The Effect of Deep Learning-based
Source Separation on Predominant
Instrument Classification in Polyphonic
Music

Diego Ligtenberg

Under the supervision of Prof. Peter Kranenburg

Second examiner: Prof. Anja Volk

A thesis presented for the degree of
M.Sc. Artificial Intelligence

N
N

Universiteit Utrecht

Department of Natural Sciences
Utrecht, the Netherlands
15-09-2022

Abstract

Music instrument classification is the task of detecting individual music instruments in music tracks.
It remains a challenging task, particularly in polyphonic music. Prior research has shown that
analytical-based music source separation can increase the performance of instrument classification.
Music source separation is the art of extracting isolated instrument groups called stems from music
tracks. We propose a novel deep learning-based source separation model in the time-frequency
domain that learns to generate a combination of the 'vocals and other’ stems. Additionally, we
develop a postprocessing algorithm that increases the subjective performance of these stems. We
also compare the objective performance between these raw and postprocessed stems and measure
which of the stems positively impacts instrument classification. We find that only the postprocessed
stems positively impact the performance of instrument classification. In addition, we perform
instrument-wise analysis to examine which classified instruments are most affected by music source
separation. We find that the cello, clarinet, piano and violin were the only instruments that
were positively impacted. This research confirms the importance of the source-separated stem’s
quality. The instrument-wise analysis gives insights into which instruments benefit most from
source separation and what source separation quality improvements are needed to increase the
performance of instrument classification.

To my family, Wim, Erica, Diego, Jhon Jairo and Juliana.

Even in difficult times, all of you have helped, guided and supported me.
Thanks

ACKNOWLEDGEMENTS

I am extremely grateful to everyone who helped me through my studies. Foremost, I would like to
express my deepest appreciation to my supervisor Prof. Peter Kranenburg. His support through
all the meetings and his positive reactions to my new ideas made the past year an incredible
experience. You guided me throughout the research process, and I could not have wished for
a better advisor and mentor. I would also like to show my gratitude towards Rob de Mooij, a
constant friend who has helped me transition into this field and guided me with all the machine
learning models. Your help and support were indispensable. Last but not least, I would like to
thank Thomas van den Broek for his emotional support throughout difficult times, the late-night
drinks, and the guidance through parts of my life where I had almost lost hope.

ii

Contents

1 Introduction

1.1 Motivation L e e e
1.2 Related work e
1.3 Source Separation
1.4 Objective e e
1.5 Outline e e e
2 Data
2.1 Sound e e
2.1.1 Waveform e
2.1.2 Spectrogram e e
2.2 Audio Dataset
2.2.1 MUSDB-18 dataset
2.2.2 IRMAS dataset e
3 Method
3.1 Data preprocessing
3.2 Spectrogram-based source separation
3.2.1 Model parameters e
3.3 Postprocessing of source separationo
3.3.1 Reconstruction of waveforms Lo
3.3.2 Quality postprocessingo
3.4 Evaluation of source separation Lo
3.5 Imstrument classifier
3.5.1 Model parameters
3.6 Evaluation of the instrument classifier 0 L.
3.7 Validation analytical procedure Lo oL
4 Results
4.1 Source separation
4.1.1 Model optimisation experiments source separation
4.1.2 Source-separated spectrograms oo e
4.1.3 Objective quality comparison of raw and postprocessed stems
4.2 Instrument classification
4.2.1 Model optimisation experiments instrument classification
4.2.2 ROC curves for best models oL
4.2.3 Objective performance instrument classifier

5 Discussion
5.1 DISCUSSION v v o
5.2 Limitations

6 Conclusion

A Visualisation of ROC Curves

iii

Oy UL W N = =

~ =N

oo

10
10

11
11
12
13
14
14
15
15
15
16
17
18

19
19
19
21
22
22
22
24
24

25
25
26

27

List of Figures

2.1
2.2
2.3
24
2.5

3.2
3.3

4.1
4.2
4.3
4.4
4.5

Al
A2

Examples of three waveforms

Amplitude and period of a sinusoidal waveform

Examples of three spectrograms
Waveform split in overlapping frames . . .
Hann window function

Spectrogram-based autoencoder
Convolutional instrument classifier

Loss curves of regularisation hyperparameters

Loss curves of final model

Examples of mixture raw processed and target spectrograms
SDR per model for test tracks in MUSDB-18
Test auc curves per model with low (le-6) and high (1e-5) 12 weight regularisation

ROC curves cel, cla, flu, gac

ROC curves gel org, pia, sax, tru, vio, voi

iv

20
20
21
22
23

Chapter 1

Introduction

In this chapter, we introduce our work, instrument classification, with music source separation
as preprocessing step; for both methods, deep learning-based approaches are utilized. First, the
motivation and usefulness of the project are given. We then show the literature research on the
related work and discuss existing methods and their results. Afterwards, the objective of the thesis
is given. The last section lists the organization of the thesis.

1.1 Motivation

Music instrument classification (MIC) is a fundamental task of music information retrieval (MIR)
that attempts to identify single instruments used to compose a music track. Accurate MIC has
been useful as a conditional tool for various MIR tasks such as music genre classification, music
similarity computation, and automatic music transcription [37]. Recently, MIC has gained a lot of
interest from commercial firms in the music recommendation industry [33]. In their recommenda-
tion applications, MIC can function as a standalone product, increasing the depth of user queries;
users could search for music tracks containing specific instruments. It could also be used as a
content-based descriptor that helps their recommendation algorithm to provide users with songs
they prefer listening to. Content-based descriptors are features in music tracks (e.g., instrumen-
tation, tempo, pitch) that can be extracted solely from the music track itself [22]. Historically,
these descriptors were mostly avoided as analytical feature extractors provided insufficient pre-
dictive power or were computationally too expensive compared to collaborative or context-based
descriptors [37]. However, with the rise of deep learning-based prediction models that automat-
ically extract features, and a yearly increase in computational power, the use of content-based
descriptors has become more appealing [29].

The quality of MIC has dramatically improved over the past two decades. Most improvements
in MIC can be attributed to improved datasets, data preprocessing, feature extraction and clas-
sifier algorithms [37]. The main focus in older MIC research was improving data preprocessing
and feature extraction [39, 27, 25, 23, 4]. Specifically, using analytical music source separation
algorithms as preprocessing step had shown variable but promising results [25, 3]. With the rise
of deep learning in the early 2010s, most MIC researchers have shifted their focus towards build-
ing deep learning-based instrument classifiers, which perform mostly better than their traditional
machine learning counterparts [15, 38]. Deep learning has also revolutionized the field of music
source separation, with deep learning-based models outperforming analytical approaches [45]. To
our knowledge, no recent research has focused on improving MIC by applying improved source sep-
aration algorithms as preprocessing steps for their instrument classifiers. In this research, we aim
to investigate whether deep learning-based music source separation has the potential to increase
the performance of MIC.

To summarize, deep learning-based music source separation can potentially increase the perfor-
mance of MIC algorithms. Better MIC algorithms have several use cases; first, they can improve
the performance of recommendation systems by serving as a standalone product or as content-based
descriptor. Second, it could help in other MIR tasks by serving as a conditional tool.

1.2 Related work

Humans are reasonably good at recognising musical instruments in polyphonic music (music where
at least two or more instruments play simultaneously). Building a system that allows computers
to do this is still an active area of research in MIR [37]. This section chronologically discusses
the scientific literature for MIC, showcasing how deep learning methods took over feature-based
approaches. Traditionally the main focus of MIC algorithms was content-based feature engineering
[4, 23, 25, 27, 39]. Researchers would extract task-specific features (e.g., amplitude envelopes,
spectral flux, 0-crossing rate) from music tracks and then use traditional machine learning methods,
such as logistic regression or support vector machines to classify the instruments. These task-
specific features were limited as they could not capture all characteristics inherent to the music
track. Furthermore, there was information overlap between features, whereas other information
about the original music track that was not captured by any of the features was lost [42].

Starting as early as 2006, one of the first pipelines was built for polyphonic MIC [39]. This
research aimed to identify which of the four classical instruments (flute, piano, trumpet and violin)
were playing in an audio segment from concerti and sonatas (IOWA collection dataset). To do this,
the authors extracted mel-frequency cepstrum coefficients (MFCCs) to compute mel spectrograms
from each note sample in the dataset. Due to computational limitations, they had to reduce
the dimensionality of these mel spectrograms using principal component analysis (PCA). Finally,
the PCA-reduced mel spectrograms were used as input to a k-nearest neighbour classifier. This
classifier did work, but performed significantly worse than human annotators did. The authors
mentioned that training on monophonic data, while using a polyphonic test set could be the cause of
the poor performance. After that, several studies found that training on polyphonic data produced
better results [25, 27].

In the late 2000s, most MIC improvements were due to better classifier algorithms or prior
transformations to the input audio [12, 23]. The first researchers started applying music source
separation as preprocessing step to their MIC frameworks [25]. Music source separation is the art
of separating specific sources from an audio file (e.g., extracting isolated drums, vocals or bass
stems from a music track). The idea originates from the cocktail party effect [6], which refers to
the ability of humans to focus one’s attention in a crowded area on a particular auditory stimulus,
while filtering out a range of other stimuli (i.e., crowd noise). In their research they attempted
to separate foreground recorded instruments (monaurally recorded instruments, e.g, vocals, bass,
drums) and background instruments (stereo recorded instruments, e.g., strings, brass, guitar) from
the original input music track. The extracted backward stems, mainly containing the instruments
to be recognised, were then used to compute wavelet transforms. These transforms were the input
to an evolutionary classifier algorithm that could detect the presence of the instruments, producing
equal or superior performance compared to other methods at that time.

Hereafter, a PhD thesis additionally showcased that music source separation could improve the
performance in MIC [3]. The flexible audio source separation toolbox (FASST) was used to split
mel spectrogram representations of the original music tracks into drums, bass and other stems
(groups of instruments that belong together). Combinations of these mel spectrogram represen-
tations were the input to a support vector machine-based classifier. They examined whether the
separated sources would increase the performance of MIC. The results indicated that performance
increased the most when source separation was applied on both train and test sets. Some signifi-
cant limitations of this study were the low quality of MFCCs; the use of 38 mel bands is relatively
low for today’s standards. Moreover, the FASST algorithm introduced many auditory artefacts
that further harmed the quality of the music tracks. Next, the support vector machine used as a
classifier is not an ideal algorithm for spectrogram-based MIC [15]. Finally, the separation step
was computationally expensive (taking up to two minutes of processing time per second of audio),
making the process not feasible for practical use. Yet, considering these limitations, performance
on MIC still increased, setting the stage for further research.

Starting in the early 2010s, more and more researchers began shifting their focus from feature-
based engineering and source separation toward building better deep learning-based classifiers.
Convolutional neural networks (CNNs) were the first deep learning-based classifiers that started
dominating the MIC field, resulting in significant improvements in the state of the art at that time
[37]. The success of the convolutional neural network can not only be explained by its architecture.

