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The democratisation of deep learning (DL) in recent years has led to an increasing
presence of DL algorithms influencing our everyday lives, from recommending us
our next book to deciding whether we are granted a loan or not. Although DL has
allowed for a major performance boost in data-driven applications, the decisions
made by neural networks are completely opaque to humans, rendering their suit-
ability questionable for applications where the model needs to be verifiable and/or
explanations must be completely faithful to the model. Related literature exists that
tries to overcome this problem by using model extraction to derive an (approxi-
mately) equivalent symbolic model using a value-based argumentation framework
(VAF) as its inference engine. While the resulting model has the advantage of be-
ing verifiable and providing faithful explanations, model extraction imposes an ex-
ploration boundary on the symbolic model. This thesis proposes a novel approach
that integrates formal argumentation in an end-to-end reinforcement learning (RL)
pipeline. The benefit of this method is that the model can be trained using online
RL instead of using a surrogate model, leading to a potentially better solution while
still using a VAF as its inference engine.
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1 Introduction

The last decade has seen some major breakthroughs in AI such as surpassing human-
level performance in image tagging [19] or beating the human champion of the board
game Go [50]. These achievements are in part thanks to the availability of massive
amounts of data to train supervised classifiers and to improvements in hardware,
which have allowed for a dramatic reduction of training time by running deep learn-
ing (DL) algorithms on powerful GPUs [38].

Despite these advances, a common drawback of most current connectionist mod-
els (neural networks) is still their opacity in decision-making tasks. This hinders the
deployment of such models in applications where safety is paramount; for instance,
terrorism detection [47] and medical diagnostic systems [14]. Additionally, the so-
called "right to an explanation" derived from the General Data Protection Regulation
(GDPR) enforced in Europe since 2018, requires that any automated decision based
on an individual’s personal information can be supported by the corresponding ar-
gument(s) that brought about that decision [26]. These are some of the reasons why
researchers like Gerlings et al. [25] regard explainable artificial intelligence (xAI) as
a pressing matter in the AI research agenda.

It is almost impossible to talk about explainability without talking about inter-
pretability. Both concepts are closely related and some scholars even use them in-
terchangeably. A good account of the connection between the two is given by Biran
and Cotton [8]: "Explanation is closely related to the concept of interpretability: systems
are interpretable if their operations can be understood by a human, either through introspec-
tion or through a produced explanation". Indeed, one trend observed in the literature to
improve interpretability is through the introspection of neural networks by adding
visualisations or by translating them into symbolic models [60]. This allows us to
trace back and examine the steps followed by a connectionist model when it makes
a decision. The other trend to improve interpretability is through self-explainable AI
[18], where the model is designed to produce explanations that support its decisions
(e.g., a medical diagnostic system may output its prediction along with a set of low-
level labels that support the diagnosis and that can be understood by the medical
practitioner [49]). The interpretability of these models will increase as the quality
of their explanations improves; therefore, it is natural to wonder what constitutes
a good explanation. Jacovi and Goldberg [29] argue that a good explanation is not
the most plausible (the aim of the explanation is not to convince the human), but
the most faithful (the one that most accurately captures the reasoning process of the
model). However, as Feng et al. [20] point out, high-fidelity explanations can result
in nonsensical arguments to the user. Philosophers and social scientists have also
discussed what constitutes a good explanation [10] [27] [41]. Although the definition
of the golden explanation remains up for debate, Oestermeier and Hesse [44] showed
that the most common explanations use mechanistic causal arguments [1] of the form:
"A caused C because A led to C via mechanism B". In their study, they examined
different German corpora screening for causal claims, and mechanistic causal evi-
dence accounted for 75.1% of all the claims, whereas the next most common class of
arguments had an incidence of only 4.3%.
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A popular method to improve interpretability is to ascribe the model to some
expert knowledge. This knowledge can be represented by crafting a knowledge
base (KB), which, simply put, is a collection of rules (if-then-else) given by a domain
expert. KB systems (or expert systems) gained popularity in the 80s and are cen-
tral to symbolic AI (also known as good old-fashioned AI or GOFAI). Connectionist
models and GOFAI are at opposite ends of the spectrum: while connectionist mod-
els are flexible universal function approximators, GOFAI is concerned with using
a set of fixed rules as its inference mechanism [21]. Several instances of connec-
tionist models combined with a KB exist in the recent literature, from fake news
detectors [28] to medical diagnostic systems [49]. Tiddi and Schlobach [56] present a
survey of models that leverage expert knowledge to improve the interpretability in
machine learning (ML). Expert knowledge not only helps to make the model more
interpretable, but it can also improve performance. There are two main mechanisms
through which knowledge injection can improve model performance. The first one
is feature extraction, which consists in using the domain knowledge to engineer new
features by reasoning about the original ones. This can boost accuracy in classifiers
when data is scarce and/or when the function to be learned is very complex. Borgh-
esi et al. [9] report an average accuracy improvement of 38% in their model after
injecting it with domain knowledge, with respect to their purely data-driven model.
The other main mechanism to improve model performance found in the literature is
to guide exploration in the reinforcement learning (RL) paradigm. In online RL, an
agent explores the environment intending to maximise a numerical signal (reward)
emitted by the environment. When the rewards are very sparse (infrequent), the
agent usually takes a long time to learn a good policy that allows it to maximise the
accumulated reward over time. One way to alleviate this problem is by recommend-
ing the agent to explore some (suboptimal) set of state-action pairs according to the
rules provided by the KB. One such application of KB in RL is found in the work
of Gao et al. [22], in which it yielded faster convergence and a higher accumulated
reward on average. Apart from improvements in accumulated reward and conver-
gence time, literature exists that reports using domain knowledge to improve the
generalisation capabilities of their models in diverse data-driven applications, rang-
ing from text classification [35] to transformer protection in power grids [37]. Do-
main generalisation [61] is important when a model is presented in production with
problems that come from a distribution different from the instances it saw during
training.

Since expert knowledge is given in the form of a collection of rules, some ML
researchers [16] view these rules as arguments that guide the model to improve its
performance, training time or interpretability. As a conceptual example, imagine
that an agent is learning to drive a car using RL. One possible argument A for this
task could be: "if the traffic light is green, then move forward". This means that if at
time t the state st of the environment is such that the premise "the traffic light is
green" is true, argument A will conclude that the best possible action at for the agent
to execute is to move forward. Now consider this other argument B: "if there is a
pedestrian ahead, then stop". It is clear that both arguments (A and B) can be simulta-
neously valid (i.e., a reckless pedestrian may be crossing the road while the traffic
light is green for the car), but they promote contradictory actions. Since arguments
can be in disagreement, some conflict resolution mechanism is needed to identify a
unique winning argument at any given state of the environment. Dung’s seminal
work [17] laid the foundations of abstract argumentation frameworks (AFs), which
are a popular formalism to handle conflicting arguments in abstract argumentation
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(AA). AA tries to capture the way humans reason in presence of incomplete infor-
mation and/or when a new piece of information contradicts our previous knowl-
edge. According to Wyner et al. [59], AFs can be used to instantiate a KB. The basic
idea behind AFs is that a set of arguments can be represented as nodes in a graph
and the attacks between arguments can be represented as directed arrows (from the
attacker to the attacked argument). By using some criteria (argumentation seman-
tics), it can be determined which set of arguments can be accepted. Dung’s original
formulation of AFs assumes that all attacks have the same strength, which might
not be enough to resolve all scenarios (i.e., conflict resolution can end in a tie). To
overcome this problem, variants of the original definition of AFs conceived by Dung
have been proposed, such as value-based argumentation frameworks (VAFs) [7],
where the defeasibility of arguments depends on their associated value. Liao et al.
[36] defend this type of agent from the point of view of ethics: using a value-driven
argumentation-based agent to represent its reasoning process is enough to justify
and explain its actions.

This section has made a case for the relevance of xAI in modern research by sum-
marising the concerns of some AI scholars [25]. A definition of explainability has been
given [8], citing a few works that improve interpretability either by using symbolic
models [60] or by accompanying their model prediction with an explanation [49].
One such way of improving introspection (understood as per the mentioned defini-
tion given by Biran and Cotton [8]) and performance is through the use of a KB, and
several studies using hybrid (connectionist and symbolic) models were mentioned
[28] [49] [9] [56]. Finally, AFs [17] were introduced and proposed as a plausible way
of instantiating a KB, as supported by the literature [22] [32]. The main goal of this
thesis is to create an end-to-end RL pipeline that trains a value-driven agent that uses
an AF to instantiate domain expert knowledge. The outcome is a symbolic agent
that uses the learnt VAF as its inference engine. In the remainder of this chapter,
the strengths and weaknesses of the main related works are outlined and compared
to our approach. Finally, the research questions of this study are presented and an
overview of the remaining chapters of this dissertation is given.

1.1 Background

A comprehensive review of existing literature using KBs to build explainable AI
models can be found in the work of Tiddi and Schlobach [56]. Cocarascu and Toni
[16] also extensively examine relevant studies that use formal argumentation to im-
prove performance and/or interpretability of ML models. Three specific studies [57]
[22] [32] that combine RL with some KB motivate this thesis. This section briefly ex-
plains each of these 3 works and highlights the advantages and disadvantages of
each of them (the complete discussion of the related literature will be given in Chap-
ter 3). This will serve as a basis to support a novel KB-RL approach that will be
proposed in the next section.

As mentioned in the previous section, the use of some form of KB can aid RL by
improving its accuracy, robustness, convergence time and/or by making the model
(more) interpretable [56] [16]. One example of such a performance boost can be
achieved through argumentation accelerated reinforcement learning (AARL), as re-
ported by Gao et al. [22]. In their work, AARL is used in a multi-agent setting to
learn to play a subtask of RoboCup, a soccer simulator. As the name suggests, the
goal of AARL is to speed up the learning process. This is achieved by exploring
the environment according to some heuristics determined by a VAF created by the
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domain expert. For example, coming back to the self-driving car example from the
previous section, argument B will increase the chances that the agent will explore
the action "stop the car" if there is a pedestrian in front of the vehicle because that
action is likely to return a high reward. However, there might be better actions to
be taken in that scenario. It may seem obvious that a car should stop if a pedestrian
is in front of it, but imagine that other sensors are also measuring the position and
velocity of both the car and the pedestrian. It could be the case that the car is still
far from the pedestrian and, given the velocity of both subjects, it is actually safer
for the car to slowly decelerate than to brake sharply (perhaps even causing the col-
lision of other cars behind it). That is why AARL can provide both higher rewards
and faster training, because it leverages the KB while leaving room for exploring
better actions. Although AARL is an excellent example of KB injection to improve
performance in RL, its benefits in terms of interpretability are very limited. The in-
jected VAF provides a template to explore the environment (which may give some
insight into how the agent behaves), but, since the inference engine of the agent is
a universal function approximator (a neural network), the resulting policy learnt by
the agent can be very different from that dictated by the VAF.

