

Graduation thesis C.A. Sinchico Arias | Utrecht University | June 30, 2022

Graph Data Model: Storing temporal financial transaction

data in a graph database

Author

Cristian Amaru Sinchico Arias

Utrecht University

Princetonplein 5, 3584CC Utrecht

Departement Informatica UU

Project Supervisors

Dr. I.R. Karnstedt-Hulpus

V. Shahrivari Joghan

Second Examiner

Dr. M.W. Chekol

Applied Data Science

Utrecht University

Amsterdam, June 30, 2022

 i

Graduation thesis C.A. Sinchico Arias | Utrecht University | June 30, 2022

Abstract
Introduction

This research aims to develop and propose a model to store temporal financial transaction data and

create a network graph can be created. As such, the data will be stored in a graph database. To develop a

model that handles large amounts of data and different structured data, research is done to examine

different techniques and methods for storing such a graph data model. This model is then validated on a

synthetically generated financial transaction dataset PaySim. This research is then divided into two parts:

data representation and data storage.

The data representation part of the research focuses on the representation of the financial transaction

data and specifically focuses on:

- Giving insights into the relationships of the financial transaction data by showing the transactions

as a network.

- Showing how the network looks at a given point of time since financial transaction data is time-

dependent.

The data storage part of the research focuses on the way financial transaction data can be stored and

mainly focusses on:

- Creating a data model to store the temporal financial transaction data.

- Storing a synthetic financial transaction dataset, PaySim, in a graph database using Neo4J.

The main research question is as follows: “To what extent can a data model be developed to store

temporal financial transaction data in a graph database so that the relationships in the data are not lost,

and how can this model be optimized so that it performs well.”

Background

Graphs, where relationships (edges) between nodes are directed, are called directed graphs and are of

particular interest for financial transaction data. These graphs can be created from graph databases and

these databases can be divided into two categories: Resource Description Dataframe (RDF) and property

graphs. In general, property graph databases are known for their ease of use and performance. As

properties of the data can be stored, the problem of having to generate big queries to capture

relationships is tackled.

Methods

First, in order to answer the research question, research is done on the steps data modeling consists of:

1. Identifying entities;

2. Identifying attributes of these entities;

3. Identifying relationships amongst these entities;

4. Mapping the attributes to the entities;

5. Find a balance between normalization and performance; this means finding a balance between

reducing data storage and query performance;

6. Finalize and validate the data model.

As this research focuses on storing the relationships between the data generating a network graph, the

most convenient way is to store the data in a property graph database to create a labeled property graph.

The resulting financial transaction network is a directed network and can be of different structures. One

where transactions are generated as nodes, and one where transactions are generated as edges. The first

 ii

 Graduation thesis C.A. Sinchico Arias | Utrecht University | June 30, 2022

network will generate two types of nodes: Account nodes and Transaction nodes. These nodes contain

node properties and are connected by two different edges: Transaction from and Transaction to.

Properties of the Account nodes consist of Account number, Balance before transaction, and Balance after

transaction. Properties of the Transaction nodes consist of: Timestep, Type of transaction, Amount, Fraud,

and Flagged as fraud. In this network, the edges will contain no properties. The second network will

generate one type of node: Account nodes. Here, the transactions are generated as edges connecting the

Account nodes in the network. Properties of the Account nodes consist of Account number, Balance

before transaction, and Balance after transaction. In this network, the edge Transaction, contains

properties that consist of: Timestep, Type of transaction, Amount, Fraud, and Flagged as fraud.

The composition of the model to store and display the financial transaction data is done in Python and

Neo4J. The modeling is done in Python and through the package Py2Neo, the data can be sent from

Python to Neo4J to store the data into a graph database and display the network as a graph.

Data

Due to the many regulations concerning data privacy, acquiring financial transaction data is not easy. For

this reason, the synthetically generated dataset, PaySim, is used in this research. PaySim is simulated data

based on a sample of real transactions which are extracted from logs of a mobile service and consists of

the following 11 properties: Timestep, type of transaction, amount of transaction, source Account number,

Balance before transaction of source account, Balance after transaction of source account, destination

Account number, Balance before transaction of destination account, Balance after transaction of

destination account, Fraud, and Flagged as fraud.

Implementations and conclusions

The research has shown that, in the scope of this research and with the PaySim dataset, the model

performs well on both network structures. The network where transactions are edges is generated faster,

but this is expected as fewer nodes and edges have to be generated. Due to the scope of this research,

the model is still in an early stage and can only handle data that is presented in a single data file. The

model is validated on the first timestep and tweaked accordingly to increase performance. The data is

stored completely and a complete network is generated. The following points are of importance to

improving the model.

First, the model should be able to handle a variable set of properties as this model can only handle a

predefined set of properties. If data contains more properties than the predefined set, this data gets lost

in the process of this model. Additionally, more time could be spent coding more efficiently, as this

influences the performance of the model as well. Next, the model can be improved by implementing a

way to extract data from multiple data files and store it in the graph database. Finally, the model was

tweaked and performance was measured based on the first timestep of the PaySim dataset. This should

be done on more data but was not possible due to the scope of this research.

 iii

Graduation thesis C.A. Sinchico Arias | Utrecht University | June 30, 2022

Preface
Before you lies my graduation report on the completion of the Applied Data Science Master’s program at

the University Utrecht. With this report, a long period as a student comes to an end. With pride and

satisfaction, I can look back on this period.

I would like to take this opportunity to thank several people. First of all, I would like to thank my Project

Supervisor, Ioana Karnstedt-Hulpus, for the guidance I received during this research. I would also like to

thank Vahid Shahrivari Joghan for his help during this period and his overall guidance. Finally, I would like

to thank my family and friends for standing by me all this time and supporting me through it all. Without

them I would not have made it this far.

