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Abstract

Artificial Intelligence (AI) models have big potential in the medical domain
because there is so much data available. Previous research shows promising
implementations of AI in the medical domain. This thesis aims to build an AI
model that predicts diagnoses of patients from the History of Present Illness
(HPI) text, to support clinicians in the Emergency Room (ER). The implemen-
tation of such a model can be of help to reduce diagnostic errors, and lower
the workload of clinicians in the ER. No previous work has tried to make a
predictive model for diagnoses, that can support clinicians in the ER, based on
Dutch HPI texts that is explainable as well. A multi-label dataset with more
than 120,000 HPI texts with corresponding diagnosis labels was used to train a
simple baseline model and three deep learning models, including a sequence-to-
sequence model and two BERT-based models, to compare to each other. After
testing and evaluating the models by F1 score, it was found that none of the
models achieve high performance on the whole dataset. Interestingly, the two
BERT-based models did achieve high performances when trained on smaller
samples of the dataset, consisting of diagnoses that are more difficult for clin-
icians to distinguish. Therefore, it is proposed to further research this idea of
more specific models, to support clinicians to make a decision between more
specific diagnoses.
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1 Introduction

Artificial Intelligence (AI) techniques are developed for the analysis of data and
for building predictive models. One of the most promising domains for the ap-
plication of AI is the medical domain. A hospital has a substantial amount
of data available about all patients that enter, and with such a big amount of
data at hand, AI can be implemented to process this information and make
predictions. Already since the mid-twentieth century, clinical decision support
systems have been developed [Miller, 1994]. An example category of AI in the
medical domain is medical imaging, where algorithms can analyze images such
as computed tomography (CT), magnetic resonance imaging (MRI), and ultra-
sounds, more accurately than doctors [Lundervold and Lundervold, 2019]. This
thesis will not focus on the analysis of images but on the analysis of text. More
specifically, on the implementation of an AI prediction model in the Emergency
Room (ER) of a hospital, where diagnoses are predicted from Dutch texts.

1.1 Problem description

In the ER of a hospital, action by clinicians must be taken rapidly. Patients
come in with all different kinds of symptoms or illnesses, and therefore it can
be hard for clinicians to diagnose a patient quickly and accurately. It has
been found that diagnostic error, where the patient receives a wrong diagno-
sis, occurs more often in emergency rooms than in the rest of the hospital
[Hussain et al., 2019]. Diagnostic errors can result in serious harm to the pa-
tient for two reasons [Balogh EP, 2015]. Firstly, when a patient is diagnosed
with a wrong illness, the actual illness is not treated. The second reason is
that the wrong treatment can also unnecessarily harm the patient. Besides the
risk of diagnostic error, the correct diagnosis of patients takes years of medical
training, and then still is a time-consuming process. Due to the shortage of clin-
icians, the demand for experts is often higher than the available supply, which
puts a lot of pressure on the clinicians. This can result in a delay in diagnosing
a patient.

Clinicians in the hospital thoroughly document patients’ clinical encounters in
their Electrical Health Records (EHR). These EHRs consist of for example a
patients’ contact information, insurance and demographics. But also clinical
data, such as medical history, allergies, lab resuls and tests ordered. EHRs
therefore contain a lot of information that can help diagnosing the patient, such
as the initial complaint, the physical examination, and the History of Present
Illness (HPI). One hospitalization can generate thousands of data points for an
individual, making the EHR a rich source of data for AI models, specifically
machine learning prediction models [Li et al., 2020]. Unfortunately, the data in
EHRs is hard to use because most of it is written in human language. Struc-
tured data is easy to feed to a machine learning model, but text needs to be
pre-processed. This is where Natural Language Processing (NLP) comes in.
NLP is a form of machine learning which is capable of processing and analysis
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of free text [Locke et al., 2021]. When used on medical data, it can result in
tools for predicting hospital readmission [Huang et al., 2020], classifying radiol-
ogy reports [Putelli et al., 2020], predicting diagnoses [Blinov et al., 2020], and
more. NLP is different for medical data than when it is used on other data
because medical text differs considerably from general text. Doctors write the
text in the Electronic Health Records down during interviews with a patient
or in between seeing patients. Since they are under a lot of time pressure, this
often results in non-standard and grammatically incorrect notes. Together with
the abbreviations and medical jargon, this type of text is very different from
the standard language.

In recent years, the combination of NLP with deep learning and machine learn-
ing methods has led to great progress for AI in the medical domain. Pow-
erful AI tools have been widely applied in clinical modeling and gained nu-
merous successes. These models can achieve comparable or even better per-
formance than domain experts can in the diagnosis of certain specific diseases
[Rasmy et al., 2021].

1.2 Case description

This thesis aims to create a model with NLP and deep learning tools to predict
diagnoses of patients in the ER to support clinicians in making this important
decision. The data for this thesis is provided by the Leiden University Medical
Center (LUMC). The input data for the model will be Dutch free text, specifi-
cally the History of Present Illness (HPI), sometimes called the anamnesis. The
HPI is a description of the development of a patients’ illness. It includes multiple
factors, for instance the context of the pain, the timing of the pain, the duration
of the pain, and associated symptoms. The doctor gains this information by
asking specific questions to the patient and to the people who know the patient
well. This HPI interview is the most important concept upon which doctors base
their decision of diagnosing the patient and getting the patient the care they
need [Pauker et al., 1976]. In the text of the HPI interview, important entities
such as symptoms, complaints, and illness history of the patient can be found. It
will be interesting to see how predictive these entities are for the final diagnosis
of the patient. If the final diagnosis of the patient can already be known after
this interview, no further examinations will be needed, or the clinician can al-
ready do more specific tests. Therefore, the main goal of this thesis is to find out
if it is possible to create a model that will be a clinical decision support system
to assist clinicians in their diagnostic decisions, with the HPI texts only as input.

Up until today, there are a numerous of different models with different tech-
niques that have been developed for deep learning and NLP. Two different kinds
of models especially show to be very promising for the task of predicting diag-
noses, which are sequence-to-sequence models and BERT-based models. These
models are popular because they do not only input loose words to generate an
output, but both models use also the context of the words, which makes them
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very interesting for working with longer texts. A more detailed explanation of
these models can be found in chapter 2.

To implement a Natural Language Processing and deep learning model in prac-
tice, there is more to it than solely making a working model. To make sure
clinicians can trust the system and are willing to work with it, the model can-
not be a so-called black box. Deep learning models are known for the fact that
the user does not know how the model comes to a certain conclusion. To make
sure the user can understand the decision of the model, it needs to be explain-
able. So besides building a high performing model, the aim is to make the model
explainable as well.

As will be discussed in chapter 2, there has been previous research into pre-
dicting diseases with deep learning. However, as far as is known, it has not
been done before to use NLP and deep learning to make a language model that
predicts diagnoses based on the HPI in Dutch free text, which is also explainable
and therefore possible to implement in the hospital.

1.3 Research question

The research question this thesis is aiming to answer is:

“How can we make a model to predict diagnoses of patients to support clini-
cians in the emergency room?”

To find the answer to this question, the following sub-questions will need to
be answered:

1. From a clinical perspective in the emergency room, what is required of a
diagnoses prediction model to be practically applicable?

2. Under the criteria of sub-question 1, what metrics can we use for the
evaluation of the model?

3. Should we use an intrinsically explainable model, or is it necessary to add
an explainability model to our trained model?

4. Can we use a sequence-to-sequence model for this task?

5. Can we use a BERT-based model for this task? And is the pre-trained
clinical Dutch BERT-based model MedRoberta.nl generalizable to other
datasets, in particular, to the dataset used in this research?

A more extensive explanation of the specific models will be given in section 2.

7



1.4 Thesis outline

The remaining sections of this thesis are structured as follows: section 2 of this
thesis contains explanations of the key concepts and a discussion of previous
related work. In section 3, the dataset used for this research is explained in more
detail. Section 4 describes the methods and the models used. The experimental
setup of the experiments can be found in section 5. Section 6 shows the results
of these experiments, and finally, the discussion can be found in section 7,
consisting of the analysis of the results, the conclusions of the research questions,
the limitations of the research and the further research that is proposed.
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2 Literature Research

This thesis is about the implementation of a language model in the emergency
room of a hospital. It focuses on how to use Natural Language Processing on
medical data, multi-label classification, deep learning, explainability, and model
evaluation. In this section, these and other key concepts will be explained in
more detail and related work will be discussed.

2.1 Natural Language Processing

Notes in Electronic Health Records (EHRs) contain loads of interesting clinical
information. The EHR describes symptoms, reasons for diagnoses, radiology
results, daily activity, patient history, physical examination results, HPI inter-
views, lab tests, and more [Huang et al., 2020]. One patient can be associated
with hundreds of notes within one stay in the hospital, which can lead up to
thousands of data points for one individual, all together in a health record
[Li et al., 2020]. A doctor in the emergency room needs to make decisions un-
der time constraints, and having to read a great number of clinical notes will
add up to this doctor’s workload and pressure.

Natural Language Processing (NLP) is the analysis of human language, car-
ried out by computers. NLP is used to give the ability to computers to handle
text as a complex syntactic piece of data [Locke et al., 2021]. NLP can be used
in the medical domain to process and analyze the text elements of EHRs. The
majority of current EHRs consist of free text. This is appealing to the users
because of the flexibility of expression; every clinician can write down what they
think is necessary and in any way that they want to write it. This can come
in handy during an interview with the patient, when the doctor should pay as
much attention to the patient as possible, instead of entering the data. During
conversations (such as the HPI interview), the documentation is recorded in
typed form. This is time effective but results in non-standard and incomplete
notes. It also results in a different language compared to the general language
[Verkijk et al., 2021]. Firstly because the clinical notes contain common usages
of medical terms, such as illnesses, medicines, treatments, symptoms, and their
abbreviations. This type of language is much less common in general text data
like Wikipedia texts, books, or news articles. Secondly, the sentences in clinical
notes tend to be grammatically incorrect and shorter compared to the standard
language. To be time-efficient, it is easier for clinicians to simplify sentences and
leave out function words. Building a model that learns useful representations
of clinical text can therefore be a challenge [Chapman et al., 2011]. This com-
plicates the task of diagnosis prediction based on EHRs since they contain an
extensive amount of unstructured, poorly organized data that is less manageable
for the analysis using NLP-based methods [Blinov et al., 2020].
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2.2 Machine learning classification

Within machine learning classification, tasks differ in the type of classification.
The most used and simplest type of classification is binary classification. Bi-
nary classification is the task of classifying the target value into either one of
two groups. A test to see whether a patient has a specific disease or not is a
binary classification (with either yes or no as the prediction). As will be dis-
cussed below, during the last decades machine learning and binary classification
have become very popular and widely adopted in the medical field. Diagnosis
identification is one of the biggest motivations for using machine learning in
this domain. An example of a classification task that has been widely studied
is cancer detection. In 2010, Microsoft created “InnerEye”, a tool that can
detect brain tumours more rapidly than humans can [Smiti, 2020]. In recent
years, machine learning for diagnosis identification has become more popular
and other tools have been created for specific diseases. Himes et al. (2009) cre-
ated a predictive model for Chronic Obstructive Pulmonary Disease (COPD)
in asthma patients, using electronic health records. With their model, they
could classify asthma patients that are at risk of getting COPD. Maarseveen
et al. (2020) also used electronic health records, but to identify patients with
Rheumatoid Arthritis. Other machine learning implementations specifically fo-
cus on predicting mortality [Lin et al., 2019], sepsis [Goh et al., 2021] or read-
mission [Huang et al., 2020].