One way of alleviating this lack of transparency could be to gather a vast collec-
tion of expert rules and have the RL agent learn which one it should execute at any
given state. This is precisely what Voss et al. [57] did to train an RL agent to play
FreeCiv (an open-source empire-building strategy game based on the popular Civ-
ilization). They gathered thousands of rules from several different human players
and created a KB (no AF was used in their method for KB instantiation). Each rule
of their KB has a set of conditions (premises) and some procedural knowledge (the
conclusion), such that, when the conditions are met (according to the state of the
game and the agent’s memory), the rule becomes active and its procedural knowl-
edge dictates what action(s) should be executed by the agent (this approach will be
referred to as KB-inference). Having such a large pool of rules coming from different
experts, clashes among rules are expected to occur. Hence, some conflict resolution
method is needed to decide which rule’s procedural knowledge will be applied. In
their approach, an agent is trained using RL to choose only one of the conflicting
rules based on the raw features of the game (e.g., score, population size, resources,
etc). According to Nechepurenk et al. [42], this approach was tested on a subtask
of FreeCiv and yielded a reward 13% higher than their purely connectionist model.
This approach is more interpretable than a connectionist model because the rules
explicitly state the conditions that need to be met to apply some given procedural
knowledge. However, when a clash among multiple rules occurs, the conflict is re-
solved via a neural network, which obfuscates the explanation of why one rule is
chosen over the other(s). In other words, the mechanism [1] by which the conflict was
resolved involves the evaluation of a neural network, whose reasoning is generally
opaque to humans.

The interpretability of such KB-inference techniques can be improved by using
a more transparent conflict resolution mechanism. This is exactly what Kazhdan et
al. [32] achieved with MARLeME, a model extraction library for multi-agent RL.
MARLeME is a library that takes two inputs, a set of RL trajectories and an AF, and
identifies the corresponding VAF that best fits the input trajectories. Conceptually,
MARLeME works in the opposite way to the AARL approach of Gao et al. [22]:
while AARL takes a VAF as input and outputs a connectionist agent, MARLeME
takes the trajectories of a connectionist agent as inputs and outputs the VAF that
best approximates those trajectories. MARLeME is model-agnostic and only needs
to be fed the trajectories of the RL agent and the AF created by the domain expert.
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The authors of MARLeME claim that the resulting VAF can be used in two different
ways: (1) keeping the original RL agent deployed in production and periodically
inspecting its learnt policy; or (2) deploying the symbolic model and using the VAF
as its inference engine. Each option entails a compromise between performance and
interpretability. For example, (1) could be a good approach in applications where
absolute performance is key and the faithfulness of the explanation is not crucial to
the operation. In such situations, it would be possible to periodically collect a set of
trajectories from the agent and learn a VAF with them. This can be useful to study
how the policy evolves with time or how different AFs fit the learnt behaviour of
the agent. However, (2) would be preferred in applications where safety and/or
interpretability are critical since the behaviour of the VAF can be verified.

Of the three approaches reviewed in this section, MARLeME [32] is the winner
in terms of interpretability. On the one hand, if an agent is trained using AARL
[22], a symbolic model can always be extracted using MARLeME to study the learnt
policy (without replacing the original one). Even if the faithfulness of the extracted
model is not guaranteed, it allows some degree of introspection of the neural net-
work. The original model can still be used in production, so using MARLeME just
as a post-hoc explanation method has no negative impact in performance. On the
other hand, compared to the KB-inference approach of Voss et al. [57], using the VAF
identified by MARLeME to resolve conflicts among arguments is an improvement
in interpretability. This is because value-driven approaches offer a better explana-
tion since the conflicts can now be resolved transparently, according to the value of
each argument. In this case, it is not guaranteed that using a VAF to resolve the
clashes among rules will not affect performance. This is because the VAF assumes
that the ordering of the arguments is fixed, but the RL agent uses the raw features of
the game to determine the winner rule at each state, which allows for a more flexi-
ble arbitration. Therefore, there is no guarantee that the preference of one rule over
others will be optimal for every situation. This is a recurring compromise between
performance and interpretability that is present in all these works (also in ours).

1.2 Research Questions

In the previous section, three studies that use some form of knowledge-based RL
technique have been presented, being MARLeME [32] the approach that offered the
best properties in terms of interpretability. As mentioned in the previous section, the
model extracted by MARLeME can be used either to study the policy learnt by the
RL agent or to replace the original model altogether. The former has the disadvan-
tage that the extracted model is not guaranteed to provide faithful explanations (as
defined by Jacovi and Goldberg [29]) of the decisions made by the original model.
On a multi-agent RL task, the authors of MARLeME report fidelity scores of 0.86,
0.84 and 0.68 for the 3 models extracted by MARLeME. The fidelity score is a metric
(ranging from 0 to 1, being 1 the highest degree of fidelity) that they used to mea-
sure how well an extracted model mimics the original one. The fidelity score can be
improved by providing MARLeME with a more expressive AF. The alternative of
replacing the original model with the model extracted by MARLeME has the disad-
vantage of deploying an agent that has been trained on a surrogate agent (via a finite
set of generated trajectories), instead of on the real environment. This means that the
resulting VAF reflects the ordering that best fits the trajectories of the original agent,
not the ordering that necessarily yields the highest reward when interacting with
the environment. Another way of looking at it is by defining a policy space Πtraj as
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the set of all policies that can be derived from the supplied trajectories using topo-
logical sorting (the extraction method used by MARLeME) given any possible AF.
Because the state-action-reward space can be vast in real applications (or infinite in
the continuous domain), the supplied trajectories are usually just a representation of
the full space. Hence, the policy space when considering the full state-action-reward
space of the original environment, Πenv, must be a superset of Πtraj. Based on this,
a symbolic agent that can explore the original state-action-reward space of the en-
vironment can potentially find a better policy than another symbolic agent that is
bounded by imitation learning (the extracted model imitates the original model).

In applications where safety and interpretability are paramount [47] [14], re-
searchers may decide beforehand that the deployed agent will use a VAF as its in-
ference engine, to ensure the verifiability of the model. In such cases, one approach
would be to translate the arguments of the AF into state features to directly inter-
act with the environment (so it can explore the true state-action-reward space) and
learn the ordering of arguments that maximises the accumulated reward (i.e., learn
the VAF). This way, the learned model is the same as the model that will be deployed,
ensuring verifiability and faithful explanations. This is exactly the main idea behind
the novel approach proposed in this thesis: given some AF supplied by a domain ex-
pert, we want to learn the best VAF through direct exploration of the environment.
Our proposed approach can be summarised in four main steps: (1) designing a game
we want to solve; (2) defining an AF that contains useful domain knowledge for an
agent to solve the game; (3) learning the best VAF by finding the best ordering of
the arguments in the AF; and (4) evaluating the VAF as an inference engine for the
game. Step (3) requires the direct exploration of the game, as opposed to MARLeME
[32], which used model extraction. The novelty of this approach is that, to the best of
our knowledge, this is the first time that a VAF is being learnt directly by interacting
with the environment (in our case, the environment is the game mentioned above).

This section has focused on identifying the disadvantages of model extraction
and proposed a novel approach to learning a VAF through direct exploration of
the environment, which has the advantage of exploring the full state-action-reward
space. To synthesise the purpose of this project, the main research question is for-
malised as follows:

Research Question 1. Given an RL environment and some KB instantiated in the
form of an AF: is it possible for the agent to explore the environment and learn a
set of argument values such that the associated VAF maximises the accumulated
rewards emitted by the environment?

Three secondary questions can be naturally formulated following the outcome
of Research Question 1:

Research Question 2. Can the resulting model be introspected to explain its actions?

Research Question 3. How does the resulting symbolic agent compare to a non-
symbolic agent in terms of absolute performance?

Research Question 4. Can the resulting symbolic agent generalise to new environ-
ments better than non-symbolic RL agents?

1.3 Structure

This thesis starts by covering in Chapter 2 some preliminary knowledge that will
be necessary to understand the details of the related literature and the proposed
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approach. Specifically, the present work makes use of concepts from abstract argu-
mentation, reinforcement learning and combinatorial optimisation. Chapter 3 delves
deeper into the related KB-RL literature that was presented in Section 1.1. Chapter 4
explains each of the four steps central to our approach (game design, AF definition,
learning the VAF and evaluation) by progressively introducing each of the blocks
that constitute the proposed pipeline. The conducted experiments are summarised
in Chapter 5, analysing the results of each of them separately. Finally, Chapter 6
concludes by summarising the main results of this project and outlining the main
challenges encountered in this project and potential future lines of research.
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2 Preliminaries

This chapter aims to establish a basic ground on two fundamental concepts that are
recurrent in the rest of this work, namely abstract argumentation (AA) and rein-
forcement learning (RL). Chapters 3 and 4 contain explanations of more complex
concepts that build on the fundamentals outlined in this chapter.

2.1 Abstract Argumentation

Daily human reasoning often requires being able to draw conclusions based on in-
complete information and/or exceptions to our general beliefs. For these reasons,
non-monotonic reasoning is often said to be a requirement for strong AI to develop
[53].

Important work towards this direction has been done to create systems capable
of performing non-monotonic reasoning in presence of incomplete, contradictory in-
formation, such as the systems of Pollock [46] in the late ’80s. However, it is probably
Dung’s theory about argumentation frameworks [17] what marked a breakthrough
in this field in 1995. The main idea of his contribution is that an argumentation
framework can be modelled as arguments represented by nodes in a graph and their
attacks can be represented through directed arrows. Given such a graph, it is pos-
sible to define different semantics, which allows the study of the acceptability of its
arguments. Intuitively, semantics can be regarded as some eligibility criteria to select
a coherent set of arguments (an extension). These selected arguments are considered
accepted under this particular semantics.

2.1.1 Argumentation Frameworks

According to Dung [17], an argumentation framework (AF) is defined as follows:

Definition 1 (Argumentation framework). An argumentation framework (AF) is a
pair (Arg, Att) where Arg is a set of arguments and Att ⊆ Arg × Arg is a binary
relation that defines the attacks between arguments. For any two arguments a and
b, such that (a, b) ∈ Att, it is said that a attacks b.

This definition of AF was further extended by Bench-Capon [7] to create the con-
cept of a value-based argumentation framework (VAF).

Definition 2 (Value-based argumentation framework). A value-based argumenta-
tion framework (VAF) is a 5-tuple (Arg, Att, V, val, valpre f ) where Arg and Att de-
fine a standard argumentation framework AF, V is a non-empty set of values, val
is a function which assigns elements from Arg to elements of V and valpre f estab-
lishes a preference relation (transitive, irreflexive and asymmetric) on V × V. An
argument arg is said to promote a value v if val(arg) = v. It is the case that for every
argi ∈ Arg, val(argi) ∈ V.

This extended definition introduces the notion that some arguments have a
higher value than others, in such a way that given the attacks (a, b) and (b, a), a
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defeats b iff val(a) > val(b). This contributes to the idea that some arguments may
not hold in a given situation in the presence of stronger arguments, but they may
hold in a different scenario.

2.1.2 Semantics

An argumentation semantics (or simply semantics) defines zero or more sets of ac-
ceptable arguments [3]. Each of these sets of coherent arguments is also called an
extension. Two main approaches are used to formulate semantics: extension-based
methods and labelling-based methods. In this project, only extension-based seman-
tics will be considered.