Increases in computing power enabled the use of higher resolution representations of sound, thus,
spectrograms or mel spectrograms could be directly used as input for the classifier [37]. These
representations contain practically all characteristics of a digital audio signal; thus no information
is lost. Since their emergence, several architectural changes have proved to be robust in improving
convolutional model performance; residual connections, inception modules and batch normalisation
[18]. However, the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners in 2015
showed that by adding more layers and thus creating deeper CNNs that contain more parameters,
model performance significantly increased [37]. This led to a still-going race for bigger models.
Large models take longer to train, the inference is slower and they require computer specialisations
that are sometimes unavailable for consumer products [40].

To our knowledge, only [15] followed up on the research of [25, 12] and used source separation as
preprocessing step for MIC. In their research,[15] used a convolutional classifier which took as input
source separated mel spectrogram representations of an original jazz music dataset. They evaluated
the performance of two analytical-based separation algorithms; phase-based harmonic/percussive
and pitch-based solo/accompaniment separation. The phase-based harmonic/percussive separation
is an analytic solution [15]. It works under the assumption that harmonic music instruments
have stable phase contours when differentiating the phase spectrogram in the time domain. In
contrast, given percussive instruments’ broadband and transient-like characteristics, stability in
phase cannot be expected [15]. The pitch-based solo/accompaniment separation is separated by
extracting pitch information from the solo instrument, and then closely tracking its harmonic
components to create a spectral mask [5]. Pitch information is extracted by performing a pair-wise
evaluation of spectral peaks and finding partials with well-defined frequency ratios. The pitch
information extracted is then used to track the harmonic components, which can differentiate
between solo and accompaniment stems using amplitude modulation, inharmonicity, attack length,
and saliency as underlying concepts [5]. The phase-based harmonic-percussive separation algorithm
produced low-quality separation stems, resulting in worse performance on the MIC task [15]. The
pitch-based solo/accompaniment separation algorithm performed better. The separated stems were
of higher quality, especially for instruments with clear and stable partials (woodwind and string
instruments) [15]. However, the separation was noisier for instruments with less stable spectral
behaviour, such as the electric guitar or music instruments that are distorted due to sound effects
[15]. Despite the quality issue’s on specific instruments, this separation algorithm produced slightly
better results on the MIC task.

Lastly, a framework was proposed for automatic singer identification in pop songs utilising
music source separation [38]. The authors compared the performance of an analytic and two
deep learning-based source separation algorithms; harmonic/percussive separation, time-frequency-
based convolutional separation and time-based Wave-U-Net separation [43]. The algorithms ex-
tracted harmonic or only vocal stems from a dataset containing pop songs. Mel spectrograms of
these stems were computed and used as input for a Gaussian mixture model. They found that the
deep learning-based source separation significantly outperformed the analytical approaches in the
singer identification task, with Wave-U-Net as the clear winner [38].

Most research has shown that music source separation can boost the performance of MIC,
given that the extracted source stems are of high quality. We argue that the clever use of feature
engineering which was often performed in the early stages of MIC, particularly music source sep-
aration, could potentially increase the performance of current MIC models. To our knowledge, no
recent work applied deep learning-based source separation on instrument classification datasets.
The next session discusses the progress of music source separation algorithms in more detail, show-
casing how deep learning-based separation algorithms produce higher-quality stems compared to
analytical methods.

1.3 Source Separation

When producing music, recordings of individual instruments are arranged together (called stems)
and mastered (merged) into the final music track (mixture). Music source separation aims to
recover or generate those individual stems from the mixed signal [8]. Most recent research in
source separation divides the stems into four broad categories: drums, bass, other and vocals. The

other stems contain all the leftover instruments that do not fall into the more precisely defined
stems. Given a music track which is a mixture of these four stems, the goal is to generate waveforms
that correspond to one or more (combinations) of the original stems [11].

We have discussed how older analytical source separation algorithms are prone to artefacts
and highly dependent on the harmonics of the instruments played in the original music track
[3, 25, 15]. Deep learning-based separation models, constructed with the revolutionary U-net
architecture, suffer less from these problems [40, 42]. U-net is an encoder-decoder convolutional
generator architecture, initially developed as an image segmentation tool for biomedical images
[35]. It owes its success to the use of skip connections between convolutional layers. The skip
connections preserve important information from layers in the encoder so that the decoder can
accurately reconstruct spatial-related multi-dimensional target data from the input data. Since
the emergence of U-net-based generator models, which is the backbone for almost all modern deep
learning-based source separation algorithms [11], approaches to extract stems from the original
music tracks (mixtures) can be split into three categories: spectrogram-based (time-frequency)
generator models, waveform-based (time) generator models, and combinations of these two (hybrid
generator models).

Spectrogram-based models attempt to extract isolated stems from mixtures by first converting
the waveform of the input mixture to spectrogram representations [7]. The generator model is then
supposed to learn a mapping from the spectrogram of the mixture towards a specific target spec-
trogram. The predicted target spectrogram is then converted to waveform using some short-time
Fourier transform inversion algorithm (e.g., istft, Griffinlim [16]). Different spectrogram models
vary primarily in the input data, either represented by its amplitude or as the concatenation of
its real and imaginary parts [11]. Similarly, the output can be either a mask on the input spectro-
gram, modulation of the input spectrogram, or the complex-as-channel representation of the input
spectrogram [11]. We will now discuss some architectures using several different configurations.

Spleeter by Deezer [20] uses the original U-net framework with the addition of dilated convo-
lutions and a mask-based final layer. The input of their model is the amplitude of the mixture
spectrogram. Their final layer generates a spectrogram mask with values bounded between zero
and one, using a sigmoid activation function. This mask is multiplied with the input layer to
produce the target source. The predicted target source’s phase is then restored to its waveform
using the Griffinlim algorithm. Finally, Wiener filtering [50] was used on the output spectrogram
to reduce the noise produced by the algorithm, resulting in better-perceived quality of the stems.
The addition of dilated convolutions increased the receptive field of the convolutional kernels by
inserting holes between the consecutive elements of the input data. The holes help expand the
area covered by the kernels, but detailed local information is lost. The Wiener filter, reduces the
overall resolution of the sound, to reduce perceived noise [50, 13, 31].

D3Net [46] is another spectrogram-based source separation architecture that exploited dilated
convolutions. The difference with Spleeter is that its final layer directly predicts the target spec-
trogram allowing the model to learn non-linear relations with respect to the input layer. This
is better, as mask-based output layers have to be linear combinations of the input layer, which
is not ideal when harmonics of different sources overlap [7]. Directly predicting the output layer
made D3Net’s predicted stems sound less "hollow’. Furthermore, they examined the positive effect
of adding 1500 songs to their training data. Their standard and extra data model outperformed
Spleeter in SDR for all stems.

LaSAFT [7] is a spectrogram-based source separation architecture that uses Complex-As-
Channels as its input and output. They directly learn the magnitude and phase of the short-
time-Fourier transform (STFT) representation of the audio removing the Griffin-lim algorithm’s
need. They argue that learning the separation model’s phase increases the source separation al-
gorithms’ upper bound. However, their models are more unstable to train, since it needs to not
only learn twice as much data, but the phase data should also be consistent with the magnitude
spectrograms not to cause audio artefacts. Lastly, [24] experimented with generative adversarial
neural networks but found the training very unstable. They even measured worse performance
than regular convolutional-based approaches.

Waveform-based source separation methods such as Wave-U-Net[43] and Conv-Tasnet [28],
always had underperformed their spectrogram-based counterparts. This changed when the Demucs
architecture won the signal separation evaluation campaign (SISEC) in 2018 using waveforms

directly as input [11]. The architecture of Demucs is quite similar to spectrogram-based methods
as it still uses U-Net as its backbone. The main difference is using 1-dimensional convolutions
and a larger stride to downsample the waveform data. Furthermore, two bidirectional long-short
term memory (BLSTM) are added inside the latent space. The last layer of the model directly
predicts the waveform without the use of masking. The benefit of waveform-based methods is that
the loss function is directly based on the raw target waveform instead of the magnitude of the
spectrogram. This fixes phase reconstruction artefacts that occur in spectrogram-based methods
[41]. A problem of the waveform approach is that due to the 1-dimensional data, even after
downsampling with larger strides, the memory required to train such models is still significantly
larger than spectrogram-based approaches. This results in longer and more unstable training time,
given that the same amount of computational resources are available [11].

Theoretically, there should be no difference between spectrogram and waveform models. Es-
pecially when considering CaC (complex as channels), which is only a linear change of base for
the input and output space [10]. However, the MUSDB-18 dataset, containing only 150 songs, is
relatively small which makes it susceptible to inductive bias of either the spectrogram or waveform
models. Additionally, the test errors measured in both model types remain high, indicating the
models produce artefacts in the generated target stems. Spectrogram models often suffer from
phase inconsistency problems that make the attack of drums sound less punchy, whereas waveform
models produce crunchy static noises, especially in the vocal stems [11]. Because of this, the latest
trend in music source separation is to use hybrid models that take the best information from both
waveform and spectrogram-based models. Some examples are; hybrid Demucs and HTMD-net [10,
14].

Although waveform-based and hybrid separation methods produce promising results, they are
more unstable to train. Additionally, both train and inference times take significantly longer than
their spectrogram-based counterparts. For this reason, we implement a spectrogram-based source
separation model that can extract input mixtures’ vocals and other stems. These stems are the
input for the final MIC classifiers that are used to investigate whether using the deep learning-based
separated stems increases the performance.

1.4 Objective

To our knowledge, the last research that investigated whether music source separation could
improve the performance on instrument classification was [15]. Their instrument classification
datasets were transformed into source-separated stems using analytical separation algorithms. The
main goal of this thesis is to use deep learning-based source separation, which has shown to pro-
duce higher quality stems than the analytical-based separation algorithms [38], and measure its
effect on MIC for polyphonic music. To do this, we develop a spectrogram-based source separation
algorithm that removes the ’drum and bass’ stems from music tracks. The remaining ’vocals and
other’ stems contain all the instruments present in the IRMAS dataset. These stems will be used
to train and test instrument classifiers whose performances are compared with a base model that
uses no source separation.

Secondly, several other research has shown that the quality of source separation algorithms
affects the influence of source separation on MIC [25, 3, 15, 38]. This research will investigate
whether this still holds for deep learning-based separation algorithms. To do this, we evaluate
the objective and subjective quality of the raw and postprocessed output of the source separation
model and examine whether the differences in separation quality impact the performance of the
final instrument classifier.

Lastly, previous research has shown that the effect of source separation depends on the char-
acteristics of the instruments that are classified [25, 15]. However, the evaluation metrics for the
instrument classifiers are averaged over all instruments. This does not allow the reader to exam-
ine which instruments benefit most from source separation. Therefore, we provide instrument-wise
performance metrics to get more detailed insights into the effect of source separation on instrument
classification.

1.5 Outline

The rest of the thesis is organized as follows. Chapter 2 introduces the data that is used in this
research. An introduction to sound is given, and relevant feature representations of audio, including
their advantages and disadvantages, are discussed. We then showcase the datasets used for both
source separation and instrument classification. Chapter 3 showcases the method that was used
to perform this research. A description of each model’s pre and postprocessing pipeline is given.
The model architectures are explained, and the evaluation metrics used to test the hypothesis of
this research are presented. Chapter 4 showcases the results of the experiments. The discussion
and the limitations of this study are covered in Chapter 5. Chapter 6 presents the final conclusion
of the research.