Besides binary classification, other types of classification are multi-class and
multi-label. Multi-class classification is the task of classifying the target value
into one out of three or more groups. Exactly one group can be assigned to
the target value and not more. An example of multi-class classification is the
task of classifying a patient’s hospital readmission stay into one of three classes:
zero days, less than thirty days, or more than thirty days. In this case, the
readmission can only fall into one class, and not more.

Patients can get more than one diagnosis per encounter. This means that for this
project, the model needs to be able to predict multiple diagnoses when neces-
sary. To do this, a multi-label classification model will be needed. In multi-class
classification, the classes are mutually exclusive, which means for this project
that every patient can only get assigned one diagnosis by the model. However,
diagnoses do not necessarily exclude each other. As will be shown in section
3, some patients in the data got diagnosed with multiple diagnoses at once.
In multi-label classification, machine learning algorithms can predict multiple
non-exclusive classes. This is more interesting for this project since the model
will show all the diagnosis categories that are relevant for a specific patient.

Binary classification has been used widely in predictions in the medical do-
main, but multi-label classification rarely, even though multi-label classification
models have shown great promise. Zhou et al. (2021) defined a multi-label
classification task for the diagnosis of diabetes complications. Their model had
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very high performance and showed that with a multi-label classification ap-
proach they can predict multiple factors at once [Zhou et al., 2021]. Another
example of multi-label classification for disease prediction is the model “Group-
Net” [Chen et al., 2019]. Physical examination records of patients were used
here to predict the probability of different chronic diseases. The multi-label
classification prediction - based only on structured data - achieved great perfor-
mance.

2.3 Deep Learning

Deep learning is a subset of machine learning, based on artificial neural net-
works to mimic the structure and function of the human brain. Typically, deep
learning algorithms make use of a large number of hidden layers which results
in a complex structure for defining inputs to outputs, where machine learning
algorithms use structured data to make predictions and define specific features
from the input data and structure these into tables. Deep learning models
can process unstructured data like text and images, because it automates fea-
ture extraction. Then, via gradient descent and backpropagation, deep learn-
ing models adjust themselves, allowing them to make predictions of new input
and correct for errors. This complicated structure of deep learning algorithms
makes them able to output more complex predictions [Education, 2020]. Deep
learning techniques have achieved great success in for example computer vi-
sion tasks, including image classification, image detection and image segmenta-
tion [Maier et al., 2019]. Compared to results obtained with standard machine
learning methods, deep learning approaches achieve better performances. How-
ever, training deep neural networks does require more computational resources
and time [Hahn and Oleynik, 2020]. For natural language processing, there is a
need for a lot of data to train the model on, which can take a great amount of
time. Luckily, there are language models that have already been pre-trained on
huge corpora including Wikipedia, books, and news articles.

Deep learning supports many of the natural language processing tools that
are popular in the medical domain. Deep neural networks are designed for
classification, they can identify linguistic and grammatical elements and map
them to one another [Bresnick, 2018]. With this ability, deep learning mod-
els can understand complex semantic meanings. But as stated in section 2.1,
the free-text in Electronic Health Records consists of messy, incomplete, and
inconsistent notes. Therefore, deep learning models currently still struggle
with the task of identifying clinically relevant elements and finding relation-
ships between them. Other challenges include the quantity and the quality of
EHR data, biased data, and the interpretability of the model [Xiao et al., 2018].
Nevertheless, deep learning is very promising and recently it has been imple-
mented widely in medical applications [Chen, 2020]. Because of the success
of deep learning in image classification, image detection and image segmen-
tation, there has been a lot of research on tools for clinical imaging. For
example, Liu et al. (2014) used brain MRIs to diagnose Alzheimer’s disease
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[Liu et al., 2014]. The model needed less prior knowledge and a smaller dataset
than machine learning methods for the same task and still achieved a greater
performance. Another example of clinical imaging is the model of Esteva et
al. (2017). They created a convolutional neural network that can classify skin
cancer lesions, using only images as inputs [Esteva et al., 2017]. Besides clin-
ical imaging, there has also been an application of deep learning techniques
for clinical Natural Language Processing problems. For example, the clas-
sification of radiology free-text reports based on pulmonary embolism find-
ings [Chen et al., 2018]. This convolutional neural network can classify the re-
ports highly accurate. Another example is the de-identification of patient data
in Electronic Health Records ([Dernoncourt et al., 2017]; [Ekbal et al., 2016];
[Liu et al., 2017]). Without manual feature engineering, these deep learning
models achieved great performance. The data can then be shared or published,
while still protecting the confidentiality of patients. Every day, more deep learn-
ing and NLP techniques are used to create tools in the medical domain. State-
of-the-art models achieve very high performances, which makes these methods
so promising for the prediction of diagnoses.

2.3.1 Sequence-to-sequence models

A type of deep learning models that is regularly used for text is the sequence-
to-sequence model, often called seq2seq. Seq2seq models have been used for
numerous language tasks such as machine translation, speech recognition, and
question answering. As the name indicates, seq2seq models are used to convert
sequences of one domain to sequences in another domain. For example in ma-
chine translation, it can convert an English sequence to a French sequence. In
this project, both the input data (HPI texts) and the output data (diagnosis
label) consist of a sequence of text, therefore this task can also be done by a
seq2seq model. The seq2seq model consists of two parts: an encoder and a
decoder. The encoder turns the input into an internal hidden vector, which
contains an input item plus its context. The decoder then takes this vector and
turns it into the desired output, considering the context. These two different
parts are two separate models, commonly recurrent neural networks, combined
into one big model.

Seq2seq models have been used in the medical domain before. One example
is the model of Zhang-James et al. (2021), which accurately predicts new cases
and deaths of Covid-19, up to 30 days in the future. The input sequences came
from past Covid-19 cases and deaths, infection numbers, and resident mobility.
The output sequences are future Covid-19 cases. This example shows that a
seq2seq model can perform well on medical data in a modern situation. An-
other example is the seq2seq model of Liu et al. (2018). Their model predicts
mortality and discharge status within the next 24 hours from structured medical
data. The seq2seq model of Lee et al. (2019) shows that seq2seq models also
perform great on medical data. The model can generate medical text, in the
form of a summary of clinical notes. These examples show promising results
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for the use of seq2seq models in the medical domain. As far as we know, there
has not yet been a seq2seq model for the prediction of diagnoses, therefore it
remains to be observed if this model will work well for this specific task too.

2.3.2 BERT-based models

A deep learning model that is used primarily in the field of NLP is the trans-
former model. Transformers were introduced in 2017 by Google [Vaswani et al., 2017].
Before this time, the most state-of-the-art NLP systems relied on deep learn-
ing models called Recurrent Neural Networks (RNNs). The biggest problem of
RNNs is that they struggle to handle long sequences of text. An RNN-based
model would forget the first part of the text by the time it got to the end.
Another problem with RNNs is that they are hard to train. You cannot train
them on too much data, because they process words sequentially, and cannot
run in parallel. Transformer models can parallelize, and therefore it is possible
to train very big models. An extensive explanation of transformer models can
be found in the paper of Vaswani et al. (2017). The most important part to
understand is called attention. Attention is a mechanism that allows a language
model to pay attention to every word in the sequence before deciding the output,
instead of deciding output from only one word. The attention mechanism will
take the important and relevant words of the input and assigns a higher weight
to these words, which increases the accuracy of the prediction of the output.
Transformer models contain a specific type of attention mechanism, called self-
attention. Self-attention allows a network to understand a word in its context,
relating different positions of a sequence to compute the output. The Trans-
former model is the first model relying entirely on this self-attention mechanism.

In 2018, Google introduced a transformer-based model called Bidirectional En-
coder Representations from Transformers (BERT). As explained by Devlin et
al. (2019), the makers of BERT, the model is designed to pre-train deep bidi-
rectional representations from unlabeled words by using both the left and the
right context in all layers [Devlin et al., 2019]. BERT is fully based on the
transformer model by Vaswani et al. (2017) but uses bidirectional self-attention
instead of constrained self-attention. The biggest limitation of earlier language
models is that they are unidirectional, which means that every token can only
give attention to previous tokens (in a left-to-right architecture). As a solution
for this limitation, BERT uses a Masked Language Model (MLM). The MLM
masks some words of the input randomly, aiming to predict the original word
based on its context. This happens in the pre-training phase of the model.
By adding one small layer to the core model, BERT can be used for a wide
variety of language tasks. This is called fine-tuning. It is possible to take a
pre-trained BERT model and fine-tune it for the task you want it to do, for ex-
ample, sentence classification, question answering, or named entity recognition.
This pre-training/fine-tuning framework has been proven to be very effective in
NLP.
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Because of their great performance, BERT-based models are now one of the
most popular models to handle textual input. The models have been widely
applied to various domains, such as the financial domain, biomedical domain,
and recently also the medical domain. The reason BERT-based models are
easy to implement in a specific domain is that they can be trained on any cor-
pus you would like. General BERT models are trained on data like Wikipedia
pages, books, and news articles. To make a clinical BERT model, it can be
pre-trained on clinical data instead of general data. This approach has resulted
in multiple clinical BERT models, such as ClinicalBERT [Huang et al., 2020],
Med-BERT [Rasmy et al., 2021], and BEHRT [Li et al., 2020]. ClinicalBERT
was pre-trained on a dataset called MIMIC-III, which is a large, open database
of clinical data of patients from a hospital in Boston [Johnson et al., 2016].
ClinicalBERT was then fine-tuned on the task of predicting a patient’s hospital
readmission. The results of this show that a BERT model that is pre-trained
onto domain-specific data instead of general data results in greater performance.
Med-BERT was pre-trained on a structured dataset containing data from over
28 million patients. Med-BERT was then fine-tuned on several prediction tasks.
BEHRT was pre-trained on data from a network of more than 600 general
practitioners based in the United Kingdom. After pre-training, BERHT was
fine-tuned on the task of predicting a patient’s chance of a specific disease in
the future. This resulted in very high accuracy in predicting a patient’s disease
for the next visit, for the next six months, and for the next twelve months.
To our knowledge, there has been only one BERT-based model in the medical
domain that was fine-tuned specifically for the task of diagnosis prediction of
patients visiting the hospital. That is RuEHR-BERT, a Russian BERT variant
[Blinov et al., 2020]. RuEHR-BERT was pre-trained on Russian datasets, in-
cluding the HPI and symptoms of doctor’s visits from over a million patients.
One thing missing in this BERT model is that it does not show any explanations
of how the model came to a certain conclusion. More about this issue can be
read in section 2.4.

The existing clinical BERT-based models all show very promising results for
using this language model in the medical domain. However, these models are
all pre-trained on data in non-Dutch language. This means that they can only
be used on data in that specific language. Pre-trained Dutch BERT models are
needed when the model will be given Dutch input. Dutch BERT models do exist,
for example, BERTje [Vries et al., 2019] and RobBERT [Delobelle et al., 2020]).
Both of these models are trained on Dutch Wikipedia, news, and web data. Up
until this day, there has been only one BERT language model that is trained
on Dutch medical data: MedRoBERTa.nl, a BERT model trained on Dutch
Electronic Health Records [Verkijk et al., 2021].
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2.3.3 MedRoBERTa.nl

MedRoBERTa.nl is the first Dutch BERT-based model that is pre-trained on
clinical notes. The data the model is trained on consists of nearly 10 million
documents, including HPIs, notes from doctors and nurses, letters from the
hospital to the patient, and the emergency room report. All documents come
from two hospitals in The Netherlands, namely the Amsterdam Medical Centre
(AMC) and the Free University Medical Centre (VUMC).

