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Introduction

Poisson manifolds were first introduced in 1977 by Lichnerowicz [Lic77], and further studied by Alan We-
instein in his seminal papers [Wei83] and [Wei87]. A Poisson structure on a manifold is a generalization of
a symplectic structure such that one can still capture all essentials of Hamiltonian mechanics. Whereas the
existence of a symplectic structure on a closed manifold can be a delicate issue, any manifold admits a Poisson
structure. Moreover, Poisson structures can have very distinct behaviour locally around a point. This is in sharp
contrast to symplectic structures, which all look the same in Darboux charts. A Poisson structure induces a
singular foliation of the manifold by symplectic leaves.

In general, not a lot can be said about Poisson manifolds, so we often restrict to a specific class of Poisson
manifolds. The class of Poisson manifolds that we will focus on are the Poisson manifolds of compact type.
The name is inspired from Lie theory, where one says that a Lie algebra is of compact type if it is integrated
by a compact Lie group. We could naively ask the same for the Lie algebra of smooth functions of a Poisson
manifold, but since this is an infinite dimensional vector space, this is not the way go. Therefore, we consider
a generalization of Lie groups and Lie algebras, which are Lie groupoids and Lie algebroids. There is a similar
correspondence between Lie groupoids and Lie algebroids, where a Lie algebroid is viewed as the infinitesi-
mal counterpart of a Lie groupoid. Any Poisson manifold gives rise to a Lie algebroid, called the cotangent
algebroid and the Lie groupoids integrating the Lie algebroids that come from Poisson manifolds carry a multi-
plicative symplectic form. Therefore, they are called symplectic groupoids. One may then wonder whether the
cotangent algebroid integrates to a “compact-like” symplectic groupoid.

Contrary to Lie groups and Lie algebras, there are different notions of compactness for Lie groupoids. For
instance, we call a Lie groupoid

• compact if the space of arrows is compact,

• source-proper if the source map is proper,

• proper if the anchor map is proper.

Instead of asking that the cotangent algebroid integrates to some symplectic groupoid, one can demand that
there is a source 1-connected symplectic integration. For instance, a proper Poisson manifold is a Poisson
manifold whose whose Lie algebroid integrates to a proper symplectic groupoid, whereas a strong proper Poison
manifold is a Poisson manifold whose Lie algebroid integrates to a source 1-connected, proper symplectic
groupoid. In total, this leads to 6 different notions of compactness for a Poisson manifold, of which strong
compactness is the strongest. Poisson manifold of compact type are interesting, because of the following
inexhaustive list of properties that they satisfy: [CFT15]

1. The Poisson cohomology admits a Hodge decomposition and Poincaré duality holds.

2. There are natural operations such as Hamiltonian quotients, gauge equivalences, etc. that preserve the
comapctness type.

3. The leaf spaces are integral affine orbifolds.

4. The leafwise symplectic form varies linearly in cohomology.

This puts Poisson manifolds of compact type in a prominent position in Poisson geometry.
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Producing examples of non-symplectic Poisson manifolds of strong compact type is a non-trivial task. The first
example was produced by Martinez-Torres in [Tor13], following up on Kotschick’s construction of free circle
actions on a symplectic manifold with contractible orbits [Kot05]. In this thesis, we focused on the interaction
between the linear variation of the leafwise symplectic form and the integral affine structure on the leaf space of
a simple Poisson manifold. Usually, a Poisson manifold is called simple if the leaf space is a smooth manifold.
A sufficient condition for this is that the Poisson manifold has compact and 1-connected symplectic leaves. In
particular, we found a generic construction of Poisson manifolds of strong compact type in Chapter 4, and we
show in Chapter 5 that the example by Martinez-Torres is a special example of this.

Informally, the construction scheme is as follows. Essential are the monodromy groups of a Poisson manifold,
which we will be recalled in Chapter 2. The monodromy groups of an integrable Poisson manifold form discrete
additive subgroups of the cotangent bundle of the leaf space. It turns out that a Poisson manifold is of so-called
“strong s-proper” type if the symplectic leaves are compact and the monodromy groups are of full rank. By
studying the linear variation of the symplectic form on the leaves, we can find suitable Poisson submanifolds
whose monodromy groups are full rank. After taking a suitable Poisson quotient, we obtain a Poisson manifold
of strong compact type.

Organization of this thesis

In Chapter 1, we introduce the basic and relevant concepts in Poisson geometry. In particular, we discuss Pois-
son bivectors, the symplectic foliation and Poisson quotients. We illustrate all notions with a couple of relevant
examples for the rest of the thesis.

In Chapter 2, we define Lie groupoids and Lie algebroids, and discuss their basic properties. We describe
the correspondence between Lie groupoids and Lie algebroids, and give the necessary and sufficient condition
for Lie algebroids to be integrable. Then, we make the connection to Poisson geometry, and describe how
Poisson manifolds give rise to symplectic groupoids. We also touch upon the integrability problem in Poisson
geometry of finding symplectic groupoids integrating the Poisson manifold. The main result of this chapter is
to understand the following theorem.

Theorem (Theorem 2.46, [CFM21]). Let (G ,Ω)⇒ M be a symplectic groupoid. There exists a unique Poisson
structure π on M such that t : (G ,Ω)→ (M,π) is a Poisson map. Moreover,

1. The connected components of the orbits of G are precisely the symplectic leaves of (M,π).

2. There is a canonical Lie algebroid isomorphism

σΩ : Lie(G )→ T ∗M, α 7→ −u∗(ιαΩ).

In particular, π♯ ◦σ
−1
Ω

= ρ , where ρ is the anchor of Lie(G ).

Then, we move our discussion to the various compactness types of Poisson manifolds in Chapter 3. We high-
light each notion of compactness by clarifying examples, and we describe how compactness types behave when
we take Poisson submanifolds, or Poisson quotients. The main result of this chapter is the following theorem.

Theorem (Theorem 3.17, [CFT15]). Let (M,ω,µ) be a free Quasi-Hamiltonian S1-space, and suppose µ has
1-connected fibers. The reduced Poisson space (M/S1,πred) is of strong compact type.
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In chapter 4, we describe a general scheme to construct Poisson manifolds of strong compact type. The key
ingredient is the relationship between integral affine structures on the leaf space, and the linear variation of the
leafwise symplectic form. The main result in this chapter is the following theorem.

Theorem (Theorem 4.37). Let (M,π) be a simple Poisson manifold with regular variation, with leaf space
B. Let K be the kernel of the linear variation, and let F ⊆ B be a submanifold such that T F ∩K = {0}.
Then MF = p−1(F) is a simple saturated Poisson submanifold of M, whose linear variation is injective. The
monodromy groups of MF satisfy

N ∨(MF ,πF) = T F ∩N ∨(M,π).

Moreover, MF is integrable if and only if N ∨(MF ,π) defines a smooth lattice in T F, and if it this is the case,
MF is of strong s-proper type, with integral affine structure on F determined by N ∨(MF ,πF).

In Chapter 5, we follow the construction of a Poisson manifold of strong compact type, by Martinez-Torres
[Tor13], and show that it is an example of the construction scheme in Chapter 4. The Poisson manifold that we
construct arises from the theory of complex K3 surfaces, so a majority of this chapter discusses the theory of
K3 surfaces and deformations. We end with a short outlook and conjectures on possible generalizations of this
approach. In particular, we discuss Enriques surfaces and the Hilbert scheme of n points on a K3 surface.
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1 Poisson Geometry

In this chapter, we introduce Poisson manifolds and we discuss various ways to characterise a Poisson structure:
as Lie brackets on C∞(M), as bivectors and as a skew-symmetric bundle map T ∗M→ T M. Then, we will dis-
cuss important notions such as regularity, the symplectic foliation, the isotropy algebra of a Poisson manifold,
Poisson quotients and Poisson submanifolds. All of these concepts will be illustrated by a couple of important
examples of Poisson manifolds that appear in this thesis. For this chapter, we mainly follow [CFM21].

1.1 Poisson Brackets and Bivectors

1.1.1 The Classical Definition

The classical definition of a Poisson manifold is that of endowing the algebra of smooth functions on a manifold
with a special kind of Lie bracket.

Definition 1.1. A Poisson structure on a smooth manifold M is a Lie bracket on the algebra of smooth
functions {·, ·} : C∞(M)×C∞(M)→C∞(M), satisfying the Leibniz identity

{ f g,h}= f{g,h}+{ f ,h}g

for all f ,g,h ∈ C∞(M). We call the pair (M,{·, ·}) a Poisson manifold. A Poisson map between two
Poisson manifolds (M1,{·, ·}1) and (M2,{·, ·}2) is a smooth map φ : M1→M2 satisfying

{φ ∗ f ,φ ∗g}1 = φ
∗{ f ,g}2

for all f ,g ∈C∞(M2)

The Leibniz identity implies that for any H ∈C∞(M), the operation {H, ·} is a derivation of C∞(M). Therefore,
it corresponds to a vector field XH defined by

LXH (g) = {H,g}.

The vector field XH is called the Hamiltonian vector field of H.

Another application of the Leibniz identity is that for any open set U ⊆M of a Poisson manifold, there exists a
unique Poisson bracket {·, ·}U on U , satisfying { f |U ,g|U}U = { f ,g}|U . In particular, we can restrict to a coor-
dinate chart (U,x1, · · ·xn) and express the Poisson bracket in local coordinates. In order to find this expression,
note that the Hamiltonian vector field of a function f ∈C∞(U) must be of the form

X f =
n

∑
j=1

X j
f

∂

∂x j .

The Leibniz identity dictates that X j
g f = f X j

g + gX j
f , so the map f 7→ X j

f is again a derivation for each j. The
upshot is that the Hamiltonian vector field can be written as

X f =
n

∑
i, j=1

π
i j ∂ f

∂xi
∂

∂x j
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for some smooth functions π i j ∈C∞(U). This implies that in a coordinate chart U , the Poisson bracket is of the
form

{ f ,g}|U =
n

∑
i, j=1

π
i j ∂ f

∂xi
∂g
∂x j . (1)

The functions π i j are called the structure functions of the Poisson bracket.

Remark 1.2. The structure functions satisfy π i j = {xi,x j}. By the skew-symmetry of the Poisson bracket, they
define a skew-symmetric matrix, and the Jacobi identity translates to

n

∑
ℓ=1

π
ℓk ∂πi j

∂xℓ
+π

ℓ j ∂πki

∂xℓ
+π

ℓi π jk

∂xℓ
= 0. (2)

The flow of Hamiltonian vector fields XH defines an equivalence relation on a Poisson manifold (M,{·, ·}) as
follows.

Lemma 1.3. Let (M,{·, ·}) be a Poisson manifold. The relation

x∼ y ⇐⇒ ∃ f1, · · · , fk ∈C∞(M) : φ
1
f1
◦ · · · ◦φ

1
fk
(x) = y.

is an equivalence relation.

Proof. Reflexivity follows from taking f = 0. Transitivity is immediate. For symmetry, it suffices to observe
that φ 1

−X f
= φ

−1
X f

= (φ 1
X f
)−1, provided that the flow of X f at t = 1 exists.

The equivalence classes of ∼ are called the orbits of (M,{·, ·}). It turns out that that the partition into orbits
defines a symplectic foliation of M, see Section 1.2.

Example 1.4. We discuss some important examples of Poisson manifolds that appear throughout this thesis.

1. On Rn, we have constant Poisson structures

{ f ,g}=
n

∑
i, j=1

ci j ∂ f
∂xi

∂g
∂x j ,

where ci j are constants satisfying ci j = −c ji. The orbits of this Poisson structures are all translations of
the orbit W containing the origin, where W is the subspace spanned by the vectors

vi =
(
ci1, · · · ,cin).

2. Every symplectic manifold (M,ω) has a natural Poisson structure, defined by

{ f ,g}=−ω(X f ,Xg),

where X f and Xg are the Hamiltonian vector fields of the symplectic structure. That is, they are the unique
vector fields satisfying

ιX f ω = d f , ιXgω = dg.
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These Poisson structures are called non-degenerate, and the Poisson structure can be seen as an “inverse”
to the symplectic form. The orbits are precisely the connected components of M. Note that the notion of
Hamiltonian vector fields for Poisson manifold and symplectic manifolds coincide.

3. A linear Poisson bracket on a vector space V is a Poisson bracket {·, ·} such that the bracket of two linear
functions is again a linear function. There is a one-to-one correspondence

{Linear Poisson structures on V = g∗}←→ {Lie algebra structures on V ∗ = g}

determined by the property that {evu,evv}= ev[u,v] for all u,v∈ g, where ev : g→C∞(g∗) is the evaluation
map: evu(ξ )= ⟨ξ ,u⟩. This tells that, given a linear Poisson structure on g∗, the corresponding Lie algebra
structure on g is obtained by restricting the Poisson bracket to linear functions. Conversely, given a Lie
algebra structure on g, there is a unique linear Poisson structure on g∗, given by

{ f ,g}(ξ ) = ⟨[(d f )ξ ,(dg)ξ ],ξ ⟩, ξ ∈ g∗.

To write this correspondence in coordinates, choose a basis {ei} of g, and denote by {xi} the induced
linear coordinates on g∗. Let ci j

k be the structure constants of g with respect to the chosen basis. The
structure functions of the linear Poisson structures are

π
i j = {xi,x j}= ∑

k
ci j

k xk.

The orbits of the linear Poisson structure can be described using any connected Lie group G with Lie
algebra g, as the coadjoint orbits of G.

1.1.2 Poisson Bivectors

The local expression of a Poisson structure in (1) suggests that a Poisson bracket can be encoded by an expres-
sion of the form

π =
n

∑
i< j

π
i j ∂

∂xi ∧
∂

∂x j (3)

Such an expression is an example of a bivector field on M, i.e. a section of Λ2T M. Thus, an alternative way of
encoding a Poisson structure is by using a particular type of bivector π . This description has the advantage that
it captures the definition of a Poisson structure in terms of tensors, and this happens to be more convenient in
practical situations.

Bivector fields are a particular case of multivector fields. To understand the relation between Poisson structures
and bivectors, it is best to start with a discussion of the calculus of multivector fields. Essentially, a multivector
field is the covariant analogue of a differential form: a section of ΛkT M. We denote these sections by Xk(M).
For k = 0, these are just the smooth functions on M and for k = 1, we retrieve the standard notion of vector
fields. Just as with differential forms, there are two ways to look at multivector fields θ ∈Xk(M). We can either
interpret it as an R-multilinear, skew-symmetric map

θx : T ∗x M×·· ·×T ∗x M︸ ︷︷ ︸
k times

→ R,
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or as a C∞(M)-multilinear, skew-symmetric map

θ : Ω
1(M)×·· ·×Ω

1(M)︸ ︷︷ ︸
k times

→C∞(M).

Using the second point of view, we have a wedge product ∧ : Xk(M)×Xl(M)→ Xk+l(M), given by

(α ∧β )(X1, · · · ,Xk+l) = ∑
σ∈Sk,l

(−1)σ
α(Xσ(1), · · · ,Xσ(k))β (Xσ(k+1), · · · ,Xσ(k+l)), (4)

where the sum is over all (k, l)-shuffles. The wedge product is graded commutative, and associative:

α ∧β = (−1)|α||β |β ∧α, α ∧ (β ∧ γ) = (α ∧β )∧ γ,

so one obtains a graded commutative algebra structure on X•(M) =
⊕
k≥0

Xk(M).

In a local coordinate chart (U,x1, · · · ,xn), a multivector fields θ ∈ Xk(M) is of the form

θ |U = ∑
i1<···<ik

θ
i1···ik ∂

xi1
∧·· ·∧ ∂

∂xik
,

where θ i1···ik ∈ C∞(U) are uniquely determined, and skew-symmetric. To state the correspondence between
Poisson structures and bivector fields, we need yet another viewpoint on multivector fields: as multideriva-
tions. Recall that any ordinary vector field X ∈ X(M) corresponds to a derivation LX : C∞(M)→C∞(M). A
similar correspondence exists for multivector fields and multiderivations. A multiderivation of degree k is an
R-multilinear, alternating map

C∞(M)×·· ·×C∞(M)︸ ︷︷ ︸
k times

→C∞(M),

which is a derivation in each argument. Each multivector field θ ∈ Xk(M) gives rise to a multiderivation Lθ ,
defined by

Lθ ( f1, · · · , fk) = θ(d f1, · · · ,d fk).

Proposition 1.5. The association θ 7→ Lθ defines a one-to-one correspondence between Xk(M) and multi-
derivations of degree k.

Proof. The proof is similar to the case k = 1, which can be found in any introductory text on differential
geometry. See for instance [Lee03].

In particular, biderivations will play a special role. They are maps denoted by

{·, ·} : C∞(M)×C∞(M)→C∞(M)

which are skew-symmetric, R-bilinear and satisfy the Leibniz identity. Thus, all properties of a Poisson bracket
hold, except for the Jacobi identity. According to the proposition, a biderivation {·, ·} corresponds to a bivector
field π via

π(d f ,dg) = { f ,g}. (5)

In order to write the Jacobi identity for π , we generalize the ordinary Lie bracket of vector fields to the Schouten-
Nijenhuis bracket of multivector fields.
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Definition 1.6. The Schouten-Nijenhuis bracket of two multivector fields θ ∈ Xk+1(M) and ξ ∈ Xl+1(M)
is the unique multivector field [θ ,ξ ] ∈ Xk+l+1(M) satisfying

L[θ ,ξ ] = Lθ ◦Lξ − (−1)klLξ ◦Lθ ,

where

(Lθ ◦Lξ )( f1, · · · , fk+l−1) = ∑
σ∈Sk,l+1

(−1)σLθ

(
fσ(1), · · · , fσ(k−1),Lξ ( fσ(k), · · · , fσ(k+l−1))

)
.

Note that the composition of two multiderivations is not again a multiderivation, but only the graded commuta-
tor of multiderivations will again be a multiderivation.

For a biderivation {·, ·} with associated bivector field π , a simple computation shows

L[π,π]( f ,g,h) = 2(Lπ ◦Lπ)( f ,g,h) = 2({ f{g,h}}+{h,{ f ,g}}+{g,{h, f}}) . (6)

Thus, the Jacobi identity for {·, ·} is equivalent to [π,π] = 0. Therefore, we have the following result.

Theorem 1.7. On any manifold M, there is a one-to-one correspondence{
Poisson brackets {·, ·} on M

}
←→

{
Bivector fields π satisfying [π,π] = 0

}
(7)

From now on, we will refer to a Poisson manifold by specifying its associated bivector π , and denote Poisson
manifolds by the pair (M,π).

There is yet another useful way to look at Poisson manifolds. Any bivector field π ∈ X2(M) induces a bundle
map

π
♯ : T ∗M→ T M, α 7→ π

♯(α) = π(α, ·).

Then, bivector fields on M are in one-to-one correspondence with bundle maps π♯ : T ∗M→ T M satisfying

(π♯)∗ =−π
♯.

We will denote the map between sections π♯ : Ω1(M)→ X(M) by the same symbol. We can express the
condition that [π,π] = 0 in terms of π♯ using the following bracket [·, ·]π on Ω1(M):

[α,β ]π = Lπ♯(α)(β )−Lπ♯(β )(α)−d(π(α,β )).

This bracket satisfies the following properties, listed in the proposition below.

Proposition 1.8 ([CFM21]). Let π ∈ X2(M) be a bivector field with associated biderivation {·, ·} The bracket
[·, ·]π is the unique bracket satisfying

1. On exact 1-forms, it is given by
[d f ,dg]π = d{ f ,g}

for all f ,g ∈C∞(M).

2. It satisfies the Leibniz identity

[α, f β ]π = f [α,β ]π +Lπ♯(α)( f )β

11



for all α,β ∈Ω1(M) and all f ∈C∞(M).

Moreover, the following are equivalent.

• [π,π] = 0

• π♯ : (Ω1(M), [·, ·]π)→ (X(M), [·, ·]) is bracket preserving.

• [·, ·]π satisfies the Jacobi identity.

Remark 1.9. The bracket [·, ·]π will play an important role in the next chapter. It gives the triple (T ∗M,π♯, [·, ·]π)
the structure of a Lie algebroid.

Thus, a Poisson structure is the same as a skew-symmetric, bracket-preserving map π♯ : T ∗M→ T M.

Example 1.10. Let (M,ω) be a symplectic manifold, and denote by ω♭ : T M→ T ∗M the isomorphism X 7→
ιX ω . The associated Poisson structure π♯ : T ∗M→ T M is precisely

(
ω♭
)−1

.

Example 1.11. Let g be a Lie algebra, and consider the linear Poisson structure on its dual (g∗,πg). The
cotangent bundle of g∗ can be identified with g∗×g, and the space of sections can be identified with C∞(g∗,g).
The linear Poisson structure corresponds to the bundle map π

♯
g,ξ

: g→ g∗, v 7→ ad∗v(ξ )= ⟨ξ , [v, ·]⟩. Consequently,
the bracket [·, ·]π on C∞(g∗,g) becomes [ f ,g]π(ξ ) = [ f (ξ ),g(ξ )].

If (M,π) is a Poisson manifold, the map π♯ allows us to write the Hamiltonian vector fields as

XH = π
♯(dH), H ∈C∞(M).

In particular, we see that
im(π♯

x) = {XH,x : H ∈C∞(M)} ⊆ TxM.

In general, im(π♯) is not of constant rank, so it forms a singular distribution of T M. We will pay more attention
to Poisson maifolds for which this distribution is smooth in Section 1.3. Since π♯ preserves the bracket, we
have

[π♯(α),π♯(β )] = π
♯([α,β ]π) ∈ im(π♯),

so this distribution is involutive. We can also write the condition that a map is Poisson in terms of π♯. Finally,
note that a map φ : (M1,π1)→ (M2,π2) is Poisson if and only if the following square commutes,

T M1 T M2

T ∗M1 T ∗M2

dφ

π
♯
M1

(dφ)∗

π
♯
M2

(8)

or, equivalently, if φ ∗ : (Ω1(M2), [·, ·]πM2
)→ (Ω1(M2), [·, ·]πM1

) is bracket-preserving.

1.2 The Symplectic Foliation of a Poisson Manifold

In this section, we describe the symplectic foliation of a Poisson manifold (M,π). This is the partition of M
into the orbits from the equivalence relation defined in Lemma 1.3. It turns out each of the orbits is equipped
with a symplectic form, compatible with the Poisson structure.

12



Theorem 1.12. Every orbit S of the equivalence relation in Lemma 1.3 has a unique smooth structure for
which the inclusion is an immersion. The tangent space of S consists of all Hamiltonian directions

TxS = im(π♯
x),

and S has a symplectic structure ωS, defined by

ωS,x(π
♯
xα,π♯

xβ ) =−πx(α,β ). (9)

For a complete proof of this theorem, we refer to [CFM21].

The definition of symplectic leaves using orbits is not very useful to compute them. Fortunately, the following
proposition helps to classify the symplectic leaves in terms of the tangent spaces.

Proposition 1.13. Let S be a collection of connected, immersed submanifolds of (M,π) such that TxS= im(π♯
x)

for each S ∈S . Then S is the symplectic foliation of (M,π).

Proof. See [CFM21].

All symplectic leaves of (M,π) form a foliation of M.

Definition 1.14. The symplectic foliation Fπ of (M,π) is the collection

{(S,ωS) : S is a symplectic leaf of M}.

The term symplectic foliation that we have introduced is synonymous for “collection of symplectic leaves”. In
general, the symplectic leaves can have different dimensions, and form a so-called singular foliation. For more
on symplectic foliations, see the appendix.

Definition 1.15. The isotropy Lie algebra at x ∈M is (gx, [·, ·]gx , where gx = ker(π♯
x) and where [·, ·]gx is

the unique bracket determined by the property that

[α(x),β (x)]gx = [α,β ]π |x.

We prove in Proposition 2.21 in the more general framework of Lie algberoids that this is well-defined.

1.2.1 Regular Poisson Manifolds

An important subclass of Poisson manifolds are regular Poisson manifolds, which are those Poisson mani-
folds for which the dimension of the symplectic leaves is constant. In other words, regular Poisson manifolds
are those Poisson manifolds for which im(π♯

x) is always of constant rank. Regular Poisson manifolds are a
convenient class since Fπ = im(π♯) actually forms a regular foliation of M. We denote the normal bundle
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of this foliation by ν(Fπ) = T M/Fπ , and the conormal bundle ν∗(Fπ) can be identified with ker(π♯). The
symplectic structures on the leaves glue to a foliated symplectic form ωFπ

∈ Γ(Λ2T ∗Fπ), given by

ωFπ
(π♯(α),π♯(β )) =−π(α,β ). (10)

This is well-defined, because π(α,β ) = π(α ′,β ′) if π♯(α) = π♯(α ′) and π♯(β ) = π♯(β ′). Moreover, it is indeed
a foliated symplectic form, since it is non-degenerate and leafewise closed. In fact, any symplectic foliation
gives rise to a regular Poisson structure, defined by (10). Indeed, this is a Poisson structure since

dF ωFπ
(π♯(α),π♯(β ),π♯(γ)) =−[π,π](α,β ,γ).

Therefore, we conclude

Theorem 1.16. Equation (10) defines a one-to-one correspondence

{Regular Poisson structures π on M}←→ {Regular symplectic foliations (Fπ ,ωFπ
) on M}

The importance of this theorem is that it gives us a different method to construct regular Poisson manifolds,
namely by specifying a regular symplectic foliation. In practical situations, it is sometimes easier to specify
a regular symplectic foliation. One instance of this phenomenon occurs in Chapter 5, when we construct a
Poisson manifold of strong compact type.

We end with a discussion of the isotropy algebras gx = ker(π♯
x) of regular Poisson manifold. Of course, all of

them have the same dimension, but it turns out that they are all abelian.

Proposition 1.17. Let (M,π) be a regular Poisson manifold. The isotropy algebra gx is abelian for all x ∈M.

Proof. Let x ∈M. By Weinstein’s splitting theorem, (see Theorem 3.2 in [CFM21]), there exists a coordinate
chart (U, p1, · · · , pn,q1, · · · ,qn,y1, · · · ,ys) centered at x such that

πU =
n

∑
i=1

∂

∂ pi ∧
∂

∂qi .

It follows that
gx = SpanR{(dy1)x, · · ·(dys)x},

and the Lie bracket is given by

[(dyi)x,(dy j)x] = [dyi,dy j]π |x = d{yi,y j}x = d
(
π(dyi,dy j)

)
x = 0,

and this concludes the proof.

Thus, the isotropy algebras of a regular Poisson manifolds form a bundle of abelian Lie algebras (ν∗(F ),+).

1.3 Quotients and Poisson Submanifolds

In this section, we describe two procedures to construct new Poisson manifolds from known Poisson manifolds,
which are Poisson quotients and Poisson submanifolds.

14



1.3.1 Poisson Quotients

A Poisson quotient is the quotient of a Poisson manifold by a free and proper Poisson action of a Lie group.
The resulting quotient will naturally carry a Poisson structure.

Definition 1.18. A Poisson action of a Lie group G on a Poisson manifold (M,π) is a smooth action such
that the action map Φg : M→M is a Poisson map for all g ∈ G. The triple (M,π,G) is called a Poisson
G-space.

Note that if S is a symplectic leaf of a Poisson G-space (M,π,G), S′ = Φg(S) is also a symplectic leaf of M,
and Φg : S→ S′ is a symplectomorphism. Whenever a Lie group action is free and proper, the orbit space M/G
has a unique smooth structure for which the quotient map p : M→M/G is a submersion.

Theorem 1.19. Let (M,π,G) be a free and proper Poisson G-space. There exists a unique Poisson struc-
ture πM/G on M/G for which p : M→M/G is a Poisson map.

Proof. The proof follows from the observation that the quotient map induces an isomorphism between C∞(M/G)
and the space C∞(M)G of smooth G-invariant functions on M. Since the action of G on M is Poisson, the Poisson
bracket of two G-invariant functions is again G-invariant, so we obtain the Poisson structure on M/G.

The quotient procedure for Poisson manifolds that is outlined here is rather simple, but can have drastic conse-
quences. For instance, non-degenerate Poisson structures can be taken to degenerate ones, and vice versa. It can
therefore be hard to describe the symplectic foliation of a Poisson quotient. In some situations, for example if
the symplectic leaves are mapped to themselves by the action maps, one may hope that the symplectic foliation
of the orbit space has a simple description. For Poisson G-spaces, this is the case if the infinitesimal vector
fields for the action are Hamiltonian.

If (M,π,G) is a Poisson G-space, a linear map µ̂ : g→C∞(M),ξ 7→ µξ is the same as a map µ : M→ g∗, by
setting ⟨µ(x),ξ ⟩= µ̂ξ (x).

Definition 1.20. Let (M,π,G) be a Poisson G-space. A moment map is a smooth map µ : M→ g∗ such
that

Xξ =−π
♯
(
dµξ

)
,

where Xξ is the infinitesimal vector field

(
Xξ

)
x =

d
dt

∣∣∣∣
t=0

exp(tξ ) · x.

Since (M,π) is Poisson manifold, the space C∞(M) has the structure of a Lie algebra so it is natural to require
that µ̂ is a Lie algebra homomorphism. This is equivalent to saying that the moment map µ should be a Poisson
map, since

{µ̂(ξ1), µ̂(ξ2)}M(x)− µ̂([ξ1,ξ2])(x) = {ξ1 ◦µ,ξ2 ◦µ}M(x)−⟨[ξ1,ξ2],µ(x)⟩
= {ξ1 ◦µ,ξ2 ◦µ}M(x)−{ξ1,ξ2}g∗(µ(x)).