Chapter 2

Data

In this chapter, the necessary theory about audio is explained. Afterwards, the datasets used in
this thesis are shown.

2.1 Sound

Sound is the auditory sensation produced by the vibration of an object in a medium (e.g., air,
water). Vibrations determine the oscillation of molecules, creating an alternation of high and
low pressure in a medium [48]. The human ear can detect a fixed range of different pressure
alternations, which we perceive as sound.

2.1.1 Waveform

A waveform is a function of a sound signal’s amplitude over time which can be visualized in a graph.
Example waveforms can be seen in fig. 2.3. Two important perceptual properties are embedded in
waveforms; amplitude and period, that correspond to the human hearing perception of loudness
and pitch (fig. 2.2).

amplitude

o os 1 15 2 25 0 os 1 15 2 25
time time

(a) Violin (b) Guitar (c) Singing voice

Figure 2.1: Examples of three waveforms

period
mplitude

VARVIRV.

Figure 2.2: Amplitude and period of a sinusoidal waveform

The amplitude of a waveform corresponds to the distance between its high and low-pressure
points and the equilibrium position. Amplitude directly relates to loudness; how ”loud” or ”soft”
we perceive a sound. Louder signals have a higher amplitude. The basil membrane in the human
ear creates a stronger 'push’ when the amplitude is high, resulting in a louder perceived audio
signal [37]. In graphs, the amplitude is often transformed to a base ten logarithmic scale as the
ratio between the raw sound intensity that leads to permanent damage and the limit of the smallest
audible sound is close to 1 trillion (10'%) [9]. The unit for amplitude in the logarithmic scale is
called decibel (dB) [37].

Pitch relates to the perception of tone height and is determined by the period of the waveform.
Larger distances between each amplitude peak indicate lower sounds, and smaller distances indicate
higher sounds [48]. It is a convention that pitch is measured in frequencies (Hz), which is the inverse
of the period. Studies have shown that humans do not perceive frequencies on a linear scale [21].
We are better at detecting differences in lower frequencies than in higher frequencies [47]. For
example, differences between 100 Hz and 200 Hz are easily noticeable, whereas the difference
between 10.000 Hz and 10.100Hz is significantly harder to detect. Furthermore, for instruments,
which are composed of several repeating frequency patterns, perceived pitch relates to the loudest
frequency in the lowest frequency pattern (fundamental frequency). The other frequencies patterns
are overtones or partials which form the timbre of the sound. Timbre helps us tell the difference
between two musical instruments [37].

Waveforms found in nature are continuous. Digital waveforms are sampled discretized repre-
sentations of continuous waveforms. Computers can handle these discretized representations [37].
The resolution or sampling rate of the discretized waveform is measured in hertz (Hz). It indicates
how many data points per second of the continuous waveform are processed by the computer. In
this thesis, we will be using a sample rate of 44.100 Hz.

2.1.2 Spectrogram

A spectrogram is a visual representation of an audio signal’s amplitude and pitch over time [22].
Spectrograms are usually visualized as coloured images, where the horizontal and vertical axes
represent time in seconds, and frequency in Hz, while the colour represents amplitude in dB.
Examples of spectrograms can be seen in fig. 2.3.

+0dB +0d8

“0d8 1048 “10d8

20 d8 2048 20d8

30 dB 30dB 30d8

-40 dB -40d8. -40d8

50d8 5048 50d8

60 dB 60 dB. -60dB

70 dB 70dB. -70d8

-80d8 80 d8. 80d8

(a) Violin (b) Guitar (c) Singing voice

Figure 2.3: Examples of three spectrograms

The short-time Fourier transform (STFT) generates a spectrogram from a waveform [48]. First,
it splits a waveform into short-time windowed frames. Discrete Fourier transforms are applied to
each frame, resulting in a frequency spectrum. Next, the power spectrum from the amplitude part
of the frequency spectrum is computed. Finally, the spectrogram is obtained by transforming the
amplitude scale of the power spectrum to decibels. A more detailed explanation is given below.

1. First, the original waveform x(n) is split into overlapping short-time frames with equal length.
Each frame contains N samples which corresponds to the frame length. The number of
samples between each overlapping frame is denoted by the hop size H (fig. 2.4). In this
research, we use a frame length of 4096 and a hop size of 1050. The following formula
represents the samples in each frame

Ta(n) = {x(n+(a—1)~H), ne€l0,N —1]

. (2.1)
0, otherwise

where « is the index number of one short-time frame, and z,(n) denotes samples in the a'*
frame taken from original signal x(n).

2. Each frame is then applied with a window function w(n) to overcome spectral leakage [17].
We used the Hann window function (fig. 2.5).

Taw(N) = 2o(n) - w(n) (2.2)

3. The short-time Fourier transform is then defined as applying discrete Fourier transforms to
each windowed overlapping short-time frame. This transforms each windowed audio signal
into a complex frequency spectrum containing the amplitude Z, (k) and phase Z,(k) matrices
for each k*® frequency.

(2.3)

= . N
t(k) = aw LeT2TN k= 1,2—
z(k) ,;0 Taw(n) - e Iy 5

4. We then omit the phase Z,(k) and compute the power spectrum density by taking the
element-wise square of the amplitude matrix from the frequency spectrum.

P(k) = |[Ra(k)|I” (2.4)

5. Finally, the spectrogram is obtained by converting the power into the decibel scale.

P (k) = 101og,o(P(k)) (2.5)

The benefit of the spectrogram representation is its two-dimensional spatial-related informa-
tion. These properties are similar to images, allowing for the use of convolution algorithms that
efficiently extract features from two-dimensional data [20]. Therefore we will be using spectrogram
representations of waveforms for both music source separation and instrument classification.

10 4

0.8 4

1o

¥ i & 3

]))
) :
03] ‘ Hann window
Lol | *Tamesze

] as 1 N s 2 25
"1 '

|

F—
o Tergt

Amplitude

0 10 20 30 40 50
Sample

Figure 2.4: Waveform split in overlapping frames Figure 2.5: Hann window function

2.2 Audio Dataset

Two datasets are used in the overall pipeline of this thesis: the MUSDB-18 dataset for source
separation and the IRMAS dataset for music instrument classification. Both of these datasets are
benchmarks in their respective fields and are used in most of the recent source separation and MIC
articles considered in this thesis.

2.2.1 MUSDB-18 dataset

The MUSDB-18 is the benchmark dataset for music source separation [34]. It was used for the 2018
community-based Signal Separation Evaluation Campaign (SISEC) competition, where incredible
improvements were made in the field of source separation [44]. The dataset contains 150 full-length
music tracks (10h duration) with individual track lengths ranging from two to eight minutes. All
tracks are stereophonic, encoded at 44.1kHz and were downloaded in the waveform format. The
tracks cover a variety of music genres such as pop, rock, rap, EDM, jazz, folk and classical music to
name a few. It comes with a formerly divided training set composed of 86 music tracks, a validation
set of 14 tracks and a test set of 50 tracks. The 100 train and validation tracks are taken from the
DSD100 dataset, which itself was derived from The’ Mixing Secrets’ Free Multitrack Download
Library [34]. The test set contains 46 tracks taken from MedleyDB, Native Instruments provided
two tracks and the other two tracks came from the Canadian rock band The Easton Ellises. Each
music track contains isolated drums, bass, vocals and other stems. Together they form the track
mixture that is used as input for our separation model. Section 3.1 will discuss the creation of the
target stems used in this research.

2.2.2 IRMAS dataset

The IRMAS dataset is developed for polyphonic instrument classification and was derived from the
dataset in Ferdinand Fuhrmann’s PhD thesis [12]. The dataset contains 8772 audio segments, which
are stereophonic and encoded at 44.1kHz. All audio segments were downloaded in the waveform
format. The dataset comes with a formerly divided train and test set. The train data contains
6700 three-second segments with monophonic instruments. Genres include; country-folk, classical,
pop, rock, latin and soul [12]. In contrast, the test dataset contains 2072 polyphonic segments of
varying lengths (five to twenty seconds). For the whole duration of the segment, the predominant
instruments stay consistent [3]. Genres include; rock, pop, classical, jazz, electronic and folk music.
The eleven instruments included in both train and test dataset are: cello (cel), clarinet (cla), flute
(flu), acoustic guitar (gac), electric guitar (gel), organ (org), piano (pia), saxophone (sax), trumpet
(tru), violin (vio) and human singing voice (voi). We chose to customise the predetermined train
and test data splits and adjust the length of the segments in the test data for the following two
reasons. First, the train data consists of only monophonic music, which has shown to result in poor
performance for polyphonic music classification [27, 25]. Second, Convolutional neural networks
have difficulty dealing with the varying length audio segments between train and test data. A
detailed explanation of the data customisation can be seen in section 3.1.

10

Chapter 3

Method

This chapter explains the methods used to answer the research questions. First, an explanation
is given about the data preprocessing required to convert the waveforms of both datasets into
model-ready spectrogram representations. We then describe how the spectrogram-based source
separation model, which extracts the combination of vocals and other stems from music tracks, was
built. Next, the postprocessing algorithm that is used to remove audio artefacts of the separation
model’s output is covered. The source separation section ends with the commonly used SDR
metric that evaluates the performance of the raw and postprocessed stems produced by the model.
The instrument classification starts with a description of the workings of the three CNN-based
instrument classifiers; base, raw and postprocessed. The parameters that were used for the models
are then discussed. Afterwards, an overview of the evaluation metrics that are used to measure the
performance of the instrument classifier is shown. Lastly, the validation of the statistical methods
used to compare the performance of the source separation and instrument classification models is
given.

3.1 Data preprocessing

This section will discuss the preprocessing steps taken for both music source separation and instru-
ment classification datasets. First, we explain how the target waveforms for the spectrogram-based
autoencoder were created from the MUSDB-18 dataset. Next, we elaborate on the steps taken to
create a custom IRMAS dataset with new train and test splits. Finally, we specify the prepro-
cessing steps required to convert the waveforms from the MUSDB-18 and IRMAS datasets toward
model-ready spectrogram representations.

Starting with music source separation, the goal is to train the spectrogram-based autoencoder
such that it learns to convert the track mixture towards waveforms containing only the target
stem. The track mixture is a combination of all the stems; drums, bass, vocals and other. The
target stem’s waveform should contain all the instruments that need to be identified in the IRMAS
dataset. To do this, we removed the drum and bass stems from the music tracks. The final target
stem is then created by merging the remaining’ vocals and other’ stems using addition. We now
have two waveforms; the track mixture and the target waveform containing only the combination
of the vocals and other stems.

Next, instrument classification; we customised the original IRMAS dataset as the predetermined
train split contained only monophonic music and the test set contained varying length audio
segments. First, we added a part of the polyphonic test set to the monophonic train dataset as
training on polyphonic music has shown to provide better results [27, 25]. Second, to get matching
length segments in train and test data, the segments in the test dataset were padded such that only
the first three seconds remained. The padding does not influence the results because of the following
property belonging to the IRMAS test dataset; the predominant instruments are playing for the
whole duration of the segments [3]. The final customised train and test datasets contain respectively
8006 (6700 monophonic, 1306 polyphonic) annotated train segments for a total of 8911 instruments
and 766 polyphonic annotated test segments with a total of 1279 instruments. 20% of the train
data is used for validation purposes. The instrument distributions for the train and test dataset can

11

be seen in fig. 2.3. We used class weights to counteract the slightly uneven instrument distribution
in the train dataset. The test dataset shows an even more skewed distribution (e.g., cello and
clarinet). The IRMAS dataset simply contained no more polyphonic data for the instruments with
low presence. When interpreting instrument-wise evaluation metrics for the MIC classifier, we will
be mindful of this.

