool should be ideal for further downstream
analysis and in particular the comparison between at least two different groups.

The first step is optimizing the neural network integration of scRNA-seq and scATAC-seq. The
recently developed tool scDART provides a good starting point for this integration.

ScDart’s neural network structure requires three types of input: scRNA-seq, scATAC-seq and
a pre-defined gene-activity matrix (GAM), which is constructed from the scATAC-seq data. Their
neural network is designed with two modules. On the one hand the gene-activity module takes
the scATAC-seq to transform the chromatin accessibility in a non-linear fashion into a pseudo-



scRNA-seq count matrix. This pseudo-scRNA-seq count matrix is then combined with the scRNA-
seq matrix in the projection module, to project both matrices into a shared latent space. The
three-layer fully connected network, which is used, allows for non-linearity in the relationship
between both datatypes. This provides an inherent advantage over integration methods, only
using linear transformation since the complexity biological system can rarely be described with a
linear relationship.

For the model training and latent embedding a stochastic gradient descent is used. Further,
the post-processing of the embedding allows for a cleaner trajectory structure. This is done by
constructing a mutual nearest neighbor graph of the latent embedding and constantly updating
the embedding by the embedding of the neighbors. This approach is similar to the construction of
the k-nearest neighbor graph in Signac clustering approach, however in this case it is used to detect
the complex trajectory structures in a more accurate way. This embedding and integration of both
datatypes can then be used by different trajectory inference methods to infer cell trajectories. For
the selection for this method, see the discussion below.

ScDART further measures and minimizes the Maximum Mean Discrepancy (MMD) of the
similarity of the trajectory structures to minimize the batch effect. In addition, by including
knowledge of known matching cells a term is added to the overall loss function to optimize the
matching in the latent space. By that this method is suitable for horizontal integration, but more
importantly also unmatched cells and diagonal integration.

In its paper, scDART outperformed the other integration tools LIGER[14], Seurat[17] and
UnionCom|[22]|. However, the researchers also note themselves that the accuracy of all methods is
relatively low when it comes to predicting gene expression data from chromatin accessibility data.
Even though they implement a non-linear relationship approach to infer the pseudo-scRNA-seq
count matrix from scATAC-seq, they cannot capture all the elements and factors which can affect
the level of gene expression.

The neural network to transform scATAC-seq into scRNA-seq is a three-layer fully connected
neural network using leaky rectified linear unit (ReLU) for the activation function. The weight of
each layer is calculated by using the pre-defined gene-activity matrix. They assume that this matrix
includes all the potential regulators, however during the construction of the gene-activity matrix
only regions around 2000 base-pairs upstream of the gene body on the genome are considered.
However, it is known that other distal regulatory element can lie outside of these regions, some
enhancers can even be located on different chromosomes and can have a significant impact of the
activity of the respective gene[23].

Thus, to improve the neural network describing the nonlinear relationship between scATAC-seq
and scRNA-seq, we propose an implementation of a more including approach in the construction
of this gene activity matrix (Fig.1A).

This problem is not unknown for scATAC-seq. A popular tool targeting this issue is Cicero[24]).
Cicero first quantifies correlation of putative regulatory elements and then uses them in an unsu-
pervised machine learning approach to link them to target genes. By this it shows to also include
distal regulatory elements. To do this, Cicero requires similar cell types either to be readily clus-
tered or already along a trajectory to aggregate similar cells together and adjusting for technical
confounders. Thus, it is not possible to use this approach with scDART, as scDART only performs
clustering and trajectory analysis after integration.

Another method, MAESTRO, models gene activity by calculating a regulatory potential[21].
Their model assumes that the effect on gene expression by an accessibility peak is additive and
independent and follows an exponential decay from peak to transcription start site. The regulatory
potential calculation is a simple multiplication of the binary matrix output from the ATAC-seq
peak calling step with a weight matrix. This weight matrix contains the regulatory potential of
each gene calculated by the mentioned exponential decay function. The half-decay can be user
customized, and the developers recommend a 1kb and 10kb for promoter-driven or enhancer-driven
respectively. They even did further testing in their so-called "enhanced RP model" there they also
include adjustments to the weights depending on if the peak is located in the exon region, then
it is normalized by the total exon length and if the peak is present in the promoter region of a
nearby gene it is excluded from the calculation of the other gene. They have shown that these
assumptions improved the accuracy of their model. As scDART also uses a simple binary matrix
for their calculation, the algorithm could also take in the results from MAESTRO’s regulatory
potential calculations. If this would improve the accuracy of the overall model must be tested.