Given a moment map µ : M→ g∗ for a Poisson G-space (M,π,G), we say that µ is G-equivariant if µ(g ·x) =
Ad∗gµ(x).
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Proposition 1.21. Let (M,π,G) be a Poisson G-space, with G connected. A moment map µ : M → g∗ is
G-equivariant if and only if it is a Poisson map.

Proof. Suppose µ : M→ g∗ is G-equivariant, and let g = exp(tξ1) ∈ G. Then we have for each ξ2 ∈ g that

⟨µ(exp(tξ1) · x),ξ2⟩= ⟨µ(x),Adexp(−tξ1)(ξ2)⟩

Differentiating this relation with respect to t at t = 0 gives

⟨dµx(Xξ1,x),ξ2⟩=−⟨µ(x), [ξ1,ξ2]⟩=−{ξ1,ξ2}g∗(µ(x)),

which can be rewritten using the moment map condition as

−⟨dµxπ
♯
x(dµξ )x,ξ2⟩=−{ξ1 ◦µ,ξ2 ◦µ}M(x),

so µ is a Poisson map. The same procedure can be shown to prove the reverse implication.

Definition 1.22. A Poisson action of a connected Lie group G on a Poisson manifold (M,π) is called
Hamiltonian if it admits a G-equivariant moment map µ : M→ g∗. The quadruple (M,π,G,µ) is called a
Hamiltonian G-space.

For Hamiltonian G-spaces, we have the following reduction theorem, which can be seen as the Poisson variant
of the well-known Marsden-Weinstein theorem.

Theorem 1.23 ([FM14]). Let (M,π,G,µ) be a proper, free Hamiltonian G-space. Then 0∈ g∗ is a regular
value of µ , and

M//G = µ
−1(0)/G

is a Poisson submanifold of M/G. If π is non-degenerate, then so is πM//G, and the connected components
of M//G are the symplectic leaves of M/G.

For a proof of this theorem, we refer to [FM14].

In the case that G preserves the symplectic leaves of M, the symplectic leaves of M are Hamiltonian G-spaces
and we infer from Theorem 1.23 that the symplectic foliation of M/G consists of the connected components of
the symplectic reductions S//G, where S is a symplectic leaf of M.

Another extreme case is a Poisson G-space (M,π,G) such that the stabilizer of each leaf is trivial, i.e. S∩g ·S =
/0 for all g ̸= e and all symplectic leaves S. In this case it turns out that the symplectic foliation of M/G has
the same symplectic leaves as M. To see this, we will make a first investigation of the leaf space of a Poisson
manifold. We will study leaf spaces in greater detail in Chapter 4.

Let (M,π,G) be a Poisson G-space such that the stabilizer of each leaf is trivial. The leaf space is defined to
be B = M/Fπ , endowed with the quotient topology. In general, this can be a very wild space, but it will be a
smooth manifold if the leaves of M are compact and 1-connected. The fibers of the quotient map p : M→ B
are precisely the symplectic leaves of M. Since the G-action takes symplectic leaves to symplectic leaves, we
have an induced, free G-action on B. The leaf space of M/G can naturally be identified with B/G, and we have
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a quotient map p̄ : M/G→ B/G, whose fibers are precisely the symplectic leaves of M/G. Next, remark that
the map

p−1(b)→ p̄−1(b̄)

x 7→ [x]

is a diffeomorphism since G acts freely on B, and it preserves the symplectic forms on the fibers by definition
of the quotient Poisson structure. Thus, the symplectic leaves of M are the same as the leaves of M/G.

1.3.2 Poisson Submanifolds

If (M,π) is a Poisson manifold, there are several ways that the Poisson tensor can interact with submanifolds
N ⊆M. In this section, we will focus on Poisson submanifolds.

Definition 1.24. Let (M,π) be a Poisson manifold. A Poisson submanifold is a Poisson submanifold
(N,πN), together with an injective immersion i : N→M that is Poisson.

The notion of a submanifold in Poisson geometry is rather strict and as we shall see, the only Poisson sub-
manifolds of a non-degenerate Poisson manifold are the open subsets.The following proposition helps us to
determine which submanifolds of a Poisson manifold are Poisson submanifolds.

Proposition 1.25 ([CFM21]). Let (M,πM) be a Poisson manifold, and let ι : N ↪−→M be an immersed submani-
fold. There exists at most one Poisson structure πN on N such that (N,πN) is a Poisson submanifold of (M,πM).
This happens if and only if the following equivalent conditions hold

1. im(π♯
M,x)⊆ TxN for all x ∈ N.

2. π
♯
M(T N◦) = 0.

3. Every Hamiltonian vector field XH is tangent to N.

In particular, a Poisson submanifold N ↪−→M intersects each symplectic leaf S of (M,π) in an open subset of S.
The connected components of N∩S are the symplectic leaves of (N,πN).

Proof. If ι : (N,πN)→ (M,πM) is a Poisson submanifold, we have that

(dιx)
∗
π
♯
N,x(dιx) = π

♯
M,x ∀x ∈ N.

Since (dιx) is injective, it follows that πN is uniquely determined. It also shows that 1 must hold for a Poisson
submanifold.

Next, let ι : N→M be a submanifold such that im(π♯
M,x)⊆ (dιx)TxN. It suffices to check that π

♯
M,x(α) = 0 for

α ∈ (TxN)◦. This follows from the skew-symmetry of π
♯
M, as for any b ∈ TxM, one has

⟨π♯
M,x(α),β ⟩=−⟨α,π♯

M,x(β )⟩= 0.

The smoothness and skew-symmetry of πN are now immediate. What is left to show is the Jacobi identity for
πN . This follows from the Jacobi identity for π . Since ι is a Poisson map, we have by the diagram in Equation

17



(8) that
(dι)x[πN ,πN ]x = [πM,πM]ι(x) = 0,

and the result follows because ι is an immersion.

Next, we show the equivalence of 1 and 2. Observe that for α ∈ (TxN)◦ and β ∈ T ∗x M, one has

⟨π♯
M,x(α),β ⟩=−⟨α,π♯

M,x(β )⟩= 0 ⇐⇒ im(π♯
M,x)⊆ TxN.

The equivalence between 1 and 3 is immediate.

An important class of Poisson submanifolds are the saturated Poisson submanifolds, which are defined as
follows.

Definition 1.26. A Poisson submanifold N ⊆ (M,π) is called saturated if it is a union of symplectic leaves
of M.

Let us now discuss examples of Poisson submanifolds of the main examples of Poisson manifolds that we have
been carrying through this chapter.

Example 1.27. Any symplectic leaf is a Poisson submanifold. Symplectic leaves are by definition the minimal
saturated submanifolds.

Example 1.28. If (M,ω) is a connected symplectic manifold, there is only one symplectic leaf: M itself.
Therefore, the only Poisson submanifolds of (M,ω) are the open subsets of M.

Example 1.29. Let g be a Lie algebra and consider the Linear Poisson structure (g∗,πg∗) on its dual. If h⊆ g
is a linear subspace, h◦ ⊂ g∗ is a Poisson submanifold if and only if h is a Lie algebra ideal. This can be seen
using condition 2 in Proposition 1.25. We compute that

π
♯
g∗,ξ

(
(Tξh

◦)◦
)
=
{

π
♯
g,ξ

(u) : u ∈ gvanishing onh◦
}

= {ad∗u(ξ ) : u ∈ h},

hence condition 2 in Proposition 1.25 holds if and only if ξ ([h,g]) = 0 for all ξ ∈ h◦, i.e. if [h,g] = h. Moreover,
h◦ is a union of symplectic leaves, hence saturated. Under the canonical isomorphism h◦ ≃ (g/h)∗, the induced
Poisson structure on h◦ coincides with the linear Poisson structure on (g/h)∗.

In the next chapter, we will study another principal piece of data associated to a Poisson manifold: a symplectic
groupoid.
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2 Lie groupoids and Lie algebroids

In this chapter, we describe Lie groupoids and Lie algebroids, which are a natural generalization of Lie groups
and Lie algebras. We will see that it is possible to extend the correspondence between Lie groups and Lie
algebras to Lie groupoids and Lie algebroids, and describe how a Lie algebroid is the infinitesimal counterpart
of a Lie groupoid. This also rises the question whether any Lie algebroid can be integrated to a Lie groupoid,
and we will discuss the results on integrability for Lie algebroids. Moreover, it turns out that every Poisson
manifold gives rise to a Lie algebroid, whose global counterpart is a symplectic groupoid. For the results on
Lie groupoids and Lie algebroids, we refer to [CFM21] and for the results on integrability, we mainly refer to
[CF02] and [CF01].

2.1 Lie groupoids

We start with a discussion of Lie groupoids. A groupoid is a generalization of a group, in the sense that not all
elements can be multiplied. A Lie groupoid is the natural generalization of a Lie group, in the sense that not
all elements can be multiplied and that all the structure maps should be smooth. In this section, we make the
discussion above exact, and discuss basic examples of Lie groupoids.

2.1.1 Basic Definitions

Definition 2.1. A groupoid is a category whose objects form a set and where each arrow is invertible.

This definition of a groupoid is very concise, but in practice, one should think of a groupoid as follows. A
groupoid G ⇒ M consists of a set of objects M, a set of arrows G , and a collection {s, t,u,m, i} of structure
maps. Every arrow g ∈ G can be thought of as an arrow y

g←− x starting at the source s(g) = x and ending at the
target t(g) = y, and this defines the source and target maps s, t : G →M. Unlike elements in a group, not all
elements in a groupoid can be composed. A pair of arrows (g,h) is composable precisely when the source of g
coincides with the target of h. We denote by

G (2) = {(g,h) ∈ G ×G : s(g) = t(h)}.

the set of all composable arrows. We have a multiplication map m : G (2)→ G , and we often denote m(g,h) =
gh. We require that s(gh) = s(h) and t(gh) = t(g). Graphically, this can be depicted as

m(z
g←− y h←− x) = z

gh←− x.

The composition map is required to be associative. That is, (gh)k = g(hk) for all pairs (g,h),(h,k) ∈ G (2).

Another vast difference between groups and groupoids is the set of units. Whereas a group has a single unit,
a groupoid has precisely one unit element 1x for each x ∈M. The unit is required to satisfy s(1x) = t(1x) = x,
and g1s(g) = g = 1t(g)g. This defines the unit map u : M→ G by u(x) = 1x.

Finally, every g ∈ G is supposed to have an inverse g−1 ∈ G . That is, for every arrow y
g←− x, there exists a

(necessarily unique) arrow x
g−1

←−− y such that

g−1g = 1x, gg−1 = 1y.
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Remark 2.2. Note that the structure maps satisfy the relations i2 = Id, s◦ i = t, s◦u = IdM and t◦u = IdM. In
particular, i is bijective, s and t are surjective and u is injective.

If G ⇒ M is a groupoid, the subset of arrows that start and end at x forms a group

Gx = s−1(x)∩ t−1(x),

called the isotropy group of G at x. Furthermore, G defines an equivalence relation on M by

x∼ y ⇐⇒ ∃g ∈ G such that s(g) = x and t(g) = y.

The equivalence classes of this equivalence relation are called the orbits of G . Explicitly, the orbit Ox through x
is the set t(s−1(x)). We denote by M/G the space of orbits. Just as with groups, we can talk about left or right
multiplication by an arrow g ∈ G . However, we can only compose arrows if the source and target maps agree
so we have to restrict ourselves to s- and t-fibers. To be precise, we fix g ∈ G and write s(g) = x and t(g) = y.
Then, left and right multiplication by g define bijections

Lg : t−1(x)→ t−1(y), Rg : s−1(y)→ s−1(x). (11)

Let us now define Lie groupoids.

Definition 2.3. A Lie groupoid is a groupoid G ⇒ M such that G and M are smooth manifolds. All
structure maps are required to be smooth, and s and t are required to be submersions.

Remark 2.4. The condition that s and t are submersions ensures that the set G (2) is a smooth submanifold of
G ×G , so it makes sense for m to be smooth.

Throughout the literature, only the source and target fibers of a Lie groupoid are assumed to be Hausdorff. The
total space, on the other hand, can be non-Hausdorff. However, we will only encounter Hausdorff groupoids in
this thesis and we will therefore make the assumption that the space of arrows is also Hausdorff. We will pay
extra attention to ensure that the space of arrows is in fact Hausdorff.

For a Lie groupoid G ⇒ M, it is not difficult to see that left and right multiplication defines a diffeomorphism
between the fibers. The following proposition summarizes some basic properties of Lie groupoids.

Proposition 2.5. Let G →M be a Lie groupoid. Then

1. The unit map u : M→ G is an embedding.

2. The isotropy groups Gx are endowed with a smooth structure that turns them into a Lie group.

3. For every x∈M, the orbit Ox admits a unique smooth structure that turns it into an immersed submanifold
of M. Moreover,

t : s−1(x)→ Ox

defines a principal Gx-bundle.

Proof. The first statement is not difficult to see. For the second and third statement, we refer to [MM03].
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There is a natural notion of morphism between groupoids. The smooth version between Lie groupoids is as
follows.

Definition 2.6. Let G →M and H → N be Lie groupoids. A Lie groupoid morphism is a pair of maps
Φ : G →H and φ : M→ N with commuting source and target maps

G H

M N

s t s t

Φ

φ

and compatible multiplications Φ(gh) = Φ(g)Φ(h) for all (g,h) ∈ G (2).

If Φ : G →H is a Lie groupoid morphism, it induces

1. A smooth map between the source fibers s−1(x)→ s−1(φ(x)) and the target fibers t−1(x)→ t−1(φ(x)).

2. A Lie group homomorphism between the isotropy groups Gx→Hφ(x)

3. A smooth map between the orbits Ox→ Oφ(x).

Often, we wish to discuss Lie groupoids whose s-fibers are connected. We call those Lie groupoids source-
connected. If the s-fibers are 1-connected, we call the Lie groupoid source-1-connected.

2.1.2 Examples

We will give some important examples of Lie groupoids.

Example 2.7. The simplest example is when M = {∗}. Then, Lie groupoids over M are just ordinary Lie
groups. Of course, source-(1-)connectedness is equivalent to (1-)connectedness of the Lie group itself.

Example 2.8. A more interesting example is that of a bundle of Lie groups. Bundles of Lie groups are Lie
groupoids G

t−→
s

M where the source and target map coincide. An example of this arises from the theory of
vector bundles. A vector bundle E→M can be interpreted as a Lie groupoid, where the source and target maps
are the projections to the base and where composition is the fiberwise addition of vectors.

Example 2.9. If M is a manifold, we can form the pair groupoid M×M ⇒ M, where we think of a pair (y,x)
as an arrow from x to y. We set s = pr2, t = pr1 and m((x,y),(y,z)) = (y,z), and this gives M×M ⇒ M the
structure of a Lie groupoid over M. The isotropy groups are the points (x,x), and there is only one orbit, which
is all of M. It is source-1-connected if and only if M is.

A more interesting example of a Lie groupoid is the fundamental groupoid Π1(M).

Example 2.10. If M is a manifold, we can form the fundamental groupoid Π1(M), whose space of arrows
consists of path homotopy classes of smooth paths in M. For a homotopy class [γ], we set s([γ]) = γ(0) and
t([γ]) = γ(1). This is well-defined, because path homotopies leave the start and end points fixed. The space
Π1(M) can be given a smooth structure such that s and t are smooth submersions. The multiplication map m
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is the concatenation of paths. For x ∈ M, we define the unit 1x to be the class of the constant path at x. The
orbits are the path-components of M, and the isotropy groups are precisely the fundamental groups π1(M,x).
The principal π1(M,x)-bundle t : s−1(x)→Ox is a realization of the universal cover for Ox, so the fundamental
groupoid is always source-1-connected.

When M is 1-connected, there is only one homotopy class of paths between each two points in M, so the fun-
damental groupoid coincides with the pair groupoid of M.

Another interesting example is provided by action groupoids.

Example 2.11. Let G be a Lie group acting smoothly on a manifold M. We define the action groupoid G⋉
M ⇒ M, whose space of arrows is G×M, and where s(g,x) = x, t(g,x) = gx. We define multiplication by
m((h,gx),(g,x)) = (hg,x). For this groupoid, we have that

1. Each s-fiber is diffeomorphic to G, so source-1-connectedness of the action groupoid is equivalent to
1-connectedness of G.

2. The isotropy group at x is the isotropy group of the action:

Gx = {g ∈ G : gx = x}.

3. The orbit through x coincides with the orbit through x of the G-action

Ox = {gx : g ∈ G}.

We end this section with the definition of a Lie groupoid action.

Let G ⇒ M be a groupoid and let µ : S→M be a smooth map. We set

G ×M S = {(g, p) ∈ G ×S : s(g) = µ(p)} ⊆ G ×S.

This is a smooth submanifold of G ×S, since s is a submersion.

Definition 2.12. An action of G ⇒ M on µ : S→M is a smooth map

A : G ×M S→ S, (g, p) 7→ g · p,

satisfying

1. 1µ(p) · p = p.

2. g · (h · p) = (gh) · p for all (g,h) ∈ G (2).

3. µ(g · p) = t(g)

An action groupoid G⋉M and a groupoid action are related as follows.

Example 2.13. If G is a Lie group acting smoothly on a manifold M, an action of the action groupoid G⋉M on
a smooth map µ : S→M is the same as a smooth action of G on S together with a G-equivariant map µ : S→M.
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2.1.3 Normal Lie subgroupoids and Short Exact Sequences

Normal Lie subgroupoids of a Lie groupoid play the role of normal Lie subgroups, in the sense that one can
take quotients by normal Lie subgroupoids and form a new Lie groupoid. In this section, we study the relation
between normal Lie subgroupoids and short exact sequence of Lie groupoids.

Definition 2.14. Let G ⇒ M be a Lie groupoid. A Lie subgroupoid is a Lie groupoid H ⇒ N together
with a Lie groupoid morphism j : H → G which is an injective immersion. We call a Lie subgroupoid

1. Wide if N = M,

2. Embedded if j is an embedding,

3. Closed if j(H ) is closed in G .

Next, we define normal Lie subgroupoids.

Definition 2.15. A normal Lie subgroupoid H of a Lie groupoid G is a wide, embedded, closed Lie
subgroupoid, such that

1. For all g ∈ G , one has
gHs(g)g

−1 ⊆Ht(g).

2. The restriction of s and t to H coincide.

An important group of examples of normal Lie subgroupoids comes form kernels of Lie groupoid morphisms.

Example 2.16. Let Φ : G →H be a Lie groupoid morphism that is a surjective submersion. Then

ker(Φ) = {g ∈ G : Φ(g) = 1φ(t(g))}

is a normal Lie subgroupoid of G .

If H ⊆ G is a normal Lie subgroupoid, it acts freely and properly on the map s : G →M by h ·g = gh−1. The
quotient G /H is naturally a Lie groupoid for which the sequence

1→H → G → G /H → 1

is a short exact sequence of Lie groupoids. The following can be interpreted as the first isomorphism theorem
for Lie groupoids.

Theorem 2.17. Let K be a Lie groupoid fitting in a short exact sequence of groupoids over M

1→K
j−→ G

q−→H → 1

Then K is a normal Lie subgroupoid of G isomorphic to ker(q) and q descends to an isomorphism
G /K →H .
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2.2 Lie algebroids

In this section, we will describe Lie algebroids, and explain how to Lie algebroids can be seen as the infinitesi-
mal counterparts of Lie groupoids.

Definition 2.18. A Lie algebroid over M is a triple (A,ρ, [·, ·]A), consisting of a vector bundle A→M, a
vector bundle map ρ : A→ T M, called the anchor and a Lie bracket [·, ·]A, on the space of sections Γ(A)
satisfying the Leibniz identity

[α, f β ]A = f [α,β ]+Lρ(α)( f )β .

The following might have been expected to be part of the definition, but it turns out it is actually a consequence
of the other properties.

Proposition 2.19. Let (A,ρ, [·, ·]A) be a Lie algebroid. The anchor is a Lie algebra map, i.e. satisfies

[ρ(α),ρ(β )] = ρ([α,β ]A)

for all α,β ∈ Γ(A).

Proof. The key ingredient in the proof is that the Jacobi identity for [·, ·]A is equivalent to ρ preserving the
bracket. To see this, consider the Jacobiator

J(α,β ,γ) = [[α,β ]A,γ]A +[[β ,γ]A,α]A +[[γ,α]A,β ]A.

We have for α,β ,γ ∈ Γ(A) and f ∈C∞(M) that

J(α,β , f γ)− f J(α,β ,γ) = Lρ[α,β ]A−[ρ(α),ρ(β )]( f )γ.

Since [·, ·]A satisfies the Jacobi identity, the left-hand is zero, so the result follows.

The notion of a Lie algebroid morphism is subtle, since the vector bundles involved can live over different
bases. For Lie algebroids over the same base, the definition is clear.

Definition 2.20. Let (A,ρA, [·, ·]A) and (B,ρB, [·, ·]B) be Lie algebroids over B. A Lie algebroid morphism
Φ : A→ B is a vector bundle map intertwining the anchors

A B

M

ρA ρB

Φ

and preserving the brackets.

For Lie algebroids over different bases, the definition changes slightly, see [Mei17]. We will not use Lie alge-
broids over different bases.

For a general Lie algebroid (A,ρ, [·, ·]A), we define at each x ∈M a Lie algebra, called the isotropy Lie algera
of A at x:

gx(A) = ker(ρx : Ax→ TxM).
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The isotropy Lie algebra carries a Lie bracket, induced by [·, ·]A.

Proposition 2.21. For every x ∈M, there exists a Lie bracket [·, ·]gx , uniquely determined by

[α(x),β (x)]gx = [α,β ]A(x)

for all α,β ∈ Γ(A) such that α(x),β (x) ∈ gx(A).

Proof. Observe that for β ∈ Γ(A) with β (x) ∈ gx(A), one has that [α, f β ]A(x) = f (x)[α,β ]A(x). It follows by
a standard argument in differential geometry that the bracket is well-defined, see for instance Paragraph 10.7 in
[Tu17].

Let us now discuss some examples of Lie algebroids.

Example 2.22. A Lie algebroid over a point is the same as a Lie algebra, the anchor is the zero map. More
general, a Lie algebroid for which the anchor ρ : A→ T M is zero, is a bundle of Lie algebras. The isotropy Lie
algebras of this algebroid are the fibers Ax.

If (A,ρ, [·, ·]A) is a Lie algebroid, the isotropy algebras ker(ρx) form a bundle of Lie algebras if and only if
ker(ρx) is of constant rank. In that case, we have a short exact sequence of Lie algebroids

0→ ker(ρ)→ A→ Im(ρ)→ 0 (12)

Example 2.23. Quite trivially, T M→M is a Lie algebroid, where the anchor is the identity. More general, any
regular flotation on M forms an involutive distribution F ⊆ T M. This is a Lie algebroid, and the anchor is the
inclusion F → T M.

Probably the most important example for us is the cotangent algebroid for a Poisson manifold.

Example 2.24. If (M,π) is a Poisson manifold, we define the cotangent algebroid as the triple (T ∗M,π♯, [·, ·]π),
where the bundle map π♯ : T ∗M→ T M is the anchor and with Lie bracket [·, ·]π . We have seen in Proposition
1.8 that the Jacobi identity for [·, ·]π is equivalent to π being a Poisson structure. Thus, we only have to verify
the Leibniz identity. For this, we get

[α, f β ]π = Lπ♯(α)( f β )−Lπ♯( f β )(a)−d (π(α, f β ))

= Lπ♯(α)( f )β + f Lπ♯(a)β − f Lπ♯(β )α−d f ∧ ιπ♯(β )α−d f ∧π(α,β ))− f d(π(α,β ))

= f Lπ♯(α)β − f Lπ♯(β )α +Lπ♯(α)( f )β −d f ∧π(β ,α)−d f ∧π(α,β )− f d(π(α,β ))

= f [α,β ]π +Lπ♯(α)( f )β .

The isotropy Lie algebras are precisely ker(π♯
x) = ν∗x (S), where S is the symplectic leaf through x. These form

a bundle of Lie algebras if and only if (M,π) is a regular Poisson manifold and in that case we have a short
exact sequence of Lie algebroids

0→ ν
∗(F )→ T ∗M π♯

−→F → 0 (13)

where F is the symplectic foliation.
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2.2.1 The Lie algebroid of a Lie groupoid

In this section, we describe the Lie algebroid of a Lie groupoid. In particular, we will describe the “Lie-functor”
which associates a Lie algebroid to a Lie groupoid, and we will discuss important examples.

Inspired by the Lie group-Lie algebra correspondence, we start with the definition of right-invariant vector
fields.

Definition 2.25. Let G ⇒ M be a Lie groupoid. A vector field X ∈ X(G ) is called right-invariant if

1. X is tangent to the s-fibers.

2. (dRg)hXh = Xhg for all (h,g) ∈ G (2), where Rg is right multiplication by g, defined in Equation (11).

We denote by Xinv(G ) the space of all right-invariant vector fields on G .

Next, observe that for any X ∈ Xinv(G ), the restriction α = X |u(M) defines a section of the vector bundle

A = u∗ ker(ds).

Conversely, any section α ∈ Γ(A) produces a right-invariant vector field α⃗ by

α⃗g = (dRg)1t(g)(αt(g)).

It follows that right-invariant vector fields on G are in one-to-one correspondence with sections of A. The Lie
bracket of two right-invariant vector fields is again a right-invariant vector field. This allows us to define a Lie
bracket [·, ·]A by

−−−−→
[α,β ]A = [⃗α, β⃗ ].

Definition 2.26. The Lie algebroid of a Lie groupoid G ⇒ M is the vector bundle

A = u∗ ker(ds)→M,

with anchor map ρ : A→ T M given by ρx = (dt)1x : ker(ds)1x → TxM and Lie bracket [·, ·]A.

Proposition 2.27. The triple (A,ρ, [·, ·]A) is a Lie algebroid.

Proof. All that is left to show is the Leibniz identity. For this, it is enough to show that

−−−−−→
[α, f β ]A =

−−−−−→
f [α,β ]A +

−−−−−−−→
Lρ(α)( f )β .

To show this, note that

−→
f αg = (dRg)1t(g)

(
f (t(g))α1t(g)

)
= f (t(g))(dRg)1t(g)α1t(g) = (t∗ f )(g) · α⃗g

so −→
f α = t∗ f−→α .
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Therefore, we have

−−−−−→
[α, f β ]A = [⃗α,

−→
f β ] = [⃗α, t∗ f β⃗ ] = t∗ f [⃗α, β⃗ ]+Lα⃗(t∗ f )β⃗ = t∗ f

−−−−→
[α,β ]A +Lα⃗(t∗ f )β⃗ .

Next, remark that

Lα⃗(t∗ f )(g) = d( f ◦ t)g(⃗αg)

= d ft(g)dtg(dRg)1t(g)αt(g)

= d ft(g)dt1t(g)αt(g)

= t∗(Lρ(α)( f ))(g),

so we deduce that
−−−−−→
[α, f β ]A = [⃗α,

−→
f β ] = t∗ f

−−−−→
[α,β ]A + t∗(Lρ(α)( f ))β⃗ =

−−−−−→
f [α,β ]A +

−−−−−−−→
Lρ(α)( f )β ,

and this concludes the proof.

If G ⇒ M is a Lie groupoid, we denote by Lie(G ) its Lie algebroid. This describes what the Lie-functor does
to Lie groupoids. Of course, we should also describe its action on Lie groupoid morphisms. Let (Φ,φ) :
(G1,M1)→ (G2,M2) be a morphism of Lie groupoids. Then Φ maps s-fibers to s-fibers, so we can define the
bundle map

Lie(G1) Lie(G2)

M1 M2
φ

Φ∗

Φ∗ = dΦ|u∗ ker(ds),

It is shown in [CFM21] that this indeed defines a morphism of Lie algebroids over different bases. This gives
a description of the Lie functor. The following proposition is straightforward.

Proposition 2.28. Let G →M be a Lie groupoid with Lie algebroid A = Lie(G ). Then the isotropy Lie algebras
ker(dt)1x coincide with the Lie algebra of the isotropy groups Gx for all x ∈M.

Let us now give some examples.

Example 2.29. If G ⇒ M is a bundle of Lie groups, Lie(G ) is a bundle of Lie algebras. Since s = t, the anchor
dt vanishes on ker(ds).

Example 2.30. The Lie algebroid of the pair groupoid M×M and of the fundamental groupoid Π1(M) is just
T M.

An important observation is that we can pass to the source-connected part of any Lie groupoid, without losing
information about the Lie algebroid.

Proposition 2.31. Let G ⇒ M be a Lie groupoid, with possibly disconnected s-fibers. Let G ◦ be the union of
all the connected components of the s-fibers containing the units. Then G ◦⇒ M is an open Lie subgroupoid of
M. In particular, Lie(G ) = Lie(G ◦).

Proof. For a proof, see [Mac05].
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2.3 Integration of Lie algebroids

Now that we have a way to associate a Lie algebroid to a Lie groupoid, the natural question that arises is whether
any Lie algebroid comes from a Lie groupoid. This is well-known to be true for Lie groups and Lie algebras,
in the finite dimensional case, but it turns out that not every Lie algebroid comes from a Lie groupoid. In this
section, we discuss Lie’s theorems for Lie algebroids and compare them to Lie’s theorems for Lie groups and
Lie algebras. Then, we describe a necessary and sufficient condition for a Lie algebroid to be integrable. In this
section, we have collected results from [CFM21] and [CF01].

