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Abstract 
Introduction: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKIs) are standard of care in 
EGFR-postive NSCLC patients. The issue uptake of NSCLC can be determined using radiolabeled EGFR TKI PET/CT. 
However, recent research has shown a significant difference between image quality (i.e. tumor-to-lung contrast) 
in in three generation EGFR TKIs: 11C-erlotinib, 18F-afatinib and 11C-osimertinib. In this research we aim to 
develop a mechanistical model to predict the tumor-to-lung contrast and uptake of healthy tissue of the three 
tracers.  

Methods: Relevant physicochemical & drug specific properties (e.g. pKa, lipophilicity, EGFR binding) for each TKI 
were collected and used in established base models. Key hallmarks of NSCLC: immune tumor deprivation, 
unaltered tumor perfusion and erratic neovascularization. Analysis was performed by excluding each key 
component and comparing the PE with the final mechanistical PBPK-model predictions. Model accuracy was 
demonstrated by calculating the prediction error (PE) between predicted tissue to blood ratios (TBR) and 
measured, PET image derived, TBR.  

Results: The fitted models were able to predict the tumor-to-lung contrast for all EGFR-TKIs within 3-fold of 
observed PET image ratios (PE Tumor-to-lung ratio of -93%, +43% and-7.4 % for erlotinib, osimertinib and 
afatinib respectively). Furthermore, the models depicted agreeable whole-body distribution for osimertinib and 
afatinib, showing high tissue distribution and an underprediction and low tissue distribution at high blood 
concentrations for erlotinib (mean PE, of -4.4%, range -156% - +187%, for all tissues).  

Conclusion: The developed models adequately predicted the image quality of afatinib, osimertinib and erlotinib. 
Some deviations in predicted whole-body TBR lead to new hypotheses such increased affinity for mutated EGFR 
and active influx transport (erlotinib into excreting tissues) or active efflux (afatinib from brain), which is 
currently unaccounted for. In the future, the models may be used to predict the image quality of new tracers.  
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Introduction 
Lung cancer is the main cause of cancer-related mortality worldwide, with an estimation of 1.8 million deaths 
and over 2 million new cases each year [1]. Over the past decades treatment of non-small cell lung cancer 
(NSCLC) has changed from chemotherapy to more effective and better tolerated targeted therapies against 
specific oncogenic driver pathways [2]. An important one is the epidermal growth factor receptor (EGFR) 
pathway [3]. EGFR is a receptor tyrosine kinase that dimerizes, auto-phosphorylates and initiates a 
downstream signalling cascade [4]. An activating mutation in the kinase domain of the receptor can lead to 
ligand-independent activation [5,6]. EGFR tyrosine kinase inhibitors (TKIs) inhibit the intracellulair ATP-
bindingpocket in the kinase domain [3,7]. Overexpression and activating mutations in EGFR predict response 
to specific TKIs in NSCLC patients [5,6]. Currently, three generations of EGFR-TKIs are approved for the 
treatment of EGFR mutation-positive NSCLC (Figure 1). The first-generation, in this study represented by 
erlotinib, binds reversibly to EGFR harboring mutations and to a lesser extent to wild-type EGFR [3,7,8]. To 
overcome resistant mutations, second-generation TKIs represented by afatinib were developed. However, the 
efficacy on the T790M mutation was unstatisfactory [7]. To achieve a more potent binding to the T790M 
mutation, 3rd generation TKIs, represented by osimertinib, were developed. An added benefit was that it has a 
reduced activity against wild-type EGFR [9]. Overall, treatment using EGFR-TKIs has shown better response 
rates and longer durations of response. As a result it has become standard of care in EGFR mutation-positive 
NSCLC patients [1].  

 

Figure 1: The chemical structure of three generations of EGFR-TKIs. The first generation represented by erlotinib, the second 
by afatinib and the third bij osimertinib [10].  

In the last few years, research has been conducted using positron emission tomography (PET) to explore drug 
uptake as a predictive biomarker for response to EGFR-TKI treatment. The three generations of EGFR-TKI were 
radiolabeledand and the uptake was studied in patients exposed to 11C-erlotinib, 18F-afatinib and 11C-
osimertinib. These PET tracers can be used to predict whole-body and tumor drug uptake [11-16]. In a recent 
study, published data from NSCLC patient scans of the three tracers was compared and analyzed, tracer uptake 
was quantified using the tumor-to-blood ratio (TBR) [17]. Previous research has shown that the TBR is an 
adequate measure for quantification of TKI-tracer uptake [15-17]. It was calculated by dividing tissue standard 
uptake value (SUV) by blood pool SUV [15]. The SUV is the standardized unit of semiquantitive analysis of PET-
imaging. Furthermore, tumor visibility on the PET image in contrast to lung visibility, known as tumor-to-long 
contrast,  was used to assess the PET image quality of each tracer. A difference in contrast was observed. 11C-
osimertinib showed a negative contrast: tumor tissue uptake was 20% lower than surrounding lung tissue. 
Conversely, 18F-afatinib showed a 96% higher uptake in tumor tissue than in surrounding tissue. 11C-erlotinib 
image quality was deemed superior, with a tumor-to-lung contrast value of 178%. The three TKIs showed image 
quality ranking that was not explicable by physiochemical ranking.  No reason for the difference in image quality 
has been found yet [17]. 

van de Stadt et al. hypothesized that physiochemical drug properties may explain the variability in penetration 
of the tracers in different tissues and between TKIs [17]. Properties that are ought to be relevant are acidity 
(defined by the pKa), lipophilicity (log P), albuminbinding and blood/plasma ratio (B:P) (Table 1). These 
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properties affect the tissue uptake in different ways. Firstly, a strong basic drug (pKa ≥ 7), is highly protonated 
at physiological (plasma) pH levels, whereas weak bases (pKa <7) are mostly unprotonated at physiological pH 
levels [18]. Protonation also affects transport over membranes. A protonated base, and thus ionized, will not 
pass the membrane passively without a carrier. Secondly, Lipophilicity affects tissue penetration. Strong 
lipophilic bases tend to diffuse to a greater extent [18]. Thirdly, a drug that is highly bound to albumin, and 
thus has a low unbound fraction (Funbound), tends to be less available for diffusion into tissues. Lastly, the B:P is 
determined by the affinity for the red blood cells. A B:P < 1 means that the compound barely gets into the 
erythrocytes, which potentially makes more drug available for tissue uptake [19].   
 In addition to physicochemical properties, lysosomal sequestration, EGFR abundance and hallmarks of 
NSCLC tumors may play a role in predicting the tumor-to-lung contrast. The hallmarks of interest are namely 
tumor vascularization, and the impact of an acidic and/or immune deprived microenvironement. Furthermore, 
because of differences in basicity, lysosomal sequestration is expected to play a role in the differences in tracer 
uptake. Lysosomes are acidic membrane-bound organelles inside of tissue, which are capable of digesting 
biomolecules [20]. This traps the tracer in the lysosome, and affects the tissue uptake. Additionally, the 
prospect is that differences in affinity for EGFR (kd), and thus a difference in attraction to (target) tissue, in 
combination with a variation in EGFR abundance changes the tissue uptake [21,22]. Especially between lung 
tumor and lung tissue. Lastly, hallmarks of NSCLC like erratic tumor neovascularization, altered perfusion, and 
lowered immunogenic activity could possibly be of importance. These compound, tissue- and disease-specific 
properties may influence the whole-body distribution resulting in different tumor-to-lung contrasts of the 
three compounds. 

