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Abstract

Active learning aims to provide supervised learning models with highly informative and succinct

data, but can also introduce sampling bias as the resulting labelled dataset often no longer follows the

original data distribution. Due to sampling bias, the training data no longer represents the environ-

ment that the model will operate in, which can either be harmful or helpful to classifier performance.

One form of sampling bias is class bias, where the labelled dataset no longer follows the class distri-

bution of the population data. Through experimenting on 15 different binary-classification datasets,

this thesis studied active learning sampling bias through class bias and its relation to operational

classification performance.

First, this thesis investigated four main factors in the active learning cycle that might influence

active learning sampling bias in labelled training data. The chosen factors were the choice of active

learning algorithm, the machine learning classifier, the level of class imbalance in the unlabelled data

pool and the class ratio of the initial training set. All factors had an effect on sampling bias and on

classifier performance, with varying degrees of severity. The level of class imbalance had the largest

influence on active learning algorithms introducing more sampling bias.

Afterwards, experiments were conducted using three active learning debiasing methods: hierar-

chical sampling, QUerying Informative and Representative Instances (QUIRE) and Active Learning

By Learning (ALBL). These query strategies were compared in terms of trained classifier performance

and sampling bias mitigation. In these experiments, utilizing informative-based query strategies like

uncertainty sampling led to the highest amount of sampling bias but also the highest performance.

While the three debiasing methods resulted in less sampling bias, they were generally outperformed

by uncertainty sampling. Of these methods, hierarchical sampling performed the best, achieving a

performance which was marginally worse than uncertainty sampling. These results suggest that us-

ing active learning algorithms that introduce sampling bias can boost performance, especially in high

class imbalance situations. However, careful consideration should be taken before implementing more

bias introducing active learning algorithms. In cases where sampling bias in training data is harmful,

either by raising issues of fairness or by yielding a shortsighted classifier, using a well-performing

but more representative-based active learning method like hierarchical sampling or density-weighted

sampling is recommended.
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1 Introduction

Within the Dutch government, the Human Environment and Transport Inspectorate (ILT) is the su-

pervising authority of the Ministry of Human Infrastructure and Water Management. The ILT aims to

uphold environmental and transportation related laws in the Netherlands through inspecting cases which

might be non-compliant to these laws. In recent years, they have created a research and development

team called the Innovation and Data lab (IDlab). This IDlab seeks to apply machine learning and data

science techniques to ILT problems, having ILT inspectors work together with models designed by the

IDlab to move towards a more data- and risk-driven inspectorate. In practice, this means that ILT inspec-

tors with assistance of IDlab created models select companies or objects to inspect for non-compliance

from a target population. To apply different supervised learning techniques, the IDlab requires labelled

data. Through various data sources, commercially gathered but also through much data gathered by the

government, the ILT has access to a large amount of unlabelled data related to transport, infrastructure

and human environment. However, there is significant cost to labelling this data, as the only ways of

labelling ILT data is often through an actual inspection of a possible risk to environmental or transporta-

tion law or through inspectors’ expert judgement of a label for a data entry through experience of similar

historical data entries. When inspections are conducted, they are costly both in time and in resources,

and are therefore predominantly applied to cases classified by inspectors as having high risk. To reduce

the amount of labelled data required for training a supervised model, the IDlab have begun to apply

active learning methods to ILT cases. Active learning determines the datapoints which have the high-

est information value and queries an oracle [1], a human user, to label these instances through inspections.

Through deploying active learning in a supervised classification data pipeline, the IDlab is faced

with a choice between information value-based and risk-based inspections. Information value-based in-

spections can be seen as inspections purely conducted with the aim of improving the data fed to the

machine learning classifier, thereby improving the classifiers performance. Risk-based inspections are

then conducted when the classifier determines a possible violation. Using machine learning and active

learning, information value-based inspections are conducted by active learning techniques aiming to find

the most informative instances to inspect. A machine learning model is trained on the resulting labelled

dataset, and is then applied to predict non-compliant individuals and aid with risk-based inspections.

Both types of inspections ultimately contribute to improving the classification performance of both in-

formation value-based and risk-based inspections by acquiring new labelled data. The difficulty lies in

the level of priority each type of inspection should be given at a certain time when a model is deployed.

With the cost of inspections, risk-based inspections are conducted much more often by the ILT. In re-

cent years, the IDlab aims to introduce active learning methods in the information-based targeting to

1
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ensure that data instances with the highest information value are inspected and labelled accordingly.

Currently, the IDlab has applied active learning to two domains, a webscrape pipeline for monitoring on-

line trading through text classification and a pipeline for classifying ship waste dumping in the North Sea.

1.1 Problem Description

When applying active learning to the ship waste discharging pipeline [2], the various active learning al-

gorithms exhibited interesting behaviour. To properly describe this behaviour and to motivate the focus

of this research, first a brief overview of the detection of ship waste dumping is required. The IDlab aims

to classify ships that are practicing the activity of ”zeezwaaien”, a Dutch term which represents a ship

discharging of waste and various chemical residues in open sea. The practice of zeezwaaien is regulated

by law in the second appendix of the International Convention for the Prevention of Pollution from Ships

(MARPOL) agreement [3]. Previous research at the IDlab [4] introduced an anomaly classification model

to detect which ships practice zeezwaaien. The research was done as a master’s thesis and implemented a

supervised machine learning model, trained on vessel Automatic Identification System (AIS) data, which

classifies zeezwaaien en route for tanker ships. The aim was to classify ships en route as inspectors could

then possibly intervene if a risk of zeezwaaien is detected. Ships performing so-called looping trajectories,

where ships sail out from and return to the same port, were found to be more likely to discharge ship

waste. Looping trajectories were found by experts to be the highest indicator of zeezwaaien behaviour,

as ships would often only go out to open waters to discharge ship waste and then return to the same

port. The model was trained on different distributions of the labelled dataset, all of which exhibited

high class imbalance, as around 2% was labelled as zeezwaaien behaviour and the other 98% as normal

behaviour.

Experts can estimate labels for any machine learning problem relatively inexpensively. However,

labelling through expert judgement can sometimes introduce social problems, where some groups are

discriminated against through human sample selection bias. The ILT wants to acquire labels through

actual inspections, making use of a labelling budget every year. Because the cost of actual inspections

is high, the ILT has a desire for machine learning classifiers to have high performance in categoriz-

ing anomalous behaviour in different cases while being limited to few labelled data instances. Active

learning seems to be an appropriate solution to this problem. Therefore, the IDlab has researched the

implementation of various active learning methods in the zeezwaaien detection pipeline [2]. Most of the

implemented methods resulted in a significant improvement in the machine learning model’s learning

rate when compared to randomly sampling to create the training data.

2
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However, when looking at the distribution of the two classes in the data sampled by active learning

techniques, instances of the minority class were queried almost exclusively during the first 10 query

iteration, and much more frequently during the first 25. During these first query iterations, because of

the prevalence of the minority class, the information value-based method of active learning mimics the

risk-based targeting of the minority class in anomaly detection. When the active learning algorithms

had queried 50 instances, most methods would result in a labelled set with 40% zeezwaaien instances

and 60% normal behaviour instances. Looking at the evolution of the label distribution over time during

the application of the different active learning query strategies, it is evident that the active learning

algorithms introduce a form of sample selection or sampling bias to the sampled dataset. We refer to

the distribution of the labels as an introduced sampling bias because the dataset no longer follows the

98 : 2 class distribution of the population. This poses a potential problem to machine learning models

trained using biased datasets, as the machine learning classifiers may have difficulty when applied to

unbiased real life situations. Sampling bias in labelled datasets can also negatively impact the fairness

of the machine learning classifier trained on it. In some cases where human data is used, sampling bias

in the labelled dataset can lead to discrimination of certain social groups. However, in high class imbal-

ance cases like the zeezwaaien research, through sampling bias in the labelled dataset the resulting data

distribution of the labelled dataset is more balanced and seems to leverage the extreme class imbalance

in the population data distribution. These findings raise questions regarding the role of sampling bias in

active learning pipelines and their influence on the classification performance of machine learning models

trained with these biased datasets. Various sampling bias mitigation methods in active learning exist,

but the question is whether the tradeoff between the representativeness in the sampled dataset and the

performance of the machine learning classifier is too severe.

Therefore, the problem this research will explore is the role of active learning sampling bias and var-

ious sampling bias mitigation techniques on classification performance of operational machine learning

classifiers. It will study sampling bias through looking at class bias in the training data: the difference

in class distribution between the labelled dataset and the original data distribution. After giving an

overview of the background in section 2 and related work within the field of sampling bias and active

learning in section 2.6.3, an exploratory study of the various factors that influence sampling bias will

be conducted. Following this study, a comparison of various active learning sampling bias mitigation

algorithms will be given. Experiments on these specific algorithms will show whether mitigating sam-

pling bias in the training data through active learning influences the learning rate and classification

performance of machine learning classifiers.

3
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1.2 Research Questions

Given the potential problems active learning sampling bias may pose for machine learning models, and the

need to explore the influence of various sampling bias mitigation techniques on operational classification

performance, this thesis aims to answer the following main research question through answering the

various accompanied subquestions:

Given varying degrees of class imbalance in the data distribution, how do various Active Learning

sampling bias mitigation techniques influence operational classification performance?

• What factors in the active learning cycle influence active learning sampling bias in the labelled

dataset?

• How do different active learning sampling bias mitigation techniques compare when looking at

operational classification performance?

• Will the influence of active learning sampling bias mitigation techniques yield similar results on

the same dataset with varying degrees of class imbalance?

2 Background

This section provides a literary background for machine learning, active learning, bias and bias mitigation.

A short description of machine learning and the various machine learning techniques is given in section

2.1. Afterwards, section 2.2 provides an overview of the general active learning pipeline and how active

learning and machine learning interact in querying and classifying data instances. In order to understand

the sampling bias problem and the distinction between class imbalance, sampling bias in active learning

query strategies and sampling bias in human sampling, section 2.3 aims to clarify these phenomena and

where they occur in an active learning pipeline. After describing sampling bias in the active learning

pipeline, a more in depth overview of all specific types of active learning querying strategies is given in

the following section 2.4. Section 2.5 discusses the literature on the various existing active learning bias

reduction techniques. Finally, section 2.6 describes the various existing and relevant evaluation metrics

for machine learning and active learning methods.

2.1 Machine Learning

Machine learning is a subset of the field of Artificial Intelligence which concerns itself with the idea

that computer algorithms can learn and improve from experience and can apply their experience to new

cases, somewhat mimicking human behaviour. A general overview of machine learning is given by Tom

M. Mitchell in his book on the subject [5]. This section will briefly discuss the different types of machine

4
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learning and will offer a more in depth description of the type of machine learning used for this thesis,

namely supervised machine learning.

In machine learning, algorithms are trained on the datasets they receive as input in order to learn

patterns in the data. When faced with new data, machine learning algorithms use the learned patterns

to predict the form of the new data. An illustrative example is the application of machine learning in

categorizing data into classes, called classification. When you would like to predict whether an email in

your mailbox is either spam or not-spam, a machine learning classifier can be trained on data instances

with various features representing emails and labels containing their class, either spam or not-spam.

Specifically, this is a case of binary classification as there are only two classes of data which the machine

learning algorithm must distinguish between. Through training, the algorithm can then be applied to

new unlabelled instances to predict whether the new instance is spam or not spam. A machine learning

classifier does so by learning a border called the decision boundary in the feature space of its input

dataset. All new instances to one side of the decision boundary are then classified as spam while in-

stances on the other side are classified as non-spam.

The spam classification example is part of machine learning’s subfield of supervised learning. Super-

vised learning is concerned with training machine learning models on labelled data and is one of the

most popular applications of machine learning. Various research has been conducted on the application

of supervised learning in different fields, such as cancer prognosis and detection [6], text classification

[7] and the aforementioned detection of spam [8]. While supervised machine learning has been proven

to work well in a multitude of domains, supervised models are highly reliant on the quality of data

they receive. They also require all data instances of training and test data to be labelled with their

corresponding class, which is usually done by a human annotator. The process of labelling thousands

of instances is a tedious process, which active learning (see section 2.2) seeks to diminish. Specifically,

this thesis will focus on the application of active learning to reduce the amount of labelled data required

for training well-performing machine learning binary classifiers, as the zeezwaaien case researched by the

IDlab is also a binary classification problem.

Machine learning can also be applied to unlabelled data, in which case it is referred to as unsuper-

vised learning. In these problems, the goal of machine learning algorithms is to analyze and organize

the patterns of the input data. The input data can then be transformed to group various types of data

into clusters [9], in order to predict in which cluster new data belongs based on its features. Some active

learning algorithms make use of clustering and other unsupervised learning techniques. Some of these

algorithms are described in section 2.5.

5
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The third and final main form of machine learning is called reinforcement learning. The main idea

of reinforcement learning is that a reinforcement learning algorithm, sometimes referred to as an agent,

acts according to certain predetermined rewards. The agent will aim to maximize its received reward

over time by learning from experience through the various actions it can perform. An example of an

intelligent agent using reinforcement is of an agent traversing through a maze. The agent can take actions

to move through the maze and must maximize the reward of making it through the maze as quickly as

possible. Over iterations of traversing the maze, the agent will learn the most optimal path to reach its

maximal reward. There exist some parallels in active learning techniques and reinforcement learning,

particularly the concept of exploration and exploitation. For a definition of these terms and how they

relate both to reinforcement learning and active learning, see section 2.5.2.

2.2 Active Learning

As illustrated in the previous section, supervised machine learning requires labelled data. However, as

is the case in the IDlab’s machine learning application for ILT related problems, labelling data can be

a costly venture, both in time and resources. Active learning, a subfield of machine learning, seeks to

alleviate this cost. Active learning aims to achieve high machine learning classifier performance with

fewer training labels required by letting the active learning algorithm choose which instances in the

data provide the greatest contribution to the learning rate of the machine learning classifier and should

therefore be labelled and added to the training dataset. Burr Settles [1] offers a succinct and prefatory

overview of active learning, various active learning scenarios and the main active learning techniques.

This section will introduce the main concepts of active learning, the goal of implementing active learning

in a machine learning prediction problem, as well as the general active learning pipeline. Figure 1 depicts

a schematic for a typical data pipeline using active learning for determining which data instances should

be labelled.

6
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Figure 1: Standard pipeline for implementing active learning (AL) in data acquisition for Machine
Learning (ML) prediction,

The pipeline starts by providing an active learning method with unlabelled data, in figure 1 referred

to as U . Depending on the problem, U might be preprocessed or transformed in order to remove redun-

dant features, empty fields in the data or other preprocessing steps will be necessary. The active learning

method or query strategy, often aided by a pretrained machine learning model, aims to locate the most

informative data instances in the unlabelled data it receives as input. The instance with the highest

determined utility score is then provided to a human annotator called an oracle, who determines which

label belongs to each instance through their expertise. The resulting labels are provided to the labelled

L, which is used as the training dataset for the machine learning model. L can also be used as the test

set for evaluating the performance of the machine learning model, but care must be taken to separate

L into training and test datasets in order to prevent the machine learning model from overfitting to

the data. Iteratively, the active learning query strategy selects more data to be labelled, until a certain

predefined stopping criteria or labelling budget, a certain amount of labels, is met. Throughout the la-

belling process, a learning curve is generated to keep track of the machine learning model’s performance

over query iterations. The chosen evaluation metric varies depending on the type of machine learning

problem, a more detailed overview of which is given in 2.6.

7
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There are three main data-related scenarios of the active learning pipeline:

• Pool-based sampling is the scenario when U consists of a large pool of unlabelled instances. The

chosen query strategy will have to evaluate the entire pool before selecting the best query. This

form of active learning will be utilized for researching active learning sampling bias.

• Stream-based sampling is a form of active learning when unlabelled data instances arrive as

input for the query strategy one at a time from a data stream. The query strategy then decides

whether to query or discard the instance.

• Membership query synthesis is the last active learning scenario. In membership query synthe-

sis, the active learning algorithm may request labels from the oracle from any unlabelled instance

in the input space. The learner may also request labels from instances the learner generates, rather

than those sampled from some underlying natural distribution.

Active learning has seen a variety of applications. Zhou et al. [10] researched the use active learning

and semi-supervised learning for content-based image retrieval, a case where labelling instances is or-

dinarily time-consuming. They found that implementing active learning improved the image retrieval

performance. The field of text classification has also seen widespread implementation of active learning

techniques, as the manual annotation of text corpora is a tedious and time-consuming process. The field

has seen successful implementations of active learning in e.g. part-of-speech tagging [11][12] and parsing

[13]. However, a survey conducted by Tomanek and Olson [14] sheds light on the difficulties of practical

implementation of active learning. The survey was conducted using participants who were involved in

text annotation intended for machine learning for a myriad of natural language processing (NLP) tasks.

The results of the survey indicated that 20% of participants had ever used active learning for NLP tasks,

as most participants were sceptical that active learning would reduce the overall annotation time, as

there currently is no concrete consensus on this matter. Settles offers a critical look into the problems

faced in the practical applications of active learning techniques [15], but concludes with an optimistic

view of the direction active learning is heading.

