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Abstract 

 Urban heat islands cause heat stress to urban residents and their severity is increasing 

due to both climate change and ever-increasing urbanization. Investigation of the issue has a 

storied past, but the methods used have all shared serious limitations. The goal of this study 

was to document and analyze correlations between surface air temperature and the average 

incomes of residents or the population density of areas affected. The study hypothesized that 

a positive correlation would be found between surface air temperature and population 

density, while a negative correlation would be found between surface air temperature and 

average income. The study’s literature review gives readers an easily comprehensible primer 

for this topic, covering both the nature of UHI and its methods of investigation. The issue of 

environmental justice and vulnerability to heat amongst certain populations is also explored 

as these ideas heavily informed the study’s purpose and hypothesis. This study used 

crowdsourced point measurements of the surface air temperature taken via NETATMO 

weather-recording devices in private homes. This data was used to investigate UHI and 

surface temperatures in general in the state of Illinois, the city of Chicago, the continental 

Netherlands, and the city of Amsterdam. This data was collected at four different times over 

the course of August 20, 2021. The point data was then used to create continuous field 

temperature maps of each study area, extrapolating temperature values between the points for 

which data was recorded. Average temperatures were then found for each administrative unit 

(county, municipality, or neighborhood) at each of the four times in each study area, resulting 

in four air surface temperature maps for each study area that track values throughout the day. 

Average income per household and population density data were collected for administrative 

units in all study areas and then compared with the surface air temperature maps to find 

trends, patterns, and possible correlations. Geographically weighted regression (GWR) and 

bivariate analysis (BA) were used to analyze the resulting map data in order to better 

understand how temperature values varied with distance between data points and across all 

four study areas. The results are strongest and most clear for the Netherlands, where data 

points are the most robust and widespread.  Overall, the GWR results indicate a consistent 

and moderately strong correlation between surface air temperature and both average income 

values and population density. The BA results suggest that the correlation is negative for 

average income values and positive for population density. The majority of the results at each 

step of the investigative process are shown using maps created in ArcGIS Pro. 
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1. Introduction 
 The 20th century saw the highest rate of urbanization of humanity in the history of 

planet Earth, and this trend continues in the 21st century. In the year 2009, urban residents 

outnumbered rural residents globally for the first time in human history (Siu & Hart, 2013). 

Current estimates project that urban residents will reach 60% of the global population by 

2030 and 67% by 2050 (Chapman et al., 2013; Mirzaei & Haghighat, 2010). This means that 

problems unique to or caused by urbanization will become increasingly pressing and in need 

of amelioration. One of the more subtle examples of these problems is that of the urban heat 

island (or UHI). Cities tend to have higher average surface air temperatures than non-urban 

areas. The reasons for this are still not perfectly understood, but they all are tied to the 

processes that humans engage in when transforming a non-urban area into an urban area as 

well as the ongoing processes which occur due to human activities inside urban areas. Some 

studies suggest that the severity of this phenomenon is increasing over time too (Levermore 

et al., 2018). 

 The problem of urban heat islands becomes even more concerning when climate 

change is considered. The last 100 years has seen a steady increase in average global 

temperatures around the world, and models have sought to predict how severely this trend 

might continue depending on the anthropogenic activities that seem to be driving it. For 

cities, observed temperature increases within urban areas have actually exceeded those 

predicted by many climate change models (Jeganathan et al., 2016). This means that climate 

change is exacerbating the effects of urban heat islands, increasing the severity of the 

problem and its many effects for an ever-increasing share of the human population. 

1.1 Investigating UHI- Methods and limitations 

 Investigating UHI is not a simple or straightforward procedure. Studying the 

atmospheric system of a city is inherently complicated due to the complexity of the energy 

exchange occurring there, the range of space and time scales available, and the spatially 

disordered nature of the sources and sinks therein. This is exacerbated by the significant 

human factors involved as well as the expense and difficulty of gathering data within an 

active, populous city. Not only is the city atmosphere subject to huge variability, but 

investigators are restricted by the physical structure of cities (building blockage) as well as 

municipal safety laws that restrict how, when, and where data can be gathered using certain 

kinds of equipment. This requires significant expense, unorthodox methodologies, and/or 

newer technologies to circumvent (Oke, 1982).  

At present, there are two primary ways in which UHI is investigated, but many of the 

methods used have either come into existence or been greatly improved in the last 20-30 

years. The first involves measuring the canopy layer via air temperature detected by either in-
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situ fixed location sensors or traverses of vehicle-mounted sensors. The second is to measure 

surface UHI via land surface temperature derived from airborne or satellite-based remote 

sensing (Ngie et al., 2014; Sheng et al., 2017; D. R. Streutker, 2002; David R. Streutker, 

2003). 

1.1.1- Surface air temperature 

UHI is typically quantified by calculating the surface air or surface temperature 

differences between an urban area and a nearby non-urban area with similar geographic 

features simultaneously (Memon et al., 2009). However classifications for what constitutes 

an “urban” location and a “non-urban” location are often vague or ill-defined. Particularly 

when applied to metropolitan areas that exhibit urban sprawl or extensive surrounding 

suburbs, the line between the two classifications becomes increasingly blurry (Ngie et al., 

2014; Siu & Hart, 2013). Many of these classification decisions are made implicitly by the 

investigating scientists and/or are not comparable with other investigators’ delineations. 

Many UHI studies also use outdated urban extent maps that often fail to account for more 

recent urban boundary expansion. This may introduce significant bias into the data collection 

that later results in UHI being underestimated by as much as 50% (Zhao et al., 2016). 

 The study of 

UHI has also 

struggled with a lack 

of standardization in 

terms of land use and 

land cover mapping 

for urban areas where 

UHI is present. There 

has long been an 

absence of coherent, 

consistent databases 

with information on 

urban form and 

function for even 

cities with extensive 

investigation 

histories. This 

includes information 

on land cover, 

materials, building 

dimensions, and 

occupation patterns (Hidalgo et al., 2019). This information is vital for finding correlations 

between UHI and urban form in order to better understand what causes variations in UHI and 

to inform mitigation efforts. Several classification systems have been put forward to address 

this issue, but most have been unique to each study and city, limiting the ability to compare 

 

Figure 1-1: A land cover classification system used to study 

Berlin. It is non-standardized and unique to the city. (H. Li et al., 

2018) 
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findings between different studies of UHI and land use (B. Bechtel et al., 2016). Figure 1-1 

shows one such example of this sort of classification scheme. 

Using air temperature to derive UHI is the older of the two primary methods and 

typically involves fieldwork investigation. The in situ air temperature approach is a direct 

measurement that often requires less in terms of correction/ adjustment. It also has the benefit 

of measuring the living environment and recording what urban residents are actually 

experiencing in the city, although this is less true when such measurements are taken from 

building roofs or higher elevations in the cityscape. When these issues are properly 

accounted for, direct measurement of urban temperature can prove useful for trying to 

investigate the effects of heat on human health and/or measuring thermal comfort since this is 

what people actually “feel” as they go about their day (Hu & Brunsell, 2015; Sheng et al., 

2017). Because field work is costly in terms of time and equipment, this approach has 

inherent limits. Crowdsourcing the data collection process may address this limitation but the 

quality of the data collected becomes questionable (Benjamin Bechtel et al., 2017).  

Air temperatures taken in-situ often rely on meteorological stations for their data. 

These stations are typically located outside their respective cities where buildings and smog 

will not interfere with their ability to gather data. The advantage of these in-situ observations, 

is that they have strong temporal resolution. But because only so many such stations can be 

built or deployed in the field, they lack spatial resolution. The result is that much of the data 

for areas in between the data collection points must be interpolated in order to produce 

spatially continuous field data. Using vehicles to measure air temperature helps deal with the 

spatial limitations of taking in-situ data. Cars or trucks are most often used for such field 

measurements. In these cases, a vehicle-mounted sensor must be attached which will position 

the sensor to avoid the engine and exhaust heat. Such sensors are typically housed in solar 

radiation shields to protect from direct solar radiation as well (Yadav & Sharma, 2018). One 

study conducted in Amsterdam, however, used sensors attached to bicycles- a distinctly 

Dutch approach to data collection (Steeneveld et al., 2011). As for fixed locations, this 

method generates a series of point data which then requires interpolation to fill in between 

and around the traversal paths. Such processes can be completed using inverse distance 

weighting (IDW) or Kriging for example (Yadav & Sharma, 2018). 

1.1.2- Land surface temperate (remote sensing) 

 The alternative to measuring air temperature in-situ is to measure land surface 

temperature (LST) via remote sensing. Remote sensing can be defined as “the science and art 

of obtaining information about an object, area, or phenomenon through the analysis of data 

acquired by a device that is not in contact with the [thing] under investigation.” Remote 

sensing may be conducted by air or by satellite. Either one requires a keen understanding of 

the sensor’s limitations and what/ how it “sees” the surface it is sensing. LST is typically 

derived via measurement of the thermal infrared spectrum of light at 8-15 µm, but 

microwave is also sometimes used (Charlie J. Tomlinson et al., 2011). The sensor indirectly 

estimates the apparent surface temperature based on the radiance received from the area of 

the surface that lies within the instrument’s field of view (FOV) (Voogt & Oke, 1997). A 
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given FOV includes both sunlit and shaded surfaces, which will require some correction to 

account for. The sensor itself is sensitive to its assigned location, orientation, FOV, and the 

structure of the observed surface, requiring further corrections before temperature data can be 

derived (Soux et al., 2004). 

Once the radiance data is collected, several corrections must be applied. These 

include applying for atmospheric effects, angular effects, and the spectral emissivity of the 

surface being sensed (Ngie et al., 2014). All of these steps results in so much correction that 

it may completely overshadow the differences caused by UHI if incorrectly estimated or 

applied (Voogt & Oke, 2003). Because of the topography of the urban landscape, the same 

sensor viewing an area from different points above may see a different mix of surface 

elements because different parts may be obscured from view (Soux et al., 2004). In addition, 

many definitions of the “surface” and measurements taken there either refer to ground level 

or rooftop level and neglect the canopy between the two (Voogt & Oke, 1997). All of these 

caveats conspire to muddy the data and obscure the actual surface temperature being sought. 

Using remote sensing to track UHI comes with a more fundamental problem as well. 

Air temperature cannot be remotely sensed; this is why LST is used as a substitute. The aim 

is to use LST to estimate air temperatures at/or near the surface. However, the relationship 

between air temperature and LST is still only partly understood and seems to vary depending 

on many factors (Benjamin Bechtel et al., 2017; Hu & Brunsell, 2015; Liang et al., 2020). 

Studies of the same area over the same time have compared LST and air temperature and 

found significant differences between the two values. Three different studies that all used 

MODIS data to derive LST discovered that their values differed from air temperature values 

on the ground by 3-7 ℃, 5-9 ℃, and 6-10 ℃ respectively (Hu & Brunsell, 2015; Lai et al., 

2018; Voogt & Oke, 1997). The data shows that air temperature values are consistently 

higher than LST values, whether derived from aerial or satellite-based sensors. Sensors 

consistently undersample the surfaces they are measuring for reasons that will be explored 

shortly (Schwarz et al., 2012; Voogt & Oke, 1997). 

Much of the difficulty in using remotely sensed LST as a stand-in for air temperature 

is due to the topography and verticality of urban areas. As mentioned above, street canyons 

of various heights dominate significant portions of the urban landscape. Just as these areas 

drastically change the way solar radiation is absorbed, reflected, and re-emitted, so do they 

also complicate the ability of sensors to measure LST. This is because the sensor can only 

estimate LST based on the solar radiation that reaches the sensor. Research has shown that 

observed surface temperature can be significantly different from ambient air temperature 

inside street canyons (Mirzaei & Haghighat, 2010). This is due to the high “roughness” of 

urban topography. With its many height variations between different buildings, different 

neighborhoods, and the much lower streets between them, urban areas provide a very rough 

overall surface for remote sensing. This leads to radiance measurements that require 

innumerable small-scale adjustments to account for. Instead, models are typically used to 

make a global adjustment to the data or large-scale adjustments for certain types of 

neighborhoods/ land use. The result is a loss of data and precision (Voogt & Oke, 2003). 
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A similar problem is that of surface heterogeneity and emissivity. Because different 

materials have different emissivity values, adjusting remotely sensed data to account for 

these many small differences is difficult. The typical solution is to use an average emissivity 

for the entire surface, resulting in a loss of precision here as well (Charlie J. Tomlinson et al., 

2011). A final issue is anisotropy. This is the tendency of objects to exhibit different values 

when measured along different axes. For example, the LST derived for a building may 

depend on whether the radiation strikes its roof on the horizontal plane or on its side in the 

vertical place. This adds an additional complication to remotely sensed data because aerial 

vehicles and satellites housing sensors are always in motion and cannot sense in a perfectly 

vertical way. Modelers are attempting to address this issue, but it has not been fully resolved 

(Lai et al., 2018; Voogt & Oke, 2003). 

1.1.3- Variables which affect UHI 

 The ultimate goal of the various methods of UHI investigation are to determine what 

factors cause or exacerbate UHI. Direct measurement of surface air temperature or remotely 

sensed LST are determined, then an effort is to made to work backwards to derive what 

factors may have affected the temperature data recorded. As will be addressed in detail in 

section 2. Literature review, many different studies have made progress toward elucidating 

which factors may contribute to UHI and to what extent they do so. The key factors seem to 

be dependent on urban fabric and patterns of build-up. Because these factors are tied to 

residents’ financial situation, this suggests that UHI may be experienced disproportionately 

by residents of various means. Residents’ socioeconomic status may also determine the type 

of neighborhood they dwell in and what that physically looks like in terms of building types, 

contiguity of urban fabric, presence of green space, and how much room/ space each resident 

can enjoy. With these things in mind, average income per household and population density 

may act as suitable, quantifiable indicators of these factors. By measuring these variables, 

UHI’s dependency upon them may be derived to some extent. 