Table 1:  Compound specific physiochemical properties of erlotinib, afatinib and osimertinib.  

 Erlotinib Afatinib Osimertinib 
Log P[1] 3.3 3.6 3.2 
pKa[1] 5.5 8.2 9.0 
Acid or base Weak base Strong base Strong base 
B:P ratio[2] 0.95 1.27 0.79 
Kd EGFR (nM)[3] 2164 2 155 
Funbound

[1] 0.088 0.095 0.017 
References: [1] Colclough (2021), [2] van de Stadt (2021), [3] joly-Tonetti (2021) 

To gain a mechanistic understanding of processes underlying the observations a physiologically-based 
mathematical equation can be designed. Physiological modeling aims to integrate the knowledge of 
physiological processes and extent them with the compound-specific attributes in order to predict complex 
biological properties [23]. It is known that the extent of tissue distribution is defined by the tissue partition 
coefficient (e.g. the TBR), which depends on compound characteristics and the tissue composition [23,24]. With 
the equation, distribution to the tissues and thus tumor-to-lung contrast as a way to assess image quality can be 
predicted. Although physiologically-based models are frequently used in pharmacologic research, not much 
research has been done using these in relationship to PET tracers. An advantage of such mechanistic models is 
their predictive potential [23].  

In earlier research the effect of the physiochemical properties and lysosomal sequestration on the role off TKI 
uptake was already evaluated. However, erlotinib predictions were not accurate yet and further extensions were 
needed [25]. For this research project we wish to add target specific binding to EGFR and hallmarks of NSCLC 
tumors. We hypothesized that by including the physicochemical properties, lysosomal sequestration, EGFR 
specific target-binding and/or hallmarks of NSCLC tumors in the models the tumor-to-lung contrast can be 
predicted. We developed two physiologically-based mechanistic models reflecting the essential features of 
tissue distribution of EGFR-TKIs. To assess the the difference in image quality, the aim of the researchproject is 
to predict the image quality by predicting the right tumor-to-lung contrast and secondly, predict the whole-body 
distribution. When fully validated, these mechanistic equations can be applied to predict tumor drug uptake in 
a wide array of diseases with structurally diverse compounds. As a result it could be used to steer drug 
development to compounds with high tumor-to-lung contrast. This would indicate a relatively higher uptake, 
and thus effect, in the tumor  and less in the surrounding tissue.  
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Methods 
R software within the Rstudio interface (version 4.0.3; R Foundation for Statistical Computing, Vienna, Austria) 
was used for simulations and graphical visualization of the predictions and PET observations were done using 
the package ggplot2 (Wickham, 2009) [26,27]. PET-TBR data was used to validate the equations [17]. 

 
Scan data 
The reference data orginates from the study of van de Stadt et al.[17]. All PET scans were performed in advanced 
stage, EGFR mutated NSCLC patients. No patients were treated with the treatment analog of the PET tracer prior 
to scanning (e.g., a patient undergoing 11C-erlotinib scanning was treatment-naïve for erlotinib). The PET-data 
used in this research is derived from static, 40-60 min post tracer dose whole-body PET/CT scans. All regions of 
interest were delineated by the same experienced researcher in a standardized manner using in-house 
developed software. For all tracers spleen, kidney, tumor, lung (contralateral from tumor site) and vertebra was 
included. For afatinib and osimertinib brain was additionally delineated but erlotinib scans did not include brain 
tissue in field of view. The full scan protocol and evaluation of the biodistribution is currently under submission 
[17].  

 

Modelling strategy  
Base models selection 
The biodistribution of basic lipophilic drugs, like the three researched EGFR-TKIs, has been described extensively 
by well-established methods to predict the tissue partitioning [24,28]. Rodgers et al models provide the most 
accurate tissue distribution predictions [24,28,29]. The choice of model is dependent on compound properties, 
most importantly basicity. Relevant physicochemical properties used in modelling of the 3 EGFR TKIs erlotinib, 
afatinib and osimertinib can be found in Table 1. Since erlotinib is a weak base and osimertinib and afatinib are 
strong basic drugs, two base models are used. Model 1 is applicable for predicting tissue uptake of weak basic 
drugs and was used for erlotinib [28]. Model 2 can be used for afatinib and osimertinib predictions since this 
model applies for strong basic compounds [24].  

The following assumptions were made in all models as validated by Rogers et al: drug transport only occurs 
passively; conditions are non-saturating; the drug is at steady state and well-stirred in all tissues of interest; 
metabolism and drug clearance are negligible at the time of scanning (at <0.05 of the biological half-life); the 
tissue PET scans did not contain a significant number of blood vessels (in the models only the concentration 
outside of the blood perfusing the tissue was calculated) [24,28].  

 

Base models - Physicochemical drug distribution 
In the physicochemical model, tissue-to-plasma ratio’s (Kpu) are predicted based on distribution to albumin 
(ALB), neutral lipids and phospholipids (NL/NP), acidic phospholipids (AP-) and to cellular spaces such as the 
extra- and intracellular water (EW and IW). The described physicochemical base models predict Kpu at steady 
state by inclusion of drug-specific physicochemical properties and tissue composition (Table 1&2). If available, 
drug-specific properties were adapted from the PET imaging data, such as the blood-to-plasma ratio (Table 1). 
Physicochemical properties including pKa values were retrieved from the same in vitro research publication to 
prevent insecurities and enable comparison of the outcomes and can be found in Table 1 [10].  

Base model 1, the model reflecting weak bases, predicts the Kpu by calculation of the pH driven distribution to 
cellular components (Eq. 1). Tissue-specific fractional tissue volumes of cellular components, including 
intracellular water, extracellular water, neutral lipids and neutral phospholipids are reflected by respectively Fiw, 
Few, Fnl, and Fnp. By use of the pH values of the cellular components intracellular water, neutral lipids and neutral 
phospholipids pHiw, pHnl, pHnp relative to the pH of plasma (pHp), the fraction unprotonated drug available for 
diffusion to these cellular parts is predicted. pH values of the cellular components are shown in Table 2. The 



6 
 

octanol/water partition coefficient (P) is included for binding affinity of the unprotonated drug to neutral lipids 
and phospholipids in the cell membrane. Since a weak base such as erlotinib is highly (99%) unprotonated in 
plasma, albumin binding in the extracellular water is a predominant process of tissue distribution. The albumin 
binding was predicted based on the multiplication of an estimated association constant (Ka) for albumin with 
the tissue specific albumin concentration [28]. The formula for calculating the Ka is depicted in equation 2. A 
schematic overview of model 1 is depicted in Figure 2B.  

