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Introduction 
 

One of the most exciting ambitions in the academic study of artificial intelligence is 

the creation of a so-called artificial general intelligence (AGI). That is to say, an artificial 

agent that is competent in not just one, but several (and ideally almost all thinkable) 

domains of action. Humans are often viewed as being generally intelligent, precisely 

because of our ability to behave intelligently in so many domains; among other things, we 

can do mathematics, have social interactions, plan a career for the future, become highly 

skilled at a sport and build rockets that go to Mars. Being able to build an artificial 

intelligence that can do all of these things would be revolutionary, to say the least. Most 

progress in the field of artificial intelligence has, however, been geared toward specific 

applications; so-called artificial narrow intelligence (ANI). Think for example of the widely 

adopted use of chatbots for internet companies, or the development of an ANI by Google 

Deepmind that was able to beat the best human player in the complex board game Go 

(Gibney, 2015). However successful these may have been, building an artificial general 

intelligence has been proven to be a lot harder. In this thesis, I will argue that the main 

reason we have not yet been able to build an AGI is because of a related unsolved problem 

in the philosophy of artificial intelligence: the so-called frame problem.  

To build up the argument, I will first discuss both the frame problem and artificial 

general intelligence separately, to get a good view on the current state of these matters, 

after which I will make the link between the two. Next, I will introduce a different 

perspective on and a solution to the frame problem, the idea of relevance realization, as 

proposed by Vervaeke (2012). I will argue that the ability of a system to achieve relevance 

realization correlates with its success at solving the frame problem and that the degree to 

which a system can do relevance realization is the degree to which a system is generally 

intelligent. To put in another way, I would argue that the ability to do relevance realization 

is exactly what makes a system “generally” intelligent (Granted, intelligence itself involves 

more factors than merely the ability to do relevance realization, but any system that aims 

to be intelligent in a general sense will be so to the degree that it incorporates a system for 

relevance realization). I will propose a few new features of relevance realization, next to 

those already proposed by Vervaeke. After that, I will discuss several existing cognitive 

architectures that aim to be the framework of an artificial general intelligence, and lay out 

the basic design structure of each one. I will make a relative comparison between these 

architectures based on the features of relevance realization, and give each architecture a 
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score for each feature. Finally, I will make a suggestion for a design proposal for a new 

cognitive architecture where the best scores of the features from the different architectures 

are combined: this new architecture would be most capable of relevance realization and 

thus most promising as a design for an artificial general intelligence.  
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The Frame Problem 
 
The computational frame problem 

The Frame Problem is a problem in the philosophy of artificial intelligence that was first 

explicitly formulated by McCarthy and Hayes (1969). In its original form, it poses the 

question of how a system can logically represent both the effects as well as the non-effects 

of a given action of the system. What makes this a problem is that it is in principle 

impossible to account for all the non-effects of a particular action, because those would 

form a potential infinite list. However, if an agent wants to be able to represent an accurate 

description of the future state of the internal and external environment after a particular 

action, it must also logically represent these non-effects. To illustrate the problem, consider 

how the following example would be handled using a standard deductive system such as 

classical logic (a similar example occurs in (Brown, 1987)). 

Let’s suppose that we can perform two different actions on a particular object. 

Logically, the consequences of these actions can be described as follows. 

1. Temperature(x,t) holds after Heating(x,t) 

2. Shape(x,s) holds after Mold(x,s) 

The first formula describes that the object x is assigned Temperature t after it has performed 

the action Heating to t. The second formula describes that the Shape of the object x is 

assigned s after the action Mold s is applied to the object. So far this is straightforward. 

Now imagine that we start out with an object g(t,s) = g(50 degrees, cube). If we 

apply Heating(g,70 degrees), we can deduce that Temperature(g,70 degrees). However, 

what can we say about the shape of the object, after we apply Heating(g,70 degrees)? 

Intuitively, it would make sense to assume that Shape(g,cube) would hold, because only 

Temperature is defined to change after Heating. However, in formal logic, we cannot 

deduce that this is the case from just rules 1 and 2 above. This is because by only applying 

Temperature(g, 70 degrees), we have not explicitly ruled out that this action may have 

influenced the shape of G. (It could have been that since the object was heated, the shape 

of the object would change, which in fact is quite possible). Therefore, if in reality the shape 

actually cannot be changed by heating it, we would have to formulate this explicitly, by 

stating logically that for the first formula the Shape(x,s) holds after Heating(x,t) if Shape 

(x,s) was held beforehand. By stating this, we can make sure that the shape is not influenced 

by heating the object. These formulas, where we rule out that a particular action has no 

influence on the properties of an object as described by another action, are called frame 



 

 

 

6 

axioms. This is because these axioms “frame” the context in which we can logically deduce 

the consequences of a particular action; we are sure that only those properties that are 

described by the frame axioms actually change after an action is performed on the object. 

However, one can already guess where we run into trouble with the formulation of 

frame axioms. Returning back to the example, if we apply Heating to the object g, we saw 

that we had to explicitly formulate that the shape was not affected by this. But there are of 

course way more properties of the object that are not going to be affected by the action 

Heating, and these all have to be explicitly formulated, or “framed” as well. For example, 

we also have to explicitly state that the color of the object does not change after heating, 

or the smell, or any other properties that can be described to the object that is not affected 

by Heating. However, the number of obvious properties that are not affected by applying 

an action to the object, is enormous and possible infinite. Here, we can formulate the frame 

problem in its original, computational form: how can we logically describe both the effects 

of a particular action, without explicitly having to write the infinite amount of obvious 

non-effects of a that action? 

Several solutions to this original problem have been proposed, all from different 

perspectives. For the purpose of this thesis, it is not relevant to go into every solution 

from the literature, but at the moment most scientists agree that the original, 

computational frame problem is more-or-less solved (Shanahan, 1997). One of the 

proposed solutions is described by (McCarthy, 1986), and is based on the technique of so-

called predicate circumscription.1 The idea here is that an axiom scheme is added to the 

logic, which basically says that any instance of a predicate that is not formally described 

as being true, must be false. By stating this only once, one “circumscribes” the need to 

constantly explicitly formulate new formulae, which would be necessary in classical 

logic. By stating that any instance of a predicate that is not formally described as being 

true must be false, one does not have to add new axioms each time a new action is 

performed. In this way, this approach solves the computational frame problem as all the 

non-effects are now accounted for. However, in practice, it is often the case that an action 

sometimes has a lot of unintended side-effects. Since these effects have not been 

described by the initial logic, the solution of predicate circumscription automatically 

assumes that there are no unintended side-effects. Here we see that while the solution 

formally works, in practice it still seems to be problematic. Other solutions run into 

 
1 For interested readers, another solution using modal logic can be found in Schwind (1978). 
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similar problems when considered from a practical standpoint, which is why 

philosophers such as Dennett (1984) suspected a deeper problem. In the next chapter, this 

deeper problem will be introduced and discussed. 

 

The epistemological frame problem 

While philosophers generally agreed that the frame problem in its original, computational 

form is more or less solved, there were other philosophers that suspected a way deeper, 

epistemological frame problem, such as Dennett (1984) and Fodor (1987). The deeper 

epistemological problem is best portrayed by an example that Dennett (1984) gives. In the 

example, one imagines a robot whose task it is to retrieve an object from a wagon in a 

room nearby. However, there is also a bomb on the wagon, that would go off when the 

wagon would be moved. The robot can perceive the bomb, but cannot see that the bomb 

would go off the moment the wagon would be moved, or that it would go off eventually if 

the robot takes too long to do anything. By some simple reasoning and observations, the 

robot can deduce a way to retrieve the object from the room. First, it notices that the object 

is on the wagon. Second, it observes that the wagon has wheels, and can therefore be 

moved. The robot concludes that it should thus pull the wagon out of the room, such that 

his goal is accomplished. However, the problem now of course is that the bomb will 

explode, and the object with it, such that the robot has failed to accomplish his goal. 

Therefore, the robot needs some revision, such that it can account for all (side) effects of 

his actions. The robot thus decides to work out all the consequences of its actions before 

doing anything. However, to accomplish this, one would have to keep an enormous list of 

all the consequences of each possible action. So far, the problem resembles the original, 

computational frame problem. Dennett describes what would happen: 

 “It had just finished deducing that pulling the wagon out of the room 

would not change to color of the room’s walls, and was embarking on a 

proof of the further implication that pulling the wagon out would cause its 

wheels to turn more revolutions than there were wheels on the wagon—

when the bomb exploded.” (Dennett, 1984, p. 129). 

 
Of course, we can now observe that the problem the robot faces is that it calculates 

the consequences of actions that are completely irrelevant to the goal at hand. So, the 

designers of the robot conclude that the robot should not calculate all the consequences of 

its actions, but only those consequences relevant to the problem at hand. However, here 

we get at the heart of the epistemological frame problem: how can a robot, or any cognitive 
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agent for that matter, a priori determine what is and is not relevant to the problem at hand, 

without explicitly considering every possible consequence of its action? After all, how can 

a cognitive agent ever determine that a consequence of an action is irrelevant, if it has not 

explicitly considered that consequence at all? The problem of determining which 

consequences of action are relevant and which are not without explicitly considering the 

relevance of every possible consequence (because there are an indefinitely large number of 

possible irrelevant consequences), is defined as the epistemological frame problem. 

 

Is the epistemological frame problem really a problem?  

The interesting thing about the epistemological frame problem, is that even though 

it is still considered a real problem, one could see that the problem is at least approximately 

solved in humans. Humans are reasonably competent in determining the relevance of 

sensory input to a particular goal, even in environments that haven’t been encountered 

before. We do this constantly without considering everything in our environment and 

labeling most things as irrelevant. We simply have to ignore them in the first place. In a 

way, we thus intelligently ignore a lot of our perception. But how is that we can do this 

reasonably successfully? After all, perhaps a lot of what we ignore in our perception is 

actually relevant? In any way, it is clear that humans at least implement an approximate 

solution to the epistemological frame problem in the sense that we do, in fact, reasonably 

determine what consequences of an action are relevant for us in any moment in any given 

domain without considering every possible consequence of the actions we are considering.  

The fact that humans implement a solution prompts us to consider whether the 

epistemological frame problem is really a problem at all. Arguably, in the deepest sense, 

the epistemological frame problem is a problem that can never, in principle, be completely 

solved, in the sense that a perfect solution to the problem does not exist. To illustrate why, 

consider by contrast that a such a perfect solution exists. This would mean that a system 

capable of doing this would perfectly know the relevance as well as the irrelevance of every 

consequence of a particular action it intends to execute. However, we have previously seen 

that the list of possible consequences of an action that is irrelevant is potentially infinite! 

After all, one could list an infinite number of possible consequences of an action that are 

completely irrelevant to the system. Assuming that representing an infinite number of 

irrelevant consequences is computationally intractable, we can thus conclude that such a 

perfect solution does not exist. The quest for a solution to the epistemological frame 
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problem should thus not be seen as looking for the perfect answer, rather, a solution to the 

problem will always be approximate, but never perfect. 

 

The global workspace theory as a solution to the epistemological frame problem  

One proposed solution to the epistemological frame problem from the literature comes 

from Shanahan and Baars (2005), in the form of the Global Workspace Theory (GWT) of 

consciousness. The GWT is a model of consciousness or cognition in general, that 

proposes that human cognition is run by various specialist parallel processes, all of which 

are connected to a global workspace. The global workspace determines which of these 

parallel processes gets access to the global workspace, and after access has been granted, 

the global workspace broadcasts the contents from the specialized process to the entire set 

of specialized processes. In figure 1, this idea is illustrated.  

