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Abstract

In this paper, we consider an online scheduling problem, weighted throughput maximization
scheduling with a busy-time budget. In this problem, jobs are released with released times rj ,
processing times pj , and deadlines dj = rj + pj . Moreover, jobs have weights wj depending on
the setting. In the proportional setting, the weight of a job equals to the length of this job.
While in the categorized setting, a job has weight 1 if the length of this job is less than the given
threshold ω, otherwise it has weight 2. We are also given machines, and each machine can run
g jobs simultaneously. A busy-time budget T is also given. The objective is to gain as much
weight as possible by scheduling jobs on machines using busy-time at most T . For infeasible
instances of proportional setting, we consider general, clique, and one-sided clique instances, and
prove that there is no deterministic online algorithm with a constant competitive ratio, and the
greedy algorithm is an optimal online algorithm. For infeasible instances of categorized setting,
we consider general, clique, and one-sided clique instances, and prove that no deterministic online
algorithm has a constant competitive ratio unless it is a one-sided clique instance, and T is 2. For
feasible one-sided clique instances of categorized setting, we design an adversary and prove that
no deterministic online algorithm has a competitive ratio lower than 9

7
.

1 Introduction

With the rapid development of optical networks and data centers, the consumption of energy is grow-
ing significantly[1]. Thus, achieving higher energy efficiency has become one of the most concerned
topics[2], which is not only environmentally friendly but also beneficial to lower the energy cost or
increase profit. From the perspective of a data center, when a certain amount of resources or bud-
get is given, better energy efficiency can be achieved by scheduling jobs properly to obtain a higher
profit[3, 4]. The profit of jobs can be weighted in different ways, such as the amount of time consumed
or priority. Furthermore, in reality, a data center usually has no information about upcoming jobs.
It knows the information about the job it needs to process only when it is released. Therefore, the
scheduling problem can be modeled as an online problem. There are many online algorithm research
on energy field[5, 6, 7, 8, 9, 10]. In this paper, we propose and discuss the online weighted throughput
maximization scheduling with a busy-time budget, which is one of the most related and representative
machine scheduling problems that can help achieve higher energy efficiency when processing jobs[1, 11].

Machine scheduling problem has been studied for many years[12]. The basic concept of machine
scheduling problems is scheduling jobs on machines to achieve some objectives such as minimizing the
cost or maximizing the gain. We need to process jobs by scheduling them on machines. The jobs
are often characterized by rj(release time): the time when the job is known, pj(processing time):
the amount of time needed to finish the job, and dj(deadline): the time before which the job must
be finished. Many different variants of machine scheduling problems have been proposed according
to different objectives and settings( see survey[13]). The closest related work to our problem was
studied by Shalom et al.[11], where they proposed and discussed the online unweighted throughput
maximization problem. In this problem, every job brings the same amount of profit, no matter how
long the job is. But in reality, jobs could have different weights depending on, for instance, the length
or the priority of the job. Thus, based on their work, we further propose and analyze the proportional
weighted throughput maximization problem and the categorized weighted throughput maximization
problem.
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Instances Lower bound Upper bound Optimal algorithm
General gT gT Greedy
Clique gT/2 gT/2 Greedy

One-sided clique T T Greedy

Table 1: Results for proportional throughput maximization problem

Instances Lower bound
Infeasible General 2g, when T≤ 4

gT/2, when T>4
Infeasible Clique 2g, when T > ω ≥ 2 and 8 ≥ T ≥ 3

gT/4, when T > ω ≥ 2, and T > 8,
2g, when T = ω = 3

g⌊T
3 ⌋, when T = ω > 3

Infeasible One-sided clique gT
g+1 , when T ≥ 2

g + 2

2, when 2 ≤ T < 2
g + 2

Feasible
One-sided clique

4
3 , when T < 2ω − 1

9
7 , when T ≥ 2ω − 1

Table 2: Results for categorized throughput maximization problem

Instances Extra g processors Extra T busy-time budget
Infeasible general g, when 2 ≤ T ≤ 4 gT/2, when T ≥ 4

gT/4, when T > 4 2g, when 2 ≤ T < 4

Infeasible one-sided clique gT
2g−1 , when T ≥ 3 does not help

Table 3: Competitive ratio lower bounds for resource augmentation

The structure of this paper is as follows. In Chapter 2, we introduced domain knowledge of machine
scheduling problems and summarized the results of literature on related machine scheduling problems.
In Chapter 3, we described some frequently used concepts and propositions in the analysis. In Chap-
ter 4, we introduced the Proportional Weighted Throughput Maximization Problem and gave
both negative results and positive results on infeasible instances by analysis. Chapter 5 is the most
significant part of this paper, which introduced the Categorized Weighted Throughput Maxi-
mization Problem and gave both negative and positive results on not only infeasible instances but
also feasible instances. In Chapter 6, we extended the Categorized Weighted Throughput Max-
imization Problem to the case where resource augmentation is allowed, and both negative results
and positive results on infeasible instances are given. In Chapter 7, we summarized the contributions
of this paper and proposed some possible future research problems based on this paper.

2 Literature review

2.1 Machine scheduling and terminologies

Before we start reviewing the literature, there are some concepts that need to be introduced for better
expression.

Job flexibility: Depending on the length of the feasible interval [rj , dj) and processing time pj ,
jobs can have different flexibility, which is unit, rigid or flexible. A rigid job occupies the machine
during the whole time interval. But a flexible job only occupies the machine for pj time from its start
time sj and [sj , sj + pj) ∈ [rj , dj).

Special instances: In this paper, we consider general instances and some special instances, clique
instances, one-sided clique instances, and feasible instances. One-sided clique instances, where all jobs
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have the same release time or deadline. Clique instances, where all jobs share the same common time t
within the available interval between their release times and deadlines. Feasible instances, where there
exists an offline algorithm that can schedule all released jobs.

Machine types: machine can be identical, uniform, or non-related. On identical machines, any
job can be scheduled on any machine, and the amount of time needed to process this job is the same for
any machine. On uniform machines, jobs can have j types and machines can have m types, and any
job can be scheduled on any machine. However, the processing time of job j on machine m depends
on the speed smj . On related machines, the amount of time needed to process any job on any machine
does not depend on the job type or the machine type.

Machine parallelism: In cases without a parallelism setting, there is only one job that can be
processed during a time interval. But in cases with parallelism settings, any machine has g processors,
and there are at most g jobs that can be processed simultaneously.

Preemption and non-preemption: in non-preemptive cases, a job can not be interrupted after
it is started. But in preemptive cases, a job can be interrupted and can be continued on the same or
another machine.

2.2 Related results

2.2.1 Makespan minimization

Makespan minimization problem is a very classic, important, and extensively studied topic in machine
scheduling field[14, 15]. In this problem, we are given jobs with released times rj and processing times
pj . We are given m machines to schedule jobs. At any time, any machine can only process at most
one job, and no job can be processed on multiple machines at the same time. We need to schedule
all released jobs on machines so that all jobs can be finished before their deadlines and no job can be
dropped.

The objective is to schedule all jobs on machines and minimize the latest completion time( the time
when a job is finished) of all jobs.

Albers et al.[16] studied the online makespan problem where parallelism is allowed on machines
and they developed an algorithm with a competitive ratio of 4/3 + ϵ, for any 0 < ϵ ≤ 1, which uses a
constant number of schedules, and the constant number equals to 1/ϵO(log(1/ϵ)).

2.2.2 Machine minimization

In this problem, we are given jobs with released times rj , deadlines dj and processing times pj . We
are given machines to schedule jobs. At any time, any machine can only process at most one job, and
no job can be processed on multiple machines at the same time. We need to schedule all released jobs
on machines so that all jobs can be finished before their deadlines and no job can be dropped. For
each job, we can either schedule it on an existing machine or schedule it on a new machine.

The objective is to schedule all jobs on machines and minimize the number of machines used.
In[17], chen et al. considered preemptive jobs and proposed a O(log m)-competitive online algo-

rithm, wherem is the minimum number of machines used in an offline optimal solution. And their work
is the first improvement on the previously best-known result proposed by Phillips et al. in 1997[18],
which is a O(log(pmax/pmin))-competitive algorithm, where pmax and pmin are the maximum and
minimum job lengths, respectively.

2.2.3 Busy time minimization

In the online parallel machine scheduling field, much attention is paid to the busy time minimization
problem[13].