1.2- The present study (MSc thesis) 

 This MSc thesis was undertaken in order to contribute to the investigation of UHI as 

well as how temperature variations correlate with the average incomes values of affected 

residents and the population densities of the communities in which they live. This thesis 

includes a broad literature review that looked at previous studies, their insights, their 

successes, and their shortcomings. Given the many limitations of using remote sensing to 

investigate surface air temperatures via LST, using in-situ surface air temperature data was 

preferred for this thesis. The intention was to find ties between the UHI phenomenon and the 

lives of those affected by it. The main research question was: How are surface temperatures 

in urban areas tied to factors which may increase or decrease the intensity of UHI for urban 

residents? Sub-questions included the following: (1) could in-situ surface air temperature 

data from crowdsourcing provide reliable, accurate results, (2) in the absence of derived UHI 

data, could surface air temperature alone be sufficient for highlighting where UHI occurred, 

(3) could average income per household be used as a risk factor for an urban resident’s 

vulnerability to UHI, (4) could population density be used to represent the extent of urban 
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build-up, (5) could the previously mentioned variables be found to have a statistically 

significant relationship to each other, (6) if so, what relationship would each have and to 

what extent, (7) how might all of the aforementioned results and relationships vary between 

different cities, different continents, and different scales? To answer these questions, this 

MSc thesis used crowdsourced in-situ surface air temperature data, average income per 

household data, and population density data for the state of Illinois, the city of Chicago, the 

continental portion of the Netherlands, and the city of Amsterdam. For this investigation, 

heavy use was made of ArcGIS Pro and Microsoft Excel to organize, process, produce, and 

visualize the data and results. 

2. Literature review 
2.1 Defining UHI- Components and variability 

 The urban heat island effect, often shortened to “UHI”, refers to excess warmth in an 

urban atmosphere compared to its non-urbanized surroundings. The phenomenon was first 

discovered and subsequently investigated by Luke Howard as he carried out observations on 

the weather of London in the 1810s, 1820s, and 1830s. It is fundamentally a thermal anomaly 

with horizontal, vertical, and temporal dimensions (Oke, 1982; Voogt & Oke, 2003). It is 

typically derived by finding the difference between a temperature taken inside the urban area 

and one taken outside the urban area. This is typically near the urban point value’s location 

but outside a carefully chosen urban buffer. Alternatively a similar operation can be done 

using average temperatures inside the urban area versus average temperatures just outside the 

buffer (Debbage & Shepherd, 2015). This temperature difference may be as small as .1 ℃ or 

as large as 10 ℃, depending on several factors (Azevedo et al., 2016). 

The anomaly itself is made up of multiple layers with their division based on 

elevation and city structure. The topmost layer is the urban boundary layer (UBL), which 

begins at the level of the rooftops and extends upwards into the lower atmosphere to end at 

the atmospheric boundary layer. Whereas the other layers are largely the result of local 

conditions and microclimate, the UBL represents the integration of these other layers with 

the surrounding macro- and mesoscale climate (Flores R. et al., 2016; Hu & Brunsell, 2015). 

Below the UBL lies the 

urban canopy layer (UCL), 

which extends from the 

rooftops to just above the 

surface or street level. The 

urban surface layer (USL) 

encompasses the surface/ 

street layer and the air 

resting directly atop it. It is 

important to note that USL 

can be measured in the form 

of air temperature or land surface temperature. One is a measurement of air at the surface 

while the other is a measurement of the surface itself. Each of these layers exhibits the UHI 

 

Figure 2-1: A simple diagram of the atmospheric layers 

that make up the urban heat island (Stewart, 2011) 
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effect differently and their interactions help to create the UHI (H. Kim et al., 2018; Voogt & 

Oke, 2003; Yuan & Bauer, 2007). These layers are illustrated in Figure 2-1. 

Although UHI has been studied for nearly two centuries, much of that study focused 

on identifying and isolating the observable effects of UHI. True understanding of this 

phenomenon began in the 1970s. At that time, scientific inquiry into urban effects on weather 

and environmental factors had progressed to the point where the underlying causes behind 

the UHI phenomenon could finally be elucidated (Oke, 1982). Since that time, studies have 

found that UHI intensity for both air temperature and land surface temperature varies 

depending on the time of day and the season of the year (Chen et al., 2006; Doick et al., 

2014). Furthermore, it seems that these fluctuations even vary depending on where in the 

world the city in question is located (Mirzaei & Haghighat, 2010). For most of the cities 

studied in the Upper Hemisphere in North America and Europe, UHI is most intense in the 

summer (Cheval & Dumitrescu, 2015). However many cities in China experience an equally 

intense UHI in winter, while cities in tropical or subtropical areas experience the most 

intense UHI during winter alone (Flores R. et al., 2016; Lai et al., 2018; Yadav & Sharma, 

2018). This suggests that the behavior and nature of UHIs depends heavily on regional 

climate patterns. 

When it comes to daily or diurnal temporal patterns, UHI also varies from city to city 

but shows some consistent regional tendencies. Many studies in mid-latitude cities have 

shown that UHI intensity is up to three times higher at night than during the daytime. The 

highest recorded UHIs often occur between midnight and 3:00 AM. Similarly, UHIs are 

often negative (urban temperatures are lower than non-urban) during early morning hours 

and cities may experience a relative “urban cooling” between 10:00 AM and noon (Ketterer 

& Matzarakis, 2015; Memon et al., 2009). To understand some of these variations, it is vital 

to understand the fundamental causes of the UHI effect. 

2.2 Causes of UHI 
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2.2.1- Impervious surfaces and street canyons 

 Figure 2-2 

gives a brief visual 

overview of the 

causes of UHI, will 

be discussed in more 

detail below. It is 

important to first 

note that UHI has 

been detected in 

cities with 

populations of less 

than 10,000 people 

(Mathew et al., 

2018). This is 

because many of the 

primary causes of 

UHI are due to how 

humans alter the land 

when they urbanize 

an area, regardless of the area’s size. The most notable of these is the replacement of 

vegetated areas with impervious surfaces, fundamentally altering the area’s land use and land 

cover (Azevedo et al., 2016; Chen et al., 2006; Huang et al., 2011; H. Li et al., 2018). 

Examples of the impervious surfaces ubiquitous in urban areas include concrete, tiles, bricks, 

and roof sheeting for buildings as well as concrete, bitumen, and asphalt for roads and 

parking lots (Mathew et al., 2018). Pavements cover about 40% of cities on average, while 

man-made materials in general cover about 60% of city surfaces. This is problematic because 

these materials all have significantly lower albedos and greater heat storage capacities than 

the vegetation they replace. For example, asphalt concrete has an albedo of 5 – 15% 

depending on its age (Mohajerani et al., 2017). This means that a huge amount of light is 

being absorbed and converted into heat at the surface rather than being reflected back up into 

the atmosphere.  

These man-made materials also have higher thermal admittance that can capture, 

store, and then release higher quantities of heat compared to natural surfaces. (Memon et al., 

2009) This is problematic because those same materials will re-emit this stored energy later, 

especially at night, resulting in slower cooling rates for urban areas and higher UHI at night. 

(Yadav & Sharma, 2018) In terms of physics, cities receive just as much shortwave radiation 

as their non-urban surroundings but have higher longwave radiation inputs and outputs 

because of these man-made materials (Oke, 1982). This same effect occurs to a lesser extent 

when land is cleared of vegetation and left bare. Bare land and land undergoing construction 

make the greatest contributions to UHI after fully developed urban areas due to increased 

albedo and lack of vegetation (W. Li et al., 2017). 

 

Figure 2-2: A simple diagram of the many causes of UHI and how 

they interact. (Mohajerani et al., 2017) 



[13] 

 

 An additional 

cause of UHI is the 

physical structure of cities, 

particularly the 

phenomenon of “street 

canyons.” A street canyon 

consists of a sharp, 

vertically inclined space 

surrounded by two or 

more tall buildings, often 

along a street (Debbage & 

Shepherd, 2015; Oke, 

1982). These street 

canyons are more common 

in more built-up areas with 

taller buildings, where 

they suffer from reduced 

sky view factor. This 

factor is proportional to 

the area of overlying 

hemisphere that is open to 

the sky (Oke, 1982). 

Unfortunately reduced sky 

view factor causes urban 

surfaces within street 

canyons to emit less of the 

long-wave radiation that 

they have stored over the course of the day, resulting in more stored heat. The severity of this 

depends on the height to width ratio of the buildings forming the street canyon (Hart & 

Sailor, 2009). Figure 2-3 gives a glimpse of how SVF varies across a densely populated city. 

Even the radiation that is emitted from man-made surfaces may never reach the 

atmosphere because of the geometry of the street canyon, which ensures that the surfaces of 

the structures forming the canyon will endure extensive reflections as the radiation bounces 

back and forth between them during emission, absorption, and re-emission (Mohajerani et al., 

2017). Considering that many of these surfaces have emissivities of .87 to .97, this repeating 

cycle can form an extensive form of radiative flux in urban areas (Huang et al., 2011; Voogt 

& Oke, 2003). The end result is that the heat loss rate in a street canyon can be up to four 

times slower than it would be in a more open setting given the same materials (Rafiee et al., 

2016). 

2.2.2- Anthropogenic heating, clouds and wind, and urban geometry 

Anthropogenic heating, or heat produced by man-made activities, is another 

contributor to UHI. This includes heat released from the engines and exhaust of vehicles, 

 

Figure 2-3: A map of the sky view factor (SVF) across the 

city of Amsterdam. (Rafiee et al., 2016) 
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waste heat produced by heating, ventilation, and air-conditioning of buildings, and heat 

produced by human metabolic processes (Huang et al., 2011; Mirzaei & Haghighat, 2010). 

The high population density of many cities ensures that this last value is not negligible within 

urban areas. Because most cities are high traffic areas due to commuting, and because large 

buildings dominate the setting, total anthropogenic heating in a given city can really add up 

(Oke, 1982). 

 Meteorological conditions can also contribute to UHI. Cloud coverage and wind 

speed, which act as indicators of atmospheric stability, can have an adverse effect on UHI 

intensity (Oke, 1982). These two factors are negatively correlated with maximum UHI, 

meaning that ideal conditions for the highest UHI intensity are a clear sky and still winds 

(Azevedo et al., 2016; Y. H. Kim & Baik, 2002). Conversely, UHI intensity will steadily 

diminish as cloud cover and wind speed increase. This is because higher wind  speeds lead to 

more turbulent mixing, which reduces the temperature differences in the near surface air 

(Yadav et al., 2017). Relative humidity also plays a role in boosting UHI, though this 

relationship is less linear than for cloud cover and wind speed (Lai et al., 2021). 

 The shape and layout of urban spaces also contributes heavily to UHI. These are often 

referred to as urban form indicators (UFIs) and include factors like land use, density of build-

up/ urban density, area of the city, city population, population density, and contiguity 

(connectedness) of built-up areas. There are well-established positive relationships between 

UHI intensity and both city size and urban density. The heat diffusion rates of high-density 

urban buildings is lower than for low-density buildings, which results in more heat storage 

and slower release. (Liang et al., 2020) This would suggest that less dense, more spaced out 

urban areas would be less prone to UHI. However, cities exhibiting this urban form, often 

referred to as “urban sprawl”, have been found to exhibit high UHI as well (Debbage & 

Shepherd, 2015; Kamruzzaman et al., 2018). Instead, contiguity (the degree of connectedness 

and lack of gaps in said connectivity) of built-up areas may be the dominant factor that 

determines intensity of UHI. Some studies have indicated that increasing the spatial 

contiguity of urban development enhances UHI regardless of its urban density (Debbage & 

Shepherd, 2015; Liang et al., 2020). 

Studies also show that population density correlates more strongly with UHI than 

population alone, which is likely tied to both density of build-up and building type (Debbage 

& Shepherd, 2015; Steeneveld et al., 2011). Other studies support the theory that building 

type has a strong effect on UHI. Buildings that are both compact and mid-rise exhibit the 

highest UHI when compared with low-rise and high-rise buildings as well as open or spare 

plan buildings (Yang et al., 2020). Perhaps because cities that grow rapidly often do so with 

less planning, they often exhibit higher urban density and therefore higher UHI. Rapidly 

industrializing cities in China and India, as well as rapidly growing cities in South Korea 

have been shown to exhibit some of the most marked increases in UHI over multiple years 

(Liang et al., 2020; Zhao et al., 2016). Figure 2-4 shows how UHI varies over the summer 

season in a densely populated European city. 
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2.2.3- Vegetation and the role of evaporative cooling 

 One of the most significant causes of UHI is the loss of vegetation in urban areas. 

Studies have repeatedly shown that areas with higher vegetation cover have lower 

temperatures and lower seasonal thermal amplitudes (Flores R. et al., 2016). One study in 

New York City found that air temperatures were highest in the most densely urbanized areas 

of the city while the lowest temperatures were found in the most highly vegetated areas 

(Susca et al., 2011). By their nature, such vegetated areas are more open than street canyons, 

allowing for more efficient ventilation and cooling via changes to the local heat flux (Hart & 

Sailor, 2009; Liang et al., 2020). But the primary reason they are so much cooler is due to 

evaporative cooling.  

Evaporative cooling 

occurs when water is 

converted from liquid to 

vapor state using thermal 

energy in the surrounding 

area. This reduces the 

temperature of the air in that 

area, effectively cooling it. 

A key component for this to 

take place is the ability of a 

surface to retain water, 

which can then be converted 

to vapor (Oke, 1982). Bare 

soil retains water much 

more effectively than the 

impervious surfaces that 

dominate most cities, of 

course. But the vegetation 

atop this soil strongly 

reinforces the effect. Plants 

and trees transpire water in 

steady volumes throughout 

the day, making more water available to drive evaporative cooling, promoting an ongoing 

cycle (Doick et al., 2014). 

This cooling effect is really just an instance of less warming occurring since solar 

energy is intercepted and used to convert the state of water instead of warming the urban 

fabric. In the absence of additional warming, the surface is cooler than it would otherwise be 

(Doick et al., 2014). This further illustrates why land use changes due to urbanization are the 

underlying cause of many other factors which combine to create the UHI effect (H. Li et al., 

2018). 