 (Eq. 1)   𝑲𝒑𝒖R1	= ['𝟏"𝟏𝟎
𝒑𝑲𝒂$𝒑𝑯𝒊𝒘

𝟏"𝟏𝟎𝒑𝑲𝒂$𝒑𝑯𝒑
∗ 𝒇𝒊𝒘, + 𝒇𝒆𝒘+ '𝑷∗𝑭𝒏𝒍,𝒕"(𝟎.𝟑𝑷"𝟎.𝟕)∗𝑭𝒏𝒑,𝒕

𝟏"𝟏𝟎𝒑𝑲𝒂$𝒑𝑯𝒑
, 	+

																																								(𝑲𝒂, 𝒂𝒍𝒃𝒖𝒎𝒊𝒏	 ∗ 	[𝑨𝑳𝑩𝑼𝑴𝑰𝑵], 𝒕𝒊𝒔𝒔𝒖𝒆)	] 

 

(Eq. 2)   𝑲𝒂albumin	= AB 𝟏
𝑭𝒖𝒏𝒃𝒐𝒖𝒏𝒅

− 𝟏 − '𝑷∗𝑭𝒏𝒍,𝒑"(𝟎.𝟑𝑷"𝟎.𝟕)∗𝑭𝒏𝒑,𝒑
𝟏"𝟏𝟎𝒑𝑲𝒂$𝒑𝑯𝒑

,E ∗ ' 𝟏
[𝑨𝑳𝑩𝑼𝑴𝑰𝑵]𝒑

,F 

 

In model 2, the model reflecting strong bases, the pTBR contains the same elements for the distribution to 
neutral (phospho)lipids, intracellular and extracellular water (Eq. 3). In contrast to weak bases, afatinib and 
osimertinib are strong basic drugs (pKa >7) and are mostly protonated (respectively 98% and 86%) at 
physiological pH levels [10]. This protonation leads to binding to acidic phospholipids (AP-). Distribution to acidic 
phospholipids was predicted using association constant Ka [24].The Ka for AP- was calculated by subtracting the 
affinity for the cellular components of the partitioning to the red blood cells (Eq. 4).  A schematic overview of 
model 2 is depicted in Figure 2B.  

 (Eq. 3)   𝑲𝒑𝒖R2= A'𝟏"𝟏𝟎
𝒑𝑲𝒂$𝒑𝑯𝒊𝒘

𝟏"𝟏𝟎𝒑𝑲𝒂$𝒑𝑯𝒑
∗ 𝒇𝒊𝒘, + 𝒇𝒆𝒘+ '𝑲𝒂∗[𝑨𝑷@]∗𝟏𝟎

𝒑𝑲𝒂$𝒑𝑯𝒊𝒘

𝟏"𝟏𝟎𝒑𝑲𝒂$𝒑𝑯𝒑
, + '𝑷∗𝑭𝒏𝒍,𝒕"(𝟎.𝟑𝑷"𝟎.𝟕)∗𝑭𝒏𝒑,𝒕

𝟏"𝟏𝟎𝒑𝑲𝒂$𝒑𝑯𝒑
,F 

 

(Eq. 4)  𝑲𝒂AP  = 𝑲𝒑𝒖, 𝒃𝒄 − '𝟏"𝟏𝟎
𝒑𝑲𝒂$𝒑𝑯𝒃𝒄

𝟏"𝟏𝟎𝒑𝑲𝒂$𝒑𝑯𝒑
∗ 𝒇𝒊𝒘, 𝒃, − '𝑷∗𝑭𝒏𝒍,𝒃"(𝟎.𝟑𝑷"𝟎.𝟕)∗𝑭𝒏𝒑,𝒃

𝟏"𝟏𝟎𝒑𝑲𝒂$𝒑𝑯𝒑
, ∗ ' 𝟏"𝟏𝟎𝒑𝑲𝒂$𝒑𝑯𝒑

[𝑨𝑷@]∗𝟏𝟎𝒑𝑲𝒂$𝒑𝑯𝒃𝒄
, 

 

Extension - EGFR target binding 
Only non-specific binding is described by the physicochemical base models. Intracellularly, TKIs will bind with 
high affinity to EGFR [7,30]. Differences in affinity of EGFR-TKIs for their target may influence tissue binding and 
is therefore an essential feature for tissue distribution of TKIs. By adding EGFR binding to base models 1 and 2, 
target binding was included in the mechanistic model . Tissue-specific EGFR concentrations ([EGFR]) and drug-
specific dissociation constants (Kd) for wild type EGFR are shown in Table 1. For two tissues of interest, bone 
and brain that lacked relevant literature data, we assumed EGFR was not present.   

The contribution from EGFR has been taken into account following Rodgers’ way of adding the parameters. Only 
what is present in the intracellular water (IW) can bind to EGFR. Assumed was that B and BH+ equally bind to 
EGFR. So the total unbound concentration in the intracellular water (𝑪, 𝒊𝒘) can bind to EGFR, according to 
Rodgers that equals to:  

(𝟏 + 𝟏𝟎𝒑𝑲𝒂@𝒑𝑯𝒊𝒘) ∗ 𝒇𝒊𝒘 

The amount that actually binds to EGFR is dependent on the concentration ([𝐄𝐆𝐅𝐑]) and the affinity for EGFR 

(𝑲𝒂 = ' 𝟏
𝑲𝒅
,). Addition to the 𝑪, 𝒊𝒘	 results in the concentration bound to EGFR (𝑪EGFR): 

𝑪EGFR = '[𝑬𝑮𝑭𝑹]
𝑲𝒅

, ∗ (𝟏 + 𝟏𝟎𝒑𝑲𝒂@𝒑𝑯𝒊𝒘) ∗ 𝒇𝒊𝒘 

 

The tumor to plasma water partition coefficient (𝐊𝐩𝐮) is calculated as follows: 
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𝑲𝒑𝒖 = B
𝑪, 𝒕𝒊𝒔𝒔𝒖𝒆
𝑪, 𝒑 E 

 

The concentration in plasma 𝑪, 𝒑	is defined as: 

𝟏 + 𝟏𝟎𝒑𝑲𝒂@𝒑𝑯𝒑 

 

Substituting  𝑪EGFR and 𝑪, 𝒑	into the equation for the 𝑲𝒑𝒖 results in the contribution of the binding to EGFR, to 
the total 𝑲𝒑𝒖 (Eq. 5).  