The model was created mainly for a project called A-PROOF [Kim, 2021]. The
goal of this project is to create a model that can predict the functioning level
of a Covid-19 patient in different domains. An example domain is “Walking”,
with a functioning level from zero to five where zero means that the patient has
no ability of walking and five means the patient walks perfectly. The model was
fine-tuned for the domain classification task of this A-PROOF project. Verkijk
(2021) also anonymized the language model. Therefore, it could be published
and used publicly, without putting the safety of the patients at risk.

Since the model from Verkijk et al. is the first and only BERT-based model that
is pre-trained on Dutch medical notes, it can be interesting to see if it is gener-
alizable to other datasets. If this would be the case, it is scientifically relevant
to know that BERT-based models can be pre-trained and then used on similar
data, without having to pre-train it on this new data. The MedRoBERTa.nl
model has been trained on quite similar data as the data described in section 3,
which means that the model might be useful to use on this data too. Since the
fine-tuning task is different from the task of this thesis, the model will still need
to be fine-tuned for the multi-label classification task of predicting diagnoses of
patients arriving in the emergency room.

2.4 Explainability

Explainability, also referred to as interpretability, is the concept that a machine
learning model can be explained in such a way that a human being can under-
stand it. According to Adadi and Berrada (2018), models are explainable when
their inner workings can be understood by humans. Complex machine learning
algorithms, especially deep learning algorithms, are so complicated that a hu-
man cannot understand what is going on inside the model. These models are
called a “black box”. You give it input, something happens, and it gives back
output. But it is hard to understand what the model did with this input to come
to this certain conclusion. Deep learning has become the preferred modeling ap-
proach because of its high accuracy for various tasks. However, deep learning
algorithms are also very opaque, which means that it is more challenging to
interpret what is going on internally. Recent research emphasizes more and
more that artificial intelligence systems should be able to support explanation
and understanding, rather than just solving a problem [Holzinger et al., 2019].
Therefore explainability has become just as important as accurate results.
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Healthcare workers often have problems with trusting a complex model, be-
cause some of these models are impossible to understand for a human, having
millions of different parameters. For clinicians to accept and trust the models,
they must be able to understand why and how the model came to a certain
conclusion. Only then they are willing to use the output of such a system
[Stiglic et al., 2020], since trusting a wrong decision of a model will have a high
impact in the medical domain. In this project, if the doctor assumes the model
is giving the right diagnosis without knowing how it came to this conclusion,
the diagnosis can be wrong and in the introduction is discussed that this can be
of high risk for a patient. From interviews with clinicians, Tonekaboni et. al.
(2019) found out that clinicians view explainability as “a means of justifying
their clinical decision-making in the context of the model’s prediction”. During
these interviews, all clinicians expressed the need to understand the models’
relevant features that align with what they know of the medical practice. Clin-
icians found models with lower accuracy still acceptable when it was clear to
them why the model performed this way. This underlines that the need for ex-
plainability in healthcare is just as high as the need for highly accurate models,
for the model to be of support for a clinician.

There is a close relationship between the performance of a model and its explain-
ability. Often the best performing methods are the hardest to understand, and
the ones providing the clearest explanations are less accurate [Bologna and Hayashi, 2017].
Recently, deep learning has been successfully applied in modeling EHR data for
prediction, but the gain in accuracy is at cost of an output of the model that
is hard to understand. Choi et al. (2016) discuss that there have been several
attempts at interpreting neural networks, but these methods are not sufficiently
developed for application in healthcare. Choi et al. therefore used a modeling
strategy RETAIN. RETAIN is an attention model that explains the prediction
results while keeping the prediction accuracy high. RETAIN relies on the at-
tention mechanism, also found in BERT models. RETAIN was tested on a large
EHR dataset and can achieve high performance in accuracy and also offer an
intuitive explanation of the result.

Markus et al. (2021) discuss that explainability is costly for a model’s per-
formance, and it is therefore only needed in certain situations. Namely, when
the harm of misclassification is very high and when we need to work on user
trust, satisfaction and acceptance of the model for the use in practice. Both of
these situations apply to a prediction model in the healthcare domain, because
a wrong prediction can be costly for a patient’s wellbeing or life, and because
there is not yet much acceptance and trust from the clinicians in AI models.

Explainability relying on the self-attention mechanism also found in BERT mod-
els is one way to make the model explainable. This is called intrinsic explain-
ability, which is built into the model. There also exist explainability models
that you can add to the existing model.
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2.4.1 Self-attention mechanism

An interesting part of the BERT model architecture is the self-attention mech-
anism. This mechanism gives the ability to find relationships among concepts.
In a way, it can be used as an explainability mechanism as well. By showing
the features that the model paid the most attention to, it can be interpreted as
the explainability of the output. There exist tools to visualize this attention of
the model, such as the tool of Vig (2019).

2.4.2 LIME

An external model that can be used for explainability is LIME. LIME can be
applied to any machine learning model, attempting to understand it by changing
the input of data samples and seeing how the predictions change. LIME tweaks
a single data feature value and then observes the impact of this tweaking on
the output. This can then answer the question of what features were most
important for the model to come to a specific prediction. The output of LIME
is a list of explanations, showing the contribution of each feature.

2.5 Evaluation

A crucial step in making a classification model is evaluation. Without the
right evaluation, you cannot say whether the model performs well. One of the
most used methods for classification evaluation is the accuracy of the model
[Novakovi et al., 2017]. A lot of articles write about whether the model is accu-
rate or not. However, accuracy only measures a small part of the performance
of the model. For example, if the model always predicts the biggest label in
an imbalanced dataset, the accuracy will still be high. This high accuracy is
useless because a model that predicts the same diagnosis for every patient that
comes into the ER is not helpful. Therefore, a suitable evaluation method is
needed for this prediction model.

Multi-label classification requires a different evaluation than the methods used
in other classification methods. In binary and multi-class classification methods,
the most common evaluation criteria is a standard set of metrics that include
accuracy, precision, recall, and the F1 measure. The F1 measure here is im-
portant since it is calculated with both the precision and the recall equally, it
is simply the harmonic mean of the two. This measure is the most used one
with imbalanced data. But in multi-label classification, the model predicts a set
of labels, and therefore this set is not either correct or incorrect, but can also
be partially correct [Sorower, 2010]. This cannot be captured by these afore-
mentioned evaluation metrics, where a prediction is either correct or incorrect.
Therefore, the evaluation of multi-label classification is a bit more challenging.

In previous literature, two evaluation metrics have been suggested for multi-label
classification: the macro F1 measure and the micro F1 measure. Label-based
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measures first evaluate each label separately and then averages these results
over all labels. In macro averaging, the F1 score gets computed on individual
class labels first, and then averaged over all classes. In micro averaging, the F1
scores are computed globally over all instances and all class labels. Macro av-
eraging weighs each class equally and is therefore not influenced by the number
of instances of each class. On the other hand, micro averaging is influenced by
classes that have more instances than others, because it equally weighs the data
points instead of the classes. This means that the micro average score will still
be high when the classifier only performs well in the majority of classes.

2.6 Summary

This section has given an overview of the key concepts needed for this project
and how they are applied to healthcare. Related machine learning and deep
learning models in the medical domain were shown, even models that predict
diagnoses. A deep learning language model that is pre-trained on Dutch medi-
cal data has been discussed, as well as another specific language model. It was
found that the explainability of a model is just as important as the performance
of the model. This also answers the first sub-question. For a model to be help-
ful to clinicians in predicting diagnoses of patients in the ER needs to have two
specific characteristics. First, it needs to have a high performance, for it to be
usable. Second, it needs to be explainable, for it to be trusted.

Even though there does exist some research on the topic of multi-label clas-
sification models to predict diagnoses for patients with deep learning, to our
knowledge there has not been such a model that can be used for Dutch medical
data, that has a high performance, and that is also explainable. These elements
are needed if you want to implement such a model in the hospital, or more
specifically, in the emergency room. The rest of this thesis will be focusing on
implementing these methods, to make a model that can support doctors in the
emergency room. A model that can take the HPI in free-text as input and can
give probabilities back for each diagnosis category, how probable it is that this
patient can be diagnosed with that diagnosis, together with an explanation of
what features made the model come to this decision. Once it has come to a
model that can predict this accurately and explainable for Dutch data, it might
be interesting to look at how such a model can be implemented in a Dutch
hospital. Previous literature has tried these two tasks separately, but not yet
together.

18



3 Dataset

The data that is used for this project comes from patients who had an encounter
in the emergency room of Leiden University Medical Center between January
2012 and December 2021. The EHRs of the patients consist of a lot of data. The
feature that is used in this project is the text of the History Of Present Illness
interview, to find out to which degree it is possible to predict a diagnosis from
this interview. As stated in section 2, while writing down the information in a
patient’s EHR, a clinician can be in a rush, and therefore write in ungrammatical
and short sentences. Sometimes, information is left out. And besides this, the
diagnosis data of the EHRs can also be hard to use since there can be found
multiple diagnoses in an EHR of a patient for one encounter. This means that
the right diagnosis label(s) first manually needs to be matched to the encounter
before it is possible to use it in a deep learning model. Matching the right
diagnosis with the right encounter can become a hard and time-consuming task.
Therefore, it is decided to use a different type of data for this thesis, instead of
the EHRs. The documents used are the letters that have been written by the
clinician of the emergency room and sent to the general practitioner (GP) of
the patient.

3.1 GP letters

These letters, from now on called GP letters, are the most important documents
for the project. The clinician writes this letter to inform the GP of the patient
about the small moment of care that happened in the emergency room since the
GP has the overall responsibility for a patient’s care. The clinician in the ER
provides urgent care, and other problems should then be picked up by the GP.
As a result, the clinician at the ER needs to send a letter via email to the GP
within one working day of the discharge of the patient. There are some specific
requirements for what this letter needs to contain, which can be found in table
1.
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Dutch heading English explanation
Mandatory fields

Kerngegevens Information of the patient
Reden van komst Reason for coming in
Conclusie Diagnosis/Conclusion
Beleid What has been done in the ER
Voorgeschiedenis Medical history
Medicatie Medication
Anamnese History of Present Illness
Lichamelijk onderzoek Physical examination
Allergieeën Allergies

Optional fields
Aanvullende anamnese Additional History of Present Illness
Sociale anamnese Social History of Present Illness
Familie anamnese Family History of Present Illness
Aanvullend onderzoek Additional examination

Table 1: Information headings of GP letters with the English explanation

Most of this information is the same information as can be found in the
patient’s EHR, except that often the information in the GP letter is much more
extensive. This is because any clinician can write what they want and how they
want it in an EHR. Some clinicians can be very short or vague in writing things
down, which makes it hard to collect enough information about the patient. In
the GP letter, on the other hand, clinicians should always write down as much
as they know to give the GP as much information as needed. An example of this
difference can be found in table 2. Note that the data has been changed slightly,
to make sure of the privacy of the patient. In this example, it can be seen that
the information in the EHR is much less complete than the information in the
GP letter.
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Data from GP letter Data from EHR
The above patient was readmitted after a recent dis-
charge due to dizziness. For more than a year already,
episodes of fever, abdominal pain attacks and clinically
elevated inflammatory parameters have been reported.
Imaging showed a large liver, but no other explana-
tion for the long-term complaints. An infiltrate was
seen pulmonary and antibiotic treatment was initiated
with oral doxycycline. The patient was re-admitted
with the above complaints, whereby dizziness was in
the foreground at that time, but would also have been
playing for a longer period of time. Diagnostics were
used, which included a differential diagnosis with longer-
standing fever and abdominal pain. To think: Infectious
(mycobacterial, endocarditis lenta. Found HIV nega-
tive and no active EBV and CMV infection); Systemic
disease (including GPA or other small vessel vasculitis
in view of the respiratory and abdominal complaints);
Metabolism: porphyria seen in abdominal pain attacks
in combination with splenomegaly in triggering factors
such as an infection (fever), stress; Malignant (lym-
phoma). The ENT doctor was also consulted to fur-
ther analyze the vertigo, whereby a vestibular neuritis
was excluded and no further clues were found. Given
that the patient was not acutely ill, a PET-CT was re-
quested at very short notice for further diagnosis, which
will be followed up shortly afterwards. The patient was
discharged from the AOA of the LUMC in good clinical
condition.

