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Abstract 

Mechanical load is a critical regulator of cardiac structure and function under both 

physiological and pathological conditions. Mechanotransduction pathways play a critical role 

to mediate mechanical load-induced myocardial remodeling, whereby the morphology and 

function of cardiomyocytes and the extracellular matrix are altered, resulting in changes in 

cardiac function. Mechanical loading not only governs the function of the adult heart but is 

also responsible for normal morphogenesis of the cardiovascular system during prenatal 

development. In this review, the role of mechanical load in development, health, and disease 

are highlighted. First, how mechanical load governs the development of the heart from a 

primitive heart tube to a functional organ, its role in the maturation of the vasculature, as 

well as the mechanisms which control load-induced cardiac alterations in the adult heart 

during exercise and pregnancy are discussed. Subsequently, the mechanisms that contribute 

to mechanical load-induced pathologic cardiac remodeling are underlined. Mechanical 

overloading of the heart due to pressure or volume cause different alterations in cardiac 

structure and function which lead to heart failure. These differences translate to differences 

in disease phenotype that are reflected on pressure-volume loops. Next, the therapeutic 

interventions for mechanical load-induced heart failure are explored with a focus on 

mechanical unloading by left ventricular assist devices. Insights into the various types and 

function of these devices, as well as the mechanical unloading-induced mechanisms that 

contribute to reverse remodeling are provided. Finally, the current in vivo and in vitro models 

of mechanical loading and unloading are presented. These models have allowed for various 

discoveries in the field of cardiac mechanobiology. However, although significant advances 

have been made in our knowledge of the function of cardiac mechanical load, several 

mechanisms underlying cardiac mechanical properties, load-induced pathologic remodeling, 

and unloading-induced reverse remodeling remain unexplored. Thus, future advancements 

of in vivo and in vitro models are necessary to fill the gaps in our current understanding of 

myocardial mechanical properties, mechanotransduction, and reverse remodeling.   

 

 

 

 

 

 

 

 

 

 

 



Layman’s Summary 

The heart is governed by various mechanical forces that can alter the structure and function 

of the heart. Changes in mechanical load can activate several genes through signaling 

pathways to alter the shape and size of cardiomyocytes and influence the activity of 

fibroblasts. These changes lead to physiological or pathological adaptation of the heart which 

can have beneficial or deleterious effects on the body. In addition, to governing the function 

of adult heart, mechanical load contributes to normal heart formation during prenatal 

development. This review aims to highlight the role of mechanical load in cardiac 

development, health, and disease, as well as summarize the different experimental models 

that are currently utilized to mimic mechanical load conditions observed in humans. 

Mechanical loading is responsible for the activation of several genes that control the 

development of the heart from a primitive tube to a functional organ. Furthermore, it plays a 

role in the development of the vascular system. During adulthood, changes in mechanical load 

due to exercise or pregnancy also activate certain pathways which lead to changes in 

structure of the heart that enhance its function. However, mechanical load can lead to 

pathological alterations of cardiac structure and function as well. Similarly, the persistent 

increased mechanical load due to pressure or volume activates pathways which contribute to 

maladaptive changes of the heart and eventually lead to heart failure. Several therapies are 

present to treat heart failure through mechanical unloading. Left ventricle assist devices are 

currently used to unload the heart. These devices induce reverse remodeling by reducing the 

activation of pathways involved in pathologic remodeling and activating other pathways that 

counteract the maladaptive processes. The knowledge of the role of mechanical load in health 

and disease would not have been possible without the current experimental models of 

mechanical load. However, several shortcomings in our understanding of mechanical load 

persist. Therefore, further developments in experimental models are required to increase our 

understanding of the mechanisms that underly mechanical load-induced remodeling, 

unloading-induced reverse remodeling, and mechanical properties of the heart. 

 

 

 

 

 

 

 

 

 

 

 



Introduction to Mechanical Loading of the Heart 

Cardiac mechanical load is an underlying cause of several cardiovascular complications and is 

responsible for cardiac morphogenesis during development. Changes in mechanical load, 

such as in hypertension, can lead to valvular heart disease, arrhythmias, atrial fibrillation, and 

cardiac hypertrophy (Kjeldsen, 2018). In addition, mechanical load can induce 

mechanosensitive pathway activation during cardiac morphogenesis to allow normal 

formation of the cardiovascular system during prenatal development (Boselli, Freund, & 

Vermot, 2015).  

The heart is the first functional organ to form during mammalian embryogenesis, circulating 

nutrients to the surrounding tissue to promote growth (Lindsey, Butcher, & Yalcin, 2014). The 

embryo grows rapidly, increasing its metabolic demands, as well as producing an increased 

amount of waste. Therefore, a functional circulatory system is important to secrete the waste 

and distribute the oxygen and nutrients from the placenta throughout the growing embryo 

(Lindsey, Butcher, & Yalcin, 2014). As the embryo grows into a fetus the metabolic demand 

further increases and thus the heart grows from a primary heart tube to a four-chambered 

heart (Andrés-Delgado & Mercader, 2016). Early embryonic cardiac contractions cause blood 

pressure and wall shear stress to build up, and these hemodynamic loads govern normal 

cardiac morphogenesis by activating gene networks through mechanotransduction feedback 

loops (Midgett & Rugonyi, 2014; Boselli, Freund, & Vermot, 2015). The fetal heart is both 

structurally and functionally different from the neonatal and adult hearts, as the fetus relies 

on the placenta for gas exchange. Therefore, blood is shunted away from the lungs to prevent 

them from developing prematurely (Tan & Lewandowski, 2020).  

However, after birth, a complex series of biochemical and structural modifications occur to 

functionally modify or eliminate the cardiovascular fetal shunts and transition to a circulation 

that utilizes the lungs as the site for gas exchange (Tan & Lewandowski, 2020). The structural 

changes of the fetal shunts are driven by changes in hemodynamic loads upon birth. Cutting 

the umbilical cord increases systemic vascular resistance (afterload) as the low-resistance 

placental flow becomes eliminated and leads to the closure of fetal shunts (Tan & 

Lewandowski, 2020; Cavaliere, 2016). As the lungs become incorporated in circulation, both 

ventricles carry out their specialized functions, the right ventricle pumps deoxygenated blood 

to the lungs to become oxygenated, and the left ventricle pumps the oxygenated blood to the 

body (Hayashi, et al., 1996). The cardiac cycle can be divided into two phases: diastole, a 

phase of relaxation and filling, and systole, a phase of contraction (Voorhees & Han, 2015). 

During diastole when the ventricles fill with blood the cardiac myocytes become stretched. 

The amount the cells stretch at the end of diastole is referred to as preload. During systole, 

however, cardiomyocytes work against a certain amount of load to eject blood into the body. 

This load is called afterload (Schotola, et al., 2017). Preload is determined by the volume of 

blood that enters the ventricle while afterload is determined by the amount of pressure the 

ventricle must overcome to pump blood (Voorhees & Han, 2015). Both preload and afterload 

are affected by hemodynamic changes, such that an increase in vascular resistance increases 

the pressure the ventricle has to overcome and thus increases the afterload of the heart 

(Schotola, et al., 2017). The ventricles interact with the peripheral circulation and adapt to 



the hemodynamic changes to ensure blood flow compatible with metabolic requirements for 

survival. These hemodynamic changes can arise due to normal physiological processes such 

as development, exercise, and pregnancy or pathological processes such as obstruction of 

blood flow, valvular insufficiency, and myocardial infarction (MI) (Hayashi, et al., 1996).   

Changes in preload, afterload, as well as contractility of cardiomyocytes affect the stroke 

volume (SV), which is a major determinant of cardiac output (CO) (Voorhees & Han, 2015). 

CO is defined as the volume of blood the heart pumps per minute and is represented by the 

multiplication of SV with heart rate (HR) (Voorhees & Han, 2015). In normal physiological 

conditions when the body’s metabolic demand increases, such as during exercise, the heart 

increases the heart rate and the stroke volume, through increased preload, to compensate 

for this demand. This adaptation does not influence the structure of the heart. However, 

chronic changes in preload or afterload can lead to either physiological or pathological 

remodeling, such that physiologic remodeling is adaptive and leads to improved cardiac 

function, whereas pathologic remodeling is maladaptive causing cardiomyocyte death and 

cardiac dysfunction (Pitoulis & Terracciano, 2020). A chronic increase in afterload, caused by 

aortic stenosis or hypertension, places the heart in a diseased state, wherein the heart 

becomes overloaded with pressure. This chronic pressure overload (PO) leads to pathologic 

remodeling of the heart, specifically it results in concentric hypertrophy, which is described 

by an increase in ventricular wall thickness with little or no chamber dilation (Hartmann, et 

al., 2022). However, in a chronic state of increased preload, the heart becomes overloaded 

with volume, and this volume overload (VO) leads to a form of remodeling different from that 

of PO. VO-driven hypertrophy has an eccentric pattern, such that a slight increase in wall 

thickness is observed. However, the chamber becomes disproportionally dilated (Hartmann, 

et al., 2022). In addition to chronic changes in mechanical load, cardiac remodeling can be 

observed when acute damage occurs to the myocardium, such as during myocardial infarction 

(MI). During a MI the myocardium becomes permanently damaged, as the heart has a limited 

ability to regenerate, often not enough to compensate for the acquired damage. Therefore, 

instead, the heart can alter its phenotype and adapt to changes in its environment. This 

feature of cardiac plasticity involves mechanical, structural, electrical, and metabolic 

modifications which help compensate for the damaged myocardium (Pitoulis & Terracciano, 

2020). Following MI, a greater strain is placed on the undamaged myocardium which leads to 

an increase in metabolic demand of the surviving cardiomyocytes. Due to the irreversibility 

of MI-induced myocardial damage, this increase in metabolic demand becomes chronic, and 

thus the heart alters its function and structure to compensate for this demand (Pitoulis & 

Terracciano, 2020).  

The process of cardiac remodeling is complex and dependent on multiple factors. The main 

drivers of remodeling are mechanical load (Pitoulis, et al., 2021), neurohormonal changes 

(Hartupee & Mann, 2016), inflammation (Anzai, 2018), and several autocrine and paracrine 

factors (Hodgkinson, Bareja, Gomez, & Dzau, 2016; Segers & Keulenaer, 2021). Although all 

these aspects stimulate cardiac remodeling, the most important initial stimulus is a change in 

mechanical load (Zou, et al., 2002). These factors communicate and directly or indirectly 

influence each other (Pitoulis & Terracciano, 2020). An increase in mechanical load can lead 

to increased local secretion of neurohormones from cardiomyocytes, fibroblasts, endothelial 



cells, and smooth muscle cells of the heart (Sadoshima & Izumo, 1997). One example of such 

a neurohormone is angiotensin II, which is found to be partly stored in secretory granule-like 

structures in ventricular cardiomyocytes (Sadoshima & Izumo, 1997). Upon increase in 

mechanical load, the increased stretching of cardiomyocytes causes autocrine secretion of 

angiotensin II and activates intracellular signaling pathways which upregulate the expression 

of proteins involved in the cardiac renin-angiotensin system (Malhotra, Sadoshima, BrosiusIII, 

& Izumo, 1999). Multiple protein kinases are then activated by angiotensin II which leads to 

downstream activation of genes, increase in protein synthesis, and induction of cardiac 

remodeling (Zou, et al., 2002). Other neurohormones influenced by the mechanical load 

which further promote remodeling include norepinephrine and endothelin-1 (ET-1) (Briest, et 

al., 2001; Drawnel, Archer, & Roderick, 2013). The mechanical load can also activate protein 

kinases in a neurohormone-independent manner (Zou, et al., 2002). Thus, highlighting the 

importance of mechanical load as a potent driver of cardiac remodeling. 

Cardiac remodeling is a phenomenon that is observed in multiple cardiovascular 

complications in addition to MI, such as dilated cardiomyopathy and heart failure. However, 

several studies investigating these diseases do not utilize protocols to simulate physiological 

or pathological mechanical load in their models; whereas the studies which do consider 

mechanical load-driven cardiac remodeling have several limitations in their models (Pitoulis 

& Terracciano, 2020). These shortcomings include the use of oversimplified in vitro assays and 

models with low experimental throughput and unverified relevance to the adult myocardium. 

Moreover, the current protocols which simulate mechanical load fail to reflect the complexity 

of in vivo mechanics of the heart (Pitoulis & Terracciano, 2020).  

The aim of this review is to increase our understanding of mechanical load in physiological 

and pathological states, underline potentially novel solutions to pathologic cardiac 

remodeling through mechanical unloading, and highlight the advantages and disadvantages 

of the current mechanical loading models to uncover what is unkown in the field of cardiac 

mechanical load and extrapolate the findings from the literature to the situation of patients 

and allow the provision of personalized treatment. Thus, the role of mechanical load in 

development, health, and disease, mechanical unloading of the heart, the 

mechanotransduction mechanisms of pathologic remodeling and reverse remodeling, the 

different in vivo and in vitro models of mechanical load, as well as the gaps in our 

understanding of the function of mechanical load are discussed.  