2.3.1 Lie’s Theorems for Lie Algebroids

Definition 2.32. Let A→M be a Lie algebroid. We say that A is integrable if there some, not necessarily
Hausdorff, Lie groupoid G ⇒ M such that A∼= Lie(G ). We say that G integrates A.

This strategy of inverting the Lie-functor is well-known in the theory of Lie groups and in fact, many results
concerning the integration of Lie algebroids carry over to Lie groupoids. The integration part in Lie theorems
for Lie algebras assumes 1-connectedness of the Lie groups, which, in the context of Lie groupoids, should
be replaced by 1-connectedness of the s-fibers. The first two theorems of Lie have natural analogues for Lie
groupoids.

Theorem 2.33 (Lie I for Lie algebroids, [CFM21]). Let A be an integrable Lie algebroid. There exists
a unique (up to isomorphism) Lie groupoid with 1-connected s-fibers integrating A, which is possibly
non-Hausdorff.

Theorem 2.34 (Lie II for Lie algebroids, [CFM21]). Let G1 and G2 be Lie groupoids with Lie algebroids
A1 and A2. If G1 is s-1-connected, any Lie algebroid morphism φ : A1→ A2 can be integrated to a unique
Lie groupoid morphism Φ : G1→ G2.

A proof of these theorems can be found in [MM03].

Lie’s third theorem for Lie algebras is more delicate and harder to prove.

Theorem 2.35 (Lie III for Lie algebras, [Hal10]). Any finite dimensional Lie algebra is integrable.

As already stated, not every Lie algebroid comes from a Lie groupoid, so there is no simple analogue of Lie
III to Lie algebroids. Fortunately, the failure of integrability is well understood and there are several equivalent
integrability criteria. For any Lie algebroid A→M, there is always a natural candidate groupoid: the Weinstein
groupoid G (A). If this groupoid can be given a smooth structure, it is a Lie groupoid with 1-connected s-fibers
integrating A. Thus, the integrability of A is equivalent to the smoothness of G (A).

2.3.2 Weinstein Groupoid

In this section, we describe the Weinstein groupoid G (A) and make the integrability criteria explicit using
monodromy groups. The idea is to construct a special set of paths a : [0,1]→ A, known as A-paths, and define
a suitable notion of homotopy between A-paths.
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Definition 2.36. Let (A π−→M,ρ, [·, ·]A) be a Lie algebroid. An A-path is a path a : I→ A such that

ρ(a(t)) =
dγa

dt
,

where γa = π ◦a is the base path of the A-path.

We denote the space of all C1 A-paths a with C2 base path γa by P(A). This has the structure of an infinite
dimensional Banach manifold.

Remark 2.37. There is a natural interpretation of A-paths as generalized derivatives. For any path γ : I→M,
there is a path dγ : I→ T M which is the derivative of γ . Since a Lie algebroid A→M can be thought of as a
replacement of the tangent bundle, we can think of an A-path as a pair (a,γa), where a is the A-derivative of γa,
related to the derivative of γa through the anchor.

We will not go into the detail about the A-homotopy, since the definition is rather involved, see [CF01]. The
basic idea is that it is just a collection of paths aε(t)I× I→ A such that the base paths γε have fixed start and
end points, plus some extra information capturing the Lie algebroid structure. If two A-paths a and a′ are A-
homotopic, we write a∼ a′. The notion of an A-homotopy induces an equivalence relation on P(A), inducing
a foliation whose leaves have codimension dim(A), and we denote by G (A) = P(A)/∼A the leaf space. This
is a topological groupoid with 1-connected s-fibers.

Since the base paths of A-homotopic A-paths have the same start and end points, we define the source and target
maps as

s : G (A)→M, s([a]) = γa(0), t : G (A)→M, t([a]) = γa(1).

The multiplication map is slightly more subtle. For A-paths a and b such that γa(0) = γb(1), we wish to define
the composition of paths as

(a•b)(t) =

{
2b(2t) t ≤ 1

2

2a(2t−1) t ≥ 1
2

This is independent of the chosen representative of the A-homotopy class of a and b. Of course, the problem is
that this path need not be smooth at t = 1

2 . To solve this problem, we choose a smooth reparametrization τ : I→ I
such that τ(n)(0) = τ(n)(1) = 0 for all n≥ 1. We define the reparametrized path aτ by aτ(t) = τ ′(t)a(τ(t)), and
one can show that this is A-homotopic to a. Thus, we just choose smooth representatives for which the compo-
sition above forms a smooth path. One can show that this is well-defined, since the composition is independent
of the chosen representative.

Finally, we define the units by u(x)= 0x ∈Ax, and inversion maps the path (t 7→ a(t)) to the path (t 7→−a(1−t)).
This gives G (A) the structure of a topological groupoid. The s-fibers are isomorphic to the path space of M,
which we know is 1-connected.

Theorem 2.38 ([CF01]). A Lie algebroid A→M is integrable if and only if and only if the smooth structure
on P(A) descends to the leaf space G (A) = P(A)/ ∼A. If this is the case, G (A) ⇒ A is a source-1-
connected Lie groupoid integrating A.

As we announced before, the smoothness of G (A) can be rephrased by a simpler, necessary and sufficient
condition. This uses the monodromy groups, which are defined below.
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Definition 2.39. Let A→M be a Lie algebroid, and let x ∈M. The monodromy group of A at x is defined
to be the following subgroup from the isotropy algebra.

Nx(A) = {v ∈ Z(gx) : v and 0x are A-homotopic}.

When (M,π) is a regular Poisson manifold, we will derive a simpler expression for the monodromy groups in
Section 2.5.

Now, we can state the conditions for integrability of a Lie algebroid A→ M in terms of these monodromy
groups. Fix a norm d on A and define the function r : M → [0,∞] by r(x) = d(0x,Nx(A) \ {0x}), with the
convention that d(0x, /0) = ∞.

Definition 2.40. The monodromy groups Nx(A) are said to be locally uniformly discrete if the following
two conditions hold.

1. The monodromy group Nx(A) is discrete, i.e. r(x)> 0, for all x ∈M.

2. For all x ∈M, one has liminfy→x r(y)> 0.

The following theorem is what becomes of Lie III for Lie algebroids.

Theorem 2.41 ([CF01]). Let A→M be a Lie algebroid. Then, the following are equivalent.

• The Weinstein groupoid G (A) is smooth.

• The monodromy groups Nx(A) are locally uniformly discrete.

• The Lie algebroid A is integrable.

2.4 Integration of Poisson manifolds

In this section, we take a closer look at integrations of the cotangent algebroid (T ∗M,π♯) of a Poisson manifold.
By Theorem 2.41, we already have a good understanding of what it means for the Poisson manifold (M,π) to
be integrable: we look for a Lie groupoid integrating T ∗M, and the Weinstein groupoid is the natural candidate.
It turns out that the Weinstein groupoid of a Poisson manifold comes with more structure, namely that of a
multiplicative symplectic form, and is therefore called a symplectic groupoid. Moreover, it turns out that any
symplectic groupoid determines a Poisson structure on the base. This leads to the interesting integration prob-
lem in Poisson geometry: given a Poisson manifold, is there a symplectic groupoid (G ,Ω)⇒ (M,π) inducing
π? In this section we will properly state and discuss the integration problem in Poisson geometry.

We start with the definition of symplectic groupoids.
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Definition 2.42. Let G ⇒ M be a Lie groupoid. A differential form ω ∈Ωk(G ) is called multiplicative if

m∗ω = pr∗1ω +pr∗2ω,

where pr1,pr2 : G (2)→ G are the restriction of the projections pr1,pr2 : G ×G → G . We say that (G ,ω)⇒
M is a symplectic groupoid if ω is a multiplicative, symplectic form.

Example 2.43. We discuss some basic examples of the symplectic groupoids of Poisson manifolds that appear
in this thesis.

1. The cotangent bundle T ∗M ⇒M, equipped with the canonical symplectic form, is a symplectic groupoid.
This is a groupoid integrating the zero Poisson structure on M.

2. Let G be a Lie group and let Σ = G⋉ g∗ ⇒ g∗ be action groupoid associated to the coadjoint repre-
sentation. This is a groupoid integrating the linear Poisson structure (g∗,πg), Under the isomorphism
l∗T ∗G ≃ G⋉ g∗ induced by left translation, the pushforward Ω = l∗Ωcan is a symplectic multipliative
form on Σ.

3. Let (M,ω) be a symplectic manifold. The pair groupoid Σ = M×M ⇒ M. The form Ω = pr∗1ω−pr∗2ω

is clearly symplectic, and multiplicative, hence (Σ,Ω)→ M is a symplectic groupoid, which integrates
the non-degenerate Poisson manifold (M,ω).

The following proposition collects together several basic facts about symplectic groupoids.

Proposition 2.44 ([CFM21]). Let (G ,Ω)⇒ M be a symplectic groupoid.

1. The s- and t-fibers are symplectic orthogonal:

ker(ds) = ker(dt)⊥Ω .

2. The unit section u : M→ G is a Lagrangian embedding.

3. The inversion map ι : G → G is anti-symplectic: ι∗Ω =−Ω.

We infer from part 2 of this proposition that dim(G ) = 2dim(M).

All examples in Example 2.43 have the property that the target map is a Poisson map. This is no coincidence,
and the following theorem explains the connection between symplectic groupoid and Poisson structures.
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Theorem 2.45 ([CFM21]). Let (G ,Ω) ⇒ M be a symplectic groupoid. There exists a unique Poisson
structure π on M such that t : (G ,πΩ)→ (M,π) is a Poisson map, where π

♯
Ω
= (Ω♭)−1. Moreover,

1. The connected components of the orbits of G are precisely the symplectic leaves of (M,π).

2. There is a canonical Lie algebroid isomorphism

σΩ : Lie(G )→ T ∗M, α 7→ −u∗(ιαΩ).

In particular, π♯ ◦σ
−1
Ω

= ρ , where ρ is the anchor of Lie(G ).

The integration problem, mentioned at the start of this section, will can now be split up into two parts.

1. Is there a Lie groupoid G ⇒ M integrating T ∗M?

2. If G ⇒ M is a Lie groupoid whose Lie algebroid is isomorphic to T ∗M, does there exist a multiplicative
symplectic form Ω on G inducing π?

The first question can be answered using the integrability criteria in the previous section. The second question
was answered by Mackenzie and Xu.

Theorem 2.46 ([CFM21]). Let (M,π) be a Poisson manifold and let G ⇒ M be a Lie groupoid with 1-
connected s-fibers integrating T ∗M, and choose an isomorphism σ : Lie(G )→ T ∗M. Then there exists a
unique multiplicative symplectic form Ω on G such that σΩ = σ ,

Thus, we conclude that if (M,π) is an integrable Poisson manifold, the Weinstein groupoid Σ(M,π) = G (T ∗M)
carries a multiplicative symplectic form Ω such that (Σ(M,π),Ω)⇒ (M,π) is a symplectic integration. We can
interpret the symplectic groupoid as a desingularization of the Poisson structure. In later chapters, we will be
heavily interested in the topological properties of the symplectic groupoid Σ(M,π). We end this chapter with a
description of the monodromy groups for regular Poisson manifolds.

2.5 Regular Poisson manifolds

In this section, we will revisit the monodromy groups for a regular Poisson manifold, and simplify the expres-
sions in Section 2.3.2, by integrating a certain curvature form over 2-cycles. This description for the mon-
odromy groups of a regular Poisson manifold allows for a quick computations of the monodromy groups of
regular Poisson submanifolds. We will take a rather unorthodox approach by relating the curvature form to the
transversal derivative, and to prove properties about this curvature form using statements about the transversal
derivative. The advantage of this is that the transversal derivative reappears intensely in 4.2 by any means, and
introducing the transversal derivative at this stage means that we do not repeatedly present similar proofs.

2.5.1 The Transversal Derivative

Let (M,π) be a regular Poisson manifold and let F = im(π♯) be the symplectic foliation. Recall from Example
2.24 that we have a short exact sequence of Lie algebroids

0→ ν
∗(F )→ T ∗M π♯

−→F → 0. (14)
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Viewing this short exact sequence just as a short exact sequence of vector bundles, there exists a splitting
τ : F → T ∗M. Such a splitting does not have to be a splitting of the short exact sequence as Lie algebroids,
since τ might not preserve the bracket. The curvature of τ is a measure to what extent τ is a splitting of the
short exact sequence (14) as Lie algebroids.

Definition 2.47. Let (M,π) be a regular Poisson manifold and let τ be a splitting of (14) as vector bundles.
We define the curvature of τ as the form Ωτ ∈Ω2(F ,ν∗(F )) given by by

Ωτ(X ,Y ) = [τ(X),τ(Y )]π − τ[X ,Y ]

the curvature of τ.

This is well-defined, because Ωτ is indeed skew-symmetric and C∞(M)-linear, as the following proposition
shows.

Proposition 2.48. If τ is a splitting of (14), then Ωτ ∈Ω2(F ,ν∗(F )).

Proof. The skew-symmetry of Ωτ is clear. For f ∈C∞(M), we compute that

Ωτ( f X ,Y ) = [ f τ(X),τ(Y )]π − τ[ f X ,Y ]

= f [τ(X),τ(Y )]π −Lπ♯(τ(Y ))( f )X− f τ[X ,Y ]+LY ( f )X

= f [τ(X),τ(Y )]π − f τ[X ,Y ]

= f Ωτ(X ,Y ),

since π♯ ◦ τ = Id, and thus we see that Ωτ is C∞(M)-bilinear.

Finally, we see that Ωτ indeed takes value in ν∗(F ), since

π
♯ (Ωτ(X ,Y )) = π

♯([τ(X),τ(Y )]π)−π
♯
τ[X ,Y ]

= [π♯
τ(X),π♯

τ(Y )]− [X ,Y ]

= [X ,Y ]− [X ,Y ]

= 0,

so we are done.

It follows directly from the definition of Ωτ that τ defines a splitting of (14) as Lie algebroids if and only if
Ωτ = 0.

Now, we will give a description of the transversal derivative of a manifold M with a regular foliation F , and
relate this to Ωτ in the specific case that F is the symplectic foliation of a regular Poisson manifold. The
transversal derivative is defined in terms of the dual Bott connection on the conormal bundle to the foliation,
which is a special case of an F -connection on T ∗M.
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Definition 2.49. Let E → M be a smooth vector bundle and let F ⊆ T M be a smooth subbundle. An
F-connection on E is an R-bilinear operation

∇ : Γ(F)×Γ(E)→ Γ(E)

such that for all f ∈C∞(M), X ∈ Γ(F) and s ∈ Γ(E), one has

1. ∇ f X(s) = f ∇X(s)

2. ∇X( f s) = f ∇X(s)+LX( f )s

Note that a T M-connection on E is just an affine connection on E. If F ⊆ T M is a smooth subbundle, we can
always restrict an affine connection on E to an F-connection on E, and any F-connection can be extended to
an affine connection.

Example 2.50. Let M be a smooth manifold and let F be a regular foliation on M. The Bott connection is the
F -connection on the normal bundle ν(F ) to the foliation, defined by

∇ : Γ(F )×Γ(ν(F ))→ Γ(ν(F )), ∇X(Y ) = [X ,Y ], (15)

were [X ,Y ] is the Lie bracket of vector fields. To check that this is well-defined, let Y ′ be another represen-
tative of Y . Then the difference Y −Y ′ ∈F , and thus [X ,Y −Y ′] ∈F , since F is involutive. It follows that
[X ,Y ] = [X ,Y ′].

To check that this is indeed a F -connection on ν(F ), we remark that for f ∈C∞(M), one has

∇X( fY ) = [X , fY ] = f [X ,Y ]+LX( f )Y = f [X ,Y ]+LX( f )Y = f ∇X(Y )+LXY ,

∇ f X(Y ) = [ f X ,Y ] = f [X ,Y ]−LY X = f [X ,Y ]−LY ( f )X = f [X ,Y ] = f ∇X(Y ),

where we used that X = 0. This shows that the Bott connection indeed defines a F -connection on ν(F ).

Recall that a connection ∇ on a vector bundle E→M induces a connection ∇∗ on the dual bundle E∗→M, by
requiring the following Leibniz identity to hold:

LX (α(s)) = ⟨α,∇X(s)⟩+ ⟨∇∗X(α),s⟩.

The same applies to any F-connection, and thus we obtain the dual Bott connection ∇∗ as an F -connection on
the conormal bundle ν∗(F ). Identifying the space of sections Γ(ν∗(F )) with the 1-forms on M that vanish on
F , a quick computations shows that for ω ∈ Γ(ν∗(F )),Y ∈ Γ(T M):

(∇∗X ω)(Y ) = LX (ω(Y ))−ω ([X ,Y ]) = (LX ω)(Y ), (16)

so the dual Bott connection ∇∗ : Γ(F )×Γ(ν∗(F ))→ Γ(ν∗(F )) is simply given by

∇
∗
X ω = LX ω. (17)

We denote by Ω•(F ,ν∗(F )) the space of foliated differential forms with values in the conormal bundle. The
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dual Bott connection gives rise to a map d∇∗

F : Ωp(F ,ν∗(F ))→Ωp+1(F ,ν∗(F )) given by

(d∇∗

F ω)(X0, · · · ,Xp) =
p

∑
i=0

(−1)i
∇
∗
Xi

(
ω(X0, · · · , X̂i, · · · ,Xp)

)
+∑

i< j
(−1)i+ j

ω([Xi,X j],X0, · · · , X̂i, · · · , X̂ j, · · · ,Xp). (18)

It squares to zero since the (dual) Bott connection is flat. The associated cohomology groups, called the foliated
cohomology groups with coefficients in ν∗(F ), are denoted by H•(F ,ν∗(F )).

If we start with a dF -closed foliated 2-form ωF ∈ Ω2(F ), we can extend it to a 2-form ω ∈ Ω2(M), by
choosing an explicit splitting T M ∼= F ⊕ ν(F ). Note that ω need not be closed, but we can construct a
d∇∗

F -closed 2-form out of dω as follows. Since dF ωF = 0, the foliated differential form

θ : (X ,Y ) 7→ dω(X ,Y,−)

vanishes on F , so it defines an element θ ∈Ω2(F ,ν∗(F )).

Lemma 2.51. The form θ ∈Ω2(F ,ν∗(F )) is closed, and the class [θ ] ∈H2(F ,ν∗(F )) is independent of the
chosen extension ω .

Proof. The proof of this lemma consists of two simple computations. For the first one, let X0,X1,X2 ∈ Γ(F )
and let N ∈ Γ(T M). Since

(LX ω)(Y ) = LX (ω(Y ))−ω([X ,Y ]),

we have that(
d∇∗

F θ

)
(X0,X1,X2)(N) = LX0 (θ(X1,X2))(N)−LX1 (θ(X0,X2))(N)+LX2 (θ(X0,X2))(N)

−dω([X0,X1],X2,N)+dω([X0,X2],X1,N)−dω([X1,X2],X0,N)

= LX0 (dω(X1,X2,N))−LX1 (dω(X0,X2,N))+LX2 (dω(X0,X1,N))

−dω(X1,X2, [X0,N])+dω(X0,X2, [X1,N])−dω(X0,X1, [X2,N]

−dω([X0,X1],X2,N)+dω([X0,X2],X1,N)−dω([X1,X2],X0,N)

= d2
ω(X0,X1,X2,N) = 0,

where we used in the final line that LN(dω(X0,X1,X2)) = 0 since ωF is dF -closed.

For the second statement, suppose ω ′ is another extension of ωF , giving rise to a closed form θ ′ ∈Ω2(F ,ν∗(F )).
Denote α = ω −ω ′, and remark that α(X ,Y ) = 0 for X ,Y ∈ Γ(F ), so we can interpret α as an element in
Ω1(F ,ν∗(F )). We have by a similar type of computation that

(θ −θ
′)(X ,Y )(N) = (dω−dω

′)(X ,Y,N)

= LX
(
(ω−ω

′)(Y,N)
)
−LY

(
(ω−ω

′)(X ,N)
)

− (ω−ω
′)([X ,Y ],N)+(ω−ω

′)([X ,N],Y )− (ω−ω
′)([Y,N],X)

= (LX α(Y ))(N)− (LY α(X))(N)−α([X ,Y ])(N)

= (d∇∗

F α)(X ,Y )(N),

so [θ ] = [θ ′], and this proves the lemma.
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Definition 2.52. Let ωF ∈ Ω2(F ) be a dF -closed 2-form, and let θ ∈ Ω2(F ,ν∗(F )) be as above. We
define the transversal derivative as the map

dν : H2(F )→ H2(F ,ν∗(F )), dν [ωF ] = [θ ],

and we call [θ ] the normal variation of ωF

Proposition 2.53. The transversal derivative is well-defined, i.e. does not depend on the chosen representative
of [ωF ].

Proof. Let ω ′F = ωF +dF α for some α ∈Ω1(F ), and choose an extension ω ∈Ω2(M) of ωF and an exten-
sion A ∈Ω1(M) of α . Then dA is an extension of dF α , so ω ′ = ω +dA is an extension of ω ′F . It follows that
dω ′ = dω , so dν is well-defined.

In particular, the transversal derivative measures how ωF changes in the normal direction, as the following
example aims to makes clear.

Example 2.54. We consider a simple foliation M = S×Rq. We endow each leaf Sv = S×{v}, with a closed
2-form ωv that vary smoothly, and thus glue together to a dF -closed foliated 2-form ωF . There exists a natural
decomposition T M = T S⊕TRq, hence a natural a way to extend foliated 2-form ωF to the 2-form ω̃ ∈Ω2(M)
which vanishes on TRq. It follows that for Z ∈ TRq = ν(F ), one has

θ(X ,Y )(Z) = dω̃(X ,Y,Z) = LZωF (X ,Y ),

so the variation of the foliated form in the transversal derivative coincides with the directional derivative in the
normal direction.

Foliated cohomology groups can be tedious to compute, and adding coefficients does not simplify that task.
Therefore, computing the transversal derivative of the foliated symplectic form on a regular Poisson manifold
can turn out to be very challenging. Hence, we wish to relate it to an object that we are more acquainted with.
It turns out that this object is the curvature Ωτ of a splitting of the short exact sequence of vector bundles

0 ν∗(F ) T ∗M F 0π♯

τ

.

The relationship between the transversal derivative and Ωτ arises from the following observation.

Proposition 2.55. Let (M,π) be a regular Poisson manifold, with foliated symplectic form ωF . Then there
exists a one-to-one correspondence

{Splittings τ : F → T ∗M of (14)} 1−1−−→ {Extensions ω ∈Ω
2(M) of ωF such that T M = F ⊕ker(ω♭)}

Proof. We will explain the maps in both directions, and it will be immediate they are inverses. Given a splitting

36



τ : F → T ∗M, we define ω ∈Ω2(M) by ιX ω = τ(X) for X ∈F , and ιV ω = 0 otherwise. Then

ω(π♯(α),π♯(β )) = ⟨ιπ♯(α)ω,π♯(β )⟩

= ⟨τ(π♯(α)),π♯(β )⟩
=−⟨π♯(α),β ⟩
= ωF (π♯(α),π♯(β )),

so ω is an extension of ωF , and this defines the map to the right.

For the map to the left, we define τ by τ(X) = ιX ω .Then τ defines a splitting of (14) since for X = π♯(α) ∈F ,
one has

⟨β ,π♯(τ(X))⟩= ⟨β ,π♯(ιπ♯(α)ω)⟩

=−⟨ιπ♯(α)ω,π♯(β )⟩

=−ω(π♯(α),π♯(β )⟩
= π(α,β )

= ⟨β ,X⟩.

It is immediate the maps are each others inverses.

Let (M,π) is a regular Poisson manifold, with a splitting τ : F → T ∗M. By the previous proposition, this gives
rise to an extension ω of ωF . The curvature Ωτ , see Definition 2.47, of this splitting and ω are related by

Ωτ(X ,Y )(Z) = ⟨[τ(X),τ(Y )]π ,Z⟩−⟨τ[X ,Y ],Z⟩
= ⟨LX (τ(Y ))),Z⟩−⟨LY (τ(X)) ,Z⟩−LZ (π(τ(X),τ(Y )))−ω([X ,Y ],Z)

= LX (⟨τ(Y ),Z⟩)−⟨τ(Y ), [X ,Z]⟩−LY (⟨τ(X),Z⟩)
+ ⟨τ(X), [Y,Z]⟩+LZ (ω(X ,Y ))−ω([X ,Y ],Z)

= LX ω(Y,Z)−LY ω(X ,Z)+LZω(X ,Y )

−ω(Y, [X ,Z])+ω(X , [Y,Z])−ω([X ,Y ],Z)

= dω(X ,Y,Z). (19)

The following theorem collects together the previous results.

Theorem 2.56. Let (M,π) be a regular Poisson manifold and choose a splitting τ of (14). Then the
curvature form Ωτ ∈Ω2(F ,ν∗(F )) is d∇∗

F -closed, and dν [ωF ] = [Ωτ ]. In particular, [Ωτ ] is independent
of the chosen splitting τ .

Proof. It follows by Lemma 2.51 and Equation (19) that Ωτ is closed, and by the definition of the transversal
derivative, we have that dν [ωF ] = [Ωτ ]. Since dν [ωF ] is independent of the chosen splitting, so is [Ωτ ].
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2.5.2 Monodromy groups of Regular Poisson manifolds

In this section, we will describe how the monodromy groups of the cotangent algebroid of a regular Poisson
manifold can be heavily simplified. If (M,π) is a regular Poisson manifold, we will refer to the monodromy
groups of the cotangent algebroid of M as the monodromy groups of (M,π), and denote them by Nx(M,π) for
x ∈M.

To obtain a better understanding of the monodromy groups of a Poisson manifold, we take a closer look at
the Poisson homotopy groups. If (M,π) is an integrable Poisson manifold, the Poisson homotopy groups
Σx(M,π) are the isotropy groups of the Weinstein groupoid. Thhey are in particular Lie groups with Lie algebras
gx = ker(π♯

x) and the target map yields a principal Σx(M,π)-bundle s−1(x)→ S, where S is the symplectic leaf
through x. Since s−1(x) is 1-connected, the long exact sequence of homotopy groups takes the form

· · · → π2(S,x)
∂x−→ π1(Σx(M,π))→ 1→ π1(S,x)→ π0(Σx(M,π))→ 1.

In particular, we deduce the following corollary.

Corollary 2.57. Let (M,π) be an integrable Poisson manifold with 1-connected symplectic leaves. Then the
Poisson homotopy groups of (M,π) are connected.

Denote by Π(gx) the unique 1-connected Lie group integrating gx. We have a canonical homomorphism qx :
Π(gx)→ Σx(M,π)◦ induced by the inclusion of gx→ T ∗M. The kernel of qx is a discrete subgroup contained
in Z(Π(gx)), and

Σx(M,π)◦ ∼= Π(gx)/ker(qx).

We deduce from basic Lie theory that ker(qx) = π1(Σx(M,π)). In particular, we deduce that we have an exact
sequence

π2(S,x)
∂x−→→Π(gx)

qx−→ Σx(M,π)
px−→ π1(S,x)→ 1. (20)

So far, we have assumed that (M,π) is integrable, but parts of this discussion also makes sense for general
Poisson manifolds (M,π); there is still an exact sequence:

Proposition 2.58 ([CFM21], Proposition 14.63). Let (M,π) be a Poisson manifold. Then there exists an exact
sequence

π2(S,x)
∂x−→Π(gx)

qx−→ Σx(M,π)
px−→ π1(S,x)→ 1. (21)

We will describe the maps involved in more detail. The map px : Σx(M,π)→ π1(S,x) sends the class of a cotan-
gent path to the homotopy class of its underlying base path. The map qx is induced by the inclusion gx→ T ∗M,
and the map ∂x : π2(S,x)→Π(gx) sends the class of σ : [0,1]2→ S to the class of a path a : [0,1]→ gx, which
is cotangent path-homotopic to 0x via a cotangent path homotopy covering σ . These maps are well-defined,
and the sequence is exact. From this description, we infer that Nx(M,π) = im(∂x) = ker(qx).

For a regular Poisson manifold, all isotropy Lie algebras are abelian, so Π(gx) = ν∗x (S). A fortiori, the Poisson
homotopy groups must be abelian, qx is just the exponential map, and the monodromy groups Nx(M,π) are
the image of the monodormy operator ∂x : π2(S,x)→ ν∗x (S). The monodromy operator can be related to the
transversal derivatve as follows. If τ : F → T ∗M is a splitting of (14), we can restrict the curvature form to S,
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to obtain a class [Ωτ |S] ∈ H2(S,ν∗(S)). Integrating this form over a sphere σ : S2→ S yields the description of
the monodromy operator.

Proposition 2.59 ([CF02]). The monodromy operator ∂x for a regular Poisson manifold can be described as

∂x[σ ] =
∫

σ

Ωτ |S.

Let us explain what we mean by an integral of a form with coefficients in a vector bundle. Suppose ω ∈
Ω2(M,E) is a 2-form with coefficients in some flat vector bundle E→M. Integrating ω over γ : S2→M means
that we integrate the pullback form γ∗ω ∈Ω2(S2,γ∗E) over S2. Here, γ∗E is a flat vector bundle over S2. Since
S2 is 1-connected, this bundle can be trivialized by parallel transport, and this gives a way of integrating differ-
ential forms with coefficients in a flat vector bundle over 1-connected cycles. In the case of a regular Poisson
manifold, the dual Bott connection is a flat connection on ν∗(S)→ S, and we can trivialize the pullback bundle
by parallel transport σ∗ν∗(S) = S2×ν∗x (S). The integration coincides with the natural pairing between homol-
ogy and cohomology. In particular, the expression for ∂x does not depend on the chosen splitting τ .