 

Figure 1. Illustration of the concept of a global workspace. One local workspace is selected, sent to the global workspace, and 

then signaled to all the local workspaces (Shanahan & Baars, 2005). 

 

Remember that the epistemological frame problem deals with the question of determining 

relevant input from perception without explicitly considering every possible perceptual 

input, as that would require too much computation (how is perception ‘framed’ when there 

are an almost infinite ways to frame a perception?). Shanahan and Baars argue that the 

intuition that is used in the description of this problem is that determining relevancy of 

perceptual input supposedly happens in a serial manner; in other words, they argue that 

the epistemological problem is only a problem when determining relevancy is done in 

serially as that would require too much computation. They propose that the GWT, by 

making use of a massive number of parallel processes, can deal with the epistemological 

frame problem, by outsourcing the determination of relevance to these parallel processes. 
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By making use of parallel processes that each are responsible for determining relevancy 

that can all run at the same time; they argue that the frame problem resolves as the amount 

of computing power is greatly reduced. 

While I think that the GWT design structure does contribute to a solution to the 

epistemological frame problem, I would argue that Shanahan and Baars overstate the 

capacity of the GWT to fully solve the epistemological frame problem. This is because 

even when using a massive number of parallel units to determine relevancy, thereby 

reducing the need for computing power, the required computing power still diverges to 

infinity. An example would be the playing of a game of chess; after playing the first move; 

the player can calculate what the best response to any move is by the opponent (for 

example, by using GWT where a parallel process for each possible move tries to calculate 

the best response), however, the possible responses in the game after each possible move 

that can by analyzed by the parallel process is still close to infinite; using parallel processes 

here does not solve the problem as the amount of possible consequences of actions are still 

way too much too calculate.  

Another argument against the GWT as a complete solution to the frame problem is 

that Shanahan and Baars assume that the relevancy of input of each parallel process is 

independent of input by any other parallel process, but I would argue that this may not be 

the case. The relevancy of certain perceptual input may only be relevant insofar the system 

has perceived something else as relevant from a different parallel process. To check this, 

the system would still need to make use of using a serial way of determining if input b is 

present in any of the parallel processes (because only if so, input a is relevant to the system). 

I would thus argue that in some instances one cannot circumvent the necessity of serial 

processing to determine relevancy. 

However, while not being a full solution, the GWT is useful in assisting in an 

approximate solution the epistemological frame problem. The GWT will come back later 

on when discussing cognitive architectures, as one of them implements this theory. 
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Artificial General Intelligence 
 

In the academic study of Artificial Intelligence, one can broadly distinguish between 

two types of artificial intelligence. The first one can be defined as “artificial narrow 

intelligence”, first explicitly defined by Kurzweil (2005). This type of artificial intelligence 

refers to applications that are competent at carrying out one specific task, but cannot extend 

their skills to novel domains. Most applications of artificial intelligence today concern 

applications that fall under the category of artificial narrow intelligence. Voice-assistants, 

recommendation algorithms and gaming AI’s are all examples of narrow artificial 

intelligence; the AI is very competent for the task at hand, but cannot its domain of 

competence beyond its original task (an artificial narrow intelligence that is designed to be 

very skilled at chess for example, has no idea how to interpret language and recommend 

restaurants nearby). The other category of artificial intelligence would be the integration of 

various artificial narrow intelligences: artificial general intelligence. In contrast to an 

artificial narrow intelligence; an artificial general intelligence displays competence across 

several domains, and has an ability to transfer knowledge from one or several domains in 

such a way that it can intelligently use it in a novel, never encountered domain. 

While the creation of such a general intelligent machine has always been the most 

ambitious goal since the start of the field, the development of such a machine appeared to 

be quite difficult. One of the first attempt at the creation of an artificial general intelligence 

was the General Problem Solver (GPS) by Newell and Simon (1959). In the General 

Problem Solver, a problem was defined as having four elements: a representation of the 

initial state, a representation of the final state, a representation of all the operators that can 

be used to transform one state into another state, and finally, a set of path constraints to 

limit the set of possible solutions. A solution to any problem formed by the General 

Problem Solver would then entail a description of the exact path that brings the problem 

from its initial to its final state, by using the set of operators that are allowed, and 

conforming to the path constraints. However, the General Problem Solver admitted of two 

big problems, as Vervaeke (2012), points out. First, the GPS assumes that any real-world 

problem can be represented as a particular state in a computational machine, in other 

words, the GPS assumes that all problems are well-defined. However, most real-world 

problems are not well-defined but ill-defined. The problem of having a productive 

conversation for example is not well-defined: there does not exist a one-size-fits-all solution 

of the perfect productive conversation. A second problem is that, in the case a problem is 
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well-defined, the set of possible paths that one can take from the initial state to the solution 

(final state), get exponentially larger by each step. For example, if each state can be 

transformed into three new possible states, with every step on the path, the possible paths 

are multiplied by 3: after the first iteration, 3 states are possible, after the second, each of 

these three states can be transformed into three other states giving a total of 9 possible 

paths, for the third iterations we get to 27, etcetera. It is clear that the number of possible 

paths that lead to the final state are therefore ‘combinatorally explosive’, as Vervaeke 

(2009) puts it. The number of possible paths from the initial to the final state will quickly 

run to infinity due to the exponential nature of the path expansion. It was thus clear that a 

real general problem solver was quite far from reaching that point. Therefore, most of the 

field has since focused on the creation of artificial narrow intelligences, which seemed to 

be more successful due the fact that they concern well-defined domains and problems. 

These efforts have resulted in successful technologies such as voice recognition software, 

chatbots, image generators, etcetera.  

However, in recent years, renewed interest in the development of an artificial 

general intelligence has been sparked. The most notable example of this was the creation 

of the annual Artificial General Intelligence conference, which was first organized in 2008 

(AAAI, 2008). The conference was initiated as means for researchers interested in the 

creation of artificial general intelligence to come together, share ideas and goals, and make 

progress in the field. In his seminal review paper on artificial general intelligence, Goertzel 

(2014) provides several characteristics and concepts of general intelligence that are mostly 

agreed upon by scientists within the artificial general intelligence community, and these 

are as follows. First, there will be no such thing as unlimited or arbitrarily general 

intelligence, due to resource constrains in the real world, and the fact that the learning time 

and difficulty may differ per task or domain, resulting in bias for more intelligence for some 

tasks over others. Second, humans currently display a higher level of general intelligence 

than existing AI applications, and finally, that it seems very unlikely that the general 

intelligence as displayed by humans is the maximum achievable intelligence.  

Goertzel furthermore elucidates the distinction between the study of artificial 

narrow intelligence and artificial general intelligence, and formulates this distinction in his 

“Core AGI hypothesis”, which goes as follows: 

The creation and study of synthetic intelligences with sufficiently broad 

(e.g. human-level) scope and strong generalization capability, is at bottom 
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qualitatively different from the creation and study of synthetic intelligences 

with significantly narrower scope and weaker generalization capability. 

 

This highlights that the two categories of artificial intelligence are indeed conceived 

of as very distinct projects, and may require fundamentally different methods. I think this 

hypothesis is likely true, for several reasons. A practical reason is that we currently have 

success with ANI and not with AGI, which seems to indicate that the latter involves 

dealing with a qualitatively different problem. More importantly, the goals of ANI and 

AGI are completely different. The first is concerned with designing an optimal machine 

capable of dealing with a well-defined specific task. For the latter, the real crux of the 

problem is not the developing of competence at one domain (even though that is still a part 

of it), but rather how the system can transfer knowledge from one domain to another and 

deal with novel, not before encountered domains of actions and show learning and 

competence there. The real problem in AGI is therefore to effectively deal with new 

information and transform this new information into new competence. For the purpose of 

this thesis, I will presume the hypothesis to be true. 

While some characteristics of artificial general intelligence can be defined, it should 

be emphasized that a full overarching definition of artificial general intelligence is still 

lacking. This is mostly a result of the absence of final definition for (general) intelligence 

itself. The final goal of what would constitute an artificial intelligence may therefore shift 

as progress is being made and our understanding of it changes with it. Goertzel (2014) 

proposes two main characteristics of AGI, which I have hinted at before. 

• An AGI should be able to carry out a variety of tasks, achieve a variety of goals, 

and do this in a variety of different domains and contexts. This characteristic thus 

referrers to the “general” capacity of AGI. 

• Furthermore, the AGI should be able to effectively transfer knowledge from one 

domain of competence to another, this thus also refers to the capacity to 

generalize to other domains. 

However, I would argue that there is another characteristic that is absolutely necessary for 

artificial general intelligence, and that is the ability to effectively deal with new 

information, learn from this information, and transform it into new knowledge and 

competence. This is because any successful AGI must be able to handle new situations 

well, and this can only be done when it knows how to zero in on the right information 

from this domain and knows how to transform this into new competence.  
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Different approaches to artificial general intelligence 

Goertzel (2014) describes several approaches or perspectives in defining artificial general 

intelligence, which I will discuss here. One of these approaches, the cognitive architecture 

approach, will be discussed in more detail, as it will form the main focus of this thesis.  

A first approach to conceptualizing artificial general intelligence is formulated by 

Nilsson (2005) and is defined as the pragmatic approach. This approach derives its 

pragmatic aspect from the fact that accomplishment of artificial general intelligence is 

defined as the ability to perform most of the tasks or jobs that a human being would do, 

making the tasks for humans obsolete. Artificial general intelligence in this sense is not 

explicitly defined, but is expressed in terms of how well a system is able to imitate humans 

by performing their tasks, thereby assuming that humans are the prime example of general 

intelligence. It also does not matter if the system is actually intelligent, whatever that would 

mean, the only metric that is looked is the practical results of its actions; namely, can this 

artificial intelligence perform as well as humans on most tasks? Note that in this definition, 

an artificial general intelligence beyond human level general intelligence is not considered. 

However, as stated earlier, most AI researchers agree that general intelligence most 

probably extends well beyond human level general intelligence. In a sense, this 

conceptualization is therefore limited in its scope. 

A second approach, the psychological approach, is a way to artificial general 

intelligence that tries to elucidate the display of general intelligence by describing 

underlying mechanics and design features. This differs from the practical approach, where 

only the outcome mattered. The approach is similar however in the sense that artificial 

general intelligence is compared to achieving human level intelligence. Some of the well-

known characteristics of general intelligence in psychology concern the intelligence 

quotient and the so-called g-factor (Parnassum & Klee, 1998). The g-factor was introduced 

because researchers noted that performance on one specific task, for example linguistic 

capability, was often strongly correlated with performance on other specific task (for 

example, mathematical capability). Adams et al. (2012) have compiled a list of underlying 

psychological capabilities or categories that are suggested to be required for artificial 

general intelligence as seen in humans. These are as follows: perception, actuation, 

memory, learning, reasoning, planning, attention, motivation, emotion, modeling self and 

other, social interaction, communication, quantitative/mathematical, building/creation. 

These 12 capabilities may differ in importance but are generally agreed upon to be 

necessary for an artificial intelligence to be general. 
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The third, mathematical approach is fundamentally different from the two 

approaches described earlier; while the pragmatic and psychological approach specifically 

concerned the accomplishment of human-like general intelligence, the mathematical 

approach extends beyond that, and asks how general intelligence could be defined 

irrespective of human-level general intelligence. This approach therefore assumes that 

general intelligence is not limited to human level general intelligence. 