This thesis aims to contribute to the research on active learning in practice, by researching one of

it’s difficulties: sampling bias. As sampling bias in active learning is at the forefront of this thesis, the

following section will formalize and distinguish sampling bias from class imbalance in active learning.

Since the query strategy is the core of active learning, the next section will provide an overview of the

different active learning query strategies.

8
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2.3 Class Imbalance and Sample Selection Bias

Within an active learning pipeline, both class imbalance and sample selection bias, or sampling bias

might occur. Class imbalance occurs when one class is overrepresented in the data, referred to as the

majority class. The other underrepresented class, or classes in multiclass classification, is called the

minority class.

Figure 2: Difference between representative sampling and sampling which introduces sampling bias
through class bias. Colours are the two classes in a binary classification dataset.

Sampling bias, as seen in figure 2, is the phenomenon when data taken from some population does

not follow the same distribution as the population. In figure 2, even though the sampled dataset no

longer contains class imbalance, the dataset does contain sampling bias because its class distribution is

different from the population data. This form of sampling bias is called class bias, which is the form of

sampling bias this thesis will study. The distinction between multiple types of sampling bias is given in

section 2.3.3. The rest of this section is structured as follows. First, more detailed definitions of class

imbalance and sample selection bias, introduced by both humans and active learning algorithms, will

be given using an example of an active learning pipeline. Afterwards, the effect of class imbalance and

sampling bias on machine learning classifiers will be given. After providing the distinction between class

imbalance and sampling bias, this section will summarize prior research on the effect of sampling bias

on machine learning classifiers.

Figure 3 shows a more detailed and realistic active learning pipeline where the data is preprocessed

before being fed to the main active learning cycle. When comparing this figure to figure 1, the difference

9
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lies in the steps taken before feeding unlabelled data to the active learning cycle. These steps include the

preprocessing of the population data pool and the selection of labelled instances to pretrain a machine

learning classifier.

Figure 3: Class imbalance and sampling bias in an active learning (AL) and machine learning (ML)
classification pipeline.

2.3.1 Class Imbalance

In the pipeline, class imbalance can occur in all three different datasets: Ud, Us and L. The level of

class imbalance can vary depending on the type of data problem. In the case of the supervised spam

detection example in section 2.1, the non-spam class is the majority class, as it has many more instances

than the spam class, the minority class. If a dataset has high class imbalance, it is analogous to having

a low class ratio. Class ratio is defined as:

class ratio = #MinorityClass/(#Minority Class + #Majority Class) (1)

Perfectly balanced class balance in binary classification is seen as a dataset with a 50 : 50 or 0.5 class

ratio. In figure 3, all datasets might exhibit a different class ratio, thus some datasets will have more
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class imbalance than others. Class imbalance in L can influence the machine learning classifier trained

on this dataset. A survey on this impact was conducted by Japkowitz and Stephen [16]. Similarily, class

imbalance in Us can have an impact on active learning querying [17]. Various active learning techniques

exist to address class imbalance in the Us dataset, such as oversampling the minority class through an

active learning algorithm called VIRTUAL [18]. More detail of these techniques is given in the related

work section, subsection 3.3.

2.3.2 Human Sampling Bias

To understand why Us might have a differing class imbalance ratio than Ud, knowledge of data and

data preprocessing is necessary. In many machine learning and active learning cases, the original data

pool might be unstructured, contain missing values or have redundant features. Specifically for ILT

related cases, inspectors might take subsets of the data based on their experience with and recognition of

non-compliant data instances. ILT inspectors might also have to make choices due to a lack of available

data. An example of this might be that ILT inspectors are forced through lack of data to exclude

certain ships in their dataset, making the resulting classifier biased as the classifier is trained on data

that does not represent the real world situation. This problem of human sample selection bias cannot

be fixed through active learning methods, but through operational choices in data selection. Before

feeding data to a machine learning classifier, a developer might want to preprocess the data. In figure

3, the data preprocessor alters the original data pool Ud to create a new unlabelled pool Us and to

initialize the labelled dataset L. Us might have different data and distributions if the preprocessor

decides to resample the data in Ud i.e. by undersampling instances of the majority class or oversampling

the minority class. L might also have a differing data and class distribution from Ud, as the initial

labelled data is a smaller subset (usually around 10− 20 instances) of the original data. Only if the data

preprocessor has taken measures to ensure that L initially is representative of the original distribution

of Ud, will the two distributions be the same. If a dataset, like Us or L, has a data distribution which,

through manipulation of a human preprocessor, differs from the original data distribution, the dataset

is said to exhibit (human) sample selection bias or human sampling bias. This thesis will refer to this

phenomenon as human sampling bias and the sampling bias introduced by active learning algorithms

simply as sampling bias, to distinguish the two and to avoid further confusion.

2.3.3 Sampling Bias through Active Learning

In figure 3, the chosen active learning method can also influence the distribution of the labelled dataset

L. Similar to human sampling bias, the process of active learning selective acquisition can introduce its

own form of sampling bias [19]. As active learning methods pose queries of unlabelled data instances the

method deems to be the most informative to the oracle, the distribution of the resulting labelled dataset
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L might not be representative of the distribution of the population distribution Ud. As will be discussed

in section 2.4, especially information-based query strategies are prone to introduce sampling bias as they

can repeatedly select redundant examples and outliers in the feature space [20]. Ever since the first

active learning algorithms were introduced, the concept of sampling bias has been noted but never truly

formalized. Farquhar et al. formalize active learning sampling bias in machine learning classification

[21], which they refer to as statistical bias. In order to provide clarity on sampling bias and its effect on

machine learning classifier optimization, a brief summary of their formalization is required:

In supervised learning, classifiers aim to find a decision rule which, given a predetermined loss func-

tion, minimizes the population risk. The population risk can be seen as the expectation over a continuous

loss function. This risk cannot be calculated, but estimated through looking at the empirical distribu-

tion for some dataset of N points drawn from the population. This gives the unbiased and consistent

estimator of the population risk which is called the empirical risk :

R̂ =
1

N

N∑
n=1

L(yn, fθ(xn)) (2)

Here, L(ym, fθ(xn) is the loss function using the class labels yn and the outcome of the decision rule

learned by the classifier fθ(xn). However, once an active learning algorithm is applied to the population,

we cannot evaluate R̂ directly because not all N datapoints are labelled, only a labelled subset L. We

then evaluate the sub-sample empirical risk :

R̄ =
1

L

L∑
l=1

L(yl, fθ(xl)) (3)

This estimator is biased as the L instances are not drawn independent and identically distributed from

the population distribution. Because active learning algorithms use equation 3 for estimating the popu-

lation risk, active learning algorithms suffer from sampling bias. Only when L is sampled according to

the population distribution Ud is this estimator unbiased.

Sampling bias through active learning can be further subdivided into two types [22]. Class bias

(see figure 2) occurs when the class distribution of the labelled training set is disproportionate to the

original class distribution. Feature bias occurs when outliers and non-representative instances of the

feature space are repeatedly selected by active learning methods. This means that classifiers trained on

this data will have a limited and inaccurate view of the feature space of the instances, which can lead

to accuracy problems of the classifier. This thesis will strictly be focused on class bias through active

learning selective acquisition and will refer to class bias when referring to sampling bias, section 5.4 of

the methodology gives the full reasoning behind this decision. The full effects and situations in which
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sampling bias can harm or help classifier performance are given in the next section 2.3.4. Apart from the

choice of query strategy, there is a lack of clarification on which factors influence sampling bias through

active learning. This thesis will therefore aim to bring new insights into these factors through empirical

experimentation.

2.3.4 The Effects of Sampling Bias on Machine Learning Classifiers

Depending on the situation, sampling bias in the labelled dataset can either be harmful or helpful to the

performance of the machine learning classifier [21]. This section will discuss both sides of sampling bias,

while illustrating the positive and negative effect of this type of bias through examples.

Sampling bias in the training data can sometimes have positive effects on classifier learning. Sampling

bias in the training data can lead to an improvement classification performance, given class imbalance

in the original dataset [23]. In high class imbalance situations such as the IDlab study on zeezwaaien [2],

active learning introduced sampling bias by oversampling the minority (or positive) class with respect to

the original class distribution. This resulted in an increase in overall classification performance in terms

of recall and precision (see section 2.6.1 for a description of these metrics), when compared to learning a

classifier under the original imbalanced class distribution. In studies under which the goal is to correctly

classify minority class instances, sampling bias through active learning can, therefore, be advantageous

by providing a more balanced labelled dataset for training.

However, sampling bias can sometimes have negative effects towards learning classifiers. While it

may be beneficial to oversample the minority class towards generating a more balanced training set, the

choice of active learning algorithm, one of the factors which can produce sampling bias, impacts the

distinct regions of the feature space which are targeted for sampling. This leads to scenarios in which the

majority class sample is not independent and identically distributed with respect to the original feature

distribution: the classifier is learned on a feature-biased sample which compromises the generalisation

of the classification performance [24]. Putting it differently, the training data no longer represents the

actual environment in which models learned from this data are meant to operate. To make it explicit,

consider the following operational example. The IDlab wants to solve the problem of detecting which

Netherlands-based companies are non-compliant to an environmental law, such as proper company waste

disposal. In actuality, around 5% of companies are non-compliant to the law, whereas through using

active learning a dataset of 50 instances is created in which around 40% of companies are non-compliant.

Now, the sampled dataset no longer accurately reflects the actual situation. In addition, the queried

minority class instances might be outliers in the data and are therefore not representative of the data

distribution as a whole. The trained classifier might now predict non-compliance more often when in
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actuality there is no non-compliance, resulting in a loss of precision. In ILT inspection situations such as

this one, the cost of misclassifying a compliant company as a non-compliant one is high, as it will waste

already scarce inspection resources.

Another possible problem caused by sampling bias pertains to fairness in machine learning classifi-

cation. When machine learning is applied to human data, certain features in the data can inadvertently

cause the classifier to discriminate against certain groups. Sampling bias in the training data can either

aggravate biases in the original data or create new biases through feature subset selection bias. This can

be done e.g. by giving certain basic human features more weight while in actuality the problem is more

complex. The problem of determining whether people are more likely to commit fraud is an example.

When the population is sampled, either by humans or through active learning, it so happens that all

people in the sampled dataset who commit tax fraud are of a certain ethnicity. Now the model trained on

this data will conclude that all people of that ethnicity are more likely to commit tax fraud. Therefore,

bias reduction is therefore often linked to improving fairness in machine learning predictions. Sampling

bias is one of many different types of bias which can be present in machine learning tasks, an overview

of all other forms of bias and various fairness improvement techniques is given by Mehrabi et al. [25].

To see what effects human sampling bias has on machine learning classifiers, Zadrozny [26] evaluated

multiple types of supervised classifiers with and without sampling bias. Zadrozny concluded that what

he terms only global classifiers, whose output depends on the distribution of the entire input space,

are affected by sampling bias in their training data. Local classifiers, which are not dependent on the

distribution of the input space, are not affected. Examples of global classifiers are decision tree learners,

naive Bayes and soft margin SVM. Logistic regression, hard margin SVM and K-nearest neighbours are

examples of local classifiers. Oommen et al. [27] experiment with varying degrees of class imbalance

and sampling bias in training a maximum-likelihood logistic regression (MLLR) [28] classifier. Their

conclusions bolster Zadrozny’s conclusion by suggesting that MLLR, a global classifier, is affected by

sampling bias. Adhering to these conclusions, this thesis will study the effects of debiasing active learning

sampling bias on two global machine learning classifiers, one decision tree learner and a MLLR classifier.

When sampling bias is introduced to a training dataset, there are multiple methods to mitigate this

form of bias. Recent years have seen many publications on sampling bias mitigation in machine learning,

such as a classifier that adapts to levels of sample selection bias [29]. A detailed overview on sample bias

correction is provided by Cortes et al. [30]. In contrast to reducing the effect of sampling bias during

the training of a machine learning classifier, this thesis will study the effect of reducing sampling bias

on machine learning classifiers by using certain active learning algorithms. If sampling bias is reduced
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in the labelled dataset through querying, no measures to mitigate this bias will be necessary at training

time.

2.4 Active Learning Query Strategies

In the pool-based active learning scenario, there are multiple query strategies one can consider to use.

Kumar and Gupta provide a survey on query strategies in this setting and divides these strategies

into three main types [31]. Through this categorization, active learning query strategies can easily be

distinguished from another. The main types are:

• Information-based methods aim to find the most informative instance in the unlabelled data

pool. These methods can do so by looking at the uncertainty a machine learning classifier has when

classifying these instances [32]. The instances that are closest to the classifier’s learned decision

boundary are seen as the most informative. The benefit of using query strategies under this category

are that their choices for queries are quite intuitive and understandable. The main disadvantage of

information-based methods is that they do not account for relationships among individual instances

and that they consider each instance as independent and identically distributed (i.i.d.). Therefore,

the original distribution of instances is not represented in the choices of information-based methods,

which can lead to sampling bias.

• Representative-based methods do look at the overall structure of the data when determining

which instance to query to the oracle. These methods pick instances which best represents the input

feature space. Depending on the method, different measures are chosen for representativeness, such

as distance. In doing so, these methods address one of the main shortcomings of information-based

methods and are less sensitive to sampling bias. However, these methods may require more queries

in order to achieve the target decision boundary. Therefore, these methods converge slower to

optimal machine learning performance than informative-based methods.

• Informative- and Representative-based or hybrid methods combine the two aforemen-

tioned types with the aim of addressing both their shortcomings. By combining the two, these

methods aim to find the most instances which are the most informative but also those that repre-

sent the underlying data distribution. However, there exists a trade-off between these two goals.

Hybrid methods of informative- and representative-based methods must optimize this trade-off

through creating a balance of information-based and representative-based searching through the

input feature space.

• Other methods are harder to categorize as there are many other ways to determine which instance

to query. Some of these differing query strategies will be discussed in the following sections, like
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reinforcement learning inspired approaches 2.5.2 and querying instances based on the expected

reduction of the generalization error 2.4.6.

The following subsections describe different noteworthy query strategies belonging to the described

four main categories. The query strategies will be described in detail, as understanding the different

perspectives on applying active learning is key to understanding which strategy is useful depending

on the situation. Figure 4 shows a sketch of the different querying behaviour of informative-based,

representative-based and hybrid methods. In the figure, which is inspired by a figure Kumar and

Gupta’s active learning survey [1], a clear distinction between the behaviour can be seen. To sum-

marize, informative-based query strategies query instances closest to the decision boundary and can

therefore classify outliers like the instance on the far right of the feature space, which leads to sampling

bias. Representative-based methods query instances which represent a group of instances the best and

hybrid methods combine both information value and representativeness when making selections.

Figure 4: Differences in querying behaviour between different query strategies. All different methods
make 5 queries. Informative-based query strategies find the outlier instance on the far right the most
informative because of its location on the decision boundary. This behaviour can result in sampling bias.
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2.4.1 Uncertainty Sampling

Since since its introduction in 1994 by Lewis and Gale [32], uncertainty sampling has become one of the

most popular query strategies. It is the quintessential information-based method, as it aims to query the

most informative instances through finding the instances that a probabilistic machine learning classifier

is most uncertain about. For binary classification, uncertainty sampling using least confidence as the

uncertainty measure can be formalized by the following equation:

x∗
LC = argmax(1− Pθ(ŷ|x)) (4)

Where x∗
LC is the instance the classifier is least confident about and and ŷ = argmaxPθ(y|x), the label

with the highest posterior probability under the machine learning model θ. In the binary classification

case, instances are selected that have a posterior probability closest to 0.5 for being classified as the

positive class. Being an information-based query strategy, uncertainty sampling can introduce sampling

bias in the labelled dataset. This makes uncertainty sampling an interesting query strategy to compare

to other query strategies whose aim is to mitigate sampling bias.

2.4.2 Query by Committee

Query by Committee (QBC) [33] is a more refined and theoretically-motivated information-based query

strategy. The main idea of QBC is that a committee of machine learning models is maintained which

are all trained on the labelled dataset L. The difference between the models lies in that each model has

its own hypothesis based on the labelled data it has seen so far. These hypotheses are represented by

different decision boundaries in the labelled data feature space. For maximum disagreement sampling,

the instance which is considered the most informative is the instance that the different committee mem-

bers disagree on the most. Therefore, it is important to have some measure of disagreement between the

committee members.

The original idea for QBC sampling was introduced by Seung et al. [33], where they used the algo-

rithm to evaluate the performance of perceptron learners. In the following years, many applications and

modifications were conceived, such as the application of QBC for text categorization [34]. Modifications

have been introduced to the measuring of the level of disagreement by Dagan and Engelson [35], who are

first to implement QBC for efficiently training probabilistic classifiers and use vote entropy to measure

the level of disagreement between committee members. Another popular measurement of disagreement

is the use of Kullback-Leibler divergence [36], first proposed for use in QBC by McCallum and Nigam

[37]. Another influential publication in QBC research is that of Abe and Mamitsuka [38]. Since QBC

uses a committee of models, it can be treated as an ensemble method. Therefore Abe and Mamitsuka
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use the well-known ensemble methods of bagging and boosting [39] [40] to construct committees.