When defining a semantics it is useful to define some recurrent concepts that
express some relevant relations among arguments.

Definition 3 (Conflict-free set). Given an argumentation framework (Arg, Att), a set
S is conflict-free if there are no two arguments a, b ∈ S such that (a, b) ∈ Att.

Definition 4 (Argument defended by a set). Given an argumentation framework
(Arg, Att), a set S defends argument a if for each b ∈ Arg, if (b, a) ∈ Att, b is
attacked by S.

Definition 5 (Admissible set). A set of arguments S is admissible if it is conflict-free
and for each argument a ∈ S it is the case that S defends a.

Dung’s original work [17] defines four different semantics given an argumenta-
tion framework (Arg, Att) and an extension S ⊆ Arg:

• Complete extension: S is a complete extension if it is an admissible set and for
every argument a defended by S it is the case that a ∈ S.

• Preferred extension: S is a preferred extension if it is a maximal (with respect
to the set inclusion) complete extension.

• Stable extension: S is a stable extension if it is a complete set and for every
a ∈ S, it is the case that ∀b /∈ S : (a, b) ∈ Att.

• Grounded extension: S is a grounded extension if it is the minimal (with re-
spect to the set inclusion) complete extension.

2.2 Reinforcement Learning

Reinforcement learning (RL) is a popular paradigm in machine learning, along with
supervised learning and unsupervised learning. Simply put, RL is learning what
actions to perform in a given environment to maximise some accumulated numerical
reward signal [54].

In an RL problem, there is at least one learning agent A that interacts with the
environment Env by performing actions on it. After each interaction, the environ-
ment evolves (either switching to a different state or remaining at the same one) and
returns a reward signal that the agent needs to maximise over time.
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2.2.1 Modelling the environment

RL problems are often modelled as (finite) Markov decision processes (MDPs). An
MDP is an idealisation of an RL problem in which the probabilities that an envi-
ronment evolves in a particular way and returns a particular reward signal, depend
only on the previous state [54]. More formally:

Definition 6 (Markov decision process). A Markov decision process (MDP) is a 3-
tuple (S, A, p), where S is the state space, A is the action space and p(s′, r|s, a) is
a function that determines the probability of transitioning to a state s′ producing a
reward signal r when action a is taken from state s.

Modelling an RL problem as an MDP is sometimes too optimistic, as an MDP
assumes that the true state of the environment is available to the agent. However,
in real-world scenarios, it is common that only a partial observation of the state
of the world is available to the agent (e.g., the sensors of a robot may only provide
information up to a certain range and the accuracy of their measurements is limited).
In such cases, it is best to talk about observations (what is observable by the agent)
and states (the full state of affairs of the environment). This is formally known as a
partially observable Markov decision process (POMDP):

Definition 7 (Partially observable Markov decision process). A partially observable
Markov decision process (POMDP) is a 5-tuple (S, A, O, p, Ω), where (S, A, p) is the
MDP that defines the internal dynamics of the process, O is the observation space
and Ω(o|s, a) is a function that determines the probability of outputting observation
o from state s when performing action a.

2.2.2 Learning from experience

By interacting with the environment for enough episodes, the agent can learn a good
policy that maximises the accumulated reward signal. There are two main methods
to achieve this:

1. Value-based methods: the aim is to learn a function qπ(s, a) that outputs a nu-
meric value that estimates the "quality" (hence the q nomenclature), of being
in state s and performing action a according to policy π. To this end, the agent
iteratively interacts with the environment and estimates the expected return
vπ(s) at each state s. The higher the value, the more likely it is for the agent
to receive a high reward in the future. This is a form of dynamic program-
ming that is based on the Bellman equation [5]. More formally, qπ(s, a) can be
defined as:

qπ(s, a) = ∑
s′,r

p(s′, r|s, a)[r + γvπ(s′)] (2.1)

where γ ∈ [0, 1] is a discount factor used to give less weight to subsequent
rewards.

2. Policy gradient methods: instead of learning about the quality of each state,
the agent learns the optimal policy directly by updating the parameters of the
policy π by iteratively interacting with the environment. These methods have
some advantages over value-based methods, such as being able to learn the
probabilities of taking each action or being able to naturally handle continuous
action spaces.
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There exist other criteria to classify RL agents (although not applicable to all
classes of agents) [54]. For example:

• On-policy vs off-policy: on-policy methods (e.g., SARSA) iteratively update
the same policy they use to interact with the environment (behaviour pol-
icy). This is not the case in off-policy methods (e.g., Q-learning), where the
behaviour policy is different from the optimal policy that is being learnt.

• Online vs offline: online methods are those in which the experience is ob-
tained by the agent interacting directly with the environment. In the case of
offline methods, a data set of trajectories (lists of sampled (s, a, r) tuples that
describe a possible episode) are supplied to the agent.

• Tabular methods vs function approximation methods: in value-based meth-
ods, qπ(s, a) can be implemented by using a tabular approach or function
approximation. The tabular approach requires exploring the different state-
action pairs combinations and updating their value accordingly. In cases
where the state-action space is too large and exploration is unfeasible, a low-
dimensional representation of the state is preferred. This representation can be
fed into a function approximator (e.g., a neural network) to estimate the value
of each possible action. This makes sampling more efficient since it allows for
extrapolation to unexplored states.
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3 Related Work

This chapter expands upon the literature overview from Section 1.1 and builds on
the basics of AA and RL given in Chapter 2. First, the potential benefits of KB in-
jection in ML are presented, explaining how Voss et al. [57] use a KB-RL setup to
teach an agent to play the strategy game FreeCiv. Next, two works that use AFs to
instantiate a KB are presented, explaining in detail how to construct such AFs and
what the advantages and disadvantages of each approach are. Table 3.1 can help
the reader understand where the current project stands with respect to these other
works.

3.1 Knowledge-based Reinforcement Learning

Knowledge bases (KBs) are closely related to traditional GOFAI, since they are cen-
tral to expert systems, which became very popular in the 80’s [21]. A KB can be
defined as a collection of expert human information. KBs are useful for knowledge
representation (to capture the ontological relations among different concepts) and to
capture expert reasoning (i.e., if-then-else rules). In the last decade, there has been
an increasing interest in using knowledge-based approaches to improve the inter-
pretability of connectionist ML methods. The survey of Tiddi and Schlobach [56]
compiles different works that use knowledge graphs to improve the explanations
and common-sense reasoning capabilities of data-driven models.

KB is not only useful to improve interpretability, but it can also boost perfor-
mance by spotting complicated relations between state features that are too compli-
cated for purely data-driven models to find. Existing works report improved per-
formance in models that benefit from this method of feature extraction [9] [55]. One
particular case of knowledge-based reinforcement learning (KBRL) is the work of
Voss et al. [57], which uses thousands of rules given by several different human ex-
perts to teach an RL agent to play FreeCiv, a strategy game in which players have to
build and develop their own empire. The particularity is that, since the rules come
from different experts, some of those rules may contradict each other (i.e., two rules
may recommend taking a different action in the same situation). As a result, some

TABLE 3.1: Classification of relevant works in KB-RL grouped by model
type (connectionist or symbolic). The symbolic approaches are further

split according to the conflict resolution method they use.

KB-RL

Connectionist AARL: Gao et al. [24] [23] [22]

Symbolic
Feature-based conflict resolution: FreeCiv [57]

Value-driven conflict resolution
Model extraction:
MARLeME [32]
RL-CO: This project
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conflict-resolution mechanism is needed to execute only one action in the case that
such clashes occur.

To illustrate what a rule or "knowledge item" looks like, an example is given in
Figure 3.1. Each rule explicitly states its factual knowledge (the raw state features
that have to be active for the rule to hold), its working memory (the conditions based
on past experience that need to be active for the rule to hold) and the procedural
knowledge (the action(s) that the agent should execute if the rule holds).

FIGURE 3.1: Example of one of the thousands of knowledge items that
comprise the KB in the FreeCiv example. Source: Voss et al. [57].

As mentioned before, conflicting rules must be handled so that only one action is
executed. Voss et al. do this by training an RL algorithm that chooses one rule (one
of the conflicting knowledge items) given a carefully chosen feature vector made
up of 33 game indicators such as game score, population size, amount of generated
resources, etc. Nechepurenko et al. [42] compare this KB-RL approach to a neural
network to solve a sub-task of the FreeCiv game: to optimise the cities location to
maximise the generated natural resources of the player’s empire. Overall, the KB-RL
yielded results 13% better than the neural-network approach, justifying the injection
of expert knowledge to solve the task. Although this solution uses a symbolic ap-
proach, the need for a neural network to mediate conflicts among rules conceals
important information from the user when a conflict occurs.

In the next section, two works that use argumentation frameworks (AFs) to in-
stantiate a KB are presented. This has the advantage that ties among arguments can
be broken using value-driven approaches, allowing for a more transparent conflict
resolution.

3.2 Argumentation in Reinforcement Learning

In the last two decades, there has been an increasing interest in applying argumen-
tation to inform machine learning (ML) models with the aim of improving perfor-
mance, reducing training time and/or for explainability reasons. Cocarascu and
Toni [16] offer a survey of different ML approaches that use argumentation.

The first instance of argumentation being applied to an RL problem is found in
the work of Gao et al. [24] [23] [22], which focuses on argumentation-accelerated
reinforcement learning (AARL). The intuition behind AARL is that, for a particular
RL problem, a KB is injected into the model by instantiating an AF. To handle the
conflicts that may occur among arguments, some semantics is applied to inform
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the RL algorithm about what actions to explore. In this way, the domain expert(s)
can recommend actions to the agent while still allowing for random exploration of
actions, which can lead to a better policy that may not be captured by the input KB.

While the work of Gao et al. [24] [23] [22] is focused on informing an RL agent
during its learning phase, Kazhdan et al. use a model extraction library (MARLeME
[32]) to improve the explainability of RL agents by approximating their learnt policy
to a symbolic model (a value-based argumentation framework [7]).

Both Gao et al. [24] [23] [22] and Kazhdan et al. [32] use the RoboCup Soccer
Simulator environment to implement and evaluate their approaches. The remainder
of this section uses the RoboCup Soccer Simulator as our paradigm environment
to explain how an AF can be constructed to inform an RL agent on what action to
choose and gives further details about the two aforementioned approaches (AARL
and model extraction).

3.2.1 Argumentation for Knowledge Instantiation in RL

The first work by Gao et al. [24] to use AA to inform an RL algorithm uses a single-
agent setup. In this scenario, one agent has to learn to play Keepaway, a subtask of
the popular RoboCup Soccer Simulator1.

In Keepaway, there are N players whose objective is to keep possession of the
ball (the keepers) and N-1 players that try to intercept or tackle the ball (the takers).
The game is played inside a fixed rectangular court and the episode finishes when
the takers get the ball or when the ball goes off the delimited playing area. The
usefulness of Keepaway is that it is a task simple enough to analyse all the possible
high-level actions (tackle the ball, mark another player, pass the ball, etc.) of any
player at any point in the game, while still offering an interesting and challenging
environment.