1400 5 9 19.86%
15.03 1003 19.78% %

N
@
=)

amount

1200

1000

amount

Y]
]
S

-
o
)

"
°
S

o
S

11.65%
7.82%
6.57%
5.08%
3.75%
5 2.5%
1.560/02.1.9/DI I
5 ® 3 B x 3 o o
g 3 s § 2 § B % %

o
& @
>

13.63%
12.3%
R 9.56%
800 8.08%
7.1% 7.36%

600 5.06%6.04%

5.08%
400
200

0 o P S o o o x > e 5 0

g T € g g 24 § & s %

©
o 5

instrument instrument

(a) Train data distribution (b) Test data distribution

We will now discuss the preprocessing steps required to convert waveforms from the MUSDB-
18 and TRMAS datasets toward model-ready spectrogram representations. This consists of the
following steps; converting the stereo waveforms to mono, splitting or padding the waveforms into
segments of three seconds, converting the segments into spectrograms, and normalising the spec-
trograms. First, the 44.1kHz stereophonic waveforms are converted to mono as it significantly
reduces the data required to train the models. This conversion does not change the key char-
acteristics of the instrumentation inside the audio signal, making its effect on the performance
of the models small. Second, we split the MUSDB-18 tracks into three-second audio segments
for computational purposes; the end-of-song segments are zero-padded. The train data in the
IRMAS dataset already has a duration of three seconds per segment. As explained before, we
only took the first three seconds for the test dataset. Third, the three-second segments are con-
verted to logarithmically-scaled amplitude spectrograms using the STFT (hop size = 1050, frame
size = 4096) described in section 2.1.2. The initial dimensionality of these spectrograms is 2049
(frequency) by 126 (time). However, these dimensions would result in resolution problems, since
autoencoders repeatedly downsample the data by factors of two. To prevent this, we removed the
highest frequency bin and added two time bins, resulting in 2048 by 128 sized spectrograms. These
dimensions are powers of two; thus, downsampling can be applied repeatedly without running into
resolution problems. Finally, we normalise the logarithmic amplitude spectrograms by dividing
the logarithmic amplitude values by 150. This normalisation bounded the amplitude values to a
new range between -1 and 1. This range is ideal because neural networks are better at handling
smaller valued data [11]. These normalised logarithmic amplitude spectrograms are used as input
for both source separation and instrument classification models

3.2 Spectrogram-based source separation

In this section, we explain the workings of our spectrogram-based autoencoder and showcase the
parameters used in this research. It is inspired by several other source separation algorithms in
both waveform and time frequency domain [20, 45, 11, 41]. The spectrogram-based autoencoder
is a U-net-based generator model [35] that learns a mapping from the spectrogram of the input
mixture towards the target spectrogram; the combination of vocals and other stems. Its archi-
tecture consists of an encoder, bottleneck and decoder. In an unsupervised manner, the encoder
learns to create data encodings from the input mixture which are stored in the bottleneck. The
decoder decodes these encodings towards newly generated target spectrograms. Additionally, the
encoder layers are able to send relevant information to the decoder using the skip connections that
concatenate the encoder layers with their corresponding decoder layers. We propose the following
architecture for our spectrogram-based autoencoder fig. 3.2.

12

Input layer | Output layer Encoder block
2048 x128x 1 2048 x128x 1
l T Convolution
Encoder R Decoder Batch Norm
1024 x 64 x 16 C "| 102ax64ax16
l T RelU
Encoder C _ Decoder
512 x32x 32 "] 512x32x32 Decoder block
l T Deconvolution
Encoder C Decoder
256 x 16 x 64 256 x 16 x 64 Batch Norm
l T RelU
Encoder C N Decoder
128 x 8 x 128 " 128 x 8 x 128
l T Bottleneck
Encoder c R Decoder Flatten
64 x4 x 256 | 6axax2s6
l T Dense
Encoder C Decoder Dense
32x2x512 "] 32x2x512we
A Reshape
Bottleneck
128x1x1 C] Concatenate

Figure 3.2: Spectrogram-based autoencoder

The spectrogram-based autoencoder contains six layers of convolutional blocks that compress
the input spectrograms into a compact encoded representation. Each convolution block consists
of a 2D convolution followed by batch normalisation and a ReLU activation function. We ex-
perimented with the dilated 2D convolutions [41] that expand the receptive field of the model.
However, we omitted these as we only use a small number of convolutional layers and the dilation
caused too much information loss which resulted in convergence problems. We think that if more
computational memory is available, increasing the number of layers could potentially make the
use of dilated convolutions a viable option. After the sixth layer, the encoder output reaches the
bottleneck, which restricts the flow of information from the encoder to the decoder. The bottle-
neck contains the maximum amount of information of the input in a compressed lower-dimensional
representation. The decoder includes six layers of convolutional decoder blocks that decompress
the compact information in the bottleneck towards the dimensionality of the target spectrogram.
The first five decoder blocks consist of 2D transposed convolutional layers followed by batch nor-
malisation and a ReLU activation function. The last layer consists of a 2D transposed convolution,
batch normalisation and TanH activation function. Unlike [20], we did not choose to make the
output layer a mask of the input spectrogram. Instead, we directly produced the target output in
the final layer utilising the activation function. The TanH function compresses the output values
to the range -1 and 1, which matches the range of the amplitude values in our normalised loga-
rithmic spectrograms. Therefore, our model directly outputs normalised amplitude spectrogram
representations of the target source containing only the combination of vocals and other stems
from the original input mixture.

3.2.1 Model parameters

We chose the following architectural model parameters to initialise the model as preliminary ex-
periments showcased these parameters performed best. The Convolutional filters for each layer;
(16, 32, 64, 128, 256, 512), which is similar to [20]. The filters store the spectrogram features.

13

The early layers detect mostly detailed local shapes (edges of certain frequencies) that are often
shared between different spectrograms. The deeper layers contain more conceptual features. As
these features are more diverse, more filters are needed to capture the differences. Convolutional
kernels; (5, 5, 3, 3, 3, 3), larger kernel sizes in the early layers resulted in faster convergence.
The strides were 2 for each layer, serving as a downsampling mechanism. The first dense layer
in the bottleneck reduces the data and creates a latent space dimensionality of 128. The second
dense layer upsamples this latent space towards the dimensionality of the flattened encoder out-
put. Combined with the skip connections, we found that the dimensionality of the latent space
is expressive enough for the decoder to upsample the compressed data representation towards the
target spectrograms [45].

To prevent overfitting, small experiments (50 epochs) were conducted for three regularisation
methods; data augmentation, dropout and weight regularisation. The following data augmenta-
tions, also used by Open Unmix and Demucs [45, 11], were applied; polarity inversion (multiplying
the waveform by -1), time stretching (scaling the speed of the sound by a random factor between
0.5 and 1), pitch scaling (scaling the waveform by -4, -2, -1, 0,... +3, +4 semitones) and lastly,
signal reversing. We experimented using 50% dropout in the first three encoder layers as described
in [20] but omitted this from the model as it produced a lot of noise in the final output. We then
experimented with L2 weight regularisation (parameter=1e-4), which penalises large weights. This
slowed down training but reduced overfitting. We also experimented with truncated normal weight
initialisation. The model’s weights were initialised with a mean of 0 and a standard deviation of 1,
drastically improving the model’s convergence speed as it reduces the exploding gradient problem
[32]. Lastly, we experimented with mean squared error (mse) and mean absolute error (mae) loss
functions and found that mae produced the best results.

The models were trained on 1 GTX 960 GPU with 6 GB of VRAM for a total of 375 epochs,
where one epoch is defined as a pass over all 3-second audio segments in the dataset. Each epoch
took approximately 8 minutes, making the total train time around 50 hours. We selected the best
model based on validation loss (mae) and calculated the evaluation metrics of this model on the
test set. The Adam optimiser with a learning rate of 3e-4 and a batch size of 8 was used.

3.3 Postprocessing of source separation

In this section, the prostprocessing steps that are applied to the output of the model are dis-
cussed. The outputs of the spectrogram-based autoencoder are normalised logarithmic spectro-
grams. These are transformed into denormalised amplitude spectrograms to calculate the predicted
stems’ objective performance (SDR). However, objective performance metrics do not always cor-
relate well with subjective human evaluation. To evaluate the reconstructed sound’s subjective
quality, the output spectrograms need to be converted to reconstructed waveforms. This process is
explained in detail. Afterwards, the postprocessing steps that were taken to improve the subjective
performance of the model are discussed.

3.3.1 Reconstruction of waveforms

The spectrogram-based autoencoder outputs normalised logarithmic spectrograms representing
three-second audio segments of an input track. The following steps were used to convert these
spectrograms into waveforms: denormalisation, time-frequency bin reconstruction, decibel to am-
plitude transformation, Griffinlim transformation and segment concatenation. First, to denor-
malise, the spectrogram-based autoencoder’s output is multiplied by 150. Second, the original
2049 (frequency) by 126 (time) dimensionality is re-obtained by adding the removed frequency bin
and removing the two added time bins to the spectrograms. These spectrograms are then converted
to amplitude spectrograms by an inverse amplitude-to-decibel function. Finally, the Griffinlim al-
gorithm is used to convert the amplitude spectrograms into waveforms. This algorithm iteratively
runs inverse short-time Fourier transforms and estimates the omitted phase of the frequency spec-
trum that was omitted in the data preprocessing step [16]. We found that this algorithm provides
better perceptual wave reconstructions than applying the inverse Fourier Transform combined with
the phase of the input mixture used by [20]. Lastly, all three-second segments of the same song
are concatenated to reconstruct the original music track.

14

3.3.2 Quality postprocessing

Earlier research showed that the quality of the source-separated output can drastically influence
MIC performance [25, 3, 15]. When listening to the output of the model, very soft artefacts of the
drum and bass stems that should have been removed were noticeable. Three independent people
were asked to listen to the model’s output and confirmed the observation. To remove some of
these artefacts, a postprocessing pipeline was built that removed the softest sounds of the model
output (less than 60dB). We believe these postprocessed stems have much better perceptual audio
quality as there is a significant reduction in artefacts. Human evaluation is the most direct way
to measure audio quality. However, it is time-consuming and expensive. Therefore, the objective
performance of the raw and postprocessed model output will be measured and used to investigate
the effect of separated stem quality on the MIC task.

3.4 Evaluation of source separation

In this section, the objective metric signal-to-distortion ratio (SDR), used to measure the perfor-
mance of the raw and postprocessed source separation output, is discussed. SDR is frequently cited
in audio source separation research and serves as the baseline measure for many source separation
competitions (e.g., SISEC) [44]. SDR measures how much of the target signal is recovered, com-
pared to the amount of noise produced by the generator model. Theoretically, values range from
minus infinity to plus infinity but SDR scores in deep learning-based source separation usually lie
between 5 and 15, with higher scores indicating better performance [46].