Mechanical Loading in Development and Health 

Mechanical load is an essential driver of cardiovascular system development during 

embryogenesis. Several observations studying chick embryos show that cardiac contractions 

and blood flow begin before the circulation of oxygen and nutrients are required to meet the 

metabolic needs of embryonic tissue (Granados-Riveron & Brook, 2012). This suggests that 

the mechanical forces generated by blood flow are necessary to drive the normal 

development of the heart from an early stage. The heart undergoes morphological alterations 

as the embryo grows. This can be partly attributed to changes in the mechanical load of the 

primitive heart which arise due to an increase in metabolic demand of the rest of the embryo 

(Lindsey, Butcher, & Yalcin, 2014). The major morphological changes are separated into four 



events: heart tube formation, looping, trabeculation, and valve formation/septation (Lindsey, 

Butcher, & Yalcin, 2014). During the initial stages of heart formation the primary heart fields 

of the mesoderm fuse together to form the tubular heart which is made up of an inner layer 

of endocardial cells and an outer layer of contractile myocytes, separated by an elastic 

acellular layer known as cardiac jelly (Lindsey, Butcher, & Yalcin, 2014; Boselli, Freund, & 

Vermot, 2015). Myocardial contractions can already be observed at this stage. However, they 

are uncoordinated and irregular (Andrés-Delgado & Mercader, 2016). Following tube 

formation, looping occurs, such that the primitive heart starts to take shape. Looping is 

initiated by expansion and elongation of the heart tube. Cardiac progenitor cells from the 

mesodermal second heart field move to both ends of the tube and proliferate, contributing 

to the development of the outflow tract, right ventricle, and interventricular septum at the 

arterial pole, as well as atria and atrial septum at the venous pole (Lindsey, Butcher, & Yalcin, 

2014). Looping can be divided into three stages: c-looping, primitive s-loop formation, and 

mature s-loop formation. During c-looping, the heart tube bends outward from the body and 

twists to the right forming the primitive atrium, ventricle and outflow tract, while during s-

looping the walls thicken and protrude inside the primitive atrioventricular canal (AVC) and 

outflow tract, forming endocardial cushions which act as valves by shutting off the lumen with 

every contraction, and allowing for unidirectional rhythmic blood flow (Lindsey, Butcher, & 

Yalcin, 2014; Taber, 2001). Trabeculation occurs after looping. During this stage, endocardial 

extensions grow to form a network of projections called trabeculae, which consist of 

myocardial cells enclosed by an endocardial layer (Tan & Lewandowski, 2020). This greatly 

increases myocardial mass, surface area, and wall stiffness, which in turn increases CO, 

contractility, and conductivity (Tan & Lewandowski, 2020). Finally, the four-chambered heart 

forms when the trabeculae undergo compaction, which, along with the fusion of endocardial 

cushions, leads to septation and valve formation (Lindsey, Butcher, & Yalcin, 2014).   

All these developmental stages are influenced by the mechanical forces generated by blood 

flow (Andrés-Delgado & Mercader, 2016). The flow of blood through the heart chambers 

exerts a force parallel to the walls called shear stress. Moreover, the change in blood flow 

during a cardiac cycle alters the stress the cardiac cells are being subjected to. This strain is 

called mechanical loading and it is affected by the viscosity of blood (Andrés-Delgado & 

Mercader, 2016). These hemodynamic forces activate genes through mechanotransduction 

feedback loops and govern normal cardiac morphogenesis (Boselli, Freund, & Vermot, 2015). 

In zebra fish, as the beating heart tube loops to form the primitive atrium, ventricle, and AVC, 

the contraction timing and wave pattern change as the contraction significantly slows along 

the AVC and ventricle. This change, as well as the change in geometry of the tube, leads to an 

oscillatory flow of blood within the heart, such that blood is pushed back into the atrium by 

the contracting ventricle. This reversal in flow generates distinct hemodynamic stresses on 

the cells of the endocardial layer, which are essential for valve development. Transcription 

factor KLF2a is activated by flow reversal increasing shear stress. Studies have shown that the 

mechanotransduction pathway for this activation involves a series of phosphorylation steps 

ending with phosphorylation of class II histone deacetylase HDAC5 by protein kinase D2. Upon 

phosphorylation of HDAC5, its gene repression activity on KLF2a is inactivated and thus KLF2a 

is expressed (Lee, et al., 2006). This flow-dependent transcription factor was also found to be 



essential in mice, as a knockdown of KLF2 in mice leads to valve deformation (Lee, et al., 2006; 

Chiplunkar, et al., 2013). A study by Chiplunkar et al. (2013) showed that KLF2 in mice plays a 

significant role in AVC endocardial cushion endothelial-to-mesenchymal transformation, 

synthesis of cardiac jelly, and atrial septation through the modulation of several cardiac 

genes, such as SOX9, TBX5, and GATA4. Indicating that KLF2 is not only specific for normal 

valve development, but has diverse roles in the progression of cardiac development. 

microRNAs (miRs) have also been observed to play a role in normal cardiac development. In 

zebrafish, hemodynamic forces were shown to govern miR-21 expression which was localized 

in areas of increased shear stress, such as at constrictions of AVC and outflow tract (Banjo, et 

al., 2013). The findings identified miR-21 as a crucial member of a flow-dependent pathway 

that regulates endocardial cell proliferation and gene expression required for valve 

development (Banjo, et al., 2013). Similarly, miR-143 was discovered to play a role in normal 

cardiogenesis (Miyasaka, et al., 2011). Flow-dependent expression of miR-143 was shown to 

downregulate retinoic acid activity in the endocardium of embryonic ventricles, and indirectly 

regulate the formation of ventricles (Miyasaka, et al., 2011). These findings demonstrate that 

in addition to transcription factor activation, miRs are pivotal for normal cardiac 

morphogenesis.    

As the embryo grows mechanical loading is not only essential for the development of the 

heart itself but also the vasculature. As the developing heart pumps blood the vessels are 

constantly subjected to mechanical load which causes endothelial shear stress and 

circumferential wall stress (Lu & Kassab, 2011). These mechanical forces trigger biological and 

biochemical events which drive embryonic vasculature development through vascular 

remodeling, angiogenesis, and maintenance of vessel identity (Lu & Kassab, 2011; Roman & 

Pekkan, 2012). Initially, endothelial cells (ECs) from the mesoderm aggregate and fuse 

together to form cord-like structures. This process of vasculogenesis is not dependent on 

blood flow and is governed by neural guidance genes (le Noble, Klein, Tintu, Pries, & 

Buschmann, 2008; Roman & Pekkan, 2012). These cords connect to form a primitive network 

of vessels, which are not yet hollow (Roman & Pekkan, 2012). Endothelial tip cells at the ends 

of these primitive vessels are lined with receptors vascular endothelial growth factor receptor 

2 (VEGF-R2) and UNC5B. These receptors sense guidance cues present in the surrounding and 

mediate the process of angiogenesis, guiding angiogenic sprouts through the ECM and 

establishing their final positions (le Noble, Klein, Tintu, Pries, & Buschmann, 2008). At later 

stages of development blood flow also plays a role in this angiogenic process, mostly by 

dictating the location of sprout initiation (Campinho, Vilfan, & Vermot, 2020). Specifically, an 

in vitro study revealed that in areas with high laminar shear stress sprouting is inhibited, 

whereas transvascular and intralaminar flow promotes sprouting (Akbari, Spychalski, 

Rangharajan, Prakash, & Song, 2019). Once the primitive vessels have formed they must 

differentiate into arteries or veins to facilitate proper circulation. Both genetic and epigenetic 

factors play a role in forming the vessel identity. Blood vessels that are predestined to form 

arteries or veins contain ECs which are genetically labeled with specific markers. For example, 

zebrafish, mouse and chicken arterial ECs express ephrin-B2, neuropilin-1 (NRP-1), and notch 

pathway members notch3, gridlock, and DLL4; whereas venous ECs express EphB4, NRP-2, 

and Coup-TFII. However, it was observed that these genetic markers alone can not lead to 



vessel differentiation but hemodynamic forces are essential in facilitating this differentiation, 

though it is unclear as to which forces are responsible for this (le Noble, Klein, Tintu, Pries, & 

Buschmann, 2008). After the differentiation of vessels, blood flow controls the patterning and 

remodeling of the vasculature (le Noble, Klein, Tintu, Pries, & Buschmann, 2008; Campinho, 

Vilfan, & Vermot, 2020). The plastic nature of vascular ECs aids in this process. Hemodynamic 

forces can bring about vascular remodeling by influencing the diameter of the primitive blood 

vessels. A study investigating the fluid dynamics of pharyngeal arch artery development in 

chick embryos suggested that shear stress is the main driver of arterial growth, such that an 

increase in shear stress leads to an increase in vessel caliber (Lindsey, Butcher, & Vignon-

Clementel, 2018; Hoefer, Adel, & Daemen, 2013).  Similarly, shear stress was implicated to be 

the main force driving vascular remodeling in the mouse yolk sac, as a reduction in blood 

viscosity, a major determinant of shear stress, leads to impaired yolk sac vasculature 

remodeling (Lucitti, et al., 2007). Thus, two distinct methods were observed which explain 

how blood flow and shear stress lead to vessel caliber increase in the mouse yolk sac. In areas 

of high flow, neighboring vessels fuse to form larger arteries. Subsequently, ECs migrate 

towards the newly formed larger arteries and proliferate to support vessel growth (Udan, 

Vadakkan, & Dickinson, 2013). However, the mechanistic details of EC migration are not 

understood. Baeyens et al. (2015) propose that VEGFR3 regulates the response of these ECs 

to shear stress, such that above a certain threshold ECs promote vessel enlargement. This was 

supported by the observation that a decrease in the expression of VEGFR3 in zebrafish 

embryos leads to a decrease in vessel diameter. However, it is very likely that other flow-

dependent genes can influence vessel diameter as well, though they are not identified yet 

(Baeyens, et al., 2015).           

In addition to development, mechanical loading is important in regulating CO during 

increased metabolic demand in normal physiological conditions. Consistent exercise and 

pregnancy can alter the mechanical load of the heart and induce cardiac remodeling. In fact, 

they can induce physiologic cardiac hypertrophy. However, different exercise regiments lead 

to a different form of overload which in turn lead to different forms of hypertrophy. 

Specifically, aerobic exercises, such as running, increase the end-diastolic volume, causing VO 

and eccentric hypertrophy, whereas strength training causes PO and thus concentric 

hypertrophy (Fernandes, Soci, & Oliveira, 2011). Several different mechanisms have been 

observed to mediate the exercise induced cardioprotective remodeling of the heart. Signaling 

pathways involving phosphatidylinositol 3 phosphate kinase (PI3K), protein kinase B (AKT), 

mammalian target of rapamycin (mTOR), nitric oxide (NO) signaling, as well as microRNA 

(miR) mediated gene expression regulation have been observed to promote cardioprotective 

remodeling due to exercise (Schüttler, Clauss, Weckbach, & Brunner, 2019). Physical activity 

increases insulin-like growth factor 1 (IGF-1), locally. This activates PI3K which leads to the 

phosphorylation of AKT and  subsequent suppression of transcription factor CCAAT/enhancer 

binding protein β (C/EBPβ), which is a regulator of several genes with roles in cardiac 

hypertrophy, such as GATA4, TBX5, and NKX2-5 (Lerchenmüller & Rosenzweig, 2014). Another 

activator of this pathway is neuregulin-1 (NRG-1) which is upregulated during exercise. NRG-

1 binding to its receptor  v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 4 

(ErbB4) causes PI3K phosphorylation and its downstream activities (Lerchenmüller & 



Rosenzweig, 2014; Schüttler, Clauss, Weckbach, & Brunner, 2019). The activation of IGF-

1/PI3K/AKT has been observed in both murine models (Lerchenmüller & Rosenzweig, 2014; 

Schüttler, Clauss, Weckbach, & Brunner, 2019) and zebrafish models (Chen, et al., 2021). 

Certain miRs have also been observed to be upregulated during physical exercise. For 

example, miR-222 was upregulated during aerobic exercise and was found to be essential in 

inducing cardiac growth, as well as mediating cardioprotection in mice (Liu, et al., 2015). It is 

unclear whether the initial stimulus which activates these pathways is a change in mechanical 

load. However, IGF-1 levels were found to increase in response to pressure and volume 

overload (Castellano, Affuso, Di Conza, & Fazio, 2009). Moreover, ErbB4 expression was found 

to be upregulated during PO-induced compensatory cardiac hypertrophy (Galindo, Ryzhov, & 

Sawyer, 2014). This indicates that changes in mechanical loading of the heart during exercise 

play an important role in the activation of these pathways, which bring about physiologic 

cardiac hypertrophy. 

Pregnancy is another factor that can lead to physiologic hypertrophy. During pregnancy blood 

volume and CO are increased. This leads to mild eccentric hypertrophy of the heart, which is 

mechanistically similar to exercise-induced hypertrophy (Chung & Leinwand, 2014). Although 

both forms share certain pathways, pregnancy-induced hypertrophy activates certain genes 

distinct from exercise-induced hypertrophy. A possible reason for this could be the duration 

of overload the heart is exposed to. During exercise, VO is intermittent, whereas during 

pregnancy this overload is continuous. Moreover, hormonal changes, specifically sex 

hormone changes are observed during pregnancy, which play a role in hypertrophy (Chung & 

Leinwand, 2014). In fact, an increase in estrogen was found to downregulate the cardiac Kv4.3 

channel and increase c-Src activity which in turn prolonged QT interval and promoted 

hypertrophy (Eghbali, et al., 2005). Both pregnancy and exercise activate the PI3K/AKT 

pathway through mechanical loading. However, in mid-pregnancy ERK1/2 phosphorylation is 

significantly increased, which mainly occurs due to an increase in progesterone levels (Chung, 

Yeung, & Leinwand, 2012). Furthermore, calcineurin-1 activity has been observed to increase 

in early pregnancy, again partly due to increased progesterone, and is necessary to induce 

hypertrophy during pregnancy (Chung, Yeung, & Leinwald, 2013). Thus, an interplay between 

mechanical load and hormonal changes is responsible for the induction of physiologic 

hypertrophy during pregnancy. After birth, hormonal fluctuations and changes in mechanical 

load can lead to post partum cardiomyopathy, a fatal form of heart failure. However, the 

mechanism of post partum cardiomyopathy and the role of mechanical load in disease 

etiology is unclear, though vascular dysfunction seems to be a contributing factor (Hoes, et 

al., 2022).  