The adaptationist approach conceptualizes artificial general intelligence as the 

capability for a system to adapt to new environments using limited resources (Wang, 2006). 

In this sense, one could make a parallel with the theory of evolution: those offspring that 

display the highest fitness by being most adapted to the environment, are in this definition 

considered to be most intelligent. In an interesting way, the degree of general intelligence 

could therefore be compared to the chances of survival in new environments. Humans 

possess the highest degree of general intelligence of all known organisms according to this 

definition, as they display the highest capacity to adapt to different environments. 

Another approach to describing artificial general intelligence is the embodiment 

approach, which argues that general intelligence can only be displayed by physical systems 

in a physical environment. From this perspective, general intelligence should be viewed as 

the proper modulation of the physical systems in relation to the environment it is in (in 

order to achieve its goal). Stronger, Pfeifer and Bongard go as far as to argue that a software 

AI cannot considered to be intelligent (Munari, 2009), since it is not embodied. This 

approach to artificial general intelligence will come back later in the thesis when discussing 

the theory of relevance realization. 

A final conceptualization to developing artificial general intelligence, and which 

will form the main focus of this thesis, is the idea of cognitive architectures. Cognitive 

architectures are basically frameworks describing how several parts of cognition within an 

artificial system relate to each other, and how processing within subparts of the system is 

executed. Thórisson & Helgasson (2012) emphasize that cognitive architectures are not 

simply a description of how independent parts of cognition do their processing; they should 

also provide a framework of how the different parts of cognition work together and are 

integrated as a whole, thereby forming one structure that is more than the sum of its parts. 

They furthermore describe the cognitive architecture approach to developing artificial 

general intelligence as the most promising approach within the field, which is also the 

reason why this approach is used as the main focus of this thesis.  
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Relevance Realization 
 

So far, I have discussed the epistemological frame problem and AGI as two separate 

subjects. In this chapter, I will argue for a link between the two and introduce a framework 

that serves as an attempt of a solution to the epistemological frame problem and as a design 

framework for artificial general intelligence. To see the connection between the 

epistemological frame problem and general intelligence, recall that the epistemological 

frame problem revolves around the problem of determining what consequences are and are 

not relevant to a particular action. More broadly speaking, this not only concerns the 

consequences of action, but actually involves all domains of cognition, most notably 

perception. Determining what data for cognition is relevant and what is not is the 

epistemological frame problem in its broadest sense. Now, let’s turn back to some 

characteristics of general intelligence. One of the most important properties of general 

intelligence is the ability to be competent at many domains of action, and also have the 

ability to effectively learn to be competent in a completely new environment. More 

specifically, one thing that is integral to general intelligence is the ability to quickly adapt 

and develop competence in basically any new, never before, encountered domain of action. 

This is also again what distinguishes AGI from ANI; an ANI could in principle never learn 

to be competent in any new domain that it wasn’t specifically designed for.  

The question then arises: what makes system most able to learn in a completely new 

environment? Arguably, at the heart of the capability to effectively adapt and develop 

competence in a new domain of action is the ability to determine relevancy, in its broadest 

sense, but most importantly of new perceptual input. Vervaeke and Ferraro (2013) have 

also argued for this close connection between general intelligence and the ability to 

determine relevancy. They discuss various core parts of cognition, such as problem solving, 

communication, categorization, rationality and environment interaction. Vervaeke (2012) 

also shows how the ability to determine what is or is not relevant is at the heart of the 

ability to perform well in each of these important domains of cognition. For the purpose 

of this thesis, it is too much to discuss every domain separately (for details one can refer to 

the paper), but as an example, take the cognitive ability of categorization. To be able to 

internally categorize various perceptual input, one must be able to determine shared 

characteristics between two objects such that they form a category. For example, take a 

tennis ball and a football. Do these belong in the same category? Well, most people would 

say so, because they share similar features: both are round, are used for a sport, and can 



 

 

 

17 

move around. However, we can also name as many differences. One is a lot bigger than 

the other, the outside textures are different, and their weights are different. Based on the 

latter differences, one could just as well argue that they do not belong in a category. But 

which one is right? Well, it depends on what characteristics are relevant to the 

categorization that is made. There are almost infinite similarities and differences between 

any two objects, but categorizing them together involves determining which of those 

properties are relevant to the category. 

For every other mentioned domain of cognition, one eventually runs into the same 

problem of determining relevancy. Hence, we can see that it is central to successful 

cognition and indispensable for general intelligence. While a technical and complete 

argument for this connection may require more philosophical argumentation and 

consideration, for the purpose of this thesis, I will assume that the ability of a system to 

determine relevance, in its broadest sense (being able to do it quick, accurately and 

effectively) as being equal to the degree of which a system is generally intelligent.  

Now, one of the first attempts to a solution of the problem of determining relevance 

and thus of the epistemological frame problem comes from Vervaeke (2012), which I 

mentioned a bit before. In this outline of his theory of ‘relevance realization’, as he has 

refers to it, he formulates a design framework by which human beings, or artificial systems 

for that matter, are able to determine the relevance of both sensory input and internal input. 

Before going into the specifics of this theory, the first point to get clear and that he mentions 

is that a theory of relevance itself is scientifically unviable. This is because every scientific 

theory or explanation has to deal with a stable, homogenous class of data that it purports 

to give a theory or explanation about. For example, the theory of the force of gravity is a 

scientific theory since it describes that every object with a mass will be under the influence 

of this force. All objects are homogenous in the sense that they all have a mass and stable 

in the sense that their property of mass does not change in a different environment. If we 

look at the property ‘relevance’, of an object however, we see that this property does not 

relate to a stable, homogenous class; the relevance of an object is namely very much 

dependent on the environment and task at hand. There are no class of things that are 

relevant on a Thursday, for example. It does not make sense to talk of set of homogenous 

relevant objects, and it is not stable because the relevance of an object may thus differ 

depending on the task at hand or the environment it is in. It is therefore clear that a theory 

of relevance in itself does not make sense scientifically. However, a theory of relevance 

realization, a scientific theory of the process by which relevance is realized may actually 
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exist. The analogy that Vervaeke makes is to that of the concept of biological fitness: there 

is no scientific theory about the fitness of a particular organism, but there exists a scientific 

explanation for how the fitness of an organism is realized, namely the theory of evolution. 

I have argued for and assumed that relevance realization is a valuable skill for any 

general intelligence as it relates to virtually all domains of cognition. So how would an 

attempt at a formulation of a framework of relevance realization look like? Vervaeke 

explains that his proposal is by no means a full account of a final theory, but proposes three 

characteristics that such a theory should incorporate at minimum. To restate, the goal of a 

theory of relevance realization is a description of how a cognitive agent that exhibits 

general intelligence is able to determine relevant perceptual and internal input from a 

potentially infinite number of possible information, across a wide variety of domains, 

including new domains that haven’t been encountered before. A theory of relevance 

realization should therefore describe the mechanics of how the relevant input for the task 

at hand is determined in any domain of competence, including new ones. Again, the theory 

does not describe what will be labeled as relevant input in any domain per se, since we 

have seen that the set of relevant inputs in any domain is not a stable homogenous class. 

First, I will discuss three characteristics that Vervaeke proposes a theory of relevance 

realization should incorporate. After that, I will introduce two more characteristics which 

I would argue also are necessary components of a theory of relevance realization. The goal 

here again is not to deliver a complete theory of relevance realization, but rather to 

illustrate what the necessary characteristics are that such a theory should have. 

 

Self-organization 

The first of the characteristics that Vervaeke proposes is that the machinery of relevance 

realization is a self-organizing process. Self-organization of a system refers to the ability of 

the system with many components to generate a particular functionality without any 

central control. The functionality is generated from local interaction in the system, and via 

feedback mechanisms these local parts interact to generate a particular behavior for the 

system as whole. The organization thus becomes an automatic process that emerges from 

local interaction, and can therefore be called self-organizing (e.g. no external input or 

control is needed to direct its organizational and functional structure. The main argument 

that Vervaeke makes for the importance of dynamically self-organizing and constantly 

changing framework for relevance realization instead of preprogrammed rigid system 
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refers back the idea there exists no scientific theory of relevance, due to its inherently goal 

and context-depending nature). To determine relevancy in any new domain of action may 

require a completely new design structure to realize relevance that wasn’t needed before. 

Therefore, a self-organizing framework, that can constantly adapt itself to new needs and 

environments is something that a system capable of relevance realization should have. 

Another way of seeing this is again making the parallel with the theory of evolution; the 

optimal fitness of an organism is constantly changing dependent on the environment that 

constantly changing; therefore, an organism that has rigid design cannot deal effectively 

with new environments.  

 

Bio-economic model  

A second characteristic that Vervaeke proposes as a principle of a theory of relevance 

realization is that it should make use of a bio-economic model of allocating computational 

resources. A bio-economic model of cognition stands in contrast to the functional 

computational model of cognition. The latter model, popularized by Fodor (Green, 1996), 

makes use of symbolic or syntactic representations and manipulates this to work out the 

action for the agent to achieve its goal at hand (this is therefore similar to the computational 

theory of mind). However, the problem with functional computationalism is that it cannot 

determine from the syntactic representation what is relevant input to the goal at hand. 

Fodor recognizes this, and explains that the reason for this is that syntax is locally defined, 

but that relevance is globally defined (e.g. the syntactic representation are relevant to a 

global goal, but this global goal is often very abstract and cannot therefore be syntactically 

defined). Therefore, a theory of relevance realization needs a model whereby local 

representations and manipulations are defined by certain local rules that also have a direct 

global effect on the goal at hand for the agent in that particular environment. Here, the 

global goal does not need any syntactical representation, but we can infer from local rules 

what the effect on the global goal will be.  

An analogy to a real economy would be for example the goal of the growth of 

domestic production of all goods. To syntactically represent this goal in terms of the 

symbols of all local syntactical representation would results in an infinite calculation that 

would be impossible to represent. Instead, the relevance of any local input is determined 

directly to what kind of influence it has on the global goal. If one company produces more 

flowers than it did last year, we can deduce this has a positive effect on the global goal 
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(increase in domestic production), and this local interaction is therefore relevant to the goal 

at hand. We can thus make use of certain local rules that influence the global goal, without 

explicitly representing the global goal in terms of all the local rules. This property is 

interestingly relatable to a complex system, which will be discussed later on. The global 

behavior or goal of a complex system is not defined in terms of the whole of the system, 

but emerges from the sum of all local interactions that contribute to that goal. The 

representation of the global goal is therefore thus defined by local interactions.  