2.3 Effects of UHI 

 

Figure 2-4: A map illustrating the daytime UHI intensity of 

the city of Birmingham over the months of June, July, and 

August. (Azevedo et al., 2016) 
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2.3.1- Climate change and energy infrastructure 

 UHI has consequences that go far beyond simply a higher local temperature. Higher 

temperatures directly contribute to global climate change as well as exacerbating other urban 

environmental problems (Kamruzzaman et al., 2018; Lowe, 2016). For example, higher 

temperatures enable the basic chemical reactions that create ground level ozone while 

emissions from automobiles and motorcycles supply the oxides of nitrogen and volatile 

organic compounds needed to fuel the reactions. The result is that higher temperatures 

throughout the day generate more ozone at ground level which then absorbs pollutants and 

lingers over cities as smog which further concentrates the pollutants (Mirzaei & Haghighat, 

2010; Yadav et al., 2017). Unfortunately higher temperatures also encourage people living in 

cities to use more energy to cool their homes and businesses via fans and air conditioning. 

The American EPA has recognized that this leads to increased energy consumption, which 

further augments climate change since producing more energy results in the release of more 

greenhouse gases. At the same time, air conditioners release excess heat into the outdoor 

portions of the city, reinforcing the original problem of higher exterior temperatures 

(Kamruzzaman et al., 2018; Lowe, 2016; Mohajerani et al., 2017). 

 The higher temperatures caused by UHI also affect vital urban infrastructure, 

especially the energy grid. Transformers can generally cope with internal temperatures of up 

to 98 ℃ without affecting their life expectancy and day-to-day operation. However, going 

above this internal temperature by as little as 6 ℃ can reduce a typical transformer’s life 

expectancy by 50%. During several recent heat waves in Europe, this soft limit has been 

surpassed for urban transformers in the affected cities over multiple days (Chapman et al., 

2013; C. J. Tomlinson et al., 2013). Unfortunately higher temperatures put more pressure on 

the energy grid even as the transformers it depends on are themselves taxed ever more 

intensely, leading to an increasingly precarious and costly situation. 

 UHI affects the environment in and around a city beyond simply increasing the 

temperature too. UHI has been shown to increase the frequency of storms and precipitation 

events in many cities (Kamruzzaman et al., 2018). In Bangkok, research showed that UHI led 

to many other more subtle ecological problems. This included a decrease in groundwater 

levels, widespread subsidence, and changes to local wind and rainfall patterns (Pakarnseree 

et al., 2018). In addition to harming the environment, these examples provide further 

evidence of how UHI, which is caused by man-made activities, makes urban life increasingly 

difficult for the people whose activities are causing UHI. 

2.3.2- Effects on extreme temperatures and excess heat on health 

The most obvious and noticeable effect UHI has on regular denizens of cities is in the 

way it augments heat waves. A heat wave can be defined as a prolonged period of hot 

weather with temperature substantially higher than the seasonal average value for several 

days (Zinzi et al., 2020). Several studies have shown that UHI increases both the frequency 

and longevity of heat waves around the world (Lowe, 2016). Considering that heat/ drought 

is amongst the top 10 fatal natural hazards in the U.S., the danger of heat waves augmented 

by UHI becomes more clear (Huang et al., 2011). North American cities are not alone in their 
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suffering, however. The 2003 European heat wave led to thousands of deaths or lasting 

injuries- somewhere between 35,000 and 50,000 in total. Most of them were in cities, due to 

augmentation by UHI (Chapman et al., 2013; Cheval & Dumitrescu, 2015). On top of the 

cost in lives, one study showed that UHI increased the average temperature of a heat wave by 

4.3 ℃, which resulted in a 39% increase in energy costs to cope (Zinzi et al., 2020). 

 Even outside of heat waves, high temperatures pose grave health risks. One study of 

several cities on different continents found that UHI was amplified for all cities by 2.6 ℃ on 

average, while this jumped to 4.7 ℃ for cities with areas greater than 500 km2. This is 

significant because heat stress can 

be initiated by an increase in body 

temperature of only 1 ℃ from a 

baseline of 37 ℃ (Sabrin et al., 

2020).  Studies investigating the 

human impact of urban heat have 

found that thermal discomfort from 

excess heat is experienced more 

frequently and/or more intensely in 

urban areas due to UHI. Research 

shows that skin temperature and 

deep body temperature equally 

contribute to thermal comfort, 

while air velocity seems to have a 

significant effect on skin and body 

temperatures (Guéritée & Tipton, 

2015). This means that, even as 

street canyons trap and hold heat 

around urban denizens, the wind 

retarding or blocking effect of 

large buildings further reduces 

thermal comfort. Because UHI is 

most intense when the wind is still, 

people will experience even more 

discomfort due to lack of wind 

velocity against their skin. It is estimated that, at present, 30% of the global population is 

exposed to climate conditions exceeding established mortality thresholds (Jenerette, 2018). 

This impairs health in general, but may be even more problematic at night. Because UHI is 

often most severe at night, urban residents’ quality of sleep will be adversely affected. It is 

well-established that getting less sleep and/or a lower quality of sleep affects overall health 

and the ability to concentrate, so nighttime UHI has a doubly negative effect on the health of 

urban residents (Krüger, 2015). Figure 2-5 shows how health risk from heat varies 

throughout a densely populated city. 

 

Figure 2-5: A spatially assessed heat-health risk map 

for the city of Birmingham. (Charlie J. Tomlinson et 

al., 2011) 
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 Extreme temperatures negatively affect human health in less subtle ways as well. 

They are directly responsible for heat stroke, heat syncope, heat cramps, and death. Excess 

heat is responsible for more deaths than all other weather-related hazards combined (Mallen 

et al., 2019). Additionally, exposure to extreme heat has been shown to exacerbate existing 

chronic illnesses in human residents (Loughnan et al., 2012). Several different studies have 

shown how mortality increases with extremely high temperatures; some example results vary 

from 9% to 17%, but the correlation is clear and consistent- increased temperature means 

increased mortality (Loughnan et al., 2012; Madrigano et al., 2015). 

2.3.3- Demographic factors and heat vulnerability 

As might be expected, the degree to which urban residents share the burden of 

thermal discomfort due to UHI varies greatly. Research has shown that income is a powerful 

determinant of heat exposure, with lower income residents experiencing more heat exposure, 

particularly because they cannot afford to cool their residences or lack health insurance. 

There is also an established association between heat-related morbidity and mortality 

(Hondula et al., 2021; Jaganmohan et al., 2016). Certain other factors increase the risk of 

heat-related health problems. These factors include being an ethnic minority, lacking a social 

network, being elderly, and being homeless (Huang et al., 2011). Considering that 77% of the 

homeless population in the U.S. lives in urban areas, this is especially bad news for them 

(Lowe, 2016). Other studies have found that additional factors increase vulnerability to heat, 

including educational level, economic status, population density of residence, dwelling type, 

and poverty (Loughnan et al., 2012; Madrigano et al., 2015; Méndez-Lázaro et al., 2018; 

Sabrin et al., 2020). When considering how heat vulnerability varies spatially across a city, 

one study found that unemployment and lack of access to health insurance accounted for 

35% of the observed variation. The same study found that the warmest areas of the city 

investigated were populated by an increased number of residents who lacked jobs and access 

to health insurance (Méndez-Lázaro et al., 2018).  

Though many consider it common knowledge, ample evidence shows that urbanized 

areas around the world, but especially in the U.S., are residentially segregated along 

socioeconomic as well as racial/ ethnic lines (Jenerette et al., 2007). This is borne out by 

studies that show strong correlations between both median household income and percentage 

of non-white ethnic residents with both mean vegetation level and population density for a 

neighborhood (Jenerette et al., 2007). Studies have shown that access to green spaces (which 

show reduced UHI) is frequently restricted in low-income and minority-dominated 

neighborhoods (Jenerette, 2018). Strong correlations have also been found between higher 

incomes and increased mean vegetation by urban neighborhood. Similarly, higher population 

density is correlated with lower mean vegetation by neighborhood. Finally, higher population 

density correlates with lower diversity of neighborhood configuration. This is because higher 

population density leads to fewer possible build-up configurations (Jenerette et al., 2007). 

This results in neighborhoods with fewer resources exhibiting denser urban build-up and 

greater contiguity of build-up, so that they experience UHI disproportionately more severely 

than those with more resources. This is known as the “luxury effect” hypothesis (Jenerette et 

al., 2007). Because of ethnic and socioeconomic equalities, the neighborhoods most affected 
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by UHI are typically those inhabited by poorer, underemployed, non-white residents. By the 

same token, those with the fewest resources often reside in the warmest parts of a city 

(Huang et al., 2011). All of this is supported by the fact that heat-related mortality varies on 

the neighborhood scale and the extent and severity of UHI is highly localized (Sabrin et al., 

2020). 

3. Methods 
3.1- Study areas 

 The areas of study 

chosen for this research were 

the state of Illinois in the 

United States and the 

continental portion of the 

nation of the Netherlands. 

Additionally, a metropolis was 

chosen within each study area 

in order to analyze the data at a 

higher resolution. For Illinois, 

this was the city of Chicago; 

for the Netherlands, it was the 

city of Amsterdam. These areas 

were chosen due to the author’s 

experience living in each one, 

with the hope being that 

familiarity with these areas 

would lead to greater insights 

when interpreting the results of 

this study. Additionally, 

Chicago is known for its 

dangerously hot conditions in 

the summer while Amsterdam 

is known for its mild, rainy 

climate (“Amsterdam Climate 

and Weather | 

Amsterdam.info,” n.d.; “City of 

Chicago :: Weather Extremes - 

Extreme Temperatures,” n.d.). 

So these study areas were 

chosen because of their great 

differences as well. Illinois lies 

in the Midwest of the United 

States in North America while 

the Netherlands lies in Western 

 

Figure 3-1: The state of Illinois. Green areas indicate 

slightly hilly terrain. (“Illinois Maps & Facts - World 

Atlas,” n.d.) 
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Europe along the North Sea. They are very different climactically as a result, despite their 

topographic similarities (both are very flat). Illinois has about 3.5 times as much land area as 

the Netherlands but only 75% as many residents. Chicago and Amsterdam bear similar 

contrasts. Chicago has about 2.5 times as much land area as Amsterdam and about 3.5 times 

as many residents. Despite being so much larger, Chicago’s population density is 2-4 times 

higher than Amsterdam depending on the neighborhood. Below is a brief analysis of each of 

the four study areas. Detailed information regarding each one’s average income and 

population density are found in the Results chapter where it is presented as maps and briefly 

described. 

 The state of Illinois has a total land area of about 55,500 square miles or 143,750 

square kilometers. It has a population of 12.8 million people as of July 2021. Of this number, 

88% dwell in urban areas, while urban counties only make up around 20% of the state’s total 

area as of 2010 (“U.S. Census Bureau QuickFacts: Illinois,” n.d.). Illinois's climate is 

continental type with cold winters, warm summers, and many aspects of its weather subject 

to rapid and frequent changes over the course of a day, a week, or a month. Temperatures can 

range from as high as 35 ℃ in the summer to as low as -20 ℃ in the winter. The state 

typically experiences 105 days of precipitation each year and its thunderstorms can be quite 

severe (“Climate of Illinois - Narrative, Illinois State Climatologist Office, Illinois State 

Water Survey, U of I,” 

n.d.). Topographically, the 

state is very flat with hilly 

terrain only found in the 

northernmost portion of 

the state. Its western 

border is made up of the 

wide Mississippi River, 

while its northeastern 

corner abuts Lake 

Michigan (one of the 

Great Lakes). Figure 3-1 

shows the state and its 

neighboring states. 

Illinois’s 102 counties 

were used as the primary 

spatial units for Illinois 

mapping processes. 

 The city of 

Chicago is located in the 

northeastern corner of 

Illinois. It has a total land 

area of about 225 square 

miles or 580 square 

 

Figure 3-2: The city of Chicago (“File:Chicago community 

areas map.svg - Wikipedia,” n.d.) 
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kilometers. It has a population of 2.7 million people as of the 2020 U.S. census (“U.S. 

Census Bureau QuickFacts: Chicago city, Illinois; Illinois,” n.d.). Chicago’s climate largely 

parallels that of Illinois, but winters tend to be cooler on average due to its location at the 

northern end of the state. Lake effect weather also results in more frequent precipitation and 

cloudy conditions as well as higher humidity since Chicago’s eastern border lies along Lake 

Michigan. Like most of Illinois, the city is very flat. Figure 3-2 shows the city and its major 

sectors/ regions. Chicago’s 97 neighborhoods were used as the primary spatial units for 

Chicago mapping processes. 

 The nation of the 

Netherlands has a total land 

area of about 33,700 square 

kilometers. It has a population 

of 17.1 million people as of 

end-of-year 2021. Of this 

number, 92% dwell in urban 

areas, while urban 

municipalities only make up 

around 37% of the country’s 

total area as of 2010 

(“Netherlands Population 2021 

(Demographics, Maps, 

Graphs),” n.d.). The climate of 

the continental Netherlands is 

oceanic type with mild 

summers, cool winters, and 

significant precipitation 

throughout the year. 

Temperatures can range from as 

high 30 ℃ in the summer to as 

low as 0 ℃ in the winter. 

Rainfall is a frequent 

occurrence, with the country 

experiencing 139 days of precipitation each year, though storms are typically mild. Much of 

the country is located at or below sea level and is topographically very flat except for the 

southern portion near Maastricht. The North Sea forms most of the western and northern 

border of the country, while the Ijsselmeer dominates the north-central portion of the 

country. Additionally, much of the center of the country hosts the Rhine, its distributaries, 

and their large, shared delta that dumps into the North Sea (“Netherlands - Climate data and 

average monthly weather | Weather Atlas,” n.d.). Figure 3-3 shows the Netherlands and its 

provinces. The Netherlands’ 437 municipalities were used as the primary spatial units for 

Netherlands mapping processes. 

 

Figure 3-3: The continental Netherlands (“Netherlands 

Maps | Maps of Netherlands,” n.d.) 
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 The city of Amsterdam is located just northwest of the center of the Netherlands in 

the province of Noord-Holland. It has a total land area of about 219 square kilometers. It has 

a population of 741 thousand people as of end-of-year 2021. Amsterdam’s climate is similar 

to much of the rest of the nation, although it trends a bit more rainy and cloudy on average. 