Cristian Amaru Sinchico Arias

Amsterdam, June 30, 2022

 iv

Graduation thesis C.A. Sinchico Arias | Utrecht University | June 30, 2022

Table of Contents
Abstract .. 5

Preface ... 5

1 Introduction... 5

1.1 Context .. 5

1.2 Aim of this research ... 5

1.3 Research question ... 6

1.4 Reading Guide .. 6

2 Background on storing graph structured data... 5

2.1 RDF Databases... 5

2.2 Property graph databases ... 5

3 Methods .. 5

3.1 Programs .. 5

3.2 Model structures ... 5

3.2.1 Network structure 1 ... 5

3.2.2 Network structure 2 ... 5

4 Data ... 5

4.1 Description of financial transaction data ... 5

4.2 PaySim dataset .. 5

4.3 Properties of the data model ... 5

5 Implementation ... 5

5.1 Configuration file ... 5

5.2 Graph Data Model ... 5

5.3 Model Performance ... 5

5.3.1 Performance measures .. 5

5.3.2 Model network structure 1 .. 5

5.3.3 Model network structure 2 .. 5

6 Conclusion and discussion ... 5

6.1 Research conclusions ... 5

6.2 Recommendations for future research .. 5

References .. 6

Appendix .. 5

I Configuration file ... 5

II Python code of the model .. 6

 1

Graduation thesis C.A. Sinchico Arias | Utrecht University | June 30, 2022

1 Introduction

1.1 Context
Financial fraud has been a big problem for many organizations within multiple sectors (Raj, 2022). As

such, billions of dollars are lost yearly due to financial fraud. For example, the Bank of America paid 16.65

Billion dollars as a result of a financial fraud case in 2014 (U.S. Department of Justice, 2014). However,

fraud also occurs on a much smaller scale. Fraudsters and scammers are getting smarter and their

methods to commit fraud are getting more refined (ING, n.d.). In this day and age many forms of fraud

exist. According to ING, a Dutch internationally operating bank, many forms of financial fraud are

occurring on a frequent base, such as phishing, bank-to-home scams, investment fraud, and many more.

Many organizations are trying to develop new methods to discover patterns of this fraud at an earlier

stage. Consequently, this research has been set up and conducted. This research is part of a bigger

research and focuses on the way financial transaction data is stored and how it can be presented.

Hereafter, the data can be analyzed and algorithms can be built for fraud detection.

1.2 Aim of this research
The aim of this research is to develop and propose a model to store financial transaction data and make it

presentable. To get a clear overview of the structure of the financial transaction data, a financial

transaction network will be composed. This network will then be presented in a graph. To present the

data in such a graph, the data has to be stored in a graph database (Robinson, Webber, & Eifrem, 2015).

Chapter 3 elaborates on graph databases. This will result in developing a graph data model, which stores

the data and can make a network graph. As Data Scientists, we are concerned with the processing and

analysis of large amounts of data (van Beek, 2021). This means the model should handle large amounts of

data and be generalized so that it can be used to store different structured financial transaction data. To

develop a model that performs well on this account, research will be done to examine different

techniques and methods for developing such a graph data model. This model will then be validated on a

synthetically generated financial transaction dataset, called PaySim. More about PaySim can be found in

chapter 4.

This research can be divided into two parts: data representation and data storage.

Data representation

The first part of this research focuses on the representation of the financial transaction data. This

specifically focusses on:

- Giving insights into the relationships of the financial transaction data by showing the

transactions as a network.

- Showing how the network looks like at a given point of time, since financial transaction

data is time-dependent.

To show how the financial transaction network looks at a given point of time, a Python API will be

proposed for extracting the network of transactions at a given point of time.

 2

 Graduation thesis C.A. Sinchico Arias | Utrecht University | June 30, 2022

Data storage

The second part of this research focusses on the way financial transaction data is stored. In

addition to making the graph data model, it is also important that the strengths and weaknesses

of the model are described. This model will be used to store financial transaction data. This

means the model has to be generalized for different structured financial transaction data to be

loaded. Based on how well the model is generalized, advice can be given for possible follow-up

research. Therefore, this part of the research mainly focuses on:

- Creating a data model to store the temporal financial transaction data

- Storing a synthetic financial transaction dataset, PaySim, in a graph database using

Neo4j.

1.3 Research question
In order to achieve the objective of this research, several sub-questions alongside the main research

question have been formulated. The main goal of this research is to propose a data model to store

temporal financial transaction data. The main research question is then as follows:

“To what extent can a data model be developed to store temporal financial transaction data in a graph

database so that the relationships in the data are not lost, and how can this model be optimized so that it

performs well.”

To answer this research question, the following sub-questions have been formulated that will be

answered in this research:

- What are general properties that appear in financial transaction data?

- Which types of graph databases exist and how do they differ?

- How does a data model perform well?

1.4 Reading Guide
In this report, the problem analysis is concretely defined first. Subsequently, the method and

methodology of the research are described and the data that is used to validate the model is defined.

Hereafter, the results are presented. Finally, advice is given with regard to the results of the research,

followed by advice for further research.

 3

Graduation thesis C.A. Sinchico Arias | Utrecht University | June 30, 2022

2 Background on storing graph structured data
Graphs have been part of Mathematics for many years, but this concept is rather new for data modelers

(Frisendal, 2019). Graphs where relationships (edges) between nodes are directed are called directed

graphs. These directed graphs are of particular interest for financial transaction data. These graphs can be

created from graph databases and these databases can then be divided into two main categories. The first

one is a Resource Description Dataframe (RDF-triple store), which is a graph data model that stores

semantic facts (OnToText, 2019). The second category is a property graph, which is a graph model where

the relationships carry properties and a name (Knight, 2021). In general property graph databases are

known for their ease of use and performance, while RDF graph databases are known for interoperability

and semantics (Anadiotis, Knowledge graph evolution: Platforms that speak your language, 2020). In the

following subchapters, differences between RDF and property graphs will be explained.

2.1 RDF Databases
The first method is the RDF-triple store, which is short for Resource Description Dataframe. The RDF is a

flexible model which describes semantics of information about resources on the web (Ma, Capretz, & Yan,

2016). It is a building block of the Semantic Web (Anadiotis, Graph databases and RDF: It's a family affair,

2017) and a general framework that represents interconnected data on the web and its statements are

used for exchanging metadata. Through exchanging metadata, data can be exchanged based on

relationships. The RDF makes use of three entities, hence the name triple store, and generates an

expression in the form of subject (entity) - predicate (attribute) – object (value) about semantic data

(Stefani & Hoxha, 2018). This structure of subject-predicate-object represents links in an RDF graph.

Because of this structure, graphs can be created using RDF.