Persistent fever, ab-
dominal pain upper
abdomen, cough with
green sputum with
sometimes some blood.
Quickly dizzy when
standing up. Eating
very moderately drink-
ing is still possible, no
acid burns.

Table 2: Two columns with HPI data from the same patient and the same
encounter, translated to English. The HPI on the left is taken from the GP
letter, the HPI on the right is taken from the patient’s EHR.
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3.2 Data extraction

The data in the letters is written in the form of one long unstructured piece
of text. Before the data can be used for the model, the HPI texts and the
diagnosis need to be extracted from this letter first. All letters consist of the
headings found in table 1, with the corresponding text underneath this heading
in separate paragraphs. Different clinicians use different styles or orders, but all
letters do contain these mandatory paragraphs. Therefore, rule-based functions
were created to extract the HPI texts and diagnoses from the letters. The HPI
texts will then be used as the input feature and the diagnoses as the labels.

3.3 Categorisation

The total number of GP letters available in the dataset is 72990. On average,
every letter is linked to 2.8 diagnosis labels. The total number of unique di-
agnosis labels in the dataset is 1997. From these labels, 898 exist less than 10
times in the dataset. This is a problem with medical data for a deep learning
model. There are relatively a lot of diagnoses that are very rare. In this dataset,
265 diagnosis labels only occurred one time in the entire dataset. Of the 1997
unique labels, only 55 percent occurred more than 50 times in the data. A deep
learning model learns from examples, and diagnoses that have so few examples
available, are never going to be learned by the model. There are multiple options
to deal with this problem.

1. The first option is to put all the rare diagnoses together in one class, and
call this the “rare diagnoses class” or simply “other”. Then, the model will
be able to predict either from all the residual diagnoses labels or predicts
that the patient falls into this rare diagnoses group. Some information will
be lost with this, but the model will most probably get higher performance
and can still be of help for clinicians in the ER. However, since there exist
so many rare diagnosis labels in the dataset, this group will become a
huge group, with big differences between the input HPI texts, but with
the same output label. This can confuse the model a lot since there is a
big chance that a new HPI text will look like one of this group and then
the model will just always predict this rare class.

2. Another option is to let clinicians manually put together clusters of di-
agnosis labels. Some diagnoses are close to each other, and will still be
of value if the model can predict a group with closely-related diagnoses.
However, only clinicians can know this and therefore have to go manually
over all these 1854 diagnosis labels and see what categories can be made.
This is very time-consuming and costly and therefore not affordable in
this project.

3. The third option is to build a cluster embedding algorithm that can cluster
the labels based on the text. This way, an algorithm is merging the labels,
and clinicians do not need to do this work manually. However, it will take
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a lot of time to build this algorithm, and before it can be used it still
needs to be manually evaluated by clinicians, to see if it actually works
well. This option was also too time-consuming and costly for this research.

4. Another option is to match diagnosis labels to ICD-10 codes. These codes
are internationally known, and are organized in a hierarchy. In this way,
once the ICD-10 codes of the diagnoses are available, certain codes can
be put together in a category. The model will perform better since the
amount of different labels is reduced and there exist more examples per
category to learn from. Besides this, the model will still be of support
for the clinicians in the ER since predicting a category is already of great
value.

Considering time limits, for this project option 4 seemed the best option. When
ICD-10 codes were available for the diagnoses in the data, a categorisation tool
was used to put similar ICD-10 codes into the same category. The tool used for
this is The Clinical Classifications Software Refined (CCSR) for ICD-10-CM Di-
agnoses [for Healthcare Research and Quality, 2022]. The CCSR tool classifies
each ICD-10 code into a category. The size and distribution of the data after
this categorisation can be found in the next subsection.

After extracting and categorizing the data, a clinician from the ER at the LUMC
stated that not all categories from the CCSR tool were actual diagnoses because
some of them were signs or symptoms. For this project, it is wanted that the
model predicts diagnoses and not symptoms, and therefore these categories were
left out. Furthermore, it was decided to leave out all diagnosis labels that still
occurred less than 10 times in the data. As stated before, the model cannot
learn from so few examples. It is realized that this is a form of bias. If the
model is put into practice, patients might come in that do belong to one of
these categories, but the model will not be able to predict this category since
they were removed from the training dataset. However, this effect will be min-
imal, because the fraction of data points that were removed was less than 1
percent of the data.

3.4 Data size and distribution

After extracting the data, categorizing the labels, and leaving out considered
labels, the amount of HPI texts left is 29871. The number of unique diagnosis
labels (categories) now is 132. The full list of diagnosis labels can be found in
Appendix A. The mean number of labels per HPI text is now 1.10. The distri-
bution of the number of labels per HPI can be found in figure 1. Figure 2 shows
in how many HPI texts the top 50 of diagnosis labels occur. In table 3 it can
be seen that the labels are quite imbalanced since the number of documents per
label differs quite a bit. However, since this dataset is multi-label, the sum of
the frequencies of each label does not add up to the total number of HPI texts,
since texts can contain more labels than one.
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Figure 1: Distribution of the number of labels per HPI text, on a logarithmic y
scale.
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Figure 2: Count of the 50 most frequent labels.

Properties of labels Count
Total count 132
Mean occurrence 246.72
Min occurrence 10
25 percentile 29.75
50 percentile 82.50
75 percentile 206.75
Max occurrence 3707

Table 3: Properties of the data labels
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Figure 3: Lengths of the HPI texts.

Figure 3 shows the lengths of the HPI texts. Most of the texts are no longer
than 250 words.
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4 Methods

This thesis project focuses on making a prediction model to predict diagnoses of
patients in the emergency room with the texts of History of Present Illness inter-
views, found in GP letters. Section 2 reviewed different classification techniques
and deep learning models to use for this task. It was found that sequence-to-
sequence models and BERT-based models might be appropriate models to use
in this situation. The main questions now remain how these models perform on
a real-life, imbalanced dataset and if they can be of support to doctors in the
ER of a hospital. Therefore, it is necessary to find out if it is possible to predict
diagnoses from HPI texts and if these two types of models will achieve high
performance on this task together with a sort of explainability. For this, the
models will be compared to a baseline model, a simple text classification model.
Furthermore, the BERT-based model that has been pre-trained on Dutch med-
ical notes (MedRoBERTa.nl) will be compared to a BERT model that has been
pre-trained on Dutch general notes (BERTje), to see if the pre-training on med-
ical notes has a higher impact than pre-training on general notes, and if the
MedRoBERTa.nl model generalizes to other datasets, in this case, the dataset
described in section 3. In this section, the methodology for answering these
questions will be explained in more detail. Section 4.1 will explain the baseline
model, section 4.2 the sequence-to-sequence model, and section 4.3 the BERT-
based models. The explainability methods of the models will be explained in
section 4.4, and the evaluation of the models in section 4.5.

4.1 Baseline model

The approach used as a baseline to compare the more complex models to is the
Term Frequency - Inverse Document Frequency (TF-IDF) approach, together
with a supervised machine learning classification model. TF-IDF is a good
option because of its simplicity and the fact that it is often used for text clas-
sification [Artama et al., 2020]. The term frequency (TF) defines the frequency
of a specific term in a document, the inverse document frequency (IDF) assigns
a higher weight to words that only occur in a few documents. The TF-IDF
approach measures therefore the importance of a term and can help identify if
a specific term can be matched to a certain label. The TF-IDF creates feature
vectors, which can be fed into a general machine learning classification model.
The Linear-kernel Support Vector Machine (SVM) is chosen as the classification
model. More options were considered, including a Decision Tree and a Logistic
Regression classifier, but the SVM performed the best in a small experiment
and therefore this model was chosen as the baseline classification model.

Before feature vectors were created with TF-IDF, the texts needed to be pre-
processed. This cleaning of the text is explained in more detail in section 5.1.
After cleaning up the data and creating the feature vectors, these vectorised
documents could be fed into the SVM classifier. Because the dataset is multi-
label, the one-vs-rest approach was chosen for the classifier. One-vs-rest means
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that instead of one classifier, there are as many classifiers as there are labels.
For each classifier, the label is fitted against the other labels. Now, multiple
independent classifiers are built and for each instance, every classifier predicts
a probability score for that label in comparison to the rest of the labels. An-
other option is to use one-vs-one classifiers. With this approach, independent
classifiers are built to compare every label with every other label in the dataset.
Considering the fact that the dataset of this project consists of 132 different la-
bels, this would result in 8646 classifiers and therefore the one-vs-rest approach
was chosen. With multi-label classification, a threshold then needs to be set.
If the probability of the one-vs-rest classifier then exceeds this threshold, this
label is predicted by the model. If it does not exceed this threshold, the model
will not predict this label.

4.2 Sequence-to-sequence model

A sequence-to-sequence model converts a sequence of text of one domain into
a sequence of text of another domain. For this project, the input sequences
consist of the HPI texts and the output sequences of the diagnosis labels. A
seq2seq model consists of three parts: an encoder, a decoder and the class where
these come together. The encoder turns the input into an internal hidden vec-
tor, which contains an input item plus its context. The decoder then takes this
vector and turns it into the desired output, considering the context. Both the
encoder and the decoder are separate Recurrent Neural Network (RNN) models,
combined in the seq2seq class.

The seq2seq model was built using the PyTorch library. The encoder and the
decoder were both made up of a bi-directional Gated Recurrent Unit (GRU)
layer. The bi-directional GRU layer consists of two independent RNNs, where
one takes as input the sequence in sequential order, and the other takes as input
the sequence in reverse order. The outputs of these separate models are then
concatenated.

One of the limitations of the seq2seq model is that it in general only works
well and fast enough with texts of a maximum of 200 words. Longer texts can
be used as input, but it is not recommended for the performance of the model.
Most HPI texts in the dataset of this project are under 200 words, but some
texts are over 200 words. This means that these data points either need to be
deleted from the dataset, that these texts need to be cut off after word number
200, or that a summarization model is needed to first summarise these longer
texts. The last option was not considered because of time constraints, but the
first two options would mean that a lot of data would be lost. It was decided
to deal with this differently. All HPI texts were split into different buckets (one
bucket for texts with a length of fewer than 50 words, and one bucket for texts
between 50 and 100 words, one for over 100 words and under 150 words, one
bucket for texts between 150 words and 200 words, and one for the texts with
a length over 200 words). These buckets were then fed into the model one by
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one, starting with the smaller texts. In this way, only with the last bucket it
takes the model a long time to train.