 

Balancing of constraints by opponent processing 

The final characteristic that Vervaeke argues for is that the mechanics of relevance 

realizations should involve the balancing of multiple constraints that serves opposite 

functions, rather than a specialized machinery. He argues that a specialized machinery for 

relevance realization would not circumvent the epistemological frame problem that it 

intends to solve; it would face combinatorial explosion in the face of all possible input that 

could be relevant to possible action, where inputs could even depend on one another for 

being relevant. Furthermore, a specialized machinery for relevance realization would 

basically mean that it is a general-purpose learning algorithm, which has been shown to be 

impossible to create (Wolpert & Macready, 1997). The so-called No Free Lunch Theorem 

that Wolpert describes shows that all learning algorithms can never be completely objective 

and have at least some sort of bias towards certain functions over others. Any ambition 

therefore to come up with some sort of general-purpose learning algorithm, necessarily has 

to use a bias or heuristic to certain functions it uses. Therefore, the best solution to this 

seems to be the goal of dynamically balancing certain constraints/functions, starting out 

with a bias towards one constraint and constantly changing parameters to see whether one 

gets closer to the goal. More specifically, the balancing should be between two functions 

that to do the exact opposite. Think for example of the regulation of blood sugar in humans; 

the goal there is to maintain an optimal (relevant) value of the blood sugar in the blood 

such that the organism as a whole can best serve its goals. In an organism, this is not solved 

by a specialized machinery for maintaining blood sugar within range, but rather two simple 

processes that to do the exact opposite: the release of insulin to lower blood sugar when it 

is too high, and the opposite, the release of glucagon to increase blood sugar when it is too 

low. There is no overarching machinery here that incorporates these two processes, rather, 

there is a dynamic self-organizing interplay between these two processes depending on the 
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current blood sugar value; if it is too high, there will be a bias towards insulin release, if it 

is too low, it will be based towards glucagon release. Note that the opposite function to 

take in the same value as input (current blood sugar value). The same kind of opponent 

processing happens for several domains in relevance realization, Vervaeke argues. He 

argues that due to the continuous dynamic balancing between opposing functions, the 

explicit binary relevance of an object is never calculated, but rather the degree to which it 

may be relevant (just as the explicit optimal value for blood sugar does not exist, but rather 

a range of possible good values). Relevance realization by opponent processing of function 

also ties in with the economic model of representation: depending on the value of a certain 

input in relation to the goal of two opposing functions, there will be more cognitive 

resources to one function rather than its opponent function, which thus is a bio-economic 

way of dividing computational resources. 

 

Complex systems theory 

So far, we have discussed three characteristics for a theory of relevance realization that 

Vervaeke has proposed. Before introducing two other characteristics that are also arguably 

important to the framework of relevance realization, I would first like to discuss the 

concept of a complex system and complex systems theory, as the two added characteristics 

follow from the premise that the machinery of relevance realization in the brain, or in 

artificial system for that matter, is analogous to a complex system. Boschetti (2011) 

discusses the concept of a complex system and its characteristics. There currently exists no 

explicit, set-in-stone definition of a complex system, but there are nevertheless several 

aspects of a complex system that most academics agree on.  

Examples of well-known complex systems are the climate, the economy or our 

brain. Complex systems are systems that operate on the border between order and disorder; 

they are neither mechanistic and fully predictable, nor completely random. They consist 

of many individual parts that are connected to one another, where each individual part is 

governed by some set of rules that determine the interaction with other connected parts, 

resulting in certain global behavior. Furthermore, complex systems show emergent 

properties, meaning that the system as a whole shows behavior that is more than the sum 

of the individual parts and thus cannot be reduced to its parts. They are self-organizing, 

meaning that the system as a whole is configured to a particular state without central 
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control. Finally, a complex system is networked in a particular way as to optimize 

efficiency and robustness, the network is often scale-free, small-world and clustered.  

Interestingly, if we compare these properties of a complex system with the three 

proposed characteristics of a theory of relevance realization by Vervaeke, we see some 

striking similarities: self-organization, economic allocation (whereby global behavior 

results from local interactions) and balancing of constraints (which can be achieved by 

allocating a specific rule set to individual agents in the complex system) seem to all be 

properties of a complex system as well. Here, I will argue that the mechanics of relevance 

realization within in the brain can therefore best be described by a complex system. If this 

is right, then a theory of relevance realization should be a theory of complex systems. More 

specifically, the mechanics behind relevance realization require a scale-free, small-world 

clustered network of processing units and the complex system behind relevance realization 

will show emergent behavior, e.g. higher order phenomena in determining relevance. 

Finally, I would argue that a system capable of relevance realization must necessarily be 

embodied and cannot simply be an abstract program. This last feature of embodiment is 

not a necessary feature of a complex system per se (the economy or climate are not 

‘embodied’ in any meaningful way) but I would argue is still necessary for doing relevance 

realization, as the relevance of a certain object is often dependent on it being useful for the 

execution of a physical task in relation to that object, which can only be performed by a 

physical body. I will discuss these two aspects separately. 

 

Complex network characteristics 

Since the mechanics behind relevance realization closely resemble those described by a 

complex system, it is highly likely that the mechanics behind relevance realization show 

properties typical of a complex system. One of these properties is that that the system can 

be described as a complex network, meaning it shows properties of a scale-free, small 

world, clustered network of processing units. These properties of a network are important, 

as they result in a network that has the optimal balance between efficiency (processing 

speed within the network) and robustness (The ability of the network to be resilient against 

changes within the network, e.g. the sudden removal of a particular node). These two 

properties of a network make the network most capable of dealing with new information 

and optimizing computing power, essential for doing relevance realization. The property 

of a network of being small-world refers to the fact that the maximum distance between 
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any two nodes in the network is small. In practice, this means that given any node in the 

network, any other node can be reached via a relatively short number of other nodes. This 

property is important for quick coordination within a system, because information that is 

transferred from any node in the network can be reached by other places in the network 

relatively quickly. In figure 2, a small-world network is depicted, where the maximum 

distance between any two nodes in the network is minimized. Interestingly, this structure 

of the network is neither fully regular (ordered) nor fully random (chaotic). As described 

earlier, any complex system operates on the border between order and disorder, and this 

aspect is thus also typical of a small-world network.  

 

 

  

 
 

Figure 2. Examples of regular, small-world and random networks.(Watts & Strogatz, 1998) 

 
The property of a network being scale-free refers to the fact that within the 

network there exists an inverse relation between the number of nodes and the number of 

links that node has with other nodes. For example, if there exists a network that has 4 

nodes with each 3 links to another node, we can expect the network to have 2 nodes with 

each 6 links, and 1 node with 12 links. This type of network is governed by a so-called 

power law; since the degree (= the number of links a node has) is proportional to the 

negative power of some constant of that degree. To see how a self-organizing network 

often exhibits power-law behavior in the distribution of its links, consider the fact that in 

the beginning of the formation of a network, nodes will form links with neighboring 
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nodes at random, resulting in some nodes with more links to others than other nodes. 

Given this situation, if a new node is introduced to the network at random, it has a 

higher chance of being close to a node with many links than being close to a node with 

only few links (simply due to the fact that a node with many links is close to any node in 

the network). This implies that the new node is more likely to be close to a node with 

many links, resulting in a higher chance of that node later on pairing with that node with 

many links. This is a positive feedback loop where nodes with many links eventually 

attract more nodes than nodes with fewer links. These dynamics results in the earlier 

described power-law behavior of scale-free networks. The name “scale-free” results from 

the fact that on whatever scale the network is considered, the functional structure of the 

network will be the same as the number of links per node are governed by the same rule, 

no matter how big the network may get; the number of nodes with a particular number of 

links will always be inversely proportional to the number of links (see figure 3). 

 

 

Figure 3. Examples of regular, random, small-world and scale-free networks. 

Finally, a self-organizing complex network often shows clustering behavior. The 

reason for this is similar due the reason of power-law behavior: The probability of two 

nodes A and B to pair is larger if A is paired to C and B is paired to C compared to when 

neither are A and B are paired to C. This results in a higher chance of clustering behavior 

compared to the network having random links for every node. 

 

Embodiment of system  

As I have also argued before, the mechanics behind the process of relevance realization 

can be described as an embodied complex system. To see why embodiment may be 

necessary for a general intelligent system, Miracchi (2022) builds up an argument from the 

premise of so-called “semantic efficacy.” This concept relates to the fact that semantic 

content of mental processes or attitudes are causally relevant, thus that particular semantic 



 

 

 

25 

content is directly causally linked to earlier processed semantic content. An example of this 

would be that when your body senses it gets warm, it will release sweat to compensate for 

this. This is a direct causal semantic link that doesn’t require a complex set of internal 

computations. This combined with the premise of “semantic externalism”, which states 

that content is generally externally metaphysically determined, meaning that mental 

content is generally derived from a source external to the agent itself, results in an argument 

for embodied cognition; that mental processes are generally metaphysically externally 

determined. Computational reductionism, or the Computational Theory of Mind (CTM), 

Miracchi argues, denies semantic efficacy. To see why, consider again that the CTM states 

that mental processes can be fully described by a series of computations over a certain input 

or representations. The output of a particular input is thus fully determined by internal 

processing. The input of a CTM can be semantic, but semantic content is not necessary by 

design. The system can be described purely by internal processes alone. Semantic efficacy 

however states that there is a direct link between certain semantic input and the formation 

of new semantic processes, without using a complex set of internal computations to 

accomplish that, hence why it is called semantic efficacy; a direct causal link between 

semantic processes results in much quicker processing that using input over a complex set 

of internal computations. By using a semantic efficacious process that accomplishes the 

exact opposite of another semantic efficacious process, a higher order balance can emerge 

from these two processes (as described earlier under the section of balancing of constraints). 

Interestingly, one could also see how from these opposing set of semantic efficacious 

processes a higher-order feature of the system emerges. Emergence is typical of a complex 

system as well, further indicating that opponent processing of semantic efficacious 

processes resulting in higher-order emergence, such as is suggested to be a part of a theory 

of relevance realization, is indicative of the mechanics of relevance realization being a 

complex system. 

What follows from these arguments, is that one could argue that the degree of 

embodiment of a system is basically degree to which the system makes use of (opposing 

sets of) semantic efficacious processes. Embodiment thus reduces the need for computing 

power in a system. The more a system can directly interact with the environment and 

process new semantic content directly without first using a complex set of internal 

computations, the quicker and more efficient the system can behave as a whole. In 

conclusion, a system capable of relevance realization would prefer a system that is capable 

of as much semantic efficacious computations as possible as to reduce the need for internal 
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computations, and it thus would prefer a system that is embodied as much as possible, 

which would be the argument for the necessity of embodiment for a theory of relevance 

realization. 

 

Interconnectedness of the five features 

In total, there are now five features that a theory of relevance realization should have that 

have been discussed. Three of these were inherited from Vervaeke (self-organization, 

economic model, balancing of constraints), and I have suggested adding two more to this 

list (complex network design and embodiment). Taken together, the current proposal is a 

system capable of relevance realization consists of a large complex network of processing 

units that is self-organizing, has an internal economy that makes use of reward mechanisms 

to steer cognitive resources, is embodied in such a way that it can physically interact with 

its environment and uses several opponent processes/constraints to reduce the need for 

complex internal computations. While these features have been discussed separately, in a 

sense they all work together in one system: the complex network is self-organizing, and the 

units in the network make use of internal rewards and punishing mechanisms after which 

cognitive resources are allocated in self-organizing fashion, and opponent processing is 

directly involved in embodiment and the internal economy of reward mechanisms.  
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Cognitive Architectures: Definition and Evaluation 
 

Cognitive architectures are abstract descriptions of an artificial intelligence that 

describe the processes by which the system as a whole operates and functions. They 

describe how input is processed, how the system may be compartmentalized, how these 

parts are related to each other, and how the system generates an output or performs an 

action. It is not a complete and large description of all the technical details involved in the 

system, but rather a more abstract description that gives a broad idea of the functionality 

and processing within the system. 

These cognitive architectures may or may not be instantiated in an actual physical 

system. To date, a lot of different cognitive architectures for general intelligence have been 

developed, all with different design features and characteristics. There are many ways to 

classify cognitive architectures, but Duch et al. (2008), in their review paper, have created 

a broad categorization of these architectures, based on their fundamental design structure. 