QBC sampling, through having a committee of models vote on the most informative instance, aims to

select more informative instances than the single model uncertainty sampling approach. However, also

being an information-based query strategy, QBC is as myopic as uncertainty sampling and can introduce

heavy sampling bias. Uncertainty and QBC sampling are prone to outliers in the data, if these outliers

are deemed the most informative or closest to the decision boundary by the query strategy.

2.4.3 Density-weighted Sampling

Unlike uncertainty and QBC sampling, density-weighted sampling considers the entire input feature

space instead of looking at instances most near decision boundaries. However, it still makes use of an

informative-based strategy like uncertainty sampling, before applying a density weight to the utility of

instances. This makes density-weighted sampling less sensitive to outliers in the input data and an

example of a informative- and representative-based query strategy or hybrid query strategy. A general

density-weighted framework is described by Settles and Craven [41]. The key concept of density weighing

is that instances with the highest utility are not only the instances the machine learning model is most

uncertain about, but are also representative i.e. inhabit dense spaces of the input space. The method of

determining the utility of instances is then a combination of an uncertainty measure and a measure of

similarity to other instances, like a distance measure used in [42]. Using distance as a density weighing

measure, the distance of one instance to all other instances is summed. The instance that has the shortest

total distance is then seen as the most representative of the data distribution. However, in high class

imbalance situations, using distance as a representativeness measure might not be ideal. This is due to

the fact that the minority class is represented less and therefore is less densely available in the data.

Other density-based approaches to sampling use clustering to select representative instances. These

methods, like hierarchical sampling [24], density clustering in a stream-based active learning scenario

[43] and active learning using density sampling [44] will be discussed in section 2.5.1.

In taking the spatial relationships of the input feature space into account, density-weighted sampling

approaches query instances which adhere more closely to the underlying distribution of the unlabelled

data. Consequently, density-weighted and other density-based approaches introduce less sampling bias

in the labelled dataset than the myopic, information-based approaches like uncertainty sampling and

QBC sampling. As density-weighted, QBC and uncertainty sampling are the three most popular forms

of querying instances, the behaviour of these methods will be studied in various settings, to determine

which factors can influence sampling bias.
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2.4.4 Expected Error Reduction

Expected error reduction [45] is a decision-theoretic approach to instance querying where the goal is to

reduce the generalization error of the machine learning model as much as possible. The expected future

error of the model is estimated on the remaining unlabelled instances before querying the instance with

the lowest risk i.e. the minimal expected future error. When using 0/1-loss for evaluation, the choice of

instance to query would then be according to the following formula:

x∗
0/1 = argmin(

∑
i

Pθ(yi|x) ∗ (
U∑

u=1

1− Pθ+(x,yi)(ŷ|x(u)))) (5)

Here, θ+(x,yi) denotes the new model after it has been retrained with the new training tuple (x, yi) added

to the labelled training dataset. However, when estimating the error, we do not know the true label

for each unlabelled instance yet. This means the expectation over all possible labels under the current

model is approximated. Expected error reduction depends heavily on the objective function in which

the minimal risk is to be found.

Expected error reduction techniques have advantages in being near-optimal and independent of the

class of machine learning model. However, expected error reduction techniques are the most computa-

tionally expensive query frameworks. This is due to the estimation of the expected future error over the

unlabelled test set for each new query. To estimate the expected future error, the model needs to be

incrementally retrained for each possible query labelling. This makes expected future error unattractive

for implementation in practical active learning scenarios.

2.4.5 Probabilistic Sampling

Probabilistic active learning or PAL, introduced by Krempl et al. [46], combines information- and

representative-based active learning. It takes inspiration from expected error reduction and aims to ad-

dress its problem in computational cost. Similar to expected error reduction, PAL computes the expected

classification performance change when giving an instance x a label y and selects the x which results

in the highest expected improvement of performance. To estimate the performance change of labelling

instances, PAL makes use of the smoothness assumption [47] to assume that instances that lie close to

each other in the feature space have the same labels.

Using the smoothing assumption, the impact of an additional label depends on the labels of instances

in its neighbourhood. Then in order to determine which instance will be queried, for each instance the

label statistics ls = (n, p̂) are calculated where n expresses the absolute quantity of labelled information,

obtained through counting the similar labelled instances for pre-clustered or categorical data. p̂ denotes
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the posterior estimate of an instance x’s label as the number of positive labels in its neighbourhood over

n. The label statistics are used as parameters to model the true posterior distribution and true label as

Beta-distributed random variables, as their actual values are unknown. With these two variables, the

expected performance gain is calculated through weighing the label statistics and predicted label realisa-

tion by the density of the instance’s neighbourhood. Through this process, PAL becomes a combination

of an information- and representative-based query strategy, as the neighbourhood of instance’s is taken

into account.

PAL is more efficient than expected error reduction, as the machine learning model does not need

to be retrained every iteration. However, because it makes use of the smoothness assumption, PAL

might not work in some cases when instances are not in similar areas of the feature space. Since the

introduction of PAL, Krempl et al. have published some variations to probabilistic querying.

Optimised probablistic active learning (OPAL) [48] optimises the label selection for instances based

on the minimisation of misclassification loss, making it a cost-sensitive version of probablistic active

learning. Section 3.2 provides a more in depth overview of cost-sensitivity in active learning approaches.

It also optimises the calculation of the probablistic gain of an instance, making it a more efficient than

PAL but is myopic. To remove myopicity from OPAL, Krempl et al. propose a non-myopic extension of

OPAL where for each estimated label the possible remaining number of similar label acquisitions under

a given labelling budget is considered.

Recently, Kottke et al. proposed another modification to probabilistic active learning. Their proposed

method, called Expected Probalistic Gain for Active Learning or xPAL [49], is a Bayesian approach to

PAL, generalized to handle multi-class situations. It introduces a conjugate prior distribution (instead

of PAL’s prior of 1) to determine the class posterior.

2.4.6 Expected Model Change

Similar to probabilistic active learning and expected error reduction, expected model change is another

type of decision-theoretic approach to active learning. The difference between expected model change

and other decision-theoretic approaches lies in its calculation of the impact of labelling on the machine

learning model, instead of on the classification performance. An example of a query strategy based on

expected model change is the Expected Gradient Length (EGL) model [50]. This algorithm queries the

instance which would result in the highest change in the currently used machine learning model if its

label were known. EGL requires a gradient-based machine learning model to be utilized properly, as the

change imparted by labelling an instance can be measured by the length of the training gradient. The
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largest change to the model corresponds to the training gradient with the largest magnitude.

Similar to expected error reduction, EGL is computationally expensive if the feature space and set

of labels is large. EGL can also be misguided by the size of an instance’s feature and requires feature

scaling. Large features result in a training gradient with a high training gradient which can lead the

algorithm to draw incorrect conclusions on the most informative instance.

2.5 Active Learning Debiasing Methods

This section will elaborate on different active learning algorithms used for reducing sampling bias in the

training data. All the active learning query strategies discussed below, like density-weighted sampling in

section 2.4.3, are focused on selecting representative instances. These techniques are all representative

of different perspectives on instance selection, which makes it interesting to compare their influence on

operational classification performance. Most of the discussed techniques are not purely representative-

based, as they aim to balance querying based on representativeness and information value. Therefore,

these debiasing techniques predominantly belong to the group of informative- and representative-based

methods 2.4. This group of methods is ideal for researching the influence of debiasing sampling bias on

performance, as they still aim to query informative instances while reducing sampling bias.

2.5.1 Hierarchical sampling

Hierarchical sampling [24] exploits clustered unlabelled data as it makes use of unsupervised hierarchical

clustering techniques. The idea of hierarchical sampling is that representative instances are selected

through these clusters. The clustering technique is applied to the unlabelled data before being fed to the

active learning method, to provide the method with a binary tree of hierarchical clusters. In the binary

tree, each node represents a subcluster of the hierarchically clustered data and every leaf represents an

instance. An example of a binary tree representation of the clusters is shown in figure 5, taken from the

original paper [24] by Dasgupta and Hsu.

Initially, just a single cluster of the entire unlabelled data is taken by pruning this tree, from which a

predefined number of random instances are sent to the oracle to be labelled. After labelling, each node

of the tree is checked to see how many sampled instances are present in it and the relative number of

positive and negative class instances per node is updated. Afterwards, the partition of the binary tree

is replaced by its two child nodes, in figure 5 {1} will be replaced by {2, 3} as they are more pure (con-

taining more instances of a single class). Then random samples from these two clusters will be queried,

with more random samples drawn from the more impure cluster. This process continues until a stopping

criterion is reached, usually a labelling budget. An interesting feature of hierarchical sampling is that
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once the stopping criterion is reached, every in the last-viewed partition gets assigned the majority label

of the points queried from it. This means that the entire data is labelled by the end of the hierarchical

active sampling process. The downside of this is that stopping early can result in a large amount of

incorrectly labelled instances.

Figure 5: Binary tree representation of hierarchical clusters.

A recent variation on hierarchical sampling is the active learning through density peak clustering

(ALEC) algorithm [44]. There are multiple differences between ALEC and hierarchical sampling. Firstly,

ALEC uses a tree structure which represents the relationships between nodes better than the binary tree

used in hierarchical sampling. The tree grows by adding new nodes instead of pruning a finished tree.

The algorithm keeps track of the density of instances through the following formula:

ρi =
∑
j

χ(dij − dc) (6)

Where dij is the Manhattan distance between two instances, dc is the cutoff distance and χ, and

χ(x) =

1 x < 0

0 otherwise
(7)

Instances with the highest ρi and lowest distance to other instances with high density are selected as

the cluster centers. The cluster-centers becomes the root nodes and parent-child nodes among instances

are also defined by these density and distance to other high density instances. This process iteratively

creates new nodes for the master tree. A deterministic query selection process is applied to sample the
√
N instances with the highest density and the lowest distance to other high density instances. After

the query step, new clusters are found and new nodes are added to the master tree.
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2.5.2 Exploration/Exploitation and Thompson Sampling in Active Learning

Taking inspiration from reinforcement learning techniques [51], it is possible to adapt exploration and

exploitation to querying instances. In active learning, exploration during querying is seen as searching for

large regions in the input feature space the machine learning classifier would incorrectly classify [52]. On

the other hand, exploitation in querying is similar to uncertainty sampling, in that exploiting the feature

space is querying the instances close to the decision boundary. Consequently, exploitation is a form of

information-based querying while exploration pertains to representative-based querying. The balancing

of exploration and exploitation in a query strategy then categorizes the strategy as an information- and

representative-based query strategy. Reinforcement learning research, in which this balancing act is also

a prevailing problem, has proposed variety of solutions of which some can be applied to active learning

querying.

A way of balancing exploration and exploitation is to view the sequential decision problem of deciding

which instance to query as a multi-armed bandit problem. In the multi-armed bandit problem, a gambler

must iteratively choose one out of k non-identical slot machines to play. Each of these slot machines has

its own distribution of rewards, which is unknown to the gambler. Only through choosing a machine

does the gambler receive a reward, which he keeps track of. The goal of the gambler is to maximize

his total reward over the entire sequence. Adapting the multi-armed bandit problem to active learning,

the choice of slot machine has been interpreted as the choice of different hypotheses through different

query strategies [53], whereas the reward is made analogous to the machine learning algorithms test accu-

racy or other performance metric (discussed in section 2.6). Active Learning By Learning (ALBL) [54] is

such a query strategy, using different query strategies as arms and a chosen performance metric as reward.

Bouneffouf et al. [55] address balancing exploration and exploitation through a contextual multi-

armed bandit problem. Viewing active learning as a contextual multi-armed bandit problem, each arm

is a cluster of instances in the space and the different features of the cluster are the context of the

arms. At each query step, the active learning algorithm is presented the different context vectors of each

arm. The algorithm keeps track of the history of chosen arms and their corresponding rewards. Using

Thompson sampling for contextual bandit problems [56], the query strategy models its past observation

as triplet of (ct, rt, bc(t)). ct represents the previously chosen cluster, rt the chosen cluster’s reward and

bc(t) the current context vector. The Bayesian update rule is used to calculate the posterior probability

of rewards given this triplet. The cluster (or arm) that maximizes this expected reward is then chosen,

from which a random instance is given to the oracle to query.
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2.5.3 Informative and Representative Querying in Active Learning

Huang et al. propose a query strategy that measures and combines informativeness and representative-

ness through prediction uncertainty. They name their proposed framework active learning by QUerying

Informative and Representative Examples or QUIRE [57]. In the QUIRE algorithm, how informative

an instance is depends on the classifier’s prediction uncertainty on labelled data, favouring instances

closest to the decision boundary. This makes selecting informative instances equivalent to uncertainty

sampling. How representative an instance is depends on the classifier’s prediction uncertainty on the

unlabelled data. The idea behind this is when an instance is considered to be representative, it is ex-

pected to share a large similarity with many of the other unlabelled instances in the pool. To calculate

the classifier’s prediction on the unlabelled data, the class labels of the remaining unlabelled instances

needs to be estimated using a kernel, making this a semi-supervised approach. To approximate these

labels, the label assignments of the already labelled instances and the cluster structure of the unlabelled

data are used. QUIRE uses a min-max view of active learning, which searches for instances which result

in the smallest value for the chosen loss function of the machine learning classifier, regardless of that

instance’s class label. The drawback of using QUIRE is that it is susceptible to certain assumptions of

the input data, as for the calculation of representativeness it requires use of the manifold assumption [58].

In order to combine information- and representative-based active learning without violating pre-

existing assumptions and constraints on the input data, Du et al. propose their own querying framework

[59] and show that it can sometimes achieve better performance than QUIRE. Similar to QUIRE, their

query strategies’ aim is to query instances that contain the most information for the classifier and

are representative of the unlabelled dataset. However, an extra goal of the framework is to query

instances which offer as little redundancy as possible in the labelled dataset. The framework uses a

tradeoff parameter that balances informative- and representative-based querying. To query informative

instances, the framework computes an uncertainty vector for all instances. Representative samples are

selected using two-sample discrepancy, where similarity between samples is measured using a posterior

probability with the Radial Basis Function. The posterior probability represents the importance of

instances to the classifier. Two instances are then seen as similar if they have the same impact on the

classifier.

2.5.4 Weighted Active Learning and Plain and Levelled Unbiased Risk Estimation

Applying corrective weights to the queried and labelled instances in the labelled training set helps correct

sampling bias. The loss function of the machine learning classifier then makes use of these individual

weights, to optimize and direct the focus of the classifier on representative instances. Previously, im-

portance weighing techniques have been used in online active learning scenario’s, like in the Importance
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Weighted Active Learning (IWAL) algorithm by Beygelzimer et al. [60]

Apart from formalizing sampling bias in their paper, Farquhar et al. use corrective weighing in a

pool-based active learning scenario to address sampling bias. They propose two different unbiased pop-

ulation risk estimators to implement on top of existing query strategies [21]. These risk estimators are

Plain Unbiased Risk Estimation (R̄PURE) and Levelled Unbiased Risk Estimation (R̄LURE). Both risk

estimators use corrective weighing techniques to weigh each instance according to how probable they

are to be sampled next by the query strategy. In order to do this, the estimators require a proposal

distribution, akin to a query selection strategy which adds probabilities to each instance in the data pool.

Recall that most original active learning techniques estimate the population risk according to equation 3.

The first variation on risk estimation Farquhar et al. introduce is R̄PURE . It takes the total amount

of labelled datapoints M , the total amount of datapoints N and the loss from an instance Lim . To weigh

instances in risk estimation, R̄PURE uses the probability mass for each instance m as being the next to

be sampled, once the labelled training dataset Dtrain contains m−1 instances. The acquisition proposal

distribution over instances depends on the instances sampled so far because active learning is applied to

the unlabelled data pool. The weight of an instance is then calculated using the following formula:

wm ≡ 1

Nq(im; i1:m−1,Dpool)
(8)

The complete formula for R̄PURE is as follows:

R̄PURE =
1

M

M∑
m=1

am (9)

Where:

am = wmLim +
1

N

m−1∑
t=1

Lit (10)

So R̄PURE estimates the population risk as the sum of the weighted loss of each sampled instance and

the sum of the loss of each previously sampled instance weighed by 1
N .

R̄PURE has some disadvantages. Say we use a uniform proposal distribution for our selection strategy,

equivalent to randomly selecting instances or passive learning. Consequently, as the size of the training

set approaches the size of the full data pool, the weights of each instance fail to become uniform. The

second and better proven risk estimator is R̄LURE , fixes this problem. R̄LURE is calculated using different
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weights vm according to the following equation:

R̄LURE =
1

M

M∑
m=1

vmLim (11)

Where:

vm ≡ 1 +
N −M

N −m
(

1

(N −m+ 1)q(im; i1:m−1,Dpool)
− 1) (12)

Instead of wm, using vm the weight of instance m does not depend on the position it was sampled in,

but only on the probability which which it was sampled [21]. This lowers the variance of the machine

learning classifier optimized using R̄LURE .