Another limitation of the seq2seq model for this project is that, after cate-
gorizing the diagnoses, most labels are no longer a long sequence of text. It
remains to be seen if the seq2seq model is the right choice in this situation,
where the output sequence most of the time consists of only one or few words.

To pre-process the text before feeding it into the model, the same tokenizers
were used for the BERTje model, which is explained in the next subsection. All
hyperparameters of the model will be further explained in section 5.

4.3 BERT-based models

The baseline model of this project is very simple, simply counting occurrences
of terms. As discussed in section 2, recently newer, more advanced language
models have been created. One of the most promising and most recent is the
Transformer. This is currently the best-performing type of model. For this
project, the BERT model from Huggingface transformers will be used. A lot
of different pre-trained BERT models exist, trained on different types of text
in different languages. The models are openly available to download, and can
therefore easily be used to finetune it on a new task on a new dataset.

As stated in section 2.3.2, one of the best BERT models for the Dutch lan-
guage is BERTje. BERTje is trained on Dutch general texts, found in books,
news articles, and Wikipedia pages. As stated in section 2.1, medical language
can be quite different from general language, and therefore it will be interesting
to see if the BERTje model will perform well on this task and this dataset.

Recently, a medical Dutch BERT model has been built, MedRoBERTa.nl.
MedRoBERTa.nl is trained on medical notes, including HPI notes, notes from
doctors and nurses, letters from the hospital to the patient, and emergency room
reports. Since this BERT model is pre-trained on similar texts as the dataset of
this project, it will be interesting to see if the performance of MedRoBERTa.nl
will be significantly greater than the performance of BERTje.

Transformer models have an encoder-decoder architecture, just like the sequence-
to-sequence model. BERT is just an encoder and does not have a decoder. The
pre-trained BERT model can read and process the text input but needs to be
finetuned on a task to produce an actual prediction. To make the pre-trained
BERT models ready to use for the task of this project, the output layer was
changed to a classifier output layer which has an option for multi-label classi-
fication. The output layer used comes from the BertForSequenceClassification
model, out of the Huggingface Library [HuggingFace, 2020].
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A limitation of the BERT language model is that it can only process input
texts no longer than 512 tokens. The dataset of this project does contain a few
texts that are longer than 512 tokens, 146 texts to be precise, 0.49 percent of
the texts. Compared to the seq2seq model, this is already a lot less documents
that pass the maximum length. Since there are not so many texts exceeding
this length, it was decided to truncate these texts to the length of 512 tokens.
In this way, the data points are not lost, and these shorter texts will probably
still contain enough information. Besides this truncation, it was considered to
use a summarization model, to not lose any important information which is
stated in the text after the 512 tokens. However, this would take some time
to implement, and for the number of texts we have that exceed this 512 tokens
limit, it was decided not worth implementing an extra model.

BERT models can become very large, with lots of parameters. This is an-
other limitation of the language model because it can become very slow and
requires a lot of computation because of its size. For this problem, a GPU is
available to make the computations faster. However, to finetune and test the
models on a dataset will still take a large amount of time, even when using a
GPU. The models need to run for hours before they produce predictions. This
is a limitation that the project just needed to work with, leaving the models
running for multiple days.

To tokenize the data before feeding it into the models, the tokenizers from
the models themselves were used. The Huggingface library provides both the
BERTje and the MedRoBERTa.nl models with their tokenizers. The hyperpa-
rameters of the models are summed up in section 5.

4.4 Explainability

As stated before, besides a good performance, the models also need to be able
to explain the black box: what is going on inside. If a model does not have a
very high performance, clinicians in the ER need to understand what parts of
the text the models focused on to come to a certain conclusion, to know whether
the decision is reliable or not.

The BERT models have an intrinsic explainability, named attention. The model
gives more attention to certain words, and after making a decision, these at-
tention weights can be visualized with a special library called BERT Viz. The
BERT Viz library visualizes attention in different ways: a head view, a model
view, and a neuron view. It is quite hard to understand these visualizations, and
not easy to quickly see what words the model paid more attention to. There-
fore, it was decided for this project to not use intrinsic explainability but to
use an extrinsic approach. The extrinsic explainability model used is LIME. As
explained in section 2.4.2, LIME can be applied to any learning model and has
a very easy and good way to immediately see what words the model paid most
attention to, to come to a certain prediction. The LIME tool was therefore ap-
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plied, to understand why the models came to a certain conclusion and to make
the models a better support for the clinicians in the ER.

4.5 Model evaluation

To evaluate the model, a train-validation-test split will be implemented. All
models are trained on 80 percent of the data, validated on 10 percent of the
data, and in the end tested on 10 percent of the data. In this way, it is sure
that the model is tested on new data that it has not seen before, and therefore
the chance of getting a high performance because of overfitting will be smaller.

As stated in section 2.5, the micro and macro F1 scores are commonly used
metrics for multi-label classification, so the evaluation of the models will be
done by calculating these scores on the test set for each model. To better un-
derstand the performance of the models, the F1 score is also calculated per
label. In this way, it can be seen if there are specific labels for the model that
are more difficult to predict.

As will be explained more in the upcoming chapter, there will be made a few
smaller samples of the data, to see if the models can predict specific diagnoses
that are more difficult for doctors to distinguish from another. With these
smaller samples, it is interesting to see the confusion matrix besides the F1
scores. In a confusion matrix, it is possible to see what labels were predicted as
what label by the model. In this metric, it is easy to see what labels are pre-
dicted wrong, and which other labels are then predicted instead of the actual
true label.
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5 Experimental set-up

This section describes the setup of the experiments ran on the dataset described
in section 3. All models described in section 4 were trained on the HPI texts to
predict the corresponding diagnosis label(s). In section 5.1, the hyperparameter
settings of the baseline model will be explained. Section 5.2 describes the set-
tings used for the sequence-to-sequence and section 5.3 for the BERT models.
Section 5.4 describes in more detail the experiments on the different samples of
the dataset.

5.1 Baseline model

As was described in section 4.1, the baseline model consists of the TF-IDF vec-
torizer and the SVM classifier. The TF-IDF vectorizer is implemented with
the scikit-learn library. Before building the feature vectors, the text was first
preprocessed more. It was decided to remove special characters and stopwords
since they are not containing any important information. For this, the NLTK
library was used with their default Dutch stopword list. However, some words
in this stopword list were considered important for this dataset (for example
the word “not”). Those words were specifically removed from the stopword list
first, so they would stay in the texts.

The TF-IDF score can be calculated for single words, or multiple words to-
gether. Even though single words are already very informative, it was decided
to also implement bigrams and trigrams. This was decided because, for this
dataset, bigrams can have very different meanings from unigrams. For example,
using only unigrams can result in the word “sick”, whereas using bigrams could
result in “feeling sick” and trigrams in “not feeling sick”. The difference of
meaning here is huge between the trigram and the uni- or bigram, and because
these types of bigrams and trigrams are very important in the dataset, it was
decided to not only consider unigrams.

Furthermore, it was decided to leave out the TF-IDF scores for words that
occur fewer than 3 times in the dataset. The reason for this is that sometimes
the texts will contain spelling errors and in this way, this noise will be left out.
Besides this, words that do not occur at least 3 times in the dataset might not
be informative enough and will make it harder for the model to learn from. All
other parameters were set to the scikit-learn’s library default values.

For the SVM classifier, the following parameters were chosen. First, the choice
was made to use a one-vs-rest classifier instead of a one-vs-one. This choice was
explained in more detail in the previous section, and seemed to be the most
logical option. As for the kernel of the classifier, multiple options are available,
namely linear, polynomial, rbf and sigmoid. It was decided to use the linear
kernel because this fitted best on this dataset. The multi-label classification
threshold, as explained in the previous section, is set to 0.5. This means that if
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the probability of the label vs the rest of the labels is higher than the probabil-
ity of the rest vs the one, this label is predicted by the model. In table 4, an
overview of the parameters chosen for the baseline can be found.

Parameter Baseline
Vectorizer TF-IDF
ngrams Unigrams, bigrams, and trigrams
Minimum frequency 3
Maximum frequency 95%
Classifier SVM
Multi-label classifier One-vs-rest
Kernel Linear
Threshold 0.5

Table 4: Overview parameter choices baseline model

5.2 Sequence-to-sequence model

The sequence-to-sequence model was coded with the PyTorch library. Before
feeding the text into the model, special character removal and stopword removal
were done. After this, the tokenizer used for the BERTje model was also used
for the seq2seq, since this tokenizer tokenizes the text into subwords instead of
only into words. Tokenization into subwords is important because for example
the word “running” will be tokenized into “run” and “#ing”. In this way, the
word run will be counted, instead of only the word running, so the model can
understand this is the same meaning as when a document contains the word
run. Furthermore, it was decided to set the minimum frequency of words here
to 10. This is to let the model have enough information about all the words that
it sees in the training data. The infrequent words and words that appear for the
first time in the test set were converted to “UNK”, a token for unknown words.
For the training of the model, a batch size of 4 was used, due to memory issues
with bigger batch sizes. The model was finetuned using the AdamW optimizer,
with an initial learning rate of 0.001. The loss of the model was calculated
with a cross-entropy loss function and the number of epochs was 10. Validation
showed that after 10 epochs, the model performance did not increase anymore
on the validation set and the loss did not decrease any more.

Both the encoder and the decoder of the model consist of a bi-directional GRU
layer and a linear layer, with dropout set to 0.5. Dropout is used to reduce
overfitting, randomly dropping out certain layers of the model, so it will need
to find other ways to reduce the loss and cannot simply rely always on the same
path. This way the training process becomes noisy. A dropout of 0.5 means that
a layer has a 0.5 probability of being dropped and is mostly used as a dropout
rate [Baldi and Sadowski, 2013].
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5.3 BERT models

The BERT models were also coded with the PyTorch library. Both the BERTje
and the MedRoBERTa.nl models were available for download via the Hugging-
face library, including their tokenizers. For all parameters, it was decided to use
the same for BERTje as for MedRoBERTa.nl. In this way, the results of the
models can be compared, and the only difference will be the texts which the
models were pre-trained on. This means that any difference in results will be
because of this pre-training, and cannot be attributed to any other difference
between the two models.

For training, a batch size of 4 was used, again because of memory constraints.
The max length of the text was set to 512, and all texts longer than this were
truncated. The finetuning was done with the AdamW optimizer and a learning
rate of 0.00001. The losses are calculated with the Binary cross-entropy (BCE)
with logits loss because this generates the probabilities per label. The default
dropout of the BERT models is 0.1. For the BERT models, the multi-label
threshold was also set to 0.5, for the same reason as why this threshold was
chosen for the baseline model. Furthermore, the number of epochs was 4, after
this number the performances did not increase anymore. In table 5, an overview
is shown of the parameter choices for the seq2seq model and the BERT models.