These three categories are symbolic, emergent and hybrid. In many cognitive architectures 

there is overlap between these three categories; the distinctions are, therefore, mostly based 

on which category is most, not exclusively, represented. Symbolic cognitive architectures 

are built on the premise that the mind simply works by representing aspects of the world 

and itself internally as symbols, and manipulating these symbols in order to execute actions 

in relation to its goal. The symbolic approach of AI is therefore analogous to the 

computational theory of mind, which states that the mind is simply a machine that makes 

computations over symbolic representations. Another category of cognitive architectures 

is based on the so-called the emergentist approach, which is based on the premise that all 

of the symbolic processing of the mind emerges from deeper subsymbolic processing (hence 

the term emergentism). Neural networks, one of the most successful applications of 

artificial intelligence, are an example of subsymbolic processing. This type of processing is 

often successful when one needs to extract patterns from a large amount of data.  

Both the symbolic and subsymbolic approaches have their advantages and 

disadvantages: symbolic architectures are good at for example abstract reasoning, and 

subsymbolic architectures are good at extracting patterns from large quantities of data. 

However, symbolic approaches lack the ability to do quick pattern recognition based on 

sensory input, which is often required for intelligent behavior. Subsymbolic approaches on 

the other hand miss the higher-level organization of data to be able to do abstract reasoning 

or comprehend and produce language, which is also essential for intelligent behavior. A 
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third approach to cognitive architectures, the hybrid approach, therefore, uses both 

symbolic and subsymbolic parts in its architectures and combines these to take the best of 

both worlds and create one whole.  

 

Assessing performance of cognitive architectures for AGI 

There already exists some literature on how to assess performance of a cognitive 

architecture for AGI. In particular, I will discuss the assessment characteristics as proposed 

by Laird et al. (2009) and Thórisson and Helgasson (2012). Laird et al. proposed a set of 

necessary characteristics for the creation of a cognitive architecture for artificial general 

intelligence. These characteristics were compiled after the first scientific workshop on 

artificial general intelligence in 2008, as described earlier, where scientists in the field 

shared their vision of what would constitute the creation of an artificial general intelligence 

system. Laird et al. construe these characteristics in such a way that they can be 

scientifically tested and validated. By conceptualizing the characteristics in terms of 

testable claims, the approach of creating an artificial general intelligence has become a 

valid scientific enterprise. The claim is often about a hypothesis of relations between a 

particular characteristic and other measurable factors. In each of the claims, the 

characteristic (independent factor) is varied and several other factors relating to the 

characteristic (dependent variables) are measured, as a means to validate the claim. Laird 

et al. (2009) categorize four types of claims that can be made about an artificial general 

intelligence: 

• A claim about a cognitive capability or behavior similar to a human cognitive 

capability, such as the ability to improve performance after experience or to 

understand natural language. 

• A claim about the improvement of an artificial general intelligence by modifying 

its cognitive architecture. Improvement here means an expansion of the set of 

problems the system is able to solve.  

• A claim about the difference in performance between two separate artificial 

general systems 

• A claim about the similarity between behavior of the artificial system and human 

behavior. Note that this is not the same as the first category, where cognitive 

capabilities in artificial systems are evaluated on its own metrics, claims of this 
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category are made where human behavior is the target metric instead. (this type 

claim is therefore a special type of the third category). 

 

Laird et al. describe the types of independent variables that can be studied within these 

types of claims as follows:  

• System components; these can be seen as new modules or parts of the cognitive 

architecture that result in a change in performance of the system, for example 

vision, talking etc.; these components are categorical and as a consequence not 

quantifiable. 

• Amount of knowledge; this concerns how much knowledge is being represented 

within a cognitive architecture, often per system component. 

• System parameters; these are global factors that influence the performance of the 

system as a whole. An example of a global parameter in a human being would be 

gender; this is a global parameter that affects many parts of the whole system, 

including varying performance outcomes. 

 

Finally, they describe a set of dependent variables or measurements that a cognitive 

architecture can be studied on: 

• Performance metrics; these are the most straightforward and measurable metrics 

of a system. Think for example here of the speed of performance for a specific 

task, or the quality of the solution that was found. This metric is almost always 

used in assessing the performance of a narrow artificial intelligence. 

• Scalability metrics; in contrast to artificial narrow intelligence, scalability metrics 

are quite important in assessing the performance of an artificial general 

intelligence. Since a general intelligence operates in a multitude of domains, it 

requires a vast amount of knowledge that can be built on each other; scalability 

metrics are therefore essential to the assessment of an artificial general 

intelligence. This metric is also quantifiable. 

Next to these quantifiable metrics, artificial general intelligent systems exhibit behavior 

that is not easily captured by quantifiable metrics. These more abstract measures are as 

follows: 
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• Task and Domain Generality; this metric concerns how well a system performs 

across a set of different domains; the hallmark of what constitutes an artificial 

general intelligence 

• Expressivity: this refers to what types of knowledge a system can use in its 

cognitive processing (e.g. symbolic, relational) 

• Robustness: this metric refers to the extent of which the performance of the system 

changes when new knowledge is added or removed; this metric is of interest due 

to the inherent flexibility that is often required of a system aiming for the 

capacities of general intelligence; it often has to use impartial or partially wrong 

knowledge when trying to reach a goal. Measuring the change of system 

performance in relation to change of knowledge used is therefore of interest. 

• Instructability: this refers to the ability of system to capacity to effectively learn 

new knowledge from other systems; and thus related to all things related to 

learning new tasks or gaining new knowledge. 

• Taskability: this concerns the creative part of a general intelligent system; how 

well is that system able to generate new task that are not explicitly programmed, 

but are relevant to the goal at hand? Human beings are an example of general 

intelligence that perform well on this metric. 

• Explainability; this final metric refers to the ability of a system why it has 

performed in a certain way.  

 

As mentioned earlier, the naming of explicit metrics on which a cognitive 

architecture for artificial general intelligence should be evaluated results in a clearer view 

of what constitutes progress towards the goal of creating artificial general intelligence by 

means of a cognitive architecture. Other researchers have also tried to independently come 

up with some metrics that a cognitive architecture should be assessed on for its progress 

towards an artificial general intelligence. Thórisson and Helgasson (2012)  suggest an 

intimate relationship between autonomy and general intelligence: they propose that 

autonomous systems are systems automatically perform tasks in an environment in order 

to achieve a particular goal, where unforeseen changes in both the tasks and environments 

can occur that can be mediated by some type of automatic learning and adaptation. The 

system is in this sense autonomous because it does not require an external agent to modify 

its architecture when faced with new challenges. General intelligence, as described before, 
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concerns an ability to adapt to unforeseen changes in environments and tasks at hand; and 

Thórisson and Helgasson therefore argue that these two concepts are closely linked.  

They then propose several metrics that the performance of an autonomous system 

can be evaluated on, and that therefore also pertain to a general intelligent system. These 

evaluation metrics are of particular interest since they seem to be closely related to earlier 

discussed features of relevance realization. 

• Realtime system operation: the ability of the system to perform in relation to the 

environment as quickly as possible. The quicker a system can handle new input 

either from internal processes or from the environment and act on it accordingly, 

the more efficient it will operate and the more it will be able to do in a set amount 

of time. This is also important for relevance realization as determining relevance 

also requires a continuous environment interaction. 

• Resource management: the ability of the system to allocate its computational and 

sensory resources in an appropriate manner as to optimize its performance. This is 

a necessary feature given that resources are limited but that an intelligent system 

in a complex environment has to deal with way more information than it can 

process in a timely manner. This relates to the bio-economic model of allocating 

resources in relevance realization as described before. 

• Learning: the ability of the system to improve its performance over time. The 

better it learns, the shorter the amount of time is to improve its performance. This 

in a way relates to the self-organizing property in relevance realization, as learning 

involves a continual change in the structure of representation. 

• Meta-learning: the ability of the system to change the way it learns new 

capabilities and to change its internal processes as a consequence. Also refers to 

the self-organizing aspect of relevance realization. 

 

 

A new set of evaluation metrics 

So far, two papers have been discussed that propose a set of metrics to evaluate the 

performance of a cognitive architecture. Earlier on, I have argued that in order for an 

artificial intelligent system to exhibit general intelligence, it must deal with the 

epistemological frame problem, and consequently have a mechanism for relevance 

realization. Therefore, I would propose an entire new set of evaluating cognitive 
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architectures for artificial general intelligence based on the theory of relevance realization: 

the more a cognitive architecture incorporates each of the five discussed features of 

relevance realization, the better it is equipped to serve as an architecture for general 

intelligence. Again, the reasoning here is that if a system incorporates the five features well, 

it consequently has a good basis for doing relevance realization, and is thus fit as a design 

for artificial general intelligence.  
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Discussion and Comparison of Cognitive Architectures 
 

In this section, I will discuss and analyze four different cognitive architectures based 

on their the guidelines discussed above. Since there is a relatively tight connection between 

the evaluation metrics for autonomy studied by Thórisson and Helgasson and the features 

of a mechanism for relevance realization, I will pick a few cognitive architectures that get 

a good score on all the dimensions for autonomy as my starting point. These will be the 

CLARION, LIDA, AKIRA and IKON FLUX cognitive architectures. Most of these 

systems score relatively well on autonomy metrics and should, therefore, be promising 

candidates for relevance realization. AKIRA does not score that well on autonomy 

metrics, but is of particular interest here since it was especially designed to incorporate 

features of a complex system. Lastly, the cognitive architecture that will also get special 

attention will be LIDA, as it is an instantiation of the Global Workspace Theory (Baars, 

2005), which has been proposed as a solution to the epistemological frame problem 

(Shanahan & Baars, 2005), as discussed earlier in the chapter on the frame problem. 

First, the cognitive architectures will be discussed on their own shortly to give a 

broad overview of their design features. Afterwards, a comparison between them will be 

made in a similar fashion to Thórisson and Helgasson (2012). For each evaluation metric, 

a cognitive architecture can get 1 to 5 points, where 1 point means the cognitive 

architecture does not incorporate the characteristic in its design at all, and 5 stars means 

the cognitive architecture has the characteristic fully and close to optimally integrated. 

Granted, it can be quite hard to objectively evaluate how well each characteristic is 

integrated in the architecture. Therefore, the scoring will be mostly on a relative basis, e.g. 

an architecture will get a high score if the feature is more integrated compared to the other 

architectures, and a low score if the feature is not well-integrated in the architecture 

compared to others. The comparison will be made for each feature of relevance realization, 

thus there will be subchapters for each feature where the four architectures are compared 

to each other and are given relative strengths. In the end, I will suggest a short design 

proposal for a new architecture that takes the strengths from each architecture and 

combines these, such that a novel architecture is generated that incorporates design 

features for relevance realization well and consequently should be a good candidate as an 

architecture for artificial general intelligence. 
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CLARION 

The CLARION architecture is discussed in (Sun, 2007), and consists of four main 

interacting modules. These modules are the Action-Centered Subsystem (ACS), the Non-

Action-Centered Subsystem (NACS), the Motivational Subsystem (MS) and the Meta-

Cognitive Subsystem. In figure 4, you can see the interactions between these modules and 

their subcomponents.  