In this problem, we are given jobs with released times rj , deadlines dj and processing times pj . We
are given machines and each machine can run g jobs simultaneously. We need to schedule all released
jobs on machines so that all jobs can be finished before their deadlines and no job can be dropped. Let
busy = [s, t) be the time interval during which there is at least one job being processed on a machine.
And the length of a busy time interval len(busy) = t− s. Let BUSYm be the total busy time interval
on machine m, which is the set of all busy on machine m. Furthermore, let len(BUSYm) be the total
length of all busy time intervals on machine m, which is the sum of all len(busy) on machine m.
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The objective is to schedule all jobs on machines and minimize the total length of all busy time
intervals over all machines

∑∞
m=0 len(BUSYm).

Different variants are proposed according to different job flexibility, job assumptions, preemption
and clairvoyant.

For the rigid job setting, Shalom et al.[11] showed that no online deterministic algorithm can have
a competitive ratio better than g-competitive( parallelism parameter). And they proved this lower
bound by using a delicate adversary. It first releases a very long job to force a machine to run for a
long period of time and then releases jobs one by one, and each job is longer than the previous one so
that the machine has to schedule the shorter jobs before scheduling longer jobs, which can not fully
make use of the parallelism feature. When all available processors on a machine are occupied, a new
machine is used to schedule the longest job, which again forces a machine to run for a long time. And
when a new machine is used, the adversary releases jobs with a later release time such that they can
not be run simultaneously with the scheduled jobs.

They also proposed a 5logpmax- competitive online algorithm, where pmax is the longest processing
time. The intuitive idea of this algorithm is dividing jobs into different buckets according to their
lengths and only jobs of the same bucket can be scheduled on the same machine. Therefore, a scheduled
job will only prevent jobs of similar length from being scheduled on the same machine rather than
much longer jobs. Furthermore, they studied one-sided clique instances and clique instances, and

respectively proposed algorithm has a competitive ratios of 1 +φ and 2(1+φ) where φ = 1+
√
5

2 is the
Golden Ratio. The intuitive idea of the algorithm for one-sided clique instances is dividing jobs into
buckets according to their lengths and scheduling g jobs from the same bucket on the same machine
to make user jobs would be overlapping with jobs of similar length rather much shorter or longer jobs.

As for the flexible job setting, Koehler ti al.[19] proposed a 5-competitive online deterministic
algorithm when g is not bounded and a log pmax

pmin
-competitive algorithm when g is bounded. Further-

more, they studied a semi-online setting where the algorithm knows the future by 2pmax units of time
and got a constant competitive ratio of 12.

2.2.4 Throughput maximization

In this problem, we are given jobs with released times rj , deadlines dj , processing times pj , and weights
wj . We are given machines and each machine can run g jobs simultaneously. Scheduling a job with
weight wj on a machine brings profit wj . We are also given a busy-time budget T . We need to
schedule jobs on machines to gain as much profit as possible. Let busy = [s, t) be the time interval
during which there is at least one job being processed on a machine. The length of a busy time interval
len(busy) = t − s. Let BUSYm be the total busy time interval on machine m, which is the set of all
busy on machine m. Furthermore, let len(BUSYm) be the total length of all busy time intervals on
machine m, which is the sum of all len(busy) on machine m.

The objective is to maximize the obtained profit by scheduling jobs on machines using busy-time at
most T , which means the total length of all busy time interval over all machines

∑∞
m=0 len(BUSYm) ≤

T .
In this problem, we do not need to schedule all released jobs on machines, which means that we

can drop some jobs, except for the feasible instances. In this case, the online algorithm might drop a
job because there is no enough busy-time budget left for this job, or dropping this job might allow the
online algorithm to schedule the upcoming jobs with greater profit.

One of the closest relevant studies is studied by Shalom et al. In [11], they proved that no online
algorithm has a competitive ratio better than gT and there exists an algorithm that schedules every
available job on any machine has a competitive ratio of exactly gT . However, gT -competitive indicates
a really bad performance. To obtain useful results, they focused on feasible one-sided clique instances
and they not only showed that any online algorithm has a competitive ratio of at least 2− 2

g+1 but also
proposed an online algorithm, which accepts sufficient numbers of short jobs and then accept longer
jobs if they do not occupy too much remaining time, with a competitive ratio depending on g but at
most 9/2.

2.2.5 Resource augmentation

Resource augmentation is a widely used and accepted methodology to compare the performance of
objective algorithm with the performance candidate algorithm, which can be seen from a survey of
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scheduling problems with many resource augmentation results[20]. It was introduced by Kalyanasun-
daram and Pruhs in [21] where they compared the optimal algorithm with a unit speed machine to
their candidate algorithm equipped with a faster machine. And in [18], Phillips et al. defined a ap-
proximation algorithm which can achieve an objective function value at most ρ ·OPT using a machine
of speed s, where OPT is the optimal objective function value using one machine of unit speed. And
they named this methodology resource augmentation analysis. Up till now, resource augmentation is
still a very popular and powerful methodology. One of the latest research using resource augmentation
is [22], where bansal et al. discussed serval non-preemptive min-sum scheduling problems and proposed
the first O(1)-speed O(1)-approximation polynomial-time algorithms.

3 Preliminaries

Some concepts are mentioned or used frequently in this paper.
The maximum length of a job is T because a job of length greater than T cannot be scheduled by

any solution when the given time budget is T . The ratio between the total weight and total length
of scheduled jobs in a busy time-interval of one processor on one machine is called weight density.
We consider feasible and infeasible instances in this paper. An input instance is feasible if there
exists a schedule that can assign all the jobs in this instance with total busy time at most T. An input
instance is infeasible if there is no schedule that can assign all the jobs in this instance with total
busy time at most T.

A machine is busy at time t if there is at least one job being processed. A time-slot t on machine
m is of length 1 and denoted by a tuple (m, t). A time-interval on machine m is a set of time-slot
on machine m.

In this paper, we often use the greedy algorithm to analyze the competitive ratio upper bound of
instances. All the greedy algorithm mentioned in the following section always schedules a released
job without exceeding the busy-time budget by scheduling it on a currently available machine, in
machine opening order, or open a new machine when there is no available machine.

All problems mentioned in the paper are online-list problems. The time when a job is released does
not equal to its release time. Jobs with later release time might be released earlier.

The following propositions are used in this paper.

Proposition 1 For any instances, any deterministic online algorithm has to schedule the first re-
leased job.

Proof. For any instance, if a deterministic online algorithm ALG does not schedule the first released
job. Then, the adversary can stop releasing job and the first released job becomes the only released
job. Moreover, an optimal solution will schedule this job and gains the weight of this job while ALG
gains 0 profit. Hence, the competitive ratio is unbounded. Therefore, Proposition 1 is proven.

Proposition 2 Assume the minimum length of a job is 1, the maximum length of a job is T . Release
times and deadlines are integral.

Proposition 3 Greedy algorithm has throughput 0 only when there is no job released, and in this
case, the optimal solution also has throughput 0.

4 Proportional Weighted Throughput Maximization Problem

In this section, we consider the Busy Time Weighted Throughput Maximization Problem
where the weight of a job equals to its length. W.l.o.g, we assume the minimum length of a job is 1.
Release times and deadlines are integral.

Lemma 1 For any instance of Proportional Weighted Throughput Maximization Problem,
any algorithm can gain Throughput at most gT .
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Proof. For any instance, the maximum weight density of a busy time-slot on a single proces-
sor is 1 and there are g processors on one machine which means at most g jobs can be scheduled in a
busy time-slot on one machine. Thus, gaining g + 1 throughput in a single time-slot requires at least
two machines, which takes two busy-time slot. Therefore, for any instance, one busy time-slot can
gain at most g throughput. Moreover, the maximum number of unit busy-time slots is T because the
time budget is T . Hence, for any instance, an algorithm can gain at most gT Throughput.

4.1 Infeasible instances

In this section, we consider infeasible instances. We show that for the Proportional Weighted
Throughput Maximization Problem, there is no deterministic constant competitive algorithm
against infeasible instances.

4.1.1 Infeasible general instances

Theorem 1 For infeasible general instances of Proportional Weighted Throughput Maximiza-
tion Problem, no deterministic online algorithm has a competitive ratio lower than gT .