(Eq. 5)   𝑲𝒑𝒖EGFR	=	
G[𝑬𝑮𝑭𝑹]𝑲𝒅 H∗(𝟏+𝟏𝟎𝒑𝑲𝒂−𝒑𝑯𝒊𝒘)∗𝒇𝒊𝒘

𝟏+𝟏𝟎𝒑𝑲𝒂−𝒑𝑯𝒑
=	

G[𝑬𝑮𝑭𝑹]𝑲𝒅 H∗	(𝟏+𝟏𝟎𝒑𝑲𝒂−𝒑𝑯𝒊𝒘)

𝟏+𝟏𝟎𝒑𝑲𝒂−𝒑𝑯𝒑
∗ 𝒇𝒊𝒘 

 

Extension - Lysosomal sequestration  
Due to the protonated status in an environment with physiological pH, the lysosomal trapping was added to the 
physicochemical base model for strong bases (model 2) only by equation 4 [31,32]. To estimate the binding the 
lysosome is included in two different ways. According to Assmus et al. the same composition is assumed for the 
lysosomal membrane as for the outer membrane of the cell. Since immune cells, mostly consist of a higher 
lysosomal volume and a lower lysosomal pH than normal tissue cells, tissue specific cell types were included to 
predict the TBR (Eq. 6) [31]. According to Schmitt et al. binding to the membrane should not be included, because 
the exact composition is unknown. Thereby, it was stated that inclusion potentiely leads to an overprediction. 
Because of this reason only pH driven partiotioning was included [32]. Assmus’ and Schmitts method were both 
included in the analyses to determine the correct one.  

(Eq. 6)   𝑲𝒑𝒖lys 1= A'𝟏"𝟏𝟎
𝒑𝑲𝒂$𝒑𝑯𝒍𝒚𝒔

𝟏"𝟏𝟎𝒑𝑲𝒂$𝒑𝑯𝒊𝒘
∗ 𝒇𝒊𝒘, + '𝑲𝒂∗[𝑨𝑷@]∗𝟏𝟎

𝒑𝑲𝒂$𝒑𝑯𝒍𝒚𝒔

𝟏"𝟏𝟎𝒑𝑲𝒂$𝒑𝑯𝒊𝒘
, + '𝑷∗𝑭𝒏𝒍"(𝟎.𝟑𝑷"𝟎.𝟕)∗𝑭𝒏𝒑

𝟏"𝟏𝟎𝒑𝑲𝒂$𝒑𝑯𝒑
,F 

 

 (Eq. 7)  `    𝑲𝒑𝒖lys 2 = '𝟏"𝟏𝟎
𝒑𝑲𝒂$𝒑𝑯𝒍𝒚𝒔

𝟏"𝟏𝟎𝒑𝑲𝒂$𝒑𝑯𝒑
∗ 𝒇𝒍𝒚𝒔, 

 

The models with the combination of physicochemical properties, the extension of EGFR and lysosomal 
sequestration, is illustrated in Figure 2. Figure 2A shows the place of the models on a systemic level, with Figure 
2B on a cellular level.  
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Figure 2. a) Systemic (upper) and cellular levels (lower) of the models.  Black arrows indicate transport of the drug between 
whole blood and tissues. b) Schematic overview of the mechanistic models for weak basic EGFR-TKIs (Model 1) and strong 
basic EGFR-TKIs (Model 2). The plasma compartment is depicted in red, extracellular space in yellow and intracellular space 
in blue. Orange hexagons “B” (base) depict the drug, purple hexagons depict H+ atoms. When depicted together, bases are 
protonated. When depicted separately, the base is unprotonated. Blue receptors depict epidermal growth factor receptor 
(EGFR), green ovals over the cell membranes are neutral (phospho)lipids (NL/NP) and acidic phospholipids (AP-). Light blue 
ALB is a representation of albumin. Black arrows depict processes that are included in both models, red/purple arrows depict 
processes specific for each model. pH values for each compartment are given. Equations for model 1 and 2 below and the 
model structure are further explained in the supplement A-II and III. B= basic unprotonated drug, BH+= protonated drug, AP- 
=acidic phospholipids, NL =neutral lipids PL=phospholipids, ALB= albumin, EGFR=epidermal growth factor receptor 

 

Inclusion hallmarks of NSCLC 
Three of the hallmarks of NSCLC tumors are a potential immune-suppressive micro-environment, erratic (and 
potential inadequate) neovascularization and perfusion caused by changes in the micro-environment [34-36]. 
We hypothesized that either of these hallmarks could predict a decreased cellular concentration of the TKIs, 
even at a high affinity and higher expression of EGFR in the tumor.  

The impact of the lysosomal volume of different cell types on tissue uptake in tumor compared to normal lung 
was researched. Lung tissue uptake was simulated with the equation of Assmus et al. by use of a physiological 
composition including the different immune cells: 4.1% alveolar macrophages, 8.3% type II cells and 87.6% 
residual cells (Table 2) [31]. Of these three the residual cells are the least immunogenic cells. To reflect an 
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immune-suppressive micro-environment, tumor tissue uptake with input parameters concerning only (100%) 
residual lung cells was applied in the equation of Assmus et al.  

As a final a final hallmark, we hypothesized that the number of vessels drives drug penetration. The vascular 
coefficient was calculated by dividing the microvessel density (MVD) of normal lung tissue (4 samples), obtained 
from the Human Protein Atlas by the MVD of 8 samples of adenocarcinoma NSCLC patients. MVD was calculated 
per surface area of CD31+ vessels and tissues. A full description of this analysis can be found in Appendix I. The 
MVD tumor vs lung ratio (Fvasc) was calculated and multiplied with the Kpus. Since tumor uptake of 11C-erlotinib 
and 18F-afatinib has previously been shown to be independent of tumor perfusion, we assumed that all three 
EGFR TKIs were perfusion independent [11,15].  

After inclusion of all drug specific, tissue properties and disease properties, the full models is derived. The full 
models are depicted in Equation 8 and 9.  

(Eq. 8)    𝑲𝒑𝒖Full 1 = 	𝑭𝒗𝒂𝒔𝒄/𝒑𝒆𝒓𝒇 	 ∗ 	+𝑲𝒑𝒖𝑹𝟏/𝑹𝟐 	+ 	𝑲𝒑𝒖𝑬𝑮𝑭𝑹 	+ 	𝑲𝒑𝒖𝒍𝒚𝒔𝟏/𝟐- 

 

(Eq. 9)     𝑲𝒑𝒖Full 2	= 	𝑭𝒗𝒂𝒔𝒄/𝒑𝒆𝒓𝒇 	 ∗ 	+𝑲𝒑𝒖𝑹𝟏/𝑹𝟐 	+ 	 	𝑲𝒑𝒖𝑬𝑮𝑭𝑹-	 

 

Simulation tumor-to-lung and tissue distribution 
The PET-data was calculated in tissue-to-blood ratios (TBR). As a final step, to compare the predicted values to 
the observed PET-values the tissue-to-plasma ratios were recalculated to tissue-to-blood ratios (pTBR)  with the 
affinity to red blood cells (KpuBc) (Eq. 10). The KpuBc was calculated by the hematocrit, Funbound and bp, 
illustrated in equation 11. 