 

Figure 4. Overview of the CLARION architecture (Sun, 2007), 

 

  The ACS concerns itself with the execution of actions, both in the environment as 

well as internally. The NACS deals with the maintenance and representation of general 

knowledge. As can be seen from the figure, both have a subpart specific for explicit 

(symbolic) and implicit (subsymbolic) representation. Both these subparts also interact and 

influence each other. The MS is concerned with the motivation and underlying perception, 

action and cognition. It provides impetus and feedback for the system. Finally, the MCS 

provides monitoring, modulation and control for all the other submodules, but mostly on 

the ACS. Even though it may not be explicitly stated in the figure, the MS and MCS 

modules also incorporate both a symbolic representation that is top-down, as well as 

subsymbolic representation that is bottom-up, so all modules consist of this basic structure. 

These two subparts communicate with and influence each other, and output from these 
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subparts is often a combination of suggestions from both the symbolic and subsymbolic 

parts. The author described that the cognitive architecture was developed with the 

following intentions and thus shows signs of these features. First, the system should be able 

to learn with or without a priori knowledge. This means that it can generate new knowledge 

based on existing knowledge representations, but also that it can generate new knowledge 

without those representations, thus purely from perceptual input. Second, the system 

should be able to  continuously generate new knowledge based on on-going experience in 

its environment. It should also be able to learn different types of knowledge (for example 

procedural vs declarative knowledge). Finally, the system should incorporate motivational 

and meta-cognitive processes. 

 

LIDA 

The LIDA cognitive architecture (Franklin et al., 2007) is a cognitive architecture based 

on the Global Workspace Theory of consciousness (GWT) as developed by Baars (2005), 

as described earlier in the chapter on the frame problem. The operation of the LIDA 

cognitive architecture is based on a series of so-called cognitive cycles. The cognitive cycle 

of LIDA with all of its modules and relationships is displayed in figure 5. 

 

Figure 5. Overview of the LIDA cognitive architecture (Franklin et al., 2012). 
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Each cognitive cycle consists of three phases: sense, attend and action selection. In 

the sense phase, the current knowledge of both the internal and external environment is 

updated by means of new perceptual input. Low-level features of this input are sent to the 

perceptual memory, where this can be further classified as higher-order content. It is then 

sent to the local workspace (top of the figure) and compared with existing episodic and 

declarative memory to see the perceptual input matches input from memory. This series of 

events constitutes the sense phase, as it now has constructed a new representation from 

recent perceptual input. The attend phase is concerned with dividing the input from the 

local workspace into coalitions of data that are functionally related, which is done by the 

so-called attention codelets. A competitive process then results in one of these coalitions 

having the highest importance, and only that coalition is then sent to the global workspace. 

The global workspace then sends the information from this coalition to several parts of the 

system that involve the cognition of the system, such as the several types of memory, action 

selection and the attention codelets. The information sent to the procedural memory and 

attention codelets results in learning of these parts from the information of the coalition in 

this cycle. Finally, in the action selection phase, the procedural memory computes possible 

actions, in part based on the current input from the global workspace. These actions are 

then sent to action selection component which selects one action to execute. 

 

AKIRA 

The AKIRA architecture, whilst scoring relatively low on the autonomy metrics used by 

Thórisson and Helgasson, is of particular interest here because it was built with the 

intention to create a system that shares features of a complex biological system. In their 

2007 paper, the authors Pezzulo and Calvi (2007) mention that the inspiration for the 

design of AKIRA came from particular characteristics of complex systems, namely self-

organization, adaptivity and robustness. Figures 6 and 7 explain the design of AKIRA. 
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Figure 6. Overview of the AKIRA cognitive architecture (Pezzulo & Calvi, 2007). 

 

 

Figure 7. Illustration of the energetic network in AKIRA (Pezzulo & Calvi, 2007). 
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The basic idea behind AKIRA is that it consists of a large set of so-called modules. 

Each module is responsible for one part of cognition and can be either simple such as 

moving an arm, or complex, such as visual perception. Each module is represented as a 

node in an energetic network and has connections to some other nodes in the network. It 

also has an activation value that represents the number of resources the node is able to use. 

There is one pool of resources that all nodes can take from, and the activation value of 

every node determines what proportion of this shared resources pool is allocated to that 

module (see figure 7, a higher activation value results in a higher priority value and thus 

more energy allocation). The modules can run asynchronously and in parallel. A module 

is also called a ‘daemon’, and the network of daemons is connected to a monitoring system 

called the ‘pandemonium’. The pandemonium is responsible for the execution and 

monitoring of the whole system. It consists of a blackboard that is responsible for 

communication and coordination, plus the global variables and objects that apply to every 

daemon. 

 

IKON FLUX 

IKON FLUX is a proto-architecture that has design features similar to that of AKIRA, but 

additionally offers a self-learning feature that results in ability of the whole system to 

continually and in real-time grow and adapt to its environment and redesign its own 

architectures (meta-learning), starting from only minimally specified initial conditions. 

Being a proto-architecture, the complete design is not worked out yet, but its proposed 

design features are nevertheless interesting, hence the inclusion of this architecture. IKON 

FLUX is similar to AKIRA in the sense that its design also consists of many modules. 

However, the modules in IKON FLUX are a lot smaller and there are much more of them. 

K. R. Thórisson & Nivel (2009) call this feature peewee granularity. IKON FLUX generates 

new modules via bottom-up information coming from for example sensory data, combined 

with top-down models existing programs. Another design feature of IKON FLUX is that 

it incorporates computational homogeneity. This refers to the fact that modules can be built 

up only from a very small set of one particular computational substrate, with the size of 

one peewee (the smallest possible computation is thus a set combination of operations and 

has the size of one module). The structure of this small computational substrate allows for 

growth and increase complexity when these small modules are combined in a particular 

way. The best analogy to the design of IKON FLUX may in fact be the structure of the 
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human brain, which also consists of a very large amount of small modules (neurons) and 

thus exhibits peewee granularity. Furthermore, every small module has a given set of 

operations and is homogenous for every module in the network, just like each neuron in 

the brain has the same basic design structure and functionality, thereby also reflecting 

computational homogeneity. In IKON FLUX, as well as the brain, coalitions of 

modules/neurons can form to generate higher-order cognitive functions. 
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Comparison on Features of Relevance Realization 
 

So far, the four different architectures have been described in sparse detail to give a 

general impression of their design features and differences. In this section, these 

architectures will be compared to each other and evaluated on the basis of  each feature of 

relevance realization. This will be done per feature, so each of the five features will get a 

different paragraph in which each of  the four architectures are discussed. 

 

Self-organization 

As discussed before, the feature of a cognitive architecture to be self-organizing means that 

it has an ability, at least to some degree, to build up its own architecture without a central 

control that directs the organization. Rather, the architectures organization follows from 

the local interaction and dynamics between its parts organically. Essential for a self-

organizing cognitive architecture is also that the final organization must show some 

emergent new behavior; an architecture can be built organically from local interactions 

between parts, but if there does not emerge a higher order functionality from that, the 

interactions between the parts do not form any meaningful self-organization. In 

conclusion, it refers to the ability of the architecture to organize itself meaningfully as if it 

were directed by a central control mechanism, without there actually being a central 

control mechanism.           

 A look from the overall view of CLARION reflects a predetermined overall 

organization of the architectures, namely its 4 subparts that are each responsible for a part 

of its cognition. In that sense, CLARION cannot be said to be self-organizing. However, 

each of the four subparts all incorporate a so-called dual representational structure, where 

explicit, top-down representations interact with implicit, bottom-up representations in a 

dynamic fashion to produce a meaningful output, as discussed before. For example, in the 

ACS, an action is chosen by observing its current state x from sensory data and computing 

he quality for each possible action from the implicit representation. In CLARION, this is 

done with the help of neural network. The same observation of state x is sent to the explicit 

representation. The explicit representation determines all possible moves based on the 

input and the already existing represented rules for action. Then, the possible moves from 

the explicit representation are chosen from the implicit representation, and the best action 

gets chosen. 
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After this action is performed, the new state of the system is reflected back to both 

the implicit and explicit part; to update the algorithm and its rule set respectively if the 

action is successful. In this sense, the choosing of an action, the expansion of the rule set, 

and the parameters of the implicit representation are all updated in a self-organizing 

manner as to produce a higher-order functionality, namely an improved ability to choose 

the appropriate action. Next to this, the system also does not have a strictly reductive 

approach in its design for various aspects of cognition, such as separate modules for 

memory, reasoning, problem-solving etc. Rather, these capabilities emerge from dynamic 

interactions between the four parts of action representation, non-action representation, 

motivation and meta-cognition. In this sense, the architecture can also be said to be self-

organizing, as these aspects of cognition are not predetermined but emerge organically. 

 On to LIDA, we again do see a predetermined structure of its higher-order 

organization in various modules. In that sense, the architecture cannot be said to be 

completely self-organizing. However, the subpart responsible for prioritizing which 

coalitions of functionally related data get sent to the global workspace does so in a 

competitive, self-organizing manner, according to Franklin et al (2007).AKIRA, which 

distinguishes itself from both CLARION and LIDA in the sense that part of the intention 

of the design was to create an architecture capable of self-organization without a central 

control. The main part of AKIRA’s design that implements the self-organizing idea is its 

large reservoir of modules which dynamically interact for resources and selection. Due the 

finite number of resources that all modules have access to, their emerges a competition for 

resources in a self-organizing manner, the authors argue. The limited number of resources 

results in systemic features such as cooperation, hierarchical organization, exploitation and 

context awareness. They explain that for behavior such as selection and cooperation of 

modules, a central control is generally required, but that AKIRA is able to achieve these 

things without a central control by means of the competitive interaction between modules 

and a limited total amount of resources.       

 Finally, IKON Flux is similar to AKIRA as the intention of its design was to create 

a self-organizing architecture. However, compared to AKIRA, IKON FLUX trumps the 

ability of self-organization, since the whole structure builds itself from the ground up 

(mainly through environment interaction) from only a small set of initial conditions. 

Basically, the whole architecture is built up in a self-organizing fashion. Of all the 

architectures, IKON FLUX thus best incorporates this feature. 



 

 

 

42 

Bio-economic model 

A second feature of relevance realization that Vervaeke proposes is the presence of a bio-

economic model of rewards or punishments to appropriately allocate cognitive resources. 

The term economic refers to the fact that the system makes use of internal reward or 

punishment mechanisms per unit of the ‘economy’ (e.g. the whole system/network), 

which influences the share that that particular unit gets from the total of cognitive 

resources. In other words, there is a finite amount of cognitive resources that the system 

can use in any moment for internal processing or perception, and the system should thus 

allocate resources based on those units that require it the most in that moment. An example 

would be a module in system where the action from a moment ago resulted in successful 

behavior; that module then gets a reward and signals that to the entire system, after which 

it is allocated more cognitive resources. In a way, this feature is tied in with the self-

organizing ability of the system, as the sum of successful and unsuccessful actions of 

different units/modules results in an automatic and dynamically self-organizing allocation 

of cognitive resources. No central hub is thus necessarily required for this mechanism 

either. 