Parameter Seq2Seq BERTje MedRoBERTa.nl
Tokenizer BERTje tokenizer BERTje tokenizer MedRoBERTa.nl tokenizer
Max length N/A 512 512
Optimizer AdamW AdamW AdamW
Initial learning rate 0.001 0.00001 0.00001
Batch size 4 4 4
Loss function Cross entropy loss BCE with logits loss BCE with logits loss
Epochs 10 4 4
Dropout 0.5 0.1 0.1

Table 5: Overview parameter choices seq2seq model and BERT models

5.4 Samples

Since the dataset contains a lot of different diagnosis labels, and some labels do
not occur very frequently in the dataset, it can be difficult for a language model
to have a high performance for all labels. A clinician of the ER of the LUMC
hospital in The Netherlands described that a model that can choose from a small
number of specific diagnoses from only the HPI text will already be helpful in the
ER. In this situation, once a patient is admitted to the ER, the doctors could do
a quick assessment to determine which diagnoses are most likely, after which the
trained model that discriminates between those diagnoses can then run on the
text of the HPI interview. As will be shown in the results section, some specific
labels were hard for the models to distinguish from one another. However,

34



when trained on only those labels, the distinction became easier. Therefore, it
was decided to set up smaller samples of the data, consisting of small groups
of diagnoses that are difficult for clinicians in the ER to distinguish from one
another. It will be interesting to see if the language models have fewer difficulties
with distinguishing these specific diagnoses for patients. The generated samples
with their distribution can be found in table 6.

Sample nr Diagnosis labels Nr of documents Total

1

Pneumonia except that caused by tubercolosis 1707

2708
Acute phlebitis thrombophlebitis and thromboembolism 13
Heart failure 670
Covid-19 326

1A Heart failure 669
995

Covid-19 326

2

Gastrointestinal and bilinary perforation 31

2094

Pancreatic disorders excluding diabetes 413
Biliary tract disease 321
Acute myocardial infarction 833
Arterial dissections 13
Peritonis and intra abdominal abscess 217
Aortic peripheral and cisceral artery aneurysms 266

2A Biliary tract disease 321
587

Aortic peripheral and cisceral artery aneurysms 266
3 Acute hemorrhagic cerebrovascular disease 739

935
Meningitis 196

Table 6: Generated samples in cooperation with clinicians from the ER including
the number of documents.
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6 Results

In this section, the results of the experiments discussed in the previous sections
are reported. The experiments consist of training a baseline model and three
deep learning models on the dataset explained in section 3, and on samples of
this data that were shown in section 5.4. Section 6.1 shows the results of the
models on the full dataset, section 6.2 shows the results of the models on the
samples, and section 6.3 shows the findings of the explainability model.

6.1 All data

Figure 4: The mean micro and macro F1 score calculated for each model on the
whole dataset.

Because the amount of labels is 132, the full table of all labels and their F1
scores per model can be found in appendix A. The ten labels with the highest
F1 scores are shown in table 7.
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Label Baseline Seq2Seq BERTje MedRoBERTa.nl
Burn and corrosion 0.62 0 0.76 0.54
Syncope 0.53 0.18 0.56 0.50
Cardiac dysrhythmias 0.43 0.1 0.51 0.49
Mental disorders 0.56 0.14 0.35 0.39
Neoplasms 0.19 0.14 0.49 0.46
Skin and subcutaneous tissue infections 0.33 0 0.41 0.45
Nerve and nerve root disorders 0.38 0 0.44 0.24
Cornea and external disease 0.20 0 0.52 0.33
Calculus of urinary tract 0.26 0 0.39 0.34
Essential hypertension 0.30 0 0.36 0.29

Table 7: F1 score per label per model for the 10 labels with the highest scores.

The F1 scores reported previously are calculated assuming that the model
outputs only the labels where the probability exceeds the threshold. Alterna-
tively, we can take the K most likely diagnoses according to the model, for each
HPI text. A true positive is then recorded if the true diagnosis is within this
top K of diagnoses, output by the model. Figure 5 shows the mean micro and
macro F1 score per model, calculated for different K’s. K is here the number
of labels the model gives as output. The expectation is when a model outputs
for example 10 labels (K = 10), there is a higher chance that the right label
is within these 10 labels and therefore will the performance of the model be
higher.

Figure 5: The mean micro and macro F1 score calculated for each model per K
for a range of 1-10.
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6.2 Data samples

The confusion matrices of all models of the samples can be found in Appendix
B.

6.2.1 Sample 1

Figure 6: The mean micro and macro F1 score calculated for each model on
sample 1.

Label Baseline Seq2Seq BERTje MedRoBERTa.nl Nr of documents
Pneumonia 0.78 0.47 0.82 0.83 1707
Acute phlebitis thrombophlebitis
and thromboembolism

0 0 0 0 13

Heart failure 0 0.34 0.64 0.71 670
Covid-19 0 0 0.65 0.57 326

Table 8: F1 score per label per model of sample 1
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6.2.2 Sample 1A

Figure 7: The mean micro and macro F1 score calculated for each model on
sample 1A.

Label Baseline Seq2Seq BERTje MedRoBERTa.nl Nr of documents
Heart failure 0.84 0.96 0.92 0.94 669
Covid-19 0 0.11 0.85 0.87 324

Table 9: F1 score per label per model of sample 1A

6.2.3 Sample 2

Figure 8: The mean micro and macro F1 score calculated for each model on
sample 2.
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Label Baseline Seq2Seq BERTje MedRoBERTa.nl Nr of documents
Gastrointestinal and biliary perforation 0 0 0 0 31
Pancreatic disorders excluding diabetes 0 0.08 0.51 0.55 413
Biliary tract disease 0.03 0.02 0.22 0.31 319
Acute myocardial infarction 0.56 0.8 0.86 0.87 833
Arterial dissections 0 0 0 0 13
Peritonitis and intra abdominal abscess 0 0.03 0 0.23 217
Aortic peripheral and visceral artery aneurysms 0.04 0.08 0.38 0.44 265

Table 10: F1 score per label per model on sample 2.

The confusion matrices of the models can be found in Appendix D.

6.2.4 Sample 2A

Figure 9: The mean micro and macro F1 score calculated for each model on
sample 2.

Label Baseline Seq2Seq BERTje MedRoBERTa.nl Nr of documents
Biliary tract disease 0.7 0.51 0.74 0.83 321
Aortic peripheral and visceral artery aneurysms 0 0.5 0.67 0.75 266

Table 11: F1 score per label per model on sample 2A.
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6.2.5 Sample 3

Figure 10: The mean micro and macro F1 score calculated for each model on
sample 3.

Label Baseline Seq2Seq BERTje MedRoBERTa.nl Nr of documents
Acute hemorrhagic
cerebrovascular disease

0.89 0.98 0.9 0.91 739

Meningitis 0 0.28 0.51 0.63 196

Table 12: F1 score per label per model on sample 3.

6.3 Explainability

To show how the explainability of the models with LIME looks, two examples
are shown here. The explainability of the same HPI text, with the actual label
“Heart failure”. In figure 11 the explainability of the baseline is shown and in
figure 12 the explainability of MedRoBERTa.nl.

Figure 11: Visualisation of the explainability of the baseline model using LIME.
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Figure 12: Visualisation of the explainability of the MedRoBERTa.nl model
using LIME.
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7 Discussion

This section will discuss the results presented in section 6. The experiments
included training a baseline model and three deep learning models on a multi-
labelled dataset. Section 7.1 will discuss the analysis of the results in further
detail. Section 7.2 will answer the research questions based on this analysis.
Section 7.3 will discuss the limitation of the research, accompanied by options
for further research on the topic.

7.1 Results analysis

This section provides an analysis and discussion of the results shown in section
6. Figure 4 shows the macro and micro F1 scores per model. As discussed in
section 2.5, the macro F1 score is computed on the individual labels first and
then averaged. The micro F1 score is computed on the individual data points
first. This means that the micro F1 score is influenced by labels that have more
instances than other labels, and the macro F1 score is not.

The overall micro F1 and macro F1 scores are low, which means that none
of the models is capable of correctly predicting the labels in the whole dataset.
Against expectations, the macro F1 scores of the deep learning models are not
higher than the macro F1 score of the baseline model, which means that the deep
learning models do not a well performance on a bigger amount of labels than the
baseline model does. The micro F1 score is higher for the deep learning models
compared to the baseline model. This means that the deep learning models
do predict a bigger number of data points correctly. As can be seen in figure
4, for all models the micro F1 score is significantly higher than the macro F1
score. This could mean that the models do well on predicting the bigger classes,
but not well on predicting the classes with fewer data points. When looking at
appendix A, it can be seen that this is indeed the case. Most models perform
better on for example the labels Syncope and Neoplasms, but for smaller labels,
the F1 score of all models is simply 0. When further inspecting the F1 score
per label, it can be seen that both the Baseline model and the BERTje model
perform the best on most classes. MedRoBERTa.nl and seq2seq perform fewer
times the best for a class, whereas the seq2seq model seldom performs the best
for a class.

The dataset is imbalanced, and this could be the reason for the aforementioned
problem of the lower macro F1 scores. This would mean that on the samples
explained in section 5.4, the models should have better performance since those
datasets are less imbalanced than the whole dataset. To understand why these
F1 scores are so low, the F1 scores of the samples can be inspected. When
inspecting the F1 scores of sample 2A (table 11), where the class is least imbal-
anced with a distribution of 321 data points for class A and 266 data points for
class B, it can indeed be concluded that the macro F1 scores are higher for every
model, and also come closer to the micro F1 scores. This means that when the

43



class is less imbalanced, the models do perform better. However, when looking
at the confusion matrices of the samples in Appendix B, it can be concluded
that the baseline model still only predicts the biggest class. The same goes for
the sequence-to-sequence model. It does not solely predict the biggest class,
but it does most of the time. However, when looking at table 11, it can be seen
that both BERT models do predict both classes and even wrongly predict both
classes almost as much. This cannot be only concluded for sample 2A, but all
samples in general. The baseline model and the sequence-to-sequence model
only perform well on a specific class (for example, the class Acute myocardial
infarction in sample 2, seen in table 10), whereas the BERT models perform
better on almost all classes. This means that, even though all models do not
perform so well on the whole dataset, the BERT-based models do learn some-
thing from the data when the classes are less imbalanced, whereas the baseline
and the seq2seq model do not seem to learn anything. An example of this can
be found in figure 11 and figure 12. This figure shows an HPI text from sample
1A with the label Heart failure. Figure 11 shows that the prediction of the base-
line was Covid-19 and that the baseline model based the prediction of the label
Covid-19 on the words “erg”, “gevoel”, “sinds” and “de”, which mean “very”,
“feeling”, “since” and “the”. A doctor would never base their prediction on
these words. However, as can be seen in figure 12, the MedRoBERTa.nl model
based the prediction of Heart failure on for example the words “kortademig”,
“gelig slijm” and “geplast”, which mean “shortness of breath”, “yellow phlegm”,
and “peed”, which is backed up by a clinician from the ER that he would base
the prediction of this text also mostly on these specific symptoms. Further-
more, you can see that the MedRoBERTa.nl model also recognizes the words
“headache”, “coughing”, and “tired” as features for the label Covid-19.