In this setting, the learning is done exclusively from the perspective of the keeper
in possession of the ball. The other players (the keepers not in possession of the ball
and the takers) follow hand-coded policies. The work of Gao et al. [24] makes use of
the Keepaway framework2 developed by Stone et al. [52], which provides a series
of so-called macro-actions for keepers and takers that allow researchers to abstract
away the primitive actions of the players. Such macro-actions are (for the keeper in
possession of the ball):

• HoldBall(): do not move and keep possession of the ball.

• PassThenReceive(k): pass the ball to teammate k and then receive the ball
(after the pass, it opens up to receive the ball at a later time). This action calls
additional macro-actions PassBall(k) and Receive() [52].

In addition to these macro-actions, some parameters are defined in order to de-
termine the current state of the game, such as the distance from one player to another
or the angle between keepers and takers with respect to the keeper who has the ball.
Figure 3.2 illustrates this with a snapshot of a game with 3 keepers (K1, K2 and K3)
and 2 takers (T1 and T2). The keeper with the ball is always referred to as K1. In this
example, we see that θi represents the minimum angle between keeper i and any of
the takers. Using some threshold parameters L and A, keepers are attributed the
status of far or open when they are at a distance D ≥ L and at an angle θ ≥ A from
any taker, respectively [24].

1https://rcsoccersim.github.io/
2https://www.cs.utexas.edu/users/AustinVilla/sim/keepaway/

https://rcsoccersim.github.io/
https://www.cs.utexas.edu/users/AustinVilla/sim/keepaway/


Chapter 3. Related Work 15

FIGURE 3.2: Example of a Keepaway scenario. In this situation K3 is
not in an open position, since θ3 < A. Therefore, argument O3 does not

hold under this configuration of the players. Source: Gao et al. [24].

Let us now examine how Gao et al. used argumentation to create an AF to rec-
ommend an RL agent which action to take.

Arguments and Actions

Every rule in a KB can be represented in an AF [59]. Gao et al. [24] [23] [22] do this by
mapping each rule into an argument whose premises are given by the factual knowl-
edge and working memory of its associated rule. The conclusion of each argument
is the procedural knowledge of its corresponding rule. Following this principle, Gao
et al. create AFs to recommend actions to RL agents. Its arguments take the follow
the structure:

con(a) IF pre(a) (3.1)

where con(a), which is the conclusion of a, recommends an action and pre(a), which
is a set of premises, describes the conditions under which a applies (i.e., when in a
given situation pre(a) is true, a is a valid argument which recommends the action
con(a)).

To distinguish between the full AF that considers all the potential arguments that
may hold in an environment (e.g., all the arguments that can describe the state of a
chess board) and the AF comprised exclusively of the arguments that hold in a par-
ticular situation of that environment (e.g., all the arguments that hold in a particular
configuration of a chess board), Gao et al. introduce the notion of scenario-specific
argumentation framework (SAF) [24]. Analogously, when the AF is value-based, its
scenario-specific version will be referred to as a VSAF. A concrete example to illus-
trate these differences is given next.

RoboCup as a Running Example

Given the set of macro-actions previously mentioned and the specified state vari-
ables (being open and/or far with respect to the takers), Gao et al. define the follow-
ing potential arguments [24]:

• F2: PassThenReceive(2) IF K2 is far

• O2: PassThenReceive(2) IF K2 is open

• F3: PassThenReceive(3) IF K3 is far

• O3: PassThenReceive(3) IF K3 is open

• H: HoldBall(): IF True
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FIGURE 3.3: (i) AF indicating all possible attacks between arguments in
Keepaway. (ii) VAF resulting from discarding defeated attacks accord-
ing to their value. (iii) VSAF composed of the valid arguments from
Figure 3.2. (iv) Unique preferred extension (blue nodes). Adapted from

Gao et al. [24].

By looking at the actions supported by each argument, it is obvious that argu-
ments supporting different actions must be in an attack relation with each other.
Furthermore, from the definition of a VAF given in Section 2.1.1, each argument
must promote a value. Namely [24], H promotes the value "lower the risk of marking"
(MK); Oi promotes the value "lower the risk of interception" (IT); and Fi promotes the
value "lower the risk of tackle" (TK). In addition to creating these arguments and val-
ues, the domain expert defines the value preferences for the situation in Figure 3.2
as IT > TK > MK.

Let us now demonstrate how argumentation is used by Gao et al. [24] to inject
knowledge into an RL agent. The Keepaway situation depicted in Figure 3.2 is used
as a running example:

1. Construct the AF: a bidirectional arrow is drawn between each two potential
arguments (F3, F2, O3, O2 and H) if they promote different actions (e.g., F2 and
O2 do not attack each other because both promote PassThenReceive(2)). This is
illustrated in Figure 3.3(i).

2. Construct the VAF: recall that each argument promotes a value and those val-
ues are strictly ordered. For every argument a that defeats another argument
b (i.e., Val(a) > Val(b)), the arrow from b to a is removed from the graph. For
instance, in our running example, Val(O2) > Val(F3), hence the unidirectional
edge from O2 to F3 in Figure 3.3(ii).

3. Construct the VSAF: the premises of each argument are evaluated according
to the current state of the game. If all premises are true, the argument is valid.
All the other arguments are invalid. The VSAF is constructed by keeping all
the valid arguments and their corresponding bidirectional arrows. As shown
in Figure 3.3(iii), this means that in our running example, node O3 and its
incoming/outgoing edges must be removed from the graph.
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4. Calculate the extension: once the VSAF has been constructed according to
the current state of the playing court, a semantics is applied to obtain the ex-
tension that contains the accepted arguments under this particular semantics.
These arguments are used to recommend an action to K1. Based on the way the
VSAF is constructed, it can be proven that all arguments in each preferred ex-
tension recommend the same action [24]. In Figure 3.3(iv), {F2, O2} is the only
preferred extension and both arguments recommend the same action (Pass-
ThenReceive(2)). Because the grounded semantics always defines a unique ex-
tension (it may be the empty set), the grounded semantics is often used to
determine a unique recommended action for the learning agent.

The steps above described how Gao et al. used argumentation to create an AF
to recommend actions to an RL agent in Keepaway [24]. The next section describes
in more detail how they used this technique to guide the exploration of the agent
through reward shaping. Section 4 gives an example of an AF constructed for a
different game and illustrates how the above-outlined process can be integrated in
an RL pipeline.

3.2.2 Argumentation-accelerated Reinforcement Learning

Since the application of argumentation to RL is relatively new, argumentation-
accelerated reinforcement learning (AARL) approaches sometimes appear under
different names in the literature (e.g., argumentation-based reinforcement learn-
ing (ABRL) [24]). In the current work, the term AARL is used in accordance with
Cocarascu and Toni [16]: in AARL arguments represent recommendations of ac-
tions to individual agents through some extension (e.g., the grounded extension) to
guide the exploration process of the agent (i.e., by increasing the chances of visiting
state-action pairs the domain expert deems convenient).

One way Gao et al. implemented AARL is by imparting domain knowledge
through reward shaping in Keepaway [24]. When implementing this way of reward
shaping, the reward function is modified by a potential-based shaping function [43]
defined as:

F(s, a, s′, a′) = γΦ(s′, a′)−Φ(s, a) (3.2)

where Φ(s, a) is a function that returns a numeric value indicating the potential value
of being in state s and performing action a. In the approach of Gao et al. [24], this
corresponds to the values promoted by the accepted arguments of the AF (i.e., IT,
TK or MK). Note the discount factor γ ∈ (0, 1]. In the original approach, the learning
agent (K1) learns through a SARSA(λ) with eligibility traces algorithm [54], while it
interacts with the other players, which follow hand-coded policies implemented in
the Keepaway framework. Equation 3.2 shapes the reward by being added as an
extra factor to the reward function. This approach yielded an final reward 5-10%
higher compared to the non-accelerated agent (both algorithms were trained for the
same amount of time).

Another way Gao et al. used argumentation to guide the exploration of RL
agents was by the use of heuristics in a multi-agent setup similar to Keepaway, with
the difference that the learning was now done by all the players (both keepers and
takers). This subtask of RoboCup was named Keepaway-Takeaway (KATA) [23].

The use of argumentation to guide the exploration in this work [23] slightly dif-
fers from that in Keepaway [24], since the the reward function remains now un-
changed. The reward shaping is now done by increasing the chances of exploring
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specific state-action pairs selected by the domain expert. This is done by modify-
ing the way the RL agent chooses its greedy action at time step t: traditionally, this
is chosen according to argmaxat [Q(st, at)], where Q(st, at) measures the quality of
choosing action at at state st. However, this AARL approach incorporates a heuris-
tic function Ht(st, at), which takes a high value if the (st, at) pair is recommended
by the domain expert. In this case, the greedy action would be chosen according to
argmaxat [Q(st, at) + Ht(st, at)].

In the KATA task [23] the state-action pairs recommended by the domain expert
are those in which at corresponds to the recommended action by the grounded se-
mantics at state st. The rationale behind this is that acceptable arguments are more
likely to be a plausible action choice for a given state st, so the agent would converge
faster to an optimal solution if it was more likely to explore these actions suggested
by the injected heuristics.

The results in observed in KATA [23] show that argumentation-accelerated RL
improved performance with respect to the non-accelerated approach. For the case
in which the learning keeper competed against the takers following a hand-coded
policy, the final performance score improved an 8% and the convergence time was a
30% faster.

3.2.3 Model Extraction: MARLeME

With the aim of improving the transparency of the policy learnt by RL agents, Kazh-
dan et al. [32] developed MARLeME, a library for model extraction. MARLeME is
designed to approximate the policy learnt by RL models by producing an (approxi-
mately) equivalent symbolic model (in this case, a VAF). The authors claim that this
approach can be used for interpretability purposes (e.g., to gain insights into how
RL models learn by periodically extracting the model during the training phase and
analysing how their policy evolves and converges) and for safety purposes (e.g.,
producing a symbolic model allows for verifiability of the system, thus the original
model can be replaced by the symbolic one in scenarios where safety is critical).

In order to translate the original model into a symbolic approximation, MAR-
LeME relies on some domain knowledge that is input by the domain expert through
an AF, from which a VAF is derived. MARLeME achieves this by taking the tra-
jectories of one (or several) agent(s) as input and using topological sorting [31] to
identify the ordering of the arguments from the given AF that best fit the data. A
trajectory is composed of the sequence of states describing an episode along with
their corresponding action and reward at each time step.

An assumption made by MARLeME about the VAF is that the set of values V is
the set of integers, valpref is given by the natural ordering of integers, and val is a
lookup table that assigns an integer to each argument. This assumption is impor-
tant to find the best VAF without the need for domain knowledge about how each
promoted value relates to semantically meaningful concepts, as in the work of Gao
et al. [24] (i.e., in their work the domain expert decides that argument H, which
supports the action HoldBall(), promotes the value "reduce the risk of other keepers
being marked". By using integer values to order the arguments, ascribing seman-
tically meaningful concepts to arguments must be done post-hoc by the user after
inspecting the trained model).

The described approach was tested by building on the work of Gao et al. [23]
to study the Keepaway game exclusively from the perspective of the takers. This
specific task is referred to as Takeaway. MARLeME is capable of extracting 3 differ-
ent VAFs (one for each of the takers), which are easily inspectable. For example, by
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looking at the final values, one can interpret that arguments with higher values are
more important than those with lower values.