Mechanical Loading in Heart Failure: Pressure and Volume Overload 

Cardiac remodeling is dependent on the stimulus which initiates the adaptive response of the 

myocardium. On a cellular level, both the physiologic and pathologic adaptations show an 

increase in cardiomyocyte size, increased protein synthesis, and changes in sarcomeric 

structure. However, they are distinguished by the stimuli that induce the hypertrophy and 

how they influence cardiac function; such that left ventricular (LV) remodeling induced by the 

physiological stimulus is reversible and leads to enhanced LV function, increased 



angiogenesis, lack of fibrosis, decreased mitochondrial dysfunction, and enhanced 

cardiomyocyte survival; whereas pathological LV remodeling is irreversible, decreases CO, 

and promotes fibrosis and apoptosis (Fernandes, Barauna, Negrao, Phillips, & Oliveira, 2015). 

Pathologic stimuli, such as hypertension, aortic stenosis, and valvular insufficiency cause 

pathologic LV remodeling and eventually lead to heart failure. Both pressure and volume 

overload can lead to heart failure as both overloads induce cardiac hypertrophy and changes 

in myocardial function. However, in response to these loads, distinct hypertrophic changes 

occur. It is well established that VO leads to eccentric hypertrophy, whereas PO promotes 

concentric hypertrophy (Nauta, et al., 2019). VO induces an increase in cardiomyocyte length 

as newly synthesized sarcomeres are added in series, whereas in concentric hypertrophy 

sarcomeres are added parallel to each other and thus, an increase in cardiomyocyte thickness 

is observed (Gjesdal, Bluemke, & Lima, 2011). In addition to VO, eccentric hypertrophy is 

observed during exercise-induced hypertrophy and is proposed to physiologically resemble 

normal cardiac growth, indicating a mechanistic overlap between the two processes. In fact, 

the AKT-mTOR pathway, an essential regulator of cell growth, has been observed to play a 

pivotal role in the regulation of VO-induced eccentric hypertrophy (Ikeda, et al., 2015). Ikeda 

et al. (2015) demonstrated that mTOR is directly regulated by left ventricular end-diastolic 

pressure (LVEDP) which is increased during VO. Upon increase in LVEDP (i.e. diastolic wall 

stress) AKT is phosphorylated and activates mTOR. Subsequently, mTOR leads to the 

hyperactivation of phosphorylated ribosomal protein S6, an essential mediator of protein 

synthesis and cell growth (Li, et al., 2020). The activation of mTOR determines the rate of 

eccentric hypertrophy progression. Thus, for the first time, this study revealed the 

quantitative relationship between LVEDP, mTOR activity, and eccentric hypertrophy (Ikeda, 

et al., 2015). To further confirm the role of mTOR in eccentric hypertrophy, mTOR inhibition 

during VO prevented cardiomyocyte elongation, preserved LV systolic function, and 

suppressed eccentric hypertrophy (Ikeda, et al., 2015; Li, et al., 2020).  

mTOR activation and subsequent induction of cell growth alone do not explain why 

cardiomyocytes are elongated during VO. Kehat et al. (2010) suggest a model whereby ERK1/2 

signaling activated by MEK-1 prevents eccentric hypertrophy and promotes concentric 

hypertrophy. This model is consistent with a study that used transgenic mice overexpressing 

Dusp6. These mice showed a complete loss of ERK1/2 activity, and when subjected to 

pressure overload, cardiac eccentric hypertrophy was observed, instead of concentric 

hypertrophy (Kehat, et al., 2010). This suggests that eccentric hypertrophy is the primary 

effect and that ERK1/2 signaling is necessary for facilitating concentric hypertrophy, while 

simultaneously inhibiting eccentric growth (Kehat, et al., 2010). Several studies have shown 

that ERK1/2 signaling is associated with pressure overload (Sciarretta & Sadoshima, 2010; 

Kehat, et al., 2010; Mutlak, et al., 2018). Thus, PO-induced activation of ERK1/2 drives the 

progression towards concentric hypertrophy. However, the downstream targets of ERK1/2 

which drive parallel sarcomeric addition are not identified. In another study, Nicol et al. (2001) 

showed that the activation of ERK5 by hypertrophic stimuli results in the activation of the 

MEK5 pathway and subsequent serial assembly of sarcomeres in cardiomyocytes in vitro; 

induced by leukemia inhibitory factor (LIF) and cardiotrophin-1 (CT-1) (Nicol, et al., 2001). 

However, this study did not provide a mechanistic link between VO and ERK5 activation. 



Conversely, a study investigating the mechanism of VO-induced hypertrophy in mice with 

aortic regurgitation did not observe ERK5 activation, suggesting that VO may not influence 

the ERK5-MEK5 pathway (You, et al., 2018).  

Distinguishable adaptive changes in the extracellular matrix (ECM) of the myocardium can 

also be observed between PO and VO. VO promotes wall thinning and chamber dilation, while 

PO promotes wall thickening (Hutchinson, Stewart, & Lucchesi, 2010). These changes in wall 

thickness are partly governed by alteration in ECM, such that in VO, collagen is degraded. This 

degradation occurs due to an imbalance between matrix metalloproteinases (MMPs) and 

tissue inhibitor of metalloproteinases (TIMPs). MMP activity is increased and thus leads to 

progressive LV dilation and contractile dysfunction, in addition to ECM degradation 

(Hutchinson, Stewart, & Lucchesi, 2010). The mechanism behind VO-induced increase in MMP 

is not fully unraveled. However, in vitro cyclical stretch of neonatal rat cardiomyocytes (which 

models VO) resulted in the activation of JAK-STAT signaling pathways and subsequent 

increase in MMP2 and MMP14 expression (Wang, Yang, Chang, & Hung, 2004). Furthermore, 

Saygili et al. (2009) demonstrated that the calcineurin-NFAT pathway can mediate the stretch-

induced activation of MMP2 and MMP9 (Saygili, et al., 2009). VO-induced LV remodeling also 

includes cardiomyocyte and endothelial cell apoptosis (Hutchinson, Stewart, & Lucchesi, 

2010). This could be due to VO-induced increase in reactive oxygen species (ROS) which 

subsequently increases the phosphorylation of JNK and promotes apoptosis through the 

mitochondrial pathway (Fiorillo, et al., 2005).  

Heart failure can be divided into two types depending on the changes in ejection fraction: 

Heart failure with reduced ejection fraction (HFrEF) and heart failure with preserved ejection 

fraction (HFpEF) (Xie, Burchfield, & Hill, 2013). Acute pathological events, such as myocardial 

infarction promote the development of HFrEF, whereas prolonged PO leads to HFpEF, as 

observed in a porcine model of progressive LV pressure overload (LVPO) (Yarbrough, et al., 

2012; Torres, et al., 2020). In HFrEF, an initial insult to the myocardium results in reduced 

cardiac output. Neurohormonal activation triggered by reduced cardiac output initially acts 

as a compensatory mechanism. However, the chronic activation of these processes eventually 

leads to pathologic hypertrophy and biochemical dysregulation, such as altered calcium 

homeostasis, downregulated β1-adrenergic receptor, and fetal gene expression (Rajapreyar, 

Lenneman, & Prabhu, 2020). This translates to an abnormal heart with dilated chambers, 

eccentric hypertrophy, and systolic as well as diastolic dysfunction (Rajapreyar, Lenneman, & 

Prabhu, 2020). These characteristics are reminiscent of cardiac remodeling induced by VO. In 

fact, fluid retention, a compensatory mechanism of reduced cardiac output, can lead to VO 

and advance the progression of pathologic cardiac remodeling and heart failure (Miller, 2016). 

Mechanistically, it was hypothesized that PO leads to an increase in myocardial stiffness and 

impaired filling, i.e. diastolic dysfunction due to enhanced expression of collagen in the ECM 

of the myocardium (Yarbrough, et al., 2012). Yarbrough et al. (2012) revealed that PO does 

induce myocardial stiffness due to the accumulation of collagen. However, this accumulation 

was not due to increased expression of collagen at the transcriptional level but to increased 

collagen stability and change in structure. PO was found to influence the post-translational 

modification of collagen by increasing the cross-linking of collagen fibers and upregulating the 

expression of TIMPs, specifically TIMP-1 and TIMP-4 (Yarbrough, et al., 2012). TIMP-1 and 



TIMP-4 are regulators of fibroblast growth, proliferation, and activity. Thus, increased 

expression of TIMPs caused by LVPO alters the regulation of collagen through the reduction 

of MMP activity, induction of profibrotic pathways, and promotion of fibroblast function 

(Yarbrough, et al., 2012). 

Several findings have illustrated the influence of mechanical load alterations in the 

pathophysiology of cardiac remodeling. However, it is also imperative to assess the 

mechanical load experienced by the heart after the development of hypertrophy and at later 

stages of heart failure. The loading conditions can be illustrated by pressure-volume (PV) 

loops which are graphed based on LV pressure on the y-axis and volume on the x-axis. A PV 

loop is rectangular in shape and represents the phases of a cardiac cycle: Isovolumetric 

contraction, blood ejection, isovolumetric relaxation, and blood filling (Bastos, et al., 2020). 

Changes in preload and afterload are reflected in these loops, which are depicted as 

alterations in end-diastolic and end-systolic PV relationships, EDPVR and ESPVR respectively. 

These relationships also help characterize LV chamber properties, such that EDPVR represents 

LV compliance/stiffness and ESPVR reflects LV contractility (Bastos, et al., 2020). During end-

stage heart failure, significant differences in PV loops are observed. For example, in HFrEF 

systolic dysfunction occurs due to the reduction of myocardial contractility. The reduced 

contractility prevents the complete ejection of blood from the LV and leads to an increase in 

end-systolic volume (ESV). Subsequently, an increase in end-diastolic volume (EDV) occurs as 

the remaining blood in the LV after contraction is added to the venous return that enters the 

LV, signifying an increase in preload (Gimelli, et al., 2014; Miranda-Silva, Sequeira, Lourenco, 

& Falcao-Pires, 2022). This increase in EDV is not as large as the increase in ESV, thus the SV, 

represented by the area of the loop, is reduced. In the PV graph, these changes are depicted 

as a rightward shift of the PV loop with a decrease in the slope of ESPVR (Miranda-Silva, 

Sequeira, Lourenco, & Falcao-Pires, 2022). Furthermore, in end-stage HFrEF LV dilation is 

characteristic. LV dilation increases the ventricular radius, such that the myocardium must 

develop a greater inward force to generate the same systolic pressure as a non-dilated 

ventricle. This implies that during end-stage HFrEF, in addition to an increase in preload, 

elevated afterload is observed (Reddi, Shanmugam, & Fletcher, 2017; Vest, 2019). On the 

other hand, increased LV stiffness in HFpEF leads to diastolic dysfunction and reduced LV 

filling, resulting in a decreased EDV and a reduction in preload. On the PV graph, this is 

depicted as a leftward shift of the PV loop and an increase in the slope of EDPVR (Hajouli & 

Ludhwani, 2022; Miranda-Silva, Sequeira, Lourenco, & Falcao-Pires, 2022; Reddi, 

Shanmugam, & Fletcher, 2017). An increase in afterload is also observed in end-stage HFpEF, 

as compensatory mechanisms in the form of vasoconstriction attempt to elevate LV filling 

pressure and normalize CO (Altay & Pehlivanoglu, 2017; Reddi, Shanmugam, & Fletcher, 

2017). The changes of PV loops associated with HFrEF and HFpEF are shown in Figure 1 

obtained from the study by Miranda-Silva et al. (2022). 



Figure 1: PV loop changes associated with HFrEF and HFpEF. The PV loops are plotted on pressure (y-axis) versus volume (x-

axis) graphs. The PV loops of HFrEF (A) and HFpEF (B) patients are illustrated. In HFrEF, the loop is shifted to the right with a 

reduced slope of ESPVR, whereas in HFpEF the loop is shifted to the left with an increased slope of EDPVR. This figure is 

obtained from Miranda-Silva et al. (2022). 

LVAD Supported Heart: Mechanical Unloading 

Once heart failure develops there is no effective therapy that can lead to a cure (Lai & Chen, 

2021). Current therapies for heart failure function to alleviate symptoms, reduce 

hospitalization, and prevent early death. To achieve this, angiotensin-converting enzyme 

(ACE) inhibitors, aldosterone antagonists, and beta-blockers are most commonly prescribed. 