(Eq. 10)      𝒑𝑻𝑩𝑹 = 𝑲𝒑𝒖𝑭𝒖𝒍𝒍	𝟏/𝟐
𝑲𝒑𝒖𝑩𝒄

 

(Eq. 11)                𝑲𝒑𝒖, 𝒃𝒄 = 4 𝑯>𝟏?(𝑩:𝑷)
𝑭𝒖𝒏𝒃𝒐𝒖𝒏𝒅∗𝑯

5 

 

For all EGFR-TKIs, the tumor-to-lung contrast was estimated by dividing the uptake in tumor by the uptake in 
lung (contrast = pTBR tumor/pTBR lung). This contrast was subsequently validated with the PET imaging data. 
Furthermore, tissue distribution was assessed by predicting the TBR of the lung, tumor, spleen, kidney, brain 
and bone and compared to PET imaging tissue uptake data.  

 

Statistics 
The accuracy of mechanistic equation predicted tumor-to-lung contrast and the TBR was assessed by 
determination of the percentage of tissues falling within 3-fold of observed data, as is done in the referenced 
research by Rodger et al. [24,28]. This was researched by calculating prediction errors (PE) and mean prediction 
error of the model and of subsequent sensitivity analyses. The strength of correlation between the predicted 
and the PET image observed TBR was assessed by the R squared and with a two-sample t-test significance of the 
correlation was determined.  

 

𝑃𝐸 =	 ' IJKL@MNO
PQRS(IJKL"MNO)

, ∗ 100%  𝑅 = 	1 − ∑UVW@ŷ/YZ
∑(VW@V)Z

     

Sensitivity analyses were performed by researching the impact of extension with EGFR binding, use of a different 
lysosomal extension models on tissue-to-blood ratios and the effect of tumor immune deprivation on all tissues 
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of interest. The effect of the aberrant tumor vasculature was determined by comparing the results after inclusion 
of a vascular versus the (unaltered) perfusion coefficient. When in sensitivity analyses the removal of the 
extension of the base models showed a significant decrease in predictivity the PE (mean > 10%) of the tumor-
to-lung contrast of all three models, the component was retained in the final models.   

 

Table 2 Tissue and compound specific input parameters. Tissue specific parameters were adapted from Table 1 Rodgers et 
al. 2005, Table 1 Rodgers et al. 2006 and Table 1 Schmitt et al. 2021, EGFR concentrations from Table 3 Glassman et al. 
2016, lung specific parameters from Table 1 Assmuss et al. 2017. 

Tissues specific input parameters  

 Fnl Fnp Few Fiw Flys
b Tissue 

concentration 

of AP- (mg/g)b 

Albumin tissue to 

plasma ratioc  

EGFR (nM) 

Blood cells 1.7*10-3 0.0029 n.a. 0.60 n.a. 0.50 n.a. n.a. 

Bone 0.017 0.0017 0.1 0.35 n.d. 0.67 0.10 n.a. 

Brain 0.039 0.0015 0.16 0.61 0.014 0.40 0.048 n.a. 

Kidney 0.039a 0.012a 0.27 0.47 0.017 2.441 0.13 177  

Lungc 
0.0088a 
 

0.0030a 
 

0.34 
 

0.43 
 

0.015 
0.57a 

0.21 

 

31.1  

Tumor  0.01 299  

Spleen 0.021a 0.017a 0.21 0.53 0.053 3.18 0.097 54.6  

Plasmad n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Lung specific input parameters2 

 Fnl Fnp Few Fiw Flys pH lysosome Fcell type 

Lung 

0.0088a 

 

0.0030a 

 

0.34 

 

0.45 

 

 

- Alveolar 

macrophages 

0.078 4.75 0.041 

- Type II cells 0.03 5.1 0.083 

- Residual cells 0.01 5.1 0.88 

aTranslation factor from rats to human [24,28].b Input parameter only used in model 1. cInput parameter only used in model 
2 Lung pH,bc: 7.22; pHp 7.4; pHiw 7.0; pHlys: 5.3. dHematocrit (H): 0.45; 5Blood to plasma concentration ratio. eUnprotonated 
fraction [10]. Fiw, Few, Fnl, and Fnp reflect tissue-specific fractional tissue volumes of the cellular components intracellular 
water, extracellular water, neutral lipids and neutral phospholipids. Flys, pHlys and Fcell reflect lysosomal volume fraction, 
lysosomal pH and the fraction of various cell types in tissue. Fvasc : 0.36 Appendix I, and Fperf: 1 reflect the vascular and 
perfusion coefficient in the tumor compared to the surrounding lung tissue. 
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Results 
Model building 
Our main goal was to predict the right tumor-to-lung contrast. To acquire the most accurate model, sensitivity 
analyses that excluded different parameters of the full models was done (table 3). The one with the most 
accurate contrast for all three TKIs was renamed to the “final model”, Equation 12 and 13. The final models 
consisted of physicochemical drug distribution, lysosomal sequestration (for the strong bases; as included by 
Assmus et al.), tumor immune deprivation and unaltered tumor perfusion and EGFR target binding, but excluded 
vascularization.  

 

 (Eq. 12)    𝑲𝒑𝒖Full 1 =
	𝑭𝒗𝒂𝒔𝒄/𝒑𝒆𝒓𝒇	∗	F𝑲𝒑𝒖𝑹𝟏/𝑹𝟐	?	𝑲𝒑𝒖𝑬𝑮𝑭𝑹	?	𝑲𝒑𝒖𝒍𝒚𝒔𝟏/𝟐G	

𝑲𝒑𝒖,𝑩𝑪
 

 

(Eq. 13)     𝑲𝒑𝒖Full 2=
	𝑭𝒗𝒂𝒔𝒄/𝒑𝒆𝒓𝒇	∗	F𝑲𝒑𝒖𝑹𝟏/𝑹𝟐	?	𝑲𝒑𝒖𝑬𝑮𝑭𝑹G	

𝑲𝒑𝒖,𝑩𝑪
 

 

Model building - Lysosome  
The influence of including only a pH driven approach for lysosomal sequestration (excluding lysosomal 
membrane binding distribution) (eq 6) in the model was simulated. The correct tumor-to-lung contrast was not 
simulated by using this simplified approach for lysosomal sequestration, indicated by the increase in PE for both 
afatinib and osimertinib (Afatinib PE 44% to 92%, Osimertinib: -7.5% to +26% see Table 3). Although the PE 
decreased for lung TBR in afatinib, tumor TBR remained relatively similar, leading to a worse outcome when 
tumor-to-lung contrast was simulated.  

 

Model building - EGFR 
The influence of EGFR on the mechanistic model was researched by simulation of the model without EGFR 
binding. This model without EGFR was not able to capture the right tumor-to-lung contrast for mainly afatinib 
(PE 43% to -64%). Contrary to the observed contrast, without EGFR target binding a higher uptake in lung than 
in tumor was predicted for afatinib. (Table 3) The model including EGFR was able to capture the image quality 
by predicting the right predictive values in 67% of tissues for afatinib, 100% (osimertinib) and 16% (erlotinib), 

within 3-fold of the observed values (Table 3). 