This is because the city is cut through by the IJ, which connects to the larger IJsselmeer, 

influencing the city’s 

weather. Like much of the 

Netherlands, it is very flat 

and features several canals 

that divide the city along 

their lengths (“Netherlands 

- Climate data and average 

monthly weather | Weather 

Atlas,” n.d.; “Netherlands 

Population 2021 

(Demographics, Maps, 

Graphs),” n.d.). Figure 3-4 

shows the city of 

Amsterdam and its major 

sectors. Amsterdam’s 454 

official neighborhoods 

were used as the primary 

spatial units for 

Amsterdam mapping processes. 

3.2- Overview of methodology 

 

Figure 3-4: The city of Amsterdam (“Amsterdam Districts 

and Neighborhoods,” n.d.) 
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 Figure 3-5 illustrates the overall workflow of the thesis. The first step of the process 

was data collection. Average income and population density data were collected from several 

different websites with demographic information for each study area. This information was 

then added to a shapefile containing the administrative units for each study area in ArcGIS. 

This resulted in the creation of maps for both variables across the four study areas (the 

mapping processes stage). Surface air temperature data was then collected for as many points 

as possible and practical in each study area and then added to ArcGIS as point data. Because 

temperature values were taken for four different times in a single day, this resulted in four 

surface air temperature maps for each study area, giving a total of 16 overall. This part of the 

mapping processes stage was a bit more time-consuming. Interpolation was then performed 

on these point data maps in order to create surface air temperature maps with continuous 

field data across the entirety of each study area. Finally, the data analysis was intended to 

find correlations between each of the three variables. This was accomplished via 

geoprocessing tools in ArcGIS using geographically weighted regression and local bivariate 

relationships. Essentially the surface air temperature maps for each study area were 

compared with the average income and population density maps for each study area in order 

to find patterns and correlations across the geographic space of each study area at each of the 

four times analyzed. The various steps of this methodology are explained in more detail 

below. 

 

Figure 3-5: A workflow chart of the data collected and processes undertaken to create the 

maps presented in this study 
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3.3- Data collection  

3.3.1- Average income and population density data 

In order to compare how UHI intensity correlated with the vulnerability of urban 

residents, average household income was chosen as the indicating value. In order to compare 

how UHI intensity correlated with urbanity and extent of build-up, population density was 

chosen as the indicating value. For the state of Illinois, average household income values and 

population density values were collected for each county as of the end of 2018 (“Illinois 

Median household income (in 2018 dollars), 2014-2018 by County,” n.d.). For the city of 

Chicago, values were collected for each neighborhood; average household income values are 

as of 2016 while population density values are as of 2019 (“Chicago, IL Neighborhood Map - 

Income, House Prices, Occupations - list of neighborhoods,” n.d.; “Per Capita Income | City 

of Chicago | Data Portal,” n.d.). For Illinois and Chicago, household income values are in 

U.S. dollars for their respective years, while population density values are in persons per 

square mile. For the continental portion of the nation of the Netherlands, values were 

collected for each municipality; average standardized income per household values are as of 

2019 while population density values are as of 2020 (“CBS Open data StatLine,” n.d.). For 

the city of Amsterdam, values were collected for each neighborhood; average standardized 

income per household values are as of 2018 while population density values are as of 2020 

(“CBS Open data StatLine,” n.d.). For the Netherlands and Amsterdam, income per 

household values are in Euros for their respective years, while population density values are 

in persons per square kilometer. The average income per household and population density 

data gathered were then organized into MS Excel worksheets and recorded there. 

3.3.2- Surface air temperature data 

 True, accurate measurements of surface air temperature were critical to the success of 

this study. Therefore surface air temperature values for each study area were collected 

directly via NETATMO without need for additional correction. NETATMO is a smart home 

device that, once installed at a person’s home, measures and monitors weather conditions 

nearby via an outdoor module. The values recorded include air temperature, humidity, and 

wind speed. This data is crowdsourced and freely available online (“Smart Weather Station 

Indoor Outdoor | Netatmo,” n.d.). The website also allows users to filter out sites that its 

analysis algorithms suspect are inaccurate due to the module having been exposed directly to 

sunlight or the elements. This would cast doubt on the accuracy of the data, so all sites used 

for this study were those considered trustworthy according to this filtering process.  

 Gathering the NETATMO site data was a time-consuming process due, in part, to the 

way that NETATMO limits the user’s access to other users’ data. The first step was to select 

sites for each study area that allowed for the greatest spread/ evenly spaced grid of values 

across each study area. This was done visually and required much back-and-forth alteration 

of zoom in order to see all the available sites on the NETATMO weather map webpage. 

Measurements for all sites were restricted to a single day- August 20, 2021. This day saw 

relatively mild weather with high temperatures for both Illinois and the Netherlands, so it 

was considered the best candidate for studying temperature variations and UHI intensity. 



[25] 

 

Temperature measurements were recorded for 3:00 AM, 9:00 AM, 3:00 PM, and 9:00 PM on 

this day. These values were organized into and recorded in MS Excel worksheets using the 

name of the site. During this process, it was discovered that some sites did not have data for 

the chosen date. In this case, the site was discarded and a near neighbor was used when 

possible. The nearest town or city to each site was also recorded for increased ease of 

reference. Latitude and longitude coordinates for each site were then gathered via 

GoogleMaps by visually comparing the site location on the NETATMO weather map to its 

counterpart in GoogleMaps. This data was added to the Excel sheet (“Netatmo Weathermap,” 

n.d.). All sites chosen and their respective spatial spreads are illustrated in Appendix A. 

3.4- Map processes 

3.4.1- Average income and population density maps 

 The first step of map creation was to acquire shapefiles for each of the four study 

areas that contained their administrative boundaries. Therefore a shapefile with these 

boundaries was collected for each study area from their respective state, national, or 

municipal government website. These shapefiles were imported into ArcGIS Pro to visually 

indicate the geographic boundaries of the study. For the Netherlands, these units were 

municipalities. For the city of Amsterdam, the units were neighborhoods as recognized by 

the national statistical office (CBS) that belong to the city proper. For Illinois, the 

administrative units were counties. For the city of Chicago, it was a mix of neighborhoods 

(fuzzily defined by history and popular convention) and the nearby counties outside the city 

proper. This is because Chicagoland or Greater Chicago sprawls far beyond Cook County 

and the official city limits. Although the sizes of these administrative units vary greatly, 

finding location-specific demographic information for these units is the most straightforward 

method. This is, of course, since municipal, state/ provincial, and national governments 

organize and track such information by the administrative units they themselves have created 

and administered historically.  

The average income per household and population density data previously gathered in 

MS Excel worksheets was then added as tables to ArcGIS. Some adjustments had to be made 

where neighborhood names for Chicago’s demographic data and its shapefile didn’t exactly 

match up, but the process was otherwise smooth. The data in these tables was then attached 

to each shapefile using the matching administrative units. This was accomplishing using 

joins, and then the choice was made to represent the range of data visually as graduated 

coloration with divisions based on the range of values for each data set. This resulted in six 

classes for average income values and six classes for population density for Illinois, five of 

each class for Chicago, six of each class for the Netherlands, and six of each class for 

Amsterdam. 

3.4.2- Surface air temperature maps 

The NETATMO surface air temperature data for each site recorded in MS Excel 

worksheets was then added to ArcGIS as tables for each study area. The temperature data for 

each site was then added as point data to its respective study area map in ArcGIS, which each 

of the four times comprising a single layer. This resulted in four maps per study area that 
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each showed temperatures at the sites chosen for that study area, but with vast swaths of 

unknown temperatures between sites.  

Inverse distance weighting (IDW) is a simple but straightforward method for 

interpolation when continuous field data is not available. Therefore IDW was used to 

interpolate the areas between the point data in order to create a raster image of continuous 

field data for each of the four times in each of the four study areas. For this process, the 

output cell size used was determined by ArcGIS Pro based on the size and number of the 

units being mapped and varied by study area. The weighting power used was 2, the search 

radius was variable, and the number of points to sample was left at 12. These are the default 

settings for the tool in ArcGIS and experimentation with other settings suggested these were 

optimal for use in each map. The resulting continuous field temperature data was visualized 

as a map with color gradations along the range of temperatures found across each study area 

at each of the four times recorded. Each study area ended up with nine different temperature 

classes, regardless of the time chosen. 

Because this study’s demographic data was tied to administrative units, temperature 

needed to be as well. Using the continuous temperature maps to find the average temperature 

of each administrative unit was deemed the simplest way to derive temperature data for 

comparison to the demographic data. This was computed using the Zonal Statistics as Table 

tool, which created a table with the average temperature information for each administrative 

unit at each of the four times for each of the four study areas. These values were then mapped 

by joining the average temperature data from the table to the original shapefile for each study 

area’s administrative units. This produced a map with these same values represented visually 

across each study area. This map data was then exported as Excel tables for use in the data 

analysis. 

3.5- Data analysis 

 One of the primary goals of this study was to determine if there was statistical 

significance between the air surface temperature data and the factors which are believed to be 

tied to temperature and UHI intensity. Geographically weighted regression (GWR) and local 

bivariate relationships/ bivariate analysis (BA) were used to explore and characterize these 

relationships. As a first step, surface air temperature averages for each administrative unit 

were combined into a single Excel document along with average income per household and 

population density for each study area. This file acted as a sort of omnibus of all the data 

gathered. This data held in this file was then joined onto each study area’s respective 

shapefile with administrative boundaries. This correlation map file was then used to process 

the GWR and BA for each of the four times in each of the four study areas for each of the 

two relationships being explored. Both forms of data analysis were performed in ArcGIS Pro 

using the Geographically Weighted Regression and Local Bivariate Relationships 

geoprocessing tools. 
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3.5.1- Geographically weighted regression 

The intention of GWR is to analyze the relationship between two variables across a 

given space by fitting a regression equation to every feature in the dataset. The tool predicts a 

value for the dependent variable based on the standard deviation between the two variables 

chosen. It then compares the actual recorded value to the predicted value and compares the 

difference between the two across the geographic space being analyzed. The GWR used for 

this project created a map of each study area color coded into seven classes to illustrate the 

local R-squared value for each administrative unit. The R-squared values show how closely 

the predicted values match the recorded values in order to illustrate where other factors may 

be significantly affecting the relationship between the two variables. R-squared values range 

from 1 to .01, with 1 indicating a perfect fit between the observed values and those predicted 

by the model (“How Geographically Weighted Regression (GWR) works—ArcGIS Pro | 

Documentation,” n.d.). The dependent variable for the first GWR run was average household 

income while the explanatory variable was population density. For all other runs, average 

surface air temperature acted as the dependent variable while the explanatory/ exploratory 

variable was either average household income or population density. 

Because temperature values formed a normal distribution, a continuous (Gaussian) 

model type was used. Bandwidth is another consideration for GWR and may be based on 

distance or number of neighbors. The number of neighbors was chosen for this parameter, 

and the specific value chosen was arrived at after using the ”golden search” option to find the 

result with the lowest Akaike Information Criterion (AICc) value. This is because a smaller 

AICc value is used as an estimator of prediction error and thereby relative quality of 

statistical models for a given set of data. The lower the value, the lower the prediction error 

and the higher the relative quality of the statistical model (“How Geographically Weighted 

Regression (GWR) works—ArcGIS Pro | Documentation,” n.d.). The optimal number of 

neighbors considered varied for each study area as follows: two for Chicago, five for Illinois, 

and ten for Amsterdam and the Netherlands. GWR also requires a weighting scheme to 

determine the extent to which features further away from a regression point are given less 

weight. For this aspect of the process, a Gaussian scheme was preferred since a Bisquare 

scheme causes neighbors outside the number chosen to have zero effect on the area under 

analysis. Because temperature values, average income values, and population distribution 

values may have small but real effects on each other over distances (especially within a 

metropolitan area), the bisquare option seemed less realistic. 

3.5.2- Local bivariate analysis 

BA works similarly to GWR, but goes a step further. It does so by calculating an 

entropy statistic in each zone that quantifies the amount of shared information between the 

two variables. This entropy statistic can capture any structural relationships between the two 

variables, such as exponential, quadratic, sinusoidal, or even complex relationships that 

cannot adequately be represented by typical mathematical functions. Entropy is a 

mathematical property used to quantify the amount of uncertainty in a random variable. In 

general, higher entropy is found where a variable is less predictable. The results of this 

analysis classify the relationship between the two variables for each zone into one of six 
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possible results: Not Significant, Positive Linear, Negative Linear, Concave, Convex, or 

Undefined Complex. A result of Not Significant indicates that the relationship is not 

statistically significant. A result of Positive Linear indicates that the dependent variable 

increases linearly as the explanatory variable does the same. The opposite holds true for a 

result Negative Linear, where the dependent variable decreases linearly as the explanatory 

variable increases. A result of Concave or Convex indicates how the shape of the curve of the 

dependent variable changes as the explanatory variable increases. Concave curves tend to 

bend downwards while convex curves tend to bend upwards. A result of Undefined Complex 

indicates that the variables are significantly related but the type of relationship cannot be 

satisfactorily described in a linear manner (“How Local Bivariate Relationships works—

ArcGIS Pro | Documentation,” n.d.).The BA used for this project created maps with each 

zone color coded into one of the six classes depending on the statistically significant 

relationship perceived by the tool. The number of neighbors considered was roughly 50% of 

the total zones analyzed for each study area since this seemed to give the most balanced 

results. Additionally, the number of permutations was 199 and the level of confidence was 

90%. False Discovery Rate Correction was also applied along with a scaling factor of 0.5 

(the default). 

4. Results and Discussion of Mapping Processes 
 The results of the mapping processes of the study are presented below. Each section 

presents the maps and interpretation for one study area. This includes the average income 

data and population density for each study area presented as a color-coded map. This is then 

followed by the interpolated surface air temperature data for each study area as a map. These 

temperature maps have color gradations across the range of temperatures for each of the four 

times recorded. Finally, the surface air temperature changes across the four times recorded 

are discussed and interpreted. For measurements of distance, miles were used for Illinois and 

Chicago, while kilometers were used for the Netherlands and Amsterdam. 

4.1- Illinois maps 
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4.1.1- Average income and population density 

  

Figure 4-1 shows the average income values and population density values for Illinois 

by county. Average incomes for Illinois counties range from $33,799 to $91,764. Although 

they vary across the state, they tend to be highest near the large cities of Chicago in the 

northeast, St. Louis in the southwest, and Bloomington in the center-north portions of the 

state. The southern half of the state also tends to have lower average income compared to the 

rest of the state, with a similar trend in the western counties. 