Another approach MARLeME was applied to is the classic Mountain Car prob-
lem shown in Figure 3.4a. In this setting, the state is defined by the position and
velocity of the car at any given point. Since the state space is continuous, to build an
AF like the one shown in Figure 3.3, the state space variables have been discretised,
dividing the possible values of position and velocity into 20 different ranges. This
gives a total of 400 different states the car can be in at any given point in the game.
For each state, a partial AF is active at any given state, consisting of the 3 possible
actions (push right, push left, no push) attacking each other. In other words, the
AF consists of 1200 arguments, of which only 3 of them hold at any given state and
every argument attacks any other argument that recommends a different action.

The result of this approach is shown in Figure 3.4b, where the winning action for
each discretised state is shown. The original continuous learnt policy can be found
in Figure 3.4c.

FIGURE 3.4: Mountain Car problem (a) along with the extracted (b) and
originally learnt (c) model policies. Adapted from Kazhdan et al. [32].
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4 Method

At the end of Section 1.2, a four-step overview of the proposed approach was given;
namely, (1) designing a game, (2) defining an AF, (3) learning the VAF, and (4) eval-
uating the VAF. In this chapter, each of these steps is thoroughly explained. Section
4.1 explains the dynamics of Foggy Frozen Lake (FFL), our target game. Two dif-
ferent AFs to solve FFL are proposed in Section 4.2, explicitly stating the premises
and conclusions of each of their arguments. Sections 4.3, 4.4 and 4.5 are devoted to
explaining how the VAF is learned from the supplied AF just by directly playing the
game. Finally, the evaluation criteria are explained in Section 4.6.

4.1 Game

In this thesis, the term game will be used to refer to the ultimate task whose reward is
expected to be maximised by the VAF we want to learn. For example, in the related
work reviewed in Section 3.1, their game was FreeCiv, and in Section 3.2, their game
was one of the variants of the RoboCup Soccer Simulator (either Keepaway, KATA,
or Takeaway). Similarly, the term player will be used to refer to the entity that inter-
acts with the game. Note that the terms game and player are equivalent to the terms
environment and agent, respectively, traditionally used in the RL paradigm. However,
this alternative naming convention will be adopted to prevent misunderstandings in
future sections.

To test our proposed approach, a game implemented in the popular RL toolkit
Open AI Gym [11] will be used. Open AI Gym is a well-maintained RL toolkit that
provides an interface to interact with a variety of games. The game chosen to try our
proposed approach is a variant of Frozen Lake.

4.1.1 Foggy Frozen Lake

The original Frozen Lake (FL) is a simple two-dimensional grid-based game set in a
virtual world made of ice (this game is provided out-of-the-box with Open AI Gym
[11]). The objective in FL is for the agent to move from the start cell (S) to the goal
cell (G) without falling into the hole cells (H). To make the game more tangible, a
screenshot of FL is shown in Figure 4.1, where the agent is depicted as an elf on an
8x8 grid. The goal is for the elf to find a safe path of frozen (F) tiles from his stool (in
the upper-left tile) to the present (bottom-right tile) without falling into the holes (H).
In the original FL, the observation emitted by the game is an integer corresponding
to the index of the tile the agent is at. To allow for the development of strategies
when a new map is presented, the game observation is augmented with the (at most)
8 neighbouring tiles of the agent (represented by the red square around the player
in Figure 4.1). This is done to allow the player to learn some policy to navigate new
maps just by looking at this partial observation of the environment. We call this
variant of the game "Foggy Frozen Lake" (FFL). The name comes from the idea that
there is some dense fog in the lake, so the agent can only see its surrounding tiles
and the index of the tile it is at.
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FIGURE 4.1: Screenshot of Foggy Frozen Lake, the game that will be
used to test our approach.

Game Dynamics

Each map of FFL is generated according to parameters n and p, where n indicates
the size of the grid and p is the probability of a given cell being frozen. When a
new game is generated, a squared grid of size nxn is created. Each of its cells is
assigned the state "frozen" with probability p or "hole" with probability 1-p. If the
generated grid world happens to contain no valid paths that connect S to G, a new
map is generated until it contains some valid solution. The top left cell is always the
starting point and the bottom right cell is always the goal cell. Figure 4.2 illustrates
how the complexity of the map varies with different values of p.

FIGURE 4.2: Example of three 8x8 maps of the FFL game randomly
generated for different values of p. S is the starting point of the agent;
G is the goal; the black cells represent the holes; and the white cells

represent the frozen blocks.

The observations emitted by the game are encoded in a binary array, as shown
in Figure 4.3. The first 24 bits encode the tile type of each of the 8 potential tiles
surrounding the agent (either a safe tile, a hole, or there is no tile in that position).
The encoding is done in 3 groups of 8 bits, which are set to 1 if the tile type corre-
sponds to its group type. Each 8-bit group starts with the left tile with respect to the
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FIGURE 4.3: Structure of the observation emitted by FFL. A binary array
encodes the type of all 8 potential neighbouring tiles and the position

of the agent in the grid.

agent location and continues clockwise. The remaining bits of the observation are a
one-hot encoded vector corresponding to the index of the tile the agent is at. This
observation can be directly consumed by a connectionist model or be translated into
symbolic features using some KB.

At any state, the agent can perform one of these four actions:

• UP: moves to the cell above.

• DOWN: moves to the cell below.

• RIGHT: moves to the cell on the right.

• LEFT: moves to the cell on the left.

The original formulation of FL assumes that the frozen cells are slippery, so the
agent has a probability of 1/3 of reaching the target cell after choosing an action
and a probability of 1/3 of reaching both perpendicular directions. This stochastic
behaviour will be suppressed in our case, meaning that the probability of reaching
the target cell will be 1 at all times. If there is no cell in the target direction (e.g., the
agent is in the top row and tries to go up), the agent remains in the same state. A
reward of 0 is returned in such cases.

The game reaches its terminal state when the agent runs into a hole or when it
reaches the goal.

Reward Function

By default, the game returns a unique reward of +1 when the agent reaches the goal
state. To help the agent explore successful paths (i.e., actively avoid falling into a
hole), the reward function in FFL has been modified so that the game also returns a
negative reward in case the agent falls into a hole. Using ct to refer to the cell class
the agent has reached at time step t, the resulting reward function can be defined as:

rt =


−1 if ct = ”H”
+1 if ct = ”G”
0 otherwise

(4.1)

Early Termination

To prevent our agent from roaming indefinitely in the grid, a timeout of 100 time
steps is implemented. This means that if the agent does not reach the termination
state after 100 steps, the episode is automatically terminated. A reward of 0 is re-
turned in this case.
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Additionally, to accelerate the execution time, the episode is also terminated pre-
maturely if the agent performs 2 times in a row the same pair of actions (e.g., UP-
DOWN-UP-DOWN). This is a simple way of detecting if the agent is stuck in a loop.
This is very common for the symbolic agent in the early stages of the training phase
since it is likely for a suboptimal ordering to cause the player to alternate between
two actions. In these cases, a reward of 0 is emitted.

4.2 Argumentation Frameworks

This section gives two different AFs to solve the FFL game: a naive AF that uses
only factual knowledge (derived purely from the current state) and an advanced AF
that also incorporates working memory (derived from previous interactions with
the environment). Each AF is given along with its premises (prem) and its mapping
of arguments to actions (acts, as defined in Section 4.5).

4.2.1 A Naive Approach

Let us consider the most basic set of actions that a domain expert could advise
the player to take. Since the only primitive action the player can take is to move
one cell in one of the four cardinal directions, a simple recommendation could
be "move DIRECTION only if that cell is safe", where DIRECTION can be any of
{up, down, right, le f t}. The set of safe cells is sa f e_cells = {”S”, ”G”, ”F”} (start,
goal and frozen). The four possible actions are UP(), DOWN(), RIGHT() and
LEFT(). It is assumed that the position of the agent is given by the function
cell(x, y). With all these considerations, four different arguments can be created
accordingly. The corresponding AF is shown in Figure 4.4 and will be referred to
as naive AF. The definition of each argument along with its premises and promoted
action is as follows:

• U: UP() IF cell(x, y− 1) ∈ safe_cells

• D: DOWN() IF cell(x, y + 1) ∈ safe_cells

• R: RIGHT() IF cell(x + 1, y) ∈ safe_cells

• L: LEFT() IF cell(x− 1, y) ∈ safe_cells

FIGURE 4.4: Naive AF for the FFL game.
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4.2.2 Adding Memory

One expert may suggest the player not to move to a tile that has already been ex-
plored, to avoid going around in circles. Let φ(x, y) be a Boolean function that re-
turns 1 if and only if the agent has not yet been at position (x, y) at some previous
time step t′ < t. The following arguments of the form nX are defined to recommend
the player to move to a new tile when that tile is unexplored:

• nU: UP() IF φ(x, y + 1) AND cell(x, y + 1) ∈ safe_cells

• nD: DOWN() IF φ(x, y− 1) AND cell(x, y− 1) ∈ safe_cells

• nL: LEFT() IF φ(x− 1, y) AND cell(x− 1, y) ∈ safe_cells

• nR: RIGHT() IF φ(x + 1, y) AND cell(x + 1, y) ∈ safe_cells

The corresponding AF is given in Figure 4.5 and will be referred to as advanced
AF. Note that the arrows represent attack relations and all arguments that promote
different actions attack each other. Arguments with the same colour promote the
same action and do not have an attack relation among them.

FIGURE 4.5: Advanced AF for the FFL game enriched with information
about unexplored surrounding tiles.

4.3 Learning the VAF

As it was mentioned several times throughout Chapter 1, learning the VAF amounts
to ordering the arguments of the provided AF so that the resulting VAF performs
well in the game (in our case, FFL). Since the number of total orderings for an AF of
n arguments is n!, the solution space quickly becomes too large to be explored using
a brute-force approach. As we will see in the next section, this is a particular kind of
combinatorial optimisation (CO) problem. Because we want to learn the VAF by di-
rectly interacting with the game, some sort of online learning will be necessary. One
way to solve this CO problem while performing online learning is through online
RL. Using RL to solve CO problems has been a popular research topic in the last few
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years, yielding very positive results [6] [33] [4]. A comprehensive survey is done by
Mazyavkina et al. [39] where common design decisions in RL-CO are listed (e.g.,
different ways to encode a problem, different RL algorithms used, etc.). Joshi et al.
[30] also explicitly outline the main steps of their CO pipeline.

