
The DIFFC Model: Addressing
documentation challenges in

Large-Scale Agile
Requirements Engineering

Agnes Aba Wadee
(6398197)

Master’s Thesis (Final version)

MSc. Business Informatics

Department of Information and Computing sciences,
Utrecht University, The Netherlands

Dr. Fabiano Dalpiaz (First supervisor)
Dr. Gerard Wagenaar (Second supervisor)

September 2022

Abstract

Agile Requirements Engineering (RE) addresses several challenges in plan-driven
RE but poses new challenges such as minimal documentation. With less focus
on documentation and more focus on developing working software, documen-
tation tends to be overlooked. In this research, we sought to address the chal-
lenges found in documentation by exploring the impact of Agile RE activities on
the documentation in multi-team software projects. We conduct documentation
analyses and eight semi-structured interviews with experts from two multi-team
Agile Software Development (ASD) projects. The findings address the varia-
tions in how ASD is adopted at scale and the RE activities that are embedded
in these practices as well as the documentation artefacts used. We identify the
challenges and strengths facing the documentation artefacts and the documenta-
tion processes within the teams. Previous studies on software process initiatives
address process improvement in agile teams but hardly address the issues found
in the documentation. Therefore, we propose the DIFFC model, a lightweight
treatment that focuses on the strengths of feedback within agile teams. Our
model is validated via an experiment in two multi-team software projects. As
a first step, the results are promising with potential for improvement in future
research. Our treatment may assist practitioners in addressing the issues found
in their documentation and improving their documentation processes.

Keywords: Agile Requirements Engineering, Requirements Engineering (RE),
Agile Software Development (ASD), Large-scale Agile Software Development,
Software Documentation, Software Process Improvement

i

Acknowledgements

It has been a long eight-month journey with highs and lows, but I could not
have achieved a successful completion of this thesis without the help of many. To
begin, I would like to express my gratitude to my first supervisor, Dr Fabiano
Dalpiaz, for his frequent and detailed feedback and his help any time I had
questions. There were moments when I had difficulties moving forward, but after
our discussions, it became clear how to proceed. It was a pleasant atmosphere
working together and I cannot thank him enough for all his help and support.
Secondly, I would like to thank my daily supervisor for his feedback and the
discussions that helped shaped the case studies. Also, many thanks to my
second supervisor, Dr Gerard Wagenaar for all his feedback that helped shaped
this research. Again, my thanks go to the members of the RE lab of Utrecht
University for their fruitful discussions and tips that helped this research.

Combining a full-time study with a part-time job was not always easy. I could
not have made it this far without the constant support and encouragement from
my husband, Joel. His prayers, advice, and always seeing the best in me, were
reasons to keep me going. Many thanks to my sisters, Adjoa and Johanna,
my friends, Taofeeqat, Maartje, Jahmilla, and my family for being of great
encouragement and support throughout this journey. Also, to my church family
for all their prayers and encouragement throughout this journey.

Last but not least, this research would not have been a success without the
enthusiasm and participation of the experts from the projects, who dedicated
their time to the interviews and the experiment. I am forever grateful for their
willingness to help. Lastly, I express my gratitude to my managers who gave
valuable feedback on this thesis, and my colleagues for being flexible and coping
with my thesis schedule.

Agnes Wadee, 9th September 2022.

ii

iii

Acronyms

ASD Agile Software Development.
ASM Agile Scaling Method.
AUP Agile Unified Process.

BDD Behavioural Driven Development.

CMM Capability Maturity Model.
CoE Centre of Excellence.
CoP Communities of Practices.
CSD Continuous Software Delivery.

DAD Disciplined Agile Delivery.
DIFFC Documentation Improvement Framework via

Feedback Cycles.
DoR Definition of Ready.
DSDM Dynamic Software Development Method.

GQM Goal-Question-Metric.

JIT Just-in-time.

KIT Key Informant Technique.

LeSS Large-Scale Scrum.
LSOs Larger Software Organisations.
LSPs Larger Software Projects.

RE Requirements Engineering.

S@S Scrum@Scale.
SAFe Scaled Agile Framework.
SDLC Software Development Life Cycle.
SPD Software Project Data.
SPI Software Process Improvement.

TDD Test Driven Development.

XP eXtreme Programming.

iv

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Research Questions and Objectives 2
1.3 Expected Contributions . 4
1.4 Thesis Outline . 4

2 Related Literature 5
2.1 The Software Development Life Cycle 6

2.1.1 Evolution of Software Development Methods 6
2.2 Agile Development Methods . 8

2.2.1 EXtreme Programming (XP) 10
2.2.2 Scrum . 11
2.2.3 Kanban . 12
2.2.4 Feedback in ASD . 12

2.3 Agile Requirements Engineering 13
2.3.1 Agile RE Practices . 14
2.3.2 Challenges of Agile RE Practices 15

2.4 Agile Methods in Large Software Organisations 17
2.4.1 Scaled Agile Framework (SAFe) 19
2.4.2 Disciplined Agile Delivery (DAD) 21
2.4.3 Agile Scaling Method (ASM) 21
2.4.4 Large-Scale Scrum (LeSS) 22
2.4.5 Scrum@Scale (S@S) . 23
2.4.6 Internally Created Methods 24
2.4.7 Comparison of scaled agile methods 26

2.5 Software Documentation Practices 28
2.5.1 Benefits of Documentation 29
2.5.2 Challenges Concerning Documentation 30
2.5.3 Artefacts in ASD . 34
2.5.4 Documentation Practices in ASD 37
2.5.5 Guidelines on Agile Documentation 38
2.5.6 Tools for Documentation in ASD 39

2.6 Conclusion . 40

3 Research Methods 42
3.1 Research objective . 42
3.2 A Design Science Approach . 46

v

3.3 Research Context . 47
3.4 Case Selection . 48

3.4.1 Overview of selected cases 49
3.5 Data Collection . 49

3.5.1 Data Collection Procedure 50
3.5.2 Pilot Study . 51

3.6 Data Analysis . 51
3.6.1 Semi-structured interviews 52
3.6.2 Documentation analyses 54
3.6.3 Treatment validation experiment 54

4 Case Descriptions 56
4.1 Introduction to the Cases . 56

4.1.1 P1: Education . 56
4.1.2 P2: Civil Engineering . 57

4.2 Agile method . 57
4.2.1 Roles . 58
4.2.2 Processes . 59
4.2.3 Tools . 70

4.3 RE Activities . 71
4.3.1 Elicitation . 71
4.3.2 Analysis . 72
4.3.3 Specification . 73
4.3.4 Validation . 73
4.3.5 Requirements Management 74

4.4 Documentation Artefacts . 75
4.5 Conclusion . 77

5 Problem Investigation 78
5.1 Information Content (What) . 78

5.1.1 Correctness . 78
5.1.2 Completeness . 82
5.1.3 Up-to-dateness . 84

5.2 Information Content (How) . 90
5.2.1 Maintainability . 90
5.2.2 Readability . 94
5.2.3 Usability . 95
5.2.4 Usefulness . 97

5.3 Process Related . 99
5.4 Conclusion . 102

6 Treatment Design 104
6.1 Variations in Scaled ASD Projects 105
6.2 Software Process Improvement (SPI) in ASD 105
6.3 Process Improvement via Informal Interactions 107
6.4 The Challenges Associated with Feedback Cycles 108
6.5 Documentation Improvement Framework via Feedback Cycles

(DIFFC) . 109
6.5.1 DIFFC for Practitioners 110
6.5.2 DIFFC for Science . 112

vi

6.5.3 Retrospective Games . 115
6.6 Conclusion . 117

7 Treatment Validation 119
7.1 Research Approach . 119
7.2 Experimental Setup . 122
7.3 Experimental Execution . 124

7.3.1 Validation Survey . 127
7.4 Findings (Longitudinal study) . 128

7.4.1 Retrospective Sprint n (26) 128
7.4.2 Sprint Planning Sprint n + 1 (27) 129
7.4.3 Daily Scrum meetings Sprint n+1 (27) 129
7.4.4 Retrospective Sprint n + 1 (27) 130

7.5 Findings (Preliminary study) . 130
7.6 Results: Measure of effectiveness of the DIFFC model 131

7.6.1 Ease of use . 131
7.6.2 Productivity . 133
7.6.3 Quality . 135
7.6.4 Usefulness . 136
7.6.5 Use . 138
7.6.6 Pre-Post Comparison . 139
7.6.7 Evaluation of Hypotheses 141
7.6.8 Conclusion . 141

8 Conclusions 142
8.1 Answers to Research Questions 142

8.1.1 SRQ1: How is Agile Software Development (ASD) adopted
within a multi-team software project? 143

8.1.2 SRQ2: Which requirements engineering practices can be
identified in the adopted ASD approach? 145

8.1.3 SRQ3: Which kinds of documentation artefacts are used
for the various requirements engineering practices within
the ASD approach? . 146

8.1.4 SRQ4: What is the current state of the identified docu-
mentation (from SRQ3) within the project? 147

8.1.5 SRQ5: What is the impact of requirements change on the
identified documentation (from SRQ3) within the project? 150

8.1.6 SRQ6: What framework can be used to address docu-
mentation issues by improving documentation practices
in multi-team software projects? 150

8.1.7 SRQ7: What is the effectiveness of the proposed frame-
work from SRQ6? . 151

8.2 Implications for Research and Practitioners 151
8.3 Implications for Future Work . 152

9 Discussions 153
9.1 Research Limitations . 153

A Invitation to participate 165

vii

B Consent form 168

C Questions for semi-structured interview - Type 1 171

D Questions for semi-structured interview - Type 2 174

E Consent form of experimental study 178

F Emailed guidelines for experiment 186

G Prepared Retrospective Board using the Role-Expectation Ma-
trix game 188

H Validation Survey 189

viii

Chapter 1

Introduction

In a digital age, where information is constantly changing at a rapid pace,
documentation is essential to the success of software projects [1]. This thesis
proposes a framework to address the issues found in documentation by exploring
the impact of requirements engineering practices on documentation in large-
scale software projects that adopt agile software development. Our research
is positioned at the intersection of three domains: agile software development,
requirements engineering, and software documentation.