Essentially, these drugs reduce blood pressure by dilating blood vessels and have been shown 

to induce a certain level of reverse remodeling (Tham, Bernardo, Ooi, Weeks, & McMullen, 

2015). For example, Colucci et al. (2007) revealed that metoprolol, a beta blocker, leads to a 

reduction in LV ESV and improvement in LV ejection fraction in patients with LV systolic 

dysfunction. This implies that metoprolol can induce cardiac mechanical unloading and 

reverse remodeling (Colucci, et al., 2007). However, morbidity and mortality remain high as 

these therapeutic methods cannot lead to sufficient reverse remodeling. Several findings 

showed that left ventricular assist device (LVAD) implantation had the potential to 

dramatically reverse the process of remodeling by alleviating the power expenditure of the 

LV, through minimization of myocardial oxygen consumption and reduction of mechanical 

loading of the heart (Uriel, Sayer, Annamalai, Kapur, & Burkhoff, 2018; Marinescu, Uriel, 

Mann, & Burkhoff, 2016; Birks, 2013; Burkhoff, Topkara, Sayer, & Uriel, 2021). In fact, this 

reverse remodeling has been observed at the molecular, cellular, extracellular, and organ 

level in most patients with LVAD implantation. Moreover, time-dependent improvements in 

myocardial contractility, ventricular structure, hypertrophy, calcium transfer, beta-adrenergic 

signaling, cardiomyocyte survival, endothelial function, and microvasculature structure have 

all been documented (Marinescu, Uriel, Mann, & Burkhoff, 2016). These findings show that 

LVAD implantation is a promising therapeutic intervention to mechanically unload the heart 

and progress towards the reversal of heart failure. However, although LVAD can induce a 

significant level of reverse remodeling, its explantation often leads to relapse of the initial 

heart failure phenotype (Marinescu, Uriel, Mann, & Burkhoff, 2016).  

LVADs were initially used during end-stage heart failure as a bridge to transplant. However, 

as LVAD technology advanced, its utility shifted towards a permanent alternative to 

transplantation, known as destination therapy, and occasionally a bridge to recovery. 

  



Essentially, an LVAD is a pump attached to the LV which provides mechanical circulatory 

support. Functionally, LVADs pump blood from the left ventricle to the aortic root, reducing 

cardiac workload, preload, and neurohormonal activation while increasing systemic 

circulation and tissue perfusion (Burkhoff, Topkara, Sayer, & Uriel, 2021). LVADs can be 

separated into two types depending on their flow rhythm: Pulsatile or continuous flow. 

Moreover, continuous flow can be separated into two categories: Axial flow and centrifugal 

flow, which refer to how the blades in the pump rotate (Eisen, 2019). Both pulsatile and 

continuous flow LVADs have been associated with volume unloading and EDV reduction, with 

pulsatile flow LVADs showing a greater degree of unloading. However, continuous flow LVADs 

have been shown to exhibit left atrial volume unloading and improved function, in addition 

to LV volume unloading (Drakos, et al., 2011). Historically, the pulsatile LVAD was developed 

first to function as a bridge to transplant. A pulsatile LVAD called the HeartMate I was first 

investigated as destination therapy in the Randomized Evaluation of Mechanical Assistance 

for the Treatment of Congestive Heart Failure (REMATCH) trial (Rose, et al., 2001). In this trial 

patients who received a LVAD had an improved quality of life compared to patients who 

received medical therapy. However, the survival rate one-year post-LVAD implantation was 

only 52% which was lower than the survival rate of cardiac transplantation. LVAD patients 

had severe adverse effects such as bleeding, infection, and device malfunction. Thus, the 

HeartMate I was not deemed an effective device for destination therapy (Rose, et al., 2001). 

Further advancements in ventricular assist device design lead to the development of the 

HeartMate II, an axial continuous flow LVAD that contained a rotor that constantly propelled 

blood into the systemic circulation (Eisen, 2019). Due to their increased durability and smaller 

pump size, these LVADs were more effective than the HeartMate I. This was reflected in the 

survival rates of patients with the HeartMate II; which were 75% and 68%, six months and 

one-year post-implantation, respectively  (Miller, et al., 2007). Moreover, another trial further 

illustrated the improved durability of HeartMate II as patients who received this device had a 

survival rate of 58% two years after implantation compared to the 24% survival rate of the 

HeartMate I. Furthermore, the HeartMate II recipients had a reduced risk of stroke and less 

likelihood to require device replacement (Slaughter, et al., 2009).  

The next generation of LVAD, called the HeartWare ventricular assist device (HVAD), was 

designed to be even more durable than its preceding generation of LVADs. Similar to the 

HeartMate II, this device was a continuous flow LVAD. However, it functioned with a 

centrifugal flow rather than an axial flow, such that the flow in the device was perpendicular 

to the flow from the left ventricle. Furthermore, the device was smaller in size and its impeller 

was suspended by magnets to reduce the strain in the device (Eisen, 2019). The HeartWare 

Ventricular Assist System as Destination Therapy of Advanced Heart Failure (ENDURANCE) 

trial investigated the effectiveness of the HVAD compared to the HeartMate II (Pagani, et al., 

2015).  The trial illustrated that 54% of patients who received the HVAD survived two years 

without having a disabling stroke or removing the device due to failure or malfunction; 

whereas this was observed in almost 60% of the HeartMate II recipients (Pagani, et al., 2015). 

The HVAD recipients had much fewer instances of device malfunction or failure compared to 

the HeartMate II recipients (8.8% vs. 16.2%). However, the HVAD group had a higher 

incidence of stroke (29.7% vs. 12.1%) (Pagani, et al., 2015). Thus, although more durable, the 



HVAD showed a higher risk of stroke. Another third-generation LVAD, the HeartMate III was 

not only found to be more durable than its predecessors, but also had a lower rate of stroke 

incidence (Mehra, et al., 2018). Moreover, patients implanted with the HeartMate III had a 

lower risk of arrhythmias, major infections and pump thrombosis compared to HVAD 

implanted patients at 2 years (Coyle, et al., 2020). 

The observations of decreased LV size and reversal of morphology after LVAD implantation 

led to investigations that aimed to determine whether these changes were simply due to 

unloading of the heart and subsequent cessation or reversal of load-induced pathologic 

mechanisms, or rather due to activation of novel pathways which actively induced LV 

structural changes (Burkhoff, Topkara, Sayer, & Uriel, 2021). LVAD support can lead to 

improvements in neurohormonal activation, secondary to cardiac output recovery, and 

subsequent reduction in neurohormone-induced pathologic pathway activation (Kim, Uriel, 

& Berkhoff, 2017). Thus, implicating reverse remodeling as a passive process. However, 

aberrant gene expression associated with pathologic remodeling was found to persist during 

reverse remodeling, with only 5% of those genes normalizing after mechanical unloading, 

while novel gene expression changes were observed following reverse remodeling (Boulet, 

Mandeep, & Mehra, 2021). Therefore, the process of reverse remodeling can be considered 

as a combination of both passive, ie. cessation of pathological pathways, and active processes, 

ie. induction of cardioprotective pathways. 

Following mechanical unloading through LVAD, an increase in expression of apoptosis-

inhibiting proteins FasEx06del and B-cell lymphoma extra large (Bcl-XL), as well as reduced 

DNA fragmentation have been documented (Birks, 2013). Furthermore, a study by Chen et al. 

(2003) reported a substantial amount of transcription factors involved in stress control and 

cell growth were upregulated following LVAD support. Among these transcription factors 

forkhead box 3A (FOXO3a), hypoxia-inducible factor 1 (HIF-1), and cardiac-specific homeobox 

were of note (Chen, et al., 2003). Studies have shown that FOXO3a modulates the expression 

of different genes that regulate stress response at the G2-M checkpoint of the cell cycle (Tran, 

et al., 2002). Moreover, FOXO3a was found to act as a transcriptional activator of antioxidants 

catalase and superoxide dismutase (Chen, et al., 2003). Thus, contributing to an anti-

apoptotic effect. With LVAD implantation, a reduction in expression of fetal genes, such as 

atrial natriuretic peptide (NPPA), brain natriuretic peptide (NPPB), β-myosin heavy chain 

(MYH7), and alpha-skeletal actin (SKA) was observed. Moreover, the expression of GATA4, a 

stress-induced regulator of cardiac hypertrophy, and the activation of ERK1/2, a major driver 

of cardiac hypertrophy, were also found to be reduced, indicating that mechanical unloading 

leads to a change in gene expression profile and mechanistic switch from pathological to a 

healthy state (Burkhoff, Topkara, Sayer, & Uriel, 2021). Calcium cycling was also observed to 

be improved in LVAD-supported hearts, leading to improved cardiomyocyte contractility 

associated with a significant increase in sarcoplasmic reticulum calcium content and increased 

entry of calcium through sarcolemma during the action potential (Burkhoff, Topkara, Sayer, 

& Uriel, 2021). Normalization of calcium handling genes Na/Ca exchanger (NCX), ryanodine 

receptor 2 (RyR2), and Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) upon 

mechanical unloading were also reported to contribute to the improved cardiac contractility 

(Heerdt, et al., 2000). LVAD support can lead to the upregulation of several cytoskeletal genes 



as well, including spectrin, β-actin, lamin A/C, α-tropomyosin, and α-filamin (Birks, et al., 

2005). However, the dysfunctional arrangement of cytoskeletal protein seems to persist after 

mechanical unloading, as only minor improvements in the structural organization of 

tropomyosin, actin, and titin proteins were observed following LVAD support (de Jonge, et al., 

2002). 

Mechanical unloading not only provides beneficial effects for patients with end-stage heart 

failure but can also be used as a means to reduce infarct size upon reperfusion therapy 

following MI. In a study using the swine model of acute MI, Kapur et al. (2015) reported that 

initial unloading of the heart followed by delayed reperfusion reduced the infarct size. This 

study revealed that LV mechanical unloading led to the activation of the reperfusion injury 

salvage kinase (RISK) pathway and increased the stromal derived factor 1 alpha (SDF-1α) as 

well as its downstream effector glycogen synthase kinase 3 beta (GSK3β) (Kapur, et al., 2015). 

These pathways are involved in the ischemic conditioning of the myocardium, such that 

intermittent periods of ischemia in the nonischemic myocardium can lead to the activation of 

the RISK pathway which includes PI3K, AKT, and ERK. The RISK pathway prevents ROS-induced 

formation of mitochondrial permeability transition pores (mPTP), which induce 

cardiomyocyte death, and leads to reduced infarct size. SDF-1α is also involved in infarct size 

reduction. Upon increase of SDF-1α, AKT mediated phosphorylation and inactivation of GSK3β 

are inhibited leading to a reduced mPTP formation and infarct size (Uriel, Sayer, Annamalai, 

Kapur, & Burkhoff, 2018). These findings show that mechanical unloading does not only 

reverse the pathological changes present in adverse remodeling during heart failure but can 

also activate cardioprotective mechanisms to reduce the initial injury that eventually leads to 

heart failure development. 

Mechanistic Insights of Pathologic Remodeling 

In the previous chapter, the pathways involved in mechanical load-induced pathologic 

remodeling have been mentioned. However, they do not provide an in-depth view of the 

several intertwined pathways involved in this process. This chapter aims to summarize the 

various mechanotransduction pathways and mechanistic cross-talk involved in mechanical 

load-induced cardiac remodeling (Figure 2). Currently, several mechanosensors have been 

identified such as integrins, stretch-activated ion channels (SACs), and Guanine nucleotide-

binding (G-) protein coupled receptors which are responsible for initiating 

mechanotransduction signaling pathways (Lammerding, Kamm, & Lee, 2009). Mechanical 

loading can activate several pathways downstream which eventually lead to pathological 

remodeling by either direct activation of these receptors, or by the release of paracrine and 

autocrine growth factors (Mann, 2004). The downstream effects occur through three main 

pathways: MAPK pathway, JAK/STAT pathway, and calcineurin-NFAT pathway (Ruwhof & 

Laarse, 2000).  

The MAPK pathway involves three forms of kinases MAP kinases (MAPKs), MAPK/ERK kinases 

(MEKs), and MEK kinases (MEKKs) which are phosphorylated in the following order: 

MEKK→MEK→MAPK. In addition, the MAPKs are categorized into three subfamilies: 

Extracellular-regulated kinases (ERKs), c-Jun N-terminal kinases (JNKs), and p38 MAPKs, all of 

which contribute to mechanical load-induced cardiac hypertrophy (Ruwhof & Laarse, 2000). 



The ERK pathway is stimulated by calcium influx, receptor tyrosine kinases (RTKs) and G-

protein coupled receptors and leads to the activation of several transcription factors such as 

c-jun, 90kDa-s6 kinase, and activating transcription factor 3 (ATF3) (Wu, et al., 2017; Ruwhof 

& Laarse, 2000). The JNK pathway is activated by stress. However, the precise activators of 

JNK are unknown. This pathway leads to mechanical load induced hypertrophy by activating 

transcription factors c-Jun and ATF2 (Ruwhof & Laarse, 2000). Finally, the p38 MAPKs are also 

involved in load induced hypertrophy by activating ATF2 (Ruwhof & Laarse, 2000). 

Furthermore, p38 MAPK signaling is involved in cardiomyocyte apoptosis. Mechanical stress 

can induce pro-inflammatory cytokines which can bind to receptors on cardiomyocytes and 

activate apoptosis signaling kinase 1 (ASK1), this subsequently leads to activation of the p38 

MAPK pathway and apoptosis (Wu, et al., 2017). Interestingly, p38 can also be activated by 

paracrine or autocrine factors binding to G-protein coupled receptors. Additionally, the 

phosphorylation of p38 by different kinases can lead to different transcriptional effects such 

that the activation of p38 MAPKα leads to apoptosis, whereas p38 MAPKβ activation leads to 

hypertrophy (Lammerding, Kamm, & Lee, 2009).  