Trajectory analysis

Following the integration of scATAC-seq and scRNA-seq in scDART one can conduct a trajectory
inference. In their manuscript they first use Leiden clustering and minimum spanning tree (MST)
to infer the backbone of the trajectory[25]. For pseudo time inference they use diffusion pseudo
time (DPT), developed for reconstructing lineage branching|[26]. This approach is similar to the
partition-based graph abstraction (PAGA) developed for preserving continuous and disconnected
structures of scRNA-seq at multiple resolutions[27]. We further want to evaluate other methods
for this trajectory analysis.

One of the most popular tools for single cell omics is Monocle[28]. Monocle uses additive models
to check the relationship between gene expression and pseudo time.

A method recently developed tackling the sparsity of scATAC-seq data is STREAM]|29]. This
method also focuses on density information thus studying how the subpopulation composition
changes along the trajectory and whether there are significant changes at branch points.

As the goal of our study is to find differences between patient groups, we want to optimize
our used methods including trajectory analysis for this means. TradeSeq is a method specifically
designed for trajectory-based differential expression analysis[30]. This package identifies differential
expression patterns along the trajectory.

By identifying differential expression patterns along the trajectories, it able to find "between-
lineage DE" when comparing microvillous, sustentacular and neuronal lineages. We want to test
this method on our immunological data and study if the trajectories are different between our
studied individuals and disease groups. By this we can focus on the different in trajectories of
immune cells in particular T and B cells, which was already studied in large scale trajectory
analysis such as seen by He et al.[31].

Proposed downstream analysis

To analyze our immunological data for biological information, we also propose a framework for
further downstream analysis (Fig.1B).

Described above is the method by TradeSeq trajectory-based differential expression analysis.
These results we also want to compare with other current methods. Seurat and Signac use a
simple two-group comparison Wilcoxon Rank-sum test. This method has however come under
strong criticism for single cell modalities as it leads to many false positives[32]. Thus, we want
to include also other methods for differential expression analysis. Most methods are based on
creating pseudo-bulk RNA-seq datasets by aggregating counts together per cell type and then
using established bulk RNA-seq methods such as DeSeq2[33] and edgeR[34]. We fear that these
methods will lead to the loss of the gained information by our trajectory analysis since we are
interested in the continuous trajectory in contrast to discrete clusters. But we do need to prove
this hypothesis first and see if those methods are insufficient to cover the complexity of trajectory
analyses.

Following this analysis, a gene set enrichment analysis can be conducted to find pathways,
which are over-represented along the trajectories and between the two comparison groups[35].

The combination of scRNA-seq and scATAC-seq does not only allow the study of differential
gene expression, but also differential accessibility study. We want to utilize chromVAR|[36] to find
motifs, which are differentially accessible in scATAC-seq along the trajectory.

This should allow for correlating differentially expressed genes with accessible regions. By this
we can also check for known epigenetic signatures and how they persist along the trajectory of
our cells. Thus, including scATAC-seq in the analysis allows for the study of the memory of the
immune system. We can also test if those signatures allow us to make predictions of the immune
response following another round of vaccination as epigenetic signatures are now commonly used
for clinical outcome predictions|37].