The structure of this chapter is as follows. First, we introduce the problem
statement in Section 1.1. Subsequently, we present the research questions in
Section 1.2. Then, we highlight the expected contributions and an overview of
the remainder of this thesis in Sections 1.3 and 1.4, respectively.

1.1 Problem Statement

Over the past two decades, there has been an increase in the number of com-
panies adopting agile methods in software development projects [2]. The shift
has been from traditional methods, such as waterfall, to agile methods such as
Scrum, feature-driven development, eXtreme programming, among others [3].
Agile methods are guided by the principles in the Agile Manifesto. These prin-
ciples distinguish agile from traditional approaches by improving customer col-
laboration, ensuring less focus on processes and more focus on the strengths
and creativity of personnel [4]. Additionally, these principles ensure flexibility
in coping with change and that developers focus more on having working soft-
ware rather than extensive documentation to deliver features to the customer
rapidly [5].

The success of an agile method is context specific. Agile methods are not suf-
ficient on their own for large and complex environments, requiring them to be
tailored and combined with other methods to address the complete software de-
livery cycle [6]. This is because agile methods were originally targeted at small,
co-located, and self-organising teams who develop software in small iterations
and in close collaboration with the customers [7]. Also, Kettunen (2007) argues

1

that “no one agile software method is in practice a complete solution for all
situations” [7, p. 542].

Requirements engineering (RE) activities are practised in agile software devel-
opment but they are informally used and the quality of use depends on the
skills and expertise of the individuals [8]. In this research, we focus on the RE
practices in large-scale (multi-team) agile software development. The reason
why we scope our research to multi-team projects is that the larger the project,
the greater the need is for formal documentation, which is contrary to the prin-
ciples of agile software development [9]. Large software projects tend to have
more dependencies between projects and teams compared to smaller organisa-
tions [9]. Hence, the scarcity of detailed and well-written documentation can be
detrimental to large-scale software development [10]. Moreover, RE activities
are considered one of the crucial activities in software development, because
the problems enclosed in the system as a result of the elicited requirements are
the most expensive to solve [11]. Hence, software engineers should strive to
develop high-quality systems using techniques and tools [12]. Although agile
RE practices address several challenges in traditional RE, they also pose new
RE challenges including minimal documentation [13]. With less focus on docu-
mentation and more focus on informal communication and developing working
software at the end of each iteration, insufficient documentation in agile meth-
ods is a limitation in multi-team software projects [10]. Important features that
are not identified upfront in agile methods may be forgotten or misunderstood
and they might require rework later on [10].

Although software documentation is one of the oldest practices in software en-
gineering, it is often neglected [14]. The process of writing documentation is
perceived as a burdensome intrusive side-task and it is usually submitted a
posteriori [15]. Developers tend to focus on delivering working software for a
deadline and there is hardly enough time to document the decisions and knowl-
edge after the project has been delivered [16]. Besides, the Agile Manifesto
emphasises the delivery of the working software over comprehensive documen-
tation [5]. Even though Agile Software Development (ASD) methods are de-
scribed as lightweight, there are many artefacts scattered throughout the entire
ecosystem of tools as opposed to being documented in a single self-contained
document [17]. These artefacts play a crucial role in the various phases of the
software development life cycle [18]. They serve as a means of communication
and knowledge transfer in software development [19]. Since documentation is
overlooked in agile software development, it is even more important in large-
scale agile methods as verbal communication is not as effective across teams in
comparison with a smaller project. Hence, future research suggestions propose
the need to optimise the documentation processes [20]. With that, we introduce
our research questions in the next section.

1.2 Research Questions and Objectives

The objective of this research is to investigate the impact of requirements engi-
neering practices on documentation in multi-team ASD projects. The research
begins with a literature study, followed by a design science approach [21], adopt-
ing a multiple-case study [22] for problem investigation. The multiple-case study

2

collects and analyses data on two cases (software projects). The case studies
provide insights into the variations in agile software development in multi-team
software projects, the requirements engineering practices, and the current state
of documentation in the projects. Design science treatment design and valida-
tion are then used to design and validate a framework to address documentation
issues by improving the documentation practices in large-scale agile software de-
velopment. The research approach is explained in more detail in Chapter 3.

The main research question is phrased as:
How can the challenges facing documentation due to Agile RE activ-
ities in multi-team software projects be addressed?
The main question is divided into seven sub-questions as presented in Table 1.1.
These questions are used as a guide for this design science research.

Table 1.1: An overview of sub-research questions with the rationale.

Sub-research Question Rationale
SRQ1: How is Agile Software
Development (ASD) adopted
within a multi-team software
project?

Agile methods were targeted at small, co-located,
and self-organising teams who develop software in
small iterations and in close collaboration with the
customers [7]. And “no one agile software method is
in practice a complete solution for all situations” [7,
p. 542].

SRQ2: Which requirements en-
gineering practices can be iden-
tified in the adopted ASD ap-
proach?

RE is the most important phase of the software de-
velopment life cycle [23]. However, there is a knowl-
edge gap in the role of RE in agile methods [24].

SRQ3: Which kinds of docu-
mentation artefacts are used for
the various requirements engi-
neering practices within the ASD
approach?

Although ASD methods are described as
lightweight, there are many artefacts scattered
throughout the entire ecosystem of tools as opposed
to being documented in a single self-contained
document [17]. Additionally, hybrid methods
combine activities from traditional plan-driven
methods with activities from agile methods [25],
and this may impact the kind of documentation
used in the project.

SRQ4: What is the current state
of the identified documentation
(from SRQ3) within the project?

Software documentation is one of the recommended
and oldest practices in software engineering, yet it
is often lacking [14]. We aim to analyse the quality
of documentation artefacts used in agile software
development.

SRQ5: What is the impact of re-
quirements change on the identi-
fied documentation (from SRQ3)
within the project?

How agile teams respond to requirements change
in agile software development is still a research
gap [26]. Even though the Agile Manifesto does not
recommend extensive documentation, defining re-
quirements change in detail is a necessary approach
to ensure a better understanding of the requirements
change [26].

SRQ6: What framework can be
used to address documentation
issues by improving documenta-
tion practices in multi-team soft-
ware projects?

To the best of our knowledge, there is no Software
Process Initiative that addresses the challenges fac-
ing documentation in agile teams. We design a
framework to address the issues found in documen-
tation in multi-team ASD projects.

SRQ7: What is the effectiveness
of the proposed framework from
SRQ6?

We validate the treatment by practitioners to en-
sure sound validity and solid contributions to the
literature and industry.

3

1.3 Expected Contributions

We contribute to the theoretical body of agile software development by provid-
ing evidence of the variations of the adoption of ASD in multi-team software
projects by means of a multiple-case study. Here, we identify the various ac-
tivities, roles, and tools in the adoption of scaled-ASD in the explored cases.
Additionally, we gather empirical evidence of requirements engineering activi-
ties in multi-team ASD projects with the accompanying artefacts and rationales
for use. Furthermore, we tackle the knowledge gap in software documentation
by providing evidence of the issues of documentation in multi-team software
projects. We expand the theory on the documentation artefacts and rationales
of use in ASD as well as the challenges facing documentation, by providing em-
pirical data from the explored multi-team software projects. Finally, we enrich
the literature with a proposed framework that can be used to address the issues
found in documentation in multi-team ASD projects. This proposed framework
is also applied in an industrial setting to validate it based on its effectiveness.

Our findings can also give practitioners insights into the common practices and
differences of agile methods in multi-team software projects. More importantly,
our findings will serve as recommendations for practitioners to improve their
documentation practices in an attempt to approach the renowned documenta-
tion issues in the software industry.