In rats, pressure overload was found to activate the JAK/STAT pathway through glycoprotein 

gp130 (Pan, et al., 1998). Upon increase in mechanical load, gp130 is phosphorylated which 

in turn phosphorylates JAKs. These tyrosine kinases phosphorylate STATs, which are latent 

transcription factors. Once activated, STATS dimerize and enter the nucleus to stimulate the 

transcription of genes associated with cardiac hypertrophy (Lammerding, Kamm, & Lee, 

2009). Interestingly, in addition to JAK/STAT activation, gp130 has been observed to activate 

the ERK pathway, implicating that gp130 may play a significant role in mechanotransduction 

(Kunisada, et al., 1996). 

Another pathway involved in mechanical load-induced cardiac hypertrophy is the calcineurin-

NFAT pathway. Calcineurin is a Ca2+/ calmodulin-dependent phosphatase that is activated 

upon calcium influx. Activation of calcineurin leads to the dephosphorylation of cytoplasmic 

transcription factor NFAT3, which subsequently enters the nucleus and activates GATA4. 

Activation of GATA4 eventually leads to the upregulation of hypertrophic genes, such as fetal 

genes (Molkentin, et al., 1998). 

All of these pathways can be activated by the various mechanosensors mentioned earlier. 

Integrins are a class of cell-surface receptors that connect the cellular cytoskeleton to the 

ECM at regions called focal adhesion sites (Schwartz, Schaller, & Ginsberg, 1995). The 

cytoplasmic domain of integrins interacts with intracellular signaling molecules, such as focal 

adhesion kinases (FAKs) (Schwartz, Schaller, & Ginsberg, 1995). Studies have shown that 

stretch can activate the ERK and JNK pathways through integrins (MacKenna, Dolfi, Vuori, & 

Ruoslahti, 1998). Further studies demonstrated that integrins cluster at focal adhesion sites, 

recruiting non-receptor kinases FAK and Src, signal transducing molecules, and cytoskeletal 

proteins to form focal adhesion complexes (FACs) (MacKenna, Dolfi, Vuori, & Ruoslahti, 1998). 

In these FACs, integrins act as true receptors of mechanical load and induce the activation of 

FAK mediated by Src (Parsons & Parsons, 1997). The activation of FAK subsequently activates 

the ERK pathway either through Grb2-Sos-Ras or through the activation of PLC (Shyy & Chien, 

1997; Zhang, et al., 1999). Integrins can also interact with growth factor receptors and 



mediate the activation of ERK or JNK pathways upon ligand binding (Plopper, McNamee, Dike, 

Bojanowski, & Ingber, 1995). These findings illustrate the diverse ways integrins can lead to 

signal transduction upon changes in mechanical load. Moreover, integrins are observed to 

not only play a role in mechanotransduction in cardiomyocytes, but also in fibroblasts, leading 

to hypertrophic changes in cardiomyocytes and upregulation of profibrotic genes in 

fibroblasts (Ross, et al., 1998; MacKenna, Dolfi, Vuori, & Ruoslahti, 1998) 

SACs are a group of mechanosensitive ion channels that can be activated upon changes in 

mechanical load and allow the passage of Ca2+, Na+, and K+ (Ruknudin, Sachs, & Bustamante, 

1993). The increased influx of Ca2+mediated by stretch-induced activation of SACs can lead to 

the activation of calcineurin and the subsequent cascade of the calcineurin-NFAT pathway. 

The contribution of SACs in mechanical load-induced pathologic remodeling remains 

controversial as several studies have observed that blocking of SACs did not inhibit the 

expression of fetal genes and subsequent hypertrophic responses in cardiomyocytes (Mann, 

2004). However, a recent study has identified a novel ion channel resembling SACs called 

Piezo1 which can induce Ca2+ influx upon sensing of mechanical load. This Ca2+ influx activated 

the calcineurin-NFAT pathway and led to cardiomyocyte hypertrophy (Zhang, et al., 2021).    

G-protein coupled receptors have also been implicated in mechanotransduction. The G-

proteins combine cell surface receptors with their downstream effectors. Two forms of G-

proteins are identified: small G-proteins and heterotrimeric G-proteins, both of which exist in 

an inactive guanosine-diphosphate (GDP) state and are activated by phosphorylation to active 

guanosine triphosphate (GTP) state (Hall, 1990). The small G-proteins, such as the Rho and 

Ras families are single polypeptides that act as signal transducers involved in the activation of 

MAPKs. Members of the Rho family have been shown to activate JNK and p38 MAPK 

pathways, whereas members of the Ras family are well-known activators of the ERK pathway, 

though they can mediate JNK pathway activation as well (Minden, Lin, Claret, Abo, & Karin, 

1995; Minden, et al., 1994). The heterotrimeric G proteins have been associated with 

receptors at focal adhesion sites. Thus, they can be activated by changes in the stretch. 

Indeed, Gudi et al. (1998) demonstrated that stretching of neonatal rat fibroblasts led to the 

activation of G proteins within 1 minute. Moreover, other studies observed that the stretch-

induced activation of G proteins led to cardiomyocyte hypertrophy through the activation of 

phospholipase C (PLC) and subsequently protein kinase C (PKC) (D'Angelo, et al., 1997; Jalili, 

Takeishi, & Walsh, 1999). Thus, linking integrins, heterotrimeric G proteins, PLC, and PKC in 

mechanotransduction (Ruwhof & Laarse, 2000). 

The PI3K/Akt pathway is also involved in load-induced pathologic remodeling. This pathway 

is stimulated upon IGF-1 binding to its receptor (IGF-1R). Following mechanical loading, IGF-1 

levels are increased and the enhanced stimulation of this pathway leads to increased protein 

synthesis and cardiomyocyte hypertrophy (Aoyagi & Matsui, 2011). Once activated IGF-1R 

phosphorylates Akt (p-Akt) through PI3K. Subsequently, p-Akt activates mTOR and 

deactivates GSK3β and FoxO. The activation of mTOR leads to an increase in protein synthesis 

and cell mass due to increased protein translation through p70S6K kinase and 4E-BP1 (Avruch, 

et al., 2006). GSK3β  is a negative regulator of hypertrophy which is inactivated upon Akt 

activation. This inactivation leads to the activation of downstream targets of GSK3β, such as 



GATA4, c-Jun, and NFAT, promoting hypertrophy (Sugden, Fuller, Weiss, & Clerk, 2008). p-Akt 

is also translocates into the nucleus where it phosphorylates transcription factor FoxO, 

inducing its translocation out of the nucleus and inactivation. This inhibition of FoxO further 

promotes cardiac hypertrophic changes (Ronnebaum & Patterson, 2010).    

Mechanical load not only leads to cardiomyocyte hypertrophy but also ECM pathologic 

remodeling. Changes in the myocardial ECM are partly governed by fibroblasts that are 

activated in response to mechanical load either through direct activation by mechanical 

stress, or stress-induced secretion of paracrine and autocrine factors. Mechanical stress has 

been observed to increase the expression of, and dephosphorylate syndecan-4, a 

transmembrane proteoglycan and co-receptor of integrins. These changes lead to syndecan-

4-induced activation of the calcineurin/NFAT pathway and subsequent induction of 

hypertrophic and profibrotic alterations in cardiomyocytes and fibroblasts, respectively 

(Herum, et al., 2015; Finsen, et al., 2011). In fibroblasts, syndecan-4 induces the production 

of collagen and matricellular proteins, such as osteopontin, and cross-linking of collagen 

(Herum, et al., 2015). Factors such as angiotensin II (Ang II), ET-1, TGFβ, and IGF-1 induce 

fibrosis by activating fibroblasts and inducing the expression of various ECM proteins (Wu, et 

al., 2017).  In addition, the activation of fibroblasts produces fibroblast growth factor FGF-2 

which can induce cardiomyocyte hypertrophy by MAPK pathway activation (Santiago, et al., 

2011).  All of these factors directly or indirectly lead to the activation of one of the MAPK 

pathways to induce their hypertrophic or profibrotic effects. Additionally, cytokines such as 

CT-1 or LIF also achieve such effects through the activation of the JAK/STAT pathway 

(Lammerding, Kamm, & Lee, 2009). Thus, a complex interaction between cardiomyocytes and 

fibroblasts through these autocrine and paracrine factors initiates and maintains 

hypertrophic and profibrotic responses to mechanical load (Wu, et al., 2017). 

 Figure 2: Mechanotransduction in cardiomyocytes and fibroblasts during pathologic and reverse remodeling. A summary 

of the mechanisms involved in mechanical load induced remodeling and mechanical unloading induced reverse remodeling. 



The red arrows represent the alterations in the activity of signal transducers. Abbreviations: AngII, Angiotensin II; ASK1, 

apoptosis signal regulating kinase 1; Akt protein kinase; CT-1, Cardiotrophin-1; ET-1, endothlin 1; EIF2B, eukaryotic 

translation initiation factor 2B; FAK, Focal adhesion kinase; FGF-2, Fibroblast growth factor 2; FoxO, Forkhead box; GSK3β, 

Glycogen synthase kinase 3 beta; IGFR, Insulin-like growth factor receptor; JAK, Janus kinase; LIF, Leukemia inhibitory factor, 

MEKK, MAP kinase kinase kinase; MEK, MAPK/ERK kinase; mTOR, Mammalian target of rapamycin; MMP, Matrix 

metalloproteinase; NFAT, nuclear factor of activated T cells; PLC, Phospholipase C; PKC, Protein kinase C; PI3K, 

phosphatidylinositol-3-kinase; STAT, signal transduction and activator of transcription; S6K, ribosome protein subunit 6 

kinase; TIMP, Tissue inhibitor of metalloproteinase; 4EBP1, eukaryotic translation initiation factor 4E-binding protein 1. 

Adapted from Wu et al. (2017). 

Mechanistic Insights of Reverse Remodeling 

Just as mechanical loading can induce myocardial pathologic remodeling, mechanical 

unloading can lead to reverse remodeling. Mechanical unloading-induced reverse remodeling 

can occur by either the blocking or reversal of pathways involved in pathologic remodeling or 

activation of novel cardioprotective pathways which lead to the reversal of cardiomyocyte 

hypertrophy and improvements in ECM structure as well as function. The activity of MEK/ERK 

pathway and Akt signal transduction are significantly decreased in cardiomyocytes upon 

mechanical unloading of failing hearts with LVAD support. This decrease in Akt activity leads 

to an increase in the activation of GSK3β. These alterations cause changes in transcription and 

cytoskeletal organization which promote reverse remodeling. The JNK and p38 MAPK 

pathways, however, were not affected by mechanical unloading in this study, thus LVAD 

induced mechanical unloading seems to specifically regulate certain kinases in vivo (Baba, et 

al., 2003). Similar findings were observed in a study that induced mechanical unloading by 

HHT in pressure-overloaded rats. In addition to changes in MEK/ERK and Akt/GSK3β, this 

study revealed that mechanical unloading also reduced NFκB activity, which is involved in 

cardiomyocyte hypertrophy and fibrosis (Xu, et al., 2010). In contrast, another study observed 

a decrease in JNK activity and an increase in p38 MAPK activity subsequent to mechanical 

unloading. JNK activity was inhibited due to a decrease in JNK protein levels. Furthermore, 

phosphorylated JNK was not detected during the study. Therefore, the inhibitory mechanism 

of JNK activity could be due to both effects and remains unclear. p38 MAPK phosphorylation 

was found to be increased following LVAD support, thus explaining the increased p38 activity 

(Flesch, et al., 2001). Figure 2 illustrates the effect of mechanical unloading on these 

pathways. 

A consistent observation in several studies is the normalization of SERCA2a, which is known 

to be downregulated during mechanical load induced remodeling (Depre, Davies, 

Taegtmeyer, & Phil, 1999; Madigan, et al., 2001). The phosphorylation states of 

phospholamban, Ca2+/calmodulin-dependent protein kinase II (CamKII), and calsequestrin 

influence the activity of SERCA2a (Rodrigues, Leite-Moreira, & Falcao-Pires, 2016). However, 

a direct link between mechanical loading/unloading and phosphorylation of these effectors 

currently remains unexplored. 

A study investigating the effect of other mechanosensitive signal transducers which promote 

cardiac remodeling revealed that no alterations in the protein levels of G proteins and PLC 

isoforms were observed following LVAD support. Furthermore, translocation of different 

isoforms of PKC into the nucleus remained unchanged following mechanical unloading 



(Takeishi, et al., 2000). Thus, indicating that mechanical load-induced reverse remodeling is 

independent of these pathways. 