We will give two applications of this description of the monodromy groups, that simplify computations in many
situations. The first one is that we describe how the monodromy groups can be described by computing the
variation of symplectic area. The second one is the computation of monodromy groups of submanifolds of a
regular Poisson manifold.

In practical situations, it is often more convenient to compute the monodromy operator of Proposition 2.59 in
terms of the variation of the symplectic area. The variation of symplectic area is the defined as follows. Let
[σ ] ∈ π2(S,x), and pick a smooth representative σ : (S2, pN)→ (S,x), mapping the north pole of S2 to x. The
symplectic area of σ is the quantity given by

Aω(σ) =
∫

S2
σ
∗
ω,

where ω is the symplectic form on S. A deformation of σ is a family σt with t ∈ (−ε,ε) and σ0 = σ such that
the image of each σt is contained in a symplectic leaf. Given a sphere σ : (S2, pN)→ (S,x) and a normal vector
v ∈ νx(S), one can find a deformation σt : (S2, pN)→ (S,xt), where σ0 = σ and t 7→ xt is a path with [ẋ(0)] = v.
The variation of the symplectic area is the group homomorphism

A′x : π2(S,x)→ ν
∗
x (S), ⟨A′x[σ ],v⟩= d

dt

∣∣∣∣
t=0

∫
S2

σ
∗
t ωt ,

where ωt is the symplectic form on the leaf through xt . If we foliate S2× I by spheres S2×{t}, we obtain that

H2(F )∼=C∞(I), H2(F ,ν)∼= Ω
1(I),

and dν is just the de Rham differential. Interpreting a deformation σt as a foliated map S2 × I → M, the
functoriality of dν with respect to foliated maps implies that

d
dt

∫
S2

σ
∗
t ωt =

〈∫
σt

Ωτ ,
d
dt

σt(pN)

〉
.

Therefore, the variation of the symplectic area coincides with the monodromy operator in Proposition 2.59.
This is in many situations the most convenient method to compute the monodromy groups of a regular Poisson
manifolds.
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Example 2.60. Let ω ∈ Ω2(S2) be the standard area form. On the manifold M = S2× S2×R2, consider a
regular Poisson structure with leaves

Sy = S2×S2×R2, y ∈ R2

and foliated symplectic form
ω(y1,y2) = f (y1)pr∗1ω +g(y2)pr∗2ω,

where f ,g ∈ C∞(M) are positive smooth functions. For v = (v1,v2) ∈ R2, the variation of symplectic area is
given by

⟨A′y([σ ]),v⟩= f ′(y1)v1

∫
σ

pr∗1ω +g′(y2)v2

∫
σ

pr∗2ω.

Using that π2(S2×S2×R2)∼= Z⊕Z, we infer that the monodromy groups are given by

Ny(M,π) = f ′(y1)Z⊕g′(y2)Z.

Depending on the value of f ′ and g′, the monodromy groups are uniformally discrete, so this is a simple way
to produce non-integrable Poisson manifolds.

2.5.3 Monodromy groups of Poisson Submanifolds

In general, the integrability of Poisson submanifolds of a given Poisson manifold can be a delicate issue. For
instance, it is well-established that the sphere Sg∗ inside the dual of a Lie algebra g∗ (different from su(2)∗)
is never integrable. Even if we assume that (M,π) is regular and that N is a saturated Poisson submanifold,
integrability of N is not guaranteed. To check that N is integrable, we have to determine the monodromy groups
of N, and see if they are uniformally discrete. The goal is to express them in terms of the monodromy groups
of (M,π). We will assume that (M,π) regular since we can describe the monodromy groups as the image of
∂x. Moreover, we assume for simplicity that N is saturated.

Consider a splitting τM : FM → T ∗M of the short exact sequence

0 ν∗(FM) T ∗M FM 0.
π
♯
M

τM

This induces a splitting τN : FN → T ∗N of the short exact sequence

0 ν∗(FN) T ∗N FN 0,
π
♯
N

τN

by setting τN(X) = τM(X)◦dι . Since N is a Poisson submanifold, ι : N→M is a Poisson map. Therefore

π
♯
N(τN(X)) = π

♯
N(τM(X)◦dι) = π

♯
M(τM(X)) = X ,
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so τN is a splitting. The curvatures of the splittings are related by

ΩτN (X ,Y ) = [τN(X),τN(Y )]πN − τN([X ,Y ])

= [τM(X)◦dι ,τM(Y )◦dι ]πN − τM([X ,Y ])◦dι

= [τM(X),τM(Y )]πM ◦dι− τM([X ,Y ])◦dι

= ΩτM(X ,Y )◦dι ,

where we used in the third line that ι is Poisson. Using Proposition 2.59, we deduce that

∂
N
x ([σ ]) =

∫
σ

ΩτN = (dιx)
∗
∫

σ

ΩτM = (dιx)
∗
∂

M
x ([σ ]).

We conclude that

Nx(N,πN) = im(∂ N
x ) = (dιx)

∗im(∂ M
x ) = (dιx)

∗Nx(M,πM),

which gives us an explicit expression for the monodromy groups of N.

In the next chapter, we will investigate the topology of symplectic integrations of Poisson manifolds in greater
detail. This gives rise to Poisson manifolds of compact type, which are a natural generalization of Lie algebras
of compact type.
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3 Poisson Manifolds of Compact Type

In the previous chapters, we have described all the basic concepts in this thesis. Now, we can describe the
objects we are truly interested in: Poisson manfolds of compact type. These are the natural generalization of
compact Lie algebras, in the sense that they are integrated by a groupoid which has some compactness type.
We will see that the notion of compactness for a Poisson manifold is more subtle than for a Lie algebra, as there
are six different notions. In this chapter, we will follow [CFT15] and [CFM16].

3.1 Compactness types of Lie groupoids and Poisson manifolds

There are multiple notions of compactness for Lie groupoids. Before we give the definitions of these, let us
recall that a map between topological space f : X → Y is called proper if inverse images of compact subsets of
Y are compact in X . If Y is locally compact and Hausdorff, this is equivalent to saying that f is a closed map
with compact fibers.

Definition 3.1. Let G ⇒ M be an s-connected Lie groupoid. We call G

1. proper if the map (s, t) : G →M×M is proper,

2. s-proper if the map s : G →M is proper,

3. compact if it is compact as a topological space.

Clearly, any compact Lie groupoid is s-proper, and any s-proper Lie groupoid is proper. It turns out that s-
properness of a Lie groupoid is completely governed by the topology of the fibers of s.

Lemma 3.2. Let G ⇒ M be a source-connected Lie groupoid such that all fibers s−1(x) are compact. Then s
is proper.

Proof. The proof uses that open maps between metrizable spaces f : X → Y have the following property: For
every x ∈ X ,y ∈Y and sequence yn ∈Y converging to y, there exists a sequence xn ∈ X such that f (xn) = yn and
xn converges to x.

We will prove the lemma by contradiction. Let G ⇒ M be as in the statement of the lemma, and assume that s is
not proper. Then there exists a sequence yn ∈M converging to some y∈M and a sequence xn ∈ G such that each
xn ∈ s−1(yn) and xn diverges to infinity, in the sense that for any compact K ⊆ G , all but finitely xn lie outside K.

Since s is surjective, there exists x ∈ s−1(y). Since s is a submersion, it is an open map, and therefore there
exists a sequence zn ∈ s−1(yn) converging to x. Let K be a compact whose interior contains all points s−1(y)∪
{zn : n ≥ N} for some N ∈ N. This exists, since s−1(y) is compact and G is locally compact. By increasing
N, we can make sure that xn /∈ K for all n ≥ N. Since s−1(xn) is connected for each n, there exits a sequence
wn ∈ s−1(yn)∩∂K. But ∂K is compact, so after passing to a subsequence, wn converges to some w ∈ ∂K. By
continuity of s, s(w) = y, so w ∈ ∂K∩ s−1(y), which is absurd since s−1(y)⊆ Int(K).

There are situations in which some of the compactness notions coincide.
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Proposition 3.3. Let G ⇒ M be a Lie groupoid with connected s-fibers.

1. If all orbits of G are compact, then G is proper if and only if it is s-proper.

2. If M is compact, all notions coincide.

Proof. For 1, we only have to show that G is s-proper if it is proper and has compact orbits. By Lemma 3.2,
it suffices to show that the s-fibers are compact. Recall from Proposition 2.5 that for any x ∈ M, we have a
principal Gx-bundle t : s−1(x)→ Ox. By assumption, Ox and Gx = (s, t)−1(x,x) are compact. Therefore, s−1(x)
is compact.

For 2, suppose that M is compact. If s is proper, G = s−1(M) is compact, so s-properness is equivalent to
compactness. To complete the proof, we have to show that properness implies s-properness, which we will do
by showing that the orbits are compact. For x ∈ M, the fiber s−1(x) ⊆ G is obviously closed. Since the map
(s, t) is proper, it is in particular closed, so (s, t)(s−1(x)) = {x}×Ox ⊆M×M is closed. This implies that Ox

is closed. Since M is compact, Ox is also compact and this concludes the proof of the proposition.

Example 3.4. All three notions of compactness coincide when we consider a Lie groupoid over a point (i.e. a
Lie group). The difference between the three compactness notions is best illustrated by considering the action
groupoid G⋉M associated to the action of a Lie groupoid G on a manifold M. Then G⋉M is:

• of compact type if and only if G and M are both compact,

• of s-proper type if and only if G is compact,

• of proper type if the action of G on M is proper.

Example 3.5. Let M be a connected manifold. For the pair groupoid M×M ⇒ M, the map (s, t) : M×M→
M×M is always a homeomorphism, hence proper. Thus, the pair groupoid is always proper, and it is s-proper
if and only if it is compact, which happens if and only if M is compact.

It is clear how to generalize the notions of compactness to Poisson manifolds. However, there are three more
different compactness notions that we can consider. The analogy with Lie algebras is that even though a Lie
algebra can be integrated by a compact Lie group, the unique 1-connected integration need not be compact.
The same holds for Poisson manifolds, where we replace the unique 1-connected Lie group by the Weinstein
groupoid.

Definition 3.6. Let C ∈ {proper, s-proper, compact}. A Poisson manifold is said to be

• Of C -type if there exists an s-connected integration of (M,π) of C -type

• Of strong C -type if the Weinstein groupoid of (M,π) is smooth and of C -type.

Poisson manifolds of (strong) C -type will be referred to as PM(S)CTs. Remark that by Proposition 3.3, proper-
ness and s-properness of Poisson manifolds are equivalent if the symplectic leaves are compact, since the
symplectic leaves are the orbits of a symplectic integration.
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Remark 3.7. The six different compactness type of Poisson manifolds are related as follows

strong compact strong s-proper strong proper

compact s-proper proper

When all the symplectic leaves are compact, this becomes

strong compact strong s-proper strong proper

compact s-proper proper

,

and when M is compact, it becomes

strong compact strong s-proper strong proper

compact s-proper proper

,

We will now discuss compactness type of several Poisson structures that we are familiar with.

Example 3.8. The Weinstein groupoid of the zero Poisson structure on M is (T ∗M,ωcan). This is of never
of strong proper type. However, (M,0) may be of proper type. This happens precisely when there exists an
integral affine structure on M. We will discuss integral affine structures in more detail in Chapter 4.

Example 3.9. Let g be a Lie algebra and consider the linear Poisson structure on its dual g∗. Let G be the
1-connected integration of g. The action groupoid G⋉g∗ is a symplectic integration of (g∗,πg), and the source
fibers coincide with g∗. Therefore, G⋉g∗ is isomorphic to the Weinstein groupoid. Thus, we see that (g∗,πg) is
strong proper if and only if it is strong s-proper. This happens if and only if there exists a 1-connected, compact
Lie group G integrating g, i.e. if and only if g is compact and semisimple. It is never of strong compact type.

It is clear that strong compactness is the strongest compactness type a Poisson manifold can have. The majority
of this thesis is focused on constructing examples of strong compact Poisson manifolds. As of now, there is
only one simple class of examples of strong compact Poisson manifolds.

Example 3.10. Let (M,ω) be a connected symplectic manifold. Then ω♭ : T ∗M → T M is a Lie algebroid
isomorphism, and Π1(M)⇒ M is a Hausdorff, 1-connected integration of (M,ω). Moreover,

Ω = t∗ω− s∗ω

is a multiplicative symplectic form on Π1(M). Recall that Π1(M) is source 1-connected, so (Π1(M),Ω) is the
Weinstein groupoid of (M,ω). It is proper if π1(M) is finite, s-proper if π1(M) is finite and M has compact path
components, and compact if π1(M) is finite and M is compact.

Thus, we see that compact symplectic manifolds (M,ω) with finite π1(M) form a class of examples of strong
compact Poisson manifolds. Examples of these are (S2,ωstd) or (CPn,ωFS).
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3.2 Submanifolds of PMCTs

In this section, we explain what happens to the PMCT property when we pass to Poisson submanifolds. We
follow the arguments outlined in [Fer06] and [CFT15]. Integrability and compactness Poisson submanifolds
are subtle issues. Already in the case of (S2,ωstd), which is of strong compact type, removing a point gives an
open symplectic submanifold, which is not strong compact. It is still of strong proper type since its fundamen-
tal group vanishes, but that also breaks down when we remove another point. This is because the fundamental
group of S2 \{P,S} is isomorphic to Z, hence not finite. The result follows from Example 3.10.

For a general Poisson submanifold N of (M,π), the restricted subbundle T ∗N M → N is a Lie subalgebroid of
the cotangent algebroid. If (M,π) is integrable, then so is T ∗N M, and is integrated by the Lie subgroupoid
ΣN(M)⊆ Σ(M):

ΣN(M) = {[a] ∈ Σ(M) : a : I→ T ∗N M}.

If Ω is the symplectic form on Σ(M), the pair (ΣN(M), i∗Ω) is a coisotropic submanifold of rank 2dim(N).
For coisotropic manifolds of this form, ker(i∗Ω♭) forms an involutive distrubtion of T ΣN(M). This follows
from the fact that i∗Ω is closed, together with the Koszul formula for the exterior derivative. If the leaf space
ΣN(M)/ker(i∗Ω♭) is smooth, it is a well-known result that there exists a unique symplectic form Ω̄ on it,
completely determined by the property p∗Ω̄ = i∗Ω♭. Moreover, the quotient ΣN(M)/ker(i∗Ω♭) is always a
topological groupoid, because Ω is multiplicative. It is, as a topological groupoid, isomorphic to Σ(N). Thus,
if N and M are both integrable, we have an isomorphism

(Σ(N),ΩN)∼= (ΣN(M)/ker(i∗Ω♭),Ω̄).

Remark that the restriction groupoid Σ(M)|N is another integration of T ∗N M, but restricting Σ(M) to N may
destroy 1-connectedness of the s-fibers. This problem does not occur when N is saturated by symplectic leaves,
and we must have that Σ(M)|N ≃ ΣN(M). Thus, the previous discussion implies

Σ(N) = Σ(M)|N/ker(Ω♭),

and it follows that N and M have the same strong compactness type.

3.3 Quotients of PMCTs and Hamiltonian reduction

In this section, we investigate the effect of Lie group quotients on PMCTs. We mainly follow [FOR07] and
[CFT15].

We fix a free and proper Poisson G-space (M,π,G), and we assume that the Poisson manifold (M,π) is in-
tegrable. As a consequence of Lie’s second theorem for Lie algebroids, Theorem 2.34, any Poisson diffeo-
morphism φ : M→M lifts to a symplectomorphism Φ : Σ(M)→ Σ(M) covering φ . Here, we can apply Lie’s
second theorem since Σ(M) is source-1-connected. Explicitly, Φ is given by

Φ : Σ(M)→ Σ(M), [a] 7→ [(dφ
−1)∗ ◦a].

Thus, the action of G on M lifts to a symplectic action on Σ(M) by the lifts Φg : Σ(M)→ Σ(M) of the Poisson
diffeomorphism φg : M→M. The following proposition shows that the lifted action is also free and proper.

Proposition 3.11 ([FOR07]). Let G ⇒ M be a Lie groupoid, and let G be a Lie group acting smoothly on
G ⇒ M by Lie groupoid automorphisms. Then
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1. The G-action on G is free if and only if the G-action on M is free.

2. The G-action on G is proper if and only if the G-action on M is proper.

Proof. If the action on G is free, so is the action on M, since M embeds equivariantly in G via the unit u. For
the converse, we note that s is G-equivariant. Therefore, StabG (x) ⊆ StabM(s(x)), so if G acts freely on M, it
must act freely on G .

Similarly, the second statement is trivially true in one direction. For the other direction, suppose G acts properly
on M. We want to show that the map

G×G → G ×G , (g,x) 7→ (x,gx)

is proper. To see this, we choose sequences gk in G and xk in M such that gk converges to g ∈ G and gkxk
converges to some y ∈ M. We have to show that gk contains a convergent subsequence. We set mk = s(xk),
m = s(x) and n = s(y). Obviously, mk converges to m, and gkmk converges to n. Since the action of G on M is
proper, gk has the required convergent subsequence.

It turns out that the G-action on Σ(M) is always Hamiltonian, with moment map J : Σ(M)→ g∗ defined as
follows. Given a vector field X ∈ X(M), we can integrate it over a cotangent path a : I→ T ∗M by setting∫

a
X =

∫ 1

0
⟨Xγa(t),a(t)⟩dt.

For Hamiltonian vector fields, the value of this integral only depends on the begin and end point of γa:∫
a

XH = H(γa(1))−H(γa(0)), H ∈C∞(M).

A basic property of this type of integral, proven in [CF02], is the invariance of the integration of Poisson vector
fields under cotangent path homotopies. If X is a Poisson vector field, we obtain a well-defined map

cX : Σ(M)→ R, cX([a]) =
∫

a
X .

The addivitity of the integral with respect to composition of cotangent paths implies that

cX([a1] · [a2]) = cx([a1])+ cx([a2]).

We define the moment map for this action by J : Σ(M)→ g∗ by

⟨J([a]),ξ ⟩= cXξ
([a]),

where Xξ is the infinitesimal vector field of M, which is Poisson. It is shown in [FOR07] that this is indeed a
moment map, which is a groupoid cocycle:

J(g1g2) = J(g1)+ J(g2), ∀(g1,g2) ∈ Σ(M)(2).

Moreover, this cocycle is exact, i.e. is of the form J = µ ◦ s−µ ◦ t, if and only if (M,π,G,µ) is a Hamiltonian
G-space.

We can now perform Marsden-Weinstein reduction of Σ(M). If 0 is a regular value of J, then J−1(0) is a Lie
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subgroupoid of Σ(M).The symplectic quotient

(Σ(M)//G,Ω̄) = (J−1(0)/G,Ω̄)

is naturally a symplectic groupoid. Moreover, since the map v 7→ ιvΩ induces an isomorphism between
Lie(Σ(M)) and T ∗M, the map v 7→ ιvΩ̄ induces an isomorphism between Lie(Σ(M)//G) and T ∗(M/G). There-
fore, we conclude:

Corollary 3.12. Let (M,π,G) be a free and proper Poisson G-space. Then M/G is an integrable Poisson
manifold and the redued symplectic groupoid

Σ(M)//G = J−1(0)/G

is a symplectic groupoid integrating M/G.

In general, it is not true that Σ(M)//G is not source-1-connected, so Σ(M)//G is not always equal to Σ(M/G).
However, when G is a discrete Lie group, we do have that J−1(0) = Σ(M). By the same argument as in Section
1.3.2, the source fibers of Σ(M) and Σ(M)/G of a Poisson G-space (M,π,G) are isomorphic. Thus if G is
discrete, it is true that Σ(M/G) = Σ(M)/G. Therefore, we can conclude the following results

Theorem 3.13. Let G be a Lie group, and let (M,π,G) be a free and proper Poisson G-space. Then

1. If M is of strong s-proper or strong compact type, then M/G is of s-proper or compact type.

2. If M is strong s-proper or strong compact and moreover G is discrete, then so is M/G.

Note that strong properness does not pass to quotients by discrete Lie groups. A simple example of this
phenomenon is when we form the symplectic torus T2 = R2/Z2 by acting on symplectic R2 by Z2. Using
Example 3.10, we deduce that symplectic R2 is strong proper, but that the symplectic torus is not. A simple
way to see this is that π1(T2) = Z2, which is not finite, and the statement follows by Example 3.10

3.3.1 (Quasi-)Hamiltonian Reduction

In the previous section, we have seen that Poisson quotients by discrete Lie group actions preserves strong s-
properness and strong compactness. Obviously, quotients by discrete Lie groups are not very interesting, so we
need to work in a more restrictive setting to guarantee that strong compactness types are preserved. It turns out
that the suitable candidates are Poisson manifolds that are reductions of free and proper Hamiltonian G-spaces
(M,ω,G,µ). These are symplectic manifolds (M,ω), together with a free and proper Hamiltonian action by
G, and a G-equivariant moment map µ : M → g∗. The quotient space (Q = M/G,π) is naturally a Poisson
manifold, where the symplectic leaves are the connected components of the symplectic quotients

µ
−1(ξ )/Gξ ≃ µ

−1(Oξ )/G⊆M/G,

where Oξ is the coadjoint orbit through ξ ∈ g∗ and Gξ is the stabilizer of ξ . Provided that G is compact, the
Poisson manifold (Q,π) is naturally of some compactness type.

Proposition 3.14 ([CFT15]). Let (M,ω,G,µ) be a Hamiltonian G-space, and assume G is compact and acts
freely. Assume furthermore that M is connected, and that the fibers of µ are connected (or 1-connected). Then
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1. (Q,πred) is proper (or strong-proper).

2. (Q,πred) is s-proper (or strong-s-proper) if µ is proper.

3. (Q,πred) is of compact type (or of strong compact) if and only if M is compact and G is finite (hence when
Q is symplectic).

Proof. Since the action is free, the moment map is a submersion, hence the submersion groupoid M×µ M ⇒ M
is a smooth subgroupoid of the pair groupoid. The form Ω = pr∗1ω−pr∗2ω is a closed, multiplicative 2-form on
M×µ M, with kernel precisely the orbits of the diagonal action of G on M×µ M. This action is free and proper,
and by groupoid automorphisms. Moreover, Ω is basic with respect to this diagonal action, so descends to a
symplectic form on the quotient. The upshot is that the quotient

Σ = (M×µ M)/G ⇒ M/G = Q

is a symplectic groupoid, where the symplectic form Ω is the unique form satisfying q∗Ω= pr∗1ω−pr∗2ω , where
q : M×µ M→ (M×µ M)/G is the quotient map.

This symplectic groupoid is an integration of (Q,πred). Note that we have a commuting diagram,

(M×µ M,Ω) (M,ω)

(Σ,Ω) (Q,πred)

pr1

t

,

so t is a forward Dirac map (see Chapter 7 in [CFM21]). In particular, it is a Poisson map so πred is the Poisson
structure on Q induced by Ω.

The s-fibers of Σ coincide with the fibers of µ . If M is connected, and the fibers of µ are connected (or 1-
connected), it follows that the s-fibers of Σ are connected (or 1-connected) so item 1 and 2 follow. Item 3
follows from the fact that Hamiltonian actions of non-finite Lie groups on compact manifolds are never free,
because otherwise it maps the compact manifold M onto on g∗, which is absurd.

Because of item 3 of this proposition, reduction of Hamiltonian spaces is not very suitable for producing
Poisson manifolds of strong compact type. The previous discussion can be generalized using a notion of S1-
valued momentum maps.

Definition 3.15. A Quasi-Hamiltonian S1-space is a symplectic manifold (M,ω), together with an S1-
action and an equivariant S1-valued momentum map, i.e. S1-equivariant map µ : Q→ S1, satisfying

ιX ω = µ
∗(dθ),

where X is the infinitesimal generator of the action and dθ the standard volume form on S1.

If (M,ω,µ) is a free quasi-Hamiltonian S1-space, the same arguments as in the previous proposition show
that Σ = (M×µ M)/S1 ⇒ M/S1 is a symplectic groupoid integrating the Poisson manifold (M/S1,πred). The
s-fibers of Σ and the fibers of µ coincide, so we conclude:
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Theorem 3.16. Let (M,ω,µ) be a compact, free Quasi-Hamiltonian S1-space, and suppose µ has 1-
connected fibers. The reduced Poisson space (M/S1,πred) is of strong compact type.

Thus, the question of finding Poisson manifolds of strong compact type can be reduced to the study of free
Quasi-Hamiltonian S1-spaces, whose momentum map has 1-connected fibers. Such a space has been con-
structed by [Kot05], and the explicit construction relies heavily on the geometrical properties of K3 surfaces.
We will go over this construction in a Poisson setting in Chapter 5, following the work of Martinez-Torres
[Tor13], which also fills in some of the details overlooked at in [Kot05]. In the next chapter, we will de-
scribe a generic construction of Poisson manifolds of strong compact type. We will show that the example by
Martinez-Torres fits in that framework.
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4 Constructing PMCTs using Integral Affine Structures and the
Linear Variation

In this chapter, we will discuss another procedure that allows us to construct Poisson manifolds of strong s-
proper type and to perform a reduction to obtain a Poisson manifold of strong compact type. The PMSCTs that
we construct will appear as appropriate Poisson submanifolds of regular Poisson manifolds M whose leaves
are compact and 1-connected. The advantage of working with these Poisson manifolds is that the leaf space
B = M/F of M has a smooth structure such that the map p : M→ B is a submersion. The approach we are
following is built upon two properties any PMCT (M,π) with a smooth leaf space B share.

1. The leaf space of any PMCT of M has an integral affine structure, that is induced by a proper symplectic
integration (G ,Ω) of (M,π).

2. Any b ∈ B corresponds to a symplectic leaf (Sb,ωb), and the cohomology groups H2(Sb) yield a vector
bundle H 2 → B, which carries a flat connection ∇GM that is introduced in Section 4.1.2. The foliated
symplectic form gives a section ϖ of H 2. Then, the linear variation varlin

ϖ : T B→H 2, v 7→ ∇GM
v (ϖ) is

injective if (M,π) is strong s-proper.

These two features will be elaborated in the first sections of this chapter, and we will describe how we can apply
them to exhibit Poisson manifolds of the aforementioned compactness types.

4.1 Integral Affine Geometry

In this first section, we describe the notion of integral affine structures on a manifold, and we start off with a
discussion of integral affine vector spaces.

4.1.1 Integral affine vector spaces

Throughout this section, V will always assumed to be a real, finite-dimensional vector space.

Definition 4.1. A lattice Λ inside V is a discrete, additive subgroup of V . Every lattice gives rise to a dual
lattice

Λ
∨ = {α ∈V ∗ : α(Λ)⊆ Z}

in V ∗.

If Λ is a lattice in V , the rank of Λ is the dimension of the R-linear subspace that it spans in V . The lattice is of
full rank if its rank is equal to the dimension of V .

Definition 4.2. An integral affine vector space is a pair (V,Λ), where V is a real, finite-dimensional vector
space and where Λ is a full rank lattice in V . A morphism of integral affine vector spaces φ : (V,Λ)→
(V ′,Λ′) is a linear map φ : V →V ′ such that φ(Λ)⊆ Λ′.

We say that a set B = {b1, · · · ,bn} ⊆V is a basis for the lattice Λ if it is linearly independent over the integers
and the integral span is equal to Λ. The number of elements in B is precisely equal to the rank of the lattice.
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Similar to vector spaces, any lattice admits a basis. This means that every integral affine vector space is iso-
morphic to (Rn,Zn) for some integer n.

If (V,Λ) is an integral affine vector space, we can consider a discrete subgroup Λ′ ⊆ Λ, which is again a lattice
in V . A natural question we can consider is whether there is a basis for Λ′ that extends to a basis for Λ. Whereas
this is obvious for vector spaces, this is no longer true for lattices. For instance, 2Z⊆Z is a sublattice, but there
is no basis for 2Z that extends to a basis for Z.

Definition 4.3. We call a sublattice Λ′ ⊆ Λ primitive if any basis for Λ′ extends to a basis for Λ.

It turns out that it is easy to characterise the primitive sublattices of an integral affine vector space (V,Λ).

Proposition 4.4. Let (V,Λ) be an integral affine vector space and let Λ′ ⊆ Λ be a sublattice. Setting V ′ =
spanR(Λ

′), the following are equivalent:

1. Λ′ is primitive.

2. V ′∩Λ = Λ′.

4.1.2 Integral affine vector bundles

In this section, we generalize the notions of integral affine vector spaces to lattices in vector bundles. We let
E→ B be a smooth, real vector bundle of rank q.

A lattice Λ inside E is a subbundle
Λ =

⋃
b∈B

Λb ⊆ E

consisting of full rank lattices Λb ⊆ Eb. It is called smooth if around each b0 ∈ B, we can find an open neigh-
bourhood U0 together with smooth local sections λi U0→ E such that

Λb =
k⊕

i=1

Zλi(b).

Definition 4.5. An integral affine vector bundle is a pair (E,Λ), where E→ B is a vector bundle and Λ is
a smooth lattice in E.

Remark 4.6. By viewing E as a Lie groupoid over M, an integral affine structure Λ on E is a normal Lie
subgroupoid with the properties that each isotropy group Λx is a full rank lattice in Ex.