2.1.1 Pros and cons of RDF
A RDF is used to store data and create graphs. One benefit of this type of database is that sharing

metadata is encouraged due to the consistent framework. Another benefit is that software that makes

use of metadata can function better due to the uniform syntaxes of RDF to query and describe data. With

the uniform syntaxes of RDF and the query capability, information can be exchanged more easily (Loshin,

n.d.). Even though RDF seems promising due to these benefits, RDF also has some disadvantages. As the

structure of RDF is index-based, it may become inconvenient for larger queries and path analysis (Sağlam,

2018). As RDF is triple store-based and makes use of expressions to capture relationships, capturing even

simple relationships can sometimes produce big queries. A way to tackle this is the introduction of

property graphs (Knight, 2021).

2.2 Property graph databases
Property graphs are introduced to tackle some of the problems RDF databases face. Property graphs are

graphs that consist of nodes, which represent entities, as well as edges, which represent relationships

between nodes, and properties, which represent features of the nodes and relationships (Angles, 2018). A

general structure of a labeled property graph is shown in Figure 1.

 4

Graduation thesis C.A. Sinchico Arias | Utrecht University | June 30, 2022

Figure 1: Structure of a labeled property graph (Frisendal, 2019).

Figure 1 shows the structure of a labeled property graph. The property graph contains both nodes and

relationships. These nodes and relationships may contain properties as well. Property graphs make use of

the query language Cypher. Inspired by SQL, Cypher is Neo4J’s query language where patterns and

relationships are provided in a visual way (Neo4J, n.d.).

2.2.1 Pros and cons of property graph databases
Property graph databases have some advantages in comparison to RDF-triple stores. One major benefit is

that both nodes and edges may contain properties. As such, this type of database is better optimized for

path analysis (Maturana, 2015). This tackles the problem of having to generate big queries to capture

relationships. Another advantage is that multiple query languages can be used in a property graph

database as opposed to RDF, which mainly uses SPARQL. Although this type of database supports multiple

query languages, it generally focuses on Cypher (Maturana, 2015). The type of database that is used,

differs per situation and depends heavily on the preference of the data modeler.

 5

Graduation thesis C.A. Sinchico Arias | Utrecht University | June 30, 2022

3 Methods
In order to gain more insight into what data modeling is, and in specific which steps are included in data

modeling, research is done through desk research. IBM states: ‘ Creating a visual representation of an

information system to communicate connections between structures and data points is the process called

data modeling.’ (IBM Cloud Education, 2020) The whole process knows multiple steps to it and can be

divided into the following:

1. Identifying entities

2. Identifying attributes of these entities

3. Identifying relationships amongst these entities

4. Mapping the attributes to the entities

5. Find a balance between normalization and performance; this means finding a balance between

reducing data storage and query performance

6. Finalize and validate the data model

Even though many different fundamental types of databases exist nowadays, this research focuses on

storing the relationships between the data and presenting this in a convenient way. As such, the most

convenient way to store the data would be in a graph database (Robinson, Webber, & Eifrem, 2015). A

graph database is optimized for handling highly connected data and provides insights that are not easily

found using other techniques (Bechberger, 2019). For this research, a property graph database will be

used to store and present the data in a labeled property graph.

3.1 Programs
The composition of the model to store and display the financial transaction data will be done in Python

and Neo4J. Neo4J is an open-source graph data platform that can be used for native graph storage

(Neo4J, n.d.). The modeling is done in Python and through the package Py2Neo, the data can be sent from

Python to Neo4J to store the data into a graph database and display the network as a graph.

3.2 Model structures
A financial transaction network is a directed network and the resulting labeled property graph can be of

different structures. In this research, two different structures of labeled property graphs will be

developed and compared. Therefore, within the developed model, two different networks will be created.

One where the transactions are generated as nodes, and one where transactions are generated as edges.

In both cases, properties are given to the transactions. If transactions are generated as nodes, the

properties will be node properties and edge properties when transactions are generated as edges. The

constructed graphs will thus have different topological properties (Millán, 2017). The following

subchapters will dive deeper into these different network structures.

3.2.1 Network structure 1
In the first model, network 1, the account where the transaction is from (source) and the account of the

receiving end of the transaction (destination) will be generated as nodes. The properties of these

accounts will be node properties. In this model, the transactions will also be generated as nodes. This

means that as the transactions are nodes, the properties of the transactions will also be node properties.

In this model, two types of nodes are generated: Account nodes and Transaction nodes. These nodes are

related by two types of edges: Transaction from and Transaction to. These edges correspond to the flow

 6

Graduation thesis C.A. Sinchico Arias | Utrecht University | June 30, 2022

of the funds, but do not contain any properties. The edge Transaction from connects the source Account

node to the Transaction node. The edge Transaction to connects the Transaction node to the destination

Account node, completing the network. Figure 2 shows a schematic overview of this network structure.

Figure 2: Schematic overview of the network structure for one transaction for network 1.

Figure 2 shows the schematic overview of the financial transaction network. It shows the two types of

nodes: Account nodes and Transaction nodes, and properties belonging to these nodes. Properties of the

Account nodes consist of: Account number, Balance before transaction, and Balance after transaction.

Properties of the Transaction nodes consist of: Timestep, Type of transaction, Amount, Fraud, and Flagged

as fraud. Figure 2 also shows two edges, with their labels Transaction from and Transaction to, connecting

the nodes in this network. In this model, the edges contain no properties. Modeling the transactions as

nodes might be relevant to extract more meaningful information about the graph in terms of topological

properties, as the generated graph will contain more nodes and edges.

3.2.2 Network structure 2
The second model, network 2, generates the transactions as edges between the Account nodes. This

means that in this model, the properties of the transactions will be edge properties and the properties of

accounts are node properties. In this model, only one type of node is generated: Account nodes. These

nodes are then related by one type of edge: Transaction. This edge corresponds to the flow of the funds

and will, in contrast to the previous network structure, contain edge properties. The edge Transaction

connects the source Account node to the destination Account node. A general schematic overview of this

network structure is shown in Figure 3 below.

Figure 3: Schematic overview of the network structure for one transaction for network 2.