In this project, an RL-CO pipeline will be used to learn the VAF. The details of
how the CO problem is defined are described in Section 4.3.1 and the overall archi-
tecture and its components will be explained in Section 4.3.2

4.3.1 Designing the RL-CO Pipeline

The design process of the RL-CO pipeline implemented in this project has been
based on the steps outlined in the related literature [39][30]. The five steps followed
to design our RL-CO pipeline are:

1. Problem definition: given an input AF with n ∈ Z nodes, let argi denote the i-
th argument. Let {arg1, arg2, ..., argn} be a strict total order of the n arguments
of the AF where val(arg1) > val(arg2) > ... > val(argn). The CO problem can
be formulated as an MDP, where the state st is the partial ordering of the argu-
ments of the input AF up until time step t. Action at is the next argument, argt,
to be appended to the partial ordering at time step t. A VAF can be generated
only when st is a total ordering (i.e., all arguments are in the partial solution).
The VAF is generated from st by choosing valpre f as the standard ordering of
integers and by defining val as an integer mapping function:

val : arg→ i | ∀arg ∈ args(AF), i ∈ Z (4.2)

In this equation, args(AF) is the set of arguments of the AF and the integer
mapping is done such that the ordering val(arg1) > val(arg2) > ... > val(argn)
holds. The emitted reward is calculated by applying the learnt policy derived
from the VAF (as explained in Section 3.2.1) to the target game. The reward sig-
nal is zero in all other cases. It can be observed that this problem is formulated
as a series of episodic tasks with a fixed number of episodes, so the maximum
number of time steps of a full run is always T = n.

2. State encoding: although tabular methods may be a good approach for small
AFs, the exploration space grows factorially as the number of arguments in-
creases. Specifically, the size of the state space is the total number of all partial
orderings of the argument set (this is equivalent to the total number of per-
mutations of all subsets of an n-set [51]). This makes the direct exploration of
such large state spaces impractical. The proposed solution is to create a set of
state features Vij based on the relative ordering of each pair of arguments (i.e.,
Vab = 0 iff val(arga) > val(argb), otherwise Vab = 1). A small example for a
5-argument AF is given in Section 4.4.1 at 3 different time steps.

3. Action decoding: the action is iteratively decoded using autoregressive de-
coding.

4. Solution search: the solution is assembled by using greedy search.

5. Policy learning: the policy is learnt by using SARSA, an online value-based
learning algorithm. The goal is to find an estimate q̂(s, a) of the optimal state-
action value function q∗(s, a). To that end, linear function approximation is
used to compute q̂ from the encoded state features mentioned above. More
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FIGURE 4.6: Example AF with with five arguments (a, b, c, d and e). The
arrows indicate attacks between two arguments.

FIGURE 4.7: End-to-end RL-CO pipeline integrating an argumentation
framework at time step t = 2 (left) and t = 3 (right). When t < T − 1
the partial solution does not need to be evaluated on the game (contrast

with Figure 4.8).

details about linear function approximation and SARSA are given in Section
4.4.2.

4.3.2 Pipeline Architecture and Components

To better illustrate this process, a schematic representation of a concrete architecture
is now given, using the 5-argument AF shown in Figure 4.6 as the input domain
knowledge to our running example. Figure 4.7 illustrates how a partial solution is
constructed by showing the pipeline evolution from time step t = 2 to t = 3. Keep
in mind that the first action was taken at time step t = 0 (i.e., according to the figure,
argument d was selected by a0).

Here is a breakdown of each of the elements that appear in Figure 4.7:

• Agent: the entity that learns the policy of some target game by finding an
optimal ordering of the arguments of af (the input AF). It will be described in
detail in Section 4.4.

• State st: the partial ordering of the 5 arguments up until time step t.

• Reward rt: the reward at time step t. If t = T − 1 = 4 and st contains no du-
plicate arguments (all 5 arguments have been sorted), rt is equal to the reward
given by the target game after evaluating the learnt policy. Otherwise rt = 0.
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• af : the expert knowledge input by the domain agent in the form of an AF.

• Enc. (encoding): encoded representation of the current state: the partial order-
ing is transformed into a set of state features.

• RL algorithm: algorithm that learns q̂(s, a): a semi-gradient SARSA with linear
function approximation will be used. This block outputs the next action.

• Action at: the next argument to be appended to the partial permutation.

• Environment: the state of the environment of the formulated MDP is the par-
tial permutation of the 5 arguments resulting from adding the last argument
to it. This block is a simplification of the full environment since the policy is
not evaluated in the target game until t = T − 1. A full representation of the
environment dynamics is given in Figure 4.8. Its dynamics will be described
in detail in Section 4.5.

FIGURE 4.8: Detailed diagram of the environment dynamics: once s has
become a total ordering, the derived policy is evaluated on the game

instance and both the reward and the final ordering are returned.

As mentioned in the problem definition, the policy is not evaluated on the target
game until time step t = T − 1. For this reason, and to simplify the pipeline rep-
resentation, the environment block in Figure 4.7 has omitted all the details regarding
how the AF is used in conjunction with the val function to determine the policy of
the target game. The workflow at time step t = T − 1 (being t = T the time step
of the terminal state T), is shown in a separate diagram in Figure 4.8. The specific
constituent blocks of the environment block are described below:

• Ordering: block representing both the val function and the valpre f relation
of the learnt VAF. It is the ordering of the arguments in af once all arguments
have been strictly sorted, being the first element the one with the highest value
and the last one the argument with the lowest value (as stated in the problem
definition). It is equivalent to the last state of the environment (i.e., in Figure
4.8, the val function is derived from s5, since at this point all 5 arguments have
been ordered), and valpre f is the standard integer ordering (see Section 4.3.1).

• af : same AF as in the agent block.



Chapter 4. Method 28

• vaf : resulting VAF after removing the defeated attacks from af, as described in
Section 3.2.1.

• game: the target game for which a policy is being learnt. The policy is only
evaluated once all arguments have been ordered. To evaluate the policy, the
game is played according to the policy defined by va f . This is done by itera-
tively computing a VSAF and its corresponding extension to decide on the next
action to take inside game (e.g., Figure 4.8 depicts a snapshot of the target game
where the VSAF is composed of arguments a, e and b). This is done iteratively
until some termination condition is met (hence the "loop until termination" ar-
row pointing back at the start). Ideally, the game would reach some terminal
state and return some reward. However, some early termination strategies
will be implemented to accelerate the execution, such as detecting strategies
that make the agent loop between two states.

• vsaf : derived VSAF, as described in Section 3.2.1.

• semantics: an extension is calculated according to some semantics to recom-
mend an action to take inside game. The grounded extension is used, as in the
related work [23] [32].

4.4 Agent

The previous section has translated the problem of learning the VAF into a CO prob-
lem and the overall RL-CO pipeline has been explained. This section describes the
agent used to solve the CO problem of finding the best ordering of the arguments
of the AF. First, the encoding used to represent the state of the environment is de-
scribed. Then, the learning algorithm is outlined. Finally, the reward constraints
imposed on the action space of this agent are described.

4.4.1 State Encoding

As seen in Section 4.3.2, the observation emitted by our environment is a (partial) or-
dered set. This observation cannot be readily used by our agent, so a set of features
has to be constructed from it. Since the observation informs the agent about the rel-
ative order of the arguments, the features should explicitly express this information.
One way to encode this is by creating a binary squared matrix of size |args(a f )| (the
number of arguments in af ), where each value in the matrix represents the relative
ordering between two arguments.

Let n be the number of arguments in af. Let (s,≻) be a strict (partial) ordered set
over the arguments of a f . Let M be a squared binary matrix of size n× n, where argk
denotes the k-th argument of args(a f ). Each element mij ∈ M is defined according
to:

mij =

{
0 if val(argi) > val(argj)

1 otherwise
(4.3)

Note that Equation 4.3 has been designed in such a way that all possible state
encodings yield a non-zero matrix to ensure that at least some features are active at
all times. This is important when using linear methods as the learning algorithm.

Using the environment depicted in Figure 4.8 as a running example, Table 4.1
illustrates the different values of M at time steps t = 0, t = 2 and t = 5. It is
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easy to verify that M biunivocally encodes the order relations of s. For example: in
Table 4.1(i), the element in position (1,2) is 1 because it is not true that val(b) >
val(c), according to s0; in Table 4.1(ii), the element in position (0,1) is 0 because
val(a) > val(b), according to s2 (although b has not been ordered yet, we know
that arguments added later have lower order than their predecessors); and in Table
4.1(iii), the element in position (0,3) is 1 because val(a) < val(b), according to s5.

TABLE 4.1: Proposed encoding at different time steps for the environ-
ment from Figure 4.8. Matrix indices start at 0.

(i) s0 = {}

a b c d e
a 1 1 1 1 1
b 1 1 1 1 1
c 1 1 1 1 1
d 1 1 1 1 1
e 1 1 1 1 1

(ii) s2 = {d, a}

a b c d e
a 1 0 0 1 0
b 1 1 1 1 1
c 1 1 1 1 1
d 0 0 0 1 0
e 1 1 1 1 1

(iii) s5 = {d, a, e, b, c}

a b c d e
a 1 0 0 1 0
b 1 1 0 1 1
c 1 1 1 1 1
d 0 0 0 1 0
e 1 0 0 1 1

4.4.2 Learning Algorithm

For the learning algorithm, a value-based method will be used. As seen in Section
2.2.2, the goal in value-based methods consists in finding a function qπ(s, a) that ap-
proximates q∗, the optimal action-value function. To do so, linear function approxi-
mation [54] will be used to estimate qπ and its parameters will be updated according
to the Q-learning algorithm [58].

Linear Function Approximation

The estimate q̂(s, a) will be calculated using linear function approximation [54]. This
approach uses a set of weights, W, and a feature matrix, X(s, a), to approximate the
values of the state-action pair (s, a).

The feature matrix X is a binary matrix of dimensions S × A, where S are the
dimensions of the matrix encoding of the encoded, M, and A is the cardinality of
the set of actions. In the FFL case, the size of X is |args(a f )| × |args(a f )| × 4, since
there are 4 possible actions. The value of the element xijk is 1 when the encoded state
feature mij is active and when the current action a corresponds to the k-th possible
action. In every other case, xijk is 0.

The weights matrix W has the same dimensions as X. The goal is to find a W that
yields a good approximation of q̂π according to:

q̂(s, a, W)
.
= W : X(s, a) = Σij(wijkxijk) (4.4)

where (·):(·) denotes the Frobenius inner product.
The next section explains how to update the weights of W to approximate the

optimal value function q∗. For that, the gradient of q̂π with respect to W will be
necessary, which is simply:

∇q̂(s, a, W)
.
= X(s, a) (4.5)
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SARSA

SARSA [48] is an on-policy learning algorithm that uses the action at the next state
to approximate the expected return of the next state (also known as bootstrapping).
Assuming q̂ is a linear function, as defined in the previous section, the SARSA up-
date rule is:

Wt+1 = Wt + α
(
rt + γq̂(st+1, at+1, Wt)− q̂(st, at, Wt)

)
∇q̂(s, a, Wt) (4.6)

4.4.3 Constraining the action space

Early experiments were conducted to test the efficacy of the agent. Although suc-
cessful, some preliminary tests revealed that the random exploration of the agent be-
comes very inefficient as the number of arguments in af increases. This is because as
the number of arguments to be ordered increases, it becomes more likely for a clash
to occur between arguments already in the partial solution and an argument chosen
at random. For example, for a 5-argument AF, the probability of randomly choosing
the penultimate argument without clashing is 2/5; however, for a 15-argument this
probability is 2/15.

For this reason, the action space of the agent at any time step t is limited to the set
of arguments that are not yet in the partial solution st. This approach is consistent
with similar work done in the RL-CO domain [34] [12].