 Population density for Illinois counties ranges from 12 persons to 5,495 persons per 

square mile- a vast range that illustrates the rural and urban extremes of the state. The 

majority of the state has relatively low population density aside from the counties that make 

up the Chicagoland area. This is also true to a lesser extent for the counties near Peoria, the 

Quad Cities, and St. Louis. 

 

Figure 4-1: Illinois counties by average income (in U.S. dollars) and population density 

(in persons per square mile) 

  



[30] 

 

4.1.2- Surface air temperature values 

 

 Figure 4-2 shows the recorded and interpolated temperature data for the state of 

Illinois. The total range of Illinois temperatures across the day (all four times) includes 19.5 

 

Figure 4-2: NETATMO site temperature data is overlain by interpolated air surface temperature 

values (in degrees Celsius) for Illinois counties on August 20, 2021.  
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℃ as the lowest temperature and 36.9 ℃ as the highest temperature. The range of highest 

and lowest temperatures at each of the four times recorded is 19.5-24.9 ℃ at 3:00 AM, 22.4-

30.9 ℃ at 9:00 AM, 29.0-36.9 ℃ at 3:00 PM, and 23.6-32.3 ℃ at 9:00 PM. Taken as a 

whole, temperatures vary across the state but are lowest at 3:00 AM and rise until peaking at 

3:00 PM before descending once again. For all times, Chicago is at the highest range of 

values. 

 Figure 4-2 shows the largest amount of area dedicated to white (the top end of each 

time’s temperature range) at 3:00 AM, as the day begins. Because UHI is expected to be 

highest at this time, this is consistent with such an expectation. The areas near Chicago, St. 

Louis, and Champaign-Urbana (just east of the state’s center) are hot spots consistent with 

the largest urban areas in or near the state (St. Louis lies just across the border with 

Missouri). However the fact that Springfield, the state’s capital and seventh most populous 

city at the center of the map, is so relatively cool at this time is unexpected. By 9:00 AM, the 

map is dominated by temperatures in the middle classes with the hottest and coolest 

temperature ranges noticeably reduced in size, while Champaign-Urbana and Springfield 

now show small cook spots. By 3:00 PM, as UHI is increasing once again, areas exhibiting 

temperatures in the bottom two or three classes are fewer and more isolated, with a swath of 

warmer temperatures in the south that includes the St. Louis hot spot. By 9:00 PM, as UHI is 

rising once again, the map is dominated by temperature classes in the middle and upper-

middle classes of the range. 

4.1.3- Discussion of values 

Figure 4.2 shows how surface air temperature changed throughout the day on August 

20, 2021 for the state of Illinois. Although it was a given that the range of temperatures 

would change throughout the day, the large variation in terms of what parts of the state are 

hotter or cooler than each other at various times was an unexpected result. For example, the 

northernmost portion of the state outside Chicago is at the lowest temperature range for 3:00 

AM but transitions into the lower-middle range later in the day. This is difficult to interpret 

and may be a result of regional climate. While showing significant variance, the overall 

results suggest a consistent transition throughout the day, especially when transitioning from 

3:00 PM to 9:00 PM. Aside from a few cool spots, it is feasible that results for 3:00 AM on 

August 21 would closely resemble those seen at 3:00 AM on August 20. This lends weight to 

the data’s accuracy. However, Figure 7-1 illustrates the poor spread of the data for Illinois, 

which reduces confidence in the interpolation based on these points. 

4.2- Chicago maps 

4.2.1- Average income and population density 
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Figure 4-3 shows average income values and population density values for the city of 

Chicago by neighborhood. Average incomes for Chicago neighborhoods range from $23,199 

to $111,000. These averages vary wildly across the city, but the near south and near west side 

neighborhoods have the lowest average income values. This trend reverses for the southern 

portion as one moves west and nearer to the suburbs. Otherwise the far north and the 

northern neighborhoods along the lakeshore have the highest average income values.  

Population density for Chicago neighborhoods ranges from 1,006 persons to 65,000 

persons per square mile. Patterns in this data are more a bit more difficult to discern but the 

northern lakeshore neighborhoods are the most dense while the neighborhoods near O’Hare 

Airport are the least dense. In general, the southern and northern periphery of the city 

become less dense as their nearness to the suburbs increases. 

 

 

Figure 4-3: Chicago neighborhoods by average income (in U.S. dollars) and population 

density (in persons per square mile) 
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4.2.2- Surface air temperature values 

Figure 4-4 shows the recorded and interpolated temperature data for the city of 

Chicago. The total range of Chicago temperatures across all four times includes 18.8 ℃ as 

the lowest temperature and 37.8 ℃ as the highest temperature. The range of temperatures at 

each of the four times recorded is 18.8-25.8 ℃ at 3:00 AM, 22.8-35.0 ℃ at 9:00 AM, 27.6-

37.8 ℃ at 3:00 PM, and 23.0-30.7 ℃ at 9:00 PM. Temperatures across Chicago vary 

considerably throughout the day with the only constant being a hot spot in the northernmost 

neighborhoods. 

 

Figure 4-4: NETATMO site temperature data is overlain by interpolated air surface 

temperature values (in degrees Celsius) for Chicago neighborhoods on August 20, 2021 
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 Figure 4-4 shows that at 3:00 AM, all neighborhoods are warmer than the suburbs to 

the south and west, with a large hot spot on the north side. A small cool spot can be seen near 

the center of the city that corresponds to the sprawling Millennium Park, a large green space. 

By 9:00 AM, temperatures have increased but more of those classified in the lower-middle 

range dominate the map aside from hot spots at the center, near north side, and north side of 

the city. By 3:00 PM, this trend has amplified with what can be described as “urban cooling” 

being evident. The vast majority of neighborhoods show temperatures in the coolest two 

classes while the suburbs in the west and area near O’Hare Airport (the northwesternmost 

neighborhood shown) exhibit temperatures on the higher end of the range. Finally, at 9:00 

PM, we see the city once again dominated by temperatures in the middle and upper-middle 

temperature classes along with the return of the cool spot near Millennium Park. The hot spot 

near O’Hare Airport has expanded and the overall map shows a transition back toward what 

we saw at 3:00 AM. 

4.2.3- Discussion of values 

Figure 4-4 shows how surface air temperatures changed across Chicago throughout 

the day. The urban cooling trend that begins at 9:00 AM and ramps up by 3:00 PM is 

consistent with some UHI findings in other studies, such as those mentioned in Chapter 2.1 

above, but is often seen a bit earlier in the day. The temperature transition from 3:00 PM to 

9:00 PM and the 9:00 PM map’s similarity to the 3:00 AM map is striking. Both of these 

observations suggest a consistent transition of temperature and UHI throughout the day, 

which increases confidence in the point data and the interpolation. One obvious anomaly is 

the hot spot over Millennium Park at 3:00 PM, which is difficult to explain. Another is the 

hot spot at the very center of the city along the lakeshore at 9:00 AM, in neighborhoods of 

moderate to high population density and very high average income. 
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4.3- Netherlands maps 

4.3.1- Average income and population density 

Figure 4-5 shows average income values and population density values for the 

continental Netherlands by municipality. Average incomes for municipalities across the 

Netherlands range from €23,100 to €67,200. These values vary across the Netherlands but 

trend higher near the cities of Amsterdam and Utrecht in the center, the Hague along the 

coast, and Rotterdam in the south. Much of the more rural municipalities of the northeastern 

portion of the country have comparatively lower average income values.  

Population density for the Netherlands ranges from 23 persons to 6,620 persons per 

square kilometer. The population density of the nation largely parallels the income trends 

with high points being a bit more isolated and showing more abrupt decreases outside of 

urban areas. 

 

 

 

 

 

 

 

Figure 4-5: Netherlands municipalities by average income (in Euros) and population 

density (in persons per square kilometer) 
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4.3.2- Surface air temperature values 

 

 Figure 4-6 shows the recorded and interpolated temperature data for the continental 

Netherlands. The total range of Netherlands temperatures across all four times includes 13.3 

℃ as the lowest temperature and 27.2 ℃ as the highest temperature. The range of 

temperatures at each of the four times recorded is 13.3-18.2 ℃ at 3:00 AM, 14.8-21.9 ℃ at 

 

Figure 4-6: NETATMO site temperature data is overlain by interpolated air surface 

temperature values (in degrees Celsius) for Netherlands municipalities on August 20, 

2021 
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9:00 AM, 19.8-27.2 ℃ at 3:00 PM, and 17.7-21.9 ℃ at 9:00 PM. The Netherlands shows 

considerable temperature variance throughout the day with few consistencies. The 

southwestern and northwestern corners of the nation tend be on the warmer end of the range 

for all times, while the northeastern corner of the nation tends be on the cooler end of the 

range. 

 Figure 4-6 shows that at 3:00 AM, when UHI should be highest, the map shows the 

center of the country at the lowest end of the temperature range with temperatures increasing 

as distance increases from the center in all directions. This central, cool spot is the fairly 

built-up area that lies between the cities of Amsterdam and Utrecht. Additionally the hot 

spots at the four extreme ends of the map all line up with municipalities of higher population 

density, especially the cities of Maastricht in the southwest and Middelburg in the southeast, 

as seen in Figure 4-5. By 9:00 AM, temperatures have begun to rise and there is a clear 

gradation between the cooler regions of the northeast with the warmest regions along the 

west coast. 

 Figure 4-6 shows that at 3:00 PM, when UHI should still be fairly low, the picture is 

far less clear than at 9:00 AM. The northeast continues to be cooler, while cooler swaths have 

appeared in the southeast, southwest, and along the coast. The warmest areas, surrounded by 

gradually cooler zones with distance, are found in the far north, the east-central border, the 

southwestern tip of the country, and the area between Amsterdam and Haarlem. When 9:00 

PM arrives, temperatures have begun to fall but the highest and middle-high temperature 

classes dominate the map in terms of area. The hottest spots are sprinkled throughout much 

of the lower three-quarters of the country, joined by areas of gradually reducing temperatures 

in between them. Only the northeasternmost municipalities show the cooler temperature 

classes. 

4.3.3- Discussion of values 

Figure 4-6 shows surface air temperatures for the Netherlands over the course of the 

day for August 20, 2021. The zoning and gradations here are markedly smoother and more 

detailed than the other study areas thanks to a plethora of data points with good spread/ 

coverage, as shown in Figure 7-3. The warmer bands along the coast at 9:00 AM are difficult 

to interpret since nearness to the North Sea should allow for more evaporative cooling, which 

should help keep temperatures down. On the other hand, Figure 4-5 shows that these 

municipalities all exhibit higher range values for average income and population density, so 

UHI should be higher here if this study’s hypothesis holds true. The more isolated nature of 

the temperature zoning at 3:00 PM may suggest a lack of wind, leading to more localized 

climate zones over a larger overall regional one at this time of day. The large cool region in 

the northeast at 9:00 PM stands out as the rest of the country is dominated by middle and 

high temperature classes. However, because this region tends to have both lower average 

income and lower population density, this is consistent with an expectation of lower UHI 

compared to other parts of the country at this time. 
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4.4- Amsterdam maps 

4.4.1- Average income and population density 

 Figure 4-7 shows average income values and population density values for the city of 

Amsterdam by neighborhood. Average incomes for neighborhoods across Amsterdam range 

from €9,300 to €105,200. Data is missing for several neighborhoods where industry is 

dominant and residential areas are functionally non-existent. However, the highest income 

values are found in the central column of the city that runs north to south, the westernmost 

edge of the city, and the neighborhoods of the Noord sector. 

Population density for Amsterdam ranges from 7 persons to 35,855 persons per 

square kilometer. The distribution of this density is fairly uniform with the center of the city 

being most dense and decreasing with distance from the center. The industrial Westpoort 

sector has virtually no residents. 

 

 

 

 

 

Figure 4-7: Amsterdam neighborhoods by average income (in Euros) and population 

density (in persons per square kilometer) 
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4.4.2- Surface air temperature values 

Figure 4-8 shows the recorded and interpolated temperature data for the city of 

Amsterdam. The total range of Amsterdam temperatures across all four times includes 13.8 

℃ as the lowest temperature and 28.7 ℃ as the highest temperature. The range of 

temperatures at each of the four times recorded is 13.8-17.6 ℃ at 3:00 AM, 16.0-209 ℃ at 

9:00 AM, 20.4-28.7 ℃ at 3:00 PM, and 18.0-22.0 ℃ at 9:00 PM. Amsterdam temperatures 

 

Figure 4-8: NETATMO site temperature data is overlain by interpolated air surface 

temperature values (in degrees Celsius) for Amsterdam neighborhoods on August 20, 

2021 

  



[40] 

 

show considerable variation throughout the day with fer readily discernible patterns or 

consistencies. 

 Figure 4-8 shows that as the day begins at 3:00 AM, much of the city’s 

neighborhoods show temperatures in the middle to higher classes with cool spots located at 

the city’s largest green spaces- the Westerpark, Vondelpark, and Oosterpark. A very large hot 

spot dominates the Zuidoost region in the southeast. By 9:00 AM, temperatures across the 

city have increased. However, the middle classes of temperatures are much more dominant 

on the map, with the coolest ranges found in the southeast, immediately adjacent to the 3:00 

AM hot spot. The more population dense parts of the city, near the center, all show middle-

high to high temperature classes. The highest temperatures are found in the higher average 

income and more population dense neighborhoods near the IJ-waterfront (on the border 

between Centrum and Oost as seen in Figure 3-4). By 3:00 PM, more hot spots have 

appeared surrounding the city center while the area taken up by the upper-middle 

temperature classes has increased while that of the lowest temperature classes has noticeably 

reduced. This is taking place even as temperatures increase toward their maximums for the 

day. Finally at 9:00 PM, as UHI should be increasing, the coolest three classes of the 

temperature range now dominate the eastern half of the map. At the same time, the higher 

temperatures surround a large hot spot in the west that lies along the border of the Zuid and 

Nieuw-West regions of the city. This area tends toward lower average income and lower 

population density, similar to the hot spot seen at 3:00 AM. 