1.4 Thesis Outline

The remainder of this thesis is structured as follows. We present the knowl-
edge on previous studies relating to the software development life cycle, ASD
methods, agile requirements engineering, scaled agile methods, and software
documentation in Chapter 2. This research uses a design science qualitative ap-
proach adopting a multiple-case study for problem investigation on a study of
two distinct cases. The research approach is discussed in Chapter 3. Then, we
present our findings from the case study in Chapters 4 and 5. Where in Chap-
ter 4, we introduce the teams and projects of each case along with the scaled
ASD approach, RE activities and documentation used in those projects. And
in Chapter 5, we elaborate on the current state, strengths and potential areas
for improvement of the identified documentation within the project. With the
insights from the Problem Investigation phase and a semi-systematic literature
study, we design and propose a treatment with both scientific and industrial im-
plications in Chapter 6. Subsequently, we present how we validate the proposed
framework in Chapter 7. Lastly, our conclusions and discussions are discussed
in Chapters 8 and 9.

4

Chapter 2

Related Literature

We review the main knowledge that our research is built upon. The research
topic covers literature on Agile Software Development, Requirements Engineer-
ing, and Software Documentation. We apply a semi-systematic literature re-
view approach to select primary and secondary studies for this research on the
aforementioned topics. A semi-systematic approach is adopted for “topics that
have been differently conceptualised and studied by a different group of re-
searchers” [27, p. 988]. Those topics are ones which have been studied with
different approaches and perspectives in the literature [27]. The study began by
defining the literature review research questions. Then, fairly recent systematic
literature review papers such as [17], [24], [28], and [29] were studied. These
papers gave insights into primary studies that are relevant to this research.
Searches were conducted using Scopus and Google Scholar. The backwards
and forward references of the selected papers were also traced to seek relevant
sources for this research.

The literature review tackles the following questions.

• How do software development methods evolve from the Software Development
Life Cycle (SDLC)?

• What are the characteristics of agile methods?
• To what extent is requirements engineering evident in agile methods?
• How is agile software development implemented in multi-team software projects?
• What are the benefits and challenges facing software documentation?
• Which documentation artefacts and practices can be found in agile software

development?
• What kind of tools are used for documentation in agile software development?

The SDLC is discussed as well as various early development methods in Sec-
tion 2.1. Subsequently, agile methods such as eXtreme Programming, Scrum,
and Kanban are introduced in Section 2.2. The evidence of Requirements En-
gineering practices in Agile Software Development is elaborated upon in Sec-
tion 2.3. From the literature, we see that agile methods were originally made to
suit smaller and co-located project teams. Hence, we discuss agile methods in
large software projects in Section 2.4. Finally, related literature on the software
documentation aspects of the research topic such as the benefits, challenges,
artefacts, and tools are discussed in Section 2.5.

5

2.1 The Software Development Life Cycle

The Software Development Life Cycle (SDLC) is a method that organises the
development of software into different phases in a systematic manner to increase
the probability of completing the software project within a specific time while
maintaining the quality of the software product [30]. The terms software de-
velopment life cycle and system development life cycle are intertwined in the
literature. The abbreviation “SDLC” is used to describe either of those de-
pending on the context [31]. Although the concepts are similar according to
Ruparelia (2010), the main difference is that the first describes the life cycles
of software, whereas the latter refers to the life cycle of a system that includes
software development [31]. The system development life cycle consists of four
main phases and is used during the development of any system [32]. These
phases are identified as analysis, design, implementation, and testing [32]. In
this research, we use SDLC to refer to the Software Development Life Cycle.
The choice of a suitable SDLC model depends on factors such as organisational
policies, stakeholders’ concerns, and stakeholder preferences, among others. An
SDLC model depicts a set of SDLC activities performed in an ordered manner to
produce the desired software product [30]. Each SDLC model has its strengths
and weaknesses and may be more suitable in one situation than in another [30].
In general, each SDLC model consists of the requirements gathering, design,
implementation, testing, deployment, and maintenance phases [30].

However, with the increasing need for continuous and rapid deployment of
software, there is an increasing shift from the application of the traditional
SDLC model where the testing, deployment, and maintenance phases are sep-
arated [33]. In the past decade, DevOps is being adopted more and more by
the industry. ‘DevOps is a set of methods in which developers and operations
communicate and collaborate to deliver software and services rapidly, reliably
and with higher quality’ [34, p. 1]. It is a blend of Development and Oper-
ational activities which seeks to integrate both activities to empower software
development teams ‘with full accountability of their service and its underlying
technology stack; from development, to deployment and support’ [34, p. 1].

2.1.1 Evolution of Software Development Methods

The Waterfall Model is the oldest and most well-known method depicting the
SDLC [35]. It was introduced in 1970 by Royce and is distinguished by its linear
and sequential structure of phases [30]. A phase of this model begins and ends
before starting the next and the phases do not overlap [35]. In Figure 2.1, the
Waterfall Model is shown, the phases are identified as Requirements Analysis,
Design, Implementation, Testing, and Deployment & Maintenance [30]. Water-
fall is selected for use in projects when the requirements are well known, very
clear, and the quality of the project is more important than cost or time [35].
There is extensive documentation upfront when using this SDLC model, to
ensure requirements and constraints are well documented. Previous studies de-
scribe Waterfall as heavyweight, highlighting that the bureaucratic nature of
this model is one of its greatest downfalls [36]. Also, all the requirements need
to be rigidly defined in the beginning. Additionally, the project manager is
expected to foresee and document all the potential risks and problems upfront

6

which is not practical [36]. Thereby, unforeseen events can negatively impact
the time, budget, and quality concerns of the project [36]. In response to the
weaknesses and failures of Waterfall, many new methods have emerged to add
some iteration to the software development process.

Figure 2.1: The Waterfall Model adopted from [30].

An example of a response to the sequential flow of waterfall is the iterative
model. Here, the elements of the waterfall method are combined in an iterative
manner [35]. The requirements are not completely elicited and the iterative pro-
cess begins with a small set of those requirements [37]. Each iteration develops
a small part of the product until the final version is developed [37]. Figure 2.2
presents an overview of the iterative model. Iterative and incremental develop-
ment is used when the entire requirements of the system are not clear, and when
essential requirements must be implemented but some functionality is subjected
to change with time [37].

Figure 2.2: The iterative model adopted from [37].

The systematic combination of iterative and waterfall development forms the
spiral process model [37]. Figure 2.3 illustrates an overview of the spiral pro-
cess model. Spiral development consists of four phases which are planning, risk
analysis, development, and evaluation [35]. The identification phase includes
the understanding of the system requirements which involves continuous com-
munications between the customers and the system analysts [35]. In the risk

7

analysis phase, the risks in the project are assessed along with potential solu-
tions and a prototype is delivered at the end of this phase [35]. Subsequently,
the software is developed and tested in the development phase [35]. The out-
come of the development phase is evaluated by the customer before the project
continues to the next spiral [35].

Figure 2.3: The spiral process model adopted from [37].

Nonetheless, the shift has been from traditional methods, such as waterfall, to
incremental software development methods such as Scrum, feature-driven devel-
opment, eXtreme Programming (XP), Dynamic Software Development Method
(DSDM), Test Driven Development (TDD), Crystal method, Adaptive Soft-
ware Development, and Agile Unified Process (AUP) [3], [4], [36], [38]. These
incremental models are also referred to as agile development methodologies or
lightweight methodologies [38]. In the research by Abrahamsson et al. (2003),
the authors present the life-cycle and evolution of agile methods which can be
found in Figure 2.4. In this figure, we see the transition from iterative ap-
proaches such as the Spiral Model to adaptive methods such as Adaptive Soft-
ware Development and to Agile Software Development, which gave rise to Agile
Modeling.

2.2 Agile Development Methods

Agile Software Development (ASD) is an adaptive, iterative, and incremental
approach to software development [4]. It is a group of software development
methods based on a set of best practices as stated as principles in the “Agile
Manifesto”. These principles distinguish ASD from traditional SDLC models
by improving customer collaboration, ensuring less focus on processes and more
focus on the strengths and creativity of people [4]. Also, these principles ensure
flexibility in coping with change and that the developers focus more on having
working software rather than extensive documentation [5]. In Table 2.1, we

8

Figure 2.4: An overview of the evolution of Agile methods. Retrieved from [39,
p. 246].

present the values and their descriptions from the Agile Manifesto.

As discussed in Section 2.1, agile software development comprises various meth-
ods. According to a survey presented in the 15th State of Agile Report on the
usage of Agile methods, Scrum is the most popular ASD method with 66% fol-
lowed by ScrumBan, Kanban, and Scrum/XP Hybrid1. Figure 2.5 depicts the
results of their survey. Hence, these results confirm the popularity of Scrum
among the other Agile methods in previous studies. In the subsequent sub-
chapters, we discuss the characteristics of the main methods; Scrum, Kanban,
and XP.

1The 15th State of Agile Report presents current trends in agile software delivery in
2021. Retrieved from https://itnove.com/wp-content/uploads/2021/07/15th-state-of-agile-
report.pdf on 18th January 2022.

9

Table 2.1: Values in ASD adopted from [5]

Value Description
Customer collabo-
ration over contract
negotiation

Reduce formalities to start and finish faster, with a strong
focus on the customer throughout the development pro-
cess.

Individuals and inter-
actions over processes
and tools

Enhance communication within the teams and remove
barriers.

Working software over
comprehensive docu-
mentation

Developers should spend more time implementing and
testing activities rather than writing extensive documen-
tation.