Proof. Consider an adversary that first releases a job of length 1 at [0, 1). Any online algorithm
ALG has to schedule this job according to Proposition 1 and consume 1 unit of busy-time budget.
Then, the adversary releases g jobs of length T at [1, T +1). Since ALG already consumed 1 unit of
busy-time budget when scheduling a job of length 1 at [0, 1), the remaining T − 1 busy-time budget
is not enough to schedule a job of length T at [1, T + 1). Hence, ALG cannot schedule any of these
jobs, and thus tputA ≤ 1. However, an optimal solution will schedule only these jobs and drop the
first job of length 1 and tput∗ ≥ gT . As a result, the competitive ratio is gT .

■
Theorem 2 For infeasible general instances of Proportional Weighted Throughput Maximiza-
tion Problem, the greedy algorithm is an optimal deterministic online algorithm.

Proof. The greedy algorithm can gain throughput at least 1 because the minimum job length is 1
and it can schedule at least the first released job. While the optimal solution can gain throughput
at most gT according to Lemma 1. As a result, the competitive ratio of the greedy algorithm is
at most gT which matches with the lower bound. Hence, Theorem 2 is proven.

■

4.1.2 Infeasible clique instances

Theorem 3 For infeasible clique instances of Proportional Weighted Throughput Maximiza-
tion Problem, no online algorithm has a competitive ratio lower than gT/2

Proof. Consider an adversary that first releases a job of length 2 at [0, 2). Any online algorithm
ALG has to schedule this job according to Proposition 1 and consume 2 units of busy-time budget.
Then, the adversary releases g jobs of length T at [1, T +1). Since ALG already consumed 2 units of
busy-time budget when scheduling a job of length 2 at [0, 2) therefore the remaining T −2 busy-time
budget is not enough to schedule a job of length T at [1, T + 1). Hence, ALG cannot schedule any
of these jobs, and thus tputA ≤ 2. However, an optimal solution will schedule only these jobs and
drop the first job of length 2 and tput∗ ≥ gT . As a result, the competitive ratio is at least gT/2.

■
Theorem 4 For infeasible clique instances of Proportional Weighted Throughput Maximiza-
tion Problem, the greedy algorithm is an optimal deterministic online algorithm.

Proof. For clique instances, the maximum throughput an algorithm could obtain is gT according to
Lemma 1. When the greedy algorithm obtain throughput tputA ≥ 2, the competitive ratio is less
than gT/2 which is bounded by gT/2. Thus, the remaining case is when tputA < 2. Furthermore,
since all jobs are integral, we only need to consider the case when the greedy algorithm gains
throughput 0 or 1.
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When the greedy algorithm gains throughput 0, there is no available job and any algorithm
has throughput 0. Otherwise, the greedy algorithm will schedule at least one job.

When the greedy algorithm gains throughput 1, there must be only one job of length 1 released
and both the optimal solution and the greedy solution will schedule this job, and thus the competitive
ratio is 1. Otherwise, if there is more than one job released, assume the greedy algorithm gains
throughput 1, the first released job must be a job of length 1, and the greedy algorithm scheduled
this job. However, in any clique instance, all jobs share at least one time-slot, therefore the first job
of length 1 will be contained by the second released job, and since its length is at most T , it means
that the second job is available to the greedy algorithm. As a result, the greedy algorithm will
schedule this job and have integral throughput greater than 1. Combining with Lemma 1, the
upper bound of the competitive ratio for the greedy algorithm is gT/2 which matches with the
lower bound. Hence, Theorem 4 is proven.

■

4.1.3 Infeasible one-sided clique instances

Theorem 5 For infeasible one-sided clique instances of Proportional Weighted Throughput Max-
imization Problem, no deterministic online algorithm has a competitive ratio lower than T .

Proof. Consider an adversary that first releases a job of length 1 at [0, 1). Any online algorithmALG
has to schedule this job according to Proposition 1 and consume 1 unit of busy-time. Then, the
adversary keeps releasing jobs of length 1 at [0, 1) until gT jobs are released or a machine is filled
with g jobs, or a new machine is used. We consider 2 cases.

Case 1. There is one machine used by ALG and it is not filled with g jobs at [0, 1). Then, there
are at most g − 1 jobs of 1 scheduled on this machine, thus tputA ≤ g − 1. But an optimal solution
will schedule all gT jobs of 1 on T machines and tput∗ ≥ gT . So the competitive ratio is at least
gT
g−1 .

Case 2. There is one machine used by ALG and it is filled with g jobs at [0, 1) or two machines
are used. Then, the adversary releases g jobs of length T at [0, T ). In this case, ALG cannot
schedule any of these jobs on any machine otherwise, the total busy-time on all machines will exceed
the given busy-time budget. Therefore tputA ≤ g. However, an optimal solution will only schedule
these jobs and tput∗ ≥ gT . As a result, the competitive ratio is at least T .

■
Theorem 6 For infeasible one-sided clique instances of Proportional Weighted Throughput Max-
imization Problem, the greedy algorithm is an optimal online deterministic algorithm.

Proof. Since the minimum job length is 1, the minimum throughput one processor can gain is 1.
Moreover, there are g processors on a machine, and jobs in a one-sided clique instance share the
same release time (deadline) so the greedy algorithm could at least gain throughput g, which is
tputA ≥ 1. Combining with Lemma 1, we know the competitive ratio of the greedy algorithm is
at most T which matches with the lower bound. As a result, Theorem 6 is proven.

■

5 Categorized Weighted Throughput Maximization Problem

In this section, we consider the Categorized Weighted Throughput Maximization Problem
where the weight of a job depends on whether its length is greater than or equal to a given threshold
ω ≥ 2. If a job has length ≥ ω then, its weight is 2, otherwise, its weight is 1. The threshold is less
than or equal to the given time budget, ω ≤ T . otherwise, all jobs will be shorter than ω and have
weights 1.

The objective is to maximize the obtained throughput by scheduling jobs, consuming busy time
less than or equal to the given time budget.

Lemma 2 For any instance of the Categorized Weighted Throughput Maximization Prob-
lem, any algorithm can gain throughput at most gT .
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Proof. For any instance in Categorized Weighted Throughput Maximization Problem, since
the maximum weight of a job is 2 and the threshold ω ≥ 2, weight density is at most 1. And the
maximum length of busy time-intervals of one processor is T because the time budget is T . Thus,
for a single processor, the maximum throughput is T . Furthermore, since the maximum number of
processors on one machine is g, any algorithm can gain throughput at most gT .

■

5.1 Infeasible instances

In this section, we consider infeasible instances. We show that for the Categorized Weighted
Throughput Maximization Problem, there is no deterministic competitive algorithm against in-
feasible instances.

5.1.1 Infeasible general instances

Theorem 7 For infeasible general instances of Categorized Weighted Throughput Maximiza-
tion Problem, no deterministic online algorithm has a competitive ratio lower than 2g, when T ≤ 4,
or gT

2 , when T > 4.

Proof. Consider the following adversary:
when T ≤ 4, it first releases a job of length 1 at [0, 1). Any online algorithm ALG has to schedule

this job according to Proposition 1 and consume 1 unit of busy-time budget. Then, the adversary
releases g jobs of length T at [1, T + 1). Since ALG already consumed 1 unit of busy-time budget
when scheduling a job of length 1 at [0, 1), therefore the remaining T − 1 units of busy-time budget
is not enough for scheduling a job of length T at [1, T + 1) on any machine. Hence, ALG cannot
schedule any of these jobs, and thus online algorithm can gain throughput tputA ≤ 1. However, an
optimal solution will schedule only these jobs and drop the first job of length 1 and gain throughput
tput∗ ≥ 2g. Thus, the competitive ratio is at least 2g.

When T > 4, it first releases a job of length T at [0, T ). Any online algorithm ALG has to
schedule this job and consume T units of busy-time budget. Then, the adversary releases gT jobs of
length 1 at [T, T + 1). Since ALG already consumed T units of busy-time budget when scheduling
a job of length T at [0, T ), therefore there is no more busy-time budget for scheduling a job of
length 1 at [T, T +1). Hence, ALG cannot schedule any of these jobs, and thus it gains throughput
tputA ≤ 2. However, an optimal solution will schedule only these jobs and drop the first job of
length T and gain throughput tput∗ ≥ gT . Thus, the competitive ratio is at least gT

2 .
As a result, Theorem 7 is proven.

■
Theorem 8 For infeasible general instances of Categorized Weighted Throughput Maximization
Problem, when the greedy algorithm gains throughput at least 2, it is an optimal online determin-
istic algorithm.

Proof. According to Lemma 2, we know an optimal solution can gain throughput at most gT .
Then, we consider 4 cases, the greedy algorithm gains throughput greater than or equal to 2,
equals to 1.