4.4.3- Discussion of values 

Figure 4-8 shows air surface temperatures for Amsterdam as the day of August 20, 

2021 progressed. The 3:00 AM hot spot in Zuidoost is anomalous since the range of 

temperatures in this detached portion of the city would not be expected to be so high. Figure 

4-7 shows that this area has both low average income and low population density, further 

increasing the difficulty of interpreting this result. The 9:00 AM hot spot just northeast of the 

city center along the IJ is also unexpected. Considering the proximity to the IJ (a large body 

of water), and the increased evaporative cooling expected, there must be factors at work that 

this study has not accounted for. The temperature trends at 3:00 PM tend to show warmer 

areas where population density is higher, but the warmer temperatures in the less dense 

northeasternmost neighborhoods defy this trend. When comparing the 9:00 PM map to the 

3:00 AM, the natural inference is that temperatures in the lowest classes decrease in number 

as UHI increased overnight. This fails to account for why the largest hot spot seems to 

migrate from the west to the southeast over that timeframe. This may also suggest that the 

UHI increase happens later or more slowly for Amsterdam than for the other study areas. 

5. Results and Discussion of Data Analysis 
Several subquestions posed by this study involved the question of whether there were 

statistically significant relationships between surface air temperature and both average 

household income and population density within each administrative unit. The ultimate goal 

of the study was to draw out these otherwise murky relationships in order to elucidate them. 

The results of geographically weighted regression below illustrate where these relationships 
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varied from the predicted values enough that they might be considered statistically 

significant. GWR results are presented and discussed for each area, using a similar format 

and order as that used for section 4. Results and Discussion of Mapping Processes 

In order to bolster the insights gained from GWR, bivariate analysis was undertake on 

all study areas at the same times and using the same administrative units. Except for directly 

comparing average income and population density, the same variables were compared but 

using a very different methodology. Unlike the GWR results, the BA results varied 

considerably between the four study areas. Because of this, results for Chicago and Illinois 

are discussed only briefly while those for Amsterdam and the Netherlands are looked at in 

more detail. 

5.1- Geographically weighted regression 

 The GWR used for this project began by comparing the average income values with 

the population densities for each administrative unit. The average surface air temperature for 

each administrative unit was then compared with that of both average income and population 

density for each administrative unit. All three iterations of the GWR process created a map of 

each study area color coded into seven classes to represent the local R-squared value for the 

dependent and explanatory/ exploratory variables being compared across each study area. 

The closer the value to 1, the more significant the relationship between the two variables, 

while lower values indicate 

either less significance to the 

relationship or interference by 

factors unaccounted for in the 

model. For more detailed 

information regarding this 

process and its set-up, please 

see section 3.5- Data analysis. 

5.1.1- GWR for Illinois 

 The GWR for Illinois 

begins by comparing average 

income with population 

density, as shown in Figure 5-1. 

The overall R-squared value 

was .64, indicating a moderate 

goodness of fit. The mapped 

results show no trend in terms 

of  which classes are more or 

less populated, but do show a 

clear trend toward a best fit in 

the northeastern portion of the 

state in counties just outside 

greater Chicagoland. This 

 

Figure 5-1: Geographically weighted regression of 

average income vs. population density for Illinois 
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decreases moving south and west with the lowest R-squared values at the southern and 

western borders of the state. With the exception of the west-central counties near St. Louis, 

all of counties with R-squared values of .03 to .16 have very low population densities and 

low to moderate average income values. 

Figure 5-2 illustrates the GWR results for temperature values and average income 

across the four times chosen. The average overall R-squared value for all four maps was .72, 

 

Figure 5-2: Geographically weighted regression of temperature vs. average income for 

Illinois 
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indicating a fairly strong goodness of fit. The population of each class varies throughout the 

day with no clear pattern aside from an upswing in values of .19 to .33 and a marked 

decrease in values of .48 to .47 at 9:00 PM. The overall trend on the map is for the highest R-

squared values to appear in a long strip across the northwestern portion of the state along 

with a cluster in the southeastern portion. This is most evident at 3:00 AM and 9:00 PM. 

Conversely, the lowest R-squared values tend to be found in the northeastern portion of the 

state but a large cluster also appears in the southern end of the state at 3:00 AM and 9:00 PM. 

Most of the clustering found on the map shows clear gradations of increases and decreases, 

though some of the moderate values in between skip one or two classes when one cluster 

abuts another of an opposing trend. Although the clusters shift and move a bit across the four 

times, there is no clear increase or decrease in the R-squared values as the day goes on. For 

example, the population of the highest three classes shifts across each time but the total for 

the three classes always stays between 40 and 45, making deeper interpretations difficult. 

UHI should be highest at 3:00 AM, and yet this time shows the lowest number of values in 

both the lowest class (.13 to .34) and the highest class (.78 to .88). 
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 Figure 5-3 illustrates the GWR results for temperature values and population density. 

The average overall R-squared value for all four maps was .73, indicating a fairly strong 

goodness of fit. The mapped results are very similar to those seen in Figure 5-2, with 3:00 

AM and 9:00 AM nearly identical between the two figures. Results for 3:00 PM and 9:00 PM 

are noticeably different, however. At 9:00 PM, the band of high R-squared values that begins 

in the west continues northeast to the state’s border instead of reversing in trend as it does in 

Figure 5-2. The R-squared values in the southwest are also a bit higher in general when 

[Grab your reader’s attention with a great quote from the document or use this space to 

emphasize a key point. To place this text box anywhere on the page, just drag it.] 

 

Figure 5-3: Geographically weighted regression of temperature vs. population density for 

Illinois 
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compared to the other figure. The greatest difference can be seen at 3:00 PM, where R-

squared values are considerably higher in the northeast when compared to Figure 5-2. Values 

in the southwest a bit higher as well, while values along the western border are slightly lower 

in general.  

Figure 5-3 also shows no discernible trend in terms of the populations of each class. 

Once again the distribution is seemingly random and uneven aside from a hollowing out of 

the middle classes at 3:00 PM. One noticeable trend as the day goes on is how the moderately 

high R-squared values along the northeast-southwest running band increase at 9:00 AM, 

decrease at 3:00 PM, then increase once more at 9:00 PM. Another change can be seen where 

the cluster in the south-central portion of the state exhibits values of .71 to .85 at 3:00 AM, 

drops to .29 to .46 at 9:00 AM, then slightly increases at 3:00 PM only to return to lower 

values at 9:00 PM. 

5.1.2- GWR for Chicago 

Comparing average 

income with population density 

is the first GWR processed for 

Chicago, as shown in Figure 5-

4. The overall R-squared value 

was .89, indicating a strong 

goodness of fit. The mapped 

results show a semi-even 

distribution across the seven 

classes with the highest R-

squared values present in the 

center of the city aside from 

two outliers in the extreme 

northeast. The lowest R-

squared values appear in the 

southern half of the city, where 

data points were the most 

scarce and both population 

density and average income 

values tend to be lower. This 

trend is defied by higher values 

in the southwestern and west-

central portions of the city. 

Figure 5-5 illustrates the GWR results for temperature values and average income 

across the four times chosen. The average overall R-squared value for all four maps was .81, 

indicating a strong goodness of fit. The population of the seven classes here is a bit more 

normally distributed with smaller populations on the extreme ends of the class divisions for 

most of the four times. The R-squared values exhibit considerable changes throughout the 

 

Figure 5-4: Geographically weighted regression of 

average income vs. population density for Chicago 
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day but values in the near South Side, particularly in west, remain above .81. In the 

northwest, values begin high at .89 or above at 3:00 AM, drop precipitously at 9:00 AM, 

continue this trend at 3:00 PM, then bounce back a bit by 9:00 PM. In the southeastern corner 

of the city, values at 3:00 AM range from .30 to .88, move up to a minimum of .44 by 9:00 

AM, and then reach minimum values of .66 by 9:00 PM; this shows a clear and steady 

increase over the day. In addition, many of the gradations around clusters are steady and 

consistent but there several examples of opposing trends abutting each other with gaps 

 

Figure 5-5: Geographically weighted regression of temperature vs. average income for 

Chicago 
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between transition classes appearing in the far southern, central, and northeastern portions of 

the city. 

Figure 5-6 illustrates the GWR results for temperature values and population density. 

The average overall R-squared value for all four maps was .83, indicating a fairly strong 

goodness of fit. When comparing these mapped results to those in Figure 5-5, strong 

similarities are present, with results at 3:00 PM for both maps nearly identical. The same is 

true for 9:00 AM when considering the raw R-squared values rather than the classes used. At 

 

Figure 5-6: Geographically weighted regression of temperature vs. population density for 

Chicago 
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3:00 AM, R-squared values for the near South side are slightly higher for Figure 5-6, while 

values in the northwest are slightly lower. At 9:00 PM, R-squared values for most 

neighborhoods are slightly higher in Figure 5-6, but the southeasternmost part of the city is a 

notable exception to this. The populations of each class in figure 5-6 tend to be semi-normal, 

but 3:00 AM and 9:00 AM exhibit a marked decrease in the central-most class compared to 

its adjacent, neighboring classes. 

The shifts in R-squared values for Figure 5-6 are subtly different from those in Figure 

5-5. The far northwest is particularly difficult to interpret with values of .84 to .88 abutting 

values of .44 to .67 at 3:00 AM, then both values shifting toward the middle at 9:00 AM 

before gradually increasing at 3:00 PM and 9:00 PM. Adjacent to them is a cluster in the 

center-north of the city that begins at moderately high R-squared values at 9:00 AM before 

plunging to values of .19 to .36 for 9:00 AM and 3:00 PM, and finally increasing to .36 to .60 

by 9:00 PM. On the other hand, the far northern portion of the city shows a consistent 

increase in R-squared values across the day from 3:00 AM to 9:00 PM. 

5.1.3- GWR for the Netherlands 

 GWR for the 

Netherlands begins with Figure 

5-7, which compares average 

income with population 

density. The overall R-squared 

value was .52, indicating a 

mediocre goodness of fit. The 

distribution of classes here is 

markedly normal with the 

middle classes far more 

populous than the lower and 

higher end classes. The highest 

R-squared values are found in 

the distant south near 

Maastricht as well as along 

much of the North Sea coast 

except for the central section. 

Clusters of very low R-squared 

values appear across much of 

the central east-west band of 

the country, trending northward 

as one moves east. Gradations 

between these opposing trends 

are steady and gradual aside 

from an abrupt switch in the center-north portion of the country. 

 

 

Figure 5-7: Geographically weighted regression of 

average income vs. population density for the 

Netherlands 
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Figure 5-8 illustrates the GWR results for temperature values and average income 

across the four times chosen. The average R-squared value for all four maps was .83, 

indicating a strong goodness of fit. The mapped results show, via the feature count, that the 

class distribution is normal at 9:00 AM, although this curve/ trend flattens a bit as the day 

proceeds. Finding consistent trends for R-squared values regionally is difficult since the map 

shows clear and robust clusters that appear and disappear at each of the four times rather 

abruptly. The clustering here is more evident and larger than for any of the other four study 

areas with clear gradations around the highest and lowest R-squared values at the center of 

each cluster. One of the few consistent clusters can be seen in the Randstad, slightly 

 

Figure 5-8: Geographically weighted regression of temperature vs. average income for the 

Netherlands 
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southwest of the center of the country, where municipalities exhibit R-squared values of .49 

to .91 across the day. The cluster is largest and values highest at 9:00 AM. Another 

consistent cluster is found in the south-central portion of the country with R-squared values 

of .27 to .48. The size and shape of the cluster shift across the four times, but the values and 

their ranges do not noticeably change throughout the day. 

The large bands and clusters change considerably across the day, establishing patterns 

that are seemingly abrupt and often inconsistent. For example, the far southern region near 

Maastricht exhibits R-squared values of .27 to .48 across the entire day except for a cluster at 

 

Figure 5-9: Geographically weighted regression of temperature vs. population density for 

the Netherlands 
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the northern end of the strip that has values of .64 to.74 at 3:00 PM. At 3:00 AM, a large strip 

with R-squared values of .66 to .91 is evident across much of the center-east portion of the 

country, but at 9:00 AM this band thins and moves south while the easternmost portion 

abruptly decreases to values of .14 to .48, forming a new cluster. By 3:00 PM, that cluster has 

expanded an encompassed the previous band while values have increased to a range of .64 to 

.84., but the trend reverses once again at 9:00 PM with values of .25 to .43. The far 

northeastern portion of the country exhibits moderate R-squared values of .40 to .65 at 9:00 

AM, but then shifts to a large, low value cluster at 9:00 AM and 3:00 PM before transitioning 

to an even larger cluster at 9:00 PM with high values of .60 to .89. A final example of back-

and-forth trends involves the one seen in the southwesternmost portion of the country. It 

exhibits R-squared values of .57 to .91 at 3:00 AM then shifts to  a low value cluster at 9:00 

AM (range of .35 to .59) before trending back up to values of .45 to .74 at 3:00 PM, then 

ends the day at 9:00 PM with very low values of .25 to .42. 

Figure 5-9 illustrates the GWR results for temperature values and population density. 

The average R-squared value for all four maps was .83, indicating a strong goodness of fit. 

When comparing the mapped results with those of Figure 5-8, it is striking how similar the 

two maps are. All of the large clusters with markedly high or low R-squared values are all 

replicated in Figure 5-9, but there are subtle differences. For example, at 3:00 AM, the values 

attached to the clusters in Figure 5-9 are slightly more pronounced in the far north and south-

center, while being less pronounced in the east-central municipalities. At 9:00 AM, the 

cluster in the southwest shows slightly higher R-squared values while those in the far south 

show lower values than in Figure 5-8. At 3:00 PM, the band in the south that northwest-

southeast has higher R-squared 

values, while the low value 

band that runs perpendicular to 

it in Figure 5-8 at 9:00 PM is 

almost non-existent in Figure 5-

9. Like the previous figure, the 

mapped results for population 

density show a normal 

distribution of classes, though 

is less clear at 9:00 AM. Any 

trends or changes over time 

seen in this figure parallel those 

described in Figure 5-8. 