Responding to change
over following a plan

Give teams the freedom to make changes and adjust to
project needs.

Figure 2.5: The state of the 15th Agile Survey Results on the use of Agile
methods. Adopted from1.

2.2.1 EXtreme Programming (XP)

XP is a lightweight ASD method suitable for small teams with the capability
to respond quickly to changing requirements [40]. It was introduced in the late
1990s by Kent Beck, the pioneer of the Agile Manifesto. The main activities
of XP are shown in Figure 2.6. Developers use pair-programming to code the
functionalities of the software product and the focus is only on implementing the
functional requirements [40]. The pair-programming activity leads to collective
code ownership. This implies that anyone can modify the code at any time since
the ownership of the code is shared [40]. Hence, the ‘courage’ principle of XP
infers the correction and removal of errors from the code at all costs [41]. The
other principles of XP discussed by [41] are:

• Communication: A core characteristic of communication is pair-programming as
mentioned earlier. Also, a role is assigned as an XP coach to detect communica-
tion failures and facilitate adequate communication [41]. Since communication
is a very essential activity in this method.

• Simplicity: XP aims to develop software as easily and quickly as possible,
thereby not dealing with functionalities that might be necessary in the future

10

are crucial at the moment [41].

• Feedback: To ensure feedback, testing is performed at all development stages
rather than after the implementation phase [41]. Automated tests are used to
ensure conformance with the given requirements.

• Respect: This principle closely relates to the emphasis on communication within
XP. The team members should have an interest in the work of their colleagues
and collaborate positively [41].

Figure 2.6: An overview of the activities in XP. Adopted from [42].

2.2.2 Scrum

Scrum structures the software development activities in short iterations referred
to as sprints [43]. An overview of the main activities of Scrum is illustrated in
Figure 2.7. Each sprint potentially ends with an executable version of the soft-
ware application which is used as an input for the next sprint [43]. Generally,
each sprint includes many phases of the SLDC such as designing, implementa-
tion, testing, and customer verification [42].

Figure 2.7: An overview of the activities in Scrum. Adopted from [42].

In line with the second Agile value, Scrum emphasises team collaboration. The
development team is a cross-functional team consisting of people with differ-
ent skills and expertise working together [43]. ‘They are also self-organising,
meaning they internally decide who does what, when, and how’ [43, p. 5]. Ad-
ditionally, a distinctive feature of Scrum is the short-duration daily meeting
known as the Daily Stand-up or the Daily Scrum. Here, the members of the

11

development team discuss the status of their tasks [43] as well as any hindrances
known as impediments. The requirements of the software product are elicited
and stored in the product backlog [43]. This serves as a guide to plan the
sprints. A subset of the requirements on the product backlog is used for the
sprint backlog to define what needs to be implemented in that sprint [43].

2.2.3 Kanban

Kanban in software development was pioneered in 2004 by David Anderson while
assisting a software development team at Microsoft [44]. Kanban is based on the
just-in-time (JIT) philosophy [45]. The main idea of JIT is to continuously op-
timise the processes by ensuring waste reduction. Kanban focuses on visualising
and limiting the work-in-progress in software development [44]. The main prin-
ciples of Kanban are discussed as follows. Visualising work-in-progress ensures
that the requirements are optimised in the development workflow by distinguish-
ing between work to-do, in-progress and completed [42]. The visualisation of
tasks is made possible by means of a tool known as the Kanban Board [42]. Fur-
thermore, Kanban is complementary to Continuous Software Delivery (CSD) as
it delivers software in increments rather than releasing software in batches [42].
Another unique characteristic of Kanban is the minimisation of waste. Tasks on
the Kanban Board are only executed when they are required [42]. This results
in a constant delivery of work items to the customers as the developers only
focus on the necessary requirements at a given time [46].

Ahmad et al. (2015) investigated why two experienced Scrum teams shifted
to Kanban by conducting seventeen semi-structured interviews with different
teams at two large Finnish software companies [47]. In contrast to the survey
results from the 15th Agile Survey, they found that companies are switching
from Scrum to Kanban since it claims to offer improved visibility and quality of
the software product as well as improved team motivation, communication and
collaboration [47].

2.2.4 Feedback in ASD

As self-organising teams, a big part of the adaptability of agile teams to change
is working in iterations and constantly improving based on feedback among the
team members [48]. In a research by Matthies (2019) on feedback and process
improvement approaches in ASD, feedback cycles are presented as a fundamen-
tal aspect of ASD methods as a driving factor for process improvement [48]. In
ASD and specifically in Scrum, while there are scheduled meetings for discus-
sions and feedback, there are also informal moments for feedback [48]. Scrum
activities include meetings to facilitate the collection of feedback on the pro-
cesses within the team but also on the outcome of the iteration [48]. Matthies
(2019) presented an overview of the various feedback moments in Scrum which
is shown in Figure 2.8. Here, it is illustrated that feedback is received at various
cycles and time-frames ranging from seconds to months.

12

Figure 2.8: An overview of the various feedback cycles within Scrum. Retrieved
from [48, p. 150].

2.3 Agile Requirements Engineering

Requirements engineering (RE) practices are evident in ASD but they are in-
formally used and the quality of use depends on the skills and expertise of the
individuals [8]. Agile requirements engineering is a term that defines the “ag-
ile way” of planning, executing and reasoning about requirements engineering
activities [24]. RE has many definitions across literature, it can be defined
as the process of identifying stakeholders and their needs, documenting them
in a form to facilitate analysis, communication, and subsequent implementa-
tion [49]. There are multiple perspectives of the phases of RE in the literature.
For this research, we adopt the phases discussed by Dietse (2009). RE entails
the elicitation, analysis, specification, validation and management of software
requirements [50]. We explain these terms briefly.

• Elicitation refers to identifying the problems that need to be solved [49]. Here,
the stakeholders are identified as well as their objectives towards the to-be soft-
ware system. Various techniques such as introspection, interviews, question-
naires, brainstorming, and prototyping are used to elicit requirements [51].

• Analysis deals with the activities such as conceptualising models or prototyping
to ensure completeness of the requirements and capture an understanding of the
organisation in question [52]. The understanding of an organisation entails its
business rules, goals, tasks, and the necessary data [52].

• Specification is defined as an integral description of the behaviour of the to-be
system. Scenarios, templates, use case modelling and natural language text are
some of the most used techniques for requirements specification [53].

• Validation serves as an activity to ensure that the elicited requirements are an

13

accurate representation of the actual stakeholders’ requirements [52]. Examples
of techniques used to validate requirements are reviews and traceability [52].

• Requirements management involves recognising and managing the changes in
requirements by a means of continuous requirements elicitation [54].

2.3.1 Agile RE Practices

In this sub-section, we identify the RE practices that are evident in ASD. In a
systematic literature study by Inayat et al. (2015), literature published between
2002 and June 2013 was analysed to gather evidence on the RE practices adopted
by agile teams as well as the challenges faced. It was observed that 17 RE
practices were adopted in ASD [24]. These RE practices are shown in Table 2.2,
along with a description of each practice. Figure 2.9 is adopted from the research
of Ramesh et al. (2010), as a summary of the agile RE practices discussed in
Table 2.2 and the challenges subsequently discussed in Section 2.3.2.

Figure 2.9: A summary of the agile RE practices and challenges. Retrieved
from [55].

Table 2.2: RE practices in ASD adapted from [24]

RE practice Description
Face-to-face
communication

This type of communication is the main form of communication in
agile methods advocated by the Agile Manifesto [56].

Customer in-
volvement

Agile principles ensure strong customer collaboration throughout the
development process rather than rigid contracts [5]. This practice
hugely contributes to the success of the project [57].

14

Table 2.2: (continued from previous page)

RE practice Description
User stories Requirements in agile methods such as XP and Scrum are specified

using user stories as artefacts [58]. These media facilitate communi-
cation and better overall understanding among stakeholders [59].

Iterative re-
quirements

Requirements emerge over time in agile methods [55]. “Frequent in-
teraction among stakeholders leads to this iterative requirements ap-
proach” [24, p. 922].

Requirement
prioritisation

In contrast to traditional RE where requirements are prioritised before
the start of development, requirements are continuously prioritised in
each development cycle in agile methods [56].

Change man-
agement

“Change management has proven to be a significant challenge for
traditional approaches thus far.” [24, p. 922]. Agile methods facilitate
the change of requirements, which is mainly the addition or removal
of features [56].

Working in
cross-functional
teams

Agile teams comprise different expertise working together such as de-
velopers, testers, designers, and managers [24]. This practice ensures
effective communication and helps reduce challenges such as over-
scoping requirements [13].

Prototyping Prototyping is a technique used for eliciting requirements in tradi-
tional RE. It promotes quicker feedback and enhances the customer
anticipation of the software product [24].

Testing before
coding

TDD is an approach whereby developers create tests before writing
the functional code. It serves as a requirements activity due to the
tests specifying the code’s behaviour [56].

Requirements
modelling

This practice is also performed in traditional RE, but executed with
different techniques. In agile methods, techniques such as goal sketch-
ing [60], RE-KOMBINE [61], and user-story-based modelling [58] are
examples of modelling techniques. They ensure quality and empower
decision-making during the process of requirements negotiation [24].