Every integral affine vector bundle (E,Λ) naturally carries a connection ∇, known as the Gauss-Manin connec-
tion, uniquely defined by declaring all (local) sections of Λ to be flat.

Proposition 4.7. The Gauss-Manin connection is always flat.
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Proof. Let s : B→ E be a section, and let X ,Y ∈X(B). We have an open cover {Ui} of B such that for every U
in this cover, we can write

s|U =
k

∑
i=1

fiλi

where the fi : U → R are smooth functions and where the λi are smooth setions taking values in Λ|U . We
can naturally restrict the connection ∇ to a connection ∇U on E|U →U , which satisifies ∇U

X |U (s|U) = ∇X(s)|U .
Thus, ∇U still has the property that local sections of Λ|U are flat.(

∇X ∇Y s−∇Y ∇X −∇[X ,Y ]s
)∣∣

U = ∇X |U ∇Y |U (s|U)−∇Y |U ∇X |U (s|U)−∇[X |U ,Y |U ](s|U)

=
k

∑
i=1

(LX |U LY |U −LY |U LX |U −L[X |U ,Y |U ]) fiλi

= 0,

so the Gauss-Manin connection is indeed flat.

The Gauss-Manin connection will reappear in Section 4.2.

Since every integral affine vector bundle has to carry a flat connection, there is a topological obstruction to
having an integral affine structure. By Proposition 4.7, any integral affine vector bundle must carry a flat
connection. This gives rise to a firm restriction on on which vector bundles are integral affine. For instance, the
tangent bundle T S2 of the 2-sphere cannot have an integral affine structure, since the first Chern class of T S2 is
non-zero. Following this argument, the only connected oriented surface whose tangent bundle has an integral
affine structure is the torus.

4.1.3 Integral affine manifolds

If B is a manifold, with an integral affine structure (T ∗B,Λ) on the cotangent bundle, we remark that Λ can be
interpreted as a submanifold of T ∗B of dimension equal to dim(B) = 1

2 dim(T ∗B). Since the cotangent bundle
is always a symplectic manifold, one might wonder when Λ is a Lagrangian submanifold of T ∗B. It turns out
that this is precisely the case when B is an integral affine manifold, to be defined below.

Let GLZ(Rq) consist of all invertible linear transformations Rq→ Rq for which both A and A−1 have integer
coefficients.

Definition 4.8. We denote by AffZ(Rq) = GLZ(Rq)⋉Rq the group of integral affine transformations, i.e.
transformations of the form

Rq→ Rq, v 7→ Av+w (22)

for A ∈ GLZ(Rq) and w ∈ Rq.
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Definition 4.9. An integral affine atlas on a manifold B is an atlas A = {(Ui,χi)}i∈I for which each transi-
tion map χi ◦χ

−1
j is (the restrictions of) an integral affine transformation. We call an element (Ui,χi) ∈A

an integral affine chart for B. An integral affine structure on B is a maximal integral affine atlas, and we
call (B,A ) an integral affine manifold.

The following theorem states the correspondence between integral affine structures on B and Lagrangian lattices
in T ∗B.

Theorem 4.10. Let B be a q-dimensional manifold. There exists a one-to-one correspondence between

1. Integral affine structures A on B,

2. Smooth Lagrangian lattices Λ inside T ∗B,

3. Smooth lattices Λ∨ inside T B such that all local vector fields with values in Λ∨ commute.

In this correspondence, Λ and Λ∨ correspond to the lattices

Λb =
⊕

Zdxi|b, Λ
∨
b =

q⊕
i=1

Z
∂

∂xi

∣∣∣∣
b
, (23)

where (x1, · · · ,xq) is an integral affine chart of B.

Proof. First, we note that the representations of Λ and Λ∨ are independent of the chosen integral affine chart,
because we have for any two integral affine chart (U,χ) and (V,ψ) that

Jac(χ ◦ψ
−1) ∈ GLZ(Rq).

We first prove equivalence of 1 and 2. Let A be an integral affine atlas on B, giving rise to the lattice Λ. By
construction, Λ is a smooth lattice in T ∗B. To show that it is Lagrangian inside T ∗B, it suffices to show that all
local sections are Lagrangian (i.e. that they have Lagrangian images inside T ∗B), since each local section is a
diffeomorphism onto an open inside Λ. A local section α of T ∗B is Lagrangian if and only if α∗Ωcan = dα = 0,
by the defining property of the canonical symplectic form on T ∗B. Note that any local section of Λ is of the
form α = ∑

q
i=1 nidxi for some ni ∈ Z, and is thus closed. Therefore, Λ is indeed a smooth Lagrangian lattice

inside (T ∗B,Ωcan).

Next, let Λ inside (T ∗B,Ωcan) be a smooth Lagrangian lattice. Let b0 ∈ B and let U be an open neighbourhood
around b0 with a local frame {λ1, · · · ,λq} such that for all b ∈U :

Λb =
q⊕

i=1

Zλi(b).

Since the lattice is Lagrangian, each λi has to be a closed 1-form on U . By shrinking the open neighbourhood
further, we may assume that each λi = dχi, for smooth functions χi : U → R. This gives us a smooth map
χ = (χ1, · · · ,χq) : U → Rq with the property that all dχi|b for b ∈U are linearly independent. This means in
particular that (dχ)b0 is invertible, so we can apply the inverse function theorem to shrink U even further to
obtain a chart (U,χ) around b0. Doing this for all b0 ∈ B gives rise to an atlas A of B with the property that all
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charts (U,φ) in A satisfy that for any b ∈U , one has

Λb =
q⊕

i=1

Zdφi(b).

If (U,χ) and (V,ψ) are two of such charts, we may assume that the intersection U ∩V is connected. Since we
must have that

Λb =
q⊕

i=1

Zdψi(b) =
q⊕

i=1

Zdχi(b),

we must have that
Jac(χ ◦ψ

−1)(x) ∈ GLZ(Rq) ∀x ∈ ψ(U ∩V ).

Now GLZ(Rq) is discrete and ψ(U ∩V ) is connected so it follows that Jac(χ ◦ψ−1)(x) = A for all x. It follows
that χ ◦ψ−1(v) = Av+w for some w ∈Rq, thus the transition maps are integral affine transformations. Letting
A ′ be the maximal atlas containing A , we constructed a map from the smooth, Lagrangian lattices in T ∗B to
the set of integral affine structures on B, and these are easily verified to be inverses.

Finally, we prove the equivalence of 2 and 3. This follows from the following observation: If α : U → Λ|U
is a section of a smooth lattice Λ inside T ∗B, we must have that for any local vector field X : U → Λ∨|U that
α(X) ∈ Z is constant. Therefore, we have for any two local vector fields X ,Y : U → Λ∨ that

dα(X ,Y ) = LX(α(Y ))−LY (α(X))−α[X ,Y ] =−α[X ,Y ].

Thus, if X and Y commute, dα = 0 and any local section is closed, so Λ is Lagrangian. On the other hand, if
dα = 0 for all local sections α , we have that α[X ,Y ] = 0 for all local sections α , which implies that X and Y
commute, and this proves the theorem.

From now on, we denote integral affine manifolds by (B,Λ), where Λ⊆ T ∗B is a smooth, Lagrangian lattice.

Definition 4.11. A morphism φ : (B,Λ)→ (B,Λ′) of integral affine manifolds is a smooth map φ : B→ B′

with the property that for each q ∈ B, the map

(dφq)
∗ : (T ∗

φ(q)B,Λφ(q))→ (T ∗q B,Λq)

is a morphism of integral affine vector spaces.

Remark 4.12. The condition in Definition 4.11 is equivalent to saying that the map φ : B→B′ on each connected
integral affine coordinate domain is (the restriction of) an integral affine map.

Definition 4.13. Let (B,Λ) be an integral affine manifold. We say that (B′,Λ′) is an integral affine sub-
manifold if B′ is a submanifold of B and Λ′∨ ⊆ Λ∨. We call it primitve if furthermore, see Proposition
4.4

Λ
′∨ = T B′∩Λ

∨.

Remark 4.14. The condition that (B′,Λ′) is an integral affine submanifold of (B,Λ) is equivalent to saying that
the inclusion B′→ B is an integral affine map.

Let us now discuss some examples of integral affine structures, and see a first glimpse of their relation to
PMCTs.
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Example 4.15. If (V,Λ) is an integral affine vector space, there is naturally an integral affine structure V×Λ∗⊆
V ×V ∗ = T ∗V .

Example 4.16. An important class of integral affine manifolds are the so-called complete integral affine mani-
folds. Let Γ⊆AffZ(Rq) be a discrete subgroup, and assume that it acts freely and properly on Rq. The smooth
manifold B = Rq/Γ carries an integral affine structure. To see this, note that the projection Rq→ B is a local
diffeomorphism, so local sections B→ Rq may serve as charts for B. This implies that the transition maps are
in Γ, meaning they define an integral affine structure on B. Important examples of these include the subgroup
Γ⊆ AffZ(Rq) generated by x 7→ x+1 which endows S1 = R/Γ with an integral affine structure.

The final example requires more introduction. Given a smooth lattice Λ inside T ∗M, one can form the quotient
TΛ = T ∗M/Λ. This will be a torus bundle over M, whose fibers are the tori T ∗x M/Λx. By a similar argument
as in Theorem 4.10, the symplectic form Ωcan on T ∗M descends to a symplectic form ΩΛ on TΛ if and only if
Λ is an integral affine structure on M, and we call (TΛ,ΩΛ) a symplectic torus bundle over M. It turns out that
every symplectic torus bundle over M is of this form, see Proposition 3.1.6 in [CFM16].

Theorem 4.17. Proper symplectic integrations of (M,0) are in one-to-one correspondence to integral
affine structures on M.

Proof. By the discussion above, it suffices to show that proper symplectic integrations of (M,0) are in one-to-
one correspondence with symplectic torus bundles over. M.

By definition, a symplectic torus bundle (TΛ,) is a symplectic groupoid over M whose target and source map
coincide, and whose isotropy groups are tori. In particular, (TΛ,ΩΛ) induces a Poisson structure on M for
which the source map is both Poisson and anti-Poisson, so this Poisson structure must be the zero Poisson
structure. For x ∈M, the fiber s−1(x) is a torus, so they are compact, and by Lemma 3.2, the s-map is proper. It
follows that (TΛ,ΩΛ) is a proper integration of (M,0).

Conversely, suppose that (G ,Ω) ⇒ (M,0) is a proper integration. Both the s and t-fibers form a foliation of
G . The target map t : (G ,Ω)→ (M,0) is a symplectic realization. Since symplectic realizations of the zero
Poisson structure have coisotropic fibers, we have by Proposition 2.44 that ker(ds) = ker(dt)Ω = ker(dt). Since
the s and t-fibers are connected, they must be the same, hence s = t. Since the zero Poisson structure is regular,
the isotropy algebras must be abelian and the same must a fortiori hold for the isotropy groups. Since G is
proper, the isotropy groups are compact, so they must be tori. We conclude that (G ,Ω) is a symplectic torus
bundle.

4.1.4 Transverse Integral Structures

We have seen in the previous section that an integral affine structure gives rise to a Lagrangian lattice in the
cotangent bundle. In this section, we will be discussing a similar, but more general notion, namely that of a
transverse integral affine structure on a (regularly) foliated manifold (B,K ). This will again be a Lagrangian
lattice, but not in the full cotangent bundle of B but taking values in the conormal bundle ν∗(K ) of a foliation.
This is to be thought of as an integral affine structure on the leaf space B/K , but this maybe non-smooth, or
even very pathological.
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To describe this structure in greater detail, recall that a regular foliation (B,K ) of codimension q has a foliation
atlas {(Ui,χi) : i ∈ I}, where the Ui are opens cover of M, together with submersions χi : Ui→Rq, whose fibers
are the plaques of K . For an introduction to foliations and plaques, we refer to [Ban06].

Definition 4.18 ([CFM16]). A transverse integral affine structure on a regular foliation (B,K ) is a choice
of maximal foliation atlas, with the property that each transition function χi ◦χ

−1
j : χ j(Ui∩U j)→ χi(Ui∩

U j) is the restriction of an integral affine transformation.

Just as with integral affine structures, it is easier to work with lattices in the cotangent bundle. There is an
analogue of Theorem 4.10 where we have replace the cotangent bundle by the conormal bundle, which we state
as follows.

Theorem 4.19 ([CFM16]). Let (B,K ) be a regular foliation. There is a one-to-one correspondence
between

1. Transverse integral affine structures on (B,K ).

2. Smooth Lagrangian lattices Λ inside ν∗(K ).

In this correspondence, Λ is given by

Λx =
q⊕

i=1

Zdxi|x,

where (x1, · · · ,xq) is a transverse integral affine coordinate system.

We will be mostly interested in transverse integral affine structures on simple foliations, i.e. foliations for which
the leaf space B/K is a smooth manifold.

Example 4.20. If the case of a simple foliaton (B,K ), the leaf space B/K is a smooth manifold and its
cotangent bundle is isomorphic to the conormal bundle ν∗(K ) via the isomorphism (d p)∗x : T ∗p(x)(B/K )

≃−→
ν∗x (K ). Through this isomorphism, there is a one-to-one correspondence between integral affine structures on
B/K , and transverse integral affine structures on (B,K ).

We are now ready to describe the transverse integral affine associated to any PMCT. Let (G ,Ω) be a proper
integration of a Poisson manifold (M,π). Then, the isotropy groups Gx are compact, and the isotropy Lie
algebras gx correspond to the isotropy Lie algebras ν∗x (F ) = ker(π♯

x), under the isomorphism from Theorem
2.45. Therefore, they must be abelian and

ΛG ,x = ker(expg : gx→ Gx) (24)

defines a lattice inside gx, or equivalently, in ν∗x (F ). This defines a bundle of lattices inside ν∗(F )

ΛG =
⋃

x∈M

ΛG ,x.

The following theorem is the promised result from the introduction of this chapter.
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Theorem 4.21. Each proper integration (G ,Ω) of a regular Poisson manifold (M,π) induces a transverse
integral affine structure ΛG on (M,F ). Moreover, we always have that N (M,π)⊆ ΛG , and N (M,π) =
ΛΣ(M) if and only if (M,π) is strong proper, where N (M,π) are the monodromy groups of a regular
Poisson manifold, defined in 2.39.

The proof of this theorem uses the following proposition.

Proposition 4.22. Let (G ,Ω) be a symplectic groupoid and let α⃗ be a right-invariant vector field on G , corre-
sponding to a section α of Lie(G ). Then we have that

ι⃗αΩ = t∗σΩ(α)

Proof. Let v ∈ TgG . We need the following identities

v =
d
dt

∣∣∣∣
t=0

γv =
d
dt

∣∣∣∣
t=0

m(u(t(γv)),γv) = dm(1t(g),g)

(
du1t(g)dtgv,v

)
α⃗g = (dRg)1t(g)α1t(g) =

d
dt

∣∣∣∣
t=0

γα ·g = dm(1t(g),g)

(
α1t(g) ,0

)
.

Using the multiplicativity of Ω, we deduce that

Ωg(v, α⃗g) = (m∗Ω)(1t(g),g)

((
du)1t(g)dtgv,v

)
,
(

α1t(g) ,0
))

= (pr∗1Ω)(1t(g),g)

((
du)1t(g)dtgv,v

)
,
(

α1t(g) ,0
))

+(pr∗2Ω)(1t(g),g)

((
du)1t(g)dtgv,v

)
,
(

α1t(g) ,0
))

= Ω1t(g)

(
(du)1t(g)dtgv,α1t(g)

)
+Ωg(v,0)

= Ω1t(g)

(
(du)1t(g)dtgv,α1t(g)

)
=−σΩ(α1t(g))(dtg)v.

The statement follows immediately.

We can now prove Theorem 4.21. The proof fills in the details of the proof of Theorem 3.3.1 in [CFM16].

Proof. We follow the argument exposed in [CFM16], and fill in some details. Let (G ,Ω) and ΛG be as above.
We show that the bundle of lattices is smooth, which we will do by giving a different description for the
individual lattices ΛG ,x. Each αx ∈ ν∗x (F ) corresponds to a unique right-invariant vector field α⃗ on Gx. We
denote by G ◦x the connected component containing 1x, and restrict α⃗ to a vector field on G ◦x . The bundle of
connected components of the isotropy groups

GM =
⋃

x∈M

G ◦x

is a bundle of Lie groups over M, and hence a Lie subgroupoid of G . There is an action of the bundle of abelian
Lie groups (ν∗(F ),+)⇒ M on GM ⇒ M by

θ : ν
∗(F )×M GM → GM, θ(α,g) = φ

1
α⃗
(g),

where φ 1
α⃗

denotes the flow at t = 1 of α⃗ . Indeed, this is a groupoid action, because we have that

1. s(αx ·g) = s◦φ 1
α⃗
(g) = s(g) = t(g), since s◦φ 1

α⃗
= s,
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2. 0 ·g = φ 1
0 (g) = g,

3. For αx,βx ∈ ν∗x (F ), we have

βx · (αx ·g) = βx ·φ 1
α⃗
(g) = φ

1
β⃗

φ
1
α⃗
(g) = φ

1
α⃗+β⃗

(g) = (αx +βx) ·g,

where we used in the third equality that the [⃗α, β⃗ ] = 0 since ν∗(F ) is abelian.

Since α⃗ is tangent to the isotropy groups, we have by definition of the exponential map for Lie groups that
expgx

(α) = φ 1
α⃗
(1x). This allows us to identify

ΛG ,x = {α ∈ ν
∗
x (F ) : φ

1
α⃗
= Id}.

We should show that ΛG forms a smooth lattice. For that, we need to show that for each αx0 ∈ ΛG ,x0 , there is
an open neighbourhood U0 of x0 together with a local section λ such that λ (x) ∈ ΛG ,x for all x ∈U0. In other
words, we should have that

φ
1−−→
λ (x)

(1x) = 1x for all x ∈U . (25)

We define the map
Fu : ν

∗(F )→ GM, Fu(ξx) = φ
1
ξ⃗
(1x).

This is a bundle map, covering the identity. Moreover, the map ξx 7→ ξ⃗ is injective, so the action is locally free.
Therefore, fu is fiberwise a local diffeomorphism, and thus Fu is a local diffeomorphism. This implies that
there exists a local section λ satisfying (25), and this proves that the lattice is smooth.

We are left to show that this lattice is Lagrangian. By the characterisation of transverse integral affine structures
in Theorem 4.21, it suffices to show that any local section α : U → ΛG |U is closed. Using Proposition 4.22, we
have for a local section α : U → ΛG |U that

t∗dα =
∫ 1

0
t∗dα dτ

=
∫ 1

0

(
φ

τ

α⃗

)∗ t∗dα dt (Since t◦φ
τ

α⃗
= t)

=
∫ 1

0

(
φ

τ

α⃗

)∗ d ι⃗αΩdτ

=
∫ 1

0

(
φ

τ

α⃗

)∗
Lα⃗Ωdτ

=
∫ 1

0

d
dτ

(
φ

τ

α⃗

)∗
Ωdτ

=
(
φ

1
α⃗

)∗
Ω−Ω

= 0.

Since t is a submersion, dα = 0, hence the lattice is Lagrangian. To prove the remaining statements of the
theorem, recall from 2.58 that the monodromy groups can be described as the image of the map ∂mon in the
exact sequence

π2(S,x)
∂x−→ ν

∗
x (S)

expgx−−−→ Σx(M,π)
p−→ π1(S,x)→ 0.

Exactness implies that im(∂x) = ker(expgx
). Starting with α ∈Nx(M,π), one has that the right-invariant vector

field α⃗ on Σ(M) satisfies φ 1
α⃗
= Id. There is always a covering projection Φ : Σ(M)→ G , such that α⃗ is mapped

to a right-invariant vector field α⃗ ′ on G , which must also satisfy φ 1
α⃗ ′
= Id, so Nx(M,π)⊆ ΛG ,x.
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If (M,π) is strong proper, we have by definition ΛΣ(M,π),x = ker(expgx
)=Nx(M,π). On the other hand, suppose

that N (M,π) = ΛΣ(M,π). Since the monodromy groups of (M,π) form a lattice, Σ(M,π) is proper in this case.
This concludes the proof.

4.2 Linear Variation of the Symplectic Forms

In this section, we focus on the other property of a PMCT, which is that of full linear variation of the symplectic
forms on the symplectic leaves. Recall that a regular Poisson manifold (M,π) can equivalently be described
by a symplectic foliation (F ,ωF ). The aim of this section is to study how the symplectic form changes in
the normal direction ν(F ) = T M/F . We will give two different, but in the end equivalent, descriptions of the
linear variation of the foliated symplectic form. We start with probably the most intuitive description of the
two, which we have already seen in Section 2.5.1 and is that of the transversal derivative dν . Let us briefly
recall the construction of dν . Consider a regular foliation F of a manifold M, and consider a dF -closed 2-form
ωF . If we choose any extension ω ∈Ω2(M) of ωF , the form

θ : (X ,Y ) 7→ dω(X ,Y,−) ∈Ω
2(F ,ν∗(F ))

is d∗F -closed, and its cohomology class is independent of the chosen extension ω . This defines the transversal
derivative

dν : H2(F )→ H2(F ,ν∗(F )), [ωF ] 7→ [θ ].

Definition 4.23. The linear variation of a dF -closed 2-form ωF is defined by dν [ωF ].

We have argued in Example 2.54 why the transveral derivative of the foliated symplectic form can be interpreted
as the normal variation of this form. Also, we have shown that

dν [ωF ] = [Ωτ ],

where τ : F → T ∗M is a splitting of the short exact sequence associated to the cotangent algebroid of a Poisson
manifold.

Next, we present a second description of the linear variation of the foliated symplectic form, in the special
case that the symplectic leaves form a simple foliation. The standing assumption is that (M,π) is a regular
(connected) Poisson manifold with compact and 1-connected symplectic leaves. Under these assumptions, the
leaf space of B = M/F of M is a smooth manifold such that the map p : M→ B is a submersion [CFM16]. We
will call these Poisson manifolds simple Poisson manifolds since the symplectic foliation is simple. For such
simple Poisson manifolds, we define a (set-theoretical) real vector bundle H 2→ B, whose fibers are the degree
2 cohomology groups of the leaves: H 2

b = H2(Sb,R). To see that this is indeed a smooth vector bundle, we
need to have trivializing opens, and these can be obtained from local trivializations of p. For local trivializations
opens of p, we use Ehresmann’s lemma.

Theorem 4.24 (Ehresmann’s lemma, [VS02]). Let p : X → Y be a surjective submersion that is proper.
Then p is a fiber bundle.

By the same argument as in Lemma 3.2, the quotient map p : M→ B is proper if its fibers are compact. Thus,
we have the following lemma.
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Lemma 4.25. If (M,π) is a simple Poisson manifold, the quotient map p : M→ B is a fiber bundle.

The local trivializations of p induce local trivializations of H 2 → B in the following sense. If U ⊆ B is an
open trivialization such that p|U : U×S→U , we have that that H 2|U ∼=U×H2(S,R). This endows H 2→ B
with the structure of a smooth vector bundle. By replacing the coefficient group by Z, we obtain a smooth
lattice H 2

Z → B inside H 2, so we can endow H 2→ B with the Gauss-Manin connection ∇. There is a rich
interplay between the integral affine geometry of the integral affine vector bundle (H 2,H 2

Z ) and the inte-
gral affine geometry of the leaf space B, which is depicted through the linear variation map. To define the
linear variation map, we use that the foliated symplectic form ωF gives a canonical section ϖ : B→H 2 by
ϖ(b) = [ω|Sb ] ∈ H2(Sb,R).

Definition 4.26. The linear variation is defined as the bundle map

varlin
ϖ : T B→H 2, v 7→ varlin

ϖ (v) = ∇vϖ ,

where ∇ is the Gauss-Manin connection, defined in Section 4.1.2.

We can relate the map varlin
ϖ to the curvature form Ωτ from the previous section, as follows. Under the isomor-

phism (d p)x : νx(F )
≃−→ Tp(x)B, elements in H2(F ,ν∗(F )) correspond to elements in Ω1(B,H 2) under the

isomorphism
H2(F ,ν∗(F )) ∋ [α] 7→ (vb 7→ [⟨vb,α⟩]) ∈Ω

1(B,H 2).

Proposition 4.27 ([CFM16]). Under the previous identifications, we have that the linear variation map varlin
ϖ

satisfies

1. [Ωτ ] = varlin
ϖ ∈Ω1(B,H 2), where τ : F → T ∗M is a splitting of (14).

2. For v ∈ Tp(x)B and σ : (S2, pN)→ (S,x), one has∫
σ

varlin
ϖ (v) = ⟨∂x([σ ]),v⟩,

where S is the symplectic leaf through x ∈M.

Proof. Part 2 follows from 1, together with the interpretation of monodromy in terms of curvature from Section
2.5.1.

To prove part 1, we note that right from the definitions, we have a commuting square

H2(F ) Γ(H 2)

H2(F ,ν∗(F )) Ω1(B,H 2)

dν

≃

d∇

≃

.

To see this, choose a splitting T M ∼= ν(F )⊕F , which gives a way to extend foliated forms ωF ∈ Ω•(F ) to
forms ω ∈ Ω•(M), satisfying ιV ω = 0 for all V ∈ Γ(ν(F )). Now, consider the following claim that is proven
in [CFM16].
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• Let V ∈ Γ(ν(F )) be a vector field defined on an open around Sb whose restriction to Sb projects to a
vector vb ∈ TbB. For any section η ∈ Γ(H 2) represented by a 2-form η ∈ Ω2(M) satisfying ιV η = 0,
one has

∇vbη = [(LV η) |Sb ] ∈ H2(Sb,R). (26)

The claim follows from the following observation. We can lift vector fields on B to vector fields on M, using
the splitting of T M. The flow of this lifted vector field is a 1-parameter group of diffeomorphisms of the fibers,
which preserves the integral cohomology of the fibers. Since the Gauss-Manin connection is defined as the
unique connection which vanishes on sections of the integral cohomology lattice, (26) follows.

From this claim, we deduce the commutativity of the diagram. Let vb ∈ TbB and let V ∈ Γ(ν(F )) be a vector
field defined on an open around Sb projection to vb. Let ηF be a foliated 2-form representing η ∈ Γ(H 2).
Since we have a splitting of T M, we have a natural extension of ηF to η ∈ Ω2(M) with ιV η = 0. Then, we
have for X ,Y ∈F that

dη(X ,Y,V ) = LV (η(X ,Y ))+η([X ,V ],Y )−η([Y,V ],X) = (LV η)(X ,Y ).

It follows from the definition of the transversal derivative dν and the claim that the diagram commutes.

From the commutativity of the diagram, we deduce the statement. The canonical section ϖ corresponds to the
class [ωF ] ∈ H2(F ). By Theorem 2.56, dν [ωF ] = [Ωτ ], which by commutativity of the diagram corresponds
to ∇ϖ , and completes the proof.

Recall from Example 4.20 that a proper groupoid integrating a simple Poisson manifold induces an integral
affine structure on the leaf space. The advantage of this new description of the linear variation is that interacts
nicely with the integral affine geometry on the leaf space. Using the linear variation map, the monodromy
groups can be expressed in terms of the integral affine bundle (H 2,H 2

Z ).

Proposition 4.28. Let (M,π) be a simple Poisson manifold then N ∨
x (M,π) = (varlin

ϖ )−1(H2(Sx,Z)), where Sx

is the symplectic leaf through x.

Proof. The proof is a direct computation. Fix b ∈ B and vb ∈ T ∗b B. Choose x ∈ p−1(b). Since the symplectic
leaves are compact, we have by Proposition 4.27 that

vb ∈N ∨
x (M,π) ⇐⇒ λ (vb) ∈ Z for all λ ∈Nx(M,π)

⇐⇒ ⟨∂x([σ ]),v⟩ ∈ Z for all [σ ] ∈ π2(Sx,x)

⇐⇒
∫

σ

varlin
ϖ (v) ∈ Z, for all [σ ] ∈ π2(Sx,x)

⇐⇒ varlin
ϖ (vb) ∈ H2(Sx,Z). (27)

In the last implication, we used that the leaves are simply-connected and passed through the Hurewicz isomor-
phism. It follows that

N ∨
x (M,π) = (varlin

ϖ )−1 (H2(Sx,Z)
)
.

Note that not every saturated Poisson submanifold (i.e. a union of symplectic leaves) of a simple Poisson man-
ifold (M,π) is again simple, because the leaf space will only be a subset of the leaf space B, but need not be a
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submanifold of B. However, if F ⊆ B is a submanifold, then MF = p−1(F) is a simple, saturated submanifold
of M with leaf space F . We can express the linear variation of MF in terms of the linear variation of M, as
follows.

We have that the bundle H 2
MF
→ F of second cohomology groups of the symplectic leaves of MF is just the

restriction of the bundle H 2→ B to F . Let ϖM : B→H 2 and ϖMF : F→H 2
MF

be the sections describing the
cohomology classes of the symplectic form on the leaves. There is a commuting square

H 2
MF

H 2

F Bι

,

and we have that ϖMF = ι∗ϖM. The Gauss-Manin connection ∇MF on H 2
MF
→ F is the pullback connection

ι∗∇, where ∇ is the Gauss-Manin connection on H 2→ B. For vb ∈ TbF ⊆ TbB, we have that

varlin
ϖMF (vb) = ∇

MF
vb

ϖ = ι
∗
∇vb

(
ι
∗
ϖ

M)= ∇vbϖ
M = varlin

ϖM(vb).