Figure 3 shows the schematic overview of the financial transaction network for network 2. It shows two

nodes of the same type: source Account and destination Account, and properties belonging to these

nodes. Properties of the Account nodes consist of: Account number, Balance before transaction, and

Balance after transaction. Figure 3 also shows the edge, with label Transaction, connecting the nodes of

this network. In this model, the edge contains properties. These edge properties consist of: Timestep,

 7

 Graduation thesis C.A. Sinchico Arias | Utrecht University | June 30, 2022

Type of transaction, Amount, Fraud, and Flagged as fraud. As this model generates fewer nodes and

edges, compared to model 1, this model will be computationally more efficient. However, this graph

structure will have influence on the topological properties.

 8

Graduation thesis C.A. Sinchico Arias | Utrecht University | June 30, 2022

4 Data
This chapter elaborates on financial transaction data. It looks at the structure of financial transaction data

and how such data is constructed. In order to develop the model for storing financial transaction data as

generalized as possible, this research looks at which entities are often used in this kind of data, which

relationships can be found in the data, and which properties and features it contains.

4.1 Description of financial transaction data
Financial transaction data is data that consists of captured information from financial transactions (TIBCO,

2021). The European System of Accounts states that financial transaction consists of financial assets and

liabilities (European Comission, Eurostat, 2014). Since financial transaction data can contain a time

element, this data can be presented as a network of transactions. This data is then found in either of two

ways when it is stored in CSV files:

- A CSV containing both nodes and edges (relationships).

- Multiple CSV files, usually two, where the nodes and edges are divided over the two CSV

files.

To find which entities, relationships, properties, and features often exist in this kind of data, different

datasets containing financial transaction data are examined. In the EU a lot of regulations around data

privacy are present. Since May 2018 the Global Data Protection Regulation, GDPR, is effective and with

this regulation, laws regarding the protection of a customer’s personal information became stricter

(Hoofnagle, van der Sloot, & Zuiderveen Borgesius, 2019). Because of this, it is rather difficult to acquire

financial transaction data for this research.

The properties that can be stored in the graph data model are based on properties that exist in two

different financial transaction datasets that are public. The first dataset, IEEE-CIS Fraud Detection, is a

dataset containing financial transactions that was made public by Vesta Corporation on Kaggle in order to

detect fraud in customer transactions. The second is the PaySim dataset, which is a synthetically

generated dataset, see 4.2.

4.2 PaySim dataset
The dataset which is used in this research to validate the model on is a synthetically generated dataset.

This dataset was generated by a simulator called PaySim (Lopez-Rojas, Elmir, & Axelsson, 2016). PaySim

can generate synthetic datasets that are similar to datasets of mobile money payments. It simulates data

based on a sample of real transactions which are extracted from logs of a mobile service.

The PaySim dataset used in this research is a simulation of mobile money transactions for 1 month’s time.

This dataset consists of one CSV file of 6.362.620 transactions and 11 different variables:

1. step: Timestep that represents one hour. As this dataset is simulated for a month, a total of 744

steps are present in the dataset.

2. type: The type of transaction. In total five different types of transactions are included; CASH-IN,

CASH-OUT, DEBIT, PAYMENT, and TRANSFER.

3. amount: The amount of the transaction.

4. nameOrig: The name of the account where the transaction comes from (source account).

5. oldbalanceOrg: Balance of the source account before the transaction.

6. newbalanceOrig: Balance of the source account after the transaction.

 9

Graduation thesis C.A. Sinchico Arias | Utrecht University | June 30, 2022

7. nameDest: Name of the account receiving the transaction (destination account).

8. oldbalanceDest: Balance of the destination account before the transaction.

9. newbalanceDest: Balance of the destination account after the transaction.

10. isFraud: This variable states whether the simulated transaction was fraudulent or not.

11. isFlaggedFraud: In this dataset transfers of big amounts are controlled. As such, transfers of an

amount of 200.000 or greater are flagged as an illegal attempt and thus flagged as fraud.

Some incompleteness in this dataset exists, one example being the balance of accounts. In some cases,

the new balance does not match the old balance after the transaction has been done. This is both the

case for the source accounts and the destination accounts. However, as this dataset is only used to

validate the model, this does not influence the results of this research.

As each timestep represents one hour in the data, each timestep consists of different amounts of

transactions. This can be seen in Table 1, which shows the number of transactions within the first 5

timesteps.

Table 1: Amount of transactions within each timestep for the first 5 steps

 Amount of transactions

Timestep 1 2708

Timestep 2 1014

Timestep 3 552

Timestep 4 565

Timestep 5 665

An example of how one payment of the PaySim dataset, when transactions are generated as nodes, looks

like is shown in Figure 4.

Figure 4: Schematic overview of the network structure for one transaction of the PaySim dataset for network 1.

An example of how one payment of the PaySim dataset looks like when transactions are generated as

edges is shown in Figure 5.

Figure 4: Schematic overview of the network structure for one transaction of the PaySim dataset for network 2.

 10

Graduation thesis C.A. Sinchico Arias | Utrecht University | June 30, 2022

4.3 Properties of the data model
The properties of the data that can be stored in the graph data model are based on the properties that

are included in the two datasets: IEEE-CIS Fraud Detection and PaySim. As such, the properties that can be

stored in the graph data model are all the properties the PaySim dataset contains. These properties are

also included in the IEE-CIS Fraud Detection dataset and thus are likely to be common properties of

financial transaction data. However, if data is stored in the graph database containing more properties

than those included in the PaySim dataset, this data will be lost.

 11

Graduation thesis C.A. Sinchico Arias | Utrecht University | June 30, 2022

5 Implementation
The generated graph data models are modeled in Python via the Py2Neo package, as explained in chapter

3. With this package, the stored data in the graph database can be sent to Neo4J to create a graph. Both

models are validated on the PaySim dataset and this chapter elaborates on the implementations.

5.1 Configuration file
As the data models have to be generalized, a configuration file has been composed as a YAML-filetype,

where parameters of the data can be given. An overview of what this configuration file looks like is shown

in Figure 4. At the start of the configuration file, the credentials to connect to the graph database in Neo4j

have to be entered, see Figure 4.

Figure 4: Configuration file for the graph data model of type YAML.

At the start of the configuration file, the credentials to connect to the graph database in Neo4j have to be

entered. These contain the URI, the username, and the password of the graph database.

In the next section, properties can be given to the source node. For this, the name of the source account,

the balance before the transaction, and the balance after the transaction have to be entered. These

variables will have to be of the same name as their respective column headers in the CSV file. The same

information is required for the destination account in the following section, lines 19 – 22.