SDR reported in competitions is usually calculated directly on the waveform output [11, 44,
36, 46]. However, SDR measured on waveforms relies on having an exact alignment between the
predicted and target waveform. We observed that the reconstructed waveforms did not satisfy
this property. We believe the use of Griffinlim’s algorithm to estimate the phase of the frequency
spectrum could have caused this problem due to slight phase estimation errors. To still compare
the performance between the raw and postprocessed source-separated stems, the SDR formula is
applied to the amplitude spectrograms instead eq. (3.1)

2
SDR = 10 logw(Istarger) (3.1)

H starget — Sestimate ||2

where siqrge¢ is the target amplitude spectrogram and Segtimate is the raw or postprocessed
amplitude spectrogram predicted by the model

3.5 Instrument classifier

In this section, we propose the convolutional neural network (CNN) that is used to classify the
instruments playing in the audio segments of the IRMAS dataset. In addition, we showcase the
parameters used to train the instrument classification model. To investigate the impact of deep
learning-based source separation on MIC, three CNN models are trained and compared; the base,
raw source-separated and postprocesed source-separated models. These instrument classifiers share
many properties with the encoder of the spectrogram-based autoencoder as their architectures are
rather similar. The base model is trained and tested on the original IRMAS dataset segments. The
raw and postprocessed source-separated models are trained and tested on raw and postprocessed
source-separated stems of the IRMAS dataset that were produced by the spectrogram-based au-
toencoder. We treat MIC as a multi-label classification problem where the CNN classifiers are
trained to output all labels of the instruments playing in the audio segments. The CNNs take
as input normalised logarithmic spectrogram representations and output scores ranging between
0 and 1 for each instrument. A decision threshold is then used to determine the existence of the
instrument in the audio segment. An overview of our CNN model can be seen in fig. 3.3.

15

Input layer Encoder block
2048 x128x 1
Convolution
\ 4
Encoder RelU

1024 x 64 x 16

l Dropout
® o o

Output layer

l Dense

Encoder
16 x 1 x 256 Sigmoid

A\ 4

Flatten
4096 x1x1

\ 4
Output layer

11x1x1 g ‘EIII|‘||||||] '/{

-
b

Figure 3.3: Convolutional instrument classifier

The CNN contains seven layers of convolutional blocks that compress the input spectrograms
into a compact encoded representation. Each convolution block consists of a 2D convolution
followed by batch normalisation and a ReLU activation function. After the seventh layer, we
flatten the output. Next, a dense layer further reduces the dimensionality of the data. Finally, the
sigmoid activation function generates independent class predictions for each instrument class.

3.5.1 Model parameters

Based on preliminary experiments, we found the following base parameters to perform best. The
convolutional filters for each layer; (16, 32, 64, 128, 256, 512, 1024), kernel size; (7, 5, 3, 3, 3, 3,
3), and similarly, larger kernel sizes in the early layers resulted in faster convergence. The strides
were 2 for each layer, serving as a downsampling mechanism. Dropout and weight regularisation
were used to prevent overfitting. The convolutional and dense layers contain 20% and 50% dropout
respectively as was also done in [26]. We then thoroughly experimented with the use of L2 weight
regularisation. This hyperparameter significantly impacted the number of epochs required before
convergence. L2 regularisation with a parameter of le-6 produced the best results for the base
model, whereas the source-separated models did better with a setting of le-5. Similar to the
autoencoder model, the instrument classification model’s weights were initialised with a mean of 0
and a standard deviation of 1, which stabilised training and increased convergence speed. For the
loss function, we used binary cross entropy, which generally works well for multi-label classification
problems [26].

The models were trained on 1 GTX 960 GPU with 6 GB of VRAM. To find the best models,
We implemented early stopping that monitored validation AUC with a patience level of 50. The
evaluation metrics of the best models are calculated on the test set. One epoch is a pass over
all 3-second audio segments in the dataset. The base, raw source-separated and postprocessed
source-separated models were trained for 121, 173 and 98 epochs respectively. Each epoch took
approximately 3 minutes, making the total train times per model range between 9 and 14 hours.
The Adam optimiser was used with a learning rate of 3e-4 and a batch size of 16.

16

3.6 Evaluation of the instrument classifier

This section discusses the evaluation metric for the convolutional instrument classifier; area under
the curve (AUC). We first describe the usefulness of this metric. Then an explanation of the
technical details required to calculate the metric is given. Lastly, we motivate the reason to
calculate instrument-wise AUC scores to measure the performance of the model.

AUC is a desirable metric for multi-label classification problems for two reasons: First, AUC
is scale-invariant. It measures how well predictions are ranked rather than their absolute values.
Second, AUC is decision-threshold-invariant. It measures the quality of the model’s predictions
irrespective of what classification threshold is chosen. The first property is useful as the exact
prediction values of the instrument classifiers have no significant meaning. The second property is
useful as it gives the end-user flexibility in taking the desired classification threshold that comes
with a specific combination of true positive rate (TPR) and false positive rate (FPR). TPR and
FPR can be best explained with the help of a confusion matrix. A confusion matrix summarizes the
performance of a classifier in a table. For binary problems, a confusion matrix typically looks like
table 3.1. As this research deals with a multi-label classification problem, the confusion matrices
are computed for each instrument.

Predicted class
Positive | Negative | Total
Actual class | Positive TP FN
Negative FP TN

Table 3.1: confusion matrix

TP True-Positive is the number of positive cases classified correctly
TN True-Negative is the number of negative cases classified correctly

FP False-Positive is the number of cases where the model predicted a positive class, but the
actual class was negative.

FN False-Negative is the number of cases where the model predicted a negative class, but the
actual class was positive.

The following metrics can be computed from the confusion matrix.

True positive rate eq. (3.2)
For a single instrument (e.g., guitar), out of all predicted positive cases, how many were correctly
predicted.

TP
TPR = ——F— 3.2
TP+ FN (3.2)
False positive rate eq. (3.2)
For a single instrument (e.g., guitar), out of all negative cases, how many were falsely predicted as

positive.

FP

FPR= ——
R=5pi7N

(3.3)

The output of the instrument classifier for a given instrument is a value between 0 and 1.
A decision threshold that also ranges between 0 and 1 and splits the predictions into predicted
positives and negatives. Given a decision threshold, the values in the confusion matrix can be
calculated with the corresponding TPR and FPR scores. The ROC curve, which is plotted in
a graph, showcases the relationship between the TPR and FPR of a classification model at all

17

decision thresholds. AUC is the area under this curve and summarizes the performance of all
possible TPR and FPR combinations into a single score. A classifier with high TPR and low FPR
for multiple decision thresholds is desired and results in higher AUC scores. Depending on the
classification task, AUC values range from 0 to 1. A perfect model has an AUC score of 1, meaning
it has good separability for the different classes. A poor model has an AUC of 0.5, which means
the model’s class separation capacity is similar to that of chance. When a model has an AUC near
0, it means that the results are reciprocated. It predicts Os as 1s and 1s as 0s.

Previous research that tested the effect of several music source separation algorithms on instru-
ment classification, frequently mentioned that the impact of source separation highly depends on
the characteristics of the instruments that had to be classified [15, 1, 25]. However, their evaluation
scores only report macro-averaged AUC or {1 scores. Macro-averaged scores are calculated as mean
scores of all the instruments in the dataset, without considering class balance. This is ideal for test
sets that attempt to give scores that generalize into the real world. These averaged scores do not
give insights into the effect of source separation per instrument. Therefore, we will showcase the
instrument-wise AUC scores and analyze them to understand which instruments benefit most from
source separation. The macro-averaged AUC scores will be used to calculate the model’s overall
AUC.

3.7 Validation analytical procedure

This section describes the analytical procedures used to test the research questions. First, a
description of the statistical test used to compare the objective quality of the source separation
algorithm is given. Next, the confidence interval-based mean difference score is explained that
compares AUC scores between different models or instruments.

To test whether the objective quality differs between the raw and postprocessed source separa-
tion algorithms, an independent samples t-test is performed. This test compares the means of two
independent groups in order to determine whether there is statistical evidence that the associated
population means are significantly different. This research compares the raw and postprocessed
source separation algorithm’s SDR scores. To test whether the AUC of the source-separated in-
strument classifiers statistically differs from the base (non-preprocessed) classifier, a confidence
interval-based mean difference analysis is conducted [2] that produces a distance score D. When
D is smaller than 0, it means that with a 95% confidence, it can be said that there is no positive
difference in the mean AUC between the separated and base model. If D is larger than 0, we can
say with 95% confidence that there is a positive difference in the mean AUC between the separated
and base model. The 95% confidence interval mean difference score D is calculated as follows:

D =21 — (x2 + sez1 + sey2) (3.4)

where z; is an individual instrument or mean AUC score of the raw or postprocessed instrument
classification model, x5 is an individual instrument or mean AUC score of the base model and
segy1, Sezo are the standard errors of the 95% confidence intervals for the source-separated and
base models[19].

To test whether music source separation impacts the performance of MIC, the difference scores
for the macro-averaged AUC scores of the raw and postprocessed models are evaluated. For the
instrument-wise analysis, the difference scores for each individual instrument are evaluated and
compared between the source-separated models and the base model.

18

Chapter 4

Results

This chapter showcases the music source separation and MIC models’ results, which will help
answer the research questions. Starting with music source separation, the loss curves of the reg-
ularisation methods are visualised which were used to select the best hyperparameters for the
final source separation model. Next, the comparative visualisations of the mixture, raw output,
postprocessed output and target sources are shown for the MUSDB-18 test dataset. Finally, the
objective quality of the two source-separated stems is compared using the independent samples
t-test. The results of the instrument classification models start with loss curve visualisations of
the small experiments with different regularisation methods. Afterwards, the ROC curves are
shown that visualise the difference in AUC between the base, raw and postprocessed instrument
classification models. Finally, the confidence interval-based difference scores are showcased that
indicate whether deep learning-based source separation has an impact on MIC. Additionally, the
instrument-wise analysis results are shown to get more insights into which instruments are affected
most by source separation.

4.1 Source separation

In this section, the results of the regularisation experiments are showcased that impacted the source
separation models’ validation loss and convergence speed. Next, the visualisations of the raw and
postprocessed separation model output are displayed. Finally, the objective results of the raw and
postprocessed source-separated stems are shown.

4.1.1 Model optimisation experiments source separation

Severe overfitting was noticed when training the source separation models with the base param-
eters described in section 3.2.1. To counteract this, we experimented with three regularisation
techniques; augmentation, dropout and 12 regularisation. In addition, the effect of truncated nor-
mal weight initialisation was also included in the experiments. The four above-stated methods
were compared to decide which regularisation methods were implemented in the final source sep-
aration model. Each method was trained for 50 epochs while tracking validation loss. Figure 4.1a
shows that adding augmentation decreased validation loss, supporting our decision to use it in our
final model. Figure 4.1b shows that the addition of dropout to the augmented data caused the
validation loss to increase significantly. Therefore, this regularisation method was omitted in the
final model. Figure 4.1c¢ shows that 12 regularisation (le-4) on top of the augmented data starts
with higher train and validation loss compared to only using augmented data. However, the vali-
dation loss becomes smaller after training for approximately 30 epochs, indicating that the model
learns to generalise better. Therefore, 12 regularisation is also included in the final model. Lastly,
fig. 4.1d shows a similar crossing for weight initialisation which supports our decision to implement
the method into the final model. The loss curves of the final model can be seen in fig. 4.2. In
fig. 4.2a, the validation loss decreases slowly compared to the train loss. However, the model keeps
learning as the lowest validation loss is found at epoch 350 Figure 4.2b. Due to the long training

19

time (8 minutes per epoch), training was stopped at epoch 375, and the weights of epoch 350 were

used for the final model as they produced the lowest validation loss.