Thus, we deduce that varlin
ϖMF = varlin

ϖM |T F . The consequence is that we have a simple way to compute the
monodromy groups of MF .

Corollary 4.29. Let (M,π) be a simple Poisson manifold with leaf space B, F ⊆ B a submanifold and MF =
p−1(N). Then

N ∨
x (MF ,π) = TxF ∩N ∨

x (M,π)

In the sequel, we will be looking for appropriate submanifolds F ⊆ B of the leaf space such that MF = p−1(F)
is a strong s-proper submanifold of (M,π). The following proposition gives a first glimpse of what kind of
submanifolds we should be looking for.

Proposition 4.30. Let (M,π) be a simple, integrable Poisson manifold. Then M is of strong s-proper type if
and only if the linear variation is injective.

Proof. If (M,π) is a simple strong s-proper Poisson manifold, the monodromy groups form a lattice of full
rank. By Proposition 4.27, we have that

ker(varlin
ϖ )b = {v ∈ TbB : ⟨v,α⟩= 0, α ∈ Nx(M,π)}= Nx(M,π)◦ = 0, (28)

hence varlin
ϖ is injective.

Next, suppose that the linear variation map is injective. If M is integrable, the monodromy groups of M are all
discrete. By (28), the rank of the annihilators of the monodromy groups is zero, which means that the rank of
the monodromy groups is everywhere maximal, so (M,π) is of strong s-proper type.

Remark 4.31. It is not true that every simple Poisson manifold with injective linear variation is integrable. For
this, we present an example. Consider the regular Poisson manifold M = S2× S2× (0,∞)2, with symplectic
leaves Sy = S2×S2, where the symplectic form is simply ωy = y1pr∗1ω+y2pr∗2ω2, where ωi denotes the standard
symplectic form on S2. The linear variation of this Poisson manifold is the bundle map

varlin
ϖ : R2→H 2, varlin

ϖ (v1,v2) = v1ω1 + v2ω2,
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which is clearly injective. Using Proposition 4.28, the monodromy groups are Ny(M,π) = Ze1⊕Ze2. Inside
M, we have the Poisson submanifold N = S2×S2×{y=√qx : q> 0, irrational}. This is a Poisson submanifold
of M, so its linear variation is still injective, and given by the map

varlin
ϖN (v1,

√
qv1) = v1ω1 +qv1ω1.

In particular, we see that
N ∨

(x,
√

qx)(N,πN) = {λ ∈ R : (λ ,qλ ) ∈ Z⊕2}= 0.

From this, we conclude that N is not integrable.

4.3 Constructing strong s-proper Poisson manifolds

In this section, we use Corollary 4.30 to describe a procedure that can be used to produce strong s-proper
Poisson manifolds. Moreover, we will describe how the leaf space of any integrable, simple Poisson manifold
carries a transverse integral affine structure (under mild assumptions on varlin

ϖ ), generalizing Theorem 4.21.

Lemma 4.32. Let (M,π) be a simple Poisson manifold with leaf space B such that K = ker(varlin
ϖ )⊆ T B is of

constant rank. Then K defines a regular foliation on B.

Proof. This follows from the flatness of the Gauss-Manin connection. For any X ∈ Γ(K ), we have that
varlin

ϖ (X) = ∇X ϖ = 0. Therefore, we have for X ,Y ∈ Γ(K ) that

varlin
ϖ ([X ,Y ]) = ∇[X ,Y ]ϖ = ∇X ∇Y ϖ −∇Y ∇X ϖ = ∇X(0)−∇Y (0) = 0,

so [X ,Y ] ∈ Γ(K ).

Motivated by Lemma 4.32, we set the following definition.

Definition 4.33. Let (M,π) be a simple Poisson manifold. We say that (M,π) has regular variation if
ker(varlin

ϖ )⊆ T B is of constant rank.

A big class of simple Poisson manifold with regular variations come from simple PMCTs.

Theorem 4.34. Let (M,π) be a simple Poisson manifold with a proper symplectic integration (G ,Ω).
Then (M,π) has regular variation. However, it is not true that any simple Poisson manifold with regular
variation is a PMCT.

Proof. If (G ,Ω) is a proper integration of (M,π), we know from Theorem 4.21 that there exists a transverse
integral affine structure ΛG on (M,F ), hence an integral affine structure on the leaf space B. This determines
a flat connection ∇B on T B→ B, and therefore we have an action of the fundamental groupoid Π1(B)⇒ B on
both T B and H 2 by parallel transport. Explicitly, this means the following.

Let v ∈ TbB and let [γ] ∈Π1(B) with s([γ]) = b be represented by a smooth path γ : I→ B. Let u : I→ T B with
u(0) = v be the unique parallel path covering γ , hence [γ] ·v= u(1). It follows that varlin

ϖ ([γ] ·v) = varlin
ϖ (u(1)) =
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∇u(1)ϖ . At the same time, we have that α : I→H 2, t 7→ ∇u(t)ϖ is a parallel path, starting at varlin
ϖ (v) covering

γ . Thus,
[γ] ·varlin

ϖ (v) = α(1) = ∇u(1)ϖ = varlin
ϖ ([γ] · v).

Therefore, we conclude that varlin
ϖ is Π1(B)-equivariant, from which it follows that K is regular.

Not every simple Poisson manifold with regular variation is a PMCT. We know from Theorem 4.17 that proper
integrations of a Poisson manifold (M,0) with the zero Poisson structure are in one-to-one correspondence with
integral affine structures on M. The Poisson manifold (S2,0) is simple, and has regular variation since the linear
variation is just zero. However, it has no proper integration since S2 has no integral affine structure.

Simple Poisson manifolds of regular variation are a special class of simple Poisson manifolds for which the
monodromy groups form a transverse integral affine structure on (B,K ).

Theorem 4.35. Let (M,π) be an integrable, simple Poisson manifold with regular variation. Then the
monodromy groups Nx(M,π) form a transverse integral affine structure on (B,K ).

Proof. Since M is integrable, the monodromy groups Nx(M,π) form discrete subgroups of T ∗b B for each b∈ B,
so they form a lattice inside N R

x := spanR(Nx(M,π)). By (28), we know that N R = K ◦, so the monodromy
groups form a lattice inside ν∗(K ). By Theorem 4.19, we have to show that these lattices vary smoothly, and
are Lagrangian.

Since N ∨
x (M,π) =

(
varlin

ϖ

)−1 (H2(Sx,Z)
)
, we can equivalently write the monodromy groups as

N (M,π) =
{

ξ ∈ T ∗B : ξ (v) ∈ Z for allv ∈
(
varlin

ϖ

)−1 (
H 2

Z
)}

.

Next, let us fix b ∈ B. Since K is of constant rank, it is a subbundle of T B and hence there exist local sections
{s1, · · · ,sk}, defined on an open U around b, of K . The monodromy groups form a smoothly varying full rank
lattice in ν(K ). Thus, we have local sections {sk+1, · · · ,sn}, defined over an open V around b, of N (M,π).
The combination of these two frames forms a local frame {s1, · · · ,sn} over U ∩V of T B.

Let σ : U ∩V →N (M,π) be a local section. Since N R = K ◦, note that σ(v) = 0 for all v ∈K Next, let
V,W be two vector fields defined on U ∩V . We expand them as

V =
n

∑
i=1

αisi, W =
n

∑
j=1

β js j

Then we have that

dσ(V,W ) = LV σ(W )−LW σ(V )−σ [V,W ]

=
n

∑
i, j=1

(αidβ j(si)m j−β jdαi(s j)mi)−σ [V,W ]

=−αiβ jσ [si,s j].

The flatness of the Gauss-Manin connection implies not only that K is involutive, but also that [si,s j] ∈K ,
since

varlin
ϖ [si,s j] = ∇[si,s j]ϖ = ∇si∇s j ϖ −∇s j ∇siϖ = 0,
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where we used that ∇siϖ ∈ Γ(H 2
Z ), so acting another time with the Gauss-Manin connection yields 0. It

follows that dσ = 0, hence the lattice is Lagrangian.

Remark 4.36. [Comparison to Theorem 4.21] If (G ,Ω) is a proper integration of a simple Poisson manifold
(M,π), we know that there exists a transverse integral affine structure ΛG on (M,F ), containing the bundle
of the monodromy grous. Projecting to the leaf space, ΛG forms an integral affine structure on B, and the
monodromy bundle N (M,π) form a Lagrangian lattice inside ν∗(K ), i.e. a transverse integral affine structure
on (B,K ). If (M,π) is strong s-proper, K = 0 and the integral affine structure on the leaf space coincides
again with the monodromy lattices.

We are now ready to state the main result of this chapter, which collects together the previous results.

Theorem 4.37. Let (M,π) be a simple Poisson manifold with regular variation, with leaf space B.

1. If F ⊆ B is a submanifold such that T F ∩K = {0}. Then MF = p−1(F) is a simple saturated
Poisson submanifold of M, whose linear variation is injective.

2. The monodromy groups of MF satisfy

N ∨(MF ,πF) = T F ∩N ∨(M,π). (29)

3. MF is integrable if and only if N ∨(MF ,π) defines a smooth lattice in T F, and if it this is the case,
MF is of strong s-proper type, with integral affine structure on F determined by (29).

By Corollary 4.29, N ∨(MF ,πF) is a quantity that is straightforward to compute. We are just one step away
of constructing a strong compact Poisson submanifold, and this step is performing a symplectic reduction of
an integrable Poisson manifold MF as in Theorem 4.37 by a discrete Poisson action. If G is a discrete group
acting freely and properly on MF through Poisson maps, the quotient is still strong s-proper by Theorem 3.13.
Thus, if MF/G becomes compact, it is automatically of strong compact type. In the next chapter, we will build
the example of a Poisson manifold of strong compact type, and show that it fits in the framework of Theorem
4.37.
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5 K3-surfaces and Examples of PMSCTs

In this chapter, we will explicitly produce an example of a Poisson manifold of strong compact type, which is not
a compact symplectic manifold with finite fundamental group, cf. Example 3.10. We will mainly be following
the idea originally put forward by Kotschick, exposed in [Kot05], in a Poisson context. The adaptation of this
idea to a Poisson setting and the example of PMSCT are originally due to [Tor13], and further worked out
in [Zwa21]. This construction relies on deep properties of the moduli space of marked K3 surfaces. We will
briefly summarize what makes K3 surfaces so exceptional, and highlight some of the results that appear in this
chapter. Since K3 surfaces are compact Kähler manifolds, we have the famous Hodge Decomposition Theorem
that relates the Dolbeault cohomology groups to the de Rham cohomology groups. The de Rham cohomology
groups of K3 surfaces are well-known, and the the second cohomology groups is exceptionally rich. Then,
there is the strong Torelli theorem, that allows us to produce biholomorphisms out of certain maps between the
second cohomology groups of the K3’s. Another property that makes K3 surfaces suitable for our discussion
is that a deformation of a K3 surface is again a K3 surface. This will allow us to construct a Poisson manifold,
with leaf space is the moduli space of a K3 surface and whose symplectic leaves are agian K3 surfaces. In
the first sections of this chapter, we mainly collect some facts on K3 surfaces from [BPV84] and [Huy16], and
omit the proofs that go beyond the scope of this thesis. In the second part of this chapter, we will discuss the
example by Martinez-Torres.

5.1 Differential forms on Complex Manifolds

We will start with a discussion of differential forms on complex manifolds, to set conventions. The following
proposition is well-known and will be used throughout this chapter.

Proposition 5.1. Let X be a smooth manifold. A splitting of the complexified tangent bundle TCX = T 1,0X ⊕
T 0,1X with T 0,1X = T 1,0X is the same as an almost complex structure J : T X → T X. Moreover, J is integrable
if and only if T 1,0X is involutive.

The bundles T 1,0X and T 0,1X are called the holomorphic and anti-holomorphic tangent bundles, respectively.

Starting with a complex manifold, we can dualize the splitting

T ∗CX = (T 1,0X)∗⊕ (T 0,1X)∗

and take wedge products:
Λ

kT ∗CX =
⊕

p+q=k

Λ
p(T 1,0X)∗⊗Λ

q(T 0,1X)∗.

Consequently, we get a decomposition of the differential forms

Ω
k(X ,C) =

⊕
p+q=k

Ω
p,q(X),

where the space Ωp,q(X) is called the space of (p,q)-forms. The top exterior power of the dual of the holo-
morphic bundle KX = Λn(T 1,0X)∗ is a line bundle, known as the canonical bundle of X . Note that this bundle
is trivial if and only if there exists a nowhere vanishing holomorphic n-form on X . This form is necessarily
unique, up to scaling.
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If X is a complex manifold, the exterior derivative splits as d = ∂ +∂ , where

∂ : Ω
p,q(X)→Ω

p+1,q(X), ∂ : Ω
p,q(X)→Ω

p,q+1(X).

Since d2 = 0, it follows that
∂

2 = 0, ∂∂ +∂∂ = 0, ∂
2
= 0.

Since ∂
2
= 0, we can associate a cohomology theory to the cochain complex

· · · ∂−→Ω
p,q−1(X)

∂−→Ω
p,q(X)

∂−→Ω
p,q+1(X)

∂−→ ·· · ,

called Dolbeault cohomology. Thus, the Dolbeault cohomology groups are defined as

H p,q(X) =
ker(∂ : Ωp,q(X)→Ωp,q+1(X))

im(∂ : Ωp,q−1(X)→Ωp,q(X))
.

Immediately, the Dolbeault cohomology groups satisfy

H p,0(X) = Ω
p(X ,C), H p,q(X) = Hq,p(X). (30)

Moreover, there is Dolbeault’s theorem saying that

H p,q(X) = Hq(X ,Ωp),

where the right-hand side should be interpreted as sheaf cohomology.

There is no topological analogue of the Dolbeault cohomology groups of a complex manifold, in contrast to
de Rham cohomology, and they are therefore hard to compute and can be rather wild. The situation is slightly
better when X is a compact Kähler manifold.

5.1.1 Kähler manifolds

In this section, we will discuss an imoprtant class of complex manifolds, known as Kähler manifolds. We will
first discuss some basic results in complex geometry.

Lemma 5.2. Let (X ,J) be a complex manifold and let g be a Riemannian metric on X. There exists a Rieman-
nian metric on X that is J-orthogonal.

Proof. Let g be a Riemannian metric on X . Define another metric g̃ on X by g̃(X ,Y ) = g(X ,Y )+g(JX ,JY ). It
is straightforward that

g̃(JX ,JY ) = g(JX ,JY )+g(J2X ,J2Y ) = g(X ,Y )+g(JX ,JY ) = g̃(X ,Y ).

Whenever we have fixed an orthogonal metric g on a complex manifold (X ,J), we can define a non-degenerate
(1,1)-form ω , whose real part is

ω(X ,Y ) = g(JX ,Y ).
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Indeed, ω is skew-symmetric since

ω(X ,Y ) = g(JX ,Y )

=−g(X ,JY )

=−g(JY,X)

=−ω(Y,X),

and it satisfies
ω(X ,JY ) = g(JX ,JY ) = g(X ,Y ).

Since g is a metric, ω is always non-degenerate. If it is also closed, it is also a symplectic form. Moreover, it
is compatible with the complex and the Riemannian structure on X . This brings us to the definition of a Kähler
manifold.

Definition 5.3. A Kähler manifold is a complex manifold (X ,J), together with a J-orthogonal Riemannian
metric g such that the 2-form ω defined by ω(X ,Y ) = g(JX ,Y ) is closed, hence symplectic.

Remark 5.4. There are several equivalent definitions around of a Kähler manifold. This definition is often
referred to as the “ complex viewpoint” in literature. The other common definition, referred to as the “symplec-
tic viewpoint” starts with a complex manifold (X ,J) and a symplectic form ω such that g(X ,Y ) = ω(X ,JY )
defines a Riemannian metric. It is easy to see these definitions are equivalent.

Example 5.5. Important examples of Kähler manifolds are (open subsets of) Cn, and CPn with the Fubini-
Study form. In particular, any complex submanifold of a Kähler manifold is again Kähler.

The Dolbeault cohomology groups of compact Kähler manifolds are better behaved, since they can be related
to the de Rham cohomology groups, by the Hodge Decomposition theorem.

Theorem 5.6 (Hodge Decomposition Theorem, [Huy05]). Let X be a compact Kähler manifold. We have
a decomposition of the de Rham cohomology of X in terms of the Dolbeault cohomology groups

Hk(X ,C) =
⊕

p+q=k

H p,q(X). (31)

Thus, we already see that the Dolbeault cohomology groups of compact Kähler manifolds are always finite
dimensional. We set the Hodge numbers hp,q = dimC H p,q(X). The following properties of the Hodge numbers
are immediate.

Proposition 5.7. The Hodge numbers on an n-dimensional compact Kähler manifold satisfy

1. hp,q = hq,p.

2. bk(X) = ∑
p+q=k

hp,q, where bk is the k-th Betti number of X.

3. hp,q = hn−p,n−q.

Proof. Item 1 follows directly from (30), item 2 direct from the Hodge Decomposition Theorem and for item
3, we refer to [GH94].
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A simple consequence is that the odd Betti numbers of a compact Kähler manifold must always be even. This
can for instance be used to prove that the complex manifold S3× S1 has no Kähler structure. There exists an
example very interesting compact Kähler manifold with remarkable properties, which is that of a K3 surface.
They will be the main topic of the next chapter.

5.2 K3-surfaces

In this section, we recall the basic definitions and properties of K3 surfaces, with a special focus on their
topological properties.

Definition 5.8. A K3 surface is a 1-connected, compact, complex surface (i.e. 2-dimensional complex
manifold) with trivial canonical bundle.

Whereas the definition of a K3 surface is rather simple, it turns out they are remarkably interesting. The
triviality of the canonical bundle implies that there exists a holomorphic, nowhere vanishing 2-form σ which is
unique up to scaling. Since a K3 surface is compact, this 2-form must be constant. Thus, the first property we
deduce is that if X is a K3 surface, we have H0,2(X)∼= H2,0(X)∼=Cσ . Note that Definition 5.8 does not include
the condition that a K3 surface must be Kähler. However, it follows from the Enriques-Kodaira classification
of compact complex surfaces that a K3 surface is always Kähler, since the first Betti number vanishes.

Theorem 5.9 ([BPV84]). A compact, complex surface X is Kähler if and only if b1(X) is even.

The proof of this theorem goes far beyond the scope of this thesis, and uses the full Enriques-Kodaira classifi-
cation of compact complex surfaces. It can for instance be found in [BPV84]. Another remarkable fact of K3
surfaces, is that the underlying smooth manifolds of all K3 surfaces are diffeomorphic as smooth manifolds.
There is one simplest model of a K3 surface, which is the Fermat quartic.

Example 5.10 ([Huy16]). The underlying manifold of a K3 surface is always diffeomorphic to the Fermat
quartic X ⊆ CP3 is the curve

X =
{
[X0 : X1 : X2 : X3] ∈ CP3 : X4

0 +X4
1 +X4

2 +X4
3 = 0

}
.

Thus, what really tells K3 surfaces apart is the complex structure on them. The following proposition allows us
to classify complex structures on a K3 surface in terms of certain 2-forms.

Proposition 5.11. Let X0 be the Fermat quartic. There is a one-to-one correspondence

{Complex structures on X0}
1−1←−→

{
σ ∈Ω

2(X0,C) : dσ = 0,σ ∧σ = 0,
∫

X0

σ ∧σ > 0
}
/C∗ (32)

Proof. Starting with a complex structure J on X0, we define the map to the right by sending (X0,J) to its unique
(up to scaling) nowhere vanishing, holomorphic 2-form. This form satisfies the following properties.

1. ∂σ = 0, since Ω3,0(X) = 0. Moreover, σ is holomorphic so ∂σ = 0 and therefore, dσ = 0.

2. σ ∧σ = 0, since Ω4,0(X) = 0.
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3. σ ∧σ is nowhere vanishing, and of top degree. Therefore it is a volume form and∫
X0

σ ∧σ > 0.

We conclude that this map to the right is well-defined.

For the map in the other direction, we invoke Proposition 5.1. Let σ ∈Ω2(X0,C) such that dσ = 0, σ ∧σ = 0
and σ ∧σ is a volume form. We view σ a map TCX → Ω1(X0,C), and define T 0,1X0 = ker(σ). The complex
dimension is even since σ is skew-symmetric. The condition that σ ∧σ = 0 implies that σ is degenerate, and
σ is non-zero since σ ∧σ is a volume form. Also, the latter fact implies that T 0,1X ∩T 0,1X = {0}, so we have
an almost complex structure on X0. This comes from a complex structure if and only if it is involutive. Since
dσ = 0, involutivity follows directly from Koszul’s formula.

To see that these maps are each others inverse, observe that a σ on the right becomes the unique nowhere
vanishing holomorphic vanishing 2-form on the K3 surface. Thus, it gets mapped to itself again. If we start
with a complex structure on a K3 surface, with antiholomorphic tangent bundle T 0,1X , the complex structure
induced by the nowhere vanishing holomorphic 2-form will also have antiholomorphic tangent bundle T 0,1X .
Since the integration of almost complex structures is unique, the two complex structures have to agree.

5.2.1 Cohomology Groups of the K3 Surface and the Intersection Form

We will now determine the cohomology of the K3 surface X . In this section, we follow [Sal99]. Since a K3
surface is connected, we know that H0(X ,Z) ∼= H4(X ,Z) ∼= Z. Moreover, a K3 surface is 1-connected, so
H1(X ,Z) = 0. By Poincaré Duality, we must also have that H3(X ,Z) = 0, so H2(X ,Z) is torsion-free. We
compute H2(X ,Z), by explicitly realizing X as the Fermat quartic. Then, we use the following strategy to
determine the second Chern class of X , which is due to [Sal99].

Step 1: The first step is to realize the canonical generator h of H2(CP3,Z) as c1(γ
∗), where γ is the tautological

line bundle over CP3.

Step 2: Let C be the trivial complex line bundle over CP3. Since TℓCP3 = Hom(ℓ,ℓ⊥) and Hom(ℓ,ℓ) = C, we
have an isomorphism

TCP3⊕C= γ
∗
⊕

4.

Step 3: The normal bundle νX of X is a complex line bundle over X , and satisfies c1(νX) = 4ι∗h, where
ι : X → CP3 is the inclusion. To see this, let Σ ⊆ X be a submanifold such that ι(Σ) ⊆ CP3 represents a 2-
dimensional homology class of degree k. Then, the intersection number X ·Σ = 4k. This intersection number
coincides with the number of zeros (counted with multiplicity) of a generic section s : X → νX , restricted to Σ.
This means that

⟨c1(νX), [Σ]⟩= 4k = 4⟨ι∗h, [Σ]⟩.

Step 4: The cohomology class ι∗h2 ∈ H4(X ,Z) is given by

⟨ι∗h2, [X ]⟩= 4.

To see this, note that h2 is a generator of H4(CP3,Z), and it is Poincaré dual is a line. Any such line intersects
X in 4 points, counted with multiplicity.
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With these preparations done, we choose a splitting TXCP3 ∼= T X⊕νX . Taking the total Chern classes yields

c(TXCP3) = c(T X)c(νX).

Since X is a K3-surface, we have that

c1(T X) = c1(T 1,0X) =−c1(T 0,1X∗) =−c1(KX) = 0.

Moreover, we have by Step 2, that c(TXCP3) = (1+ ι∗h)4 and by Step 3, c(νX) = 1+4ι∗h. Therefore, we have
that

(1+ ι
∗h)4 =

(
1+ c1(T X)︸ ︷︷ ︸

=0

+c2(T X)
)
(1+4ι

∗h).

Solving for c2(T X) yields

c2(T X) = 6ι
∗h2. (33)

Knowing c2(T X) allows us to compute the second Betti number b2(X) of X . If χ(X) denotes the Euler charac-
teristic of X , we have by Step 4 that

b2(X) = χ(X)−2 = ⟨c2(T X), [X ]⟩−2 = 24−2 = 22.

Therefore, we conclude that H2(X ,Z) = Z⊕22. Moreover, we arrange the Hodge numbers in a so-called Hodge
diamond, which takes the form

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h2,1 h1,2

h2,2

=

1

0 0

1 20 1

0 0

1

.

There is more that we can say about the second cohomology groups of a K3 surface. Recall that on any 4-
dimensional manifold, the intersection form is a unimodular quadratic form on H2(X ,Z). The goal of the rest
of this section is to explain what this means, and to understand the properties of this form on a K3 surface.
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Definition 5.12. By a lattice Λ, we mean a finitely generated free abelian group. A symmetric bilinear
Q : Λ×Λ→ Z is called unimodular if the induced map

Λ→ HomZ(Λ,Z), a 7→ Q(a, ·)

is an isomorphism.

Two forms Q0,Q1 are called equivalent if there exists an isomorphism T : Λ0→ Λ1 such that Q0(v,w) =
Q1(T v,Tw) for all v,w ∈ Λ0.

There are several important invariants of these unimodular forms that in favourable situations completely clas-
sify all forms.

Definition 5.13. Let Q : Λ×Λ→ Z be a unimodular symmetric form. We define the rank of Q to be the
rank of Λ. Moreover, we call Q

1. Even if Q(a,a) ∈ 2Z for all a ∈ Λ, and odd otherwise.

2. Of signature (p,q) if there exists an orthonormal basis (e1, · · · ,ep, f1, · · · , fq) of Λ such that Q(ei,e j)=
−δi j,Q( fi, f j) = δi j and Q(ei, f j) = 0.

The index of Q is defined to be τ(Q) = p−q. We call Q positive definite if p = Rank(Λ), resp. negative
definite if q = Rank(Λ), and indefinite otherwise.

Let us discuss some basic examples of forms of symmetric bilinear forms that will appear in the classification
of indefinite forms.

Example 5.14.

1. The symmetric bilinear form Z×Z→Z, (m,n) 7→mn is a unimodular, even, positive definite, symmetric
bilinear form represented by the matrix

ℓ= (1).

2. The hyperbolic plane H is the unimodular, even symmetric bilinear form Z2×Z2 → Z represented by
the matrix

H =

(
0 1
1 0

)
It is of signature (1,1).

3. The E8-lattice is the unimodular, even, positive definite symmetric bilinear form Z8×Z8 → Z, repre-
sented by the matrix

E8 =



2 0 1 0 0 0 0 0
0 2 0 1 0 0 0 0
1 0 2 1 0 0 0 0
0 1 1 2 1 0 0 0
0 0 0 1 2 1 0 0
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 1
0 0 0 0 0 0 1 2


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4. The K3-lattice is defined as L = H⊕3⊕ (−E8)
⊕2. It is unimodular, even and of signature (3,19). As the

name suggests, this lattice is related to the cohomology of the K3 surface.

The next theorem asserts that indefinite unimodular forms are completely classified by their rank, signature and
parity. For a proof, we refer to [Ser73].

Theorem 5.15 (Hasse-Minkowski). Let Q be a unimodular, indefinite symmetric bilinear form.

1. If Q is odd, it can be diagonalized over the integers and is thus isomorphic to

mℓ⊕n(−ℓ), m,n≥ 1.

2. If Q is even, it is isomorphic to

mE8⊕nH, m ∈ Z,n≥ 0.

Let X be a compact, oriented, 4k-dimensional manifold, and assume for simplicity that H2k(X ,Z) and H2k(X ,Z)
are torsion-free, so they are finitely generated, free abelian groups. Then, the cup product is a symmetric,
bilinear form

∪ : H2k(X ,Z)×H2k(X ,Z)→ H4k(X ,Z)∼= Z.

The map a 7→ a∪− is the composition of the isomorphism H2k(X ,Z)→HomZ(H2k(X ,Z),Z) from the Univer-
sal Coefficient Theorem, and the isomorphism HomZ(H2k(X ,Z))→ HomZ(H2k(X ,Z)) from Poincaré duality.
Thus, the cup product endows H2k(X ,Z) with a unimodular, symmetric bilinear form. This form is called the
intersection form, and is an important object in the study of 4-manifolds. The intersection form of a 4-manifolds
endows the second cohomology groups with the structure of a lattice. We will determine this lattice structure
for a K3 surface.

Let QK3 be the intersection form of a K3 surface. Using the Hirzebruch signature formula, we can compute the
signature of QK3 using Hirzebruch signature theorem [Sal99]. Explicitly, we have that

σ(QK3) =
1
3
⟨c1(T X)2−2c2(T X), [X ]⟩

=−2⟨c2(T X), [X ]⟩
3

=−16, (34)

so the intersection form is indefinite, so it is classified along the lines of Theorem 5.15. Therefore, we need to
determine whether it is even or odd.

Lemma 5.16. Let X be a compact, complex surface. For all α ∈ H2(X ,Z), we have that

⟨c1(T X),PD(α)⟩= QK3(α,α) mod 2,

where PD(α) denotes the Poincaré dual of α .

Proof. This is Lemma 1.45 in [Sal99].

With this lemma, we have immediately that QK3 is even since c1(T X) = 0. Therefore, we have by the classi-
fication theorem that QK3 is isomorphic to the K3-lattice L = H⊕3⊕ (−E8)

⊕2. We will denote by LR = L⊗R
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and LC = L⊗C the models for the real and complex second cohomology groups.