 

Model building – Immune depriviation 
Immune deprivation in the tumor tissue may lead to less macrophages and type II cells in the tumor core, 
influencing distribution to the tumor. In the final model, this is corrected by adding the fraction Fcell (Table 2) to 
healthy lung tissue, but not to tumor tissue, simulating immune deprivation in tumor tissue. To analyze whether 
this difference in immune cell presence plays a role in determining drug distribution, we added the same fraction 
immune cells to the tumor tissue as well. This model showed a worse outcome when compared to the 
mechanistic model as described above (Table 3), leading to a decrease in accuracy predicting afatinib tumor 
tissue (PE 108% to 115%)and a decrease in accuracy predicting tumor-to-lung contrast for both afatinib (PE 44% 
to 53%) and osimertinib (PE -7.5% to 23%, Table 3). Since erlotinib is a weak base, immune deprivation was not 
simulated. 
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Table 3: Sensitivity analyses of extensions of the final mechanistic PBPK-model. The final model included physicochemical 
drug distribution, lysosomal sequestration, tumor immune deprivation and unaltered tumor perfusion and EGFR target 
binding, but excludes vascularization. 1) Final model without membrane lysosome 2) final model without EGFR binding 3) 
final model without tumor immune deprivation & 4) final model with tumor vascularization. The predicted TBR, observed PET 
TBR and the predicted vs observed Tumor-to-lung ratio are shown. TL-ratio: Tumor-to-lung ratio. 

 

Model building – Perfusion/Vascularization 
Using the mechanistic model, we hypothesized that not just perfusion but also vascularization of the tumor 
determines tumor drug penetration. Histological analysis of the healthy lung tissue samples and 
adenocarcinoma samples yielded a vasculature coefficient of 0.36, indicating that tumor tissue shows 
approximately 2.8 times less vessels per mm2 tissue than lung tissue (Appendix Figure 1). We assumed that all 
three EGFR TKIs were perfusion independent (15, 20). The influence of the variability in vascularization 
between tumor and non-tumorous long tissue was tested by including this vasculature reflection coefficient. 
The prediction of lung uptake decreased by including this parameter for all TKI, compared to the final model, 
presuming unaltered tumor perfusion (Table 3, PE -93 to -153%, 44% to -56% and -7.5 to -99% for erlotinib, 
afatinib and osimertinib respectively). Therefore, only the perfusion coefficient and not the vasculature 
coefficient was retained in the final models. 

  		 		 Erlotinib	 Afatinib	 Osimertinib	

  		 		 Lung	 Tumor	 TL-ratio	 Lung	 Tumor	 TL-ratio	 Lung	 Tumor	 TL-ratio	

Fi
na

l  

Mechanistic 

model  

Predicted 0.30 0.30 1.02 5.47 12.13 2.22 4.60 3.42 0.74 

Observed 0.51 1.42 2.78 2.54 3.60 1.42 7.01 5.60 0.80 

PE (%) -52.64 -129.61 -92.79 73.27 108.43 43.88 -41.42 -48.50 -7.45 

Se
ns

iti
vi

ty
 a

na
ly

si
s  

1) model – 

membrane 

 lysosome 

Predicted 

 

2.78 10.66 3.84 1.88 1.94 1.03 

PE (%) 9.12 99.04 92.00 -115.40 -97.24 26.23 

2) model – 

EGFR 

Predicted 0.30 0.30 1.00 4.55 3.33 0.72 4.59 3.35 0.73 

PE (%) -52.84 -131.76 -94.19 56.91 -7.93 -64.12 -41.56 -50.27 -9.19 

 3) model – 

tumor immune 

deprivation 

Predicted 

 

5.47 13.35 2.44 4.60 4.66 1.01 

 PE (%) 73.27 115.07 52.96 -41.42 -18.38 23.49 

 

4) model – 

addition 

vascularization 

Predicted 0.30 0.11 0.37 5.47 4.37 0.80 4.60 1.23 0.27 

  PE (%) -52.64 -171.44 -153.41 73.27 19.21 -56.03 -41.42 -128.01 -99.82 
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Model verification  
The tumor-to-lung contrast was predicted using the final model to visualize differences in image quality observed 
in PET imaging, as shown in Figure 3A. The predicted TBR are shown in Figure 3B. Both observed and predicted 
TBR values showed high uptake of osimertinib and afatinib in lung and tumor tissue (TBR >1) and high blood 
concentrations compared to tissue concentrations for erlotinib (TBR< 1, Figure 3). Furthermore, tumor-to-lung 
contrast for all EGFR-TKIs was well predicted, i.e. a contrast >1 for afatinib and erlotinib and a contrast <1 for 
osimertinib (Table 4).  

 

  

Figure 3: The association between PET image derived TBR and model predicted TBR. A) PET image derived TBR (left) versus 
B) model predicted TBR of lung and tumor (right). For patient data, standard deviations are given. 

 

Table 4 describes the contribution of different components of the mechanistic model. Erlotinib binds extensively 
to albumin in tissue, whereas osimertinib and afatinib predominantly bind to AP- in the cellular membranes and 
are sequestered in the lysosome. Substantial decrease of lysosomal sequestration was predicted for both strong 
basic EGFR-TKIs in the less lysosome-rich tumor in comparison with lung tissue. Tumor EGFR binding of afatinib 
was predicted to be extensive for and comprised 72.58% of all tissue binding, whereas for erlotinib and 
osimertinib the model showed that only a minor fraction of the tissue fraction bound to EGFR (1.97 and 1.88% 
respectively).  

The whole-body distribution of the three EGFR-TKIs was described by the mechanistic model. The predicted TBR 
values compared to the measured TBR (obtained during PET imaging) are shown in Figure 4 and Appendix Table  
1. The model is able to predict the overall body distribution of the TKIs, with extensive distribution to most 
tissues for osimertinib and afatinib and limited tissue penetration for erlotinib. The observed and predicted TBR 
values of osimertinib and afatinib in most tissues were >1 and for <1 (Appendix table 1). The TBR predicted by 
the mechanistic model correlated strongly with the PET imaging data (R2: 0.814 with p < 0.0001; α = 0.01) with 
a mean PE of -2.91% (CI95% of the data: -114.6 to 108.8, Figure 4). For afatinib, 67% of tissues was predicted 
within a factor of 3 of the observed value. The data point falling outside this range represented brain uptake of 
afatinib, and was predicted to be 187.1% times higher than observed and tumor predictions, above the 3-fold 
limit of the observed mean value (Appendix Table 1). However, for osimertinib, 100% of tissues were predicted 
to be within 3-fold of the observed tissue uptake of PET imaging. For erlotinib, the model predicted the TBR 
compared to the observed ratio less accurately: only 16% of TBR were predicted within 3-fold of the observed 
values. The lung was predicted accurately with a PE of -52.6%. However, the predicted TBR of spleen, kidney, 
bone and tumor were underestimated (Appendix Table 1). 
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Table 4: contribution of the different components in the final mechanistic models to the predicted TBR in the lung and the 
tumor. NL/NP neutral (phospho)lipids; AP- acidic phospholipids; IW intracellular water; EW extracellular water. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 : Bland-Altman plot showing accuracy of the model to predict tissue uptake. The solid black line represents the mean, 
the dashed lines a factor 3 of both sides of zero. Percentage of predictions falling within 3-fold: erlotinib 20%,afatinib 67%, 
osimertinib 100% 