Mechanical unloading also promotes changes in myocardial ECM which counteract the 

pathologic alterations in heart failure. Collagen content was observed to decrease after LVAD 

support. However, this decrease only occurred after prolonged use of LVAD. Moreover, the 

collagen content was found to significantly decrease after combining LVAD support with ACE 

inhibitor therapy (Maybaum, et al., 2007; Bruggink, et al., 2006; Sakamuri, et al., 2016). The 

study by Sakamuri et al. (2016) revealed that the combination of LVAD support and ACE 

inhibitors improves the ratio of MMP/TIMP and leads to a reduction in ECM collagen content 

by reducing matricellular protein osteopontin. However, the study also illustrated that these 

therapies did not have an effect on another matricellular protein secreted protein, acidic, 

cysteine-rich (SPARC), and concluded that this persistent elevation of SPARC may contribute 

to the relapse of pathologic ECM remodeling following LVAD explantation (Sakamuri, et al., 

2016). Several other investigations have illustrated that LVAD support leads to a reduction in 

various MMPs, such as MMP-1, MMP-9 and an increase in TIMPs, such as TIMP-1 and -3 (Li, 

et al., 2001; Klotz, et al., 2005). However, the mechanistic insights into the pathways of 

mechanical unloading induced ECM reverse remodeling remains unclear.   

In Vivo Models of Mechanical Loading and Unloading 

The findings pertaining to the various effects of mechanical loading on the heart and its 

contribution to the development of heart failure could not be discovered without the 

development of models mimicking this pathologic process both in vivo and in vitro. One of 

the most well-established and widely used models of mechanical loading is transaortic 

constriction (TAC). TAC is used to induce pressure overload in adult rodents by placing a 

constricting band around the aortic arch, between the left common carotid artery and 

brachiocephalic trunk (Schaefer, et al., 2016). TAC leads to stenosis of the aorta, pressure 

overload of the heart, and eventually, cardiac hypertrophy resembling that in HFrEF patients 

(Mohammadi, Abouissa, & Heineke, 2021). The degree of hypertrophy induced by TAC 

depends on the mouse strains used and the size of the needle that acts as a spacer around 

which the constricting band is tied. In most strains, pathologic responses are triggered around 

two weeks after surgery, resulting in a 20-50% increase in LV mass and reduction in cardiac 

function (Mohammadi, Abouissa, & Heineke, 2021). From 2 to 11 weeks post-TAC, a 

substantial level of LV concentric hypertrophy is observed with almost a doubling of LV mass. 

A progressive decline in LV function, increased LV chamber size, and fibrosis is also noted with 

most mice developing pulmonary congestion at the 11th week (Lygate, 2006). An advantage 

of TAC is that it can allow for the measurement of pressure gradient across the stenosis, thus 

animals can be tested if they respond to the surgery. However, the reliability of this technique 

has been challenged due to the large variability in response to this standardized technique 

(Lygate, 2006). This variability of heart failure incidence can be due to the expertise of the 

operator. Therefore, advancements in TAC procedures have proposed the use of O-rings, 

instead of sutures, as a more optimized and simple method (Nakao, et al., 2022). 

Furthermore, Lygate et al. (2005) discovered that in their study, which used a 7–0 

polypropylene suture as the constricting band, 25% of the mice internalized the band into the 



aortic lumen. This allowed for an increase in the cross-sectional area of the stenosis and a 

reduction in pressure gradient (Lygate, et al., 2005). Thus, the material of the constricting 

band could be a variable in the effectiveness of TAC. However, it is unclear if the use of other 

types of constricting bands can also lead to band internalization. The use of both O-rings and 

sutures requires an open chest thoracotomy which involves the dissection of the ribs. 

Typically, the ribs are not reattached and thus can affect the breathing dynamics of the mouse 

(Eichhorn, et al., 2018). Eichhorn et al. (2018) established a minimally invasive closed chest 

approach to TAC, such that a lateral incision is performed through the second intercostal 

space without cutting through the ribs. Aortic banding is also commonly used in larger animal 

models, such as pigs. A study by Bikou et al. (2018) showed that the banding of the ascending 

aorta in pigs led to significant cardiac hypertrophy and myocardial fibrosis. Moreover, the 

pathologic LV remodeling in this model led to increased myocardial stiffness and subsequent 

diastolic dysfunction, however, systolic dysfunction was not observed, implying a 

resemblance to the HFpEF phenotype (Bikou, Miyashita, & Ishikawa, 2018).  A less invasive 

model of HFpEF in pigs was developed by subcutaneously injecting deoxycorticosterone 

acetate (DOCA), an aldosterone agonist that promotes salt retention and induces 

hypertension, and feeding of a western type of diet. This model induced pressure overload, 

LV concentric hypertrophy, and diastolic dysfunction (Schwarzl, et al., 2015). It is worth 

mentioning that models of PO-induced HFpEF can eventually transition to HFrEF due to 

prolonged overload. Thus, this DOCA-WD pig model has a high translational potential to study 

HFpEF to HFrEF transition ( Gyöngyösi, et al., 2017). Another model which aims to induce 

chronic hypertension and model HFrEF includes renal artery stenosis which can be performed 

in dogs, sheep, and pigs (Spannbauer, et al., 2019).  

The aforementioned models cannot be utilized to study VO-induced LV remodeling, as they 

induce LV hypertrophy by PO. One model which can induce chronic VO is the aortocaval shunt 

model. An incision is performed through the abdominal midline to expose the inferior vena 

cava and abdominal aorta. A needle is then used to puncture the abdominal aorta and the 

adjacent vena cava to connect both. The needle is then removed, and the puncture is sealed 

(Garcia & Diebold, 1990; Scheuermann-Freestone, et al., 2001). This leads to the mixing of 

venous and arterial blood in the vena cava, increasing venous return and thus inducing VO 

(Scheuermann-Freestone, et al., 2001). Another similar model is the aortocaval fistula. In 

principle, it also involves the connecting of the abdominal aorta and inferior vena cava. 

However, instead of puncturing the walls of both blood vessels, they are connected with a 

longitudinal incision (Abassi, Goltsman, Karram, Winaver, & Hoffman, 2011). These models 

are commonly used in small animals. However, they are rarely used in large animal models 

(Spannbauer, et al., 2019). Moreover, although they lead to LV hypertrophy and heart failure 

(Garcia & Diebold, 1990; Scheuermann-Freestone, et al., 2001; Abassi, Goltsman, Karram, 

Winaver, & Hoffman, 2011), they do not physiologically represent VO-induced cardiac 

hypertrophy in humans. In humans, blood regurgitation can facilitate volume overload. Thus, 

animal models which mimic this process have been developed. One such model is aortic 

regurgitation (AR), which includes the puncture of aortic valves with a metal wire (You, et al., 

2018). Similarly, a recently developed model, mitral regurgitation (MR), utilizes iridectomy 

scissors to damage the mitral valves and lead to volume overload through regurgitation (Li, 



et al., 2020). Both models have been shown to induce LV hypertrophy, increased LV mass, 

and hypertrophic gene expression profile in both small and large animals (You, et al., 2018; 

Li, et al., 2020). However, The AR model lacks reproducibility and is difficult to perform in 

large animals. Therefore, models that utilize large animals more commonly perform MR to 

induce volume overload (Spannbauer, et al., 2019).     

A model of mechanical unloading can be achieved following TAC. This model is called deTAC 

and is performed by simply removing the constricting band around the aorta. The TAC/deTAC 

model mimics LVAD implantation, such that at first mechanical overloading is present and 

then LV unloading is induced. Several studies have revealed that deTAC can induce regression 

of LV hypertrophy in mice (Hariharan, et al., 2013; Oyabu, et al., 2013; Goncalves-Rodrigues, 

Miranda-Silva, Leite Moreira, & Falcão-Pires, 2021). For example, Hariharan et al. (2013) 

demonstrated that 1 week of deTAC significantly reduced the increased LV mass and myocyte 

cross-sectional area induced by TAC. Moreover, the expression of fetal gene atrial natriuretic 

factor (ANF) was significantly downregulated with deTAC, indicating a reversal of 

hypertrophy. deTAC involving the removal of a suture-based constricting band has been met 

with complications as the inflammation around the aorta following TAC, hinders the easy 

removal of the band (Zhang, et al., 2013). To avoid these complications, Zhang et al. (2013) 

developed a highly reproducible and minimally invasive technique that involved the use of a 

titanium clip. The titanium clip was dimensionally stable and provided a stable constriction of 

the aorta, without loosening. Moreover, its removal simply required the squeezing of the clip 

perpendicular to the plane in which it was placed. Thus, the use of a titanium clip was not 

only advantageous for TAC, but also for deTAC. (Zhang, et al., 2013). Although the idea of 

deTAC is simple, it requires surgical access to the aorta for a second time. This exposes the 

animal to repeated trauma and increases the likelihood of performing an error during surgery. 

A model resembling deTAC has also been shown to induce cardiac reverse remodeling in large 

animals through regression of overload-induced gene expression (Walther, et al., 2002). In 

this model Walther et al. (2002) first induced pressure overload and LV hypertrophy by 

supracoronary banding of the ascending aorta in sheep. Eight months later the band was 

removed and a significant decrease in overload, as well as a reduction in expression of genes 

associated with the renin-angiotensin system (RAS), were observed implying a regression 

towards a healthy myocardial phenotype (Walther, et al., 2002). 

Another model of mechanical unloading is heterotopic heart transplantation (HHT). HHT 

involves the transplantation of a donor’s heart to alleviate the load on the recipient’s heart. 

Two variations of HHT are present: Heterotopic abdominal heart transplantation (HAHT) and 

heterotopic abdominal heart-lung transplantation (HAHLT). In HAHT, the recipient’s 

abdominal aorta and inferior vena cava (IVC) are anastomosed to the donor’s ascending aorta 

and pulmonary artery, respectively. Subsequently, the donor’s superior vena cava, IVC, and 

pulmonary veins are then ligated (Liu, et al., 2015). This provides complete unloading of the 

recipient’s LV as the heart only receives venous return (Ibrahim, et al., 2013). However, in 

HAHLT only partial unloading occurs as the donor’s ascending aorta is anastomosed to the 

recipient’s abdominal aorta only and the pulmonary artery and veins are kept intact as the 

lungs are transplanted as well (Liu, et al., 2015). Thus, in this model the recipient’s pulmonary 

blood flow is unchanged. HHT models LVAD-supported hearts and can be used to understand 



the mechanisms underlying LVAD-induced reverse remodeling, as well as the optimal period 

of LVAD-mediated mechanical unloading. For example, a study by Oriyanhan et al. (2007) 

employed HAHT to investigate the optimal duration of mechanical unloading in rats with 

heart failure induced by coronary artery ligation. The results reported that HAHT-induced 

mechanical unloading normalized cardiac gene expression, cardiomyocyte hypertrophy, and 

cardiac function at 4 weeks, but negatively impacted these parameters with prolonged 

duration (Oriyanhan, et al., 2007). These findings were also observed in another study that 

utilized TAC to induce heart failure in rats (Schaefer, et al., 2019). This technique, however, is 

not as simple as the deTAC model, as it involves the transplantation of donor’s hearts and the 

several complications which accompany this procedure, including infection, aortic 

regurgitation due to torsion of anastomosis, pulmonary embolism, intestinal obstruction, and 

donor bradycardia due to sinoatrial node damage during harvesting (Ibrahim, et al., 2013). 

HHT has been mostly used in small animals to study mechanical unloading and its effects on 

the pathologically remodeled heart. However, HHT in large animal models has not been 

studied extensively. In contrast, some preclinical studies have utilized LVADs in large animal 

models. For example, Nakamura et al. (1993) implanted LVADs into goats that had undergone 

LV infarction by coronary artery ligation. The findings revealed that out of the 8 goats only 3 

recovered successfully with a significant reduction in overload (Nakamura, et al., 1993).  

In Vitro Models of Mechanical Loading and Unloading 

Early investigations examining mechanical load-induced cardiac remodeling and heart failure 

extensively utilized in vivo models. However, although more relevant for translation to clinical 

settings, these models have several limitations. First, differences in cardiovascular system 

biology exist between species. For example, small animals like mice or rats, which are 

extensively used in cardiovascular research, have smaller hearts, higher heart rates, and 

higher metabolism compared to humans (Jorba, et al., 2021). Moreover, certain ion channels 

differently contribute to repolarization currents between the two species. For example, unlike 

in humans, the current contributed by potassium ion channel protein Kv11.1 is negligible in 

rodents (Nerbonne, Nichols, Schwarz, & Escande, 2001). These differences can lead to 

discrepancies in the translation of electrophysiological findings, as repolarization times in 

rodent cardiomyocytes are shorter than in humans (Milani-Nejad & Janssen, 2013). 

Furthermore, cardiac structural dimensions are different between rodents and humans. For 

example, rodents’ cardiac walls are thinner, thus mechanical strain patterns and ECM 

arrangement are dissimilar (Kusunose, et al., 2012). This can hamper the translation of 

mechanical load-induced pathologic ECM remodeling from rodents to humans (Jorba, et al., 

2021). Moreover, the intraventricular pressure in the hearts of rodent models and humans is 

different (Kusunose, et al., 2012). Taken together with the observation that the heart rate in 

rodents is higher, the physiological loading conditions in rodents may not reflect that of 

humans. Finally, Larger animals have also been used more recently to study heart failure. 

However, certain limitations persist. Mainly, these models do not allow for the precise 

manipulation of mechanical and structural signals from the cardiac environment, thus 

hindering the precise examination of the role of mechanical load in cardiac pathophysiology 

(Jorba, et al., 2021).  