The Kähler cone

In this section, we describe the “Kähler cone” of a K3 surface. This section is based on [Huy16] and [Huy05].
The complex structure on a compact Kähler manifold X gives rise to a symplectic form ω (the Kähler form).
The cohomology class of such a form lives in

H1,1(X ,R) = H1,1(X)∩H2(X ,R),

and the set of all Kähler classes is called the Kähler Cone, denoted by KX . Hodge theory allows us to see the
Kähler cone as an open, convex cone inside H1,1(X ,R). we will now describe this cone for a K3 surface.

A Kähler from ω on a K3 surface satisfies ([ω], [ω]) =
∫

X ω ∧ω > 0, so every Kähler class is thus contained in
the set

{a ∈ H1,1(X ,R) : (a,a)> 0}.

This set consists of two connected components, which are mapped to one another by −Id. The connected com-
ponent containing the Kähler cone is denoted by CX .

Inside H1,1(X ,R), we have the Néron-Severi lattice NS(X), defined as

NS(X) = H1,1(X)∩H2(X ,Z).

This is precisely the image of the map c1 : Pic(X)→ H2(X ,Z), coming from the exponential sheaf sequence
0→ Z→ OX

exp−−→ O∗X → 0. Inside the Néron-Severi lattice, we have a set of roots ∆X , which are the elements
with self-intersection −2:

∆X = {d ∈ NS(X) : (d,d) =−2}.

The Kähler cone can be described in terms of the roots.

Theorem 5.17. Let X be a K3 surface. Then the Kähler cone of X is

KX = {a ∈CX : (a,d) ̸= 0 for alld ∈ ∆X}.

For a proof, we refer to [BPV84].

5.2.2 The Strong Torelli Theorem

In this section, we will describe another of the remarkable properties of a K3 surface, being the strong Torelli
theorem. This theorem allows us to integrate certain isomorphisms between the second cohomology groups
of K3 surfaces to biholomorphisms between them. It is precisely this theorem that will allow us perform the
reduction argument explained in Chapter 4 to pass from a strong s-proper Poisson manifold to a strong compact
Poisson manifold.

74



Definition 5.18. Let X ,X ′ be K3 surfaces. A linear map φ : H2(X ′,Z)→ H2(X ,Z) is called a Hodge
isometry if

1. It preserves the intersection form, i.e. it is an isometry,

2. The C-linear extension φC : H2(X ′,C)→ H2(X ,C) preserves the Hodge decomposition.

Moreover, we call φ effective if it maps a Kähler class of X ′ to one of X .

Using that H2,0(X)∼= Cσ , where σ is a nowhere vanishing holomorphic 2-form, it is straihtforward to see that
the Hodge decomposition is preserved if and only if φC maps a nowhere vanishing holomorphic 2-form of X ′

to one of X . Moreover, it is readily verified that φ is effective if and only if it maps the Kähler cone of X ′ to the
Kähler cone of X .

We have now defined the right notions to describe the strong Torelli theorem.

Theorem 5.19 (strong Torelli theorem). Let X ,X ′ be K3 surfaces and let φ : H2(X ′,Z)→ H2(X ,Z) be
an effective Hodge isometry between K3 surfaces. Then there exists a unique biholomorphism f : X → X ′

such that φ = f ∗.

For a proof of this theorem, we refer to [BPV84].

5.3 Deformations of K3 surfaces and Universal Families

In this section, we will discuss several results concerning families of complex manifolds. In particular we will
see that all K3 surfaces are deformation equivalent. The results that we collect in this section will be needed
when we are constructing moduli spaces of K3 surfaces. In this section, we follow [BPV84].

Definition 5.20. A smooth family of compact complex manifolds is a triple (X , p,S), with X ,S connected
complex manifolds and p : X → S a proper holomorphic surjective submersion such that the fibers Xs :=
p−1(s) are complex submanifolds of X for all s ∈ S. A morphism between smooth families is a pair of
holomorphic maps f : S1→ S2 and F : X1→X2 such that the following square commutes

X1 X2

S1 S2

F

p1 p2

f

Since the map p in Definition 5.20 is proper, it is a fiber bundle by Ehresmann’s lemma, and all fibers will be
diffeomorphic. However, they do not have to be biholomorphic.

There is a natural notion of a pullback of these families along maps between bases. Let (X , p,S) be a smooth
family and f : S′→ S a holomorphic map. We can form the fiber product

X ′ = X ×S S′ = {(x,s′) ∈X ×S′ : p(x) = f (s′)}.
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We define p′ : X ′→ S′ by p′(x,s′) = s′, and this turns (X ′, p′,S′) into a smooth family of compact complex
manifolds, and we say X ′ is the pullback of X by f . Defining F : X ′ →X by F(x,s′) = x, we have a
commuting square

X ′ X

S′ S

F

p′ p

f

,

so we always have a morphism (X ′, p′,S′)→ (X , p,S). The main idea is to view these smooth families as
deformations of a specific fiber.

Definition 5.21. Let X be a compact complex manifold. A smooth deformation of X is a smooth family
(X , p,S) together with a fixed basepoint s0 ∈ S and a biholomorphism Xs0 ≃ X . We call it complete if for
any other smooth deformation (X ′, p′,S′ ∋ s′0), there exists a holomorphic map f : (S′,s′0)→ (S,s0) such
that X ′ is isomorphic to the pullback of X by f . Moreover, we call it versal if the derivative (d f )s′0

is
uniquely determined by X ′, and universal if f is uniquely determined by X ’.

The following theorem well-known theorem by Kuranishi asserts that versal deformations always exist.

Theorem 5.22. Let X be a compact, complex surface. Then there exists a versal deformation of X.

This family is called the Kuranishi family, and its existence is proven in [Col66].

Associated to any deformation (X , p,S) of a compact complex manifold X is the Kodaira-Spencer map KS,
which is defined as follows. Since p is a fiber bundle, the normal bundle of X is trivial. Thus, the normal bundle
sequence of X reads

0→ T 1,0X → T 1,0
X X → X×T 1,0

s0
S→ 0.

Then, we take the long exact sequence in sheaf cohomology of the sheaves of holomorphic sections of these
bundles and define the Kodaira-Spencer map as the connecting homomorphism in the long exact sequence

KS : T 1,0
s0

S→ H1(X ,T 1,0X).

Furthermore, there are the following facts on the Kuranishi family, for which we also refer to [Col66].

Proposition 5.23. Let X be a compact complex surface and let (X , p,S) be the Kuranishi family from Theorem
5.22. Then

1. If the map s 7→ dimC H1(Xs,T 1,0Xs) is constant, the deformation is versal for all of its fibers.

2. If H2(X ,T 1,0X) = 0, the Kodaira-Spencer map is an isomorphism.

3. If H0(X ,T 1,0X) = 0, there exists a universal deformation of X. Moreover, it has the property that not
only the map between the bases, but also between the total spaces is uniquely determined.

4. Every versal deformation is isomorphic to the Kuranishi family.

If X is a compact, complex surface with trivial canonical bundle, there exists a nowhere vanishing holomorphic
2-form on X , If (X , p,S) is a deformation of X , then (after possibly shrinking S), we can perturb this 2-form a
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little bit such that it becomes a nowhere vanishing holomorphic 2-form on Xs, so this surface also has a trivial
canonical bundle. The exact details of this argument are found in [BPV84].

Collecting all these facts together, we have the following corollary on deformations of K3 surfaces.

Corollary 5.24. Let X be a K3 surface. There exists a universal deformation of X, all whose fibers are K3
surfaces and whose associated Kodaira-Spencer map is an isomorphism (for all fibers), so the base space has
complex dimension 20.

Proof. Let (X , p,S) be the Kuranishi family, and we shrink it such that all fibers have trivial canonical bundle.
Since the fibers of p have the same topology as X (by Ehresmann’s theorem), the fibers of p are 1-connected,
so each fiber is a K3 surface. Using Serre Duality and the computation of the Hodge numbers for a K3 surface,
we see that

h0(X ,T 1,0X) = h1,0 = 0,

h2(X ,T 1,0X) = h2,1 = 0,

dimC H1(Xs,T 1,0Xs) = h1,1 = 20.

Thus, the Kuranishi family is a universal deformation, and the Kodaira-Spencer map is an isomorphism for
all its fibers. Therefore, dimC(T

1,0
s0 S) = dimC(H1(X ,T 1,0X)) = 20, so the base space has complex dimension

20.

5.4 The Moduli Space of a K3 surface

In this section, we will investigate the moduli space of complex structures associated to K3 surfaces. It turns
out that it is most convenient to work with marked K3 surfaces (X ,φ) instead. Those are K3 surfaces together
with a marking φ : H2(X ,Z)→ L, where L is the K3 lattice from Example 5.14. The moduli space for these
markings is smooth, and is closely related to the base of the Kuranishi family, via the period map. It turns out
that to get a moduli space which is Hausdorff, we need to refine the moduli space by also taking Kähler classes
into account. This will give a new period map, that is a diffeomorphism. In this section, we will mainly follow
[BPV84] and [Zom14].

5.4.1 Marked K3 Surfaces and the Period Map

We have seen in Proposition 5.11 that smooth structures on a K3 surface are classified by certain complex-
valued 2-forms on the underlying manifold. Motivated by this proposition, we define the period domain as
follows.

Definition 5.25. The period domain Ω is defined as

Ω = {[σ ] ∈ P(LC) : (σ ,σ) = 0,(σ ,σ)> 0},

where P(LC) is the projectivization of the complexified K3 lattice.

The following proposition is inspired by [Zom14].
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Proposition 5.26. The period domain has the structure of a smooth manifold, with tangent space

T[σ ]Ω =
{v ∈ C22 : (σ ,v) = 0}

Cσ
= Hom(Cσ ,Cσ

⊥/Cσ)

Proof. Note that Ω is open inside the space

Ω
′ = {[σ ] ∈ P(LC) : (σ ,σ) = 0}.

Define f : C22 \{0}→ C by f (α) = (α,α). For v ∈ C22, we have

(d f )α(v) = 2(α,v),

so f is a submersion. In particular, f−1(0) is a smooth submanifold of C22. The standard C× on C22 \ {0} is
free and proper, and restricts to a free and proper action on f−1(0). Thus,

Ω
′ =

f−1(0)
C×

is a smooth manifold, with tangent space

T[σ ]Ω
′ =

ker(d f )σ

Cσ
=
{v ∈ C22 : (σ ,v) = 0}

Cσ
= Hom(Cσ ,Cσ

⊥/Cσ).

Next, we define the moduli space of marked K3 surfaces is defined as follows.

Definition 5.27. A marked K3 surface is a pair (X ,φ), where φ : H2(X ,Z)→ L is an isometry. Two
marked K3 surfaces (X ,φ) and (X ′,φ ′) are equivalent if there exists a biholomorphism f : X → X ′ such
that f ∗ = φ−1 ◦φ ′. We set

M1 = {Marked K3 surfaces (X ,φ)}/∼ .

When (X ,φ) is a marked K3 surface, we can naturally extend the marking φ to an isometry φR : H2(X ,R)→ LR
or φC : H2(X ,C)→ LC. As of now, M1 is just a set. To obtain a smooth structure, we transport the smooth
structure from the period domain to M1, by what is called the period map.

Definition 5.28. The period map τ : M1→Ω is defined as

τ[(X ,φ)] = [φC(σX)],

where σX is a nowhere vanishing holomorphic 2-form on X .

This definition is well-defined. If φ : H2(X ,Z)→ L is a marking and if σX is a nowhere vanishing holomorphic
2-form, then [φ(σX)] ∈Ω since we have by Proposition 5.11 that(

φC(σX),φC(σX)
)
= (σX ,σX) = 0, (φC(σX),φC(σX)) = (σX ,σX)> 0.

Next, we note that all nowhere vanishing holomorphic 2-form are a non-zero scalar multiple of one another, so
they get mapped to the same line under φC. Moreover, the definition of the period map is independent of the
chosen marking φ . If [(X ,φ)] = [(X ′,φ ′)], there exists a biholomorphism f : X→ X ′ such that f ∗ = φ−1 ◦φ ′. If
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σX ′ is a nowhere vanishing holomorphic 2-form on X ′, then f ∗σX ′ is a nowhere vanishing holomorphic 2-form
on X . Thus, we have that

τ[(X ′,φ ′)] = [φ ′C(σX ′)] = [φC( f ∗σX ′)] = τ[(X ,φ)].

Theorem 5.29. The period map τ : M1→Ω is surjective.

Proof. A simple proof of this theorem can be found in [Siu81].

We may also wonder to what extend the period map is injective, and it turns out that it is not. The reason for
this is that if τ[(X ,φ)] = τ[(X ′,φ ′)], the composite φ−1 ◦φ ′ is a Hodge isometry which need not be effective,
so it cannot be integrated to a biholomorphism X → X ′. Thus, it is not true that M1 is simply biholomorphic to
Ω. We have to do more work to obtain a smooth structure on M1.

5.4.2 Universal families over M1

The basic idea in this section is to put a smooth structure on M1, by gluing together local deformations of
marked K3 surfaces.

Let (X ,φ) be a marked K3 surface, and let (X , p,S ∋ s0) be a deformation of X whose fibers are K3 surfaces.
Without loss of generality, we assume that S is contractible. The marking φ for X ∼= Xs0 induces smoothly
varying markings φs : H2(Xs,Z)→ L for all s ∈ S, in the sense that they are a trivialization of the bundle

H 2 =
⋃
s∈S

H2(Xs,R)→ S×LR. (35)

For this family, we can define the local period map τ◦ : S→Ω by

τ
◦(s) = [φs,C(σs)],

where σs is the nowhere vanishing holomorphic 2-form on Xs. It is not difficult to see that

H 2,0 =
⋃
s∈S

H2,0(Xs)

is a holomorphic subbundle of H 2. As a direct consequence, the local period map is holomorphic. It is shown
in [BPV84] that (dτ◦)s0 : T 1,0

s0 S→ Tτ◦(s)Ω is holomorphic. Note that we can make the identification

T[σ ]Ω =
{v ∈ C22 : (v,σ) = 0}

Cσ
= Hom(Cσ ,Cσ

⊥/Cσ).

Since H2,0(Xs) = Cσs, we note that τ◦(s) = [H2,0(Xs)] ∈Ω. For type reasons, we have that

H2,0(Xs)
⊥ = H1,1(Xs)⊕H2,0(Xs),

so Tτ◦(s)Ω
∼= Hom(H2,0(Xs),H1,1(Xs)). The cup product induces an isomorphism

H1(Xs,T 1,0Xs)⊗H0(Xs,Ω
2Xs)

≃−→ H1(Xs,Ω
1Xs),
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which can be dualized to identify

H1(Xs,T 1,0Xs)
≃−→ Hom(H2,0(Xs),H1,1(Xs)).

Under these identifications, (dτ◦)s0 : T 1,0
s0 S→ H1(Xs,T 1,0Xs) coincides with the Kodaira-Spencer map for

the deformation. Thus, we conclude that the local period map is a local biholomorphism if and only if the
Kodaira-Spencer map is an isomorphism. Combining this information with Corollary 5.24, we deduce:

Theorem 5.30. Let (X ,φ) be a marked K3 surface, and let (X , p,S) be the Kuranishi family for X. After
possibly shrinking the base S, the marking φ induces markings on all of the fibers, and the local period
map is a holomorphic open embedding.

Since τ◦ in the theorem above is an embedding, no (Xs,φs) and (Xs′ ,φs′) (for s,s′ ∈ S) are isomorphic.

This theorem allows us to put a holomorphic structure on M1, as follows. We start with the disjoint union,
indexed over marked K3 surfaces, of all bases S as in Theorem 5.30, and we identify elements in the base if the
corresponding fibers are isomorphic marked K3 surfaces. This forms M1, and it shows that every element in
b ∈M1 has a neighbourhood isomorphic to some basis S. Therefore, M1 has the structure of a 20-dimensional
complex manifold. Moreover, part 3 of Proposition 5.23 allows us to glue the families in the same way as the
bases, and no two points in the same fiber come together so that over M1, we obtained a family of marked K3
surfaces. This family is by construction universal. This proves the following theorem.

Theorem 5.31 ([BPV84]). The space M1 has the structure of a 20-dimenisonal complex manifold, that is
possibly non-Hausdorff, such that the period map τ : M1→ Ω is a local biholomorphism with respect to
the complex structure on M1. Moreover, there exists a smooth universal family U →M1.

The universal family U is such that the fiber over b ∈M1 is a marked K3 surface (Xb,φb) with [(Xb,φb)] = b.

Thus, we have parametrized the space of marked K3 surfaces as a (non-Hausdorff) complex manifold, which is
related to the period domain via the period map τ , which is a local biholomorphism. To solve the issues of the
non-Hausdorfness of the moduli space, and the non-injectivity of the period map, we refine the moduli space to
include Kähler classes. Using the strong Torelli theorem, this will allow us to produce stronger statements.

5.4.3 The Refined Moduli Space and the Refined Period Map

The idea here is that instead of marked K3 surfaces (X ,φ), we look at marked pairs (X ,φ , [ω]), which consist
of a marked K3 surface (X ,φ), with a chosen Kähler class [ω]. The following proposition tells us that the
collection of marked pairs can be thought of as the total space of a real-analytic bundle over M1, hence has a
real-analytic structure.

Proposition 5.32 ([BPV84]). The collection of vector spaces

M′2 =
⋃

b∈M1

H1,1(Xb,R)

forms a real analytic subbundle of H 2 in (35) in which the subset M2 consisting of all Kähler classes is open.
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By this proposition, the set M2 is a real-analytic manifold. Its dimension is 60, since the real dimension of M1,
and the spaces H1,1(Xb,R) are 20-dimensional. Elements of M2 should be thought of as equivalence classes of
marked pairs [(X ,φ)], together with a chosen Kähler class [ω] on X ..

We will think of M2 as the refined moduli space. To define a refined period map with domain M2, we will also
refine the period domain. Recall that any Kähler form ω on a a compact Kähler manifold satisfies ([ω], [ω]) = 0.
Moreover, if σ is a nowhere vanishing holomorphic 2-form, we obviously have ([ω], [σ ]) = 0 for type reasons.
Thus, we define

KΩ = {(k, [σ ]) ∈ LR×Ω : (k,k)> 0,(k, [σ ]) = 0}.

However, this is not good enough yet, since we know from Theorem 5.17 that the Kähler classes have to
satisfy more relations. Recall that the roots ∆X of a K3 surface are the elements in the Neron-Séveri lattice
H1,1(X)∩H2(X ,Z) with self-intersection (d,d) = −2. For type reasons, the roots are perpendicular to H2,0

and H0,2. Thus, it is sensible to define

KΩ
0 = {(k, [σ ]) ∈ KΩ : (k,d) ̸= 0,(σ ,d) = 0 for alld ∈ Lwith(d,d) =−2}.

The space KΩ◦ is called the refined period domain. We have the following proposition.

Proposition 5.33. The space KΩ is a smooth manifold of dimension 60 with

T(k,[σ ])KΩ =
{(v,w) ∈ R22⊕C22 : (σ ,v)+(k,w) = 0,(σ ,w) = 0}

C(0,σ)
.

Moreover, the space KΩ◦ is open in KΩ.

Proof. First, we prove that KΩ is smooth and of dimension 60, and we follow the same strategy as before. We
define the map

g : LR×LC \{0}→ C2, (k,σ) 7→
(
(k,σ),(σ ,σ)

)
.

Then (dg)(k,σ)(v,w) =
(
(σ ,v) + (k,w),2(σ ,w)

)
, so g is a submersion and g−1(0) is in particular a smooth

manifold of dimension 62. There is a free and proper C× action on g−1(0,0) by λ · (k,σ) = (k,λσ), so the
quotient KΩ = g−1(0,0)/C× is a 60-dimensional smooth manifold, with

T(k,[σ ])KΩ =
ker(dg)(k,σ)

C(0,σ)
=
{(v,w) ∈ R22⊕C22 : (σ ,v)+(k,w) = 0,(σ ,w) = 0}

C(0,σ)
.

The group group of isometries of L, denoted by Aut(L), is discrete inside Aut(LR) ∼= O(3,19), which acts
properly on KΩ. Thus, Aut(L) acts properly on KΩ. A fortiori, this holds for subroup W ⊆ Aut(L), generated
by the reflections sd : L→ L for d ∈ L with (d,d) =−2,(d,σ) = 0, where as usual

sd(x) = x+(x,d)d

is the reflection through the hyperplanes Hd orthogonal to these d. In particular, we obtain KΩ◦ from KΩ by
removing these hyperplanes. Since W is discrete and acts properly on KΩ, these hyperplanes form a locally
finite collection, hence their union is closed. Indeed, every point in KΩ has an open neighbourhood U such that
U ∩ sd(U) for only finitely many sd , so only finitely many Hd meet U .

Next, we define the refined period map.
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Definition 5.34. The refined period map τ ′ : M2→ KΩ0 is defined by

τ
′(b, [ω]) =

(
φb,C([ω]),τ(b)

)
,

where (Xb,φb) is a marked K3 surface such that [(Xb,φb)] = b.

By the description of the Kähler cone, we see that the refined period map indeed takes values in KΩ◦. The
refined period map is a smooth map, since the markings φb vary smoothly. Moreover, the refined period map is
still surjective, and it happens to be injective as well.

Proposition 5.35. The refined period map τ ′ : M2→ KΩ◦ is injective.

Proof. Suppose τ ′(b, [ω]) = τ ′(b′, [ω ′]). Then we note that φ
−1
b,C
(
φb′,C[ω

′]
)
= [ω], so φ

−1
b ◦φb′ is now a effective

Hodge isometry (something we could not realize for the normal period map), and can by the Torelli theorem be
integrated to a biholomorphism f : Xb′ → Xb such that f ∗ = φ

−1
b ◦φb′ . This implies that b = b′, and therefore

[ω] = [ω ′].

Remark 5.36. In fact, the strong Torelli theorem is equivalent to the injectivity of τ ′.

In particular, we deduce that τ ′ : M2 → KΩ◦ is a diffeomorphism, and M2 is Hausdorff. We can form the
commuting square,

M2 KΩ◦

M1 Ω

τ ′

p q

τ

where p and q are just forgetful maps. We obtain a universal family over M1, by pulling back the universal
family over M2.

Definition 5.37. We define KU = (p◦ τ ′−1)∗U .

This is a real-analytic family over KΩ◦, with the property that the fiber over each b = (k, [σ ]) is a marked pair
(X ,φ) together with a chosen Kähler class [ω] such that φ([ω]) = k, and φ−1([σ ]) is the class of a nowhere
vanishing holomorphic 2-form. Thus, we can think of KU as foliated by K3 surfaces. In the next section, we
will choose a foliated symplectic form on KU , thereby turning it into a Poisson manifold.

5.5 Building the Poisson manifold: Yau’s theorem and the Poisson action

To equip the fibers of KU with smoothly varying symplectic forms, we use the celebrated result of Yau that
allows us to pick representatives of the Kähler forms of a K3 surface, in a smooth manner. To describe this, we
recall the relevant Riemannian geometry.
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Definition 5.38. Let (X ,g) be a Riemannian manifold with Levi-Civita connection ∇, whose curvature we
denote by R. The Ricci tensor is defined as

Ric(X1,X2) = Tr(X3 7→ R(X3,X1)X2).

We say that g is an Einstein metric if Ric = αg for some α ∈ R. If α = 0, we call g Ricci flat.

Remark 5.39. The name Einstein metric comes from the fact that a metric is called Einstein if and only if the
metric is a solution to the Einstein equations in a vacuum.

On a Kähler manifold with Kähler metric g, we can define the Ricci form of X as

ρ(X1,X2) = Ric(JX1,X2),

which is a (1,1)-form. By the second Bianchi identity, this form is closed. Moreover, it is shown in [Mor04]
that ρ represents the first Chern class of X .

If the metric g is Einstein, and if ρ = λω for some λ ∈ R, we call g Kähler-Einstein. A special situation is
when λ = 0, in which we call g Calabi-Yau.

The following result we dicscuss is Yau’s theorem, which gives that any form representing the first Chern class
comes from a Kähler metric.

Theorem 5.40 (Yau’s theorem, [Mor04]). Let X be a compact Kähler manifold Kähler form ω and let ρ

be a closed (1,1)-form representing the first Chern class of X. There exists a unique Kähler metric g′ on X
such that ρ is the Ricci form of g, and whose Kähler form ω ′ is cohomologous to ω .

Since the first Chern class of a K3 surface vanishes, we obtain a special variant of Yau’s theorem.

Corollary 5.41. Let X be a K3 surface. For any Kähler class k, there exists a unique Ricci flat Kähler metric
whose Kähler form belongs to k.

The fibers of KU →KΩ◦ are marked K3 surfaces with a specified Kähler class. By this corollary, we can endow
the fibers with symplectic forms, whose class is the specified Kähler class. By construction, the Kähler classes
on the fibers vary “smoothly" when moving through KΩ0, since the markings vary smoothly. Moreover, the
metric in Yau’s theorem is the solution of a differential equation so that the symplectic forms on the fibers also
vary smoothly: they form a regular symplectic foliation of KU , hence a regular Poisson structure. Therefore,
we have the following result.

Theorem 5.42. The family KU admits a regular Poisson structure whose symplectic leaves are the fibers
of the bundle KU → KΩ0, and such that the symplectic form on a fiber (Xb,φb) over b = (k, [σ ]) is the
Kähler form of the unique Ricci flat metric with Kähler class φ

−1
b (k).

Let Aut(L) denote the group of isometries of the lattice L. Since this action preserves the roots, there is an
induced action on KΩ◦ by γ · (k, [σ ]) = (γ ·k, [γ ·σ ]). We can use the strong Torelli theorem to obtain an action
of Aut(L) on KU by Poisson maps.
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Theorem 5.43. There is a smooth, equivariant Poisson action of Aut(L) on KU → KΩ0.

Proof. Let b = (k, [σ ])∈KΩ0, and set b′ = γ · t = (γ(k),γ([σ ])∈KΩ0, with fibers (Xb,φb,kb) and (Xb′ ,φb′ ,kb′),
respectively. Let σb and σb′ be nowhere vanishing holomorphic 2-forms on Xb and Xb. We observe that

φb′(kb′) = γ(k) = (γ ◦φb)(kb)

φb′(σb′) = γ([σ ]) = (γ ◦φb)(σb).

Thus, the composite φ
−1
b ◦ γ−1 ◦ φb′ : H2(Xb′ ,Z)→ H2(Xb,Z) is an effective Hodge isometry. By the strong

Torelli theorem, there is a unique biholomorphism fγ : Xb → Xb′ integrating it. Thus, we obtain a unique
biholomorphism between any two fibers in the orbit of each γ ∈ Aut(L) in KΩ◦. Since H0(X ,T 1,0X) = 0
for any K3 surface X , there are no global holomorphic vector fields on X , hence the fγ fit in a real-analytic
map Fγ : KU → KU (for details, see [Mee11]). By the uniqueness part of Torelli’s theorem, we have that
Fγ◦γ ′ = Fγ ◦Fγ ′ . To check that it acts by Poisson maps, we have to check that the fγ preserve the symplectic
forms on the leaves, i.e. that f ∗γ ωb′ = ωb, where ωb and ω ′b are the Kähler forms of the Kähler metrics gb and
gb′ on Xb and Xb′ . By the uniqueness statement in Corollary 5.41, this follows if f ∗γ gX ′ = gX . To show this, we
note that f ∗γ gb′ is a Ricci-flat metric, with Kähler class f ∗γ kb′ = kb, so we are done.

5.6 Examples of PMSCTs with leaf space Rq/Γ

In this section, we present the promised explicit examples of Poisson manifolds of strong compact type, us-
ing the results of Chapter 4 and the results on K3 surfaces we have collected in this chapter. The following
proposition lies at the heart of the construction.

Proposition 5.44 ([Zwa21]). Let f : Rq→ KΩ0 be an embedding and let Γ⊆ Aut(L) be a subgroup such that

1. The first component is given by

f1(v) = a+
q

∑
i=1

viai,

where a ∈ LR and {a1, · · · ,aq} are linearly independent in L.

2. The action of a subgroup Γ preserves the image of f .

3. The induced action on Rq is free and proper, and by integral affine maps.

Then M = f ∗KU /Γ is a Poisson manifold of strong s-proper type with integral affine structure on the leaf
space B = Rq/Γ determined by Γ. If B = Rq/Γ is compact, M is of strong compact type.

Proof. We first remark that M′ = f ∗KU is a union of symplectic leaves of KU . This is therefore a simple
Poisson manifold, with leaf space f (Rq) ∼= Rq. Condition 2 in the theorem implies that Γ acts on M′, and
this action is through Poisson maps and recall from Theorem 5.43 that the p : KU → KΩ◦ is Γ-equivariant.
Therefore, Γ-action on M′ is also free and proper, so M is a simple Poisson manifold with leaves K3 surfaces
and with leaf space B = Rq/Γ. We will show that M′ is strong s-proper. Then, it follows by Theorem 3.13 that
M is also strong s-proper. Moreover, M is compact, hence of strong compact type, if B is compact.

First, we are going to determine the linear variation of the symplectic forms on the fibers of KU . Start with a
basis {e1, · · · ,e22} of L. Then, this is in paritcular a basis for LR, and has the property that ci(b) = φ

−1
b (ei) ∈
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H2(Xb,Z) for all b ∈ KΩ◦. A fortiori, they are all linear independent. The section ϖ : KΩ◦→H 2 is given by

ϖ(k, [σ ]) = φ
−1
b (k) =

22

∑
i=1

kici(b).