 

 

 

  Erlotinib Afatinib Osimertinib 
Lung 

IW 14.54% 1.08% 0.72% 

EW 0.36% 0.36% 0.23% 
NL/NP 1.12% 0.01% 0.00% 
Albumin 73.01% n.a. n.a. 
AP- n.a. 32.63% 39.74% 
EGFR binding 0.21% 16.73% 0.14% 
Lysosomal trapping n.a.  49.19% 59.16% 

Tumor 

IW 14.28% 0.49% 14.28% 
EW 10.93% 0.16% 0.31% 
NL/NP 1.10% 0.00% 0.00% 
Albumin 71.72% n.a. n.a. 
AP- n.a. 14.72 % 53.55 % 
EGFR binding 1.97% 72.58 % 1.88% 
Lysosomal trapping n.a. 12.05% 43.30% 
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Discussion 
The mechanistic equations in this study were developed to capture essential features of tissue distribution by 
extending previously published physicochemical base models with EGFR binding, lysosomal sequestration and 
tumor immune deprivation at unrestricted tumor perfusion [9,14,37]. The developed models were able to 
capture the right tumor-to-lung contrast for all EGFR-TKIs and therefore was able to predict image quality. 
Furthermore, the models captured the right whole-body distribution with a high tissue distribution for 
osimertinib, to a lesser extent for afatinib and an underperdiction with low tissue distribution and high whole 
blood concentrations for erlotinib.  

11C-erlotinib reached relatively high concentrations in the blood compared to tissues (TBR<1), compared to 18F-
afatinib and 11C-osimertinib. This relates to a small whole-body volume of drug distribution, which is similar to 
the volume of distribution estimated at therapeutic dose levels (erlotinib 232L, afatinib 2370L and osimertinib 
918L) [38-40]. It is shown that the models based on physicochemical drug properties of the TKI’s predicted these 
differences in distribution profiles. Furthermore, the negative tumor-to-lung contrast as seen by 11C-osimertinib 
is also predicted by the models including these parameters.  

For osimertinib, we hypothesized that a lower lysosomal volume in tumors, assuming an immune suppressive 
microenvironment, would lead to a decreased cellular concentration of osimertinib compared to lung tissue. 
Indeed, this resulted in a correctly predicted tumor-to-lung contrast for osimertinib. Since the decrease in 
lysosomal sequestration mainly impacts the tumor uptake (Table 4), we showed that the low tumor-to-lung 
contrast for osimertinib may be explained by immune deprivation and subsequent decrease in lysosomal volume 
in tumor tissue. The same phenomenon was observed for other TKIs like nintedanib where increased lysosomal 
number and lysosomal size decreases sensitivity towards these drugs [41]. This hypothesis is further 
strengthened by the sensitivity analysis where immune deprivation is excluded from the model. This models was 
less accurate in predicting uptake, indicating that immune cells play a significant role in tissue uptake. 

For afatinib, the predicted decrease in lysosomal sequestration in tumor compared to lung was accompanied by 
a relative high percentage of EGFR binding (Table 4). For all three compounds, the tumor-to-lung contrast was 
predicted adequately after accounting for EGFR binding in the model. For afatinib, EGFR binding had the highest 
influence on tumor distribution in the mechanistical model due to its low dissociation constant (KD) [37,42]. EGFR 
binding showed the highest contribution to the overall tissue uptake. As shown in the sensitivity analyses, when 
EGFR-binding is removed, tumor-to-lung contrast was highly underpredicted. However, tumor tracer uptake of 
erlotinib and osimertinib was underpredicted by the models and erlotinib fell outside of the 3-fold range. We 
hypothesize that variation in EGFR abundance and target affinity among patient-tumors relates results in high 
variability in tumor tracer uptake. Erlotinib and osimertinib EGFR binding may be underpredicted as affinity for 
wild type EGFR was applied. Previous research from our group provided the framework for EGFR binding in tissue 
by demonstrating the ability of PET/CT to distinguish between wild-type and mutated EGFR [13,14,15]. 
Therefore, future studies should include EGFR binding affinities for mutated and wild-type receptors, specifically 
for drugs with differences in affinity between wild type and mutation.  

The distribution for drugs into tissues with high drug transporter abundancy, e.g. brain, kidney and spleen, was 
less accurate. For erlotinib, only lung (an organ unaffected by drug transporters) was predicted correctly. For 
erlotinib, the underpredictions of the other tissues of interest are likely explained by the effect influx 
transporters. Erlotinib is a substrate for the influx transporters OAT3 and OCT2 [21]. In rats the influence of the 
influx transporter OAT on tissue distribution of erlotinib was investigated in a 11C-erlotinib PET imaging study. 
The OAT influx transporter was inhibited by rifampicin and decreasing erlotinib exposure was measured in the 
kidneys and liver, but the exposure in lung was unaffected [43] . The overprediction of the TBR for the brain of 
afatinib may be caused by drug efflux by MDR1 and the BCRP [10]. These drug efflux transporters are highly 
abundant in the blood-brain barrier (BBB). Similar to the observations of the PET study of van de Stadt et al., a 
preclinical permeability study showed a low brain-to-blood ratio of 0.31 for afatinib [10]. In future studies both 
influx and efflux transport processes should be studies and research in how to optimally implement these 
processes is needed.  
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Another possible explanation for underprediction is that albumin binding may not be the only process of tissue 
distribution to be accounted for. Multiple lipophilic, basic drugs bind with a high affinity to the immune-activated 
protein alpha-1-acid glycoprotein (AAG) [44]. Prior studies show that in plasma of NSCLC patients AAG levels are 
increased, but little is known of AAG in the extracellular water of tissues during cancer. Potentially in lysosomal 
rich tissues such as lung, AAG levels may be higher compared to the immune-suppressive microenvironment of 
the tumor. As the role of AAG in plasma binding and drug transport of weak bases has been established, further 
research of the role of AAG for tissue distribution is needed [45].  

Sensitivity analysis demonstrates the need for inclusion of the lysosomal membrane, since the correct tumor-
to-lung contrast was not captured for all compounds when only a pH driven approach was included in the models 
. The high impact of lysosomal sequestration (table 2) after microdosed PET may be due to the unsaturated 
lysosomes. Fluoxetine, a basic lipophilic compound with comparable physicochemical properties (log P = 3.2, 
pKa = 9.8) to afatinib and osimertinib, shows that at prolonged exposure of therapeutic doses, lysosomal 
saturation curve occurs(43). When extrapolating the results to therapeutic PK, potential saturation of lysosomes 
needs to be accounted for. Furthermore, further research into nonlinear processes of drug binding and 
sequestration may improve the models predictions when comparing microdose and therapeutic dose PK [22, 
46].  