0042
0040
0038
0036

2 0.034

k]

0032
0030
0.028

0.026

—— unsmoothed loss
— val loss base
—— val loss augmented
~—— train loss base

—— train loss augmented

4 10 20 30 40 50
epoch

(a) Loss base and augmented

0.0425 -

0.0400 -

0.0375

0.0350

loss

0.0325

0.0300

0.0275

0.0250

—— unsmoothed loss
—— val loss 12 regular
—— val loss augmented
——— train loss 12 regular
train loss augmented

(c¢) Loss augmented and 12 regularisation

10 20 30 40 50

epoch

loss

0.045

0.040

loss

0.035

0.030

0.025

—— unsmoothed loss
—— val loss dropout
—— val loss augmented

—— train loss augmented M

~—— train loss dropout

0 10 20 30 20 50
epoch

(b) Loss augmented and dropout

0.042

0.040

0.038

0.036

0.034

0.032

0.030

0.028

—— unsmoothed loss

—— val loss 12 regular

—— val loss truncated normal
—— train loss |2 regular

train loss truncated normal

(d) Loss truncated normal and 12 regularisation

Figure 4.1: Loss curves of regularisation hyperparameters

0.0354

0.030 4

loss

0.025 4

0.0204

—— trainloss
—— train loss smoothed
—— val loss

— val loss smoothed

(a) Loss final model train and validation

50 100 150 200 250 300 350
epoch

loss

0.038

0.036

0.034

0.032

0.030

—— val loss
—— val loss smoothed

50 100 150 200 250 300 350
epoch

(b) Loss final model validation

Figure 4.2: Loss curves of final model

20

4.1.2 Source-separated spectrograms

This section displays examples of the mixture, raw, postprocessed and target spectrograms in
different tracks of the MUSDB-18 test database. The second row explicitly shows the intention
behind the postprocessing algorithm. The errors in the amplitude spectrograms produced by the
model mainly consist of soft sound artefacts from the removed drums and bass stems which can be
seen in fig. 4.3f. Postprocessing removes all sounds softer than -60dB (purple color in spectrograms)
fig. 4.3g. This removes most of the drum artefacts, but also some of the soft overtones produced
by the instruments in the mixture.

Log-amplitude spectrogram Log-amplitude spectrogram

Log-amplitude spectrogram Log-amplitude spectrogram

e s0a8 +0c8
10 104 104
204 0@ 0@
30ds 0d8 0d8
a0de s s
040 s0ds s0ds
608 s0as s0ds
7048 T0d8 T0a8
042 s s

(a) Mixture track 1 (b) Raw track 1 (c¢) Processed track 1 (d) Target track 1

Log-amplitude spectrogram Log-amplitude spectrogram Log-amplitude spectrogram Log-amplitude spectrogram

ode o8 +oe woee
1008 1008 a0as 0ds

0ds 2048 20a 20d8
008 048 o 0
4008 a0dp sd “0de
08 s0da sods sods
08 s0de wd e
70 048 g 0
008 s0dp w0ds o0ds

(e) Mixture track 13 (f) Raw track 13 (g) Processed track 13 (h) Target track 13

Log-amplitude spectrogram Log-amplitude spectrogram Log-amplitude spectrogram Log-amplitude spectrogram
g-ampl pectrog g-ampl pectrog g-ampl pectrog

—r ods T ods
10 10 0@ 0@
2008 2048 0cs 0as
2048 040 0d 0d
08 wods ods ods
08 s0de s0de s
05 605 w0ds s0dn
7008 048 T0d8 7008
08 08 s0as s0ds

[t

(i) Mixture track 21 (j) Raw track 2 (k) Processed track 21 (1) Target track 21

Log-amplitude spectrogram Log-amplitude spectrogram oe Log-amplitude spectrogram rous Log-amplitude spectrogram rous
10 20d8 2048
204 204 204
0dn S0ds 0ds
a0 w0 s
5048 s0ds s0ds
s0de s0a s0d
Jods oas oas
s0de wd o0de

15

(m) Mixture track 32 (n) Raw track 32 (o) Processed track 32 (p) Target track 32

Log-amplitude spectrogram Log-amplitude spectrogram Log-amplitude spectrogram Log-amplitude spectrogram

o +od +0a +0a
1008 1008 0as 0as
2008 2045 20a8 20d8
2008 0 0@ 0@
4008 a0dn w0dn <0dn
008 soda soce socs
008 0o w0ds w0ds
7008 o @ @
05 045 w0ds w0dn

(q) Mixture track 46 (r) Raw track 46 (s) Processed track 46 (t) Target track 46

Figure 4.3: Examples of mixture raw processed and target spectrograms

21

4.1.3 Objective quality comparison of raw and postprocessed stems

To measure the objective quality difference of the raw and postprocessed source-separated stems, an
independent samples t-test was conducted table 4.1. This test compares the raw and postprocessed
stems’ SDR scores on the MUSDB-18 test dataset. There was a significant difference in the scores
between the raw separated stems (M=9.34, SD=4.29) and postprocessed separated stems (M=7.24,
SD=4.28) conditions; t(98) = 2.69, p = 0.008. The raw separated stems produce higher SDR
scores and thus have a higher objective quality than the postprocessed separated stems. Figure 4.4
showcases a graph of the SDR scores per song.

Stem Mean SD t-val df p

Raw 9.33 429 2.69 98 0.008
Post 7.29 3.25

Table 4.1: Independent samples t-test between raw and postprocessed source separated stems

—— sdrloss —— sdrloss
avg sdr avg sdr

AT TS
| /\/ UV V) | /A\/AUI\VAVA\/\W/\/\W /\\V/\MUAV/

T T T T T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50
test song test song

(a) Raw separated SDR, (b) Postprocessed separated SDR,

Figure 4.4: SDR per model for test tracks in MUSDB-18

4.2 Instrument classification

This section is structured as follows; first, the results of the weight regularisation experiments
are showcased which were conducted to select instrument classification models with the highest
AUC. Second, the highest AUC base, raw and postprocessed classification models’ ROC curves
are visualised. Finally, the results of the model and instrument-wise comparisons between the two
source-separated models and the base model are presented.

4.2.1 Model optimisation experiments instrument classification

This section shows the L2 weight regularisation experiments that were conducted for three MIC
model configurations: the base, raw and postprocessed model. For each model, the AUC curves for
low (12=1e-6) and high (12=1e-5) regularisation were compared. The final classification models’ 12
regularisation values were selected based on the highest AUC scores in these experiments. Higher
regularisation means longer train time which can be seen in fig. 4.5. However, as train time was
relatively low (3 minutes per epoch), we did not consider this as an important factor in selecting
the best model. Figure 4.5b shows that the base model performed best with high 12 regularisation
(AUC=0.732). Figures 4.5¢ and 4.5e show that both raw and postprocessed models obtained the
highest AUC with low weight regularisation (raw AUC=0.807, postprocessed AUC=0.820).

22

best val = 0.732 - epoch 41

best val = 0.786 - epoch 121

— valauc — val auc
—— val auc smoothed 07754 — val auc smoothed
0724
0.750
0.704
0.725
0.68 4
0.700
5 3
0.66 -
® ® 0675
0.644 0650
0.62 4 0.625
0.600
0.60 1
0575
[20 40 60 80 0 25 50 75 100 125 150 175
epoch epoch
(a) Auc base model low 12 regularisation (b) Auc base model high 12 regularisation
best val = 0.806 - epoch 173 best val = 0.785 - epoch 185
— valauc — val auc
0.8001 — val auc smoothed 078 1 val auc smoothed
07754 0.76
074
0.750 4
072
o, 07254 °
= =
® ® 070
07004
0.68
06754
0.66
0.650 4
0.64
0.625 4 062
) 50 100 150 200 o 50 100 150 200
epoch epoch
(¢) Auc raw model low 12 regularisation (d) Auc raw model high 12 regularisation
best val = 0.82 - epoch 98 best val = 0.812 - epoch 314
— valauc — val auc
ol — val auc smoothed 0800 | — val auc smoothed
0.775
0.754
0.750
g 0704 y 0725
o m
0.700
0.65 1
0675
0.604 0.650
0.625
o 20 © 60 30 100 120 120 0 50 100 150 200 250 300 350
epoch epoch

(e) Auc postprocessed model low 12 regularisation (f) Auc postprocessed model high 12 regularisation

Figure 4.5: Test auc curves per model with low (1e-6) and high (1e-5) 12 weight regularisation

23

4.2.2 ROC curves for best models

The instrument-wise ROC curves can be seen in figs. A.1 and A.2 of Appendix A.

4.2.3 Objective performance instrument classifier

In this section, the results that answer the main research question are shown; does deep learning-
based source separation have a positive impact on MIC. The left side of Table 4.2 showcases
the AUC scores for each instrument classification model with the corresponding 95% confidence
interval standard errors. The right side shows the difference scores D between the base and the
two source-separated instrument classification models, which were calculated with the formula
described in section 3.7. The results show that the raw source-separated stems do not positively
impact the performance of music instrument classification (D, = —0.001). The postprocessed
source-separated stems do positively impact the performance of music instrument classification
(Dpost = 0.015). Lastly, we calculated instrument-wise difference scores to see which instruments
benefited most from source separation. The right side of table section 3.7 shows that the cello
(D = 0.001), piano (D = 0.001) and violin (D = 0.001) are positively impacted by the raw
source-separated stems. The electric guitar, organ and trumpet were the only instruments that
resulted in a raw loss of AUC for the raw classification model. The postprocessed source-separated
stems positively affect the performance of the cello (D = 0.021), clarinet (D = 0.048) and piano
(D = 0.014). For the postprocessed classification model, the flute, electric guitar and organ resulted
in a reduction of raw AUC.

Instrument base raw post Draw-base D >0 D post-base D >0
cel 0.722 +£ 0.052 0821 £ 0.046 0.839 + 0.044 0.001 T 0.021 T
cla 0.784 £ 0.041 0.790 £ 0.041 0.904 £ 0.031 -0.077 F 0.048 T
flu 0.763 £ 0.032 0.801 + 0.031 0.737 + 0.033 -0.025 F -0.092 F
gac 0.724 £ 0.020 0.757 &£ 0.019 0.758 + 0.019 -0.006 F -0.004 F
gel 0.780 £ 0.015 0.757 = 0.015 0.762 £ 0.015 -0.053 F -0.047 F
org 0.729 £+ 0.023 0.706 £+ 0.024 0.725 &+ 0.024 -0.070 F -0.051 F
pia 0.694 £+ 0.016 0.726 + 0.015 0.739 + 0.015 0.001 T 0.014 T
sax 0.846 £ 0.024 0.856 £ 0.024 0.882 £ 0.022 -0.038 F -0.001 F
tru 0.888 £ 0.030 0.879 + 0.032 0.920 + 0.026 -0.071 F -0.025 F
vio 0.872 £ 0.020 0.911 + 0.017 0.892 + 0.019 0.001 T -0.018 F
voi 0.842 £ 0.013 0.861 £ 0.012 0.865 £ 0.012 -0.005 F -0.002 F

mean_auc 0.786 £ 0.012 0.806 &+ 0.009 0.820 &+ 0.007 -0.001 F 0.015 T

Table 4.2: Auc and difference scores for base, raw and postprocessed MIC models

24

Chapter 5

Discussion

5.1 Discussion

The goal of this research was to investigate whether deep learning-based source separation has
an impact on music instrument classification. Additionally, we examined whether the quality of
the source-separated stems influenced the performance of instrument classification and if certain
instruments were more impacted than others.