In the next section, lines 25 – 31, properties of the transaction have to be filled in. These will either be

node properties or edge properties, depending on the structure of the network, see chapter 3. These

transaction properties consist of the name of the transaction, the timestep, the type, the amount,

whether the transaction was fraudulent, and whether the transaction was flagged as fraudulent.

 12

Graduation thesis C.A. Sinchico Arias | Utrecht University | June 30, 2022

Hereafter, the variable Model_structure has to be defined. This variable can contain either the value 1 so

that the transactions will be generated as nodes with their respective node properties, or value 2 so that

the transactions will be generated as edges with their respective edge properties.

The final variable, Timesteps_to_create, ensures that the network will be generated for the number of

timesteps that are entered. If this field is left empty, the network will be generated for all timesteps.

5.2 Graph Data Model
In this section, the full Python script of the graph data model will be reviewed per section. The whole code

is added in the Appendix. In the first part of the graph data model, a YAML file reader is defined so that

the configuration file can be read, see Figure 5.

Figure 5: Function to read the configuration file in.

This YAML file reader reads the Configuration.yaml file that is in the same working directory as the Python

script of the graph data model and reads the information in as config_data. Next, the connection is made

between the Python script and Neo4J with the following section of the code:

Figure 6: Making the connection to the graph database system, Neo4J.

A function for automated CSV reading is implemented in the code as well, see Figure 6.

Figure 7: Function for automated CSV reading.

 13

Graduation thesis C.A. Sinchico Arias | Utrecht University | June 30, 2022

By implementing this automated function for CSV reading, multiple CSV files can be handled that are in

the same working directory as the Python script. Next, the financial transaction data is grouped by their

timestep so that the network can be generated for a certain amount of timesteps, see Figure 8.

Figure 8: The financial transaction data is grouped by timesteps.

Following this, the next part is created to read in the number of timesteps the network has to be

generated for. If no amount has been entered in the configuration file, the network will be generated for

all timesteps, see Figure 9.

Figure 9: Reading in the number of timesteps for the network from the configuration file.

The following part of the code is developed to generate the network graph of model structure 1, where

transactions are generated as nodes. See Figure 10.

 14

Graduation thesis C.A. Sinchico Arias | Utrecht University | June 30, 2022

Figure 10: Code for the graph data model of structure 1 with transactions as nodes.

The first for loop checks whether the timesteps exceed the entered amount of timesteps the network has

to contain. If this is the case, the code stops, and the network is finished. Next, a constant is added so that

the data can be generated in batches, see 5.3.2. Hereafter, the data is stored as source-, destination-, and

transaction nodes with their respective properties. Following this, the relationships between the nodes,

the edges, are generated. The nodes and edges are then created and committed to Neo4J when more

than 50 transactions have been processed, see 5.3.2.

If the network graph has to be generated with transactions as edges, model structure 2 is generated. The

following code then applies, see Figure 11.

 15

Graduation thesis C.A. Sinchico Arias | Utrecht University | June 30, 2022

Figure 11: Code for generating the network with transactions as edges.

This code is nearly the same as the code for the network of model structure 1. The difference lies

between the creation of the relationships, the edges. In this part, the transaction is generated as an edge

(source_to_dest) and thus contains edge properties. If no structure of network is entered in the

configuration file, the output of the code is a statement stating: “Please enter which model type should be

generated in the Configuration file”.

5.3 Model Performance
As described in chapter 3, the structure of the model is of high importance as to how well the model

performs. To validate the model and measure its performance the PaySim dataset is stored using the

developed models. The performance is then measured by storing the first 100 elements of this dataset

 16

Graduation thesis C.A. Sinchico Arias | Utrecht University | June 30, 2022

and presenting them in a graph. This is also done for the first timestep of this dataset, containing 2708

elements.

5.3.1 Performance measures
The structure of the generated model will be of high importance as to how well a model performs. For

this research three main measures of performance are looked at to determine how well the models are

modeled:

- Generalization: How well the model can be applied to different datasets.

- Completeness of data storage: How well the data is stored in its completion.

- Computational efficiency: How well the model performs in terms of speed.

5.3.2 Model network structure 1
The results of the average time it took to store the first 100 elements of the PaySim dataset, and the first

timestep, containing 2708 elements, are shown in Table 2. These results are based on averaging the time

it took to store the data and generate the network graph five different times.

Table 2: Results of storing the data and generating the network graph for the first 100 elements and first timestep.
 Average time

First 100 elements 1.945 seconds

First timestep (2708 elements) 546.884 seconds

As the data is stored in nodes and relationships before the graph is created, the amount of iterations per

second of the model drops immensely as time progresses. Upon the start of running the code, the

number of iterations per second is on average 130 It/s. After around 200 iterations, this amount of

iterations per second drops down to 3 It/s. By implementing the method to load the data and create the

graph in batches, a high amount of iterations per second can be maintained as every time a batch is

generated, the iterations per second are the same as at the start of the process, averaging 130 It/s. This

model stores and loads the data in batches of 50. The results of the average time it took to store the first

time step are shown in Table 3. This result is based on averaging the time it took to store the data and

generate the network graph five different times.

Table 3: Results of storing the data and generating the graph by implementing batch sizes.
 Average time

First timestep 36.177 seconds

Figure 12 shows what the graph network looks like in Neo4J when the transactions are modeled as edges,

see Figure 12.

 17

Graduation thesis C.A. Sinchico Arias | Utrecht University | June 30, 2022

Figure 12: Overview of the structure of the financial transaction network graph with transactions as nodes in Neo4J.

5.3.3 Model network structure 2
The results of the average time it took to store the first 100 elements of the PaySim dataset, and the first

timestep where transactions are edges, are shown in Table 4. These results are based on averaging the

time it took to store the data and generate the network graph five different times.

Table 4: Results of storing the data and generating the network graph for the first 100 elements and first timestep.
 Average time

First 100 elements 1.327 seconds

First timestep 219.534 seconds

The results of the average time it took to store the first timestep, when the data is stored and the network

is generated in batches of 50, are shown in Table 5. This result is based on averaging the time it took to

store the data and generate the network graph five different times.