It simply follows that the linear variation is given by

varlin
ϖ (Xb) = ∇Xbϖ =

22

∑
i=1

(dpr1
i )(Xb)ci(b) Xb ∈ TbKΩ

◦, (36)

where pr1
i : KΩ◦→ R defines the projection on the i-th coordinate of the first component of b = (k, [σ ]) with

respect to the basis {e1 · · · ,e22}, i.e. pr1
i (k, [σ ]) = ki. Using the description of TbKΩ◦ from Proposition 5.33,

equation (36) reduces to

varlin
ϖ (vb,wb) =

22

∑
i=1

vici(b), (vb,wb) ∈ TbKΩ
◦.

This is equal to zero if and only if v = 0. Thus, we have that Kb = ker(varlin
ϖ )b is given by

Kb =
{w ∈ C22 : (k,w) = (σ ,w) = 0}

Cσ
, b = (k, [σ ]).

In particular, we see that K defines a regular foliation of KΩ◦ of codimension 22, so (KU ,πKU ) is simple
and has regular variation.

We deduce that

N ∨(KU ,πKU ) =
(
varlin

ϖ

)−1 (
H 2

Z
)
= {(v,w) ∈ R22×C22 ∈ T KΩ

◦ : vi ∈ Z}.

If {α1, · · · ,αq} is the standard basis for Rq, observe that

Tf (x) f (Rq) = (d fx)(Rq) = spanR{(a j,(d f2)x(α j)} ⊆ Tf (x)KΩ
◦.

Using that a j ∈ Z⊕22, we deduce that Tf (x) f (Rq)∩N ∨
f (x)(KU ,πKU ) is a smooth lattice. By Theorem 4.37, it

follows that M′ is a strong s-proper Poisson manifold, with integral affine structure on the leaf space Rq just
given by the standard lattice defined by the αi. In conclusion, M is a strong s-proper Poisson manifold, with
integral affine structure on the leaf space Rq/Γ determined by Γ. This concludes the proof.

By the proposition above, finding examples of PMSCTs has been reduced to two steps: the first is finding an
appropriate embedding f : Rq→ KΩ◦, and the second is finding an appropriate subgroup Γ ⊆ Aut(L), acting
on im( f ). In [Zwa21], these two steps have been carried out for the cases q = 1 and q = 2 (in principle, one
could this up to q = 22), yielding Poisson manifolds of strong compact type, with leaf space a circle or a torus,
respectively. We will now discuss these embeddings.

Let {u,v},{x,y} and {z, t} be three copies of the standard basis of H, so (u,v) = (x,y) = (z, t) = 1, and all other
combinations are zero. Next, let {e1, · · · ,e8} be a set of real numbers such that the set

{1,e1, · · · ,e8,e2
1,e1e2, · · ·e2

7,e7e8,e2
8}

is linear independent over the integers. Such a set always exists, see [Bes40]. Next, we set e = (e1, · · · ,e8) ∈
(−E8)R, and scale it such that |(e,e)| ≤ 3. We set a = (0,e) and b = (e,0) as elements in (−E8)

⊕2
R .
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The following example is originally from [Tor13], and the details are from [Zwa21]. Consider the embedding

f : R→ LR×P(LC)

s 7→ (2u+ v+ sy, [x− su+2y+a+ i(z+2t +b)]).

We claim that the image of f is contained in KΩ◦. Since KΩ◦ is an embedded submanifold of LR×P(LC),
f : R→ KΩ◦ is an embedding as well.

Let s ∈ R, set f1(s) = 2u+ v+ sy, f2(s) = x− su+2y+a and f3(s) = z+2t +b. Simple arithmetic shows us
that

( f2(s), f2(s)) = (x− su+2y+a),x− su+2y+a)

= 4(x,y)+(a,a)

= 4+(e,e)

≥ 1 > 0,

( f2(s), f3(s)) = (x− su+2y+a,z+2t +b)

= 0,

( f3(s), f3(s)) = (z+2t +b,z+2t +b)

= 4(z, t)+(b,b)

≥ 1 > 0.

These computations show that [ f2(s)+ i f3(s)] ∈Ω. Moreover, we have that

( f1(s), f2(s)) = (2u+ v+ sy,x− su+2y+a) = s(y,x)− s(u,v) = 0

( f1(s), f3(s)) = (2u+ v+ sy,z+2t +b) = 0,

so f (s) ∈ KΩ. It remains to check that f lands in KΩ◦, i.e. we have to check the condition on the roots.
We will do this by contradiction, so suppose there exists d ∈ L with (d,d) = −2 and (d, f1(s)) = (d, f2(s)) =
(d, f3(s)) = 0. Write

d = Au+Bv+Cx+Dy+Ez+Ft +d1 +d2,

for some integers A, · · · ,F and some d1,d2 in a copy of −E8. Since −E8 is even and negative definite, we
can write (di,di) = −2ni for some ni ∈ Z>0. Then, these four equations translate into the following set of
equations

AB+CD+EF = 1−n1−n2 (37)

2B+A+ sC = 0 (38)

D− sB+2C+(d2,e) = 0 (39)

F +2E +(d1,e) = 0. (40)

Note that (d1,e) is just an integral combination of the numbers {e1, · · · ,e8} and since {1,e1, · · · ,e8} are linear
independent over the integers, we deduce from Equation (40) that F +2E = 0. Even more, we deduce that the
coefficients in front of the ei should be zero, so in particular d1 = n1 = 0.

Next we consider two cases: C = 0 and C ̸= 0. If C = 0, it follows from Equation (38) that 2B+A = 0 and
Equation (37) becomes

2B2 +2E2 = 1−n2.
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It follows that B = E = 0 and n2 = 1. This means that d2 ̸= 0, but that implies that

D+(d2,e) = 0,

which is absurd, by the linear independence of the set {1,e1, · · · ,e8}.

Thus, we assume that C ̸= 0. From equation (38), we get that

s =−2B+A
C

.

Combining Equation (37) and (39) yields

2B2 +2C2 +2E2 +C(d2,e) = 1−n2.

Again by the linear independence argument, we infer that d2 = 0, hence n2 = 0. Therefore,

2B2 +2C2 +2E2 = 1,

which is absurd, and this proves the claim that f takes values in KΩ◦.

Next, we construct a suitable subgroup Γ ⊆ Aut(L). Define φ : L→ L by u 7→ u,v 7→ v+ y,x 7→ x− u,y 7→ y,
and as the identity on the other summands of L. It is not difficult to see that φ preserves (·, ·), since this only
has to be checked on the first two copies of H, where the computation is trivial. Then, we note that

φ · f (s) = (φ(2u+ v+ sy), [φ(x− su+2y+a+ i(z+2t +b)]

= (2u+ v+(s+1)y, [x− (s+1)u+2y+a+ i(z+2t +b)]

= f (s+1).

Thus, the subgroup ⟨φ⟩ ⊆ Aut(L) preserves the image of f . Moreover, the induced action on R is just the
standard action of Z on R. All conditions in the proposition are satisfied, so we obtain a Poisson manifold of
strong compact type, whose leaf space is S1 with the standard integral affine structure.

By a similar kind of embedding, and a similar kind of subgroup, we can form a Poisson manifold of strong
compact type, whose leaf space is a torus, with standard integral affine structure.

We define

g : R2→ LR×P(LC)

(s,r) 7→ (2u+ v+ sy+ rt, [x− su+2y+a+ i(z+2t− ru+b)]

By a similar sequence of computations, one can show that g actually embeds into KΩ◦. Moreover, define
ψ : L→ L by u 7→ u,v 7→ v+ t,z 7→ z−u, t 7→ t on two copies of H, and by the identity on the other summands
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of L. Obviously, ψ ∈ Aut(L) exactly by the same argument that φ ∈ Aut(L). Moreover, we compute that

φ ·g(s,r) = (φ(2u+ v+ sy+ rt), [φ(x− su+2y+a+ i(z+2t− ru+b)])

= (2u+ v+(s+1)y+ rt, [x− (s+1)u+2y+a+ i(z+2t− ru+b)]

= g(s+1,r)

ψ ·g(s,r) = (ψ(2u+ v+ sy+ rt), [ψ(x− su+2y+a+ i(z+2t− ru+b)])

= (2u+ v+ sy+(r+1)t, [x− su+2y+a+ i(z+2t− (r+1)u+b)]

= g(s,r+1).

Thus the action of Γ = ⟨φ ,ψ⟩ ⊆ Aut(L) preserves the image of g, and the induced action on R2 is the standard
action of Z2. Thus, we obtain a Poisson manifold of strong compact type, whose leaf space is the torus with the
standard integral affine structure. Using a similar type of embedding R2→ KΩ◦, it is shown in [Zwa21] that
any strongly integral 2-torus appears as the leaf space of a Poisson manifold of strong compact type.
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6 Outlook

In this final chapter, we will discuss the other constructions of PMSCTs that have been tried, but were unsuc-
cessful for reasons that we will see. This chapter serves as an outlook and inspiration for new ideas.

6.1 Products of K3 surfaces

The success of the strategy in Chapter 5 was an accumulation of several specific and strong results on K3 sur-
faces. Therefore, the simplest generalizations will be those Poisson manifolds, realized as the pullback of a
period map of a universal family, whose leaves are algebraic surfaces that share certain properties of K3 sur-
faces. In this chapter, we discuss three appropriate compact complex manifolds which have a great resemblance
with K3 surface. The first of these is the product of two K3 surfaces.

Let X and Y be K3 surfaces. First, we will the Kähler cone of X ×Y . By Künneth’s theorem, the wedge
product

H p,q(X)⊗Hr,s(Y )→ H p+r,q+s(X×Y ), ([ωX ], [ωY ]) 7→ [π∗X ωX ∧π
∗
Y ωY ]

induces an isomoprhism
Hu,v(X×Y )∼=

⊕
p+r=u
q+s=v

(H p,q(X)⊗Hr,s(Y )) ,

see [GH94]. In particular, we deduce that

H1,1(X×Y )∼= H1,1(X)⊕H1,1(Y ).

If ω1 and ω2 are Kähler forms on X and Y respectively, the form

ω = π
∗
X ω1 +π

∗
Y ω2

defines a Kähler form on X ×Y , with respect to the product metric. Thus, the wedge product defines an
injection

KX ×KY →KX×Y . (41)

It turns out this map is also onto. If ω is a Kähler form on X ×Y , the restriction of ω to each fibers X ×{y}
and {x}×Y is again a Kähler form, and this defines an inverse KX×Y →KX ×KY .1 The Kuranishi family
(X , p,S) for X×Y has fibers which are products of K3 surfaces. We infer from Künneth’s theorem that

h0(X×Y,T 1,0(X×Y )
)
= 0

h2(X×Y,T 1,0(X×Y )
)
= 0

dimC H1(Xs,T 1,0Xs
)
= 40

As an analogy to Corollary 5.24, we have the following.

Proposition 6.1. Let X and Y be K3 surfaces. There exists a universal deformation of X ×Y , all whose fibers
are products of K3 surfaces and whose associated Kodaira-Spencer map is an isomorphism, so the base space
has complex dimension 40.

1This argument actually holds for all compact Kähler manifolds X and Y such that at least one of b1(X) or b1(Y ) is zero
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Next, we will discuss the period map and moduli spaces for the products of K3 surfaces. We will be brief
here, since the discussion is dual to the discussion in Chapter 5. By Künneth’s theorem, the lattice structures
on H2(X ,Z)∼= L and H2(Y,Z)∼= L induce a lattice structure on H2(X ×Y,Z) isomorphic to L⊕L. Therefore,
a marking for X ×Y will consist of a pair (φX ,φY ), where φX and φY are markings for X and Y , respectively.
The moduli space of marked products of K3 surfaces splits as the product of the moduli spaces of marked K3
surfaces, and the period map τX×Y is just the product τX × τY . The refined moduli space of X ×Y splits as the
products of the refined moduli spaces, and is thus isomorphic to the product KΩ◦×KΩ◦, via the refined period
map. The upshot of this disucssion is that the method in Chapter 5 constructs the product Poisson manifold
KU ×KU → KΩ◦×KΩ◦.

The group Aut(L) of lattice isometries acts diagonally on KΩ◦×KΩ◦, and the same argument as in Theorem
5.43 shows that it acts smoothly and equivariantly by Poisson maps on KU ×KU → KΩ◦×KΩ◦. We can
now apply Proposition 5.44 to find PMSCTs, by constructing appropriate embeddings Rq→ KΩ◦×KΩ◦.

Proposition 6.2. Let g : Rq→ KΩ◦ and h : Rq′ → KΩ◦ be embeddings and write f = (g,h) : Rq×Rq′ → KΩ◦×KΩ◦.
Let Γ1,Γ2 ⊆ Aut(L) be subgroups such that

1. The first components of g and h are given by

g(x) = a+
q

∑
i=1

aixi, h(x) = b+
q′

∑
i=1

bixi

where a,b ∈ L and {a1, · · · ,aq} and {b1, · · · ,bq′} are both linear independent in L.

2. The action of Γ1 preserves im(g) and the action of Γ2 preserves im(h).

3. The action of Γ = Γ1×Γ2 on Rq×Rq′ is free, proper and by integral affine maps.

Then f ∗ (KU ×KU )/Γ→ Rq×Rq′/Γ is a Poisson a manifold of strong s-proper type.

This proposition allows us to construct a greater class of PMSCTs by combining the possible embeddings from
Chapter 5.

6.2 Enriques Surfaces

The next compact Kähler manifold that we discuss is the Enriques surface. These are smooth algebraic vari-
eties that share many of the good properties of K3 surfaces, in the sense that K3 surfaces are a 2-1 cover of an
Enriques surface. For instance, all Enriques surfaces are deformation equivalent, and the space of (1,1)-forms
is 10-dimensional. However, we will see they are not 1-connected, so the leaf space B of the Poisson manifold
will no longer be a smooth manifold. Instead, it is an orbifold, and H 2→ B is an orbibundle. The map varlin

ϖ

becomes an orbibundle map. It is explained in [CFM16] how injective of varlin
ϖ as an orbibundle map leads to

the construction of strong s-proper Poisson manifolds in a similar fashion as in Chapter 4. Since the second
cohomology groups of Enriques surfaces are still sufficiently rich, there is enough room for varlin

ϖ to be injective.

The definition of an Enriques surface is very similar to that of a K3 surface.
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Definition 6.3 ([BPV84]). An Enriques surface Y is a compact, complex surface such that

1. KY ̸= 0, but K⊗2
Y = 0,

2. b1(Y ) = 0,

3. H2,0(Y ) = 0.

Since h2,0 = 0, it is not possible to directly define the period map for an Enriques surface and we need the
relation between Enriques surfaces and K3 surfaces here. We will be brief, and omit most of the proofs, as they
can be found in [BPV84]. We start with the topological and analytical invariants of Enriques surfaces.

Proposition 6.4 ([BPV84]). Let Y be an Enriques surface. Then

1. h1,0 = h0,1 = h2,0 = h0,2 = 0 and h1,1 = 10.

2. π1(Y ) = Z/2 and the universal cover of Y is a K3 surface.

3. The intersection form on H2(Y,Z)/Torsion is isometric to K =U⊕−E8 ∼= Z⊕10.

If (X , p,S) is a deformation of an Enriques surface, we have that (after possibly shrinking S) every fiber is again
an Enriques surface. Using the results on the Hodge numbers from Proposition 6.4, we have as an analogy to
Corollary 5.24:

Corollary 6.5. Let Y be an Enriques surface. There exists a universal deformation of Y , all whose fibers
are Enriques surfaces and whose Kodaira-Spencer map is an isomorphism. Consequently, the base space has
complex dimension 10.

It is not possible to define a period map for Enriques surfaces since h2,0 = 0. However, a derived period map,
using K3 surfaces, is often defined as follows. Recall that L = (−E8)

⊕2⊕U⊕3 is the K3 lattice from Chapter
5, and define an automorphism ρ : L→ L by

ρ(x,y,z1,z2,z3) = (y,x,−z1,z3,z2).

If π : X →Y is the universal cover of an Enriques surface Y , there is always a natural involution σ : X → X that
switches the sheets of π . The following lemma is important in the definition for a marked Enriques surface.

Lemma 6.6 ([BPV84]). Let X → Y be the universal cover of an Enriques surface Y . There exists an marking
φ : H2(X ,Z)→ L for X such that

φ ◦σ
∗ = ρ ◦φ .

This lemma motivates the following definition.

Definition 6.7. [BPV84] A marked Enriques surface is a pair (Y,φ) where Y is an Enriques surface and
where φ : H2(X ,Z)→ L is a marking for X such that φ ◦σ∗ = ρ ◦φ .
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Next, let X→ S be the family of Enriques surfaces from Corollary 6.5, with S contractible, and fix s0 ∈ S. A
marking φs0 : H2(Xs0 ,Z)→ L satisfying φs0 ◦σ∗s0

= ρs0 ◦φs0 induces a markings φs satisfying φs ◦σ∗s = ρs ◦φs

for all s ∈ S. This motivates the definition of the period map for an Enriques surface

τ̃ : S→Ω, τ̃(s) = [φs(σs)]

Since φs ◦σ∗s = ρs ◦φs, the image of τ̃ lies inside the set

Ω
− = {[ω] ∈Ω : ρ(ω) =−ω}

The following theorem is a variant of the local Torelli theorem 5.31.

Theorem 6.8. The Kuranishi family for an Enriques surface Y0 is universal at all points in a small neigh-
bourhood U around the base point of Y0 in S. This base is a 10-dimensional complex manifold, and the
period map τ̃ : S→Ω− is a local biholomorphism on U.

The period map is not a biholomorphism, and Ω− is not the period domain of the Enriques surface. Analagously
to K3 surface, we have to refine the period domain, and this is done as follows.

Let L− = {ℓ ∈ L : ρ(ℓ) =−ℓ}, and define

Γ = {g|L− : g ∈ Aut(L),ρ ◦g = g◦ρ}.

It turns out that Γ is an arithmetic subgroup of Aut(L−1⊗R). It acts properly discontinuous on Ω−, and the
quotient D = Ω−/Γ is a quasi-projective variety. For d ∈ L− with (d,d) =−2, let Hd be the set

Hd = {[ω] ∈Ω : (ω,d) = 0}.

No point in Hd is in the image of the period map of the Enriques surface. The double coset space

D◦ = D\

(⋃
d

Hd

)
/Γ

is also quasi-projective, and is called the period domain of the Enriques surface. The period map takes values
in this space. The following theorem, which can be seen as an analogy to the global Torelli theorem, justifies
this nomenclature.

Theorem 6.9 (Global Torelli Theorem for Enriques Surfaces, [BPV84]). The isomorphism class of an
Enriques surface is completely determined by its period point. Moreover, all points in D◦ appear as period
points of an Enriques surface.

Next, one has to construct a refined moduli space KD◦, which also encodes the Kähler forms of an Enriques
surface. Unfortunately, the description of the Kähler cone of an Enriques surface is far less convenient than the
description of the Kähler cone of a K3 surface, and therefore this refined moduli space and hence the refined
period map will be hard to describe. Yet, we expect that this refined moduli space and the refined period map
are rational [Kon94]. Following the same line of arguing as in Section 5.5 and 5.6, we expect the following
conjecture to hold.
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Theorem 6.10 (Conjecture 1). There exists a Poisson manifold p : X→ B of strong compact type, whose
symplectic leaves are Enriques surfaces and whose leaf space is a quasi-projective subvariety of KD◦.

By Theorem 6.8 and 6.9, there exists a universal family p : M→ KD◦ (by the same argument as in the previous
chapter), Moreover, the first Chern class of an Enriques surface vanishes so we can use Yau’s theorem to endow
the fibers of is family with smoothly varying symplectic forms, hence we endow M with a regular Poisson
structure. A proof of this conjecture would include a reformulation of Theorem 4.37 in terms of orbifolds
and orbifold bundles, a computation of the kernel of the linear variation of the foliated symplectic form and a
construction of appropriate subvarieties of KD◦.

6.3 Hyperkähler Manifolds and Hilbert Schemes of Points on a K3 Surface

Rather than looking at other complex surfaces with similar properties as K3 surfaces, we can also look for
compact Kähler manifolds of higher dimension, which share some of the properties of K3 surfaces. The possi-
bility that we choose to consider are hyperkähler manifolds. They can be thought of as quaternionic analogies
of Kähler manifolds. A hyperkähler manifold is a Riemannian manifold of dimension 4k, equipped with three
distinct complex structures I,J,K satisfying I2 = J2 = K2 = IJK =−1 such that the metric is Kähler for each
structure. Thus, there are also three Kähler forms, one for each complex structure. Any hyperkähler manifold
(X , I,J,K), viewed as a complex manifold (X , I), carries a holomorphic symplectic 2-form Ω = ωJ + iωK and
thus has a trivial canonical bundle. This implies in particular that every hyperkähler is a Calabi-Yau mani-
fold. Calabi-Yau manifolds are very important in string theory, and their theory is therefore well-understood. It
might by worthwhile to investigate the connection between Poisson geometry and Calabi-Yau manifolds further
[Col92].

Given a compact Kähler manifold with trivial canonical bundle, Yau’s theorem provides the existence of a
Kähler metric with vanishing Ricci form. A theorem by Bochner shows that any holomorphic form on a com-
pact Kähler manifold with vanishing Ricci tensor is covariantly constant. Thus for every Kähler manifold with
holomorphic symplectic form, for instance a K3 surface, an application of these theorems yields a hyperkähler
metric on the manifold. It can be shown that the K3 surface is the only non-trivial example of a hyperkähler
manifold in dimension 4. In higher dimensions, it has been discovered by Beauville that the Hilbert scheme of k
points on a compact hyperkähler 4-manifold is a hyperkähler manifold of dimension 4k. This gives two classes
of hyperkähler manifolds in higher dimensions: Hilbert schemes of points on a K3 surface, and generalized
Kummer varieties. We will focus on the first of the two [Deb18].

Let X be a K3 surface, and denote by X [m] the Hilbert scheme of m points on X . This space is 1-connected, and
H2(X [m],Z)∼= Z⊕23. The lattice structure is given by

H2(X [m],Z) = L⊕ (−2(m−1))I1,

where I1 = (1). A general Torelli theorem for hyperkähler manifolds was found by Verbitsky [Ver09].

Theorem 6.11 ([Ver09]). Let X and Y be K3 surfaces, and let m be an integer such that m−1 is a prime
power. Let φ : H2(Y [m],Z)→ H2(X [m],Z) be an effective hodge isometry. Then there exists a unique
isomorphism σ : X [m]→ Y [m] such that σ∗ = φ .

This version of the Torelli theorem is just as strong as the strong Torelli theorem for K3 surfaces. Moreover,
we can define a period map τ for X [m]. Therefore, we expect the following conjecture to hold:
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Theorem 6.12 (Conjecture 2). For each natural number m, there exists a simple Poisson manifold p : X→
B of strong compact type, whose symplectic leaves are the Hilbert schemes of k points on a K3 surface,
and whose leaf space is a smooth submanifold of the moduli space of complex structures on the Hilbert
scheme of m points on a K3 surface.

A proof of this theorem includes the characterization of the moduli space of complex structure of X |m|, and the
construction of a universal family over this moduli space. Then, one has to check that the first Chern class of
X |m| vanishes, and that this implies we can endow the fibers of this universal family with a foliated symplectic
form. Finally, one has to formulate and proof an appropriate version of Theorem 4.37, and follow the same line
of thought as in Chapter 5.
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7 Appendix: Symplectic Foliations

In the appendix, we provide background information on symplectic foliations, following [CFM21]. We start
with the definition of a foliation

Definition 7.1. A foliation of codimension q on a manifold M is a partition F of M into immersed,
connected submanifolds of codimension q:

M =
⋃

L∈F
L,

called the leaves of F , satisfying the local triviality property: every x ∈M has an open neighbourhood U
such that

F |U = {L∩U : L ∈F}

coincides with the fibers of a submersion f : U → Rq

Due to the local form of a submersion, the local triviality is equivalent to saying that every point x ∈M belongs
to a foliated chart (U,χ). These are charts (U,χ) where

χ : U ≃−→V ×W, V ⊆ Rq,W ⊆ RpV,W open

such that F |U corresponds to the partition V ×{w}.

This is not the only way to look at foliations on M, we can also view them as involutive rank q distributions of
T M. This correspondence is formulated by the Frobenius theorem.

Theorem 7.2 (Frobenius, [CFM21]). For any manifold M, there is a one-to-one correspondence

{Foliations on M of codimension q}←→ {Distrbutions of T M of rank q}

Proof. In one direction, the correspondence works as follows. Given a foliation F on M, one obtains an invo-
lutive distribution D = TF , defined as Dx = TxF = TxL, where L is the leaf through x.

For the other direction, we start with an involutive distribution D . To recover a foliation F such that D = TF ,
we define the leaves set-theoretically as follows. For x,y ∈ M, we say that they are in the same leaf if and
only if there exists a smooth path γ : I→M such that γ(0) = x,γ(1) = y and γ is everywhere tangent to D , i.e.
γ̇(t) ∈ Dγ(t) for all t ∈ I. Then, one needs to show that these sets carry a smooth structure that turns them into
an immersed submanifold of M, satisfying the local triviality condition.

We can consider geometric objects on foliations, such as Riemannian metrics, vector fields, differential forms,
etc. We will focus on the differential forms on a foliation F on M.

Definition 7.3. We define the foliated k-forms Ωk(F ) as

Ω
k(F ) = Γ(ΛkTF ).
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Naturally, there is a foliated de Rham differential dF : Ωk(F )→Ωk+1(F ), which is defined as

dF ωF (X0, · · · ,Xk) =
k

∑
i=0

(−1)iLXi(ωF (X0, · · · , X̂i, · · · ,Xk)

+∑
i< j

(−1)i+ j
ωF ([Xi,X j],X0, · · · , X̂i, · · · , X̂ j, · · · ,Xk).

It is readily verified that d2
F = 0. Thus, it makes sense to define foliated cohomology as

H•(F ) =
ker(dF )

im(dF )
.

In general, foliated cohomology groups are infinite dimensional and hard to compute. Yet, they can still contain
valuable geometric information. Note that a foliated form ωF can be seen as a sequence of smoothly varying
forms {(L,ωL) : La leaf}, and that ωF is dF closed if and only if it is leafwise closed for all leaves. However,
a foliated form that is leafwise exact does not have to be exact as a foliated form. This is what makes foliated
cohomology groups so complicated.

A foliated 2-form ωF ∈Ω2(F ) induces a bundle map

ω
♭
F : TF → T ∗F , X 7→ ιX ωF .

We call ωF non-degenerate if this map is an isomorphism. If it is furthermore dF -closed, we call it a foliated
symplectic form. Note, again, that a foliated symplectic form is just a collection of smoothly varying forms on
the leaves of the foliation. This brings us to the definition of a symplectic foliation.

Definition 7.4. A symplectic foliation on a manifold M is a pair (F ,ωF ) consisting of a foliation F on
M and a foliated symplectic form ωF .

So far, all foliations we have described have leaves of the same dimension, and are therefore also frequently
called regular foliations. In Poisson geometry, the foliations that we encounter need not be regular, so we need
to define singular foliations.

The notion of a singular foliation is more subtle than one would expect in first instance. There is still a partition
of M into leaves, of varying dimensions, but this does not capture all information. The key idea to define sin-
gular foliations is inspired by the Frobenius theorem, and is to characterize singular foliations via vector fields
tangent to the leaves.

We call C∞(M)-submodule V ⊆ X(M) involutive if it is closed under the Lie brakcet of vector fields, i.e. if
it is a Lie subalgebra of X(M). Moreover, we call V local if it satisfies one of the following, equivalent,
conditions.

1. If X ∈ X(M) is locally in V , then X ∈ V .

2. If X ∈ X(M) satisfies f X ∈ V for all compactly supported f ∈C∞
c (M), then X ∈ V .

3. V is closed under locally finite sums.
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There is a one-to-one correspondence between local modules of vector fields V ⊆ X(M) and sheaves of sub-
modules of vector fields V⊆ XM, by setting

V = Γ(M,V), Γ(U,V) = {X ∈ X(U) : f X ∈ V for all f ∈C∞
c (U)}.

We say that a local submodule V , corresponding to a sheaf V, is locally finitely generated if each x ∈M has an
open neighbourhood U and sections X1, · · · ,Xk ∈ Γ(U,V) such that

Γc(U,V) =C∞
c (U)X1 + · · ·+C∞

c (U)Xk.

We have now all the tools to define singular foliations.

Definition 7.5. A singular foliation on a manifold M is a local submodule of vector fields V ⊆ X(M) that
is involutive and locally finitely generated. The associated singular tangent distribution is defined by

TxV = {Xx : X ∈ V } ⊆ TxM.

A leaf of V is a maximal, connected, immersed submanifold L⊆M such that TxL = TxV for all x ∈ L.

We have the following Frobenius theorem for singular foliations.

Theorem 7.6 ([CFM21]). Let V be a singular foliation on M. Then every x ∈M belongs to a unique leaf
L⊆M, and the leaves are initial submanifolds.

We end with discussing some examples of singular foliations.

Example 7.7. Any regular foliation F on a manifold M is also a singular foliation. To see this, we define
V = X(F ), and this is an involutive, locally finite submodule of X(M). The leaves of V , seen as singular
distribution, coincide with the leaves of F .

For us, the most important example of a singular foliation comes from Poisson geometry.

Example 7.8. Let (M,π) be a Poisson manifold. The local submodule V ⊆X(M) spanned by the Hamiltonian
vector fields X f defines a singular foliation on M. The leaves are precisely the symplectic leaves of (M,π).
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