First, a comparison was made between the objective and subjective quality of the raw and
postprocessed stems produced by the spectrogram-based source separation algorithm. The results
show that the raw stems have a better objective, but worse subjective quality than the post-
processed stems (fig. 4.4). As mentioned before (section 3.3.2), the raw source separation model
significantly reduced the loudness of the drums and bass stems but could not remove them entirely.
Soft artefacts of both drums and high percussion remained audible. The postprocessing algorithm
removed all audible sound frequencies of the raw stems below 60dB. This meant that most of
the soft artefacts from the drums (i.e., bass drum, timpani) and high percussion (i.e., cymbals,
high hats) were removed, but also the soft overtones of other instruments were impacted. These
overtones are more visible in the higher frequencies (section 2.1.1). However, due to the non-linear
perception of frequencies in humans (section 2.1.1), the removal of the other instrument’s higher
frequency overtones makes subjective quality differences in this frequency range harder to detect.
As the shape of the postprocessed stems’ SDR scores is relatively similar to that of the raw stems
(fig. 4.4), we think that a significant part of the reduction in the postprocessed SDR score can be at-
tributed to the consistent removal of soft, high-frequency overtones from other instruments. These
high-frequency errors in the postprocessed stem could have overshadowed the possible benefits that
were made in the lower frequencies.

We then investigated the impact of the raw and postprocssed source separation stems on in-
strument classification by training three instrument classifiers. The base instrument classifier was
trained and tested on the original IRMAS dataset segments. The raw and postprocessed source-
separated classifiers were trained and tested on raw and postprocessed source-separated stems of
the IRMAS dataset. The results show that only the postprocessed instrument classification model
positively impacted the instrument classification performance table 4.2. These results are consis-
tent with [3, 15], where it was mentioned that the separated stems’ quality could drastically impact
source separation performance on an instrument classification task. However, the quality level of
a stem’s lower frequency range might play a more important role in instrument classification than
the overall quality of the whole frequency spectrum.

We carefully examined the instrument-wise performance on instrument classification between
the two source separation models that differed in quality table 4.2. The results show that the cello
and clarinet were the most positively impacted instruments by source separation, followed by the
piano and violin. These findings do agree with prior research where it was found that the pitch-
based solo/accompaniment produced better results for instruments with stable partials (woodwinds
and strings) [15]. Three of our positively impacted instruments fall into these instrument categories.
Perhaps, using timbre-based feature descriptors, such as the spectral envelope shape [37], could be
used as conditional features to boost instrument classification for the other instruments.

25

However, our results also show that the most positively affected instruments (cello and clarinet),
both have relatively low fundamental frequencies [30]. We think the effects of source-separated stem
quality on instrument-wise classification potentially reveal important insights into the importance
of sound quality in different frequency ranges. The longer sound waves of low-frequency sounds
are more susceptible to wave interference from other sources [47]. We think the main reason that
the postprocessed stems have drastically improved the performance on instrument classification for
the cello and clarinet is that the post-processing additionally removed the drums and bass stems’
artefacts, which could have interfered with the fundamental frequencies of these two instruments.
The reduction of drums and bass artefact interference in this frequency range could make it sys-
tematically easier for the convolutional classifier to detect the instrument features. As errors in
source separation remain high [11], it is essential to carefully consider which frequency range is
considered to measure the quality of source separation algorithms. Future research is needed to
investigate whether other low fundamental frequency instruments would benefit more from source
separation in instrument classification tasks.

5.2 Limitations

The main limitations in this research consist of several computational issues, overfitting for the
source separation algorithms and dataset problems for instrument classification. We also think
improvements can be made in the spectrogram representation that was used for both models.

As discussed (section 1.2), the recent trend in machine learning is that bigger models produce
better results [37]. This trend is also visible in music source separation competitions as the best
model’s [10] train and inference time is significantly slower than other models [20, 41, 45] Our
proposed source separation model could have produced better stems if the model contained more
convolutional layers and residual connections, but due to the already high training times, and
computational memory limitations, we were not able to use these tools that have shown to increase
separation performance [41]. Furthermore, our final spectrogram-based source separation model
suffered from overfitting problems, which are visible in the train and validation loss curves of the
final model (fig. 4.2). A possible cause for this observation can be the lack of enough regularisation.
Due to computational training time constraints, our search for optimal regularisation parameters
was shallow. We only tested the use of 50% dropout in the first three layers and did not experiment
with smaller percentages. Additionally, our augmentation pipeline was static. We precomputed
the augmentations, whereas augmenting on train time allows for a much richer augmented data
representation [35].

A substantial problem for the instrument classifiers was the vast amount of monophonic train
data in the IRMAS dataset. Prior research had already shown that training on polyphonic music
improves the performance of polyphonic instrument classification [25, 27]. Future research could
focus on augmentation methods that mix different monophonic segments to create polyphonic
music. Some groundwork for these methods has already been proposed [26]. Additionally, the
class imbalance of the test dataset resulted in some problems with the reliability of the low present
instrument’s AUC scores and their confidence intervals. We think a larger new dataset could
drastically improve the performance of instrument classification algorithms.

Lastly, We used amplitude spectrogram representations with linearly-scaled frequencies as input
representations for the convolutional classifiers [15]. However, the human perception of pitch is not
linearly scaled; we are better at detecting pitch variations in the lower frequencies (section 2.1.1).
Mel spectrogram representations, which have their frequency axis scaled based on human percep-
tion [26], would possibly be a better fit for both source separation and instrument classification.
Prior research already used mel spectrograms for instrument classification [15]. However, as there
is currently no efficient function to inverse the mel spectrogram to reobtain the waveform, no
known source separation uses mel spectrogram representations as input. Exciting research that
attempts to build efficient inverse mel spectrogram functions can be found here [49].

26

Chapter 6

Conclusion

In this work, we introduced a deep learning-based source separation algorithm and investigated
the impact of the produced stems on music instrument classification. We performed several ex-
periments to improve the performance of the source separation model on the MUSDB-18 dataset.
To further increase the performance, we developed a postprocessing algorithm to compare the
stems’ performance with the raw output of the separation model. We found that the two stems
differed in both subjective and objective quality. We then trained three instrument classifiers; the
base, raw and postprocessed, which were used to investigate the impact of source separation on
instrument classification. The models were trained on the IRMAS dataset. We found that only the
postprocessed instrument classification model positively impacted the performance of instrument
classification. Additionally, we performed instrument-wise analysis to examine which classified
instruments were most impacted by music source separation. We found that the only instruments
that benefited from source separation were the cello, clarinet, piano and violin. These findings
suggest that the impact of source separation is both quality and instrument-dependent. End-users
who want to enhance their instrument classification applications should be thoughtful about the
quality level of their source separation algorithm and aware of the instruments to be classified.

27

Appendix A

Visualisation of ROC Curves

This appendix displays the instrument-wise ROC curves with corresponding AUC scores of the
final base (left), raw (middle) and postprocessed (right) instrument classification models.

[
Faise positve rate

(a) Base cel 0.722 auc

cla ROC curve

(d) Base cla 0.784 auc

flu ROC curve

10{ — Keras (area = 0.763)

o o
False positive rate

(g) Base flu 0.763 auc

False positive rate

(j) Base gac 0.724 auc

10{ — Keras (area = 0.790)

A
False positive rate

(b) Raw cel 0.821 auc

cla ROC curve

o o
False positive rate

(e) Raw cla 0.790 auc

flu ROC curve

10 — Keras (area = 0.801)

"
False postive rate

(h) Raw flu 0.801 auc

gac ROC curve

104 — Keras (area = 0.757)

False postive rate

(k) Raw gac 0.757 auc

Figure A.1: ROC curves cel, cla, flu, gac

(f) Post cla 0.904 auc

flu ROC curve

104 — Keras (area = 0.137)

s o6
False postive rate

(i) Post flu 0.737 auc

(1) Post gac 0.758 auc

True positive rate.

gel ROC curve

10{ — Keras (area = 0.780)

Tue positive rate

oa o) To
False positive rate

(a) Base gel 0.780 auc

org ROC curve

=0720)

Tue positive rate

o4 [
False positive rate

(d) Base org 0.729 auc

cel ROC curve

20{ — Keras (area = 0.722)

0o 02 08 1o

o
False positive rate

(g) Base pia 0.694 auc

cla ROC curve

10{ — Keras (area = 0.784)

04 06 08 10
Faise positve rate

(j) Base sax 0.846 auc

flu ROC curve

10{ — ¥eras (area = 0.763)

Tue positive rate

o4 o5 s 1o
False positive rate

(m) Base tru 0.888 auc

gac ROC curve

10 — Keras (area = 0.724)

Tue positive rate

o4 o5
False positive rate

(p) Base vio 0.782 auc

gel ROC curve

10{ — ¥eras (area = 0.780)

Tue positive rate

o o
False positive rate

(s) Base voi 0.842 auc

True positive rate

True positive rate:

True positive rate.

10{ — Keras (area = 0.790)

True positive rate.

True positive rate

Tue positive rate

T positive rate

gel ROC curve

10{ — Keras (area = 0757)

04 o) o
False positive rate

(b) Raw gel 0.757 auc

org ROC curve

2= 0.106)

04 s 05 1o
False positive rate

(e) Raw org 0.706 auc

cel ROC curve.

10{ — Keras (area = 0.821)

00 02 04 06 08 1o
False positive rate

(h) Raw pia 0.726 auc

cla ROC curve

o4 o6
False postive rate

(k) Raw sax 0.856 auc

flu ROC curve

10 — Keras (area = 0.801)

04 o [1o
False postive rate

(n) Raw tru 0.879 auc

gac ROC curve

10 — Keras (area = 0.757)

04 o [1o
False postive rate

(q) Raw vio 0.911 auc

gel ROC curve

10 — Keras (area = 0.157)

04 o [o
False postive rate

(t) Raw voi 0.861 auc

el ROC curve

10{ — Keras (area = 0.762)

oo 0z o5 o

0 Y
False posiive rate

(c) Post gel 0.762 auc

org ROC curve

2= 0725)

04 06 o5 o
False posiive rate

(f) Post org 0.725 auc

cel ROC curve

10| — Keras (area = 0.839)

00 02 o8 1o

04
False posiive rate

(i) Post pia 0.739 auc

cla ROC curve

10 — Keras (area = 0.904)

00 02 o5 1o

04 06
False postive rate

(1) Post sax 0.882 auc

flu ROC curve

10 — Keras (area = 0.737)

04 o6) 1o
False postive rate

(o) Post tru 0.920 auc

gac ROC curve

101 — Keras (area = 0.758)

04 o6 o o
False postive rate

(r) Post vio 0.892 auc

gel ROC curve

101 — Keras (area = 0.762)

0s s £ o
False postive rate

(u) Post voi 0.865 auc

Figure A.2: ROC curves gel org, pia, sax, tru, vio, voi

Bibliography

Roshni Ajayakumar and Rajeev Rajan. “Predominant instrument recognition in polyphonic
music using gmm-dnn framework”. In: 2020 International Conference on Signal Processing
and Communications (SPCOM). IEEE. 2020, pp. 1-5.