With recent advancements in stem cell technology, cell culturing, and tissue engineering, in 

vitro models have become more commonly used to study cardiac mechanobiology. Initially, 

patient-derived primary cells and heart slices were used as the cell source of in vitro models 

(Guo & Huebsch, 2020; Jorba, et al., 2021). These cells are functionally mature and provide 

an accurate representation of the cardiac tissue they are derived from. However, upon 

isolation, these cells lose crucial functional and morphological characteristics, such that they 

begin to dedifferentiate, proliferate at a slower rate, and have a shorter life span (Banyasz, et 

al., 2008; Hoes, Bomer, & van der Meer, 2019). To circumvent these limitations biomimetic 

culture systems were developed to mimic the electromechanical stimulation and 

environment of the in vivo myocardial tissue (Watson, et al., 2019). A study by Watson et al. 

(2019) illustrated that the application of a physiologic degree of preload in the form of uniaxial 

static stretch to rat and rabbit myocardial slices maintains their functional, structural, and 

transcriptional properties at 24 hours and 5 days, respectively. Similar findings were observed 

in a biomimetic system with cardiac tissue slices from human failing hearts (Fischer, et al., 

2019). Furthermore, Miller et al. (2022) developed a biomimetic cardiac tissue culture model 

(CTCM) from porcine heart slices experiencing cyclical stretch, that not only preserved the 

viability, structure, metabolic activity, and transcriptional profile of the tissue for 12 days, but 

also induced hypertrophic changes upon overstretching.  However, these tissue slices are 

difficult to obtain and show differences between donors (Banyasz, et al., 2008; Hoes, Bomer, 

& van der Meer, 2019). Recently, human induced pluripotent stem cell (iPSC) derived 

cardiomyocytes have emerged as an alternative, as they show few differences between 

batches, allowing great reproducibility between studies, proliferate quickly, and have the 

potential for developing personalized medicine by using patient-specific iPSCs (Jorba, et al., 

2021). However, a major drawback of iPSC-derived cardiomyocytes is that they lack the 

contractility and electrophysiologic phenotype of mature cardiomyocytes (Sheehy, et al., 

2017). 

Multiple in vitro models currently exist with different complexities. Ideally, these models are 

engineered to resemble the in vivo microenvironment of the heart. Two-dimensional models 

can be easily manipulated to create a synthetic environment with different ECM stiffness, 

structural organization, and external loads (Jorba, et al., 2021). The 2D models are 

advantageous as they allow for single-cell analyses and cell-cell interaction studies. 

Furthermore, they can be examined by simple techniques, such as microscopy and protein 

patterning techniques (Jorba, et al., 2021). To introduce mechanical loading in 2D models, 

cardiomyocytes can be cultured on stretchable elastomeric membranes which can be 

subjected to uniaxial or biaxial strain in a static or dynamic manner (Jorba, et al., 2021). 

Uniaxial strain can be achieved when the cells are stretched along a single axis, such as along 

the x-axis or y-axis only (Boulter, Tissot, Dilly, Pisano, & Feral, 2020), whereas biaxial 

stretching involves stretching along two axes (Tan, Scott, Belchenko, Qi, & Xiao, 2008).  

Moreover, static strain is applied by stretching the cells or tissue to a certain length and 

maintaining that position. This type of strain is simple to implement and can be performed 

for extended periods without tissue rupture (Zimmermann, 2013). On the other hand, 

dynamic strain in the form of cyclical stretch involves the repeated stretching of cells or tissue 

at different frequencies. This, however, can lead to tissue rupture and is more experimentally 



demanding (Zimmermann, 2013). Applying stretch to the cultured cardiomyocytes mimics 

VO-induced strain exerted on in vivo cardiomyocytes, whereas altering the stiffness of the 

material on which the cardiomyocytes are cultured, can change the pressure the cells contract 

against, and thus help manipulate PO (Guo & Huebsch, 2020). Stretch can be applied in 

various ways to simulate different physiological responses to mechanical cues. For example, 

static stretch can be used to examine the effect of different degrees of preload, whereas 

dynamic stretch can be utilized to mimic changes in cyclical loading experienced by CMs in 

vivo (Jorba, et al., 2021). This stretch model, with its various stretch patterns, has been 

extensively used in the literature. In a study by McCain et al. (2013) rat cardiomyocytes were 

isolated from ventricles and cultured on polydimethylsiloxane (PDMS) coated elastic silicone 

membranes to form muscular thin films (MTFs). The MTFs were subjected to uniaxial and 

cyclical stretch at 10% strain and a frequency of 3Hz, using a custom-built multi-well system. 

The study revealed that uniaxial cyclic stretch altered cytoskeletal alignment, induced calcium 

cycling changes, and activated genes consistent with pathologic remodeling (McCain, Sheehy, 

Grosberg, Goss, & Parker, 2013). Similarly, biaxial cyclic stretching of neonatal rat ventricular 

cardiomyocytes induced hypertrophy and activated fetal genes associated with pathologic 

remodeling (Frank, et al., 2008). In addition to custom-built devices, cyclical stretch can be 

applied by commercial devices, such as the ARTEMIS ATMS Boxer (Wong, et al., 2018) or 

Flexcell FX-5000 Tension system (Banerjee, et al., 2015). Hypertrophic changes have also been 

observed in models of a static stretch (Yang, et al., 2016). Thus, irrespective of the stretching 

mode, cardiomyocytes tend to exhibit changes associated with pathologic remodeling upon 

experiencing various degrees of stretch-induced strain. 

Stretch-induced adverse remodeling can also be observed in three dimensional models. 3D 

models are more complex as multiple components are involved to emulate in vivo cardiac 

tissue. Several materials have been explored to imitate the three-dimensional architecture, 

stiffness, and viscoelasticity of myocardial ECM (Jorba, et al., 2021). Polymeric hydrogels 

formed from networks of polyethylene glycol (PEG), gelatin methacryloyl, and alginate are 

commonly used as they allow for the control of their elasticity (Lee, et al., 2017). However, 

these hydrogels lack mechanosensitive ligands present in myocardial ECM, and the polymers 

can impair cell-mediated remodeling (Paik, Saito, Sugirtharaj, & Holmes, 2006). Therefore, to 

circumvent this drawback, hybrid biomaterials have been developed, such as 

polycaprolactone (PCL)/gelatin (Nguyen, et al., 2019). Nevertheless, only a few materials 

allow for the control of viscoelasticity, which is known to influence how cells recognize 

mechanical cues from their surrounding (Jorba, et al., 2021). The design of engineered heart 

tissue (EHT) aimed to integrate the mechanics of preload and afterload in 3D in vitro models 

(Eschenhagen, et al., 1997). Eschenhagen et al. (1997) developed this model which included 

a hydrogel scaffold mimicking myocardial ECM and containing cardiomyocytes, constructed 

between two stretching posts. The posts can be used to manipulate preload and afterload 

exerted on the EHT. Controlling the distance between the posts can alter the static stretch 

and influence the preload of the EHT, whereas altering the rigidity or stiffness of the posts 

can help manipulate afterload (Jorba, et al., 2021). For example, Hirt et al. (2012) reinforced 

silicone posts with metal braces to increase the afterload on the EHTs. This sustained increase 

in afterload was enough to induce adverse remodeling in the EHT, such that activation of fetal 



genes, increased glucose consumption, and contractile dysfunction were reported (Hirt, et 

al., 2012). Moreover, cardiomyocyte hypertrophy was observed in EHT undergoing phasic 

unidirectional stretching (Fink, et al., 2000). In addition to controlling the posts, the 

mechanical properties of the EHT scaffold material can be manipulated. Thus, the EHT model 

allows for the independent manipulation of both external load and internal stiffness (Jorba, 

et al., 2021). However, the classic EHT model only allows for uniaxial stretch, which is not 

representative of the in vivo pathological strain pattern (Jorba, et al., 2021). This led to the 

development of in vitro EHT model with both a uniaxial and biaxial strain system, such that 

the EHT was attached to more than two stretching posts and stretched both horizontally and 

vertically (van Spreeuwel, et al., 2014).  

The Gap in Our Understanding and Future Perspectives 

Cardiovascular physiology and pathophysiology have been a subject of investigation for many 

years. Over this period, significant discoveries have been made and several effective therapies 

have been developed. However, the mortality rates of cardiovascular complications such as 

MI and heart failure remain high. Thus, our understanding of cardiovascular pathology 

remains incomplete, and further discoveries are necessary to develop novel therapies aimed 

at reducing mortality rates and improving prognoses. Cardiovascular mechanobiology has 

been frequently overlooked, with most studies focusing on underlying genetic and 

mechanistic causes, discovered through genome-wide association studies, proteomics, 

genomics, or multi-omics studies (Swiatlowska & Iskratsch, 2021). However, over the past 

decade, the persistent gap in our understanding led to a rise in studies examining the role of 

mechanical forces and mechanosensing mechanisms in cardiovascular development and 

disease (Swiatlowska & Iskratsch, 2021). These studies improved our knowledge of how 

mechanical load can induce embryonic and fetal cardiovascular development. Several 

mechanosensitive pathways were discovered involving transcription factor KLF2a and 

microRNAs such as miR-21 and miR-143, establishing a link between mechanical load and 

epigenetics for normal cardiac development (Banjo, et al., 2013; Chiplunkar, et al., 2013). 

Flow-induced activation of KLF2a was discovered to be mediated by protein kinase D2 (Lee, 

et al., 2006) and mechanosensing ion channels Trpp2 and Trpv4 (Heckel, et al., 2015) in 

zebrafish, and receptor P2X4 in humans (Sathanoori, et al., 2015). However, the mediators of 

mechanical load-induced miR activation remain unknown.  Thus, further investigations are 

required to shed light on the upstream regulators of miRs. Furthermore, significant findings 

related to the mechanobiology of cardiac development were discovered in zebrafish. These 

findings, although beneficial, cannot be extrapolated to human cardiac development. Thus, 

future studies using patient-derived iPSC in vitro models may help determine the load-

induced regulators of cardiac development in humans. Moreover, they could unravel the 

causality of abnormal epigenetics in cardiac malformations by studying epigenetic changes 

under specific loading conditions (Jarrell, Lennon, & Jacot, 2019). Lastly, although the effect 

of blood flow in cardiac development has been extensively studied, the role of cellular 

components of blood has not been often considered. For example, evidence shows that 

changes in flow shear stress, partly governed by blood viscosity, can trigger developmental 

changes. However, the direct role of red blood cells or other blood cells in 



mechanotransduction during development has not been regularly examined (Boselli, Freund, 

& Vermot, 2015). 

Unlike studies examining mechanical load during development, investigations of the role of 

mechanical load in exercise-induced cardiac hypertrophy have been performed more 

frequently in humans. However, such studies have failed to consider the sex differences in 

cardiomyocyte response to exercise, with most studies demonstrating that exercise induces 

myocardial hypertrophy in males (Scharhag, et al., 2002; Kokkinos, et al., 1995). Thus, further 

investigations should focus on identifying sex-specific mechanisms of hypertrophy which may 

also play a role in pathologic remodeling. However, these sex differences have been studied 

in animal models, although discrepancies have been observed between findings in animals 

and humans. For example, in humans, studies have illustrated that male cardiomyocytes have 

a higher hypertrophic potential than females (Bernardo, Weeks, Pretorius, & McMullen, 

2010). Furthermore, male athletes were found to develop more pronounced LV hypertrophy 

when compared to females (Pelliccia, Maron, Culasso, Spataro, & Caselli, 1996). However, in 

rodent models of mice and rats, females were observed to display an increased hypertrophic 

response to exercise compared to males (Luczak & Leinwand, 2009; Schaible & Scheuer, 

1979). These inconsistencies warrant the need for further investigations into the sex 

differences in exercise-induced cardiac remodeling in humans. Finally, it is important to note 

that several studies highlight the involvement of IGF-1/PI3K/AKT in exercise-induced 

hypertrophy, which is mainly observed in cardiomyocytes. However, the myocardium also 

comprises of non-cardiomyocyte cells such as endothelial cells and fibroblasts. Thus, further 

research is required to analyze the distinct functions of the various cell types and their 

crosstalk in response to exercise-induced mechanical load (Lerchenmüller & Rosenzweig, 

2014). 

Various explanations and potential mechanisms which regulate pregnancy-induced cardiac 

remodeling have been identified, with many of those mechanisms overlapping with exercise-

induced hypertrophy, such as the PI3K/AKT pathway. However, loading patterns and 

durations, as well as hormonal alterations mechanistically distinguish pregnancy-, and 

exercise-induced cardiac remodeling. Recent evidence has shown that miRs are also involved 

in the structural and functional regulation of the pregnant heart ( Szczerba, et al., 2020). 

However, mechanistic insights into the role of miRs in pregnancy-induced cardiac 

hypertrophy are lacking. Future studies with in vitro iPSC-derived cardiomyocytes can be 

utilized to induce continuous mechanical loading and hormonal stimulations to simulate 

pregnancy conditions and examine the expression and function of various miRs. 