Case 1: When the greedy algorithm gains throughput greater than or equal to 2, the compet-
itive ratio is lower than or equal to gT/2, which matches with the lower bound of the competitive
ratio when T > 4. Then we still need to prove that when 2 ≤ T ≤ 4, the upper bound of the
competitive ratio matches with the lower bound, which is 2g. Since tput∗ ≤ gT , if the upper bound
of the competitive ratio matches with the lower bound 2g, then, the upper bound of the competitive
ratio is at most gT

T
2

≤ 2g. Hence, the greedy algorithm must gain throughput tputA ≥ T
2 . Since

2 ≤ T ≤ 4, T
2 is at most 2. And Case 1 is the case when the greedy algorithm gains through-

put greater than or equal to 2. Hence, the greedy algorithm already satisfied the condition that
tputA ≥ T

2 when 2 ≤ T ≤ 4. So when 2 ≤ T ≤ 4, the upper bound of the competitive ratio of the
greedy algorithm is at most 2g, which matches with the lower bound when 2 ≤ T ≤ 4.

As a result, Theorem 8 is proven.
■
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5.1.2 Infeasible clique instances

Theorem 9 For infeasible clique instances of Categorized Weighted Throughput Maximization
Problem, no deterministic online algorithm has a competitive ratio lower than the following lower
bounds:
(1) when T > ω ≥ 2 and 8 ≥ T ≥ 3, the competitive ratio is at least 2g
(2) when T > ω ≥ 2, and T > 8, the competitive ratio is at least gT

4
(3) when T = ω = 3, the competitive ratio is at least 2g
(4) when T = ω > 3, the competitive ratio is at least g⌊T

3 ⌋.

Proof. Consider the following adversary:
Case 1: The adversary first releases a job of length 2 at [0, 2). Any online algorithm ALG has to

schedule this job according to Proposition 1 and consume 2 units of busy-time budget. Then, the
adversary releases g jobs of length T at [1, T +1). Since ALG already consumed 2 units of busy-time
budget when scheduling a job of length 2 at [0, 2), there is no busy-time budget left for opening a
new machine to schedule a job of length T at [1, T + 1). Furthermore, ALG cannot schedule any of
these jobs on the machine with a job of length 2. Otherwise, the total busy-time will be T +1, which
is greater than the given time budget T . However, an optimal solution will schedule only jobs of
length T and drop the first job of length 2. In this case, tput∗ ≥ 2g. While ALG gains throughput
tputA ≤ 2 when ω = 2, or tputA ≤ 1 when ω ≥ 3.

Figure 1: Theorem 9, case 1 (dotted lines are online schedule, solid lines are optimal schedule)

As a result, the competitive ratio is at least g when ω = 2, or 2g when ω ≥ 3, corresponding to
lower bound (1).

Case 2: The adversary first releases a job of length T at [0, T ). Any online algorithm ALG has
to schedule this job according to Proposition 1 and consume T units of busy-time budget. Then,
the adversary releases gT

2 jobs of length 2 at [T − 1, T + 1). Since ALG already consumed T units
of busy-time budget when scheduling a job of length T at [0, T ), there is no more busy-time budget
for opening a new machine to schedule a job of length 2 at [T −1, T +1). Furthermore, ALG cannot
schedule any of these jobs on the machine with a job of length T . Otherwise, the total busy-time
will be T + 1, which is greater than the given time budget T . However, an optimal solution will
schedule only jobs of length 2 and drop the first job of length T. In this case, tput∗ ≥ gT when
ω = 2, or tput∗ ≥ gT

2 when ω ≥ 3. While ALG gains throughput tputA ≤ 2.
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Figure 2: Theorem 9, case 2 (dotted lines are online schedule, solid lines are optimal schedule)

As a result, the competitive ratio is at least gT
2 when ω = 2, or gT

4 when ω ≥ 3, corresponding
to lower bound (2).

Case 3: When T = ω, the adversary first releases a job of length ω−1 at [0, ω−1). Any online
algorithm ALG has to schedule this job according to Proposition 1 and consume ω − 1 units of
busy-time budget. Then, the adversary releases g⌊ T

T−ω+3⌋ jobs of length T −ω+3 at [ω− 2, T +1).
Since ALG already consumed ω−1 units of busy-time budget when scheduling a job of length ω−1
at [0, ω−1), there is no more busy-time budget for opening a new machine to schedule a job of length
T − ω + 3 at [ω − 2, T + 1). Furthermore, ALG cannot schedule any of these jobs on the machine
with a job of length T − ω + 3. Otherwise, the total busy-time will be T + 1 which is greater than
the given time budget T . Hence, ALG can only gain throughput tputA ≤ 1. However, an optimal
solution will schedule only jobs of length T − ω + 3 and drop the first job of length ω − 1. We need
to consider the case when T −ω+3 < ω and T −ω+3 ≥ ω. Since T = ω, T −ω+3 = 3, and thus,
these two cases equivalent to the case when ω > 3 and ω ≤ 3.

In the case when ω > 3, an optimal solution will gain throughput tput∗ ≥ g⌊ T
T−ω+3⌋. Since

T
T−ω+3 = T

3 , tput
∗ ≥ g⌊ T

T−ω+3⌋ = g⌊T
3 ⌋.

In the case when ω ≤ 3, an optimal solution will gain throughput tput∗ ≥ 2g⌊ T
T−ω+3⌋. Since

jobs of length T − ω + 3 are feasible, T ≥ T − ω + 3 = 3. Furthermore, T = ω = 3 because ω ≤ 3.
Thus, an optimal solution will gain throughput tput∗ ≥ 2g⌊ T

T−ω+3⌋ = ⌊T
3 ⌋ = 2g.

Figure 3: Theorem 9, case 3 (dotted lines are online schedule, solid lines are optimal schedule)

As a result, the competitive ratio is at least 2g when T = ω = 3, or g⌊T
3 ⌋ when T = ω > 3,

corresponding to lower bound (3) and (4).
Hence, Theorem 9 is proven.

■
Theorem 10 For infeasible clique instances of Categorized Weighted Throughput Maximiza-
tion Problem, when the greedy algorithm gains throughput at least 4, T ≥ 4 and T > ω, it is an

10



optimal deterministic online algorithm.

Proof. According to Lemma 2, we know an optimal solution can gain throughput at most gT .
We discuss 3 cases: when the greedy algorithm gains throughput tputA ≥ 4, 4 > tputA ≥ 2 and
tputA = 1.
Case 1: When the greedy algorithm gains throughput tputA ≥ 4, the competitive ratio is at most
gT
4 which is bounded by the lower bound of the competitive ratio when T ≥ 4 and T > ω, which is
proven in Theorem 9.

Hence, Theorem 10 is proven.
■

5.1.3 Infeasible one-sided clique instances

Theorem 11 For infeasible one-sided clique instances of Categorized Weighted Throughput Max-
imization Problem, no deterministic online algorithm has a competitive ratio lower than gT

g+1 when

T ≥ 2
g + 2, or lower than 2 when 2 ≤ T < 2

g + 2

Proof. Consider the following adversary:
Case 1: When T ≥ 2

g + 2, the adversary first releases a job of length T at [0, T ). Any online
algorithm ALG has to schedule this job according to Proposition 1 and consume T units of busy-
time budget. Then, the adversary releases gT jobs of length 1 at [0, 1). Since ALG already consumed
T units of busy-time budget when scheduling a job of length T at [0, T ), therefore there is no more
busy-time budget for opening a new machine to schedule a job of length 1 at [0, 1). Hence, ALG
can only schedule at most g − 1 of these jobs on the machine with a job of length T , and thus
tputA ≤ g + 1. However, an optimal solution will schedule only these jobs and drop the first job of
length T and tput∗ ≥ gT . As a result, the competitive ratio is at least gT

g+1 .

Case 2: When 2 ≤ T < 2
g + 2, the adversary keeps releasing jobs of 1 until one machine is used

and filled with g jobs, or two machines are used. We consider two sub-cases:
Case 2.1: one machine is used by the online algorithm ALG with at most g − 1 jobs of 1 being

scheduled at [0, 1). Hence, ALG can gain throughput tputA ≤ g − 1 while an optimal solution will
schedule gT jobs of 1 at [0, 1) and gain throughput tput∗ ≥ gT . Thus, the competitive ratio is at
least gT

g−1 .
Case 2.2: one machine is used by the online algorithm ALG with g jobs of 1 being scheduled at

[0, 1) or two machines are used by ALG. Then, the adversary releases g jobs of length T at [0, T ).
Since ALG already consumed 1 units of busy-time budget when scheduling a job of length 1 at [0, 1),
therefore the remaining T − 1 units of busy-time budget is not enough to schedule a job of length T
at [0, T ). Hence, ALG cannot schedule any of these jobs, and thus tputA ≤ g. However, an optimal
solution will schedule only these jobs and drop the first job of length 1 and tput∗ ≥ 2g. As a result,
the competitive ratio is at least 2.