When comparing the MedRoBERTa.nl model with the BERTje model, the fol-
lowing can be observed. When trained on the full dataset, even though the
differences are not very big, BERTje outperforms MedRoBERTa.nl on most
labels. This also explains the slightly better F1 micro and F1 macro score
of BERTje compared to MedRoBERTa.nl. But when trained on the smaller
samples, it can be observed that MedRoBERTa.nl outperforms BERTje in all
samples on all labels. When trained on a big, imbalanced dataset, the fact that
MedRoBERTa.nl was pre-trained on medical texts compared to the general texts
that BERTje was pre-trained on does not seem to matter. However, on the task
of predicting a label from a smaller sample, it does seem that MedRoBERTa.nl
learns more than BERTje does. This can also be seen in the differences between
the confusion matrices in Appendix B.

Looking at the sequence-to-sequence model’s performance, it can be concluded
that this model is by far the worst performing model of all four models. A possi-
bility of a reason for this bad performance is that after processing the diagnosis
labels, the deleting and the categorization, there was not much of a sequence
of text left for the model to predict. Before this processing, the output of the
model was a long text, like a sequence. Now it is more like a specific class,
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consisting of only a few words. For this research, it can be concluded that the
model does not learn much. For the whole dataset, as well as the samples, the
model only performs above zero for the biggest label(s), and even on those la-
bels, the model does not perform well. In table 9 it can be seen that the seq2seq
model does outperform the other models on the label heart failure, in sample
1A. However, it performs very bad on the residual label, Covid-19, where the
BERT-based models perform slightly worse on heart failure but way better on
Covid-19. When inspecting the confusion matrices of this sample (Appendix
B), it can be seen that the test data of the seq2seq model consisted of mostly
the heart failure label, and therefore almost only predicting heart failure gave
the seq2seq model this high performance on this specific label, but the low per-
formance on the Covid-19 label.

Something that is also interesting to see is how much it affects the performance
of the models when the models do not predict only a few labels with a high
probability, but when it predicts a top k of labels with the highest probability.
According to ER clinicians, a model is still of support when it predicts a list of
3, 5, or even 10 diagnosis labels, as long as the performance is then very good
(a very high chance that the right diagnosis is within this list). The seq2seq
model is not in this graph, since this model predicts a sequence and not proba-
bilities per label. Looking at the micro F1 score, taking a k of 10 does affect the
performance of the models significantly. It can also be seen that both BERT
models increase more than the Baseline model, meaning that the BERT models
predict the right diagnosis for a datapoint more often with a k of 10 than the
baseline does. However, the micro F1 score is not much affected by taking a k
of 10. This means that the smaller classes are still not predicted right mostly.
The performance of the bigger classes is therefore affected by taking a bigger
k, but the performance of the smaller classes is not. For the micro F1 scores,
the BERT-based models do not outperform the baseline model anymore when
taking a bigger k.

It is interesting to note that, during validation, some specific labels were con-
fused for all models, when trained on the full dataset. An example of this
was the confusion between the labels “Covid-19” and “Pneumonia except that
caused by tuberculosis”. When trained on the full dataset, all models always
predicted the label Pneumonia except that caused by tuberculosis when the ac-
tual label was Covid-19. However, when the models were trained on only the
data of these two labels, both BERT-based models could distinguish these labels
way better. Similar to sample 1A of the results. Therefore, it was decided to
make these samples, to see how much the performances of the models would
improve. Apparently, in a small dataset, the models are capable of achieving
higher performances, and the models can better distinguish labels from each
other than when more labels are involved.
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7.2 Conclusion

The main question to answer with this thesis was how to make a model to pre-
dict diagnoses of patients to support clinicians in the emergency room. Several
of sub-questions were suggested to answer this research question. These sub-
questions will be answered in this section, after which the answer to the main
research question is discussed.

Firstly the question was raised about what is required of a diagnosis predic-
tion model from a clinical perspective to be helpful and of support to clinicians
in the ER. As found in previous literature on predictive models in the medical
domain, as well as in questionnaires answered by clinicians, it was found that
firstly the performance of the model needs to be high enough. Diagnostic errors
can result in serious harm, and therefore the model needs to be able to accu-
rately predict the right diagnosis most of the time. However, since the model is
never meant to replace a clinician, but only to support them, the performance
does not need to be 100 percent, since the clinician is also still there to make
the decision. To be of support, the model needs to be able to make specific
decisions that are difficult for clinicians. For example, the decision between two
specific diagnoses where the clinician might doubt between. So the models’ per-
formance needs to be high enough on the whole dataset, or on specific samples
of diagnosis labels that are harder to distinguish from the first interview for clin-
icians. However, only the performance of the model is not enough. Clinicians
clearly stated that the model also needs to have some sort of explainability, for
the clinicians to trust the model. To accept the models’ decision, the clinician
needs to understand where the certain conclusion is coming from. If the model
cannot explain itself, it might draw a conclusion from the wrong reasons, and
therefore the decision cannot be trusted.

The second sub-question was what kind of metrics are best to use for the evalu-
ation of the model. As stated in previous literature, the metrics that are best to
use for a multi-label classification problem are the micro F1 score, the macro F1
score, and the F1 score per label. This is because the data is very imbalanced,
and the F1 score can capture this. Besides this, the micro and macro scores are
averaged (over either data points or labels), and can therefore say something
about the performance of multi-label classification. The F1 scores per label
show the performance of a model per specific label. This is interesting for the
analysis of the model, whether the model performs well on all labels, or only
on specific labels. Besides the F1 scores, the confusion matrices are interesting
for further analysis of the results. However, with a dataset as big as the one of
this research, this matrix would become too big and is therefore only interesting
when analyzing the results of smaller samples of the data.

The third sub-question raised was about explainability. Whether an intrinsi-
cal model could be used or if it is necessary to add an extrinsic explainability
model to the prediction model. Literature showed great potential in the atten-
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tion mechanism, an intrinsic part of the architecture of both the BERT-based
models and the sequence-to-sequence model. This mechanism gives weight to
specific relationships among concepts, which can then be interpreted as the
features that the model paid the most attention to. However, visualizing this
attention results in an environment that can be very difficult to understand.
The models need to be of support to clinicians, and therefore the explainability
needs to be easily interpreted. Therefore, the intrinsic attention mechanism
might not be the best fit for this research. The external model that turned out
to be best visualizing the explainability of the models is LIME. As shown in fig-
ures 11 and 12, LIME visualisations are very easy to interpret the explainability.
In one glance, the clinician can see which words in the HPI text the model paid
the most attention to to come to a certain conclusion, and the clinician can then
see for themselves whether this is a logical reason for the prediction.

Fourth, the sub-question was raised about whether a sequence-to-sequence model
can be used for this task. This means, under the criteria of sub-question 1, that
the performance of the whole dataset needs to be high or the performance on
smaller interesting samples needs to be high, and the model needs to be ex-
plainable. In the first set of data that was used, the model needed to predict
a lot of labels, formed in a sequence. In this way, the model performed quite
okay, and with the use of an extrinsic explainability model, this model could be
used for the task of this research. However, the data that was eventually used
for this research, did not contain many diagnosis labels per text, and therefore
not much of a sequence needed to be predicted. In this case, the performance of
the model was very bad on the whole dataset as well as on all created samples.
Therefore the seq2seq model is not the best choice for this task.

The last sub-question was whether a BERT-based model can be used for the
task and if the pre-trained clinical Dutch language model MedRoBERTa.nl is
generalizable to other datasets, and in particular to the dataset of this study.
When training the model on the whole dataset, the MedRoBERTa.nl model does
not achieve very high results. Against expectations, it performs slightly worse
than the BERTje model, which is a similar model but pre-trained on general
texts instead of medical texts. This would mean that pre-training the model on
domain-specific texts would not necessarily result in a better performance on a
task of that domain. However, the MedroBERTa.nl model does perform better
than all other models when trained on smaller samples of the data. The model
seems to be the best choice for the task of predicting a diagnosis when there
are a few diagnosis labels to choose from. This then means that when the task
consists of distinguishing diagnoses that are very similar where clinicians might
have doubts, it is better to use a model that is pre-trained on domain-specific
texts. However, since the performance only is slightly better than the BERTje
model, it can also be concluded that pre-training a BERT-based model endlessly
does not necessarily always end in much higher performance and is therefore not
always the best option.
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Coming back to the main research question of how to make a model to pre-
dict diagnoses of patients to support clinicians in the emergency room, it can
be concluded that the MedRoBERTa.nl model is the best model to use in this
situation. However, it is only of support for clinicians when used in combination
with an extrinsic explainability model like LIME, and in the specific situation
of when a clinician is in doubt between a small number of diagnoses. No model
of this thesis is capable of predicting diagnoses when choosing from all available
diagnosis labels. The MedRoBERTa.nl model had an average micro F1 score of
0.79 and an average macro F1 score of 0.66 (averaged over the samples), but a
micro F1 score of 0.32 and a macro F1 score of 0.06 when trained on the full
dataset.

7.3 Limitations and further research

This project was the first to research different prediction models to predict
diagnoses of patients presenting in the emergency room from Dutch HPI texts.
This study compared four different models for this task and evaluated these
models on the F1 scores. The results found in this research are subject to several
limitations. These limitations are acknowledged in this section, accompanied by
further research that can be conducted to overcome these limitations.

7.3.1 Imbalanced dataset

A limitation of this study is the number of different diagnoses present in the
dataset. Working with a real-life dataset like the one in this project means that
the data might not look ideal. In this case, there are many different diagnoses
a patient can have, and therefore the number of unique labels was very high.
Also, a big part of the diagnoses appeared less than 10 times in the dataset,
and a lot of these even appeared only one time. Real-life datasets results a lot
of times in a highly imbalanced dataset, and no model can learn from examples
that only appear one time in a dataset.

In section 3.3, multiple solutions were suggested to overcome this problem.
However, they all include categorizing the diagnoses in smaller categories. A
limitation of the categorization of the diagnoses is that it loses specificity. Pre-
dicting a category a patient’s diagnosis falls into is of less support to a clinician
than predicting a very specific diagnosis. Instead of categorizing the data, fur-
ther research could inspect if there are specific models that might work well on
imbalanced datasets. Or a different solution could be expanding the dataset. In
further research, the same research could be done with the data of not only one
hospital, but the data of multiple hospitals. In this way, the dataset might still
be imbalanced, but there is a higher chance that all diagnosis labels will occur
enough times in the dataset for models to learn from.

To overcome the problem of the imbalanced dataset, this study also created
smaller, less imbalanced samples, to see if the models would perform better.
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However, these samples are not generalizable to the real-life situation. A pa-
tient that comes into the ER can have any possible diagnosis, not just one out of
a few. What could be interesting to find out is whether a two-step model would
work in this situation. As shown in figure 5, the performance of the models
did increase when predicting a top-k amount of labels. If you have a model
where it is 100 percent sure that the right label is within a specific top-k of
labels, the model could run another time, on only these top-k labels instead of
all labels, to predict the right label from. Further research could be conducted
to see if a two-step model like this would increase performances. Something
else that could be done to overcome an imbalanced dataset is downsampling.
With downsampling, you simply make the biggest labels less big, in order for
the dataset to become more balanced. This was not done in this study because
you then throw out potentially useful data, but in further research, it could be
interesting to see whether this would be of advantage or not.

7.3.2 Input features

In this study, purposely only the HPI interviews were used to predict the di-
agnoses of patients in the ER. This means that the results of this study can
say something about how predictive this first HPI interview is. But, clinicians
take more into consideration when diagnosing a patient than only this first HPI
interview. Examples of other matters that clinicians take into account in this
decision are a physical examination, blood tests, medical history and additional
examinations. Besides these, the clinician sees, hears, smells and feels the pa-
tient, on which they (unconsciously) might base conclusions. Further research
could include these extra features that clinicians use, to maximize the perfor-
mances of the models. This might result in models with higher performance
in predicting the diagnosis of the patient but cannot say anything about the
predictiveness of the HPI interview only.