Overall, this setup of the proposed framework including the neural network used to integrate
scRNA-seq and scATAC-seq followed by selected downstream analyses allows good implementation
of long-term immunological study. We envision analyzing samples from at least two different groups
of individuals. By comparing healthy individuals with patients, we hope to elucidate underlying
mechanism of the disease. Coupled with vaccination studies we want to study how these groups
differ in their immune response. By utilizing scRNA-seq and scATAC-seq at different timepoints,
we hope to study the gene expression and epigenetic signatures of our samples. In particular,
for vaccination studies involving more than one dosage, we hope to be able to use the epigenetic



Tested Performace ‘ Evaluation Criteria

Graph connectivity score

Adjusted rand index

Trajectory Pseudotime consistency score using Pearson correlation
Differential Expression Analysis | Area under the curve (AUCC)

Latent Embedding

Table 1: Overview of the different performance the framework will be tested and which criteria
will be used for evaluation of the performance.

signatures to predict the vaccine response. That is why we focus in the proposal on choosing
computational tools for keeping the trajectories of the different cell types in the data and selected
further downstream analysis for differential gene and accessibility analysis, gene set enrichment
analysis and pathway studies.

Workplan

Description of tools. The first step of this research is building up on the tool of sScDART. Sc-
DART is python-based, and their code is published online (https://github.com/PeterZZQ/scDART).
After executing and reproducing their published results, we want to focus on improving the gene-
activity matrix construction as explained in more detail above. For this, scDART provides an
R-script "calc _gact.R” resulting simply in a csv file. Here, one can on the one hand play with
the how many base pairs should be included up or downstream to see how the resulting matrix
changes. Omne the other hand, as described, we want to test other means of construction and
test MAESTRO. Their code is also accessible online (https://github.com/liulab-dfci/MAESTRO).
Thus, we can integrate their way of constructing the regulatory potential as described in " ATAC-
CalculateGenescore.R” as the input for scDART. We then will test if this enhances the accuracy
of our model.

Next step is selecting the best trajectory analysis for our downstream analysis. As discussed,
we first want to test TradeSeq (https://github.com/statOmics/tradeSeq) as we also want to test
the differentially expression analysis included there. We want to compare these results to the tra-
jectory analysis of DPT, Monocle and STREAM and then following differential expression analysis.

Description of data and evaluation criteria.All used methods must be thoroughly tested.
For an overview of which performance will be tested using which criteria see tablel. First, we
want to test our new pipeline with the data provided by scDART and see if we can increase the
accuracy. We can also simulate data by using Symsim (https://github.com/PeterZZQ/Symsim2),
which simulates scRNA-seq and scATAC-seq specifically for trajectory analysis. The advantage is
that by using simulated data, we can test our tool thoroughly for continuous trajectories and it
provides easy ground-truths to test the results against other methods.

Further, Aragelaguet et al.[18] provides a list of benchmarking datasets for diagonal integration.
In addition, we want to include datasets with matched cells such as from SNARE-seq[38], where
scRNA-seq and scATAC-seq is measured simultaneously in the same cell. This will help us to
benchmark our framework against existing methods of integration.

We believe in using a variety of different evaluation criteria as until now, no gold-standard for
evaluation exists. For evaluation of the embedding of scRNA-seq and scATAC-seq we will use a
graph connectivity score to assess the batch effect as demonstrated in benchmarking studies by
Luecken et al.[39]. ScDART also used the adjusted rand index (AR) to evaluate how the identity
of a cell was conserved during integration.

For the assessment of the trajectories, we can use a pseudo time consistency score calculated
using Pearson calculation as seen in Zhang et al.[20] and Chen et al.[40].

For the evaluation of the differential expression analysis, we want to follow the many metrics
such as area under the curve (AUCC) as proposed in a benchmarking study comparing many
different DEA tools[32].

Lastly, we want to test our method on our proposed research goal of comparison studies. For
example, the data from Wimmers et al.[6] can be used. In this study they collected scRNA-
seq and scATAC-seq among other datatypes for a prolonged period of time after administration
of the influenza vaccine and found "distinct subcluster of monocytes with reduced chromatin
accessibility”. Other immunological datasets we want to investigate can be found in table2.


https://github.com/PeterZZQ/scDART
https://github.com/liulab-dfci/MAESTRO
https://github.com/statOmics/tradeSeq
https://github.com/PeterZZQ/Symsim2

Test Data ‘ Immunological studies of interest

Simulated Data using Symsim Wimmers et al.[6]
Benchmarking data from Aragelaguet et al.[18] | Li et al[41]
SNARE-Seq[38] Zheng et al.[42]

Kartha et al.[43]

Table 2: Overview of immunological studies, which collected scRNA-seq and scATAC-seq data.