Since gT
g−1 > T ≥ 2, the lower bound is 2 for Case 2.

The competitive ratio for Case 1 is at least gT
g+1 , and the competitive ratio for Case 2 is at

least 2. Furthermore, gT
g+1 is a tighter lower bound than 2 when T ≥ 2

g +2. Hence, Theorem 11 is
proven.

■
Theorem 12 For infeasible one-sided clique instances of Categorized Weighted Throughput Max-
imization Problem, the greedy algorithm is an optimal deterministic online algorithm if the fol-
lowing condition is satisfied:
(1) tputA < g.
(2) tputA ≥ g + 1 and T > 2.

Proof. According to Lemma 2, an optimal solution can gain throughput at most gT . We consider
the two cases mentioned above.

Case 1: When the greedy algorithm gains throughput tputA < g, it must have scheduled
fewer than g jobs, otherwise, tputA ≥ g. Since this is a one-sided clique instance and all released
jobs have length at most T , each released job could be scheduled on a single processor. Moreover,
there are g processors on one machine so g jobs can be processed simultaneously on one machine.

11



Thus, the greedy algorithm must be able to schedule at least the first g jobs if there are more
than g jobs released. Furthermore, when the greedy algorithm gains throughput tputA < g, there
is less than g jobs released and the greedy algorithm will schedule the same number of jobs as an
optimal solution does, which means the competitive ratio is 1 in this case.

Case 2: When the greedy algorithm gains throughput tputA ≥ g+1, the competitive ratio is
lower than or equal to gT

g+1 which can be bounded by the lower bound of the competitive ratio when
T > 2.

Hence, Theorem 12 is proven.
■

5.2 Feasible instances

In this section, we consider feasible instances. In infeasible instances, the adversary can trap the online
algorithm by releasing some very long or very short job as the first job, while an optimal solution can
avoid this trap by not scheduling this job. However, in feasible instances, there exists a schedule which
can schedule all the released jobs, which makes it much harder for the adversary to trap the online
algorithm. Therefore, the lower bound of the competitive ratio is improved significantly.

5.2.1 Feasible one-sided clique instances

Theorem 13 For feasible one-sided clique instances of Categorized Weighted Throughput Max-
imization Problem, no deterministic online algorithm has a competitive ratio lower than 4

3 , when
T < 2ω − 1, or 9

7 , when T ≥ 2ω − 1.

Proof. Consider the following adversary:
The adversary first releases a job of length T +1−ω at [0, T +1−ω). Any online algorithm ALG has
to schedule this job according to Proposition 1 and consume T +1−ω units of busy-time budget.
Then, the adversary keeps releasing jobs of length 1 at [0, 1) until one of the following conditions is
satisfied:
(1) If x is the number of released jobs of length 1 and xA is the number of jobs of length 1 scheduled

by ALG. The condition is x ≥ 3xA+1
2 , when T + 1 − ω < ω, or x ≥ 3xA+2

2 , when T + 1 − ω ≥ ω.
This condition happens when ALG rejects too many jobs.
(2) One machine is full.
(3) One new machine is used by ALG.

Noted that when condition (2) or (3) happens, condition (1) cannot happen. Because condition
(1) is triggered when ALG rejects a job and rejecting a job cannot trigger condition (2) or (3).
Moreover, condition (2) or (3) happens when ALG accepts a job and once either of them is trig-
gered, the adversary stops releasing jobs of length 1. Thus, after triggering condition (2) or (3),
there is no more jobs of length 1 could be rejected.

12



Figure 4: The process graph of Theorem 13( when T + 1− ω < ω)

Case 1: When T + 1 − ω < ω, x ≥ 3xA+1
2 , we prove that the competitive ratio is at least 3

2 .
In this case, an optimal solution schedules the first job of length T + 1− ω and x jobs of length 1.

Since x ≥ 3xA+1
2 , an optimal obtain throughput tput∗ ≥ 3xA+3

2 . While ALG schedules the first job
of length T + 1− ω and only xA jobs of length 1. Thus, ALG obtains throughput tputA ≤ xA + 1.

Hence the competitive ratio is at least 3xA+3
2xA+2

= 3
2 . The similar analysis can be applied to the case

when T + 1− ω ≥ ω, x ≥ 3xA+2
2 .

Case 2: One machine is full. We prove the competitive ratio is at least 3
2 . In this case, ALG

schedules the first job of length T + 1 − ω and g − 1 jobs of length 1 on the same machine. Thus,
xA = g − 1. There are two cases that need to be discussed, which are when T + 1 − ω < ω, and
when T + 1− ω ≥ ω.

Figure 5: Theorem 13, case 2, online algorithm schedule

Case 2.1: when T +1−ω < ω. In this case, x < 3xA+1
2 . Thus, g − 1 ≤ x < 3g−2

2 . There are

two cases that need to be discussed here which are when g− 1 ≤ x ≤ g and when g+1 ≤ x < 3g−2
2 .

Case 2.1.1: when g − 1 ≤ x ≤ g. In this case, the adversary releases g − 1 jobs of length ω.
Since ALG already consumed T + 1− ω units of busy-time budget when scheduling a job of length
T + 1− ω and g − 1 jobs of length 1, and the machine is full, there is no busy-time budget left for
opening a new machine to schedule a job of length ω. Hence, ALG cannot schedule any of these
jobs, and thus, tputA ≤ g. However, an optimal solution will schedule the first job of length T+1−ω
and g− 1 jobs of length ω on the same machine, and schedule all released jobs of length 1 on a new
machine. Therefore, the optimal solution obtains throughput tput∗ ≥ 2(g− 1) + x+1 = 2g+ x− 1.
Since x ≥ g − 1, tput∗ ≥ 2g + x − 1 ≥ 3g − 2. As a result, the competitive ratio is at least
3g−2

g = 3− 2
g ≥ 2 because g ≥ 2.
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Figure 6: Theorem 13, case 2.1.1, optimal schedule

Case 2.1.2: when g + 1 ≤ x < 3g−2
2

. In this case, the adversary releases g
2 jobs of length

ω. Since ALG already consumed T + 1 − ω units of busy-time budget when scheduling a job of
length T + 1 − ω and g − 1 jobs of length 1, and the machine is full, there is no busy-time budget
left for opening a new machine to schedule a job of length ω. Hence, ALG cannot schedule any of
these jobs, and thus, tputA ≤ g. However, an optimal solution will schedule g jobs of length 1 on
one machine, and open a new machine to schedule the remaining x − g jobs of length 1, the first
job of length T + 1− ω and g

2 jobs of length ω. Therefore, the optimal solution obtains throughput
tput∗ ≥ g + 1 + x. Since x ≥ g + 1, tput∗ ≥ 2g + 2. As a result, the competitive ratio is at least
2g+2

g > 2.

Figure 7: Theorem 13, case 2.1.2, optimal schedule

Case 2.2: when T +1−ω ≥ ω. In this case, x < 3xA+2
2 . Thus, g − 1 ≤ x < 3g−1

2 . There are

two cases that need to be discussed here which are when g− 1 ≤ x ≤ g and when g+1 ≤ x < 3g−1
2 .