Requirements
management

In agile methods, requirements management is used to maintain the
features on the product backlog for the instance of Scrum [24].

Review meet-
ings and accep-
tance tests

Review meetings are a way of checking the status of completion of
user stories in agile methods [24]. Additionally, acceptance tests are
automated tests that result in binary results of success or failure for
a user story [24].

Code refactor-
ing

Code refactoring is used as a requirements engineering practice in agile
methods as it accommodates the effect of changes to requirements on
the code [62].

Shared concep-
tualisations

This RE practice supports the concept of carrying out RE activi-
ties related to elicitation, clarification, and change management [63].
Communication and collaboration are the basis of these concepts [24].

Pairing for
requirements
analysis

This practice is one of the ways to reduce close communication gaps
between agile teams [24]. Here, stakeholders are encouraged to per-
form many roles during requirements analysis to ensure efficient task
delegation and minimal communication delay [24], [64].

Retrospectives Retrospectives are held at the end of each iteration [58]. The purpose
of these meetings is to review the progress of the planned work as well
as define future steps for new requirements as well as any rework [24].

Continuous
planning

This practice ensures that the agile team is flexible to changes in
requirements [24].

2.3.2 Challenges of Agile RE Practices

Although agile RE practices address several challenges such as communication
gaps, over-scoping, and unreliable requirements specifications in traditional RE,
they also pose new challenges to RE [13]. These challenges are discussed as
follows.

15

The first challenge is minimal documentation. Software engineering methods
suffer from the lack of sufficient documentation [14], and agile methods are no
exception [56]. In ASD, emphasis is made on verbal communication rather than
written specifications [5]. Instead of formal specifications, practitioners adopt
the use of user stories in writing high-level requirements [58]. In Section 2.5.3,
it is evident that there are many artefacts used in ASD. These artefacts are
adopted for various rationales and are not only limited to the main artefacts of
the agile method in use [25]. However, the use of formal documentation is not
a barrier to frequent communication [56]. Rather, it steers the documentation
of functional and technical artefacts such as functional designs, mock-ups, and
technical designs [25]. In a study conducted by Stettina and Heijstek (2011),
it was observed that practitioners found documentation very important, and
disagreed with the principle of face-to-face communication over written spec-
ifications [1]. Minimal documentation can result in a lack of traceability and
hinder knowledge transfer [65]. The challenges regarding documentation are dis-
cussed in detail in Section 2.5.2. Additionally, effective verbal communication
between the agile team and the customer depends on factors such as “customer
availability, the consensus among customer groups, and trust between the cus-
tomer and the developers” [56, p. 63]. Besides, it was reported as a challenge
to have the customer present on-site and most of the time product managers
performed the role of surrogate customers [56]. Moreover, achieving consensus
with different groups of stakeholders and customers is challenging and requires
more effort to negotiate to achieve agreement with each group [56].

Another major challenge encountered in ASD is inappropriate architecture [24].
As requirements are introduced or modified, the initial architecture may become
inadequate [55]. Hence, adaptation to the code may result in rework which can
negatively impact the project cost [55]. Refactoring is a technique to modify
the structure of the software in order to accommodate the new changes without
affecting the observable behaviour of the software [56]. Although agile methods
adopt refactoring as an RE practice, the need for refactoring is not always
apparent [55]. It certainly introduces additional costs and does not completely
address all the architectural issues [55].

Budget and time estimation is another challenge faced in agile methods. Since
all the requirements are not known upfront in the beginning, the initial esti-
mation is based on the known user stories. These requirements are subject to
change during the course of the project. Hence, the original estimates require
adjustment and that becomes a challenge for the management of the project [56].
Also, it can become a challenge for the customer to agree with the new estima-
tions.

Subsequently, non-functional or quality requirements are often neglected when
documenting requirements in agile methods [24]. They are often defined poorly
and easily ignored during the initial development phases [55]. Although non-
functional requirements (NFRs) define a variety of quality criteria, customers
frequently focus on the functional requirements and ignore issues relating to
NFRs. Even when NFRs are used, they tend to be documented and not tested.
For instance, a requirement mentions the system should be available, without
stating the criteria to test upon [55]. Ignoring quality requirements in the early
phases of the project is likely to cause major issues as the software system

16

develops [55]. A common exception of the neglected NFRs is the usability of
the system. Thanks to the high customer involvement in agile methods, there
tends to be more feedback on the ease of use of the system [55].

Although requirements prioritisation is a practice adopted in ASD, it poses a
challenge to agile methods. According to Ramesh et al. (2010), prioritisation
is often based on the business value ensuring that the software is aligned with
the business needs [55]. However, using only one dimension for prioritising
requirements may result in issues relating to the scalability of the architecture,
security and efficiency of the system. In the initial phases of the project, these
requirements did not appear critical in comparison based on the business value,
however, they became critical in the latter phases of the project [55].

Lastly, requirements validation in agile methods is a challenge. Although there
is a high customer collaboration and involvement in requirements validation,
aspects of verification such as the formalisation of detailed requirements are
missing [55]. In general, agile methods do not prescribe artefacts for require-
ments validation and verification [55]. Hence, it becomes dependent on the agile
team to use formal models of requirements for thorough verification [55].

2.4 Agile Methods in Large Software Organisa-
tions

The use of agile methods in software development has become continuously
popular since the early 2000s [2]. With the increase in the number of successful
projects in small software organisations and projects as a result of adopting
agile methods, larger software organisations (LSOs) and larger software projects
(LSPs) are increasingly adopting these methods [66]. As much as these methods
address a significant amount of issues in traditional software methods, there
are some hindrances in applying pure agile methods to large and/or software
projects [10]. Even though a significant number of organisations have adopted
agile methods, these methods have been criticised in the literature as being
more suitable and applicable to smaller teams rather than LSOs [67]. Agile
methods such as Scrum and XP are not sufficient on their own for large and
complex environments, requiring them to be tailored and combined with other
methods to address the complete software delivery cycle [6]. These methods were
targeted at small, co-located, and self-organising teams who develop software
in small iterations and in close collaboration with the customers [7]. The level
of difficulty in adopting agile methods increases with organisational size [68].
Kettunen (2007) argues that “no one agile software method is in practice a
complete solution for all (software project) situations” [7, p. 542]. Therein, the
issues concerning the adoption of agile methods in LSOs and LSPs relate to the
communication and scalability factors in these large software projects.

With less focus on documentation and more informal communication and devel-
oping a working software at the end of each iteration, insufficient documentation
in agile methods is a limitation in LSPs. Important features that are not iden-
tified upfront in agile methods may be forgotten or misunderstood and it might
require rework later on [10]. An example is when the architecture is inadequate
to support the change, as discussed in Section 2.3.2. Moreover, it is difficult to

17

accurately estimate the time and resources needed for the project in the absence
of a detailed plan [10]. For a smaller project, this risk is mitigated by planning
in short iterations and close collaboration with the customer [10]. However, in
LSPs, the magnitude of this risk is much higher [10], as it may significantly
impact the cost and timeline of the project. In general, smaller projects require
less formal updates and maintenance compared to LSPs. Hence, the scarcity of
detailed documentation can be detrimental to software development on a larger
scale [10]. LSOs tend to have more dependencies between projects and teams
compared to smaller organisations [9]. The large size of the project also in-
creases the need for formal documentation, which is contrary to the principles
of agile methods [9].

The context of scalability in LSPs relates to the scalability of software engineer-
ing methods. The term is defined by Laitinen et al. (2009), as the “property
of reducing or increasing the scope of methods, processes, and management
according to the problem size” [69, p. 106]. The notion is that a software
technique should be able to be scaled to suit a particular need, contractual re-
quirement, and budgetary and business objectives [69]. It is no surprise that
organisations are increasingly adopting the scaling of agile methods beyond sin-
gle teams and projects [2]. There are a number of factors that contributes to the
scalability of software projects which includes large multi-site, multi-customer,
and multi-project organisations [70]. According to Leffingwell (2007), the chal-
lenges of scaling agile methods are distinguished into two categories, inherent to
the method itself or external challenges imposed by the organisation [70]. The
inherent challenges related to the fixed rules and assumptions of the method
itself include issues such as the size and number of the teams, the availability of
customers during the project, collocation, and architectural and documentation
issues [70]. The external category of scalability issues relates to the challenges
imposed by the organisation such as existing formalised policies and procedures,
the coinciding of the agile method with existing process and project management
organisations, corporate culture, as well as the fixed schedule and fixed func-
tionality ordinance imposed by the organisation [70]. The term ‘organisation’ in
this context refers to both the internal organisation and external stakeholders
influencing the project.