5.1.4- GWR for Amsterdam 

 Figure 5-10 illustrates 

the GWR comparing average 

income with population density 

for Amsterdam. The overall R-

squared value was .30, 

indicating a poor goodness of 

 

Figure 5-10: Geographically weighted regression of 

average income vs. population density for Amsterdam 
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fit. The feature count shows a fairly even distribution of the seven classes with a slightly 

larger population in the central class with values of .15 to .18. Clusters with R-squared values 

barely above zero appear in the Oost, West, and Noord districts. Neighborhoods with the 

highest R-squared values are seen in Zuidoost, much of Zuid, and the more distant portions 

of Nieuw-West. Gradations here are steady and few to no opposing trends or clusters abut 

each other. The R-squared values for this map are much lower than for any of the other GWR 

runs for this or the other study areas; the author is at a loss as to why this is the case. 

Figure 5-11 illustrates the GWR results for temperature values and average income 

across the four times chosen. The average R-squared value for all four maps was .74, 

indicating a moderately strong goodness of fit. The feature counts indicate that the 

populations of each class are relatively even with some tendency toward a normal 

distribution. Some trends in the distribution of R-squared values across the city over the day 

are evident. For example, the eastern sections of the Noord district and much of the IJburg 

 

Figure 5-11: Geographically weighted regression of temperature vs. average income for 

Amsterdam 
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exhibit values of .60 to .83, while most of the Nieuw-West district shows clustering with R-

squared values of 0 to .47 throughout the day. A large high value cluster that spreads across 

the border between the Zuid and West districts shows R-squared values of .68 to .84 for 

much of the day, but briefly dips to values as low as .45 at 9:00 AM. 

Other clusters are less consistent and show more back-and-forth trends across the four 

times. The Zuidoost district’s neighborhoods exhibit mostly middling R-squared values of 

.40 to .64 with some slight increases and decreases throughout the day, but a cluster forms at 

3:00 PM that suddenly divides the district into very low and moderately high R-squared 

values (0 to .42 and .65 to .72, respectively). Although the Nieuw-West neighborhoods tend 

to show low R-squared values across the day, the extent shifts with values being markedly 

lower at 9:00 AM when compared to other times. The Oost neighborhoods also shift 

throughout the day and have some of the most abrupt changes in R-squared values between 

adjacent neighborhoods. For example, neighborhoods with values of.76 to .88 are only two 

neighborhoods away from those wit values of 0 to .35. This absence of gradations between 

opposing trends is otherwise less common in Figure 5-11 with most transitions between the 

classes more gradual and spatially well-distributed. 

Figure 5-12 illustrates the GWR results for temperature values and population 

density. The average R-squared value for all four maps was .74, indicating a moderately 

strong goodness of fit. Some caution has to be used when comparing Figures 5-11 and 5-12 

because some of the more industrial neighborhoods in Amsterdam are recorded as having 

very few residents and thus a tiny population density but no appreciable average income 

values. This results in these neighborhoods not being comparable between the two, which 

may affect trends and adjacent neighborhoods. Nonetheless, the two maps are very similar to 

each other, with the same general trends in terms of high and low value clusters with 

middling values between them appearing in many of the same districts and neighborhoods at 

the same times of the day. There are, however, some differences between the two. At 3:00 

AM, for example, R-squared values in much of the Noord district and the southernmost 

portions of Zuid are slightly lower in Figure 5-12, but slightly higher in Zuidoost when 

compared to Figure 5-11. Conversely, at 9:00 AM, the low value clustering seen in the far 

west is less pronounced in figure 5-12, while the high value clustering seen along the border 

of the Zuid and Oost districts as well as in Zuidoost is much more pronounced in Figure 5-

12. At 3:00 PM, the low value clustering in the southwesternmost parts of the city are more 

pronounced in Figure 5-12. R-squared values in central Noord district are also a bit lower in 

Figure 5-12. Finally, the distribution of classes in figure 5-12 is very similar to the previous 

figure. 
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5.2- Bivariate analysis  

The BA used for this project compared the average surface air temperature for each 

administrative unit with that of both average income and population density for each 

administrative unit, similar to the GWR performed. This process created maps with each 

zone color coded into one of the six classes depending on the statistically significant 

relationship perceived by the tool. For more detailed information regarding this process, its 

set-up, and how to interpret the resulting classes, please see section 3.5- Data analysis. 

 

 

Figure 5-12: Geographically weighted regression of temperature vs. population 

distribution for Amsterdam 
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5.2.1-BA for Illinois and Chicago 

Bivariate analysis for Illinois gave few results and even these are ambiguous, as 

shown in Figure 5-13. 5-13a shows the only significant correlation between temperature and 

population density. Significance was only found in the central and southern portion of the 

state, where a convex relationship was found. This means that as population density 

increases, temperature changed along a convex curve. Testing for average income garnered 

more results but these are unclear. Figure 5-13b, 5-13c, and 5-13d illustrate how there seems 

to be a significant relationship between temperature and average income for the southern 

portion of the state, but it is not reliably described using this statistical method. In the case of 

5-13d, a concave relationship can also be seen between these variables.  

 

Figure 5-13: Bivariate analysis of Illinois (maps with no significant correlation are not 

pictured) 
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Figure 4-1 serves as a reminder that this part of the state tends to be less densely 

populated and tends to have lower average income per household. At the same time, traveling 

further south in Illinois generally results in higher temperatures than the north due to climate 

patterns. So it may be that fewer people and reduced urban fabric in this portion of the state 

results in reduced UHI regionally. Coupling this with the naturally higher temperatures 

expected may result in a correlation that is not based on UHI. Figure 6-1 also illustrates how 

site data for this portion of the state was not well spread and largely consists of a single thin 

band of sites in the northernmost portion of southern Illinois. This lack of data likely explains 

the paucity of results using bivariate analysis here. 

 

Figure 5-14: Bivariate analysis of temperature vs. population density for Chicago 
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Bivariate analysis for Chicago consistently showed a significant relationship between 

temperature and population density, although the nature and location of that relationship 

varied. The majority of the significance was relegated to the southern half of the city, with 

only 3:00 PM showing any significance for the northern half, as seen in Figure 5-14. 

However, the 3:00 PM map’s indication of a negative linear relationship in the northwest is 

supported by the fact that the areas near O’Hare Airport are less heavily populated and may 

exhibit less UHI as a result. The situation in the southern portion of the city is very different, 

though. Whereas the relationship between these two variables begins as concave at 3:00 AM, 

this transitions to a negative linear relationship at 9:00 AM before flipping to a convex 

relationship at 3:00 PM, and finally returns to a concave or negative linear relationship at 

9:00 PM. So the results for 9:00 AM and 9:00 PM parallel each other, though results are less 

complete for 9:00 PM. This may be explained by the fact that many of the southernmost 

neighborhoods of the city are less densely populated and have lower average income per 

household, as shown in Figure 4-3. These factors are linked since the large propensity of 

people with less income results in fewer tall buildings being constructed due to a lack of 

investment, which keeps the population density lower. The result is a subtle but semi-

consistent indication of the relationship between the variables measured. 

Significant relationships between temperature and average income were nearly 

entirely absent for Chicago and so are not represented visually here. 
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5.2.2- BA for the Netherlands 

Bivariate analysis of the Netherlands gave results far more consistent and robust than 

the other three study areas, as shown in Figure 5-15. Significant relationships between both 

pairs of variables were found for all four of the times analyzed. This is likely because of the 

superior coverage/ spread of the data points for the Netherlands, as shown in Figure 6-3. For 

temperature versus average income, the analysis for 3:00 AM shows a convex relationship 

for much of the easternmost and westernmost municipalities, but transitions to a negative 

linear relationship as it nears the heart of the country. This area is known as the Randstad and 

includes the four cities of Amsterdam, Utrecht, The Hague, and Rotterdam. This area is 

 

Figure 5-15: Bivariate analysis of temperature vs. average income for the Netherlands 
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characterized by a an undefined complex relationship between the variables, surrounded by a 

thin band of negative linear relationships. Because UHI should be most severe at 3:00 AM, 

this is a significant indication of how these variables relate to each other. The situation inside 

the Randstad area may show a stronger relationship than its surroundings but other factors 

complicate the data such that the program can not quite tease it out. 

At 9:00 AM, the undefined complex area has grown to encompass more of the 

country while much of the northern municipalities now show a concave relationship. Only 

the southwesternmost areas still show a concave relationship. By 3:00 PM, when UHI should 

be lowest, much of the country has transitioned to an undefined complex relationship. 

However the central eastern municipalities near ‘s-Hertogenbosch and Nijmegan show a 

distinctive cluster of negative linear areas surrounding a core of convex relationships. Figure 

4-5 illustrates how mixed these two clusters are in terms of average income and population 

density. Therefore it is hard to pin down what may be causing this, so perhaps regional 

climactic influences are playing a part.  

By 9:00 PM, as UHI should be increasing, most of the southern half of the country 

has transitioned to a negative linear relationship with a smattering of convex municipalities 

in an east-west strip at the center of the nation. However, much of the northern half of the 

country shows an undefined complex relationship with a concave one in a band along the 

eastern border with Germany. Figure 4-5 shows how the average income of the 

municipalities drops off along a northeast-southwest running band that begins at the 

narrowest part of the nation and ends at the west coast. The pattern of negative linear and 

convex relationships seems to follow this band, although it strays a bit north of it. This and 

the 3:00 AM map illustrate that a semi-consistent negative correlation exists between average 

income per household and surface air temperature. 
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The results of bivariate analysis for the Netherlands in relation to population density 

were less decisive than for average income, but still significant for all municipalities 

throughout the day. This is shown in Figure 5-16. At 3:00 AM, when UHI should be most 

severe, much of the country shows an undefined complex relationship. However, a 

northwest-southeast band of municipalities that include the cities of Amsterdam and Utrecht 

show a positive linear relationship. Figure 4-5 reveals that these same municipalities show 

the highest contiguity of those with medium to high population density second only to those 

along the west coast. This reinforces the significance of this finding, especially when 

considering the evidence (mentioned in the literature review) that suggests that contiguity of 

urban build-up may be a primary cause of UHI. 

 

Figure 5-16: Bivariate analysis of temperature vs. population density for the Netherlands 
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By 9:00 AM, the positive linear relationship has greatly expanded to include roughly 

two-thirds of the country. Meanwhile the southeastern and southwestern corners of the 

county show an undefined complex relationship while the northeastern corner shows a 

concave relationship. This is strong evidence for higher population density relating to higher 

temperature and UHI. The less clear effect along the northern coast may be due to regional 

climate patterns, such as strong cooling from the sea muddying the data. By 3:00 PM, as UHI 

should be at its lowest, most of the municipalities show an undefined complex relationship. 

Only the northeastern most municipalities, who previously showed a concave relationship, 

now show a positive linear relationship, buttressing the theory that a regional climactic effect 

may be at work here. 

Finally, by 9:00 PM, when UHI should be increasing, much of the country still shows 

an undefined complex relationship. Only the southeastern “tail” of the country shows a 

positive linear relationship while a cluster of municipalities in the northeast show a concave 

relationship. It is worth noting, once again, that a result of “Undefined Complex” is not 

equivalent to a result of “Not Significant.” It simply means that the program has determined 

that the two variables are indeed significantly related, but not in a way that can be reliably 

categorized using the existing classifications (“How Local Bivariate Relationships works—

ArcGIS Pro | Documentation,” n.d.). This fact strengthens the data and supports the 

hypothesis that these factors are strongly related. However, other factors not accounted for in 

this study may be obfuscating the nature of their relationship. 



[62] 

 

5.2.3- BA for Amsterdam 

Bivariate analysis for Amsterdam was less conclusive than for the Netherlands as a 

whole and favored population density as being more significant than average income. Figure 

5-17 shows the results of this analysis for both variables. Figure 5-17a shows that at 3:00 

AM, when UHI should be most severe, much of the city shows an undefined complex 

relationship aside from the Westerpoort region and most of the other neighborhoods in the 

northwest. Scattered neighborhoods throughout the city also show no significant relationship 

but there are no consistent trends to be seen. The separated Zuidoost portion of the city in the 

southeast parallels the rest of the city in this regard. It is noteworthy that many of the 

neighborhoods which show no significant relationship are also those which have the lowest 

population density, as seen in Figure 4-7.  

By 9:00 AM, the regions of undefined complex relationship have moved west, as 

shown in Figure 5-17b. The undefined complex relationship dominate the western half of the 

city’s neighborhoods while the eastern half shows no significant relationship. This suggests 

 

Figure 5-17: Bivariate analysis of Amsterdam (maps with no significant correlation are 

not pictured) 
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that a similar relationship is at work at both 3:00 AM and 9:00 AM but it shifts position as 

UHI falls and surface air temperature increases. By 3:00 PM, things become a bit more clear. 

The easternmost third of the city shows a positive linear relationship while much of the rest 

of the city shows an undefined complex relationship. Once again, Westpoort and the 

neighborhoods just south of it show no significant relationship. For the latter, many of these 

neighborhoods have moderate population density, as seen in Figure 4-7, so this is difficult to 

interpret. The south-central neighborhoods show a concave relationship as well. Figure 5-

17c, at 3:00 PM shows most significant and spatially continuous trend for the analysis of 

Amsterdam. This is unexpected since UHI should be at its lowest at this time, but 

temperature should be nearing its highest point in the day. This is doubly curious since these 

neighborhoods show a wide range of population densities, as seen in Figure 4-7. 

Figure 5-17d shows the only significant result for the analysis between temperature 

and average income. It occurs at 9:00 PM, when UHI should be increasing as temperature 

decreases. The neighborhoods just east of the city center show a positive linear relationship 

that runs in a northwest-southeast band. Just east of the band are clusters of neighborhoods 

showing a convex relationship. The rest of the city, however, shows an undefined complex 

relationship or no significant relationship. The neighborhoods with an undefined complex 

relationship are clustered near the center of the city with some outlying band extending to the 

north and northeast. Most of these neighborhoods have higher average income as seen in 

Figure 4-7. Only the well-to-do neighborhoods in the far west defy this trend. This suggests 

that the relationship between these two variables is indeed significant but that other factors 

not accounted for in the study are concealing its precise nature. As Figure 7-4 illustrates, the 

spread of site data for Amsterdam was less than ideal, so the lack of spread over the study 

area may help explain the unclear results. 