Let us first take a look at CLARION. For its ability to allocate cognitive resources, 

the two main modules to look at are the MS (Motivational Subsystem) and MCS (Meta-

Cognitive Subunit). The MS is concerned with the different drives of the system (e.g. 

hunger, sex as a biological example) and how these drives interact as to influence action 

selection. Some of these drives are predetermined (such as the basic ones for survival), but 

second-order drives can be derived from satisfying or not satisfying the basic drives and 

can change over time. The Meta-Cognitive Subsystem works closely with the Motivational 

Subsystem and provides the control and monitoring for the system as a whole. On the basis 

of certain active drives in the MS, the MCS can decide to for example interrupt an action 

from the ACS, set parameters for the NACS etc. as to optimize the performance of the 

system as a whole. These two systems thus work together two provide a mechanism for 

the allocation of cognitive resources; for example, based on certain perceptual input (low 

energy), the MS can prioritize the drive to find food, thereby pointing cognitive resources 

to look for food. Each cycle the system gives feedback to the system as a whole, after which 

drives may change or the MCS may interfere with the performance of the system. 

CLARION thus does have a mechanism for allocating cognitive resources, and it 

is somewhat self-organizing. Several drives are already pre-programmed and cannot be 

changed, thus here we see a slight lack of self-organization. However, for the most part, 
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the system makes use of internal rewards in the ACS, sends this back to the MS, and 

consequently the drives and thus cognitive resources are re-evaluated, and this happens 

dynamically in a self-organizing manner (because it is constantly based on perceptual input 

and output from the system a moment ago). So in conclusion, the system has a  

fairly good economic mechanism for allocating cognitive resources. 

When we look at LIDA, we see that is particularly designed to incorporate a self-

organizing, economic way of allocating cognitive resources. The idea behind the global 

workspace theory, which is incorporated in the design of LIDA, is that several different 

modules all compete for selection to be sent to the global workspace. The module with the 

highest prioritization gets that access and that information is sent back to all modules from 

the global workspace. In LIDA, so-called attention codelets form coalitions of similar data 

in the local workspace, after which these coalitions compete for selection to be sent to the 

global workspace. While it would be interesting to consider the precise mechanism of 

competition between coalitions, Franklin et. al (2012) do not specify this in their paper. It 

can be speculated though that prioritization is given to coalitions that deal with mostly new 

information. Incoming perceptual input is compared with working and long-term memory, 

and coalitions that have information that is not present in memory would probably be more 

likely to win competition for cognitive resources, as the system has more interest in dealing 

with new information compared to old information which it has already processed. The 

important thing to note though is that LIDA, by implementing the global workspace 

theory, makes use of a completely self-organizing dynamic way of allocating cognitive 

resources, without a central control. On this feature, the LIDA architecture thus performs 

well. 

AKIRA has a design that shows a lot of similarity to LIDA when it comes to dealing 

with resource allocation. As discussed before, the system consists of a lot of different 

modules that all compete for a finite number of resources, e.g. implicitly competing for 

resources from the system in a dynamically self-organizing manner. The difference with 

LIDA is that in LIDA there is only one coalition that wins in each cycle (a winner-takes-

all, discrete mechanism), whereas in AKIRA, multiple modules at once can get resources, 

albeit that some modules get more resources than others. The resources or activation that 

each module in AKIRA receivers is determined by three elements: Base Priority, Energy 

Tapped and Energy Linked. The Base Priority is a predetermined value that is given to a 

module that is private and not shared with the other modules. The Base Priority of a 

module can be higher or lower based on the type of module (for example a feature vs. 
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concept). Energy Tapped refers to the amount of energy the module gets from the energy 

pool, the total amount of resources. Energy Linked refers to the energy that it gets from 

other modules in the network that it is linked to. The energy a module gets from other 

modules is determined by the strength and number of the links to other modules. This in 

turn is determined by the success of the module; if in previous cycles the module shows 

successful behavior (e.g. predicting matching outcome), the number of links and strength 

of links to other modules can be increased. To determine the score on this feature, AKIRA 

can again be best compared to LIDA, which scored already performs quite well on this 

feature. The mechanism for resource allocation is similar to LIDA, but since AKIRA has 

a more dynamic, continuous mechanism for resource allocation (multiple modules can get 

resources at once relative to their activation level), the mechanism in AKIRA is in my 

estimation more sophisticated. Both allocate resources in a dynamic, self-organizing 

fashion, but AKIRA’s design is even better in my estimation due to its relative allocation 

of resources instead of a winner-takes-all strategy in LIDA. Therefore, AKIRA performs a 

little better than LIDA. 

Finally, we move on to IKON FLUX. Since the design of IKON FLUX is based 

on a very large number of very small modules, that can all work in parallel, an efficient 

way of allocating resources is necessary, since the system of cannot attend to all small 

modules at the same time. In IKON FLUX, every module has a certain activation value, 

that determines the relative importance of the module. Perceptual input of the environment 

as well as internal input is also given an activation value. The authors do not specify what 

exactly determines this activation value, but for perceptual input this will most likely 

correlate again with novelty, and for existing modules this will most likely correlate with 

relevance of that module relevant to the current goal structure. For input (perceptual or 

internal) to be attended to by IKON FLUX, both the input as well as a corresponding 

model that is able to deal with the input must have an activation value that exceeds a given 

threshold. This mechanism of resources allocation thus also happens economically (local 

modules activation determine global resource allocation) and in a self-organizing manner 

(no central control is required for resource allocation; it is automatically assigned to 

modules and input with large enough activation values). However, due to the lack of 

description of the precise mechanism, the performance of IKON FLUX will not be rated 

as high as AKIRA. 
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Balancing of constraints by opponent processing 

The next feature for relevance realization is the appropriate balancing of constraints by 

opponent processing, as argued by Vervaeke. As explained before, this proposed feature 

for relevance realization is about the presence of certain processes where each process has 

two mechanisms that each try to accomplish the exact opposite of each other, resulting in 

a homeostatic balance. Vervaeke argues that the presence of such opponent processes is a 

requirement for relevance realization, and that relevance realization emerges from the self-

organizing, dynamic balancing of these constraints. 

Looking at CLARION first, each of its 4 submodules has a dual representation 

structure, as discussed before. This means that each module has a top-down, explicit 

representation part and a bottom-up, implicit representation part. These two parts work 

together to form for example an action selection or they work together in learning new 

skills. Technically speaking, this dual representational structure does not entail two 

opponent processes where each process tries to attain the exact opposite of the other, e.g. 

the implicit and explicit representation actually work together to try to reach the same goal 

instead of working in direct opposition of each other. In conclusion, while a dual 

representational structure is one of the core design features in CLARION as it is present in 

each of its 4 submodules, it does not work strictly by balancing opponent processes. 

Therefore, CLARION scores average for this feature. 

When we look at the design structure of LIDA, we unfortunately do not see any 

specific mechanism that make use of a balancing of opponent processes. Where it does 

have a sophisticated mechanism for resource allocation as discussed earlier, there is no 

place in its design where two opponent processes compete such as to establish a 

homeostatic balance. Competition does take place within the coalitions in the local 

workspace, but again this competition does not involve any processes that do the exact 

opposite; at least insofar that has been described by the authors. On this feature, LIDA 

therefore scores relatively low. 

In AKIRA then, we at first again do not see specific processes that each try to do 

the exact opposite of the other in its basic design. However, one could see that this could 

in fact in principle be instantiated if two modules in AKIRA develop tasks that are opposite 

to each other. For example, let’s say that one module develops a responsibility to make 

sure the system gets enough food, e.g. its goal is to acquire new energy. Another module 

on the other hand is concerned with for example training its stamina, thereby using energy 

in trying to reach that goal. Both take in the variable energy (as an example, not to confuse 
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with the total Energy the AKIRA system can divide amongst its modules). To determine 

its actions, however, the result of both processes is opposite; if energy is low, the module 

for foods searching will get more priority from the system and the training for stamina 

module will be mostly deactivated, if energy is high on the other hand, it will be the exact 

way around. During the lifetime of the system there will be a continuous balancing between 

these two opponent processes. In conclusion, AKIRA’s system is, due to its flexible nature, 

able to develop modules that do opponent processing and therefore scores relatively high 

on this feature. 

Finally, when we look at IKON FLUX, we see a design similar to IKON FLUX 

but with many more small modules and even higher flexibility than AKIRA in the 

development of those. Naturally, one would expect that even more modules with opponent 

tasks develop during its lifetime, and therefore, in a way similar to AKIRA, should be able 

to make use of opponent processes in balancing constraints even better. In conclusion, 

IKON FLUX therefore scores the highest on this feature, because of the highest potential 

it has to develop such opponent processes. 

 

Complex network characteristics 

This feature, not explicitly mentioned by Vervaeke but argued before by me earlier on, 

deals with the overall structure of the cognitive architecture, and whether it has as design 

structure that resembles features of a complex network, e.g. does the system have a lot of 

interacting parts that are connected to each other in some way (such that it would form a 

network), and second, does the type of connectivity resemble that of a complex network in 

particular, meaning it has the properties of being small-world, scale-free and clustered? 

Again, the idea behind a cognitive architecture having such a design is that it is optimally 

designed to balance processing speed (efficiency) and its ability to deal with and 

incorporate new information (robustness). 

CLARION’s design structure is not typical of a (complex) network. Again, it is 

divided into only four main modules. Granted, these modules do interact quite intensely 

with one another, plus there is some communication with each module. However, a real 

network structure is not present in its design, not to mention a complex network structure. 

Therefore, on this feature, CLARION scores relatively low. 

LIDA suffers from a similar problem, its design is mostly predetermined and does 

not consist of a large network of interacting units. The only place where a network exists 
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in the design is concerning its competition of the coalitions as prepared by the attention 

codelets. The coalitions all interact with each other in a competitive way as to attain a 

winner coalition that is sent to the global workspace. The authors do not specify again how 

this competition takes place and thus there are also no details about how the coalitions 

would interact, but since there can be quite a lot and competition between them takes place, 

there must be some form of interconnectivity in the coalition which would resemble a 

network-like structure. In conclusion, while its design has, at least compared to CLARIO, 

a more networked structure in the competitive process of determining a winning coalition 

for the global workspace, the overall design is not resemblant to that of a large complex 

network of interacting modules. LIDA therefore scores average on this feature. 

Moving onto AKIRA however, we see a totally different design, and in this 

architecture there is definitely a network structure present. In AKIRA, part of the design 

philosophy was to create a large set of dynamically interacting modules, that all have a 

connection to each other. In this sense, AKIRA aims to haves a classic network structure. 

Moreover, the number of links that a module has is partially dependent on its success as a 

module. Naturally, the number of successful modules will be lower than the number of 

unsuccessful modules. However, this results in a network structure that resembles a scale-

free network, where a few successful nodes have many links to other nodes, and more 

unsuccessful nodes have few links to other nodes. Next to this, close modules can also form 

coalitions to work together, resulting in clustering. In conclusion, AKIRA scores relatively 

high on this feature. 

IKON FLUX also has this large interacting network of modules, with even more 

and smaller modules than AKIRA. Since its structure is almost exclusively self-organizing, 

IKON FLUX will most likely develop a network structure resemblant to that of a complex 

network, in a similar fashion as what happens in AKIRA. However, since IKON FLUX 

has an even larger number of modules, the network can be a lot bigger and thus allows for 

more flexibility and robustness than the smaller network in AKIRA. Therefore, IKON 

FLUX scores the highest of the four on this feature. 