In the literature, a number of methods have been proposed to address the issue
of scalability in agile methods. The most commonly adopted method is the
Scaled Agile Framework (SAFe) [2]. Other methods include the Disciplined
Agile Delivery (DAD) [6], Agile Scaling Method (ASM) [6], Large-Scale Scrum
(LeSS) [71], Scrum@Scale (S@S) [72], and Nexus [72] have been researched in
previous studies. Also, evidence of internally created methods for scaling was
found in the empirical study of Abheeshta Putta et al. (2021) on the adoption
of agile scaling frameworks in LSOs [73]. Hybrid approaches are also evident
whereby an agile method is combined with aspects from traditional software
methods [25]. Therefore, the artefacts used in LSPs are a superset of those used
in smaller projects. Examples of these artefacts are discussed in Section 2.5.3.
Furthermore, we discuss a few of these agile scaling methods in detail as well
as a comparison among them on principles and practices in the subsequent
sub-sections.

18

2.4.1 Scaled Agile Framework (SAFe)

SAFe is known as the most common framework among the other agile scal-
ing methods [2]. SAFe was introduced by Dean Leffingwell (2007) to scale
agile methods to suit large enterprises. It offers four levels which are: team,
program, portfolio, and large solution level [72]. At the team level, SAFe in-
corporates practices from agile methods such as Scrum, XP, and Kanban, but
also from Lean. The agile teams are empowered to be self-organising and self-
managing [74]. They work from a local product backlog, which is set up by the
product owner(s) [74]. In Figure 2.10, we present an illustration of the SAFe
model.

Figure 2.10: An overview of the activities of SAFe 5.1. Retrieved from
https://www.scaledagileframework.com/ on 6th September 2022.

At the program level, an additional set of challenges to execute agile at scale are
addressed. These challenges are discussed by Leffingwell (2010), as maintaining
the vision and roadmap, release management, quality management, deployment,
resource management, and eliminating impediments [74]. Maintaining the vision
and roadmap involves communicating the vision for the program and maintain-
ing a roadmap to ensure the teams are aligned to a common goal [74]. Release
management involves the organisation of the teams to build release increments
on the enterprise’s chosen development timeline [74]. Here, approximately five
to twelve agile teams form an Agile Release Train to develop product incre-
ments, for the duration of eight to twelve weeks usually [72]. Also, resource
management involves the adjustment of resources when necessary to address
constraints in the program’s ability to deliver the required value on time [74].
One of the questions that arise is “how to organise agile teams in order to opti-
mise the agile teams in order to optimise value delivery of requirements [74, p.
64]. Leffingwell (2010) proposes the feature and component approaches to or-

19

ganising agile teams to address this concern [74]. A component team is usually
responsible for a single layer in the architectural stack such as the presentation
layer, business logic, or database [74]. On the contrary, the feature team works
across the architectural stack to build features of the final product [74].

The portfolio level defines the program for the program level. Here, two new
artefacts are introduced as investment themes and epics [74]. “Investment
themes represent key product or service value propositions that provide mar-
ketplace differentiation and competitive advantage” [74, p. 84]. Epics are the
high-level requirements artefacts that are used to coordinate development ac-
tivities [74]. An investment theme defines epics, an epic defines features and a
feature defines user stories [74]. These user stories are used by the agile teams
as requirements [74]. Not only are these epics providing business value, but
there are also epics concerning the architecture of the software in order to en-
sure a system that is robust to the change [74]. Lastly, the large solution level
is an alternative or additional level to the portfolio level [72]. This level facili-
ties the development of an integrated solution by a subset of the Agile Release
Trains. At the large solution level, each epic needs a sponsor to fund the devel-
opment whereas, at the portfolio level, solutions are grouped into value streams
to realise business objectives [72]. SAFe provides a scalable requirements model
for coordinating system behaviours among epics, capabilities, features, stories
and non-functional requirements 2. An overview of this model is shown in Fig-
ure 2.11.

Figure 2.11: SAFe requirements model. Retrieved from
https://www.scaledagileframework.com/safe-requirements-model on 28th
August 2022.

2https://www.scaledagileframework.com/safe-requirements-model/

20

2.4.2 Disciplined Agile Delivery (DAD)

DAD is “an evolutionary (iterative and incremental) approach that regularly
produces high-quality solutions in a cost-effective and timely manner via a risk
and value-driven life cycle” [6, p. 14]. This approach distinguishes itself from
other agile methods in four categories such as a full delivery cycle, delivery
of solutions rather than only software, a risk and value-driven life cycle, and
self-organisation with an appropriate governance framework [6]. DAD focuses
on a full delivery life cycle of the project. The full delivery life cycle consists
of smaller iterations. The life cycle of agile methods such as the Scrum life
cycle focuses is on organising the work during a sprint [6]. However, this is not
sufficient to meet the needs of the software delivery teams, but it is a foundation
to develop a full delivery life cycle [6]. DAD builds upon the iterative approach
to agile methods by recognising that agile delivery is iterative in the small and
serial in the large [6]. Iterative in the small focuses on the daily iterative rhythm
of work activities such as developing, testing, and modelling [6]. Serial in the
large entails the structuring of the release rhythm through various phases such
as initiation, development and deployment [6].

The second category that distinguishes DAD from agile methods is the delivery
of solutions and not only software [6]. Teams using DAD deliver a complete solu-
tion which may include software, hardware, documentation, and/or the manual
processes involved in working with the delivered system [6]. Moreover, the third
category describes a risk and value-driven life cycle. In agile methods, the focus
is on delivering working software at the end of each iteration [5]. However, DAD
expands on this principle by identifying and actively mitigating the risks earlier
in the life cycle [6]. For instance, the stakeholders agree on the scope of the
project and the architecture of the system is designed and tested by building a
working skeleton of the system [6]. Lastly, self-organisation with an appropriate
governance framework refers to the activities involved in steering the activities
and processes of the DAD team. The Agile Manifesto describes that the best
architecture, requirements, and designs emerge from self-organising teams [5].
In parallel with self-organisation, DAD ensures appropriate governance that
reflects the needs of the overall organisation such as having a common infras-
tructure and working towards organisational goals [6].

2.4.3 Agile Scaling Method (ASM)

ASM is introduced by Ambler (2009), as “a contextual framework for effec-
tive adoption and tailoring of agile practices for a system delivery team of any
size” [6, p. 9]. It defines a guide to effectively adopt and tailor agile strategies to
address the unique challenges faced by system delivery teams [6]. ASM entails
three different categories namely; core agile development, DAD, and agility at
scale [6]. These categories are presented in Figure 2.12. Core agile methods
such as Scrum and XP address a portion of the SDLC and were intended for
smaller co-located development teams [6]. For instance, Scrum defines a high-
level life cycle and scope for development iterations [75]. XP focuses on software
development activities such as continuous integration, pair programming, and
refactoring [76]. However, the activities of these methods such as the Daily
Scrum, requirements elicitation, and customer collaboration, etc. are a core
foundation of ASM. DAD, as discussed earlier, focuses on integrating activities

21

of a full delivery cycle into the development of LSPs. The third category, agility
at scale extends DAD by incorporating one or more scaling factors [6]. The
scaling factors are discussed by Ambler (2009), as:

• Team size

• Geographical distribution

• Regulatory compliance

• Domain complexity

• Organisational distribution

• Technical complexity

• Organisational complexity

• Enterprise discipline

In order to address these scaling factors in a project, it is required to tailor the
DAD activities and in some cases adopt new practices to mitigate the risk of a
particular scale factor [6].

Figure 2.12: Overview of ASM. Adopted from [6].

2.4.4 Large-Scale Scrum (LeSS)

LeSS is a framework created by Craig Larman and Bas Vodde [71]. The frame-
work handles the challenges of scaled projects using Scrum and Scrum princi-
ples [72]. LeSS operates with up to eight Scrum teams, working to achieve a
common goal and collaborating with joint sprint planning, joint sprint reviews
and retrospectives [72]. Similar to Scrum, each team has its own Scrum Mas-
ter. However, there is a single Product Owner who oversees all Scrum teams,
creates and manages the common Product Backlog [72]. The duration of the

22

iteration is the same for all Scrum teams. At the end of each iteration, the goal
is to produce on shippable product increment [72]. LeSS does not define any
new artefacts or roles in addition to those defined by Scrum [72]. A simplified
version of LeSS can be found in Figure 2.13.

Figure 2.13: An overview of LeSS. Retrieved from [72].

2.4.5 Scrum@Scale (S@S)

In comparison with methods such as LeSS and Nexus, S@S adopts a different
approach toward the scaling of agile software projects [72]. As illustrated in
Figure 2.14, S@S entails two cycles and twelve key areas where specific best
practices can be established in the organisation over time [72]. These areas for
improvement such as backlog prioritisation, release planning, deployment, and
cross-team coordination, among others, are a guide for companies to improve
upon. The S@S framework does not define a specific approach to implement
these key areas, as they should be tacked in a company-specific context [72].

Figure 2.14: An overview of Scrum@Scale. Adopted from [72]

23

In comparison with Scrum, there are additional roles formed in S@S to coordi-
nate the various teams. The Product Owners of the individual teams form a
team known as MetaScrum, which is led by a Chief Product Owner (CPO) [72].
The MetaScrum team maintain a single and prioritised backlog to avoid overlap
and duplication [72]. Also, a coordinated release plan and monitor metrics are
decided by the MetaScrum team to ensure efficiency in the product develop-
ment [72].