2.3 Feasibility/ Risk Assessment
Assumptions of our model

One critical assumption we are making in this proposal is that the latent embedding of both
scRNA-seq and scATAC-seq exist and that it is to some degree shared by both datatypes. This
is a common assumption and seen in Seurat and Signac as well. However, on top of that we also
assume that the trajectories of both datatypes are also to some extent shared. If we have reason
to believe that this is not necessarily the case, we have to overthink our integration approach and
conduct a trajectory analysis before integrating both data modalities. This should be tested before
designing the tool. One way to do this could be by using STREAM as this trajectory analysis also
works for the unintegrated scATAC-seq as it can overcome the higher level of sparsity compared
to scRNA-seq trajectory analysis tools.

Needs thorough testing on performance

This proposal only concerns computational methods. The proposed framework is however not only
developed for future studies but can already be leveraged on current datasets. The big advantage
of the integration is that unmatched cells can be integrated. Thus, different experiments can be
combined for analysis.

This however raises the question how to test this method. Looking at other papers and studies
the evaluation criteria are very diverse and rarely a consistent method is used.

Argelaguet et al. propose benchmarking datasets specifically for diagonal integration[18]. This
allows to compare this method to other currently methods such as Seurat. Diagonal integration
methods are in addition benchmarked with matched experiment to see whether the correct cells
are matched.

It must be evaluated whether this method can outperform other computational methods. We
do not suspect clearly better results for matched datasets or for data underlying distinct clusters.
However, we also see no strong reason to believe that they will not be equal or worse than current
methods. That is due to the fact that each proposed step was shown in their own development as
equal or better than other standard methods. But we hope to propose a method, which can help
finding new biological pathways for immunological or similar studies as described above.

Computational limitations and accessibility

As in all computational tools one point of concern remains the computational efficiency. Espe-
cially by leveraging neural networks as central step, we are aware that this method might require
high computational power. We believe that typical research centers have access to some form of
high-performance computing, but nevertheless this method must be developed with computational
storage and memory in mind. Otherwise, the most accurate method still remains useless if the
broader research community cannot access the analysis.

With the accessibility in mind, we want to develop this framework in the programming language
of R. On the one hand, this allows easy integration with the above-mentioned tools as they are
also mostly available as R package and their code will help to design this tool. On the other hand,
by providing an open-source package other researchers will be easily able to make adaptations and
we hope to reach the larger bioinformatics community.

2.4 Scientific and Societal Impact

The scientific impact of this research can be divided into short- and long-term effects.
In the short term, we hope to provide a framework for the bioinformatics community to gain
more insights from comparison analysis. We also want to contribute to the discussion of which



tools should be used when as bioinformaticians are aware of the fact the selection of the correct
tool depends on the biological question at hand.

In the long-term we want to inspire the community for the development of new tools including
neural networks to tackle the big data at hand. This tool can serve as an addition to the discussion
of what limitations are present in our current methods. Integration of multiple datatypes will
remain one of the biggest challenges of the bioinformatics community as more and more data is
created. However, it remains unclear how this problem can be solved. Of course, in an ideal world
all data modalities would be measured at the same time in a single cell without disturbing them
in their environment. That would be the easiest and most precise integration, however even then
many computational limitations such as the nature of sparse data would remain.

Although that ideal world does not exist yet, we can already measure many datatypes. By
developing more and more integration methods, we will be able to provide a more and more holistic
view of the underlying biology even with our existing datatypes. Our proposed method relies on a
neural network, which does provide the option to also be trained with other data modalities. Thus,
we could see in the long-term also the integration of more datatypes such as methylation patterns
to provide a more detailed epigenetic signature. Therefore, this framework can be adapted to an
even more including and holistic view of the immune system by including new arising data.

By using already existing datasets we also provide a societal impact by leveraging already
funded research. Most datasets were collected during already published research. Using this data
again and hopefully elucidating new biological information, we hope to provide an even more
effective funding of public research.

2.5 FEthical Considerations

None. All proposed methods and data are publicly available and no new patient data must be
collected for this study. Therefore, we see no ethical issues and concerns.
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