6. Conclusions 
6.1- Limitations of this study 

 One of the greatest limitations to this study was the number of data points available 

for recording surface air temperature using NETATMO. This was not an issue for the 

Netherlands and was only an issue to a lesser extent in Amsterdam where the point data 

tended to be a bit clustered. For Illinois and Chicago, however, the lack of point data led to a 

noticeable lack of spread/ coverage in the data gathered. This led to clustering of data and 

large swaths of each map with no data points recorded. This is illustrated in Appendix A for 

each study area. The poor spread of this point data likely resulted in less accurate results 

when this data was used to interpolate the gaps between the points. Less accurate interpolated 

data then undermines the average temperatures derived for each zone, which then 

undermines the geographically weighted regression and bivariate analysis using these 

averaged values. It is also worth mentioning that GWR is known to give poor results for 

datasets with less than a few hundred features, so this further undermined the results for 

Illinois and Chicago. The paucity of temperature data in the U.S. and at higher resolution in 

the Netherlands was the single greatest limitation of the study. 
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 Another consideration is the inverse distance weighting (IDW) used to interpolate the 

temperatures between the recorded data points. IDW is a reliable tool, but it is considered to 

be less accurate than a technique like Kriging. Because this interpolation was vital to 

acquiring the average surface temperatures for each zone, a more advanced and accurate 

technique may have provided better results, which would have led to more accurate results 

for the data analysis as well. A final limitation was the inability to better interpret the results 

of the bivariate analysis. The indication of a concave or convex relationship would have been 

more clear if that relationship could have been represented visually as a chart. Despite the 

author’s best efforts, this did not seem to be possible. 

As a final consideration, the average R-squared values derived from GWR comparing 

air surface temperature with either average income values or population density across all 

study areas ranged from .72 to .83. Because a value of 1 is considered a perfect fit, the 

resulting R-squared values indicate that other factors not accounted for in this study may be 

responsible for the disparity between the recorded and predicted values for the variables 

analyzed. 

6.2- Conclusions reached 

The primary goal of this study was to determine “How are surface temperatures in 

urban areas tied to factors which may increase or decrease the intensity of UHI for urban 

residents?” The results indicate that heat is distributed unevenly across the four study areas, 

particularly the two cities analyzed at higher resolution. However determining the extent to 

which UHI is present in these temperature values proved elusive. Instead the greatest insights 

were gleaned regarding how temperatures change over the course of a day in each study area. 

Because these changes are complicated and uneven, sometimes even contradictory, tentative 

conclusions can be made as to where some of these changes are due to UHI rather than local 

or regional climate processes. Doing so, however, requires careful consideration of the built-

up fabric of the area as well as the general urbanity of the area under consideration. This is, 

admittedly, a more speculative and less quantitative assessment than had been hoped for. 

The sub-questions of this study were also answered to varying extents. (1) The in-situ 

surface air temperatures gathered from NETATMO appear to be reliable and accurate. When 

questionable values were encountered, the filtering tool instantly removed them. Some sites 

could not be used because they lacked data for the chosen day as well. (2) Surface air 

temperature on its own may suggest where UHI occurs, but this study was not able to derive 

UHI definitively from the temperature values recorded. Instead, temperature variations across 

time and space were the focus but did seem to indicate areas of higher temperature where 

UHI was suspected to be more intense due to the presence of controlling factors. (3) Average 

income per household seems to be a fair indicator of vulnerability to UHI, but only at 

relatively high spatial resolutions. For large areas with low spatial resolution and large 

administrative units such as Illinois and the Netherlands, the variable appeared to be less 

valid and the correlation more difficult to analyze/ isolate. (4) Population density was a fair 

indicator of urban build-up at lower spatial resolutions. For large areas like Illinois and 

Netherlands, it was indicative of where urbanization was most advanced. For small areas like 
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Chicago and Amsterdam, it was less adequate, especially when considering highly built-up 

areas with fewer permanent residents (like Chicago’s financial district).  

(5) The question of whether average income and population density have a 

statistically significant relationship with surface air temperature and/or each other is still 

uncertain. The GWR results suggest that temperature and population density have a murky 

correlation, as evidenced by R-squared values of .64 for Illinois, .89 for Chicago, .52 for the 

Netherlands, and .30 for Amsterdam. It was believed that this relationship would have a 

stronger correlation with a metropolitan area as opposed to the entirety of a state or small 

nation, but the results for Amsterdam cast doubt on this hypothesis. It should be remembered 

that many lower SES areas of metropolises outside the city center may have lower population 

density due to lack of housing development as well as the fact that population density may be 

relatively high in high-priced high-rise apartment buildings. This results in very inconsistent 

relationships between average income and population density. GWR results that compared 

each of these variables with surface air temperature values throughout the day on August 20, 

2021 are more conclusive and show a clearer overall trend. The averaged local R-squared 

values for each GWR run in all four study areas ranged from .72 to .83. Considering that a 

value of 1 would indicate a perfect fit and the clearest correlation between the two variables 

analyzed, this means that a moderately strong correlation was found between temperature 

and both of the demographic variables across all four study areas. In spite of the radically 

different distances and scales studied in each area, these results fell into a fairly narrow and 

consistent range of values. This indicates that there is indeed a clear correlation between the 

variables analyzed as per the study’s hypothesis. The BA results, although less clear, suggest 

this as well. 

(6) The precise nature of the relationship between the studied variables is a bit more 

difficult to quantify, however. The GWR results don’t indicate whether the correlation found 

is positive or negative. This is reinforced by the lack of consistency on the GWR maps in 

terms of what areas had higher or lower local R-squared values for each administrative unit. 

Because the range of local R-squared values was so wide (as low as 0 or as high as .86), it is 

very difficult to draw additional conclusions here. This ambiguity is mirrored by the 

frequency with which the BA results reported an “undetermined complex” relationship 

between the variables analyzed. The author continues to believe that surface air temperature 

should correlate positively with population density and negatively with average income 

values but the tools and processes used in this study failed to determine if that was true or 

not. 

(7) Average incomes and population density patterns were quite different when 

comparing the Netherlands and Illinois as well as the metropolises that each holds. Average 

income ranges were similar in that the lowest values were about 30% of the highest values. 

However the distribution of the classes across that range was a bit more equitable in the 

Netherlands. The opposite is seen for Chicago and Amsterdam, however. In Chicago, the 

lowest income value is 20% of the maximum, while in Amsterdam, it is only 10%. It may be, 

however, that these values were gathered using very different methodologies. Population 



[66] 

 

density comparisons showed greater differences between the Netherlands and Chicago. Even 

after accounting for the difference in persons per square mile and persons per square 

kilometer, Illinois has much lower minimum and maximum values per county than 

Netherlands’ values per municipality; Illinois values are 25-35% of those in Netherlands. The 

situation is similar for Chicago and Amsterdam, though less severe. Chicago’s maximum 

values are about 70% of Amsterdam’s but it’s minimum values are drastically higher. This is 

likely due to the low population densities of Amsterdam’s industrial sectors heavily skewing 

the numbers at the low end.  

In terms of temperature, both Chicago and Amsterdam saw wider ranges of 

temperatures than the state or country in which they were found, likely due to UHI. Illinois 

and Chicago had much higher minimum and maximum temperatures than Netherlands and 

Amsterdam- 18.8 ℃ and 37.8 ℃ versus 13.3 ℃ and 28.7 ℃. Additionally, Illinois and 

Chicago exhibited slightly wider ranges of temperatures at each time recorded than 

Netherlands and Amsterdam. These are strong indicators of how different the two climates 

are for the North American and European study areas. Comparing the four study areas in 

terms of the data analysis is very difficult. The Netherlands was so much more data rich than 

the other areas that is effectively stands in its own separate class. When comparing Chicago 

and Amsterdam, the spatial pattern of the BA results clearly indicate data gaps for large 

sections of Chicago. Because of the large differences in the number and spread of data points 

available, this likely weakened the otherwise promising results of GWR. 

6.3- Summary of the study 

This study set out to answer several questions and was unable to conclusively answer 

several of them. The goal was to use crowdsourced surface air temperature data to identify 

temperature variations over time in Illinois and the Netherlands at both the regional and local 

scale. This data was used to create interpolated temperature maps for all study areas at four 

different times on a single day. That data was then compared with the demographic data in 

each administrative unit for the residents’ average income per household and population 

density. Geographically weighted regression and bivariate analysis were both used to probe 

for statistically significant relationships between these variables. Many of the results of these 

processes are represented visually as maps in the previous chapters, while foundational data 

can be found in the Appendices. 

This study found that in-situ air surface temperature data collected was consistent 

across each study area, showed reasonable levels of variance, and that data derived from it 

appears to be fairly reliable. In addition, this temperature data did indicate where and when 

UHI was more or less severe without having to specifically derive a value for UHI. Evidence 

for this was most strongly seen in the interpolated temperature maps for Illinois, Chicago, 

and Amsterdam. Based on the study’s results as a whole, average income per household 

seemed to act as a fair indicator for the heat vulnerability of residents in a given 

administrative unit, although the range of incomes in some units makes this less ideal. 

Similarly, population density often acted as a good indicator for urban build-up, although this 
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was less true in the skyscraper-filled business districts at the heart of Chicago and 

Amsterdam. 

The results of this study also suggest that average income values and population 

density values do consistently affect surface air temperature values, though the precise nature 

of this is uncertain. The geographically weighted regression maps for each variable show 

support for this unspecified relationship across each study area. The bivariate analysis maps 

also tentatively suggest a statistically significant relationship between surface air temperature 

and the other two variables. For average income per household, the relationship tends to be 

negatively correlated. This means that as average income per household decreases in a given 

administrative unit, surface air temperature tends to increase. Evidence for this was most 

strongly present in the BA maps of the Netherlands, but the map for Chicago also hinted at a 

similar relationship. For population density, however, the opposite holds true since it seems 

to be positively correlated. So as population density increases in a given administrative unit, 

so does UHI. Evidence for this was most strongly present in the bivariate analysis maps of 

the Netherlands, but the maps for Chicago and Amsterdam also suggest a similar, though less 

clear, relationship. Although the results for Chicago and Illinois were not nearly as 

conclusive as those found for the Netherlands, results from study areas on both sides of the 

Atlantic seem to offer some support for this study’s hypothesis while also showing 

significant regional differences in terms of how heat was distributed and changed throughout 

the day of August 20, 2021. 

6.4- Future research 

 One of the biggest concerns for this study was the lack of coverage/ spread for the 

temperature data in Illinois, Chicago, and Amsterdam. To ameliorate this issue, different 

crowdsourcing avenues for the data could be explored. Alternatively, in-situ data from 

weather stations or fieldwork could be used to fill in the gaps and improve the overall 

coverage and contiguity of the point data gathered. This would lead to more robust, more 

reliable data upon which interpolation and tests for statistical significance could be 

performed with more confidence. Other indicators of vulnerability and contributing factors to 

UHI could also be explored beyond average income per household and population density. 

The role of ethnicity, ownership versus tenancy, or average building height are just a few 

examples of other factors that could be analyzed for each administrative unit, then compared 

with surface temperature to find a significant relationship. Finally, a future study could 

compare cities within the same country or region in order to minimize the number of 

differences and climactic factors between them, which could lead to clearer data and more 

straightforward relationships between the variables studied. 
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Figure 6-1: Illinois sites for which surface air temperature values 

were gathered 
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Figure 6-2: Chicago sites for which surface air temperature values were gathered; this 

includes sites in the counties surrounding the city 
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Figure 6-3: Netherlands sites for which surface air temperature values 

were gathered 
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Appendix B- NETATMO in-situ temperature data 

 

 

 

Figure 6-4: Amsterdam sites for which surface air temperature values were gathered 
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Figure 6-5: Illinois in-situ surface air temperatures for 3:00 AM 

 

Figure 6-6: Illinois in-situ surface air temperatures for 9:00 AM 
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Figure 6-7: Illinois in-situ surface air temperatures for 3:00 PM 

 

Figure 6-8: Illinois in-situ surface air temperatures for 9:00 PM 
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Figure 6-9: Chicago in-situ surface air temperatures for 3:00 AM 

 

Figure 6-10: Chicago in-situ surface air temperatures for 9:00 AM 
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Figure 6-11: Chicago in-situ surface air temperatures for 3:00 PM 

 

Figure 6-12: Chicago in-situ surface air temperatures for 9:00 PM 
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Figure 6-13: Netherlands in-situ surface air temperatures for 3:00 AM 

 

Figure 6-14: Netherlands in-situ surface air temperatures for 9:00 AM 
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Figure 6-15: Netherlands in-situ surface air temperatures for 3:00 PM 

 

Figure 6-16: Netherlands in-situ surface air temperatures for 9:00 PM 
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Figure 6-17: Amsterdam in-situ surface air temperatures for 3:00 AM 

 

Figure 6-18: Amsterdam in-situ surface air temperatures for 9:00 AM 
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Figure 6-19: Amsterdam in-situ surface air temperatures for 3:00 PM 

 

Figure 6-20: Amsterdam in-situ surface air temperatures for 9:00 PM 



[87] 

 

Appendix C- ArcGIS Pro tools used 

Tool Used Function Use in this study 

Add Join Joins layer data onto a 

different layer's attribute table 

Adding average income, population 

density, and air surface temperature data 

to the shapefile with administrative unit 

borders 

Clip Raster Cuts out a portion of a raster 

dataset 

Trimming down interpolated surface air 

temperature maps to only include the 

bounds of the study area 

Geographically 

Weighted 

Regression 

A local form of linear 

regression used to model 

spatially varying relationships 

between variables 

Finding correlation between 

temperature data and possible 

explanatory variables 

Inverse 

Distance 

Weighting 

Interpolates from point data to 

create a continuous field as a 

raster 

Filling in gaps in temperature data 

between NETATMO sites 

Local 

Bivariate 

Relationships 

Analyzes two variables for 

statistically significant 

relationships based on their 

values and the locality 

Finding correlation between 

temperature data and possible 

exacerbating factors 

Table to Excel Converts a table to an MS 

Excel file 

Consolidating and re-organizing data as 

a precursor to data analysis 

Zonal 

Statistics as 

Table 

Calculates the values of a 

raster within the zones of 

another dataset, then reports 

these as a table 

Finding the average surface air 

temperature for each administrative unit 

at all four times at each study area 

 