James Algina, HJ Keselman, and Randall D Penfield. “An alternative to Cohen’s stan-
dardized mean difference effect size: a robust parameter and confidence interval in the two
independent groups case.” In: Psychological methods 10.3 (2005), p. 317.

Juan J Bosch, Jordi Janer, Ferdinand Fuhrmann, and Perfecto Herrera. “A Comparison of
Sound Segregation Techniques for Predominant Instrument Recognition in Musical Audio
Signals.” In: ISMIR. Citeseer. 2012, pp. 559-564.

Juan José Burred. “From sparse models to timbre learning: new methods for musical source
separation”. In: (2009).

Estefama Cano, Gerald Schuller, and Christian Dittmar. “Pitch-informed solo and accompa-
niment separation towards its use in music education applications”. In: FURASIP Journal
on Advances in Signal Processing 2014.1 (2014), pp. 1-19.

E Colin Cherry. “Some experiments on the recognition of speech, with one and with two
ears”. In: The Journal of the acoustical society of America 25.5 (1953), pp. 975-979.

Woosung Choi, Minseok Kim, Jaehwa Chung, and Soonyoung Jung. “Lasaft: Latent source
attentive frequency transformation for conditioned source separation”. In: ICASSP 2021-
2021 IEEFE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE. 2021, pp. 171-175.

Woosung Choi, Minseok Kim, Jachwa Chung, Daewon Lee, and Soonyoung Jung. “Investigat-
ing u-nets with various intermediate blocks for spectrogram-based singing voice separation”.
In: arXiv preprint arXiv:1912.02591 (2019).

Eileen Daniel. “Noise and hearing loss: a review”. In: Journal of School Health 77.5 (2007),
pp. 225-231.

Alexandre Défossez. “Hybrid spectrogram and waveform source separation”. In: arXiv preprint
arXiv:2111.03600 (2021).

Alexandre Défossez, Nicolas Usunier, Léon Bottou, and Francis Bach. “Music source separa-
tion in the waveform domain”. In: arXiv preprint arXiv:1911.13254 (2019).

Ferdinand Fuhrmann and Perfecto Herrera. “Polyphonic instrument recognition for exploring
semantic similarities in music”. In: Proc. of 13th Int. Conference on Digital Audio Effects
DAFz10. 2010, pp. 1-8.

William A Gardner. “Cyclic Wiener filtering: theory and method”. In: IEEE Transactions
on communications 41.1 (1993), pp. 151-163.

Christos Garoufis, Athanasia Zlatintsi, and Petros Maragos. “HTMD-Net: A Hybrid Masking-
Denoising Approach to Time-Domain Monaural Singing Voice Separation”. In: 2021 29th
European Signal Processing Conference (EUSIPCO). IEEE. 2021, pp. 341-345.

Juan S Gémez, Jakob Abefler, and Estefanma Cano. “Jazz Solo Instrument Classification with
Convolutional Neural Networks, Source Separation, and Transfer Learning.” In: ISMIR. 2018,
pp. 577-584.

Daniel Griffin and Jae Lim. “Signal estimation from modified short-time Fourier transform”.
In: IEEE Transactions on acoustics, speech, and signal processing 32.2 (1984), pp. 236—243.

Marvin HJ Gruber. Statistical digital signal processing and modeling. 1997.

Yoonchang Han, Jaehun Kim, and Kyogu Lee. “Deep convolutional neural networks for
predominant instrument recognition in polyphonic music”. In: IEEE/ACM Transactions on
Audio, Speech, and Language Processing 25.1 (2016), pp. 208-221.

James A Hanley and Barbara J McNeil. “The meaning and use of the area under a receiver
operating characteristic (ROC) curve.” In: Radiology 143.1 (1982), pp. 29-36.

Romain Hennequin, Anis Khlif, Felix Voituret, and Manuel Moussallam. “Spleeter: a fast and
efficient music source separation tool with pre-trained models”. In: Journal of Open Source
Software 5.50 (2020), p. 2154.

Nori Jacoby, Eduardo A Undurraga, Malinda J McPherson, Joaquin Valdés, Tomas Os-
sandén, and Josh H McDermott. “Universal and non-universal features of musical pitch
perception revealed by singing”. In: Current Biology 29.19 (2019), pp. 3229-3243.

Umair Javed, Kamran Shaukat, Ibrahim A Hameed, Farhat Igbal, Talha Mahboob Alam,
and Suhuai Luo. “A review of content-based and context-based recommendation systems”.
In: International Journal of Emerging Technologies in Learning (iJET) 16.3 (2021), pp. 274—
306.

Cyril Joder, Slim Essid, and Gaél Richard. “Temporal integration for audio classification with
application to musical instrument classification”. In: IEEE Transactions on Audio, Speech,
and Language Processing 17.1 (2009), pp. 174-186.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. “Progressive growing of gans
for improved quality, stability, and variation”. In: arXiv preprint arXiv:1710.10196 (2017).

Yoshiyuki Kobayashi. “Automatic Generation of Musical Instrument Detector by Using Evo-
lutionary Learning Method.” In: ISMIR. 2009, pp. 93-98.

Agelos Kratimenos, Kleanthis Avramidis, Christos Garoufis, Athanasia Zlatintsi, and Pet-
ros Maragos. “Augmentation methods on monophonic audio for instrument classification in
polyphonic music”. In: 2020 28th European Signal Processing Conference (EUSIPCO). IEEE.
2021, pp. 156-160.

David Little and Bryan Pardo. “Learning Musical Instruments from Mixtures of Audio with
Weak Labels.” In: ISMIR. Vol. 8. 2008, pp. 127-132.

Yi Luo and Nima Mesgarani. “Conv-tasnet: Surpassing ideal time—frequency magnitude
masking for speech separation”. In: IEEE/ACM transactions on audio, speech, and language
processing 27.8 (2019), pp. 1256-1266.

Mithun Madathil. “Music recommendation system spotify-collaborative filtering”. In: Reports
in Computer Music. Aachen University, Germany (2017).

Jirgen Meyer. “The sound of the orchestra”. In: Journal of the Audio Engineering Society
41.4 (1993), pp. 203-213.

Aditya Arie Nugraha, Antoine Liutkus, and Emmanuel Vincent. “Multichannel music sep-
aration with deep neural networks”. In: 2016 2/th European Signal Processing Conference
(EUSIPCO). IEEE. 2016, pp. 1748-1752.

George Philipp, Dawn Song, and Jaime G Carbonell. “The exploding gradient problem
demystified-definition, prevalence, impact, origin, tradeoffs, and solutions”. In: arXiv preprint
arXiv:1712.05577 (2017).

Renato Profeta and Gerald Schuller. “End-to-End Learning for Musical Instruments Clas-
sification”. In: 2021 55th Asilomar Conference on Signals, Systems, and Computers. IEEE.
2021, pp. 1607-1611.

Zafar Rafii, Antoine Liutkus, Fabian-Robert Stoter, Stylianos Ioannis Mimilakis, and Rachel
Bittner. The MUSDBI18 corpus for music separation. Dec. 2017. DOI: 10 .5281/zenodo .
1117372. URL: https://doi.org/10.5281/zenodo.1117372.

https://doi.org/10.5281/zenodo.1117372
https://doi.org/10.5281/zenodo.1117372
https://doi.org/10.5281/zenodo.1117372

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolutional networks for
biomedical image segmentation”. In: International Conference on Medical image computing
and computer-assisted intervention. Springer. 2015, pp. 234-241.

Ryosuke Sawata, Stefan Uhlich, Shusuke Takahashi, and Yuki Mitsufuji. “All for one and
one for all: Improving music separation by bridging networks”. In: ICASSP 2021-2021 IEEFE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2021,
pp- 51-55.

Markus Schedl, Emilia Gémez Gutiérrez, and Julidn Urbano. “Music information retrieval:
Recent developments and applications”. In: Foundations and Trends in Information Re-
trieval. 2014 Sept 12; 8 (2-3): 127-261. (2014).

Bidisha Sharma, Rohan Kumar Das, and Haizhou Li. “On the Importance of Audio-Source

Separation for Singer Identification in Polyphonic Music.” In: INTERSPEECH. 2019, pp. 2020—
2024.

Christian Simmermacher, Da Deng, and Stephen Cranefield. “Feature analysis and classifi-
cation of classical musical instruments: An empirical study”. In: Industrial Conference on
Data Mining. Springer. 2006, pp. 444-458.

Arun Solanki and Sachin Pandey. “Music instrument recognition using deep convolutional
neural networks”. In: International Journal of Information Technology (2019), pp. 1-10.

Xuchen Song, Qiugiang Kong, Xingjian Du, and Yuxuan Wang. “CatNet: music source sep-
aration system with mix-audio augmentation”. In: arXiv preprint arXiv:2102.09966 (2021).

Aleksandr Stikharnyi, Alexey Orekhov, Ark Andreev, and Yuriy Gapanyuk. “The Hybrid
Intelligent Information System for Music Classification”. In: International Conference on
Neuroinformatics. Springer. 2019, pp. 71-77.

Daniel Stoller, Sebastian Ewert, and Simon Dixon. “Wave-u-net: A multi-scale neural network
for end-to-end audio source separation”. In: arXiv preprint arXiv:1806.03185 (2018).

Fabian-Robert Stoter, Antoine Liutkus, and Nobutaka Ito. “The 2018 signal separation eval-
uation campaign”. In: International Conference on Latent Variable Analysis and Signal Sep-
aration. Springer. 2018, pp. 293-305.

Fabian-Robert Stoter, Stefan Uhlich, Antoine Liutkus, and Yuki Mitsufuji. “Open-unmix-a
reference implementation for music source separation”. In: Journal of Open Source Software
4.41 (2019), p. 1667.

Naoya Takahashi and Yuki Mitsufuji. “D3net: Densely connected multidilated densenet for
music source separation”. In: arXiv preprint arXiv:2010.01733 (2020).

Kenbu Teramoto, Tauhidul Islam Khan, and Sei-ichiro Torisu. “Acoustical blind source sep-
aration based on linear advection”. In: SICE Annual Conference 2007. IEEE. 2007, pp. 157—
162.

Mikio Tohyama. Waveform Analysis of Sound. Springer, 2015.

Kurt Anthony Weinheimer. “Efficient Audio Source Separation Using Mel-Spectrograms”.
PhD thesis. University of Maryland, Baltimore County, 2020.

Norbert Wiener. “Norbert Wiener”. In: Information Theory 4 (1919), p. 249.