2.4.6 Internally Created Methods

In cases where neither agile methods nor scaled agile methods suit the needs of
the organisation or specific scaling factors, internally created methods are in-
troduced. In general, agile methods do not provide specific guidelines for large
organisational practices such as the front-end and back-end process of software
development [77]. The front-end process includes the approval of business cases,
budgeting, and project onboarding [77]. Whereas, the back-end process involves
the activities of interacting with stakeholders such as vendors and having the
product ready for deployment to users [77]. An example is evident in the study
of Vaidya (2014) on adapting scaling agile practices on Cambia Health Solu-
tions [77]. Initially, they explored Scrum and Kanban on a team level. It
was studied that Scrum does not give recommendations beyond the team level.
However, the expectation in the Scrum method is an engaged leadership that
empowers the team to be self-organising [77]. Kanban provides fewer guidelines
than Scrum. In general, the two practices recommended are visualisation of the
workflow and limiting the work-in-progress [77].

After a few years, Cambia Health Solutions (CHS) had more than forty agile
teams, but the rest of the organisations still continued to use traditional meth-
ods [77]. Their fundamental framework to align the agile teams was SAFe [77].
However, the problem still persisted on how to address practices beyond the
team level. The goal was to design a framework that adopts, combines, and
modifies practices to suit their organisational context and business needs [77].
Agile practices at team levels give rise to questions concerning the organisation’s
design, command-and-control hierarchical management, personnel management,
management practices, and the overall company culture [77]. The agile scaling
frameworks they considered attempted to address some of these issues but also
entailed some shortcomings [77]. SAFe is criticised as being “overtly process
heavy” in the context of CHS [77, p. 10]. Having a single Product Owner who
oversees all Scrum teams in LeSS results in insufficient communication with
the business for the individual Scrum team as they require interaction with the
business users and stakeholders on a regular basis throughout the cycle of the
project [77].

CHS did not adopt a specific agile scaling framework, but rather, they embraced
a combination of agile practices to suit their objectives [77]. An abstract view
of the scaled agile approach taken by CHS is illustrated in Figure 2.15. Each
quarterly planning defines sprints which include a ‘hardening sprint’ to coordi-
nate between the component teams and account for any remaining work that
could not be completed during the sprint in order to ensure a potentially ship-
pable code as part of the entire solution [77]. The quarterly planning event is
similar to the Release Planning meeting of SAFe. The difference is that not

24

Figure 2.15: An overview of the scaled agile approach devised by CHS. Adapted
from [77].

all teams attend and generally, two or three representatives (usually with se-
niority) from each team attend this meeting. Instead of planning a Potentially
Shippable Increment as in SAFe, they define the quarterly team backlog with
deliverables related to the project, non-backlog items such as enhancements,
product support and other maintenance tasks [77]. Scrum-of-Scrum meetings
as recommended by SAFe and LeSS are used here to coordinate and synchronise
the work of the various teams [77]. Finally, Communities of Practices (CoP) is
a crucial activity in the agile scaling approach of CHS. CoP refers to “a group
of people who share a craft or profession” [77, p. 14]. Under the CoP practice,
a Center of Excellence is formed. This is a community whereby knowledge, ex-
pertise, best practices and support are shared within the company for a specific
focus area [77].

Other literature sources refer to internally created methods as hybrid meth-
ods. This approach “represent a solution that, regardless of company type and
industry sector enables companies to benefit from both worlds by providing
clients and managers a safe environment and developers with the demanded
flexibility” [78, p. 26]. Hybrid methods combine activities from pure traditional
plan-driven methods with activities from agile methods [25]. Examples of some
practices that distinguish traditional methods from agile methods are as follows:

• Planning defines the project [79]. Upfront planning in agile methods in-
cludes much fewer details compared to that required by traditional methods.
The plan in traditional methods generally entails a detailed description of the
tasks, resources, and time which infers cost and time estimates [79].

• Documentation is enforced throughout the SDLC [79]. Documentation
within traditional methods throughout the SDLC is a means to analyse and
address potential risks in the project [79]. It entails the problem and a proposed
solution, allowing stakeholders outside the team to sign off on them [79].

• Requirements engineering without development [79]. Traditional meth-

25

ods often impose planning requirements which entail business analysts working
outside development to engage with the business and create documents that
describe the business problem [79].

Water-Scrum-Fall is an example of a hybrid method that distinguishes three
steps namely: water, scrum, and fall. The ‘water’ step defines the requirements
upfront before starting with the development of the project [79]. In some com-
panies, this step is used to derive requirements that form the basis of a contract
between the business and IT, which defines the project scope, timeline and bud-
get [79]. Afterwards, Scrum practices such as building a cross-functional team,
testing within the sprint, collaboration with business stakeholders and man-
aging change are used in the development phase of the software project [79].
Lastly, the ‘fall’ aspect “means establishing gates to limit software release fre-
quency” [79, p. 12]. Even though agile methods enforce frequent releases of
the software in iterations, most organisations lack the adequate architecture to
support the deployment of frequent releases [79]. Therefore, in the ‘fall’ phase,
agile teams are required to improve the situation to the best of their ability by
realising the following practices [79].

In Water-Scrum-Fall, operations and development activities should be in close
collaboration [79]. Agile methods encourage the building of cross-functional
and self-organising teams [5]. By building a cross-functional team with devel-
opment and operations expertise, this (‘fall’) bottleneck can be removed [79].
Subsequently, the agile teams should include release activities such as produc-
tion testing, data migration, security, and performance testing in the sprint [79].
This ensures that the team can deploy their frequent releases and make use of
rapid feedback [79].

2.4.7 Comparison of scaled agile methods

In this subsection, we compare the aforementioned scaled agile methods. SAFe
is distinguished by having four levels: the team, program, portfolio, and large
solution level [72]. At the team level, practices from agile methods such as
Scrum, XP, and Kanban are incorporated [74]. DAD also uses activities from
agile methods in small iterations and integrates them into a full delivery life cy-
cle [6]. In contrast to SAFe which focuses on delivering a portfolio of epics [74],
DAD focuses on delivering a solution and not only a software, which may entail
the software, hardware, and documentation [6]. ASM builds another layer upon
DAD, here scaling factors such as team size, geographic distribution, compli-
ance, etc. are used to tailor the activities of the full-delivery cycle defined by
DAD [6]. Similar to the discussed methods, LeSS uses Scrum at the team level,
but only Scrum [72] and no other practices from other agile methods. The teams
are aligned by a single Product Owner who oversees all the Scrum teams [72].
Unlike SAFe, where new roles are explicitly mentioned, LeSS does not intro-
duce any new roles [72]. S@S introduces a new team known as MetaScrum
which consists of the Product Owners of the individual teams [72]. Unlike the
other scaled agile methods, S@S does not define a specific approach, but rather,
a set of best practices in the form of two cycles are presented [72]. The perspec-
tive S@S take on implementing the best practices is that they should be tackled
in a company-specific context [72].

26

Furthermore, we compare these methods based on the aspects of principles and
practices. These aspects for comparison are in line with two of the categories for
comparison of scaled agile methods in a systematic literature study by Edison
et al. (2021). In the study, the authors compared SAFe, LeSS, S@S, DAD,
and the Spotify model from 191 primary studies across 134 organisations [28].
Before discussing the comparison, we first explain the aspects for comparison.
A principal is defined as a proposition that serves as a foundation for a sys-
tem [28]. It defines the grounds for making decisions throughout the processes
of a method [28]. Moreover, practices are defined as customary ways of doing
something which is recognised by a community as the right way to perform an
activity [80]. In Tables 2.3 and 2.4, we present a summary of the comparison of
the principles of SAFe, DAD, ASM, LeSS, and S@S respectively. More details
on the various principles and practices of the methods can be found in [28].

Table 2.3: A summary of the comparison of scaled agile methods on principles

Method Principles
SAFe “(i) Take an economic view, (ii) Apply systems thinking, (iii) Assume vari-

ability; preserve options, (iv) Build incremental with fast, integrated learn-
ing cycles, (v) Base milestone on objective evaluation of working systems,
(vi) Visualise and limit WIP, reduce batch sizes, and manage queue length,
(vii) Apply cadence; synchronise with cross-domain planning, (viii) Unlock
the intrinsic motivation of knowledge workers, (ix) Decentralise decision-
making, (x) Organise around value” [28, p.32].

DAD “Delight Customers, Be Awesome, Pragmatism, Context Counts, Choice is
Good, Optimise Flow, Enterprise Awareness” [28, p. 32]

ASM The principles of ASM are not explicitly stated in the literature. Rather it
focuses on scaling agile methods to suit the scaling factors of the organisation
and to include the management a full delivery life cycle [6].

LeSS “(i) Large-Scale Scrum is Scrum, (ii) More with LeSS, (iii) Lean Thinking,
(iv) Systems Thinking, (v) Empirical Process Control, (vi) Transparency,
(vii) Continuous Improvement Towards Perfection, (viii) Customer Centric,
(ix) Whole Product Focus, (x) Queueing Theory” [28, p. 32]

S@S “Openness, Courage, Focus, Respect, and Commitment” [28, p. 32]

Table 2.4: A summary of the comparison of scaled agile methods on practices

Method Practices
SAFe “Build solutions components with high functioning Agile Release Trains,

Build and integrate with a solution train, Capture and refine systems spec-
ification in solution intent, Apply multiply planning horizons, Architect for
scale, modularity, reusability, and serviceability, Manage the supply chain
with ‘systems of systems’ thinking, Apply ‘continuous integration’, Contin-
ually address compliance concerns” [28, p. 32].