Table 1 shows a summary of the active learning algorithms used in this thesis and whether they are

categorized as informative-based, representative-based, hybrid or other query strategies.

Query strategy Type of Query Strategy

Uncertainty sampling Informative-based
Density-weighted sampling Hybrid

QBC sampling Informative-based
Hierarchical sampling Hybrid

QUIRE Hybrid
ALBL Hybrid

Table 1: Different active learning query strategies used for experimentation and their corresponding
category.

2.6 Evaluation Metrics

There are various stages in the active learning querying cycle in which the performance of sampling bias

and active learning debiasing methods can be evaluated. At the forefront of active learning performance

evaluation lies the performance of the machine learning classifier, trained on the queried and labelled

dataset. Therefore, section 2.6.1 will discuss evaluation metrics for supervised machine learning classifiers.

Section 2.6.2 will discuss how machine learning classifier performance is measured over query iterations in

order to measure the influence of active learning query strategies on classification performance. Section

2.6.3 shows various evaluation metrics for the measurement of sampling bias and sampling bias reduction.

These evaluation metrics shall be applied in the following sections detailing the experiments on active

learning sampling bias.
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2.6.1 Evaluation Metrics for Supervised Machine Learning

Actual
1 0

P
re
d
ic
te
d 1 TP FP

0 FN TN

Table 2: Confusion matrix depicting differences between predicted and actual class.

To understand how to evaluate the performance of machine learning classifiers, knowledge of the

confusion (or error) matrix is necessary. Table 2 depicts such a matrix for a binary classification problem

with two classes 0 and 1. The confusion matrix summarizes a machine learning classifiers prediction

results on the test set. In the matrix, TP and TN represent the true positive and true negative pre-

dictions respectively. These can be seen as the cases where the classifier correctly predicted the positive

and negative class. FP predictions are then the instances the classifier predicted as positive, when the

ground truth label for the instances were negative. Finally, FN predictions are the instances the classifier

predicted as negative when they in reality were positive.

The values from the confusion matrix are used to calculate a myriad of possible of evaluation metrics

for quantifying classifier performance. A common performance measure is the accuracy of the classifier,

which calculates the proportion of correctly predicted instances by dividing it by the total number of

predicted instances:

Accuracy =
TP + TN

Total
(13)

Antithetical to the accuracy, the misclassification error represents the proportion of incorrectly classified

instances of all classified instances:

Misclassificationerror =
FP + FN

Total
(14)

Therefore to improve classification performance, the goal is to have as high as possible classification accu-

racy or similarly having an as low as possible misclassification error. For general classification problems,

improving the accuracy of the classifier or reducing the misclassification error are valid goals. However,

in cases with extreme class imbalance, it is easier to achieve a high accuracy while not adequately pre-

dicting minority class instances. If the ratio of majority to minority class is 99 : 1, a classifier which

classifies every instance as the majority class is 99% accurate [61]. Another more practical example

where accuracy is a poor metric is cancer detection, in which it is more important for the classifier to

correctly classify the minority class, instances where an individual has cancer, instead of being generally

accurate on detecting mostly non-cancer cases. In these cases, recall is a more meaningful performance
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measure. The recall is calculated by looking at the proportion of correctly positively classified instances

when compared to all actually positive instances. Hence, the recall is calculated using the following

formula:

Recall =
TP

TotalPositive
(15)

Precision is a performance measure which is similar to recall. The precision depicts the amount of

instances correctly classified as the positive class divided by the total number of instances the classifier

predicted to be positive, so the number of TP and FP predictions.

Precision =
TP

TP + FP
(16)

The F1 score combines and balances the precision and recall measures into a single performance metric.

The formula for the F1 score is as follows:

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
(17)

The F1 score is often used to compare the performance of two classifiers. For instance when one has

higher recall and the other has higher precision, comparing the F1 score of the two classifiers predictions

will show which classifier has better performance.

The final performance metric this thesis will use in experimentation is g-means [62], as it accurately

represents performance in high class imbalance situations. G-means is calculated using the following

formula:

g =
√
Sensitivity ∗ Specificity (18)

Where Sensitivity = TP
TP+FN , the accuracy on the positive instances. Similarly, Specificity = TN

TN+FP is

the accuracy on the negative instances. So g-means is an aggregated performance metric of the accuracy

on both classes of instances.

2.6.2 Evaluation of Active Learning Methods

When applying machine learning classifiers without active learning selective acquisition, the performance

metrics discussed in the previous section 2.6.1 are calculated after training the classifier on the complete

training set. When applying active learning to a learning problem, the evolution of these performance

metrics needs to be put in a graph in order to understand the improvement in performance when adding

more labelled instances to the training set. This evolution of performance is visualised through showing

a learning curve. In the curve, the x-axis depicts the amount of queries performed by the active learning

algorithm and the y-axis depicts the chosen machine learning performance metric. The learning curve

28



Alec Flesher-Clark
Utrecht University

Master Thesis

updates as the machine learning classifier is retrained and tested. As the main goal of active learning is

to have a high performing machine learning classifier in as few labelled instances of possible, the learning

curve provides insight into which active learning algorithms reach high performance in the fewest amount

of queries.

Often it is useful to summarize the performance on the learning curve into a single value to easily

compare active learning methods. The area under the learning curve or ALC has often been used as a

summarised metric [63]. The ALC is a normalized score which represents how much total performance

a classifier has accumulated as a result of adding queries to the labelled training set [64]. This value

is calculated through taking the area under the receiver operating characteristic (ROC) [65] curve,

commonly known as the AUC, at each point during training and plotting it as a function of the size of

the labelled set. ALC is calculated using the following formula [66]:

ALC score =
ALC −Arand

Amax−Arand
(19)

Where ALC is the area under the AUC learning curve, Arand is the area under the learning curve

obtained by random prediction (0.5 AUC throughout learning) and Amax is the area under the best

achievable learning curve (1 AUC throughout learning). The ROC depicts how the ratio between true

and false positive prediction rate of a machine learning classifier evolves. The ALC is then the calculated

area under this curve. A somewhat similar performance measure is the deficiency score [67]. The down-

side of using this metric is that it is dependent on the total number of instances in the labelled training

dataset, so to compare two methods both need to be trained with the same amount of instances.

The ALC score and learning curve does not explain if the machine learning model generalizes well

through training on the selected instances by an active learning method. Therefore, active learning

research often makes use of k-fold cross-validation [68] to validate the machine learning model’s perfor-

mance on multiple validation sets. K-fold cross-validation separates the training sets into k proportional

folds. At each of k iterations, k − 1 of these folds are grouped together to form the training set and the

model’s performance is validated on the left out fold. Each iteration, a different validation fold will be

chosen.

To evaluate the difference in performance of two different active learning algorithms, it is important

to look at the entire querying and training process instead of the performance of only one set of predic-

tions. To test whether the performance of one active learning method over the entire learning process is

significantly better than another, a statistical test like the Wilcoxon signed-rank test [69] can be applied
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to the summarizing ALC values of the two differently trained classifiers. The Wilcoxon signed-rank

test evaluates whether there is a significant difference between two performance sets. The benefit of the

Wilcoxon signed-rank test is that, unlike a standard t-Test, it does not require any parameters. However,

the test does assume that the data follows a normal distribution.

2.6.3 Visualising Bias and Bias Reduction

Separate evaluation metrics and performance visualisations exist which depict the sampling bias intro-

duced by active learning algorithms. These visualisations range from depicting an active learning query

strategies behaviour, visualizing the difference in class distribution between the labelled dataset and the

unlabelled population dataset to highlighting the labelled data distribution in the original distribution.

To understand how sampling bias occurs, it is important to study the behaviour of the active learning

query strategy. In order to view this behaviour, ex ante analysis of what the query strategy deems the

most informative instances is necessary. Here, the predetermined information heuristic is chosen as an

evaluation metric. The information values of features can be visualised through a selection heatmap,

depicting the input feature space with more informative features having a darker colour. This heatmap

can be generated after a certain number of queries are conducted by the query strategy, to show how

the choices of the query strategy evolves as more instances are added to the labelled dataset. Another

option is to visualise a class selection frequency graph for label selections ex post, showing what labels a

query strategy prefers at certain query iterations. These visualisations are visualised over multiple runs

of a query strategy on the same data.

As studying sampling bias is at the forefront of this thesis, visualising how the bias evolves over queries

will give clarification of the sampling bias in the labelled dataset. This thesis will focus on visualizing

bias through class distribution disparity between the labelled dataset and the unlabelled population

dataset. Therefore, the visualisations detailed in section 5.4 are created to provide insight into this form

of sampling bias. These visualisations, alongside the learning curve and ALC scores discussed in the

previous section, will provide insight into sampling bias and the performance of active learning debias

techniques.
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3 Related Work

While this thesis covers only one phenomenon associated with active learning, namely active learning

sampling bias, there are other fields of research on the subject of active learning. The first section will

be a reflection on and critique of various active learning and sample selection bias publications, and will

provide more detail on the place of this research in active learning and sampling bias literature. The

following two sections will discuss other fields of active learning research which are relevant to both this

research and research done by the IDlab. One of these fields of research is the application of active

learning in situations where labelling or misclassifying instances have different costs. The other field in

which active learning is applied is the mitigation of extreme class imbalance in the underlying unlabelled

distribution. Knowledge of both these fields of study can aid the implementation of active learning in

deployed machine learning models. The final section discusses various issues one should be aware of

when deploying active learning in a production setting.

One of the main topics of this research is active learning sampling bias and its effect on machine

learning classifiers. There exists a myriad of research on bias’ effects on machine learning, including

human sampling bias. The survey conducted by Mehrabi et al. [25] provides an excellent overview of the

kinds of bias and their effect on machine learning classifiers. The survey also summarises various existing

techniques for mitigating bias and improving fairness in machine learning predictions. In contrast to bias

reduction techniques in supervised model training and predictions, part of this thesis is concerned with the

effects of addressing sampling bias through using specific bias mitigating active learning query strategies.

The experiments conducted in this thesis examine active learning query strategies in binary classifica-

tion cases on multivariate data. Active learning query strategies and debiasing techniques have also been

applied to image classification. For instance, Prabhu et al. conducted an empirical study on the effects of

sampling bias on image data [22]. Another example is the supervised contrastive active learning (SCAL)

algorithm introduced by Krishnan et al. [70]. Through combining active learning and contrastive learn-

ing in the loss function, SCAL selects diverse and informative instances in image classification.

3.1 Reflection on Sampling Bias and Active Learning Research

Most work on sampling bias through active learning querying is concerned with debiasing algorithms and

modifications to existing query strategies. Many perspectives on debiasing sampling bias have already

been discussed in section 2.5, along with some well-performing published examples per perspective. Pub-

lications on the reduction of active learning sampling bias state that the introduction of sampling bias
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might be introduce problems for the machine learning classifier [57][71]. However, these publications do

not state what factors influence sampling bias and what effect sampling bias has on the performance of

the supervised model trained on the newly labelled dataset. Therefore, the first half of this thesis will

empirically study the effects of four facets in the pool-based active learning pipeline on sample selection

bias. These facets are: the choice of active learning algorithm, machine learning classifier, the level of

imbalance in the data pool and the class ratio of the initial training set.

In research on active learning query strategies, there is a general knowledge in active learning research

that informative-based query strategies can introduce sampling bias. Sampling bias is often visualised

through feature bias, by visualising the feature space and showing the selection of instances through

querying. While this is one of two types of sampling bias [22], publications on active learning sampling

bias often neglect to other form of sampling bias: class bias. Therefore, this thesis will study sampling

bias through visualising class bias in various ways. Studying the effect of the four aforementioned facets

in the active learning pipeline on sampling bias through looking at class bias will offer new insights in

active learning sampling bias research.

The second half of this thesis is concerned with the reduction of sampling bias through the imple-

mentation of multiple active learning query strategies which are more representative-based. Multiple

publications on the reduction of sampling bias through new active learning algorithms have been pub-

lished. However, there has never been a large-scale performance comparison of these algorithms and a

clear depiction of their querying behaviour through class selection and class bias visualisations. Usually,

publications of a new bias mitigation algorithm contain a brief performance comparison on around 3

datasets to a couple of well-known query strategies. By comparing 3 active learning debiasing methods

with random (passive) sampling, density-weighted sampling and uncertainty sampling on 15 datasets,

this thesis will provide a general overview of performance differences and the relation between bias

mitigation and the learning process.

3.2 Cost-Sensitive Active Learning

Active learning’s main focus is on minimizing the cost of labelling while producing a high quality labelled

dataset suited for training supervised classifiers. While there are costs associated with labelling, some-

times the costs of labelling instances may vary depending on the class of instance. Furthermore, there

might be a varying misclassification cost of the supervised classifier where the entries of the confusion

matrix in table 2 are all associated with different penalties. Researchers have modified the standard

active learning schema to incorporate cost-sensitivity in instance querying.
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Annotation cost-sensitive active learning algorithms have been proposed as a remedy to cases where

labelling instances have differing costs. Tsou and Lin proposed a cost-sensitive tree algorithm [72], which

simultaneously estimates the unknown labelling costs and the utility of querying instances. Inspired by

hierarchical sampling [24], the algorithm iteratively constructs a tree where nodes represent queried in-

stances.

Charles Elkan [73] proposed a foundational framework for cost-sensitive classification, making use of

a modified version of the confusion matrix, referred to as the cost matrix. Given a cost value associated

to each field of the cost matrix, new instances should be predicted by the classifier to have the class that

leads to the lowest expected cost. This expectation is computed by using the conditional probability of

each class given the example. For binary classification, the cost matrix is used to rewrite the optimal de-

cision threshold. To make this optimal decision threshold correspond to the data of the training set, the

number of negative samples in the training set should be reweighed or the dataset should be resampled.

Since Elkan’s Foundations of Cost-Sensitive Learning paper, the idea of cost-sensitive classification

has been adapted into active learning selective acquisition. Krishnamurthy et al. create an active

learning algorithm for cost-sensitive multiclass classification, which they name Cost Overlapped Active

Learning (COAL) [74]. COAL regresses each label’s cost and queries instances which both have the

lowest predicted cost and the most ambiguity about their label, the latter rule being akin to uncertainty

sampling.

3.3 Class Imbalance and Active Learning

Throughout the years since active learning’s inception, active learning algorithms have been applied to

class imbalance cases to create more balanced labelled datasets. It is important to note that creating

a balanced distribution in the labelled dataset while the original distribution is severely skewed, means

that the labelled dataset exhibits sampling bias. However, in some cases this sampling bias may be

useful, for instance when the minority class needs to be represented more. In these cases, active learning

algorithms can be considered alongside resampling techniques to create a new, more balanced data distri-

bution. This section highlights some interesting publications on applying active learning for rebalancing

data distributions.

Ertekin et al. [75] demonstrate that active learning can be utilized in order to rebalance class imbal-

anced data. Their proposed solution is a support vector machine (SVM) based selection strategy which

queries only a small pool of data at each query iteration instead of searching through the entire input

feature space. Through comparison with other resampling techniques, the SVM based active learning
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algorithm is shown to produce well-balanced datasets and leads to classifiers with high performance.

Attenberg and Ertekin [61] provide further clarification on the class imbalance problem in active learn-

ing. They do so by providing an overview of class imbalance reducing active learning algorithms. The

different algorithms discussed in their overview range from density-sensitive active learning, a modifica-

tion to the query-by-committee algorithm with class-specific costs by Tomanek et al. [23] and Ertekin’s

VIRTUAL resampling algorithm [18]. The final sections address some of the difficulties encountered

when applying active learning. Applying active learning to extreme class imbalance cases can lead to

informative-based and even some more representative-based query strategies to severely underperform.

Another important possible problem is the cold start problem. This term is used to describe the effects

of poorly selected starting data for the supervised classifier, which leads to poor future instance selection.

From the descriptions of previous research on class imbalance and active learning, it is noticeable that

most literature on these subjects uses some form of active learning to address class imbalance instead of

researching the effect of imbalance on active learning methods. While some publications on the subject

imply some influence of class imbalance on querying behaviour, there is hardly any research on the exact

effect of imbalanced data on instance acquisition through active learning. Therefore, this thesis will

provide new insights into the connection between imbalanced data and active learning, by experimenting

and studying the effect of class imbalance on querying behaviour and on active learning sampling bias.