4.5 Environment

Several details of the environment have already been explained in Section 4.3.1. This
section gives further details about its dynamics. Our environment emulates the CO
problem of finding and ordering for the arguments of the AF fed by the domain
expert such that the resulting VAF maximises the accumulated rewards emitted by
the game. The environment needs 4 parameters to be instantiated:

• game: an instance of the target game, as described in Section 4.1.

• af : the AF supplied by the domain expert

• prem: the premises for each of the arguments in af. This is essentially a mapping
function that, given an observation, outputs the list of valid arguments.

• act: a function that maps every argument in af with the action it promotes.

Our environment has been conveniently implemented using the Open AI Gym
[11] toolkit.

4.5.1 Environment Dynamics

The state of the environment is given by the (partial) ordering of the arguments of
af. After the environment has been initialised, the initial state (s0) is an empty set
and the possible set of actions is the set of arguments of af. This means that at every
time step t, one of these actions can be appended to the current state. To illustrate
this, a visual representation of this process is given in Figure 4.9. In this diagram,
it can be seen that the environment receives an action at (for example, argument d)
and appends it to the partial solution, which corresponds to the new state of the
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FIGURE 4.9: Simplified diagram of the environment: state st evolves at
time step t when an action at is selected.

environment. More formally, we can say that the state of the environment, s, is a
strict partial ordering, (s,≻), over the arguments of af.

Once every argument of af is in the ordering, s becomes a strict total ordering
and the terminal state is reached since there is no argument left to order. At this
point, s represents the ordering of our VAF, so va f can now be created by removing
the unsuccessful attacks from af, as we saw in Section 3.2.1.

After the VAF has been constructed, the derived policy is evaluated on the game
instance. To do so, a VSAF and its corresponding extension are calculated at ev-
ery step of the game block. The applied semantics determine the extension whose
arguments get accepted, as outlined in Section 3.2.1. The action promoted by the
accepted arguments (all arguments of the grounded extension promote the same ac-
tion) is applied in the game instance until it reaches the terminal state. At that point,
the environment outputs its current state and the accumulated reward signal emit-
ted by game. This process is conceptually illustrated in Figure 4.8. For example, if the
input af is the AF from Figure 4.6, the current ordering of the arguments is given by
the total ordering {d, a, e, b, c}. Since all arguments are ordered, the va f is calculated
and the target game is evaluated. At the current time step inside the game block, only
arguments a, b and e are valid, according to the input prem function. According to
the semantics, the grounded extension is {a}, so the action promoted by argument a,
is applied in the game block at that particular instant. The game evolves and the next
vsa f is calculated until the game reaches its terminal state.

4.5.2 Reward Function

The only point at which the policy can be evaluated on the game is once all the ar-
guments of af have been ordered. At any other time step, the reward returned by
the environment is 0. Let args(af) denote the set of argument of an AF. Let rew(game,
vaf, prem, act) denote the accumulated reward emitted by the input game instance
given the derived VAF (vaf ), the premises of its arguments (prem) and the mapping
of arguments to their promoted action (act). The reward function can be defined as:

rt =

{
rew(game, va f , prem, act) if args(a f ) ∩ st = args(a f )
0 otherwise

(4.7)

4.6 Evaluation

In order to assess our approach, multiple criteria will be taken into account; namely,
interpretability, absolute performance and domain generalisation. To have a better
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idea of the quality of our solution, the results are compared to various baseline mod-
els. This section contains an overview of the different baseline agents our approach
has been compared to and details about the metrics of interest that will be the focus
of our experiments in Chapter 5.

4.6.1 Baseline models

The symbolic agents (SA) will be compared to the following baseline agents.

Non-symbolic agent (NSA)

The non-symbolic agent (NSA) takes the raw observation emitted by the game, as
shown in Figure 4.3, as state features. Similar to our proposed approach, it uses the
SARSA learning algorithm to select the best possible action a for any given state st
and linear function approximation to implement q̂(s, a, W) to estimate the value of
each state-action pair.

Random agent (RA)

The random agent (RA) is an agent that samples one of the possible actions from a
uniform distribution regardless of the state of the world.

Surroundings-aware Random Agent (SRA)

The surroundings-aware random agent (SRA) is analogous to the RA, with the ex-
ception that the actions that would lead the agent to fall into a hole have been re-
moved from the set of possible actions.

Handcrafted-policy Agent (HA)

A simple strategy consists in prioritising actions that make the agent move towards
the goal (right or down) provided that the corresponding cell is safe. If the agent can
safely move either right or down, the corresponding actions are added to a set of
candidate actions. Otherwise, the remaining actions are added to the candidate set
provided that they lead to a safe cell. The handcrafted-policy agent (HA) uses these
criteria to create a set of candidate actions and randomly samples one at each time
step of the game. The corresponding algorithm is given in Appendix A.

4.6.2 Metrics

Three different aspects can be examined to answer Research Question 1; namely, in-
terpretability, absolute performance and domain generalisation. These three aspects
are in direct relation to the secondary Research Questions 2, 3 and 4, respectively.

Interpretability

Coming back to the definition by Biran and Cotton [8] given in Chapter 1 ("[...] sys-
tems are interpretable if their operations can be understood by a human [...]"), the inter-
pretability of our model will be assessed qualitatively by examining the final or-
dering of the arguments of the AF. For example, in the FFL game, since the goal is
always at the Southeast of the starting point, it would be expected that the found
policy prioritises the actions down() and right(). This is analogous to the strategy
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analysis done with MARLeME [32]: in the Takeaway game in which MARLeME
was evaluated, the authors looked at the arguments with the highest values for each
of the takers to produce a post-hoc interpretation of the policy.

Success Rate

The success rate will be used as a proxy to measure absolute performance (the total
reward obtained by an agent). This is justified because the FFL is a win-or-lose game,
so the success rate is a more informative metric. To measure the success rate, the
learning agents (naive/advanced SA and NSA) will be trained until convergence
and they will be evaluated using their greedy policy (i.e., the RL agent no longer
explores at this stage). All agents will be trained each run on a a fixed game instance
and the results will be averaged across runs.

Success Rate: Domain Generalisation

To assess if injecting domain knowledge in the agent improves its success rate on
novel scenarios, the agents will be evaluated on game instances sampled from dis-
tributions different from the one used during the training phase.
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5 Experiments

In this chapter, two experiments performed with the agents are shown. The code to
run the experiments is publicly available1 for replication along with the implemen-
tation of all the agents and environments used here. The two symbolic agents will be
referred to as naive SA and advanced SA, implementing the naive AF and advanced
AF, respectively (see Section 4.2).

5.1 Baseline Comparison: One Game at a Time

In this experiment, the three learning agents (naive/advanced SA and NSA) are
trained on a single instance of FFL per run, sampled from a distribution with pa-
rameters n = 8 and p ∈ {0.6, 0.7, 0.8, 0.9}. In each run, four different game instances
are generated (one for each possible value of p) and the learning agents are trained
until some convergence criterion is met (specifically, until the agent solves the game
100 times in a row following its greedy policy) for a maximum of 5000 episodes.
After training, the learning agents are evaluated according to their greedy policy.
The other three (non-learning) baseline models (RA, SRA and HA) are also evalu-
ated on each FFL instance. A total of 50 runs are executed (i.e., 50 game instances
for each value of p) and the results are averaged across runs. The more expressive
the state features, the better is the model expected to perform. For example, the
NSA has access to the tile index, so it should be able to explore every tile and find
a safe path without much effort. On the other hand, the arguments of the naive SA
rely exclusively on the relative position of the agent with respect to its neighbouring
safe/unsafe cells. The advanced SA is more expressive than the naive SA because it
also "knows" whether the neighbouring cells are unexplored or not.

5.1.1 Results

The success rate of each model per value of p is shown in Table 5.1. The NSA was
capable of learning every environment it was presented with, as we would expect
since it is the most expressive model. The advanced SA performed almost at par with
the NSA, however, the lower score for p = 0.6 shows that the advanced AF is not
expressive enough to solve all game instances. The effect of adding memory to the
advanced SA is clear when comparing it to the performance of the naive AF (ranging
between 0.38 and 0.82), which performed worse than the HA (ranging between 0.46
and 0.88). The very low success rates of the RA and the SA show that the game is
not trivial. The next experiment will focus on comparing the NSA and the advanced
SA, using only the HA for reference.

1https://github.com/omcandido/RL-AA

https://github.com/omcandido/RL-AA
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TABLE 5.1: Average success rate obtained by each model for different
values of p.

model
p

0.6 0.7 0.8 0.9

RA 0.00 0.00 0.00 0.00
SRA 0.04 0.02 0.06 0.12
HA 0.46 0.72 0.74 0.88
naive SA 0.38 0.36 0.66 0.82
advanced SA 0.98 1.00 1.00 1.00
NSA 1.00 1.00 1.00 1.00

5.2 Towards a Universal Strategy: Domain Generalisation

In this experiment, the game instance is re-sampled at each episode from a distri-
bution with parameters n = 8 and p = 0.8 and the NSA and the advanced SA are
trained extensively until policy convergence. To evaluate the domain generalisation
capabilities, each model is evaluated (using its greedy policy) on a new game in-
stance sampled from a distribution with variable parameters n and p. Specifically,
for each run, 14 different game configurations are created by combining the elements
of the sequences (0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9) and (8, 16) for parameters p and n,
respectively. The results are averaged across 1000 runs. In this case, the advanced
SA is expected to outperform the NSA, since the advanced SA benefits from state
features derived from domain knowledge that help capture its latent state (similar
to Nechepurenko et al. [42]). A good target function is expected to be too complex
for our NSA model to approximate since linear function approximation predictions
are based exclusively on the current observations of the game and do not have an
internal state that can capture the latent dynamics of the POMDP. Neural architec-
tures that exhibit some "memory" capabilities thanks to their internal state (such as
RNNs) are common connectionist choices to solve POMDPs [13] [40].

5.2.1 Results

At the end of the training, the ordering of the advanced SA converged to:

{nR, nD, L, U, nL, nU, D, R} (5.1)

The average success ratio for each model at every game configuration is shown
in Figure 5.1. Interpretability and performance are discussed separately in the fol-
lowing sections.

Domain Generalisation

The second observation is that the success ratio decreases as the map size and com-
plexity increase, regardless of the agent. The results show that the SA can consis-
tently find the safe path to the goal even when the game is not sampled from the
same distribution as the training instances. Specifically, Figure 5.1 shows that the SA
achieved an average success ratio higher than 90% when trained on a distribution
of games sampled with n = 8 and p = 0.8. Without any further training, the same
model is capable of solving less complicated games (n = 8, p = 0.9) with an average
success ratio of nearly 100%, and more complicated games (n = 8, p = 0.6) with an
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FIGURE 5.1: Visualisation of how the advanced SA and the NSA gen-
eralise to new game distributions after being trained only on instances
with parameters n=8 and p=0.8. The HA performance is also shown for

reference.

average success ratio above 80%. It can also be seen that the SA agent scales reason-
ably well when the map width is doubled (n = 16, p = 0.8), reaching an average
success ratio of above 80%. The agent still scales reaches a success ratio of almost
100% when the complexity of the game is decreased (n = 16, p = 0.9), but this time
it does not fare so well for more complex games (n = 16, p = 0.6), where the success
ratio drops to nearly 50%. It can be seen that, for each of the game configurations,
the SA performs significantly better than the HA, which in turn performs better than
the NSA. As mentioned in the previous section, this low performance of the NSA is
most likely due to not being able to integrate past interactions with the game into its
new inferences, and relying exclusively on the current observation of the game. It
may seem surprising that the HA, which does not leverage past experiences either,
performs better than the NSA. This is thanks to the fact that the HA breaks ties at
random between its preferred actions, allowing it to perform different actions in the
same tile and avoid getting stuck in a loop.