Mechanical load-induced pathologic remodeling has been extensively studied during the past 

decade. Several findings illustrated the mechanistic differences between pressure and 

volume overload and highlighted their phenotypic differences, such that VO was established 

to lead to eccentric hypertrophy, LV dilation, and systolic dysfunction, whereas PO was found 

to be responsible for driving concentric hypertrophy, LV wall thickening, and diastolic 

dysfunction (Hutchinson, Stewart, & Lucchesi, 2010; Nauta, et al., 2019). Ikeda et al. (2015) 

proposed a reason for these phenotypic differences to be ERK1/2 signaling that is observed 

in PO, but not in VO, suggesting that ERK1/2 was responsible for promoting concentric 



hypertrophy while simultaneously suppressing eccentric hypertrophy.  However, the 

downstream targets of ERK1/2 which drive these processes were not identified. Moreover, 

Zhang et al. (2010) demonstrated that VO could also induce the activation of ERK1/2, although 

much later than PO. Thus, further investigations are required to map the activation profile of 

ERK1/2 at different time points during eccentric and concentric hypertrophy to understand 

how temporal changes in ERK1/2 activation promote concentric and suppress eccentric 

remodeling (Ikeda, et al., 2015). Finally, although the activation of ERK1/2 is associated with 

PO, a direct causal link has not been identified. Thus, future studies must aim to establish a 

link between PO and ERK1/2 activation, and identify the mechanisms involved in ERK1/2-

induced concentric remodeling. 

In addition to cardiomyocyte hypertrophy, myocardial ECM alterations are observed upon 

mechanical overloading. PO and VO promote distinct changes in ECM, such that during VO 

MMP levels are increased which promotes collagen degradation, whereas in PO collagen 

stability and TIMP expression are increased (Hutchinson, Stewart, & Lucchesi, 2010; 

Yarbrough, et al., 2012). These studies investigated ECM changes at given time points during 

heart failure progression. Thus, these analyses represent both causative and compensatory 

changes in matrix regulatory proteins. Therefore, more in-depth temporal analyses are 

required to distinguish between causative and compensatory mechanisms. Moreover, 

examining the ratio between MMPs, TIMPs, and ECM protein content would provide clearer 

insights into the effect of mechanical loading, rather than studying each molecule alone 

(Hutchinson, Stewart, & Lucchesi, 2010). 

As heart failure progresses, the mechanical forces and loading conditions experienced by the 

heart are altered. These changes can be depicted on PV graphs, such that during end-stage 

HFrEF the PV loops are shifted to the right with an increase in both preload and afterload, 

whereas in end-stage HFpEF they are shifted to the left with a decrease in preload and 

increase in afterload (Miranda-Silva, Sequeira, Lourenco, & Falcao-Pires, 2022; Reddi, 

Shanmugam, & Fletcher, 2017). The PV loops provide a substantial amount of information on 

cardiac function. However, they are not readily used in clinical trials or routine checks as they 

require invasive catheterization (Seemann, et al., 2019; Bastos, et al., 2020). Thus, future 

studies must aim to develop non-invasive PV analysis tools. Recently, Seemann et al. (2019) 

developed the first experimentally validated non-invasive technique to estimate LV PV loops 

based on data from ventricular volume curves and brachial pressure. This technique, although 

accurate, was not recommended for repeated use in humans and patients with atrial 

fibrillation due to its limitations (Seemann, et al., 2019). Thus, further advancements are 

required to develop non-invasive PV analytic tools that can be readily used in clinical settings. 

Several studies have identified mechanical load-induced mechanisms involved in the 

pathophysiology of HFrEF using animal models. However, a complete understanding of the 

effect of mechanical load in the pathology of HFpEF has not been drawn due to the limited 

availability of animal models that completely mimic human HFpEF (Conceição, Heinonen, 

Lourenco, Duncker, & Falcao-Pires, 2016). HFpEF is a multifactorial disease where several 

comorbidities contribute to its progression. However, the existing animal models do not 

recapitulate the multiple variables of human HFpEF. Therefore, future studies should employ 

a combination of existing HFpEF animal models or develop novel animal models with larger 



animals that can incorporate the effects of aging, exercise, and associated comorbid 

conditions (Shah, et al., 2020; Withaar, Lam, Schiattarella, de Boer, & Meems, 2021).  

Moreover, recently, a novel type of heart failure has been categorized called heart failure 

with midrange ejection fraction (HFmrEF). The clinical characteristics of HFmrEF are similar to 

that of HFrEF. However, the prognosis of the disease resembles that of HFpEF. Although, the 

underlying pathophysiological mechanisms and the PV relationships associated with HFmrEF 

remain unknown (Li, et al., 2021). Thus, further investigations are required to understand the 

exact mechanisms in HFmrEF, how these mechanisms affect the prognosis of the disease, and 

if HFmrEF is an intermediate state between HFrEF and HFpEF (Li, et al., 2021). 

Multiple pharmacological agents are employed to alleviate the symptoms of end-stage heart 

failure. However, therapeutic interventions that can effectively reverse pathological 

mechanisms and cure the disease remain to be developed. Advancements in LVAD therapy 

have provided promising results, with several studies reporting improvements in cardiac 

remodeling and function upon LVAD support. However, this therapy does not lead to a cure, 

as explantation of the LVAD causes relapse of the disease. Thus, implicating the need for 

adjuvant therapies in the form of pharmacological or cell therapy, to enhance the degree of 

reverse remodeling to continue post-LVAD explantation. Current pharmacological agents, 

such as ACE inhibitors, angiotensin receptor blockers (ARBs), and beta blockers induce a 

certain degree of reverse remodeling (Martens, Belien, Dupont, Vandervoort, & Mullens, 

2018). However, the optimal pharmacological agent that can effectively enhance reverse 

remodeling to warrant LVAD explantation is currently unknown. Therefore, future 

investigations must test multiple combinations of pharmacological drugs with LVAD support 

to develop more effective therapies for heart failure. However, it is worth mentioning that 

LVAD support and the aforementioned pharmacological agents have been reported to be 

effective against HFrEF; and are considered to be ineffective against HFpEF (Miyagi, 

Miyamoto, Karimov, Starling, & Fukamachi, 2021). LVAD implantation in HFpEF patients is 

lacking due to the characteristic feature of small LV chamber size (Miyagi, Miyamoto, 

Karimov, Starling, & Fukamachi, 2021). However, a simulation study using a computer model 

of continuous flow LVAD and hemodynamics of HFpEF patients revealed that LVAD support 

can unload the LV, increase CO, provide hemodynamic benefits, and improve the quality of 

life of these patients (Moscato, et al., 2012). Therefore, advancements in LVAD technology 

must focus on circumventing the hurdles of implanting LVADs in small LV chambers. 

Mechanistically, several mechanoreceptors and mechanosensory pathways have been 

identified. Integrins, SACs, pro-inflammatory cytokine receptors, and G-protein coupled 

receptors have been implicated to translate changes in mechanical load to signal transduction 

pathways. The PI3K/Akt, MAPK, calcineurin/NFAT, and JAK/STAT pathways have all been 

observed to influence load-induced pathological changes in the myocardium. However, most 

of these findings have been observed in cardiomyocytes, while the mechanosensitive 

pathways in fibroblasts and other non-cardiomyocyte cells, such as endothelial cells have 

remained unexplored. 

LVAD-mediated unloading of the heart leads to a decrease in the activity of some 

mechanotransducer and partial reversal of pathways involved in cardiomyocyte hypertrophy 



and fibrosis. The activity of the MEK/ERK pathways, as well Akt levels are reduced upon 

mechanical unloading counteracting their activation in load-induced remodeling. In addition, 

changes in the ratio of MMP/TIMP are observed favoring reverse remodeling. However, a 

better understanding of molecular mechanisms is necessary, which could shift LVAD function 

from bridge-to-transplant to bridge-to-remission. 

A great proportion of studies have utilized in vivo animal models to discover the role of 

mechanical load in heart failure pathophysiology. Over decades of cardiovascular research, 

several techniques have been developed to model different cardiac loading conditions in both 

small and large animals. Aortic banding, specifically TAC, has been extensively performed to 

model PO while VO-induced heart failure has been induced by aortocaval shunting techniques 

or valvular regurgitation models. Both models of PO and VO were found to significantly induce 

LV hypertrophy, cardiac dysfunction, and heart failure in both large and small animals. 

However, it should be of note that the induction of PO and VO in these models does not 

represent the pattern or duration of mechanical overload experienced in humans, such that 

the induction of overload in the models is acute, whereas in humans the process is chronic. 

Indeed, Yarbrough et al. (2012) illustrated that the gradual and progressive constriction of the 

aorta provided a more accurate model of HFpEF than acute aortic constriction. Moreover, 

these models utilize relatively young animals, which does not reflect the age range at which 

humans begin to develop mechanical load-induced pathologic remodeling. Thus, future 

studies must consider using older animals, which would better represent the age of heart 

failure patients, and employing models of progressive mechanical load induction to more 

accurately reflect heart failure pathophysiology. 

Advancements in biomaterials as well as cell isolation and culturing techniques have led to 

the development of several in vitro models of mechanical load. These models have allowed 

for the functional quantification of the impact of mechanobiological signals on cell and tissue 

behavior. Precise control of biomechanical properties such as ECM stiffness and mechanical 

strain in 2D models have provided insights into the mechanisms of load-induced cardiac 

remodeling. However, limitations in iPSC-derived cardiomyocyte maturity, cell diversity, and 

electrophysiological properties have challenged the findings from these models (Jorba, et al., 

2021). Moreover, the development of 3D models has faced challenges and has been a subject 

of scrutiny as these models have been incapable of accurately recapitulating the complexity 

of cardiac tissue. Mimicking all the aspects of in vivo remodeled cardiac tissue is complex as 

several characteristics of the diseased tissue remain unknown. For example, the effect of 

inflammation on the ECM turnover and the mechanical properties of myocardium is not 

completely understood (Jorba, et al., 2021). Furthermore, there is a lack of experimental data 

on the nonlinear mechanics of the passive myocardium under different loading conditions 

(Sommer, et al., 2015). Therefore, further studies on the mechanical properties of passive 

myocardium can provide a blueprint for estimating material parameters, and allow for the 

development of biomaterials that can more accurately resemble the in vivo myocardium. 

Lastly, it should be noted that although advancements in in vitro models can increase their 

resemblance to the in vivo structure and function of the myocardium, these models are 

unable to reflect the cross-talk between organs and systems; and thus they lack the 

translational potential of in vivo models (Jorba, et al., 2021). Although significant advances in 



2D and 3D in vitro models have been made, an ideal representation of myocardial tissue and 

the mechanical forces exerted by pressure and volume overload remains to be modeled 

(Jorba, et al., 2021). 

Conclusion 

In conclusion, the pathophysiology of heart failure has been a subject of interest for many 

years. Early research focused on genetic and proteomic investigations to unearth the 

underlying mechanisms. However, with novel insights into cardiac mechanobiology, the focus 

shifted towards understanding the underlying mechanotransduction and mechanosensing 

pathways of the disease. This review first discussed the importance of mechanical load 

throughout an individual’s life by highlighting the role of mechanical load during development 

and health. Several studies revealed that mechanical load activates mechanotransduction 

pathways throughout prenatal development to activate genes and allow normal cardiac 

development. Under the influence of mechanical load KLF2, miR-21, miR-143, were found to 

be essential drivers of development of both the heart and the vasculature. Furthermore, the 

activation of the PI3K/Akt pathway was concluded to be central for exercise-induced 

hypertrophic effects in the heart. During pregnancy, however, the activation of PI3K/Akt and 

hormonal changes were responsible for cardiac physiologic hypertrophy. Subsequently, the 

role of mechanical (over)loading in pathologic myocardial remodeling and how LVAD support 

can reverse this remodeling were presented. PO and VO were revealed to induce different 

forms of hypertrophy due to their activation of different mechanotransduction pathways. VO 

was found to induce eccentric hypertrophy through the activation of the Akt/m-TOR pathway, 

whereas PO led to activation of the MAPK/ERK pathway and concentric hypertrophy. In 

addition, both PO and VO induced profibrotic changes in the myocardial ECM by influencing 

the ratio of MMPs to TIMPs. The pathological alterations in cardiomyocytes and ECM was 

found to develop two forms of heart failure: HFrEF and HFpEF which were differentiated by 

changes in the PV graphs, where HFrEF patients observed a shift in PV loop to the right, 

whereas HFpEF patients had a PV loop shifted to the left. The changes in PV loops, as well as 

mechanical load-induced pathologic remodeling were observed to be partially reversed upon 

LVAD implantation. LVAD support led to reversal of the activity of certain 

mechanotransducers, such as ERK and Akt, as well as the normalization of the MMP/TIMP 

ratio altering the cardiac phenotype from pathological to healthy. However, these devices did 

not provide a permanent solution, thus further investigations are required to enhance reverse 

remodeling enough to warrant LVAD explantation. Finally, the current in vivo and in vitro 

models of mechanical load which led to these findings were highlighted. The in vivo models, 

such as TAC/deTAC, DOCA-WD, aortocaval fistula, valvular regurgitation, and HHT all 

effectively led to load-induced remodeling and unloading-induced reverse remodeling. 

Similarly, the in vitro models, such as CTCM and EHT with their different complexities and 

modes of stretching also induced these load-induced changes. Our current knowledge of 

cardiac mechanobiology and its role in the physiology and pathophysiology of the heart would 

not have been possible without the developments in these models of mechanical load. The 

findings from these models have significantly impacted our view of cardiac mechanobiology. 

However, several limitations exist that challenge these findings, thus warranting the need for 

the development of novel, more accurate models. To summarize, investigations of cardiac 



mechanobiology have improved our knowledge of cardiac mechanical load and how it induces 

functional and dysfunctional adaptations which promote health and disease, respectively. 

However, advancements of in vivo and in vitro models are still required to fill the gaps in our 

current understanding of myocardial mechanical properties, mechanotransduction, and 

reverse remodeling.   
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