3.4 Active Learning in Deployed Models

Uncertainty in informative-based query strategies is seen as analogous to the distance to the decision

boundary of the classifier, seen as the predictive uncertainty of the classifier. This is only one kind

of uncertainty however, as is made clear when deploying active learning and machine learning in real-

world situations. Deployed machine learning models can encounter two differing forms of uncertainty:

aleatoric and epistemic uncertainty. Hüllermeier and Waegemen describe these two types of uncertainty

and how they affect machine learning predictions [76]. Aleatoric or statistical uncertainty is the type of

uncertainty resulting from randomness or noise in the training data, as in experiments the variability

of an outcome is due to some degree of randomness. A clear example of aleatoric uncertainty is the

flip of a coin, where the results of the coin flip are affected by some stochasticity which can never be

reduced. Epistemic uncertainty is the ”uncertainty caused by ignorance” [76]. In contrast to aleatoric

uncertainty, epistemic uncertainty can be reduced by gaining knowledge of the problem. In machine

learning, epistemic uncertainty is reduced by training the machine learning model with more instances.

In uncertainty sampling, predictive uncertainty has been exchanged for aleatoric and epistemic un-
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certainty by Nguyen et al. [77] to see whether these types of uncertainty are more useful. In order to

query instances based on aleatoric and epistemic uncertainty, these types of uncertainty are modelled

through the method proposed in [78]. Due to the random nature of aleatoric uncertainty, Nguyen et al.

conclude that this type of uncertainty is unfit for determining the informativeness of instances. However,

separating aleatoric and epistemic uncertainty and querying instances purely based on their epistemic

information value is a better criterion, yielding similar and sometimes better performance results than

traditional uncertainty sampling.

Quantifying the amount of aleatoric uncertainty has its implications and uses in supervised learning

problems. For instance, the estimation of aleatoric uncertainty can aid in estimating and modelling

epistemic uncertainty, as done in [79]. Another use of estimating aleatoric uncertainty is in querying

instances. If instances in iterative querying have high aleatoric uncertainty, an oracle can label these

instance and provide more in depth expertise on the nature of these instances. This can improve the

expertise of the selected training data and improve the performance of classifiers. While this thesis’

focus is not on aleatoric and epistemic uncertainty in active learning, it does visualise the learning

process more clearly through graphs which show sampling bias and querying behaviour. Other research

on active learning and sampling bias often only shows the performance of classifiers trained with a new

bias reducing active learning algorithm. Alongside performance graphs, the bias graphs shown in this

thesis will show more of the learning process and effectively the reduction of epistemic uncertainty.

4 Dataset description

In order to both study the effects of various factors on active learning sampling bias and to compare

the performance of various active learning bias mitigation algorithms, running experiments on a single

dataset would result in inconclusive evidence. To provide general and complete conclusions on active

learning algorithm behaviour, experiments on a larger variety of datasets are necessary as it shows that

the results shown are not purely data-dependent. Therefore, after discussion with the IDlab, the decision

has been made to run experiments on 15 datasets. This section provides an analysis of the used data

and the preprocessing steps taken in order to feed the data through the experiment pipeline.

4.1 Data Sources and Analysis

Fifteen binary classification datasets, with varying amounts of instances and features, have been obtained

by using the OpenML platform API [80]. All instances in these tabular datasets have been annotated

with their corresponding labels. The choice was made to acquire the 15 datasets using OpenML, as it

gathers datasets from various acclaimed data repositories while making them easily accessible. One of
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the criteria when selecting the datasets was that each dataset had < 15000 instances. Another criteria

was that a classifier fully trained on a created training set would achieve a high performance. Specifically,

when training the classifiers (described in section 5.1) on a complete training dataset, the classifier’s AUC

on a test set would have to be a minimum of 0.8. This characteristic was kept in mind when deciding

on which datasets to use, as a high fully trained classifier performance would entail a noticeable and

gradually improving learning curve when applying active learning to the dataset. The last chosen dataset

characteristic was that either around 50% or less of the instances belong to the positive class and the

rest to the negative class. Using this and to avoid confusion, the next sections will refer to the positive

class as the minority class and the negative class as the majority class.

The 15 datasets have all been created in order to solve various distinct problems. Examples of clas-

sification problems covered by these datasets are distinguishing between genuine and forged banknotes,

common or faulty steel plates, edible or poisonous mushrooms, if the King+Rook versus King+Pawn

endgame in chess wins or doesn’t and whether a tree are diseased or not. For the sake of brevity, table

3 details some of the most important characteristics of the used datasets. For more specific information

about a dataset such as how the data is collected, please have a look at the original papers in which

the datasets are introduced. All papers are cited in the table. A dataset’s class ratio was defined in

equation 1. In further descriptions of experiments, class ratio will be used to refer to this proportion in

the original data distribution.

Dataset Name # Instances # Features Class Ratio Source

monks-problems-3 554 7 0.52 UCI [81]
qsar-biodeg 1055 42 0.337 Mansouri et al. [82]
hill-valley 1212 101 0.5 Graham and Oppacher on UCI [81]

banknote-authentication 1372 5 0.445 Lohweg and Doerksen on UCI [81]
steel-plates-fault 1941 34 0.347 Semeion on UCI [83]

scene 2407 300 0.179 Mulan [84]
ozone-level-8hr 2534 73 0.063 Zhang et al. [85]

jasmine 2984 145 0.5 AutoML [86]
kr-vs-kp 3196 37 0.522 UCI [81]

Bioresponse 3751 1000 0.542 Kaggle [87]
spambase 4601 58 0.394 UCI [81]

wilt 4839 6 0.054 Johnson, B., Tateishi, R., Hoan [88]
churn 5000 21 0.141 Used in [89]

mushroom 8124 23 0.482 Lincoff et al. [90]
PhishingWebsites 11055 31 0.557 UCI [81]

Table 3: All datasets used in the active learning sampling bias experiments.
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4.2 Data Preprocessing

Few preprocessing steps were taken in order to provide the active learning query pipeline with clean data.

This is due to the fact that all the used datasets taken from the OpenML platform have been integrated

into the platform to be easily reusable. All chosen datasets contain neither missing nor sparse data, so

no dataset specific preprocessing steps were necessary before running the active learning experiments.

The labels were encoded to 0 being the majority (negative) class and 1 being the minority (positive)

class respectively.

For answering the first research question, experiments were conducted visualising the effect of class

imbalance on active learning sampling bias and on performance. Therefore, the final preprocessing step

was to take three subsets of the original dataset in order to manually introduce class imbalance in the

dataset. These subsets are only used for the class imbalance experiment discussed in 5.3. The three

subsets of balanced data class ratio = 0.5, minor class imbalance class ratio = 0.25, and high class

imbalance class ratio = 0.05 were created using random undersampling of both the majority class and

minority class. The choice of class to randomly undersample the minority or majority class depends on

the choice of subset. For class ratio = 0.5, the majority class is undersampled until both classes are

equally represented. For class ratio = 0.25 and class ratio = 0.5, the majority class is undersampled to

reach the ratio of 0.25 or 0.05. If this is not possible, the minority class is undersampled to reach the

class ratio required in the subsets. The three subsets were chosen because they differ greatly in class

ratio, thus making it interesting to see how active learning algorithms are possibly affected by different

levels of class imbalance in the data pool they are fed.

5 Methodology

This section elaborates on the design choices made for answering the three main research questions.

These design choices were made in accordance with both prior academic research on sampling bias

in active learning, and with prior research on active learning conducted by the IDlab. When looking

at what factors influence active learning sampling bias, experiments were conducted through looking at

different settings of 4 facets of the active learning pipeline. The chosen facets were: the choice of machine

learning classifier, class ratio of the initial training set, active learning query strategy and the level of

class imbalance in the data pool. Section 4.2 has provided detail on the chosen levels of class imbalance

for each dataset. The following subsections provide more detail on the other three facets and the various

chosen settings for that facet. Section 5.2 then details the three debiasing methods chosen for answering

the second and third research questions.
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5.1 The Base Classifier and Class Ratio of Initial Training Set

Three different machine learning classifiers were used and compared in this research: logistic regression,

random forest and XGBoost. In order to compare their performance and influence on sampling bias,

these three classifiers were compared while all other facets in the pipeline were identical. Logistic regres-

sion, being a global classifier (see 2.3), has been proven to be affected by human sampling bias [27]. This

makes it interesting to see if the performance of a logistic regression classifier is affected when sampling

bias occurs in the labelled dataset due to active learning instance selection. A random forest classifier

was added, as including it showed how a commonly used ensemble decision tree approach is affected

by sampling bias. The random forest classifier is often used by the IDlab in various machine learning

research projects, so it is suitable to compare this classifier to logistic regression and XGBoost. Finally,

XGBoost was added as a classifier choice because of its inclusion in the previous IDlab active learning

research on classifying ship waste dumping [2].

All classifiers were initialized with a randomly selected labelled training set of 10 instances, where

the same initial training set was used for all different settings of a facet in the pipeline. Using identical

initial training sets ensured clear comparison between the settings of a certain facet. The initial training

set was required by both active learning libraries used in this thesis: ModAL [91] and libact [92]. As in

the previous IDlab research [2], a size of 10 instances was chosen to allow differences in the initial query

iterations for the individual committee members of the QBC approach. The class ratio of these initially

labelled instances, from now on referred to as the initial set ratio, is another factor that might influence

the querying behaviour of active learning algorithms. Therefore, experiments have been conducted

wherein the initial set ratio is changed from balanced 0.5, minor imbalance 0.25 and imbalanced 0.1.

For all other experiments, a balanced initial set ratio of 0.5 is used as it resulted in the highest initial

performance (see section 18).

5.2 Active Learning Methods

This subsection discusses all the different query strategies experimented with in this research. All query

strategies have been described more thoroughly in sections 2.4 and 2.5.

For the first research question (see 1.2) on the influences on sampling bias, the following active learning

algorithms were studied: random sampling (or passive learning), uncertainty sampling, density-weighted

sampling and QBC sampling. See table 4 for a summary of these methods and their parameters. These

algorithms were chosen as they are some of the most popular active learning algorithms to use in un-

known situations. The algorithms also differ greatly in method, especially the more representative-based
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density-weighted sampling.

For the second and third research questions, three informative- and representative-based query strate-

gies methods were studied: hierarchical sampling, QUerying Informative and Representative Examples

(QUIRE) and Active Learning By Learning (ALBL). These algorithms were included as active learning

sampling bias mitigation or debiasing methods, as they query more representative instances while still

having some informativeness measure to ensure high performance. This makes them attractive query

strategies to study for practical applications of IDlab studies, as they are more likely to be implemented

than purely representative sampling due to their overall faster learning rates. These debiasing methods

all make use of a logistic regression classifier for querying instead of all three classifiers discussed in

section 5.1. This design choice was made in order to simplify experimentation with these algorithms,

as including other classifiers would complicate interpreting results. Random sampling, uncertainty sam-

pling and density-weighted sampling were also included in experiments as comparison. Random sampling

and uncertainty sampling serve as a baseline comparison to the debiasing methods that focus more on

querying representative instances. Density-weighted sampling, also being a hybrid query strategy, was

included as comparison in terms of sampling bias reduction and performance. Table 5 contains a sum-

mary of these query strategies along with their chosen parameters. For all chosen query strategies in

tables 4 and 5, the default or most common hyperparameters were chosen as in [2]. The reason for this

was to produce results that show the use of active learning in new situations where there is little known

about the available data.

5.2.1 Uncertainty Sampling

Being a widely popular and generally well-performing information-based query strategy, uncertainty

sampling was included in all experiments. In this thesis, the least confidence strategy or U(x) =

argmax(1 − P (ŷ|x)) was chosen as uncertainty measure for uncertainty sampling. This measure was

the default and highest performing measure on all 15 datasets. For studying the factors that influence

sampling bias, uncertainty sampling was an apt inclusion due to it’s myopic nature. When comparing

various active learning debiasing methods, uncertainty sampling is included as a baseline comparison in

order to study whether removing sampling bias can yield a higher performance than a query strategy

that generally introduces sampling bias.

5.2.2 Density-weighted Sampling

Like in [2], uncertainty sampling using density as weight factor was included in this research. The

combination of uncertainty sampling with density weighing ensures that this query strategy, while overall

being a representative-based query strategy, still has some informative-based elements as well. This
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ensures that in higher class imbalance situations, the minority class will still be sampled. Being a

generally representative-based method and hopefully less prone to introduce sampling bias in the labelled

dataset, this query strategy was included in experiments for answering all research questions.

5.2.3 QBC Sampling

The final query strategy included for looking at the factors that influence sampling bias is query-by-

committee or QBC sampling. Like uncertainty sampling, this method belongs to the informative-based

query strategies. However, this method uses a completely different informativeness measure from un-

certainty sampling, namely a disagreement between multiple machine learning models. Another reason

for its inclusion is that QBC can in many cases outperform uncertainty sampling in terms of learning

rate. QBC learning has no standard configuration, therefore the choice of configuration is a hyperpa-

rameter when implementing this query strategy. This research will use one of the highest performing

configurations found in [2]. As finding the ideal configuration for all 15 datasets is not the primary

focus of this research, the choice of a proven high performing configuration for QBC sampling was made.

This configuration uses both random forest and the XGBoost classifiers as learners, each instantiated

with 4 committee members. Therefore, in total 8 committee members are used to decide on the most

informative instances using a maximum disagreement sampling strategy.

Query Strategy Parameters

Random Sampling No parameters

Uncertainty Sampling
Least confidence strategy used as uncertainty measure:

instance with lowest posterior probability chosen.

Density-weighted Sampling

Uncertainty sampling with density as weight to instances.
Density defined as summary of cosine similarity
between an instance and all other instances.

QBC Sampling

Set of 4 Random Forest and 4 XGBoost classifiers. Training sets for QBC
learners randomized with replacement to form different hypotheses.

Max disagreement sampling used as informativeness
measure for committee members.

Table 4: Q1: Summary of query strategies used for studying the factors that influence sampling bias.

5.2.4 Hierarchical Sampling

Hierarchical sampling uses the standard clustering technique described in section 5. Two choices have

been made when implementing hierarchical sampling. The first is the inclusion of least confidence

uncertainty sampling as the subsample query strategy. This strategy is used instead of random sampling

to select instances in the created pruning, which ensures a more informative approach when combined

with the representative clustering done by hierarchical sampling. The other is the addition of so-called

active selecting, in which the sample weight of a pruning is defined by its weighted error bound instead

of the weight being the number of unseen leaves.
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5.2.5 QUIRE

The second debiasing technique studied in this thesis is QUIRE. Due to QUIRE’s min-max view of

active learning, all instances in the pool must be evaluated at each query iteration. This significantly

slows down computational performance when running this query strategy. For this reason, QUIRE was

only applied to the 8 datasets with instances ≤ 3000. Specifically, QUIRE was applied to the following

datasets from table 3: monks-problems-3, qsar-biodeg, hill-valley, banknote-authentication, steel-plates-

fault, scene, ozone-level-8hr and jasmine. Running QUIRE on about half of the datasets will be enough

to offer proper insights into its querying behaviour and performance. When implementing QUIRE, the

most important hyperparameter is the choice of kernel. This is used for estimating the remaining class

labels of the unlabelled instances in the pool. For this research, after experimenting with all kernels

on the 8 datasets, a radial basis function kernel was chosen as it resulted in the highest overall average

performance on the 8 datasets.

5.2.6 Active Learning By Learning

Active learning by learning or ALBL has been included as the multi-armed bandit approach to querying

informative and representative instances. It makes use of the EXP4.P algorithm for selecting the different

arms: the 5 different query strategies. The 5 strategies chosen as arms are random sampling, 2 uncertainty

sampling with different uncertainty measures and 2 density-weighted sampling methods with varying

amounts of clusters. The two different uncertainty sampling algorithms make use of least confidence

and entropy as their uncertainty measures. The two density-weighted sampling algorithms use 5 and

10 clusters respectively. The distribution of representative- and informative-based query strategies was

chosen to ensure a uniform starting point for the ALBL algorithm before running the EXP4.P algorithm

to iteratively choose arms for querying.

Query Strategy Parameters

Random Sampling No parameters

Uncertainty Sampling
Least confidence strategy used as uncertainty measure:

instance with lowest posterior probability chosen.

Density-weighted Sampling

Uncertainty sampling with density as weight to instances.
Density defined as summary of cosine similarity between

an instance and all other instances.

Hierarchical Sampling

Using uncertainty sampling with logistic regression classifier
as subsample query strategy to sample nodes in selected pruning.

Sample weight of a pruning is its weighted error bound.
QUIRE Using radial basis function (rbf) kernel with kernel coefficient of 1.

ALBL

Using EXP4.P as multi-armed bandit algorithm to choose between
random sampling, 2 uncertainty sampling (1 least confident and 1

entropy based) and 2 density-weighted uncertainty sampling

(1 with 5 clusters and 1 with 10).

Table 5: Q2&3: Query strategies and sampling bias mitigation strategies.
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5.3 Experiment Pipeline

Below is the experimental pipeline used for all experiments.

Figure 6: Experimental pipeline layout for answering research questions. Sections marked with a ∗ are
facets of the active learning pipeline experimented with to see the effect on active learning sampling bias.