In the sensitivity analysis, vascularization driving drug penetration was studied as a hallmark of NSCLC tumors 
[35,36]. Our results show that vascularization does not drive drug penetration since the models performs worse 
when this component was added. Previous results have shown that tracer uptake is perfusion-independent. To 
our knowledge this is the first physiological modelling study that addresses these differences, as prior studies 
either did not account for variability in tumor vs. normal tissue or used a standardized value (e.g. 0.73 in colon 
cancer [47]. However, other hallmarks of cancer such as the collagen matrix and its effect on the penetration of 
drugs should be studied.  

In this study the partitioning into the red blood cells (KpuBc) was used to recalculate the tissue-to-plasma ratios 
(Kpu) of the model to tissue-to-blood ratios (pTBR). However, in the literature there are multiple exampels 
models were the blood-plasma ratio (bp) was used to calculate the blood concentrations [48-50]. The blood-to-
plasma ratio is defined as the blood concentration of the drug divided by the plasma concentration [48]. These 
findings question our choice to have used the KpuBc voor the translation of Kpu to TBR. Further exploration of 
these findings, and potential different outcomes, is needed.  

 

Conclusion 
Our mechanistic models consisting of a base models dependent on physicochemical properties of the relevant 
drug, EGFR binding, lysosomal sequestration and tumor immune deprivation and unaltered tumor perfusion was 
able to accurately predict tumor-to-lung contrast. We therefore conclude that our mechanistical models 
accurately predicts image quality for EGFR expressing NSCLC tumors, while further study of distribution for drugs 
into tissues with high drug transporter abundancy and the effect of EGFR mutation on drug penetration is 
needed.  

Limitations 
In this study, we have extended previously published physicochemical base models with EGFR binding and 
lysosomal sequestration. These base models were validated with in vivo data obtained at steady state 
therapeutic drug concentrations. The PET imaging data used in this study was obtained 1-2 hours after a single 
microdose [12,15,16]. Therefore, it should be noted that discrepancies between predicted and observed TBR 
may occur due to lower drug exposure and non-steady state. Furthermore, drug metabolism and elimination 
was not taken into account. The half-life of the three researched EGFR-TKIs was comparable and greatly 
exceeded the 1-2 hour scan period (erlotinib = 36 h; afatinib = 45 h; osimertinib = 49 h), making the assumption 
of absence of elimination reasonable [38-40]. Prior research of midazolam, a compound with similar metabolic 
profile to erlotinib, suggests that metabolism at microdose level is not different from metabolism at therapeutic 
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dose level [51]. However, when these models are applied for predicting the whole-body distribution and target 
uptake of new tracers with shorter half-lives, inclusion of metabolism and elimination might be needed.  

 

Future perspective 
If drug properties can be used to predict differences in image quality, it may be possible to predict tracers 
with an optimal image quality: drugs with large tumor/tissue contrast. Before applying these predictions in 
drug development, prospective validation of the predictive value of the models using new tracers are needed. 
Furthermore, to predict TBR in future studies more precisely, both active and passive influx and efflux transport 
needs to be included in the mechanistic models. Therefore, further in vitro research to binding affinities for 
transporters and transporter tissue concentrations is needed. The models also showed that the pH driven 
partitioning as a result of small differences in pH, play an important role in the tissue uptake. In the future the 
acidic tumor environement of NSCLC tumors of 6.7-7.1 should be added [52]. 

In order to study differences in tumor-to-lung contrast and whole-body distribution between microdose and 
therapeutic dose, the mechanistic models needs to be extended in a concentration-dependent matter. Injected 
dose of 11C-erlotinib corresponded with 2.2 µg (±0.46) erlotinib. When compared to the regular therapeutic dose 
of 150 mg, this is a >10.000 fold difference [15]. With this difference in dosing, lysosomal sequestration, albumin, 
lipoprotein, AP- and EGFR binding and EGFR-target binding will become saturated and by including these 
nonlinear processes, the influence of different doses on TBR can be assessed.  

The impact of mutational status on tumor-to-lung contrast and whole-body distribution can be investigated by 
the use of affinity constants for EGFR wild type and mutated EGFR. First, the activating EGFR mutation needs to 
be identified in order to use the right affinity value, thereby increasing accuracy of the prediction of tumor 
uptake. When fully validated such models, combined with optimized individual imaging-based uptake 
measurements, may predict individualized dosing regimens intended to optimize drug exposure at the site of 
disease, thereby improving drug-efficacy. 
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Appendix 
I: Histological analysis of vasculature  
CD31 staining is widely used to quantify neovascularization since CD31 is abundantly found on the surface of 
endothelial cells. Quantitative evaluation of vascularization was performed by analysis of images (obtained 
from the Human Protein Atlas (www.proteinatlas.org) of immunohistochemical CD31 stainings of lung tissue. 
Microvessel density (MVD) was then determined by counting the number of vessels per tissue area. To obtain 
the vascularization coefficient, ratio of MVD was divided by the mean MVD of healthy tissue. The analysis 
included eight adenocarcinoma and four normal lung tissue samples. Mean MVD of tumor tissue was 85 (± 36) 
and for healthy tissue mean MVD was 237 (±74). The vasculature coefficient of NSCLC was therefore 85/237 = 
0.36. Supplemental figure 1 shows the MVD of all analyzed samples.  

 

 

 

 

 

 

 

 

Supplemental figure 1: MVD of each sample. # =number of. Normal = healthy 
tissue. Adeno = adenocarcinoma, tumor tissue. MVD= micro vessel density 

 

II:  Whole-body distribution of EGFR-TKIs 
The whole-body distribution of the three EGFR-TKIs was described by the mechanistic model. The predicted TBR 
values compared to the measured TBR (obtained during PET imaging). 

 

Table 1: PET image derived tissue-to-blood ratios compared to predicted TBR in all tissues of interest. SD are given in brackets  

 

 Erlotinib Afatinib Osimertinib 

Predicted Observed Prediction 

error (%) 

Predicted  Observed Prediction 

error (%) 

Predicted Observed Prediction 

error(%) 

Brain  0.18 n.a. n.a. 2.26 0.08 (0.03) 187.1 2.25 0.79 (0.5) 95.7 

Lung 0.30 0.51 (0.2) -52.6 5.47 2.54 (1.2) 73.3 4.60 7.01 (1.6) -41.4 

Spleen 0.18 1.46 (0.4) -155.3 38.7 13.23 (2.3) 98.0 37.5 18.09 (7.7) 69.9 

Kidney 0.23 1.69 (0.6) -152.9 20.8 6.93 (1.8) 100.0 15.5 5.61 (2.0) 93.9 

Bone  0.15 1.23 (0.2) -155.7 2.16 4.81 (2.0) -75.9 2.19 4.24 (0.7) -63.8 

Tumor 0.30 1.42 (0.5) -129.6 12.1 3.60 (2.4) 108.4 3.42 5.60 (2.0) -48.5 
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