Case 2.2.1: when g − 1 ≤ x ≤ g. In this case, the adversary releases g − 1 jobs of length ω.
Since ALG already consumed T + 1− ω units of busy-time budget when scheduling a job of length
T + 1− ω and g − 1 jobs of length 1, and the machine is full, there is no busy-time budget left for
opening a new machine to schedule a job of length ω. Hence, ALG cannot schedule any of these jobs,
and thus, tputA ≤ g+1. However, an optimal solution will schedule the first job of length T +1−ω
and g− 1 jobs of length ω on the same machine, and schedule all released jobs of length 1 on a new
machine. Therefore, the optimal solution obtains throughput tput∗ ≥ 2(g−1)+x+2 = 2g+x. Since
x ≥ g− 1, tput∗ ≥ 2g+x ≥ 3g− 1. As a result, the competitive ratio is at least 3g−1

g+1 = 3− 4
g+1 ≥ 5

3
because g ≥ 2.
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Figure 8: Theorem 13, case 2.2.1, optimal schedule

Case 2.2.2: when g + 1 ≤ x < 3g−1
2

. In this case, the adversary releases g
2 jobs of length

ω. Since ALG already consumed T + 1 − ω units of busy-time budget when scheduling a job of
length T + 1 − ω and g − 1 jobs of length 1, and the machine is full, there is no busy-time budget
left for opening a new machine to schedule a job of length ω. Hence, ALG cannot schedule any of
these jobs, and thus, tputA ≤ g + 1. However, an optimal solution will schedule g jobs of length 1
on one machine, and open a new machine to schedule the remaining x− g jobs of length 1, the first
job of length T + 1− ω and g

2 jobs of length ω. Therefore, the optimal solution obtains throughput
tput∗ ≥ g + 2 + x. Since x ≥ g + 1, tput∗ ≥ 2g + 3. As a result, the competitive ratio is at least
2g+3
g+1 > 2.

Figure 9: Theorem 13, case 2.2.2, optimal schedule

Case 3: One new machine is used by ALG. We prove that the competitive ratio is at least
4
3 when T + 1 − ω < ω, or 9

7 when T + 1 − ω ≥ ω. In this case, ALG schedules the first job of
length T + 1 − ω on one machine. and one job of length 1 on a new machine. However, there is
no full machine, and adversary stops releasing jobs of length 1 once a new machine is used. Thus,
there are at most g − 2 jobs of length 1 scheduled by ALG on the machine with the job of length
T + 1− ω. Otherwise, there must be a full machine. Thus, summing up the only job of length 1 on
the new machine, 1 ≤ xA ≤ g − 1. There are two cases that need to be discussed, which are when
T + 1− ω < ω, and when T + 1− ω ≥ ω.

Case 3.1: when T +1−ω < ω. In this case, x < 3xA+1
2 . Thus, g − 1 ≤ x < 3g−2

2 . There are

two cases that need to be discussed here which are when 1 ≤ xA < 2g−3
3 and when 2g−3

3 ≤ xA ≤ g−1.

Case 3.1.1: when 1 ≤ xA < 2g−3
3

. In this case, since x < 3xA+1
2 , 1 ≤ x < g − 1. The

adversary releases g−x−1 jobs of length T . Since ALG already scheduled a job of length T +1−ω
on one machine, and a job of length 1 on a new machine, there is no busy-time budget left for
scheduling any job of length T on the existing machine or opening a new machine to schedule a job of
length T . Hence, ALG cannot schedule any of these jobs. Thus, tputA ≤ xA+1. Furthermore, since
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1 ≤ xA < 2g−3
3 , tputA ≤ xA+1 < 2g

3 . However, an optimal solution will schedule all the released jobs
on the same machine, which are the first job of length T+1−ω, x jobs of length 1, and g−x−1 jobs of
length T . Therefore, the optimal solution obtains throughput tput∗ ≥ 2(g−x−1)+x+1 = 2g−x−1.

Hence, the competitive ratio is at least 3(2g−x−1)
2g = 6g−3x−3

2g = 3 − 3x+3
2g . Furthermore, since

x < g − 1, 3− 3x+3
2g > 3− 3(g−1)+3

2g = 3− 3g
2g = 3

2 . As a result the competitive ratio is at least 3
2 .

Figure 10: Theorem 13, case 3.1.1, online algorithm schedule

Figure 11: Theorem 13, case 3.1.1, optimal schedule

Case 3.1.2: when 2g−3
3

≤ xA ≤ g−1. In this case, since x < 3xA+1
2 , 2g−3

3 ≤ x < 3g−2
2 . There

are three cases that need to be discussed here which are when 2g−3
3 ≤ x < g − 1, when x = g − 1,

and when g ≤ x < 3g−2
2 .

Case 3.1.2.1: 2g−3
3 ≤ x < g − 1. In this case, the adversary will release two different jobs

depending on the value of g, x, and xA. And the adversary will release the type of job that leads to
a higher competitive ratio. We prove that in this case, the competitive ratio is at least 3

2 .
The adversary releases g − x− 1 jobs of length T . Since ALG already scheduled a job of length

T +1−ω on one machine, and a job of length 1 on a new machine, there is no busy-time budget left
for scheduling any job of length T on the existing machine or opening a new machine to schedule a
job of length T . Hence, ALG cannot schedule any of these jobs. Thus, tputA ≤ xA+1. However, an
optimal solution will schedule all the released jobs on the same machine, which are the first job of
length T +1−ω, x jobs of length 1, and g− x− 1 jobs of length T . Therefore, the optimal solution
obtains throughput tput∗ ≥ 2(g − x − 1) + x + 1 = 2g − x − 1. Hence, the competitive ratio is at
least 2g−x−1

xA+1
.
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Figure 12: Theorem 13, case 3.1.2.1, online algorithm schedule (job T)

Figure 13: Theorem 13, case 3.1.2.1, optimal schedule (job T)

The adversary releases g − 1 jobs of length ω. Since ALG already scheduled a job of length
T + 1 − ω on one machine, and a job of length 1 on a new machine, ALG can only schedule these
jobs of length ω on the machine with jobs of length T +1−ω. Otherwise, if ALG schedules any job
of length ω on the machine with only one job of length 1, or open a new machine to schedule jobs
of length ω, it will use more than T busy-time. Thus, tputA ≤ 2(g − xA) + xA + 1 = 2g − xA + 1.
However, an optimal solution will schedule all the jobs of length 1 on the same machine, and schedule
the jobs of length ω with the job of length of T +1−ω on the same machine. Therefore, the optimal
solution obtains throughput tput∗ ≥ 2(g − 1) + x+ 1 = 2g + x− 1. Hence, the competitive ratio is
at least 2g+x−1

2g−xA+1
.

Figure 14: Theorem 13, case 3.1.2.1, online algorithm schedule (job w)
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Figure 15: Theorem 13, case 3.1.2.1, optimal schedule (job w)

By running experiments, it is found that the lowest competitive ratio is obtained when g = 5, x =
3, xA = 3, and the competitive ratio is exactly 3

2 . This is one of the lowest intersection points of
the two competitive ratio functions. This also makes sense when looking at the graph of the two
functions because the values given by one of the competitive ratio function decreases with x and xA

increasing, while the other ones increase with x and xA increasing. As a result the competitive ratio
of Case 3.1.2.1 is at least 3

2 .
Case 3.1.2.2: x = g − 1. In this case, the adversary will release one more job of length 1.

Thus, x = g. Furthermore, since x < 3xA+1
2 , and ALG might schedule the last job of length 1,

2g−1
3 < xA ≤ g.
The adversary releases g − 1 jobs of length ω. Since ALG already scheduled a job of length

T + 1 − ω on one machine, and a job of length 1 on a new machine, ALG can only schedule these
jobs of length ω on the machine with jobs of length T + 1 − ω. Otherwise, if ALG schedules any
job of length ω on the machine with only one job of length 1, or open a new machine to schedule
jobs of length ω, it will use more than T busy-time. Moreover, the last released job of length 1
could be scheduled by ALG. Thus, tputA ≤ 2(g− xA) + xA +2 = 2g− xA +2. However, an optimal
solution will schedule the jobs of length ω with the job of length of T + 1 − ω on one machine.
And it will schedule all g jobs of length 1 on a second machine. Therefore, the optimal solution
obtains throughput tput∗ ≥ 2(g − 1) + g + 1 = 3g − 1. Hence, the competitive ratio is at least

3g−1
2g−xA+2

. By running experiments, it is found that the lowest competitive ratio is obtained when

g = 3, x = 3, xA = 2, and the competitive ratio is exactly 4
3 . Thus, the competitive ratio is at least

4
3 .