Table 5: Results of storing the data and generating the graph by implementing batch sizes.
 Average time

First timestep 14.034 seconds

Figure 13 shows what the graph network looks like in Neo4J when the transactions are modeled as edges,

see Figure 13.

 18

Graduation thesis C.A. Sinchico Arias | Utrecht University | June 30, 2022

Figure 13: Overview of the structure of the financial transaction network graph with transactions as edges in Neo4J.

 19

Graduation thesis C.A. Sinchico Arias | Utrecht University | June 30, 2022

6 Conclusion and discussion
This report elaborates on the research for developing a model for storing temporal financial transaction

data. In chapter 2 the formulation of this research question is divided into sub-questions. These sub-

questions will be answered in this chapter. Finally, recommendations are made for possible follow-up

research.

6.1 Research conclusions
Due to the strict regulations concerning data privacy, financial transaction data is hard to acquire. As such,

this research makes use of the PaySim dataset, a synthetically generated dataset, see chapter 4. This

dataset is used to validate and measure the performance of the developed graph data model. The data is

then stored in a graph database so that a labeled property graph can be generated. This type of graph

works best for displaying financial transactions due to the possibility to store the data as nodes and edges

with properties.

As seen in chapter 5, the structure of the network influences the time it takes to store the data in the

graph database and generate the network graph. The developed graph data model can generate two

different network structures, one with transactions as nodes, and one with transactions as edges. The

properties of the transaction data will thus be different per scenario. These properties will be node

properties if the transactions are stored and presented as nodes, and edge properties if the transactions

are stored and presented as edges. The computational efficiency is measured by the time it took to store

the first 100 transactions and all the transactions of the first timestep of the PaySim dataset. This is then

measured five times with the result being the average of the five measurements. It takes the model

546.883 seconds to store the transactions of the first timestep and create a graph when the transactions

are generated as nodes. However, when transactions are generated as edges, the time it takes for the

model to run is 219.534 seconds, which is 59.86% faster than the time it takes to run the model with

transactions as nodes. This increase in performance time is due to the number of nodes and edges that

have to be created. When transactions are represented as nodes, a single transaction will consist of three

nodes and two edges. However, when transactions are represented as edges, a single transaction will

consist of two nodes and one edge. Therefore, fewer nodes and edges have to be created to store the

data and to create the graph.

The longer the model runs, a decrease in iterations per second is observed. This results in a decrease in

performance time of the model. At the start of the run, the model performs with 130 It/s and quickly

drops down to 3 It/s, resulting in complete data storage and graph creation for the network with

transactions as nodes and the network with transactions as edges in respectively 546.833 seconds and

219.534 seconds. To increase the performance of the model, the data is loaded and stored in batches of

50. This ensures a high amount of iterations are maintained throughout the process, as the number of

iterations per second will reset after the batch is generated, averaging around 130 It/s. This reduces the

time it takes to store the data and to generate the network graph for the transactions of the first timestep

of the PaySim dataset. This process is reduced by 93.38% of the original time when transactions are

stored and modeled as nodes, resulting in 36.177 seconds to complete. It reduces the time it takes to

store the data and to generate the network graph where transactions are edges by 93.61% of the original

time, resulting in 14.034 seconds to complete the process. As expected, the model with transactions as

 20

Graduation thesis C.A. Sinchico Arias | Utrecht University | June 30, 2022

edges is faster than the model with transactions as nodes. This difference in performance amounts to

61.21%.

The aim of this research was to develop a generalized model that could store temporal financial

transaction data and present it in a graph. One step of this process is to load the data in Python from

different files, for example, different or multiple CSV files, and store these in the graph database. Even

though multiple CSV files can be read in, the developed model can only store data from one single CSV file

in the graph database. So if data needs to be extracted from multiple CSV files this model is not suitable.

One way to work around this limitation could be to do data preparation in advance, for example store the

data from different CSV files into one single CSV file. Another limitation of this model is that the

properties that can be stored are hard coded. This means that only the following properties of the data,

see chapter 5, can be stored:

- Timestep of transaction;

- Type of transaction;

- Amount of transaction;

- Name of the source account;

- Balance before transaction of the source account;

- Balance after transaction of the source account;

- Name of the destination account;

- Balance before transaction of the destination account;

- Balance after transaction of the destination account;

- Whether the transaction is fraud or not;

- Whether the transaction is flagged as fraud or not.

Because of the predefined set of properties of the data that can be stored in the graph data model, data is

lost if more properties are present in the data.

6.2 Recommendations for future research
Even though the developed graph data model stores data in a graph database and generates a financial

network graph in Neo4J, this model is still in a very early stage. Future studies could address the way

properties of the data are handled. In the current model, a predefined set of properties can be loaded

into the model but as some datasets contain more data, the properties should depend on the dataset

itself. This way no data is lost in the process of data storage. Additionally, more time could be spent on

the structure of the Python code of the model as this has influence on the performance of the model as

well.

Another important limitation of this study is the way data is loaded into the model. As stated before, the

current model can load multiple CSV files, but can only extract data from a single CSV file. However,

financial transaction data can be provided in more than one data file. One way to overcome this limitation

would be to do data preparation. For instance, extensive data preparation can be done before loading the

data into the database so that all the data is combined into a single data file.

Finally, the model was tweaked and performance was measured based on the first timestep of the PaySim

dataset. To gain better insights into the performance of the model, the model should be tweaked and

performance should be measured based on more data. However, this was not feasible due to the scope of

this research.

 21

 Graduation thesis C.A. Sinchico Arias | Utrecht University | June 30, 2022

References
Anadiotis, G. (2017, May 19). Graph databases and RDF: It's a family affair. Retrieved from ZDNet:

https://www.zdnet.com/article/graph-databases-and-rdf-its-a-family-affair/

Anadiotis, G. (2020, Januari 30). Knowledge graph evolution: Platforms that speak your language.

Retrieved from ZDNet: https://www.zdnet.com/article/knowledge-graph-evolution-platforms-

that-speak-your-language/

Angles, R. (2018). The Property Graph Database Model. (AMW, Ed.)

Bechberger, D. (2019, June 17). A Skeptics Guide To Graph Databases. Oslo.