Experiments were conducted using k = 5 fold cross-validation and ran for a total of 20 executions,

with the exception of experiments using QBC and QUIRE sampling, which ran for 5 executions. At each

fold, the unlabelled pool Upool is split into
4
5 training data Utrain and 1

5 test data Utest. Through active

learning querying the labelled training dataset L is created. Using L, three out of four bias visualisations

are created. The classifier is trained on L and is both validated on Utest and evaluated on a representative

test set. Upool is the same as the original database in all experiments with the exception of the class

imbalance experiment. Furthermore, the oracle in experiment settings is automated as all labels for the

corresponding instances are available. The parts of the pipeline above marked with an ∗ contain multiple

settings which are changed in isolation in order to provide answers to the three research questions. This

section summarizes the different facets and their settings, categorized by research question.

Research question 1: What factors in the active learning cycle influence active learning

sampling bias in the labelled dataset? To answer this question, the settings of the following 4 facets

marked with a ∗ in figure 6 are alternated in isolation while all other settings remain the same:
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1. Class imbalance: class imbalance in Upool was changed between the original dataset with original

class ratio, a balanced 0.5, minor imbalance 0.25 and high imbalance with 0.05 class ratio.

2. AL method: options used were random sampling as baseline comparison, uncertainty sampling,

density-weighted sampling and QBC sampling.

3. ML classifier: options were logistic regression, random forest and XGBoost.

4. Initial set ratio: the ratio of the initial 10 labelled instances was changed between balanced = 0.5

initial set ratio, minor imbalance 0.25 and imbalance 0.1.

Research questions 2&3: How do different active learning sampling bias mitigation tech-

niques compare when looking at operational classification performance? Will the influence

of active learning sampling bias mitigation techniques yield similar results on the same

dataset with varying degrees of class imbalance? These questions are grouped together because

they both require the same experiments settings. To answer these questions, the following facets in the

experimental pipeline 6 were alternated in isolation while all other settings remained the same:

• AL method or AL debiasing method: random sampling and uncertainty sampling are included

as comparison to passive learning and an informative-based query strategy. Density-weighted

sampling is included as comparison to an informative- and representative-based strategy. The AL

debiasing methods included were hierarchical sampling, QUIRE and ALBL.

• Class imbalance: class imbalance in the dataset fed to the active learning sampling was changed

between the original dataset with original class ratio, a balanced 0.5 class ratio, minor imbalance

0.25 and high imbalance with 0.05 class ratio. Changing the class imbalance in the dataset fed to

the active learning cycle was necessary for answering research question 3.

5.4 Evaluation and Validation

The experiments described in the previous section aim to measure and visualise the two results of apply-

ing active learning to classification problem. Firstly, the sampling bias in the labelled dataset is visualised

through class bias. Secondly, the performance of the machine learning classifier is visualised through

learning curve of various performance metrics. For the first research question, measuring and visualising

sampling bias through various means will show how certain aspects of the active learning cycle might

introduce sampling bias. In order to understand whether a reduced sampling bias in the labelled dataset

will improve performance, the experiments second and third research questions will show how sampling

bias and classifier performance relate . This section details the various performance measures and graphs

chosen for quantifying classifier performance and visualizing sampling bias.
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The main performance measures chosen in the learning curve were macro-averaged precision, recall,

F1 and AUC (see section 2.6). These performance measures were chosen in accordance with prior IDlab

experiments, where these metrics are more indicative of high performance than accuracy as performance

metric. This is because most IDlab projects contain higher levels of class imbalance. All chosen perfor-

mance metrics were macro-averaged as almost all datasets, the positive or target class is the minority

class. Each macro score represents the average of the scores for each individual class, which ensures

that in high class imbalance settings the majority class does not outweigh the minority class. Macro-

averaging has been used in prior IDlab research like in [2], which enables clear comparison of results

between publications. For all performance graphs, the lower and upper quartile of performance results

were only shown after every 5 query iterations instead of at every query to increase readability.

The ALC value (see section 2.6) was chosen to evaluate and compare learning performance between

different active learning algorithms in section 6.2. The ALC values of the AUC learning curve ensure that

statistical significance tests can be made on performance differences between active learning algorithms.

Since part of this thesis concerns itself with research into the general performance differences of active

learning debiasing algorithms, the ALC calculation and comparison will be over all 15 datasets. The

ALC can then be used in a Wilcoxon signed-rank test to see if the changes in active learning method

result in a statistically significant performance difference.

Figure 7: Example of class ratio graph on the monks-problem-3 dataset. Results here and in following
example graphs were obtained using a logistic regression classifier and balanced initial set ratio.

Query strategy behaviour and sampling bias was visualised through 4 different graphs. Analyzing a

variety of graphs will hopefully provide more insights into active learning sampling bias. While sampling

bias can also be seen through sensitivity or feature selection analysis, this research will focus on viewing

sampling bias through the lens of class bias and class selection behaviour through querying. The reason

for this is the fact that this thesis experiments with a widespread of datasets and tries to offer general

conclusions on querying behaviour through class selection and class ratio disparity analysis, whereas
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sensitivity and feature analysis is more dataset specific. First, a graph detailing the difference between

the class ratio of the labelled dataset and the class ratio (see formula 1 of the original dataset was

included. An example of this graph is shown in figure 7. Specifically, the difference in class ratio’s is

defined as:

class ratio(Upool)− class ratio(L) (20)

Where class ratio(Upool) is the class ratio of the preprocessed pool data and class ratio(L) is the

class ratio of the labelled dataset, which changes as instances are queried and added. Tracking the class

ratio difference will show if the label distribution of the labelled dataset differs from the distribution of

the dataset the active learning algorithm is fed in the pipeline, one of the key indicators of sampling bias.

Figure 8: Example of a loss difference graph on the monks-problem-3 dataset using random sampling,
uncertainty sampling, density-weighted sampling and QBC sampling.

Figure 8 shows an example graph of the second bias visualisation this research will utilize, through

visualizing average loss difference between the fully trained classifier and a classifier trained on data

gathered through an active learning query strategy. Inspired by the paper by Farquhar et al. [21], the

graph visualises sampling bias by showing the difference between the empirical risk and the sub-sample

empirical risk. The empirical risk is defined as the average loss of the classifier on the test set T over

all trained instances n in the training dataset N . The sub-sample empirical risk is the average loss of

the classifier on the same test set over all actively sampled and labelled points l in the labelled dataset

L. For the upcoming experiments, log-loss was chosen as performance metric. To summarize, this graph

will visualise bias using the following formula:

AvgLossFull −AvgLossLabelled =
1

N

N∑
n=1

L(ŷn, yn)− 1

L

L∑
l=1

L(ŷl, yl)

=
1

N

N∑
n=1

− 1

T

T∑
i=1

[yiln pi + (1− yi)ln(1− pi)]−
1

L

L∑
l=1

− 1

T

T∑
j=1

[yj ln pj + (1− yj)ln(1− pj)]

(21)
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Where p is the predicted probability, y is the actual value, N is the size of the full dataset and M

is the size of the queried and labelled dataset through an active learning algorithm. N > L for all

queried training data and both the empirical risk and sub-sample empirical risk are calculated through

loss calculations over yi from the same representative test set T . For the sub-sample empirical risk over

M , the loss on the test set depends on which instances have been labelled by the querying algorithm,

for which there there is no adaptable stopping criterion. This is an example of inductive active learning

[93], in which the goal of active learning is to classifier that generalizes well on an unknown test set.

The visualisation of the loss difference is a form of visualising inductive risk. Kottke et al. [93] show a

translation of an inductive active learning scenario to a transductive one, and introduce a function for

stopping criteria in the transductive scenario that considers the misclassification- and annotation cost.

Figure 9: Example of selected label ratio graph on the monks-problem-3 dataset using random sampling,
uncertainty sampling, density-weighted sampling and QBC sampling.

Figure 9 shows an example of the third sampling bias visualisation through showing the average

selected label ratio over the 100 queries. This graph details the averaged ratio of labels at different

points in the learning process, where a label ratio of 100% means that only positive (often the minority)

class instances were selected and 0% means that only negative class instances were selected.

Figure 10: Selected label proportion graph on monks-problem-3 dataset using uncertainty sampling.

Finally, figure 10 shows the proportion of times either the minority or majority class was selected at

each query point in the 100 iterations. Keep in mind that the selected labels at each query iteration are

queried after initializing a query strategy with an initial training set of 10 labelled instances. This shows
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the class selection behaviour over the k = 5 folds and 20 executions. If one class is predominantly selected

at a point in time over folds and executions, it shows the class preference at specific query iterations.

6 Experiments and Results

This section exhibits the results obtained from the various experiments conducted in this thesis. The

results of the first research question are structured as follows. Each of the subsections of this task

contains results for changing 1 of the 4 factors discussed in section 5.3, while keeping the other settings

the same. For each of the 4 facets, first the average performance and bias results are shown across the

15 datasets. Afterwards, results on specific and noteworthy datasets are shown to give more context

to certain findings. Additional results for this task are found in Appendix A. The second and third

task are concerned with the active learning debiasing techniques and how they compare in terms of

general performance and in higher class imbalance settings. Additional results for these tasks are given

in Appendix B and D. Appendix C shows significance tests for answering the second research question.

6.1 Task 1: AL Factors and their Influence on Sampling Bias

6.1.1 Effect of Changing the AL Method

Figure 11: Average performance and bias through label ratio and loss difference for the AL method
experiment over all 15 datasets. Experiments were run using logistic regression and 0.5 initial set ratio.
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All results of task 1 highlighted in this section make use of the logistic regression classifier and a

balanced initial set ratio, with the exception of the machine learning classifier and initial set ratio ex-

periments. The choice for highlighting these results in this section is because both the logistic regression

classifier and balanced initial set ratio yielded a high overall performance. Logistic regression yielded

the highest performance for the first 50 queries and a high overall performance. See section 6.1.3 for the

performance comparison between the chosen classifiers using uncertainty sampling. The balanced initial

set ratio resulted in the highest and overall initial performance, see section 6.1.4.

Figure 11 shows little variance in results between varying the active learning algorithm. This exper-

iment was also conducted with the XGBoost and random forest classifiers which yielded similar results.

The results of using these classifiers are found in figures 24 and 25 in Appendix A.

Figure 12: Performance on wilt dataset through F1 and bias visualisations. Wilt has an imbalanced
class ratio of 0.054. Bottom row shows proportion of selected classes at each query iteration for density-
weighted sampling on the left and uncertainty sampling on the right. These results were obtained using
a logistic regression classifier and 0.5 initial set ratio.
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Clearer insights in behaviour occur when looking at individual dataset results, in particular datasets

with high class imbalance like wilt. The results on wilt using logistic regression are shown in figure 12.

The results on the wilt dataset are comparable to the results of this experiment on other higher class

imbalance datasets, like ozone-level-8hr, churn and scene. Here, informative-based uncertainty and QBC

sampling query the the minority class (only 5% of the dataset) more often during the 100 query iterations

than a representative-based density-weighted sampling method. The informative-based query strategies

therefore introduce more sampling bias, as their querying behaviour is not in adherence with the class

distribution of the original data pool. Especially during the first 15 − 20 iterations, density-weighted

sampling heavily samples the majority class, while uncertainty and QBC sampling sample the minority

class more often. This behaviour is logical, as a representative-based method would sample the majority

class more often to create a more representative dataset. Consequently, density-weighted creates a more

representative dataset through sampling the majority class more often, but does not yield an improved

learning rate. However, density-weighted sampling does not lead to an increased reduction in sampling

bias through loss difference. Density-weighted sampling only starts to have a higher loss difference re-

duction than uncertainty sampling after 60 query iterations.

The informative-based methods deem the minority class instances to be informative more often, which

leads to a better performance after training classifiers on their queried datasets. In fact in all higher class

imbalance datasets, either uncertainty or QBC sampling yields the best performance. This suggests that

using active learning methods that mitigate sampling bias in high class imbalance situations does not

lead to a better performance, as sampling the minority class instances increases the overall quality of the

labelled dataset. A difference between machine learning classifiers is seen on high imbalance datasets like

wilt. Using random forest or XGBoost classifiers, the minority class is sampled heavily by uncertainty

sampling during the first 20 iterations. See figure 13 for the label ratio graphs for wilt using XGBoost

and random forest. As QBC sampling is comprised of a committee of ensemble classifiers sampling, it

also exhibits this behaviour in figure 12. Section 16 provides further elaboration on these differences.

Figure 13: Wilt Selected Label Ratio graphs using XGBoost (left) and random forest (right) classifiers.
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6.1.2 Effect of Various Degrees of Class Imbalance

Figure 14: (Macro) AUC and F1 over query iterations over all 15 datasets. Bottom row is querying
behaviour and sampling bias through Label Ratio and Loss Difference. These experiments were run
using uncertainty sampling, a logistic regression classifier and a 0.5 initial set ratio.

The average results for the class imbalance experiment suggest larger differences in performance and

sampling bias than the seen in the active learning method experiment. Especially using the high 95− 5

class imbalanced data results in generally low performance, barely increasing over time, and a skewed

labelled dataset in which the minority class is represented for about 20%. However, this is an improve-

ment when compared to the original class ratio of 0.05. Another interesting result of this experiment is

the tendency for the informative-based algorithms to sample the minority class more often in high class

imbalance situations when using an XGBoost or random forest classifier. This behaviour is similar to

that seen in the active learning method experiment on the wilt dataset in figures 12 and 13. Seemingly,

the minority class instances seem to have receive a higher information value than the majority class

instances, even if the unlabelled pool contains high imbalance. Both XGBoost and random forest clas-

sifiers exhibited this behaviour, whereas logistic regression did not. More of this behaviour is visible in

the ML classifier experiment in section 6.1.3. Presumably, this querying preference is due to a difference

in using ensemble versus single classifiers an in their initial decision thresholds. Interestingly, querying

using a balanced 0.5 class ratio yields a slightly better performance than using the original dataset.

This might be due to the query strategy having equal choice between classes, which can counteract the
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query strategy oversampling one class and learning idiosyncrasies of the data in high imbalance situations.

Especially on datasets with lower amounts of instances, the effects of higher levels of class imbalance

through undersampling negatively affects performance and querying behaviour as less instances are

available for querying and training. The qsar-biodeg exemplifies these results as a smaller dataset.

Therefore results on this dataset are shown in figure 15.

Figure 15: Performance on qsar-biodeg dataset (original class ratio 0.048) in the class imbalance ex-
periment. Bottom row shows proportion of selected classes at each query iteration on original data on
the left and 0.05 class ratio data on the right. These results were obtained using a logistic regression
classifier, uncertainty sampling and 0.5 initial set ratio.

For qsar-biodeg, the AUC score for the 95 − 5 imbalanced data is lower than other subsets and

never reaches a similar performance. This performance difference is similar for all other datasets in this

experiment. This experiment was also conducted with the XGBoost classifier and uncertainty sampling

and density sampling, see figures 27 and 28 in Appendix A. Figure 29 in Appendix A shows a comparison

between uncertainty and density-weighted sampling on the hill-valley dataset using logistic regression.
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When looking at figure 15, and particularly at the class ratio difference and loss difference graphs, there

seem to be two contradicting findings about the 0.05 class ratio set. The class ratio difference graph

seems to suggest that high class imbalance leads to less sampling bias, as the difference approaches 0.

However, this finding must not be viewed in isolation, as looking at the loss difference graphs shows that

this subset yields the highest loss difference with a fully trained classifier. In fact all subsets seem to

result in some bias through uncertainty sampling, as querying all subsets does not immediately yield a

loss difference or population risk difference of 0. The 75− 25 subset results in the least sampling bias in

terms of a combination of loss difference and class ratio difference. However, the original and balanced

subsets are the best performing versions of the qsar-biodeg dataset, outperforming the 75−25 and 95−5

subset.

6.1.3 Effect of Changing the ML Classifier

Figure 16: (Macro) F1, Recall, and Precision over query iterations over all 15 datasets. Bottom row is
querying behaviour and sampling bias through Label Ratio and Loss Difference. Experiments on ML
classifier conducted using uncertainty sampling and 0.5 initial set ratio.

Changing the ML classifier did not make a noteworthy difference in average sampling bias and classi-

fier performance after 100 queries, as shown in figure 16. However, there are distinct differences between

the classifiers when looking at individual dataset results like in figure 17. The differences in initial per-

formance in figure 16 and other classifier experiments are due to the choice of classifier. This experiment

52



Alec Flesher-Clark
Utrecht University

Master Thesis

was also conducted using density-weighted sampling, see figures 30 and 31 in Appendix A for the average

results using this active learning algorithm and a comparison between uncertainty sampling and density-

weighted sampling on the Bioresponse dataset. The same patterns emerged when changing the query

strategy, where using uncertainty sampling yields slighted better overall results. Logistic regression has

a higher learning rate for the first 60 query iterations, after which XGBoost reached a slightly higher

performance. When looking at many individual dataset results, using logistic regression also resulted

in a faster learning rate but slightly worse performance after 50 − 60 iterations when compared to us-

ing XGBoost. The exception to this was the hill-valley dataset, where logistic regression consistently

outperformed the other classifiers.