 

Embodiment of system 

The final feature for a cognitive architecture for relevance realization is that it requires 

some form of embodiment. The embodiment of a system refers to the ability of the system 

to directly semantically interact with and respond to its environment, without having to 
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constantly refer to internal computation to determine its next move. An example of this in 

humans is the regulation of body temperature; there are sensors all over our body that 

directly interact with the environment by measuring the temperature. If the temperature 

gets too high, there is a direct response from the body to release sweat as to cool down the 

body’s temperature. No internal computations are required, sweat is released as a direct 

consequence of a measurement of high body temperature. As I have argued before, the 

more embodied a system is, e.g. the more it can directly semantically interact with its 

environment without internal computation, the more efficient the system can behave as a 

whole. Embodiment can thus be seen as a form of ‘outsourcing’ of computation as to 

increase processing speed and efficiency. The feature of embodiment ties in closely to the 

feature of opponent processing as described earlier; the balancing of opponent processing 

often involves sensory processes that play a role in embodiment. Since all architectures are 

mere design descriptions and do not necessarily involve a physical system that incorporates 

them, I will - for the purpose of this discussion – judge the degree of embodiment of a 

system in relation to the number of various sensory modules the system possesses. It will 

however unfortunately be relatively short as the information on specific sensory modules 

in some architectures is lacking. 

Starting again with CLARION; we see that the system senses its current state x after 

having performed an action, and this information is sent to the ACS, MS and MCS. The 

paper unfortunately does not specify what exactly the sensory information about its state 

entails; but this will most likely concern all kinds of parameters relating to certain goals it 

is trying to achieve. It is thus unfortunately hard to conclude how much sensory 

information CLARION deals with, but it is clear that the system uses new sensory 

information every time it performs an action, and that is an indication that it consistently 

interacts with its environment. 

LIDA faces a similar problem, as the authors only describe that sensory information 

is used to update representations of the external and internal environment, but what this 

sensory information exactly entails is not specified. It is similar to CLARION in that with 

every cognitive cycle, sensory information is updated, which also indicates a constant 

interaction with its environment and thus a good potential for embodiment. 

AKIRA and IKON FLUX both also do not explicitly specify the actual content of 

sensory information. AKIRA however has one more advanced feature and that is that 

access to sensors is also competed for (just like access to energy and other resources). In 

this sense, AKIRA thus allows for a bit more nuanced and complex sensory processing; 
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where particular modules that have higher priority have more access to sensors and thus 

allow for more sensory processing. Relative to CLARION and LIDA, AKIRA thus allows 

for more nuanced sensory processing and scores a bit higher on this feature. 

IKON FLUX does not mention much about sensory processing, only that new 

modules are partially being built from new sensory information; remember that IKON 

FLUX’s structure builds itself up from a very small set of initial conditions and does this 

continuously on the basis of environment interaction and internal information. In a sense, 

sensory information is thus very important for the final structure of IKON FLUX, and thus 

plays a big role in its development. Due to this fact, IKON FLUX pays a high importance 

to sensory information as it is vital to its development, and thus also scores relatively high 

on this feature. 

 

  



 

 

 

50 

Conclusions and a Short Proposal for Optimal Cognitive Architecture 
 

Based on the analysis of the previous chapter, I will attempt to evaluate and score 

each cognitive architecture on each of the five discussed features relative to each other. For 

every feature, an architecture gets a score from 1 to 5, where 1 means that the particular 

feature is not incorporated at all, and 5 means that it is perfectly incorporated. The results 

of this scoring can be seen in table 1. 

 

 

 

Self-

organization 

Bio-

economic 

model  

Balancing 

of 

opponent 

processes 

Complex 

network 

characteristics 

(potential for) 

Degree of 

embodiment 

Total 

CLARION •• ••• ••• •• ••• 13 

LIDA ••• ••••• •• ••• ••• 16 

AKIRA •••• •••• •••• ••••• •••• 21 

IKON 

FLUX 

••••• •••• •••• ••••• •••• 22 

 

Table 1. Overview of the scores of every feature per cognitive architecture. 

 

As can be seen from table 1, there are two cognitive architectures that perform 

significantly better than the two other architectures; both AKIRA and IKON FLUX 

attained a relatively high cumulative score when all features for relevance realization are 

combined. This means that both AKIRA and IKON FLUX are promising architecture 

designs when it comes to having potential for a mechanism for relevance realization and 

are thus most promising in their potential for artificial general intelligence. 

This naturally prompts the question: What sets AKIRA and IKON FLUX apart 

from CLARION and LIDA that results in a significantly higher score for these two 

architectures? It seems that the overarching design feature that is most important to possess 

is having a large number of various small modules that all interact and communicate with 

each other. Both AKIRA and IKON FLUX have such a basic design, where there is a lot 

of flexibility possible in its basic design structure due to development and prioritization of 

new modules, whereas both CLARION and LIDA have a more classic design where the 

overall structure is mostly determined from the beginning. Recall that the five discussed 

features for relevance realization all tie in to each other; the goal of relevance realization is 
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to continuously determine what external and internal input is relevant to the system at that 

point. To be able to do this as well as possible, it was suggested that the system must be 

self-organizing, dynamic system that is able to allocate its resources by economic 

constraints that to opponent processing, where there are multiple units that are connected 

to each other in a complex network, and where the system as a whole is embodied, in that 

it has a lot of direct sensory interaction with its environment and can respond quickly to 

that sensory input. A design that has incorporated all these features, I have argued, will be 

a design that has most potential for being able to do relevance realization and consequently 

will be most promising for an artificial general intelligence.  

 

Optimal cognitive architecture for AGI 

We have seen that both IKON FLUX and AKIRA are significantly more promising for 

their potential of incorporating a mechanism for relevance realization compared to 

CLARION and LIDA. However, we can still make a distinction between the performance 

on specific features between the different architectures. If we take design features of the 

different architectures that score best on each respective feature and combine these into a 

novel architecture, naturally this novel architecture would score even better than IKON 

FLUX and AKIRA do currently and would thus be even more promising as a design for 

artificial general intelligence. 

In general, the greatest strength of IKON FLUX and AKIRA regarding relevance 

realization was the presence of a large network of small interacting modules. In a new 

design, this is something that should be preserved. However, we saw that LIDA scored 

best on the feature of a bio-economic model of cognition, due to its incorporation of the 

global workspace theory. Thus, a novel architecture that combines the strength of having 

a large complex network of small interacting modules with the incorporation of the global 

workspace theory where in each cognitive cycle a particular module with the highest 

prioritization is chosen and then sent to a global workspace, after which it is sent back to 

the entire network, would result in a design that could have even more potential for 

relevance realization and thus for artificial general intelligence. 

Below I will give a rough sketch of how such a design would look like. Note that it 

only serves as an abstract design sketch; specifics about interactions and content of modules 

are omitted. It is just an illustration of a basic design structure that a novel architecture 

may incorporate. 
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Figure 8: A rough sketch of a novel architecture design that incorporates the network structure characteristics of IKON 

FLUX and AKIRA with the global workspace design of LIDA. 

 
The idea behind this architecture is similar to all the discussed architectures in that 

it consists of a series of cognitive cycles. Just like in LIDA for example, each cognitive 

cycle can be really short (on the order of milliseconds). The basic design consists of a 

complex (meaning scale-free, mostly small-world, and clustered) network. The network 

principles are largely based on AKIRA; the network share one pool of energy resources, 

and the individual modules or clusters compete for these resources. Large circles represent 

either large modules or a cluster of modules that work together for the same purpose. A 

few modules have a large number of links, and most modules only a few, making it close 

to scale-free. Every module can furthermore reach every other module in a maximum of 

three links, making it small-world. In the network, every module can take on any function, 

from very simple tasks such as a representation of an explicit memory, or it can be the 

machinery behind visual perception. The different colors indicate opponent processes; 

Most modules come in pairs, in that the yellow modules biases itself to one particular task 

in order to achieve a goal, while a corresponding pink module biases itself to the exact 

opposite such that the interaction between the modules results in a balancing of these 

constraints (this feature makes sure that opponent processing is incorporated). Each 

module has access to certain sensors, and every cognitive cycle each module updates its 
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internal state with the new sensory input and shares its relevancy to the rest of the network 

based on how much the sensory input matches the goal that module is trying to achieve. 

New modules can be developed automatically in a similar fashion as in IKON FLUX. 

Every cognitive cycle, the modules compete for energy, and the module or cluster with the 

highest energy wins the cognitive cycle and is sent to the global workspace. After that, the 

global workspace sends the information of the winning module back to the entire network, 

such that the network is notified that that particular module currently has the highest 

relevance. In response, the network can send more energy to that module such that it has 

more access to computational power and sensors. After a while, the module loses relevancy 

since the sensory or internal input is not relevant to the goal of the module anymore, and 

another module has a chance to win the competition and be sent to the global workspace, 

after which the cognitive cycle is repeated. Finally, while this design sketch seems abstract, 

it must be instantiated in an embodied physical system, e.g. certain modules with sensors 

are actually parts of the body of the system; for example, the system can have a module for 

sensing touch, and this module would not be present in the ‘brain’ of the system, but rather 

in peripheral parts of its body.  

This design arguably allows for optimal relevance realization as it incorporates all 

the earlier discussed features. Again, it is meant as a rough sketch to indicate a design of 

an architecture where a complex network is combined with an implementation of the 

global workspace theory, and the actual design would require a lot more specification and 

nuance in its design. However, for the sake of argument, since such a design is most 

promising for relevance realization, it follows that it is a design that is also most promising 

for artificial general intelligence, based on previous argumentation.  

 

Final discussion 

In this thesis, I have discussed the challenge of creating artificial general intelligence and 

argued that the reason there is so much difficulty in building this is due to the unsolved 

epistemological frame problem. I have argued that one of the main aspects of general 

intelligence involves the ability to quickly adapt and learn in any new particular 

environment. In order to achieve this effectively, an AGI must in the basis be able to 

appropriately frame its perception, due to the infinite potential information such a new 

environment brings. In other words, the AGI must have a mechanism for determining the 

relevancy of perceptual input in any new environment, and the better the system is able to 
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do this, the more competent the system can perform in this new environment. I introduced 

the framework of relevance realization as discussed by Vervaeke (2012). While not 

providing a full answer of what such a framework would look like, he suggested several 

features that it should possess at minimum: self-organization, a bio-economic model of 

cognition, and balancing of constraints by opponent processing. I introduced two more, 

complex network characteristics and embodiment, and then compared several existing 

cognitive architectures for artificial general intelligence (CLARION, LIDA, AKIRA and 

IKON FLUX) on the basis of these five features; evaluating to what degree these 

architectures incorporate these features and then concluding which of the architectures 

does so best. From this analysis, AKIRA and IKON FLUX scored highest in total.  

  Finally, I attempted to construe a rough sketch of a novel cognitive architecture for 

artificial general intelligence, with the idea of taking the highest scores of each architecture 

on each feature and combining these into a new design. Naturally, this design looks mostly 

like the architectures AKIRA and IKON FLUX, but it also incorporated the model of 

allocating cognitive resources from LIDA. The design is only meant as an abstract 

description of such an architecture, so technical and elaborate details are lacking. 

Nevertheless, the design of the cognitive architecture such as I proposed seems like a solid 

basis for future design of architectures for artificial general intelligence, since it 

incorporates all features of relevance realization (and I have argued for a close connection 

between the ability to do relevance realization and general intelligence). Future research 

could focus more on the technical details of such an architecture (how exactly do all parts 

relate and influence each other, what modules can the system incorporate, etc.), and see if 

such a design may perhaps be instantiated in a physical system. On the theoretical side, 

future research could also focus more on developing the framework of relevance 

realization, as the theory is not yet complete and requires a fuller description of the precise 

mechanism of how relevance is determined and calculated. 
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