Figure 16: Theorem 13, case 3.1.2.2, online algorithm schedule
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Figure 17: Theorem 13, case 3.1.2.2, optimal schedule

Case 3.1.2.3: g ≤ x < 3g−2
2 . In this case, since x < 3xA+1

2 , 2g−1
3 < xA ≤ g − 1. The adversary

releases g − 1 jobs of length ω. Since ALG already scheduled a job of length T + 1 − ω on one
machine, and a job of length 1 on a new machine, ALG can only schedule these jobs of length ω on
the machine with jobs of length T + 1− ω. Otherwise, if ALG schedules any job of length ω on the
machine with only one job of length 1, or open a new machine to schedule jobs of length ω, it will
use more than T busy-time. Thus, tputA ≤ 2(g − xA) + xA + 1 = 2g − xA + 1. Since 2g−1

3 < xA,

tputA ≤ 2g − xA + 1 < 4g+4
3 . However, an optimal solution will schedule the jobs of length ω with

the job of length of T + 1− ω on one machine. And it will schedule at least g jobs of length 1 on a
second machine since x ≥ g. If there is any job of length 1 left after scheduling g of them, then it will
schedule the remaining jobs of length 1 on a third machine. Therefore, the optimal solution obtains
throughput tput∗ ≥ 2(g−1)+1+x. Since x ≥ g, tput∗ ≥ 2(g−1)+1+x ≥ 2(g−1)+1+g = 3g−1.
Hence, the competitive ratio is at least 3g−1

2g−xA+1
> 9g−3

4g+4 . Since g ≥ 3, 9g−3
4g+4 ≥ 3

2 . Thus, the

competitive ratio is at least 3
2 .

Figure 18: Theorem 13, case 3.1.2.3, online algorithm schedule
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Figure 19: Theorem 13, case 3.1.2.3, optimal schedule

Case 3.2: when T +1−ω ≥ ω. In this case, x < 3xA+2
2 . Thus, g − 1 ≤ x < 3g−1

2 . There are

two cases that need to be discussed here which are when 1 ≤ xA < 2g−4
3 and when 2g−4

3 ≤ xA ≤ g−1.

Case 3.2.1: when 1 ≤ xA < 2g−4
3

. In this case, since x < 3xA+2
2 , 1 ≤ x < g − 1. The

adversary releases g−x−1 jobs of length T . Since ALG already scheduled a job of length T +1−ω
on one machine, and a job of length 1 on a new machine, there is no busy-time budget left for
scheduling any job of length T on the existing machine or opening a new machine to schedule a job
of length T . Hence, ALG cannot schedule any of these jobs. Thus, tputA ≤ xA + 2. Furthermore,
since xA < 2g−4

3 , tputA ≤ xA+2 < 2g+2
3 . However, an optimal solution will schedule all the released

jobs on the same machine, which are the first job of length T +1−ω, x jobs of length 1, and g−x−1
jobs of length T . Therefore, the optimal solution obtains throughput tput∗ ≥ 2(g− x− 1)+ x+2 =

2g − x. Hence, the competitive ratio is at least 3(2g−x)
2g+2 = 6g−3x

2g+2 . Furthermore, since x < g − 1,
6g−3x
2g+2 > 6g−3(g−1)

2g+2 = 3g+3
2g+2 = 3

2 . As a result the competitive ratio is at least 3
2 .

Figure 20: Theorem 13, case 3.2.1, online algorithm schedule

20



Figure 21: Theorem 13, case 3.2.1, optimal schedule

Case 3.2.2: when 2g−4
3

≤ xA ≤ g−1. In this case, since x < 3xA+2
2 , 2g−4

3 ≤ x < 3g−1
2 . There

are three cases that need to be discussed here which are when 2g−4
3 ≤ x < g − 1, when x = g − 1,

and when g ≤ x < 3g−1
2 .

Case 3.2.2.1: 2g−4
3 ≤ x < g − 1. In this case, the adversary will release two different jobs

depending on the value of g, x, and xA. And the adversary will release the type of job that leads to
a higher competitive ratio. We prove that in this case, the competitive ratio is at least 3

2 .
The adversary releases g − x− 1 jobs of length T . Since ALG already scheduled a job of length

T +1−ω on one machine, and a job of length 1 on a new machine, there is no busy-time budget left
for scheduling any job of length T on the existing machine or opening a new machine to schedule a
job of length T . Hence, ALG cannot schedule any of these jobs. Thus, tputA ≤ xA+2. However, an
optimal solution will schedule all the released jobs on the same machine, which are the first job of
length T +1−ω, x jobs of length 1, and g− x− 1 jobs of length T . Therefore, the optimal solution
obtains throughput tput∗ ≥ 2(g − x− 1) + x+ 2 = 2g − x. Hence, the competitive ratio is at least
2g−x
xA+2

.

Figure 22: Theorem 13, case 3.2.2.1, online algorithm schedule (job T)
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Figure 23: Theorem 13, case 3.2.2.1, optimal schedule (job T)

The adversary releases g − 1 jobs of length ω. Since ALG already scheduled a job of length
T + 1 − ω on one machine, and a job of length 1 on a new machine, ALG can only schedule these
jobs of length ω on the machine with jobs of length T +1−ω. Otherwise, if ALG schedules any job
of length ω on the machine with only one job of length 1, or open a new machine to schedule jobs
of length ω, it will use more than T busy-time. Thus, tputA ≤ 2(g − xA) + xA + 2 = 2g − xA + 2.
However, an optimal solution will schedule all the jobs of length 1 on the same machine, and schedule
the jobs of length ω with the job of length of T +1−ω on the same machine. Therefore, the optimal
solution obtains throughput tput∗ ≥ 2(g − 1) + x + 2 = 2g + x. Hence, the competitive ratio is at
least 2g+x

2g−xA+2
.

Figure 24: Theorem 13, case 3.2.2.1, online algorithm schedule (job w)

Figure 25: Theorem 13, case 3.2.2.1, optimal schedule (job w)
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By running experiments, it is found that the lowest competitive ratio is obtained when g = 4, x =
2, xA = 2, and the competitive ratio is exactly 3

2 . This is one of the lowest intersection points of
the two competitive ratio functions. This also makes sense when looking at the graph of the two
functions because the values given by one of the competitive ratio function decreases with x and
xA increasing, while the other ones increase with x and xA increasing. As a result, the competitive
ratio of Case 3.2.2.1 is at least 3

2 .
Case 3.2.2.2: x = g − 1. In this case, the adversary will release one more job of length 1.

Thus, x = g. Furthermore, since x < 3xA+2
2 , and ALG might schedule the last job of length 1,

2g−2
3 < xA ≤ g.
The adversary releases g − 1 jobs of length ω. Since ALG already scheduled a job of length

T + 1 − ω on one machine, and a job of length 1 on a new machine, ALG can only schedule these
jobs of length ω on the machine with jobs of length T + 1 − ω. Otherwise, if ALG schedules any
job of length ω on the machine with only one job of length 1, or open a new machine to schedule
jobs of length ω, it will use more than T busy-time. Moreover, the last released job of length 1
could be scheduled by ALG. Thus, tputA ≤ 2(g− xA) + xA +3 = 2g− xA +3. However, an optimal
solution will schedule the jobs of length ω with the job of length of T + 1 − ω on one machine.
And it will schedule all g jobs of length 1 on a second machine. Therefore, the optimal solution
obtains throughput tput∗ ≥ 2(g − 1) + x + 2 = 2g + x. Hence, the competitive ratio is at least

2g+x
2g−xA+3

. By running experiments, it is found that the lowest competitive ratio is obtained when

g = 3, x = 3, xA = 2, and the competitive ratio is exactly 9
7 . Thus, the competitive ratio is at least

9
7 .

Figure 26: Theorem 13, case 3.2.2.2, online algorithm schedule

Figure 27: Theorem 13, case 3.2.2.2, optimal schedule

Case 3.2.2.3: g ≤ x < 3g−1
2 . In this case, since x < 3xA+2

2 , 2g−2
3 < xA ≤ g − 1. The adversary

releases g − 1 jobs of length ω. Since ALG already scheduled a job of length T + 1 − ω on one
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machine, and a job of length 1 on a new machine, ALG can only schedule these jobs of length ω on
the machine with jobs of length T + 1− ω. Otherwise, if ALG schedules any job of length ω on the
machine with only one job of length 1, or open a new machine to schedule jobs of length ω, it will
use more than T busy-time. Thus, tputA ≤ 2(g− xA) + xA +2 = 2g− xA +2. However, an optimal
solution will schedule the jobs of length ω with the job of length of T + 1− ω on one machine. And
it will schedule at least g jobs of length 1 on a second machine since x ≥ g. If there is any job of
length 1 left after scheduling g of them, then it will schedule the remaining jobs of length 1 on a
third machine. Therefore, the optimal solution obtains throughput tput∗ ≥ 2(g−1)+2+x = 2g+x.
Hence, the competitive ratio is at least 2g+x

2g−xA+2
. By running experiments, it is found that the lowest

competitive ratio is obtained when g = 3, x = 3, xA = 2, and the competitive ratio is exactly 3
2 .