Figure 17: Performance on spambase dataset (class ratio of 0.394) in the ML classifier experiment.
Bottom row shows proportion of selected classes using the logistic regression classifier on the left and
the XGBoost classifier on the right. These results were obtained using the original spambase dataset,
uncertainty sampling and 0.5 initial set ratio.
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Results of the ML classifier experiment become more clear when looking at individual dataset results.

Spambase was chosen in figure 17 to highlight, as the results exhibit some interesting differences in choos-

ing an ensemble method like a random forest classifier or a probabilistic model like logistic regression.

The bias visualisations for the spambase dataset show similar patterns to the results on the kr-vs-kp,

qsar-biodeg and wilt datasets. Uncertainty sampling using ensemble methods for these datasets over-

samples the minority class more often during the first 20 iterations. Using logistic regression for these

datasets oversamples the majority class more heavily during the first 20 iterations. Afterwards, using

logistic regression results in an almost equal proportion of sampling the minority and majority classes.

This classifier also shows no dip in performance during the first 20 queries, whereas using the ensemble

classifiers does yield this decrease in performance. For the churn and steel-plates-fault datasets, the

majority class is oversampled by the ensemble methods. It seems the ensemble methods have a different

starting decision boundary than the logistic regression classifier, leading them to oversample instances of

one class more often during the first iterations. When analyzing the spambase results, this oversampling

of minority instances leads to a dip in performance, especially for the random forest classifier.

6.1.4 Effect of Initial Set Ratio

Figure 18: (Macro) AUC, F1, label ratio and loss difference over query iterations over all 15 datasets for
the initial set ratio experiment. This experiment was conducted using a logistic regression classifier and
uncertainty sampling.
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Changing the initial set ratio, the class ratio of the original 10 instances shows some differences

in performance and early querying behaviour. Figure 18 shows the average results of this experiment

with the logistic regression classifier and uncertainty sampling. Using a balanced initial set ratio of 0.5

results in the highest starting performance and a slightly higher overall performance throughout the

100 queries. Other initialization sets detrimentally affect starting performance. The performance in the

learning curve using these sets needs to catch up to the balanced set. Interestingly, query strategies

using these imbalanced initial training sets seem to query the minority class slightly more often during

the first 50 queries, as can be seen from the label ratio graph. It seems that using imbalanced initial

training sets causes the query strategy to make up for this imbalance by querying the minority class more

often, no matter the machine learning classifier or query strategy they use. See figure 32 of Appendix A

for the results of the initial set ratio experiment using XGBoost as classifier and uncertainty sampling

as query strategy. See figure 33 for the results of this experiment using density-weighted sampling and

the logistic regression classifier. After the 100 query iterations, there is little difference in performance

between using the balanced and 0.25 initial set ratio. However, as the goal for applying active learning is

to get a high performance in as few queries as possible, using a balanced initial set ratio is the preferred

option. This is why in the other experiments of this section and the experiments conducted using the AL

debiasing algorithms, the balanced initial set ratio is used. The difference in initial performance between

the balanced and other initial set ratios persists in results of all 15 datasets.

The results on the scene dataset are shown as an example in figure 19. For the scene dataset, the

difference in both performance and sampling behaviour between the balanced and other initial set ratios

persists more clearly throughout the 100 queries. Using the balanced initial set ratio for this dataset also

creates the most representative labelled dataset, as seen from the class ratio and loss difference graphs.

Querying using the other initial set ratios makes the class ratio of the labelled set overshoot the bias

difference with the original class ratio by sampling the minority class more often. Using the balanced

initial set ratio samples both classes evenly, as seen in the bottom right graphs of figure 19. This lowers

the difference of the class ratio of the labelled set and the original class ratio and for the scene dataset

also brings about a higher performance.
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Figure 19: Performance on the scene dataset (class ratio of 0.178) in the init set ratio experiment.
Bottom row shows proportion of selected classes using 0.1 init set ratio on the left and 0.5 on the right.
These results were obtained using uncertainty sampling and logistic regression.
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6.2 Task 2: General Performance Comparison AL Debiasing Algorithms

This section shows the comparison between the different chosen active learning debiasing algorithms on

the 15 datasets distributed by OpenML [80]. Figure 20 shows a average performance comparison.

Figure 20: Average performance on 15 datasets of ALBL, QUIRE and hierarchical sampling compared
to random sampling, uncertainty sampling and density-weighted sampling. Experiment was conducted
using 0.5 initial set ratio and a logistic regression classifier.

Figure 20 shows the average results of the different debiasing strategies when compared to random,

uncertainty and density-weighted sampling. Table 6 shows the performance differences in terms of ALC

score on the 15 datasets (8 for QUIRE). These results were generated using logistic regression as the

classifier for all query strategies. The differences in average performance are similar when running this

experiment using a random forest or XGBoost classifiers for the non-debiasing algorithms. Appendix B

shows the results of this experiment using an XGBoost classifier for uncertainty sampling and density-

weighted sampling. Logistic regression is used as classifier for the debiasing methods. On average, the
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debiasing strategies do not outperform uncertainty sampling. Hierarchical sampling achieves the second-

best performance, having a macro AUC of around 0.02 lower than uncertainty sampling from 25 queries

onwards. QUIRE performs the worst out of all the AL debiasing algorithms, resulting in a worse average

performance than random (passive) sampling. ALBL performs slightly better than QUIRE and performs

best on the wilt dataset, but still results on average in a slightly lower AUC than hierarchical sampling.

The performance of ALBL is due to the chosen configuration (see 5.2), which combines informative- and

representative-based querying. For QUIRE, all kernels were tested on the 8 QUIRE specific datasets

in which the radial basis function outperformed the others. Even so, QUIRE generally performs worse

than the other debiasing methods in terms of ALC score. It also was the slowest query strategy in terms

of computational speed. On the jasmine dataset, the QUIRE algorithm took 3 days and 21 hours to

complete the querying process over 5 folds and 5 executions. This experiment took the longest of all

experiments run in this thesis. More hyperparameter tuning on each individual dataset is necessary to

improve QUIRE’s performance.

Dataset Random Uncertainty Density-Weighted Hierarchical ALBL QUIRE

monks-problems-3 0.543 0.652 0.664 0.609 0.555 0.506
qsar-biodeg 0.564 0.573 0.544 0.566 0.566 0.484
hill-valley 0.552 0.577 0.641 0.412 0.410 0.524

banknote-authentication 0.947 0.977 0.967 0.963 0.974 0.899
steel-plates-fault 0.128 0.124 0.168 0.126 0.069 0.013

scene 0.523 0.783 0.643 0.689 0.743 0.434
ozone-level-8hr 0.306 0.280 0.289 0.223 0.230 0.355

jasmine 0.435 0.503 0.457 0.443 0.447 0.247
kr-vs-kp 0.627 0.743 0.607 0.744 0.658 NA

Bioresponse 0.225 0.229 0.176 0.197 0.184 NA
spambase 0.647 0.686 0.480 0.699 0.659 NA

wilt 0.506 0.569 0.252 0.475 0.588 NA
churn 0.139 0.079 0.094 0.042 0.079 NA

mushroom 0.679 0.764 0.660 0.689 0.651 NA
PhishingWebsites 0.724 0.772 0.630 0.702 0.659 NA

Table 6: Performance comparison of chosen debiasing methods and random, uncertainty and density-
weighted sampling through ALC score for all datasets. All query strategies use logistic regression as
classifier and a balanced initial set ratio. Yellow cells show the highest ALC score for a dataset.

Uncertainty sampling yields the highest ALC score on most datasets, followed by density-weighted

sampling and hierarchical sampling. Appendix C shows the results of applying the Wilcoxon signed-rank

significance test on these ALC scores for the first 8 datasets of table 6. QUIRE was not applied to the

other 7 datasets. This choice is explained in section 5.2. Uncertainty sampling generally has a statis-

tically significant performance difference as compared to the other query strategies on these datasets.

However, as detailed in section 6.1, uncertainty sampling biases the training dataset. If this is unwanted,

hierarchical sampling and density-weighted sampling are the best performing options. However, if sam-

pling bias does not cause major problems in terms of classification performance and fairness, the results
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indicate that uncertainty sampling is the best option.

To understand the debiasing methods in terms of the bias they attempt to mitigate, individual dataset

results need to be studied. The results on the scene dataset are shown in figure 21.

Figure 21: Performance and bias visualisation graphs on the scene dataset using the 3 debiasing meth-
ods. Density-weighted sampling, uncertainty sampling and random sampling are also shown as baseline
comparisons. The scene dataset contains a class ratio of 0.18, a medium to high class imbalance. Bottom
row shows proportion of selected classes at each query iteration for hierarchical sampling on the left and
QUIRE sampling on the right. These results were obtained using a logistic regression classifier and 0.5
initial set ratio.

When applying the query strategies to the scene dataset, QUIRE in particular values representative-

ness over information value when querying instances in higher class imbalance datasets. This can be

seen in the label ratio and proportion of classes selected by QUIRE. The consequence of QUIRE almost

exclusively sampling the majority class is a negligible improvement of the F1 score. The AUC score

when using QUIRE actually worsens over time, whereas it improves when using other query strategies.

The other AL debiasing methods perform better by sampling the minority class more often. In terms of
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measuring sampling bias through class ratio difference, the labelled datasets acquired by using debiasing

methods approach the 0.18 class ratio, but never reach a class ratio disparity of 0. The closest class ratio

difference of 0.05 was achieved by using hierarchical sampling. Therefore, hierarchical sampling is the

best performance debiasing method in terms of both performance and mitigation of sampling bias on

the scene dataset.

6.3 Task 3: Comparison of AL debiasing algorithms on Class Imbalanced

Data

Figure 22: (Macro) AUC, F1, label ratio and loss difference over query iterations over all 15 datasets
when applying hierarchical sampling and logistic regression to imbalanced data.

Figure 22 shows the average results for the class imbalance experiment using hierarchical sampling.

For the sake of brevity, this section highlights the results for hierarchical sampling only. Although QUIRE
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and ALBL yielded similar patterns in their results. Figures 44 and 45 of Appendix D show these results.

Looking at the average performance results of the different subsets when using hierarchical sampling, the

differences in performance are similar to when using uncertainty sampling, see figure 14. In fact, both

the AUC and F1 scores are lower when using hierarchical sampling (or any debiasing method) than when

using uncertainty sampling for the 95 − 5 class imbalance ratio. Therefore, it may be concluded that

using debiasing techniques in the active learning cycle does not yield similar results on the same datasets

with varying degrees of class imbalance. Results on all individual datasets have been studied in order

to verify this conclusion. For all datasets, applying debiasing techniques to subsets with higher class

imbalance did not result in similar performance to the application of those techniques on the original

dataset.

Figure 23: (Macro) AUC, F1, precision and recall as well as the label ratio and loss difference over 100
query iterations for the jasmine dataset (class ratio 0.5) when applying hierarchical sampling and logistic
regression to imbalanced data.

61



Alec Flesher-Clark
Utrecht University

Master Thesis

Figure 23 shows the results of applying hierarchical sampling on the jasmine dataset. Using the

balanced subset of the jasmine dataset, equal or sometimes better performance than using the original

data pool was achieved. This is similar to many of the other 14 datasets. The performance worsens

when using the 75 − 25 and 95 − 5 subsets. When looking at the label ratio graph, a difference in

querying behaviour between debiasing algorithms and informative-based algorithms is visible. When

using debiasing methods, the label ratio is more skewed towards the majority class than when using

uncertainty sampling on the 75 − 25 and 95 − 5 subsets. This behaviour is logical when viewing the

debiasing methods as informative- and representative-based query strategies. Figure 23 shows that

hierarchical sampling queries more representative instances on imbalanced data. This algorithm will

therefore query more of the majority class instances than an informative-based algorithm, like uncertainty

sampling. It can be concluded that the use of a debiasing method results in a more representative

dataset and less sampling bias in terms of class bias. However, when looking at the learning curves, the

performance of the classifier trained on this dataset worsens over each query iteration. These results,

as well as results on other datasets for the class imbalance experiment, support previous findings i.e.

introducing some sampling bias in the labelled dataset can be beneficial when dealing with high class

imbalance situations. By querying the minority class more often using informative-based query strategies

in high class imbalance settings, the resulting dataset is more balanced, leading to improved performance.

However, when looking at the difference in class ratio, a more balanced training dataset contains sampling

bias as compared to the original imbalanced data pool. Note however that the examples given in section

2.3.4 show that sampling bias can lead to unfair and potentially harmful incorrect predictions. This

difference in querying behaviour is also clearly visible for the mushroom dataset: figure 46 in Appendix

D shows the difference in querying behaviour between using uncertainty sampling and using hierarchical

sampling.

7 Conclusions

This thesis researched two subjects related to active learning and active learning sampling bias:

1. The influence of multiple factors in the active learning pipeline on active learning sampling bias.

To study sampling bias in the active learning pipeline, this thesis conducted empirical research

by using 15 datasets. Section 6.1 is concerned with the effect of changing four integral parts of

the active learning pipeline on sampling bias and performance. Specifically, the settings of the

active learning query strategy, the level of class imbalance in the data pool, the machine learning

classifiers and the class ratio of the initial training set were modified.

2. The effect of AL debiasing algorithms on sampling bias reduction and classification performance.

The latter part of this research studied three informative- and representative-based query strate-
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gies which all aim to reduce active learning sampling bias. These three methods, dubbed active

learning debiasing methods, were hierarchical sampling, QUerying Informative and Representative

Examples (QUIRE) and Active Learning By Learning (ALBL). The performance comparison of

these debiasing methods was both a general performance comparison on the same datasets and a

performance comparison on imbalanced versions thereof. The effect on operational performance

by using these debiasing methods was compared to using more conventional query strategies like

uncertainty sampling and density-weighted sampling.

The following section will go through each research question and will answer them by summarising

key findings in the results of the various experiments conducted in this thesis. Section 7.1 will then

provide a more detailed discussion of these findings and the limitations of this research. Section 7.2 will

suggest possible future research topics based on insights provided by this thesis.

Research question 1:

• What factors in the active learning cycle influence active learning sampling bias in the labelled

dataset?

To answer this question fully, the findings of the four experiments with the chosen variables in the active

learning cycle will be summarised:

Effect of changing the AL method

Changing the active learning algorithm did not result in large differences in average performance and

sampling bias. However, clearer differences in performance and querying behaviour were visible when

looking at individual dataset results. On datasets with higher levels of class imbalance, differences

appeared between the various query strategies. These strategies were, on the one hand, the informative-

based uncertainty sampling and QBC sampling, and on the other hand, the more representative-based

density-weighted sampling. The informative-based query strategies queried instances of the minority class

more often, especially during the first 20 queries. Density-weighted sampling queried more representative

instances throughout the learning process, but this resulted in a slower learning rate. However, all active

learning methods did outperform random sampling on most datasets. The experiments on datasets

with higher levels of class imbalance showed that choosing uncertainty or QBC sampling led to the

highest performance. So when sampling bias in the labelled dataset matters less, uncertainty or QBC

sampling (both strategies that can potentially introduce sampling bias) are recommended. In cases when

sampling bias needs to be avoided, implementing density-weighted sampling is the safest option. The

results of this experiment showed that after around 40− 50 queries, density-weighted sampling yielded a

higher performance than random sampling when using ensemble classifiers. The performance of density-

weighted sampling was marginally lower but still comparable to the informative-based methods. The
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question whether sampling bias is truly harmful is dependent on the application case. If it is harmful, a

more representative form of active learning querying is required.

Effect of various degrees of class imbalance

Changing the class imbalance made the largest difference in querying behaviour and had the largest

effect on sampling bias in the resulting labelled dataset. Using a higher level of class imbalance in the

same dataset also led to the a worse performance. Interestingly, using a balanced class ratio yielded a

better performance than using the original dataset class ratio. This might be due to query strategies

having an even choice between both classes, resulting in a faster learning rate of the correct decision

boundary. In particular the 0.05 class ratio subset resulted in the worst performance and most sampling

bias through loss difference. Feeding the 0.25 class ratio subset to the pipeline resulted in the most

unbiased selection in terms of loss difference. Using uncertainty sampling on the imbalanced subsets

resulted in the minority class being sampled more often: around 20% throughout learning. When using

density-weighted sampling on the subsets, the overall label selection probabilities were more in line with

the class ratio in the data pool. This is because in high class imbalance situations, the majority class

instances will be in more dense areas of the feature space, so density-weighted sampling will query these

instances more often. The oversampling of the minority class for uncertainty sampling led to sampling

bias, but a better performing classifier when trained on the dataset. This experiment showed that using

active learning to remove some imbalance from a dataset but introducing sampling bias can sometimes

be beneficial to classifier performance.