Interpretability: Strategy Analysis

Regarding the interpretability of the model, the advanced SA produced the follow-
ing ordering: {nR, nD, L, U, nL, nU, D, R}. This means that moving right and down,
if the tiles are new and safe, are the two most important arguments (nR and nD, re-
spectively). Next, going left and up, if the tiles are just safe, are the following two
preferred arguments (L and U), respectively). The fact that the first and second ar-
guments are antagonists of the third and the fourth allows the agent to trace back
its steps in case it enters a cul-de-sac (e.g., if the agent moves to the right, as indi-
cated by its first argument, and enters a corridor with no exit, the argument nR will
no longer hold since those tiles have already been explored and the agent will fall
back to argument L, allowing it to retrace its steps and look for an alternative). The
next arguments in the ordering are nL and nU. These two arguments are superseded
by L and U, respectively, since they have less constrained premises, higher order of
preference and recommend the same action. So, if nL holds, L will also hold and will
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be preferred. If L does not hold, nL will not hold either, because pre(L) ⊂ pre(nL).
Finally, D and R are the least preferred arguments. This makes sense because any
of them being the only argument of the grounded extension would imply that the
agent has already explored the direction they indicate to explore (e.g., if nR holds, R
also holds, but nR will be preferred. If R holds but nR does not hold, it is because the
agent has already explored its right tile). This means that when the agent defaults to
any of the last two arguments, it will inevitably loop the same sequence of actions
over and over again. Figure 5.2 shows the traces of an agent following the aforemen-
tioned policy. It can be seen that the overall strategy is to sweep the map from left to
right and from the top to the bottom until the goal is reached.

FIGURE 5.2: Policy determined by a VAF with ordering
{nR, nD, L, U, nL, nU, D, R} on a FFL map generated with n=8

and p=0.6.
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6 Discussion

This chapter summarises the contributions of this thesis to the scientific literature on
KB-RL. The advantages and disadvantages of the method described in Chapter 4 are
discussed and some pointers for potential future lines of research are given.

6.1 Conclusion

This project presented a novel approach to training a fully symbolic RL agent us-
ing formal argumentation with the aim of improving the interpretability of AI-made
decisions. To justify the proposed approach, the rationale for some scholars [25] to
advocate more interpretable models has been explained and three relevant works
on RL have been described in detail [57] [22] [32]. Although model-extraction tech-
niques [32] are a promising approach, the fact that the resulting symbolic model is
an approximation of the original RL agent leaves open the possibility that the ex-
tracted model may provide unfaithful explanations or perform worse than the orig-
inal agent. To avoid these problems, an end-to-end ML pipeline has been proposed
to bypass the model-extraction step and train a symbolic agent using online RL. The
resulting symbolic agent uses a VAF as its inference engine, which results in better
explanations than connectionist conflict resolution techniques (e.g., compare to Voss
et al. [57]).

The implementation of the proposed approach is explained in detail in Chapter
4, along with a very simple strategy game to test it. The experiments from Chapter
5 show that our pipeline can be used to train a symbolic model to solve a variety
of games when provided an AF rich enough. In view of these results alone, it can
be said that Research Question 1 has been positively answered. The remainder of
this section analyses the extent to which the secondary research questions were an-
swered.

6.1.1 Explainability

Coming back to the definition of explainability by Biran and Cotton [8] given in
Chapter 1, our model can be considered explainable by virtue of its introspectabil-
ity. Specifically, Section 5.2 shows how the learnt strategy can be explained by ex-
amining the final ordering of the arguments, giving a positive answer to Research
Question 2. This kind of post-hoc analysis was also done by Kazhdan et al. [32] with
the VAFs extracted by MARLeME, so it is fair to wonder what the added value of
our approach is compared to using model extraction to replace the original model.
First, let us consider using MARLeME to periodically extract a symbolic model from
a connectionist RL agent running in production. This flexible approach might help
understand what the agent is doing, but, because faithfulness cannot be guaranteed
between the explanations and the deployed models, this method is not suitable for
applications that require the model to be verifiable. Now, let us consider the sce-
nario in which the model extracted by MARLeME is used to replace the original
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model in production. Because the extracted model is an approximation, some per-
formance loss is likely to occur (the authors report a fidelity score of their models
varying between 0.86 and 0.68 in RoboCup Takeaway). If the performance of the
extracted model is acceptable, (i.e., the accumulated reward is high enough for the
application), then model extraction would be a viable solution. However, if the qual-
ity of the model deteriorates too much to be deployed, either a new agent needs to
be trained on the original task (in hopes that its new trajectories will be captured
better by the same AF) or a more complex AF needs to be fed into MARLeME (with
the expectation that it will fit better the trajectories of the agent). In any case, the
fundamental problem has shifted from solving a certain RL problem to imitating the
behaviour of another agent. This means that the trained agent is acting as a surro-
gate for the original task. Thus, although the resulting VAF contains the ordering
that best fits the trajectories of the agent, there is no guarantee that this is the or-
dering that would give the highest rewards when interacting with the environment.
This is because, as mentioned in Section 1.2, Πtraj ⊆ Πenv, being Πtraj and Πenv
the policy space when considering training on the trajectories of the model and the
state-action-reward space of the environment , respectively.

6.1.2 Performance

As a secondary goal, the performance of our symbolic model was compared with
multiple baseline models (most interestingly, a non-symbolic model and a hand-
crafted model) to get a sense of how feature extraction from domain knowledge can
improve model performance. Section 5.1 showed that the performance of the naive
SA could be improved by creating a richer AF (the advanced AF). As a result, the ad-
vanced SA performed almost at par with the NSA. While the NSA solved 100% of the
game instances, still some game instances could not be solved by the advanced SA.
The fact that a simple handcrafted policy could achieve relatively high performance
as well, is a likely sign that the FFL game was too simple to categorically answer Re-
search Question 3. What can be said is that the NSA was expressive enough to learn
a good policy each time and that the performance of the naive naive SA could be
increased by enriching its AF. Therefore, the absolute performance of our symbolic
agent is bounded by the expressiveness of its AF.

Section 5.2 presented a more challenging task. This time, the agents were trained
on a distribution of game instances instead of a single instance at a time. In this
scenario, the advanced SA performs much better than any other model and shows
notable generalisation capabilities when evaluated on instances sampled from novel
distributions. Our baseline NSA is using linear function approximation, which does
a poor job at capturing the latent state of the game (e.g., visiting a cell for the sec-
ond time may have certain implications). Since memory played a fundamental role
in improving the performance of the symbolic agent, a recurrent neural network
(RNN) would likely improve the generalisation capabilities of our NSA. Regard-
ing Research Question 4, our experiments do not constitute a comprehensive com-
parison among symbolic and non-symbolic agents, but a simple game such as FFL
already presents a somewhat challenging function for a non-symbolic agent. It is
shown that, in our setup, symbolic agents can leverage expert domain knowledge to
learn a solution that can be applied to novel environments.
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6.2 Future Work

The choice of an AF in the style of Dung [17] was motivated by the works of Gao
et al. [22] and Kazhdan et al. [32], who also use the same kind of AF to instantiate
domain knowledge. An interesting line of research could investigate the impact of
different AFs on the interpretability of the symbolic agent. For example, imagine
that an expert on FFL creates the following generic argument: "if the agent has already
performed action X in the current tile, then it should now perform an action Y such that
Y ̸= X". Instantiating this domain knowledge in our AF would require 12 addi-
tional arguments (pUL, pUR, pUD, pDL, pDR, pDU, etc.), where each argument
pXY means that a previous action X has been performed in the current tile and action
Y is now recommended. The full AF is shown in Figure 6.1(i) and this was in fact
one of the first AFs fed to our symbolic agent. Although the results were positive
in terms of performance, using a long set of abstract arguments made the resulting
ordering difficult to interpret. Consider now a bipolar argumentation framework
(BAF) [2] that extends Dung’s definition of AF adding a support relation between
arguments. Instead of a formal definition, a visual example is given in Figure 6.1(ii)
translating the aforementioned AF. By allowing support and attack relations among
arguments, only 4 new arguments are needed this time (each argument pXY can be
conflated into a single pX argument with one attack relation and three support re-
lations). Using this technique, a default set of arguments can promote the primitive
actions in the action space (i.e., in this case, U, D, L and R) while new arguments are
added attacking/supporting other arguments without necessarily promoting an ac-
tion. This is an interesting approach that presents new challenges, such as designing
a new conflict resolution mechanism (either value-based [15] or weight-based [45])
and choosing a semantics that ensures that exactly one of its arguments promotes a
primitive action.

FIGURE 6.1: Comparison between (i) an AF in the style of Dung [17]
and (ii) the equivalent BAF [2]. Some attacks have been omitted for
simplicity in the AF on the left (arguments with different colors are in
attack relation with each other). On the right, the attack relations of the
arguments in the BAF are represented with a continuous arrow, while
the support relations are represented with a dashed arrow. Arguments

with a white background do not promote any action.
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As mentioned in the previous section, this project constitutes by no means a rig-
orous comparison between symbolic and non-symbolic agents. One line of research
that goes in the direction of performance comparison should consider both a more
challenging game and a more sophisticated architecture for the non-symbolic agent.
Since the literature using a KB to solve an RL task is very limited, there is no stan-
dardised test that can be used as a common benchmark by multiple researchers.
Such a benchmark should provide both an RL environment and a KB. The KB can
be given in the form of a set of rules that can be instantiated using some formalism
such as an AF.

Finally, finding a good ordering for the arguments of our AF has been formulated
here as a CO problem and RL was proposed to solve it due to the factorial growth of
the state space with the number of arguments in the AF. This is a difficult problem on
its own and the solution offered here is subject to optimisation. For example, games
like FFL return very sparse rewards, slowing down the learning process. Modest
speed improvements have been achieved a posteriori using replacing traces [54] in
our RL algorithm. Other methods such as memory replay or the use of deep learn-
ing architectures can potentially improve the convergence time and reward of our
symbolic RL agent. Additionally, other alternatives can be explored to solve the CO
problem formulated in Section 4.3.1 (e.g., genetic algorithms).
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A Handcrafted Agent

Algorithm 1 Handcrafted-policy Agent Algorithm

a← {} ▷ Initialise the set of candidate actions
if RIGHT is safe then

a← right()
end if
if DOWN is safe then

a← down()
end if
if a is empty then

if LEFT is safe then
a← left()

end if
if UP is safe then

a← up()
end if

end if
Randomly sample an action from a
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