Thus, the competitive ratio is at least 3
2 .

Figure 28: Theorem 13, case 3.2.2.3, online algorithm schedule

Figure 29: Theorem 13, case 3.2.2.3, optimal schedule

■

6 Resource augmentation

In this section, we will discuss infeasible instances of Categorized Weighted Throughput Max-
imization Problem with resource augmentation where the online algorithm is granted with extra
resource such as extra processors on machines or extra busy-time budgets.

The objective is to maximize the obtained throughput by scheduling jobs using the augmented
resources.
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6.1 Infeasible general instances

Theorem 14 For infeasible general instances of Categorized Weighted Throughput Maximiza-
tion Problem with extra T busy-time budget for the online algorithm, no deterministic online algo-
rithm has a competitive ratio lower than g when 2 ≤ T ≤ 4, or gT

4 when T > 4.

Proof. Consider the following adversary:
The adversary first releases a job of length T at [0, T ). Any online algorithm ALG has to schedule

this job according to Proposition 1 and consume T units of busy-time budget. Then, the adversary
keeps releasing jobs of length T at [T, 2T ) until one job of length T is scheduled by ALG at [T, 2T )
or g jobs of length T are released at [T, 2T ).

Case 1: one job of length T is scheduled by ALG at [T,2T). In this case, the adversary
releases gT jobs of length 1 at [2T, 2T + 1). Since ALG already consumed 2T units of busy-time
budget when scheduling a job of length T at [0, T ) and a job of length T at [T, 2T ), therefore there
is no busy-time budget left for opening a new machine to schedule a job of length 1 at [2T, 2T + 1).
Furthermore, ALG cannot schedule any jobs of length 1 at [2T, 2T + 1) on any machine, otherwise,
ALG will use 2T +1 busy-time which is more than the given busy-time budget 2T . Thus, tputA ≤ 4.
However, an optimal solution can schedule all the jobs of length 1 at [2T, 2T + 1), and drop the
jobs of length T , and thus, an optimal solution will gain throughput tput∗ ≥ gT . As a result, the
competitive ratio is at least gT

4 .
Case 2: g jobs of length T are released at [T,2T). In this case, since ALG scheduled no

job of length T at [T, 2T ), ALG will gain throughput tputA ≤ 2. While an optimal solution drops
the first job of length T released at [0, T ) and schedule all jobs of length T at [T, 2T ). Therefore, an
optimal solution will gain throughput tput∗ ≥ 2g. As a result, the competitive ratio is at least g.

Hence, Theorem 14 is proven.
■

Theorem 15 For infeasible general instances of Categorized Weighted Throughput Maximiza-
tion Problem with extra g processors for the online algorithm, no deterministic online algorithm has
a competitive ratio lower than gT

2 when T ≥ 4, or 2g when 2 ≤ T < 4.

Proof. Consider the same adversary in Theorem 7. Even if the online algorithm ALG is granted
with extra g processors augmentation on every machine, it still cannot schedule more jobs than the
case when it has only g processors on every machine. Hence, Theorem 15 is proven.

■

6.2 Infeasible one-sided clique instances

Theorem 16 For infeasible one-sided clique instances of Categorized Weighted Throughput Max-
imization Problem with extra g processors for the online algorithm, no deterministic online algorithm
has a competitive ratio lower gT

2g−1 when T ≥ 3.

Proof. Consider the following adversary:
Case 1: when T ≥ 3. In this case, the adversary first releases a job of length T at [0, T ). Any

online algorithm ALG has to schedule this job according to Proposition 1 and consume T units
of busy-time budget. Then, the adversary releases gT jobs of length 1 at [0, 1). Since ALG already
consumed T units of busy-time budget when scheduling a job of length T at [0, T ), therefore there is
no more busy-time budget for opening a new machine to schedule a job of length 1 at [0, 1). Hence,
ALG can only schedule at most 2g−1 of these jobs on the machine with a job of length T , and thus
tputA ≤ 2g + 1. However, an optimal solution can schedule all the jobs but the first job of length
T, and thus, tput∗ ≥ gT . As a result, the competitive ratio is at least gT

2g+1 .
Hence, Theorem 16 is proven.

■
Claim 1 For infeasible one-sided clique instances of Categorized Weighted Throughput Maxi-
mization Problem with extra g processors for the online algorithm, if the greedy algorithm sched-
ules fewer than 2g jobs, then, an optimal solution must schedule the same or fewer number of jobs.
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Proof. Since this is a one-sided clique instance and all released jobs have length at most T , any
released job can be scheduled on a single processor. Moreover, for the greedy algorithm, there are
2g processors on one machine so at most 2g jobs can be processed simultaneously on one machine.
Thus, if there are more than 2g jobs released, the greedy algorithm must be able to schedule at
least the first 2g jobs. Furthermore, when the greedy algorithm schedules fewer than 2g jobs,
there are less than 2g jobs released and the greedy algorithm will schedule the same number of
jobs as an optimal solution does or even schedule more jobs than an optimal solution does since the
optimal solution has only g processors on machines. Hence, Claim 1 is proven.

■
Theorem 17 For infeasible one-sided clique instances of Categorized Weighted Throughput Max-
imization Problem with extra g processors for the online algorithm, when the greedy algorithm

gains throughput at least 2g + 1 it is an optimal deterministic online algorithm.

Proof. According to Lemma 2, an optimal solution can gain throughput at most gT .
When the greedy algorithm gains throughput tputA ≥ 2g + 1, the competitive ratio is lower

than or equal to gT
2g+1 . which can be bounded by the lower bound of the competitive ratio.

Hence, Theorem 17 is proven.
■

7 Conclusion

Shalon ei al.[11] proposed and discussed the Busy Time Weighted Throughput Maximization
Problem where any job has the same amount of weight, which might not correspond to the situation
in the real world. So we proposed Proportional Weighted Throughput Maximization Problem
and Categorized Weighted Throughput Maximization Problem.

For infeasible instances of Proportional Weighted Throughput Maximization Problem, we
proved that no deterministic online algorithm has a constant competitive ratio by designing different
adversaries. We also prove that the greedy algorithm is the optimal online algorithm. One possible
further research direction is discussing this problem on feasible instances. In this case, the adversary
cannot trap the online algorithm by releasing some extremely short jobs that an optimal solution
does not schedule. Thus, it seems possible to obtain a lower competitive ratio, or even a constant
competitive ratio as a negative result. Moreover, it might require the online algorithm to use a more
flexible strategy to become an optimal algorithm.

For infeasible instances of Categorized Weighted Throughput Maximization Problem, we
designed some adversaries to prove that no deterministic online algorithm has constant competitive
ratio, unless it is a one-sided clique instance and T is 2. We also proved that the greedy algorithm is an
optimal deterministic online algorithm if some conditions are satisfied. One possible further research
direction is designing an optimal deterministic online algorithm for infeasible instances. In this paper,
the competitive ratio of the greedy algorithm cannot always match the lower bound of the competitive
ratio. However, the competitive ratio of a real optimal algorithm should always match the lower bound
of the competitive ratio.

For feasible instances of Categorized Weighted Throughput Maximization Problem, we
designed one complicated adversary for one-sided instances and proved no deterministic online algo-
rithm has competitive ratio lower than 9

7 . There are many possible research problems for feasible
instances. For example, designing adversaries for general or clique instances to figure out the lower
bound of the competitive ratio, or designing a good online algorithm.

A possible research direction based on Categorized Weighted Throughput Maximization
Problem is changing the value of the length threshold and the weight of jobs. For instance, in this
paper, the weight of a job is always less than or equal to its length. But what if the weight of jobs
could be greater than its length? Or what if the weight and the length of jobs are assigned arbitrarily?

For resource augmentation, we tried extra busy-time and extra processors on infeasible instances
and some of them can help increase the lower bound of the competitive ratio. For example, both extra
busy-time budgets and extra processors can help improve the lower bound competitive ratio of infeasible
general instances. One possible further research direction is giving the online algorithm extra speed on
machines. In this case, the released time and deadline of every job remain the same but it requires less
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processing time in the online schedule, and it can be shifted in the time-interval of its released time
and deadline. However, introducing extra speed will change rigid jobs into flexible jobs, which makes
the whole problem much more complicated. Another further research direction is applying resource
augmentation to feasible instances because obtaining a constant competitive ratio requires lots of extra
resources. But it is possible that for feasible instances, to use fewer extra resources to obtain a constant
competitive ratio.
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