European Comission, Eurostat. (2014). European System of Accounts. ESA2010. doi:10.2785/16644

Frisendal, T. (2019, March 11). The Atoms and Molecules of Data Models. Retrieved from Dataversity:

https://www.dataversity.net/the-atoms-and-molecules-of-data-models/

Hoofnagle, C. J., van der Sloot, B., & Zuiderveen Borgesius, F. (2019). The European Union General Data

Protection Regulation: What It Is And What It. Information & Communications Technology Law,

65-98. doi:10.1080/13600834.2019.1573501

IBM Cloud Education. (2020, August 25). Data Modeling. Retrieved from IBM:

https://www.ibm.com/cloud/learn/data-modeling

ING. (n.d.). Soorten oplichting en fraude. Retrieved June 17, 2022, from ING: https://www.ing.nl/de-

ing/veilig-bankieren/soorten-oplichting-fraude/index.html

Knight, M. (2021, April 28). What is a Property Graph. Retrieved from Dataversity:

https://www.dataversity.net/what-is-a-property-graph/#

Lopez-Rojas, E. A., Elmir, A., & Axelsson, S. (2016). PaySim: A financial mobile money simulator for fraud

detection. Proceedings of the European Modeling and Simulation Symposium.

Loshin, P. (n.d.). Resource Description Framework (RDF). Retrieved June 20, 2022, from TechTarget:

https://www.techtarget.com/searchapparchitecture/definition/Resource-Description-

Framework-

RDF#:~:text=A%20consistent%20framework%20encourages%20the,to%20exchange%20informati

on%20more%20easily.

Ma, Z., Capretz, M. M., & Yan, L. (2016, December 7). Storing massive Resource Description Framework

(RDF) data: a survey. (C. U. Press, Ed.) doi:10.1017/S0269888916000217

Maturana, R. A. (2015, October 29). What are the differences between a Graph Database and a Triple

Store. Retrieved from GNOSS: https://nextweb.gnoss.com/en/resource/what-are-the-

differences-between-a-graph-database/ced22960-845d-410f-9e3c-

5616c603993e#:~:text=RDF%20triple%20stores%20focus%20solely%20on%20storing%20rows%2

0of%20RDF%20triples.&text=Graph%20databases%20are%20node%2C%

 22

Graduation thesis C.A. Sinchico Arias | Utrecht University | June 30, 2022

Millán, P. P. (2017). Network analysis of protein interaction data: an introduction.

doi:10.6019/tol.networks_t.2016.00001.1

Neo4J. (n.d.). Cypher Query Language. Retrieved from Neo4j: https://neo4j.com/developer/cypher/

Neo4J. (n.d.). Neo4j Graph Database. Retrieved from Neo4J: https://neo4j.com/product/neo4j-graph-

database/

OnToText. (2019, October 22). What is an RDF Triplestore? Retrieved from OnToText:

https://www.ontotext.com/knowledgehub/fundamentals/what-is-rdf-

triplestore/#:~:text=LinkedIn%20Twitter%20Facebook-

,The%20RDF%20triplestore%20is%20a%20type%20of%20graph%20database%20that,with%20ma

terialized%20links%20between%20them.

Raj, A. (2022, April 11). IBM Study shows financial fraud a big problem in the US. Retrieved from TechHQ:

https://techhq.com/2022/04/ibm-study-shows-financial-fraud-a-big-problem-in-the-us/

Robinson, I., Webber, J., & Eifrem, E. (2015). Graph Databases (Second edition ed.). (I. Neo Technology,

Ed.) United States of America: O'Reilly Media, Inc.

Sağlam, U. (2018, January 1). Neo4j CEO discusses the pros and cons of RDF. Retrieved from Medium:

https://medium.com/@ugur.saglam/neo4j-ceo-discusses-the-pros-and-cons-of-rdf-b6ff6bb9a740

Stefani, E., & Hoxha, K. (2018, November 24). Implementing Triple-Stores using NoSQL Databases.

TIBCO. (2021, June 18). What is Transactional Data? Retrieved from TIBCO:

https://www.tibco.com/reference-center/what-is-transactional-data

U.S. Department of Justice. (2014, August 21). Bank of America to Pay $16.65 Billion in Historic Justice

Department. Retrieved from Office of Public Affairs: https://www.justice.gov/opa/pr/bank-

america-pay-1665-billion-historic-justice-department-settlement-financial-fraud-leading

van Beek, D. (2021). Data Science for Decision Makers & Data Professionals (1st edition ed.). Passionned

Publishers.

 23

Graduation thesis C.A. Sinchico Arias | Utrecht University | June 30, 2022

Appendix

I Configuration file
#Configuration: Fill in the credentials for connecting to the neo4j database.

Connection:

 #Enter url to database from Neo4j

 URI: 'bolt://localhost:7687'

 #Enter credentials for database Neo4j

 User: Amaru

 Password: Amaru

#Node creation: Fill the variables with the matching column names from the csv.

#Create the source node; fill in name, balance_before, and balance_after of the source account.

Source_node:

 name: nameOrig

 BalanceBefore: oldbalanceOrg

 BalanceAfter: newbalanceOrig

#Create the destination node; fill in name, balance_before, and balance_after of the destination account.

Destination_node:

 name: nameDest

 BalanceBefore: oldbalanceDest

 BalanceAfter: newbalanceDest

#Create transaction node/edge; fill in the name, the timestep, which type of transaction, the amount, if it is fraud, and if it

is flagged fraud.

Transaction_node:

 name: nameDest

 Timestep: step

 Type: type

 Amount: amount

 IsFraud: isFraud

 FlaggedFraud: isFlaggedFraud

#Enter which model should be created:

#Enter 1 for Transaction as nodes,

#Enter 2 for Transaction as edges.

Model_structure: 1

#Enter the amount of timesteps you want to see in the graph.

Timesteps_to_create: 1 #Note: if this field is empty, the graph will be created on all timesteps.

 24

 Graduation thesis C.A. Sinchico Arias | Utrecht University | June 30, 2022

II Python code of the model
#Importing libraries

import pandas as pd

import py2neo

from py2neo import Graph

from py2neo import Node, Relationship

import time

from tqdm import tqdm

import os, shutil

import yaml

Checking for yaml:

def yaml_loader(filepath):

 """Loads a yaml file"""

 with open(filepath, "r") as file_descriptor:

 data = yaml.safe_load(file_descriptor)

 return data

filepath = "Configuration.yaml"

config_data = yaml_loader(filepath)

#Properties of the nodes:

source_props = config_data['Source_node']

destination_props = config_data['Destination_node']

transaction_props = config_data['Transaction_node']

#Make the connection to neo4j

connection = config_data['Connection']

graph = Graph(connection['URI'], user=connection['User'], password=connection['Password'])

Read in the datasets

Automation for reading csv is done so that multiple csv's can be read in.