Effect of changing the ML classifier

Using logistic regression, XGBoost and random forest classifiers all had an influence on sampling bias and

querying behaviour. The main difference in querying behaviour between using these classifiers was visible

during the first 20−25 queries. The ensemble methods queried the minority class much more often during

these first query iterations when the dataset contained higher levels of class imbalance (≤ 0.2). When

the datasets were more balanced (≥ 0.3), the ensemble methods sometimes oversampled the majority

class during the first 25 query iterations. This oversampling of one class sometimes led to a decrease in

performance, especially for the random forest classifier. It also led to a higher class distribution disparity

between labelled dataset and data pool during the first query iterations. The oversampling of instances of

a single class at the start of the learning process is due to a difference in single classification and ensemble

classification. The initial decision boundary of the single classifier and the initial decision trees of the

ensemble methods differed greatly, which led to different ideas of the most informative instance when

using an informative-based algorithm. In this case, during the first query iterations query scores using

the ensemble classifiers gave the highest information value to instances of a single class. After querying

these instances more often, the ensemble methods assigned a similar information value to instances of

both classes. For the query strategies using logistic regression, which is a single classifier, instances of
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both classes were closest to the decision boundary during the first 20 query iterations.

Effect of changing the initial set ratio

In terms of sampling bias there was one noticeable difference in querying behaviour during the first 40

query iterations. The active learning algorithms initialised with initial set ratios 0.1 and 0.25 queried

the minority class slightly more often than the algorithms using the balanced initial set ratio. This

suggests that the active learning algorithm will try to address this imbalance by querying the minority

class more often, due to a lack of minority class instances in the initial set of 10 instances. There was

also a noticeable difference in initial performance. Using a balanced initial set ratio yielded a much

higher initial performance and a slightly better overall performance. As query strategies using the

balanced initial training set queried the minority class less aggressively, using this set also yielded a

more representative training set in general. Consequently, the labelled dataset using this balanced initial

training set contained less sampling bias through class disparity and loss difference.

Research question 2:

• How do different active learning sampling bias mitigation techniques compare when looking at op-

erational classification performance?

All sampling bias mitigation techniques in this thesis performed worse than uncertainty sampling. Of

the three debiasing methods, hierarchical sampling performed the best and was the fastest both in terms

of learning rate and computational speed. Hierarchical sampling performed only marginally worse than

uncertainty sampling, followed by ALBL and finally QUIRE. The problems with ALBL and QUIRE in

terms of learning rate might be due to the hyperparameters chosen for these methods. This research made

the choice to use 3 different uncertainty, 2 density-weighted uncertainty and 1 random sampling method

as query strategies for ALBL. The use of other query strategies or different settings for the chosen query

strategies could lead to a better learning rate. However, more hyperparameter tuning is necessary to

find the best performing setups for both ALBL and QUIRE. For QUIRE, the radial basis function kernel

was used with a gamma of 1. For every dataset, the kernel, gamma value and other hyperparameters

need to be set accordingly to result in the highest QUIRE performance. As this was a general study,

the overall highest performing kernel was chosen for QUIRE. However, this choice resulted in insufficient

performance when compared to the other debiasing methods. QUIRE would often only sample the

majority class in imbalanced datasets, leading to high representativeness in the labelled dataset but a

barely improving performance. Hierarchical sampling and ALBL prioritised the information-value of

instances more than QUIRE, which led to better performance throughout the learning process. In active

learning cases, it is important to first consider whether sampling bias through active learning is harmful or

not. When it is harmful, the results of the experiments conducted with the debiasing strategies (see table

6) showed that the use of hierarchical or density-weighted sampling is preferable. However, when highest

performance is the most important, uncertainty sampling is the logical choice. Uncertainty sampling
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had the highest learning rate and ALC score on most of the 15 datasets, and showed a statistically

significant improvement in ALC score when compared to the debiasing methods on the first 8 datasets

(see Appendix C).

Research question 3:

• Will the influence of active learning sampling bias mitigation techniques yield similar results on

the same dataset with varying degrees of class imbalance?

Using the three debiasing methods did not result in similar performance on varying levels of class imbal-

ance on the same dataset. The differences in performance were similar to using uncertainty sampling,

QBC sampling or density-weighted sampling. Class imbalance of class ratio 0.05 still yielded the lowest

performance and a balanced subset resulted in the highest performance when applying the debiasing

methods to the datasets. The performance on the extreme class imbalance subset was worse when

applying the debiasing methods than when applying uncertainty sampling. When fed the high class

imbalance subset, the debiasing methods sampled the majority class more often than uncertainty sam-

pling. This led to a lower learning rate for the debiasing methods. The learning rate was similar to

that exhibited by applying density-weighted sampling to the class imbalanced subsets. The similarity of

the performance and sampling bias results between the chosen debiasing methods and density-weighted

sampling is logical, because density-weighted sampling also aims to mitigate sampling bias. However,

similar to the results of research question 2 in section 6.2, the results in section 6.3 showed that the

use of uncertainty sampling also led to a higher performance on imbalanced data than the debiasing

methods. To understand the true effectiveness of more representative-based active learning algorithms

on highly imbalanced data, more experimentation with different active learning algorithms and different

hyperparameter settings is necessary.

7.1 Further Discussion and Limitations

This section will delve deeper in discussion of the results of this thesis’ experiments and will go over

some of the limitations of this research.

During computation of the experiments, except for the results detailed in section 6.1, the choice was

made to generate a different initial training set at each fold in the 5-fold cross-validation. This was

subsequently adjusted for the results of task 1 in section 6.1: the initial training set is now randomly

determined once for each dataset, with size 10 and initial set ratio 0.5, except for the initial set ratio

experiment. For the initial set ratio experiment, the initial training set is kept similar by generating a

training set of size 10 and initial set ratio 0.5 for each dataset. Then for lower initial set ratios, minority

class instances in the same initial training set are replaced with majority class instances. The choice of
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using identical initial training sets will ensure that all variations of experiments, e.g. the choice of AL

method, will use the same initial training set, allowing the random choice of initial training set not to

interfere with the results of the experiment. However, time did not allow to make this adjustment for all

other experiments. Thankfully, the overall differences between the various settings of the experiments

were the same without this adjustment made, so making the adjustment did not completely change the

results. In the future, all experiments, with the exception of the initial set ratio experiment, will be

rerun with this adjustment made.

Next to studying the effects of choices in the active learning pipeline on sampling bias through class

bias, the results of the experiments conducted in this thesis can also provide guidance for implementation

choices in future active learning research. The results of this thesis can be used to guide certain imple-

mentation decisions when choosing between the machine learning classifier, the active learning method,

the level of balance in the dataset and the level of balance in the initial training set. Next to showing

what effect these facets have on sampling bias through class bias, this thesis has also shown the effect on

classification performance on a variety of datasets. Therefore, this research has shown what settings are

preferable in certain situations. Of course, when making these choices for a new active learning pipeline

on a new dataset, it is useful to experiment with a variety of settings before choosing a final structure.

However, the results of this thesis can inform the initial choices of settings, algorithms and whether to

use informative-based or more representative-based algorithms.

This thesis studies sampling bias in active learning strictly through the disparity of class distribution

between the labelled dataset and original data pool. However, this is not the only form of sampling

bias, as differences in feature distribution between the labelled data and the original can also result in

sampling bias. As this thesis was a study on 15 different datasets, all with different feature spaces,

the choice was made to study sampling bias through difference in class distribution and loss, as these

factors could be studied through more general and less dataset dependent experiments. However, visu-

alisations of the feature space and instance queries within this feature space can yield key insights in

sampling bias through active learning. The choice to omit this kind of visualisation was necessary for this

thesis and its form of experimentation, but limits the conclusion in its results. This is because feature

selection through querying plays an important part in sampling bias in training datasets for classification.

To study the effect of various factors on active learning sampling bias, the choice was made to study

four facets of the active learning pipeline and to experiment with specific parameters. The combination

of multiple settings per experiment resulted in a large set of experiments for the first research question,

in which a large number of differences in settings became apparent. However, it is a possible limitation in
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this research that only four facets were studied and furthermore only specific settings within those facets

were covered. A certain added setting to a part in the pipeline or experiments on an entirely different

section of the pipeline could produce new insight or challenge the findings of the results described in this

thesis.

The choices of hyperparameters for the QUIRE and ALBL in this study have been made by testing

the best overall performing settings on all 15 datasets for ALBL and 8 datasets for QUIRE. For QBC

sampling, one of the best performing combinations in [2] was used. Since the focus of this thesis was sam-

pling bias and operational performance, this way of finding well-performing versions of these algorithms

was sufficient. However, if these methods are to be applied to a specific dataset another evaluation of

hyperparameter settings will be necessary.

7.2 Future Work

The conclusions drawn from the results of this research can be used as advice for future IDlab research on

the application of active learning to ILT inspection cases. When applying different query strategies to the

15 datasets, using uncertainty sampling resulted in the highest overall performance but this method did

sample the minority class more often which resulted in a biased dataset. When applying active learning

to a new IDlab study, careful consideration should be taken in order to determine whether sampling bias

is welcome or harmful. In situations with high class imbalance and a limited inspection budget (≤ 40

instances) like the zeezwaaien study [2], the focus is on obtaining the highest performance. In both

the zeezwaaien study and in the active learning method experiment in section 6.1.1, it was proven that

sampling bias in the labelled dataset through oversampling the minority class can boost classification

performance by creating more balanced training data. In these cases, results from this thesis supports the

use of either QBC or uncertainty sampling using a balanced initial training set and either logistic regres-

sion or a random forest classifier. However, when sampling bias is detrimental to performance and raises

issues of fairness, using hierarchical sampling or density-weighted sampling as more representative-based

methods is recommended. These query strategies reduced sampling bias in the labelled dataset while still

yielding a high operational performance, yet still a slightly lower performance than uncertainty sampling.

As detailed in the previous section, one of the limitations of this thesis is that sampling bias through

active learning querying was studied exclusively through studying class bias. While this was done to

allow for a larger empirical study with many different datasets, it will also be useful to look at sampling

bias through active learning in terms of feature bias. Visualizing feature bias via graphs and heatmaps

of the feature space and a query strategies selections within that space might produce new findings in

the behavioural differences between informative- and representative-based query strategies.
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The performance results of the machine learning classifier experiment showed a higher performance

for the logistic regression classifier for the first 60− 70 queries. After 70 queries, the XGBoost classifier

yielded a higher performance. In future research, it would be interesting to experiment with a combina-

tion of a logistic regression and XGBoost classifier to see if this would improve performance. A cut-off

point could be used as a hyperparameter, which could be the amount of queries necessary with one

classifier before switching classification to the other classifier.

For the performance comparison of more representative-based active learning algorithms, the choice

was made to compare 3 informative- and representative-based algorithms on 15 datasets in a pool-based

active learning scenario. While in this experiment uncertainty sampling outperformed the debiasing

algorithms, further research can provide new and contrasting evidence of the performance of active

learning algorithms that seek to create more representative labelled datasets. The inclusion of purely

representative-based query strategies in the comparison is worth researching, as these methods can offer

interesting insights into the differences in querying behaviour between the types of query strategy. For

IDlab related research for risk-based inspections, it would be interesting to compare multiple different

types of query strategies in a stream-based setting. This setting would be more applicable to the detec-

tion of non-compliance while there is still time to act, like in the en route classification of zeezwaaien in [2].

When studying the effect of class imbalance on active learning sampling bias, the learning rate of

the classifiers worsened greatly on higher levels of class imbalance. The low performance when feeding

the high class imbalance subsets to the query strategies might be due to the lack of any class imbalance

mitigation method beforehand. In many cases when training classifiers on highly imbalanced data,

the developer chooses a strategy for addressing class imbalance. These strategies include oversampling

the minority class either by copying minority class instances or synthetically creating new ones, or by

rebalancing or reweighing class importance. For the class imbalance experiments in this thesis, a naive

approach was taken to applying active learning algorithms to highly imbalanced data as the focus of this

thesis was on the behaviour of the active learning algorithms. For future research, studying a combination

of a rebalancing strategy and active learning could offer new insights into this situation.
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Appendices

Appendix A: Additional Performance Results for Task 1

The following results were obtained using different settings for the various experiments in task 1. The

graphs in this section show the results when varying certain settings for the 4 main experiments. Similar

to the structure of section 6.1, for the different settings some overall performance graphs are shown as

well as some results on certain individual datasets.

Figure 24: Average performance of AL experiment for Task 1 with 0.5 initial set ratio and using the
XGBoost classifier.
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Figure 25: Average performance of the AL experiment for Task 1 with 0.5 initial set ratio and using the
random forest classifier.
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Figure 26: Comparison of performance and querying behaviour using logistic regression and random
forest classifiers on the banknote-authentication dataset (class ratio 0.445). Both use a 0.5 initial set
ratio. Logistic regression results are in the left column and random forest results in the right.
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Figure 27: Average performance of CI experiment for Task 1 with uncertainty sampling, 0.5 initial set
ratio and using the XGBoost classifier.
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Figure 28: Average performance of CI experiment for Task 1 with density-weighted sampling, 0.5 initial
set ratio and using the XGBoost classifier.
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Figure 29: Comparison of performance and querying behaviour for the class imbalance experiment using
uncertainty and density-weighted sampling classifiers on the hill-valley dataset (class ratio 0.5). Both
use a 0.5 initial set ratio and a logistic regression classifier. Results using uncertainty sampling are in
the left column and density-weighted sampling results in the right.
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Figure 30: Average performance of machine learning classifier experiment for Task 1 using density-
weighted sampling and a balanced initial set ratio.
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Figure 31: Performance and sampling bias comparison between using uncertainty sampling (left column)
and density-weighted sampling (right column) on the Bioresponse dataset (class ratio 0.542). Results
generated using a balanced initial set ratio of 0.5.
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Figure 32: Average performance of initial set ratio experiment for Task 1 with uncertainty sampling and
the XGBoost classifier.
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Figure 33: Average performance of initial set ratio experiment for Task 1 with density-weighted sampling
and using the logistic regression classifier.
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Appendix B: Additional Dataset Results for Task 2

Figure 34: (Macro) AUC, F1, precision, recall, label ratio and loss difference over query iterations over
all 15 datasets when comparing AL debiasing methods using a logistic regression classifier to random
sampling, density-weighted sampling and uncertainty sampling with an XGBoost classifier.

85



Alec Flesher-Clark
Utrecht University

Master Thesis

Figure 35: Comparison of (Macro) AUC, class ratio difference, label ratio, loss difference and proportion
of selected classes for the AL debiasing methods using a logistic regression classifier on the qsar-biodeg
dataset with class ratio 0.337. Bottom row shows proportion of selected classes per query iteration for
ALBL on the left and QUIRE on the right.
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Appendix C: Results Wilcoxon Signed-Rank Significance Test

The following tables show the results of applying Wilcoxon signed-rank test (described in section 5.4) to

see if the performance differences between the active learning debiasing methods and random, uncertainty

and density-weighted sampling were statistically significant. If the value is in red, it means that the p-

value was above 0.05, so the difference between performances was not statistically significant. The

Wilcoxon signed-rank test was only applied on the first 8 datasets from table 6, as QUIRE has only been

applied to these datasets.

Figure 36: Wilcoxon-signed rank significance test results on the monks-problems-3 dataset for the per-
formance differences of the three debiasing methods when compared to random, uncertainty and density-
weighted sampling.

Figure 37: Wilcoxon-signed rank significance test results on the qsar-biodeg dataset for the performance
differences of the three debiasing methods when compared to random, uncertainty and density-weighted
sampling.

Figure 38: Wilcoxon-signed rank significance test results on the hill-valley dataset for the performance
differences of the three debiasing methods when compared to random, uncertainty and density-weighted
sampling.
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Figure 39: Wilcoxon-signed rank significance test results on the banknote-authentication dataset for
the performance differences of the three debiasing methods when compared to random, uncertainty and
density-weighted sampling.

Figure 40: Wilcoxon-signed rank significance test results on the steel-plates-fault dataset for the perfor-
mance differences of the three debiasing methods when compared to random, uncertainty and density-
weighted sampling.

Figure 41: Wilcoxon-signed rank significance test results on the scene dataset for the performance
differences of the three debiasing methods when compared to random, uncertainty and density-weighted
sampling.

Figure 42: Wilcoxon-signed rank significance test results on the ozone-level-8hr dataset for the perfor-
mance differences of the three debiasing methods when compared to random, uncertainty and density-
weighted sampling.
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Figure 43: Wilcoxon-signed rank significance test results on the jasmine dataset for the performance
differences of the three debiasing methods when compared to random, uncertainty and density-weighted
sampling.

Appendix D: Results QUIRE and ALBL on Imbalanced Data

Figure 44: (Macro) AUC, F1, label ratio and loss difference over query iterations over all 15 datasets
when applying QUIRE and logistic regression to imbalanced data.
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Figure 45: (Macro) AUC and F1, as well as bias visualisation through label ratio and loss difference
over 100 query iterations over all 15 datasets when applying ALBL and logistic regression to imbalanced
data.
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Figure 46: Comparison of (Macro) AUC and F1 and bias through label ratio and class ratio difference
between uncertainty sampling (left) and hierarchical sampling (right) on the mushroom dataset with
varying levels of class imbalance. The mushroom dataset has an original class ratio of 0.482. Both query
strategies use a logistic regression classifier and balanced initial set ratio.
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