7.3.3 Threshold

As explained in section 4.1, the threshold chosen for whether the model predicts
a label or not is in this project set to 0.5. This is a default threshold since it
is logical to say that if the probability of the label being right is higher than
the probability of the label being wrong, the label is predicted. However, there
are certain methods to find out the perfect threshold during validation. One
method is using the Receiver Operating Characteristic Area Under the Curve
(ROC AUC). This is a measure of how well the model can distinguish between
the labels, based on the true positive rate and false positive rate. The Sklearn
library has a function to compute the best threshold for the highest ROC AUC.
Further research could find this optimal threshold and see if the performance of
the models will significantly chance with this threshold.
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7.3.4 Ethics

Last but not least, this study did not dive deeper into ethics. However, this
is very important to consider when an artificial intelligence model is wanted to
implement in a hospital because of two reasons. First, hospitals work with real
patients and as discussed in section 1.1, diagnostic error can be of enormous
effect on a patient. Second, the model will work with real patient data, which is
strictly private data. Before a model can be implemented in practice, multiple
ethical questions need to be considered. For example, who or what is responsible
for the diagnostic error of the model? Does there need to be informed consent
to use all patients’ data? Another ethical subject to consider is bias. The model
is trained on real-life data, and decisions made by humans. This bears the risk
of biases. Biases can for example occur regarding age, sex, or race. Further
research should consider all safety, legal, privacy and bias challenges.
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Appendix A: F1 score per label per model

55



Label Baseline Seq2Seq BERTje MedRoBERTa Distribution
Syncope 0.53 0.18 0.56 0.50 3767
Neoplasms 0.19 0.14 0.49 0.46 3754
Skin and subcutaneous tissue infections 0.33 0 0.41 0.45 529
Nerve and nerve root disorders 0.38 0 0.44 0.24 139
Pneumonia except that caused by tuberculosis 0.24 0.07 0.34 0.29 1707
Acute myocardial infarction 0.23 0 0.33 0.36 833
Respiratory signs and symptoms 0.15 0.02 0.35 0.32 414
Covid-19 0.47 0.01 0.35 0 326
Pancreatic disorders excluding diabetes 0.17 0 0.35 0.29 413
Urinary tract infections 0.19 0.01 0.30 0.31 825
Transient cerebral ischemia or Ceberal Infarction 0.19 0.03 0.37 0.15 2592
Acute and chronic tonsillitis 0.38 0 0.26 0 60
Acute hemorrhagic cerebrovascular disease 0.11 0.03 0.27 0.18 739
Viral infection 0.10 0 0.25 0.19 659
Acute bronchitis 0.38 0 0.05 0 141
Chronic obstructive pulmonary disease and bronchiectasis 0.18 0 0.13 0.04 425
Bacterial infections 0.09 0.04 0.11 0.09 1034
Pericarditis and pericardial disease 0.18 0 0.12 0.04 190
Personality disorders 0.17 0 0.14 0 133
Respiratory cancers 0.29 0 0 0 15
Paralysis other than cerebral palsy 0.25 0 0 0 27
Schizophrenia spectrum and other psychotic disorders 0.10 0 0.11 0 122
Biliary tract disease 0.12 0 0.08 0.01 319
Sickle cell trait anemia 0.18 0 0 0 22
Uveitis and ocular inflammation 0.13 0 0.02 0 54
Aortic peripheral and visceral artery aneurysms 0.10 0 0.04 0.01 265
Peritonitis and intra abdominal abscess 0.05 0 0.07 0 217
Trauma and stressor related disorders 0.04 0.02 0.06 0 204
Skin cancers melanoma 0.06 0 0.04 0.01 179
Allergic reactions 0.12 0 0 0 48
Aplastic anemia 0.07 0.01 0.02 0 217
Bone cancer 0.07 0 0 0 109
Thyroid disorders 0.07 0 0 0 118
Blindness and vision defects 0 0 0.07 0 93
Sarcoma 0.03 0 0.04 0 191
Spondylopathies spondyloarthropathy including infective 0.05 0 0.02 0 75
Fluid and electrolyte disorders 0.03 0.01 0.03 0 224
Endocarditis and endocardial disease 0.07 0 0 0 63
Septicemia 0.06 0 0.01 0 663
Acute and unspecified renal failure 0.04 0 0.02 0 202
Gastrointestinal cancers esophagus 0.03 0 0.02 0 161
Coagulation and hemorrhagic disorders 0.04 0 0.01 0 155
Systemic lupus erythematosus and connective tissue disorders 0.05 0 0 0 147
Vasculitis 0.04 0 0.01 0 115
Benign neoplasms 0.04 0 0.01 0 235
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Label Baseline Seq2Seq BERTje MedRoBERTa Distribution
Esophageal disorders 0.04 0 0 0 112
Conduction disorders 0 0 0.01 0 254
Male reproductive system cancers prostate 0 0 0.01 0 126
Abdominal hernia 0 0 0 0 78
Acute phlebitis thrombophlebitis and thromboembolism 0 0 0 0 13
Anxiety and fear related disorders 0 0 0 0 34
Aortic and peripheral arterial embolism or thrombosis 0 0 0 0 28
Arterial dissections 0 0 0 0 13
Aspiration pneumonitis 0 0 0 0 30
Bipolar and related disorders 0 0 0 0 14
Cancer of other sites 0 0 0 0 24
Cardiac and circulatory congenital anomalies 0 0 0 0 82
Cataract and other lens disorders 0 0 0 0 19
Chronic kidney disease 0 0 0 0 207
CNS abscess 0 0 0 0 36
Diabetes mellitus with complication 0 0 0 0 16
Digestive congenital anomalies 0 0 0 0 11
Diseases of mouth excluding dental 0 0 0 0 16
Disorders of lipid metabolism 0 0 0 0 18
Drug induced or toxic related condition 0 0 0 0 38
Endocrine system cancers thyroid 0 0 0 0 68
Feeding and eating disorders 0 0 0 0 14
Female reproductive system cancers cervix 0 0 0 0 46
Female reproductive system cancers uterus 0 0 0 0 23
Gastroduodenal ulcer 0 0 0 0 78
Gastrointestinal and biliary perforation 0 0 0 0 31
Gastrointestinal cancers liver 0 0 0 0 49
Gastrointestinal cancers stomach 0 0 0 0 72
Genitourinary congenital anomalies 0 0 0 0 15
Head and neck cancers hypopharyngeal 0 0 0 0 10
Head and neck cancers laryngeal 0 0 0 0 11
Head and neck cancers lip and oral cavity 0 0 0 0 11
Head and neck cancers throat 0 0 0 0 11
Hemolytic anemia 0 0 0 0 34
Hepatitis 0 0 0 0 35
Hypertension with complications and secondary hypertension 0 0 0 0 62
Immunity disorders 0 0 0 0 79
Inflammatory diseases of female pelvic organs 0 0 0 0 15
Menstrual disorders 0 0 0 0 17
Myocarditis and cardiomyopathy 0 0 0 0 34
Myopathies 0 0 0 0 24
Nephritis nephrosis renal sclerosis 0 0 0 0 67
Nervous system congenital anomalies 0 0 0 0 12
Neurodevelopmental disorders 0 0 0 0 52
Non Hodgkin lymphoma 0 0 0 0 13
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Label Baseline Seq2Seq BERTje MedRoBERTa Distribution
Nonmalignant breast conditions 0 0 0 0 51
Nonrheumatic and unspecified valve disorders 0 0 0 0 49
Nutritional deficiencies 0 0 0 0 18
Obesity 0 0 0 0 10
Other specified and unspecified hematologic conditions 0 0 0 0 75
Other specified and unspecified liver disease 0 0 0 0 65
Parasitic 0 0 0 0 43
Parkinson s disease 0 0 0 0 55
Peripheral and visceral vascular disease 0 0 0 0 100
Polyneuropathies 0 0 0 0 44
Pulmonary heart disease 0 0 0 0 20
Refractive error 0 0 0 0 16
Sinusitis 0 0 0 0 14
Transient Ischemic Attack 0 0 0 0 22
Urinary system cancers all other types 0 0 0 0 29
Urinary system cancers bladder 0 0 0 0 28
Mental disorders 0.56 0.14 0.35 0.39 3754
Cardiac dysrhythmias 0.43 0.1 0.51 0.49 2096
Heart failure 0.16 0.02 0.33 0.28 670
Burn and corrosion 0.62 0 0.76 0.54 455
Circulatory signs and symptoms 0.06 0.01 0.18 0.22 420
Coronary atherosclerosis and other heart disease 0.25 0 0.21 0.05 398
Gastrointestinal hemorrhage 0.21 0.03 0.30 0.23 360
Essential hypertension 0.30 0 0.36 0.29 359
Diabetes mellitus 0.14 0 0.17 0.14 264
Calculus of urinary tract 0.26 0 0.39 0.34 257
Diabetes mellitus without complication 0.10 0 0.21 0.21 248
Gastrointestinal cancers colorectal 0 0 0.06 0.06 226
Endocrine system cancers pancreas 0.14 0 0.04 0.05 201
Pleurisy 0 0 0.04 0 198
pleural effusion and pulmonary collapse 0 0 0.02 0 198
Meningitis 0.06 0 0.07 0 197
Contact dermatitis 0.24 0 0.3 0.13 142
Depressive disorders 0.14 0.03 0.21 0.20 139
Nutritional anemia 0 0 0.01 0 133
Pituitary disorders 0 0 0.02 0 125
Intestinal obstruction and ileus 0.09 0 0 0 110
Cornea and external disease 0.20 0 0.52 0.33 106
Noninfectious gastroenteritis 0.04 0 0.01 0 104
Nervous system cancers brain 0 0 0.03 0 94
Pneumothorax 0.06 0 0 0 83
Head and neck cancers all other types 0.06 0 0 0 81
Nervous system cancers all other types 0 0 0.02 0 67
Gastrointestinal cancers all other types 0.08 0 0 0 49
Encephalitis 0.18 0 0 0 33
Intestinal infection 0.18 0 0 0 2058



Appendix B: Confusion matrices for all models on all samples

APTaT stands for Acute Phlebitis Thrombophlebitis and Thromboembolism.
Pneumonia stands for Pneumonia except that caused by tubercolosis.

(a) Baseline model (b) Seq2seq model

(c) BERTje model (d) MedRoBERTa.nl model

Figure 13: Confusion matrices for all models on sample 1
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(a) Baseline model (b) Seq2seq model

(c) BERTje model (d) MedRoBERTa.nl model

Figure 14: Confusion matrices for all models on sample 1A
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(a) Baseline model (b) Seq2seq model

(c) BERTje model (d) MedRoBERTa.nl model

Figure 15: Confusion matrices for all models on sample 2
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(a) Baseline model (b) Seq2seq model

(c) BERTje model (d) MedRoBERTa.nl model

Figure 16: Confusion matrices for all models on sample 2A
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(a) Baseline model (b) Seq2seq model

(c) BERTje model (d) MedRoBERTa.nl model

Figure 17: Confusion matrices for all models on sample 3
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