This might be the case if nodes and edges have different csv's.

Find CSV's in my current working directory:

#isolate only the CSV files

def csv_files():

 #get names of only csv files in the directory

 csv_files = []

 for file in os.listdir(os.getcwd()):

 if file.endswith('.csv'):

 csv_files.append(file)

 return csv_files

def create_df(csv_files):

 #path to the csv files

 data_path = os.getcwd()+'\\'

 #loop through the files and create the dataframe

 df = {}

 for file in csv_files:

 25

Graduation thesis C.A. Sinchico Arias | Utrecht University | June 30, 2022

 try:

 df[file] = pd.read_csv(data_path+file)

 except UnicodeDecodeError:

 df[file] = pd.read_csv(data_path+file, encoding="ISO-8859-1")

 return df

csv_files = csv_files()

df = create_df(csv_files)

Group timesteps (when automatic df read in)

grouped_df=df[csv_files[0]].groupby(transaction_props['Timestep'])

#Amount of timesteps that have to be generated

#Amount is filled in config file. If it is empty, generate whole network.

#If filled in, generate network up to filled in timestep

if (config_data['Timesteps_to_create'] == ' '):

 amount_of_timesteps = df[csv_files[0]][transaction_props['Timestep']].max()

else: amount_of_timesteps = config_data['Timesteps_to_create']

 #######Making the models

 #Structure model 1

if (config_data['Model_structure'] == 1):

 #Create groups for the different timesteps

 for group_name, group in grouped_df:

 #Set if statement so process stops whenever the entered timestep has been reached

 if group_name > amount_of_timesteps:

 break

 start_time = time.time()

 tx = graph.begin()

 #Adding a constant for batch iterations: if c>50, end and start again

 c=0

 for index, row in tqdm(group.iterrows()):

 #Creating source nodes

 source_node = Node('Accounts',

 name=row[config_data['Source_node']['name']],

 BalanceBefore=row[config_data['Source_node']['BalanceBefore']],

 BalanceAfter=row[config_data['Source_node']['BalanceAfter']])

 #Creating destination nodes

 destination_node = Node('Accounts',

 name=row[destination_props['name']],

 BalanceBefore=row[destination_props['BalanceBefore']],

 BalanceAfter=row[destination_props['BalanceAfter']])

 #Creating transaction nodes

 transaction_node = Node('Transaction',

 name=(row[config_data['Source_node']['name']] + "->"+ row[destination_props['name']]),

 Timestep=row[transaction_props['Timestep']],

 Type=row[transaction_props['Type']],

 Amount= row[transaction_props['Amount']],

 26

 Graduation thesis C.A. Sinchico Arias | Utrecht University | June 30, 2022

 Fraud=row[transaction_props['IsFraud']],

 FlaggedFraud=row[transaction_props["FlaggedFraud"]])

 #Creating relationships

 source_to_trans = Relationship(source_node, "From", transaction_node)

 trans_to_dest = Relationship(transaction_node, "To", destination_node)

 tx.create(source_node)

 tx.create(destination_node)

 tx.create(transaction_node)

 tx.create(source_to_trans)

 tx.create(trans_to_dest)

#Nodes/edges are saved before committed to neo4j. For increasing comp eff, generate 50 rows of nodes/edges and commit

 #these to neo4j before starting the next 50. This drastically increases the comp eff

 if c>50:

 graph.commit(tx)

 tx = graph.begin()

 c=0

 c+=1

 #Commit to neo4j

 graph.commit(tx)

 print("Timestep ", group_name , "has been succesfully generated")

 print('Graph creation is complete. Cell elapsed', time.time()-start_time, 'seconds')

#If not model structure 1, then generate model 2;

elif (config_data['Model_structure'] == 2):

 # ## Second method

Nodes: accounts, and edges: transactions

#Create groups for the different timesteps

 for group_name, group in grouped_df:

 #Set if statement so process stops whenever the entered timestep has been reached

 if group_name > amount_of_timesteps:

 break

 #Start creating the network

 start_time = time.time()

 tx = graph.begin()

 #Adding a constant for batch iterations: if c>50, end and start again

 c=0

 for index, row in tqdm(group.iterrows()):

 #Creating source nodes

 source_node = Node('Accounts',

 name=row[source_props['name']],

 BalanceBefore=row[source_props['BalanceBefore']],

 BalanceAfter=row[source_props['BalanceAfter']])

 #Creating destination nodes

 27

Graduation thesis C.A. Sinchico Arias | Utrecht University | June 30, 2022

 destination_node = Node('Accounts',

 name=row[destination_props['name']],

 BalanceBefore=row[destination_props['BalanceBefore']],

 BalanceAfter=row[destination_props['BalanceAfter']])

 #Creating transaction edges

 source_to_dest = Relationship(source_node, "From", destination_node,

 name=(row[config_data['Source_node']['name']] + "->"+ row[destination_props['name']]),

 Timestep=row[transaction_props['Timestep']],

 Type=row[transaction_props['Type']],

 Amount= row[transaction_props['Amount']],

 Fraud=row[transaction_props['IsFraud']],

 FlaggedFraud=row[transaction_props["FlaggedFraud"]])

 #Create the source nodes

 tx.create(source_node)

 #Create the destination nodes

 tx.create(destination_node)

 #Create edges

 tx.create(source_to_dest)

#Nodes/edges are saved before committed to neo4j. For increasing comp eff, generate 50 rows of nodes/edges and

commit

 #these to neo4j before starting the next 50. This drastically increases the comp eff.

 if c>50:

 graph.commit(tx)

 tx = graph.begin()

 c=0

 c+=1

 graph.commit(tx)

 print("Timestep ", group_name , "has been succesfully generated")

 print('Graph creation is complete. Cell elapsed', time.time()-start_time, 'seconds')

 #If the user does not define which model structure to generate, print the following:

else: print("Please enter which model type should be generated in the Configuration file")