DAD “Scrum-based life-cycle, Lean-based life-cycle, The Continuous Deliv-
ery:Agile Lifecycle, The Continuous Delivery:Lean Lifecycle, The Ex-
ploratory (Lean Startup) Lifecycle, The Program Lifecycle for a Team of
Teams” [28, p. 32]

ASM The practices entail three levels. Core agile development: ensuring a value-
driven life cycle, self-organising teams, and a focus on construction [6]. Dis-
ciplined Agile Delivery: ensuring risk and value-driven life cycle as well as
a full delivery life cycle and self-organising teams with an appropriate gov-
ernance framework [6]. Agility at scale: Ensuring DAD when one or more
scaling factors apply to the project [6].

27

Table 2.4: (continued from previous page)

Method Practices
LeSS Sprint planning, Sprint review, Retrospective, Overall retrospective, Daily

Scrum, Coordination and Integration, Communicate in code, Component
communities and mentors, Scrum of Scrums, Multi-team meetings, Require-
ment Areas, Area Product Backlog, Area Product Owner Technical Excel-
lence (Specification by Example Continuous Delivery, Continuous Integra-
tion, Test Automation, Acceptance Testing, Architecture and Design, Clean
Code, Unit Testing, Thinking about Testing, Test-Driven Development) [28]

S@S “the Scrum Master Cycle (Continuous Improvement and Impediment Re-
moval, CrossTeam Coordination, and Deployment), the Product Owner Cy-
cle (Strategic Vision, Backlog Prioritisation, Backlog Decomposition and
Refinement, and Release Planning), Scaled Daily Scrum” [28, p. 32]

2.5 Software Documentation Practices

Software documentation is one of the recommended and oldest practices in soft-
ware engineering, yet it is often lacking [14]. In this section, we first introduce
software documentation in general. Then we discuss some of the current chal-
lenges associated with documentation. Subsequently, we discuss the documen-
tation artefacts, documentation practices, and the tools used for documentation
in ASD.

A software document is an artefact aimed at human readers which serves the
purpose of communicating information on the software system [14], [81]. A
document can either be presented in the format of text or in combination with
visual models or code comments [82]. Documentation is an important tool for
communication [81]. It serves as a medium to record and communicate decisions
on the software system [83]. Another definition of software documentation is
presented by Aghajani et al. (2019) as a medium that “provides developers
and users with a description of what a software system does, how it operates,
and how it should be used” [20, p.1199]. According to Barker (2003), software
documentation is a formal writing as a hard or soft copy that supports the
efficient and effective use of software in its intended environment [84].

In the context of this research, a software document refers to a written document
that captures information about the software system. Whereas, the definition
of documentation includes other media such as the agile artefacts discussed
in Section 2.5.3. Documentation includes several software documents, which
accompany the development process. An example of the use of documentation
is in describing requirements, design and marketing demands, end-user manuals,
and technical documentation [83]. Similar to the use of the term ‘software
documentation’ by Ding et al. (2014), we use it to represent the document
artefacts as well as the documentation activity [85].

Documentation is useful throughout the various phases of the SDLC [85]. The
Software Requirements Specification and Software Architecture Document are
examples of formal documentation produced in the requirements elicitation and
design phases respectively [85]. In practice various forms of documentation are
used in the creation of this formal documentation, most of this documentation is
stored in files such as Microsoft Word documents, emails, text messages, blogs,
and wikis [86].

28

2.5.1 Benefits of Documentation

Software documentation can be classified as process and product documenta-
tion [87]. And also, as technical and non-technical documentation [18]. We first
explain these perspectives and then, we discuss the benefits of documentation.

A perspective on the classification of documentation produced in large soft-
ware projects is presented by Sommerville (2005). The author distinguished
process and product documentation. Process documentation ‘record the pro-
cess of development and maintenance’ [87, p.3]. Examples of such documen-
tation are Project Plans, Reports, and Organisational or International stan-
dards [87]. These kinds of documentation aid the management activities of the
projects [87]. In turn, product documentation ‘describes the product that is
being developed’ [87, p.3]. Product documentation distinguishes two categories
which are system documentation and user documentation. System documenta-
tion ‘describes the product from the point of view of the engineers developing
and maintaining the system’ [87, p.3]. This is similar to the technical doc-
umentation discussed in the work of Garousi et al. (2015). Whereas, user
documentation ‘provides a product description that is oriented towards system
users’ [87, p.3].

Technical documentation [18] is also referred to as internal documentation in the
literature [1]. Internal documentation is used by software practitioners to help
understand the system [18]. The use of documentation was briefly highlighted
earlier in this chapter. In this sub-section, we dive deeper into the various merits
of documentation. In a previous study, emphasis is made on the relevance of
documentation for knowledge sharing in distributed and global software devel-
opment projects due to the absence of face-to-face communication [1]. Survey
analysis was conducted with responses from 79 agile practitioners in 8 teams and
13 countries to investigate the perceptions of the relevance of documentation.
It turned out that more than half of the respondents found internal documenta-
tion (very) important but not present enough in their projects [1]. Throughout
the SDLC, documentation plays a crucial role in the various phases [18]. In
the design phase, design documents are prepared to visualise the software goals
and architecture [18]. Subsequently, in the implementation phase, documenta-
tion aids development and testing activities [88]. Examples are the use of UML
class and state diagrams to assist in unit testing and interaction diagrams be-
ing used in functional and regression testing [18]. In the maintenance phase,
documentation serves as a guide to understanding the existing system [18].

Generally, documenting the decisions made during all activities of the SDLC
aids the onboarding of and transfer of knowledge to new team members on
the project [18]. In the absence of adequate documentation, the only reliable
source of information on the system is the source code [18]. Research shows
that it tends to be very time-consuming to understand the functionalities of the
system by exploring the source code [89]. For large software teams, even though
agile principles stress verbal communication, it is almost impossible to keep all
team members up to date. Hence, the necessity of documentation to facilitate
knowledge sharing in the case of large teams [1], [18], [90].

In a study conducted by Zhi et al. (2015), a meta-model was developed to
classify the various benefits of documentation from existing literature [82]. This

29

is shown in Figure 2.16. In the meta-model, the authors present maintenance
aid, development aid, management decision aid, and other aid as the benefits of
documentation to software practitioners [82]. Comprehension aid is an essential
aspect of maintenance and development as the software documentation needs to
be properly understood before being modified [82]. Furthermore, documentation
assists managers in decision-making processes such as assigning responsibilities
to developers [82]. Other refers to any other benefits of documentation that
cannot be categorised as maintenance, development or management decision
aids such as reusing documentation [82].

Figure 2.16: The benefits of documentation. Adopted from [82].

2.5.2 Challenges Concerning Documentation

A number of past studies have discussed the issues and challenges facing doc-
umentation. According to the observation of Aghajani et al. (2019), previous
studies investigating these issues have been based on surveying and interview-
ing developers, which leads to a somewhat biased perspective of the challenges
affecting documentation [20]. In their research, they conduct an empirical study
with 878 documentation-related artefacts to investigate software documentation
issues [20]. This set of 878 artefacts includes development emails, programming
forum discussions, issues as well as pull requests related to software documenta-
tion [20]. In order to analyse the challenges facing documentation, it is impor-
tant to understand what ‘good documentation’ is. In their research, Aghajani et
al. (2019) identified certain criteria from their empirical data which define what
good documentation should capture as well as the problems in these categories.
The taxonomy of documentation issues distinguished four categories; Informa-
tion Content (What), Information Content (How), Process Related, and Tool
Related issues [20]. We focus on the information content and process-related
issues and leave out the tool-related issues category. This is because the issues
found in the documentation tools are not specifically related to the documenta-
tion, but the tool itself [20].

Information Content (What) captures the issues of what is written in the doc-
umentation [20]. Figure 2.17 illustrates a simplified version of this category of

30

issues. The criterion defined by Aghajani et al. (2019) with regards to the in-
formation content of good documentation is correctness, completeness, and
up-to-dateness.

Figure 2.17: Information content (what) related issues. Adapted from [20].

Correctness ensures that the information provided in the documentation is pre-
cise and in accordance with the facts [82]. Incorrect documentation might lead
to issues such as time loss, following the wrong steps in a tutorial (in the case of
an end-user artefact), serious programming errors, and misunderstanding due
to inaccuracy or issues such as wrong translation [20]. Moreover, completeness
ensures that the documentation provides the information needed by stakehold-
ers about the system or its modules to perform their tasks [82]. This criterion
highlights two aspects, namely missing or poor documentation and missing di-
agrams. Evidence of missing definitions of ambiguous terms was identified, an
example is the use of the term ‘frequently’ without an explanation of what it
means in the context [20]. Another issue identified in this criterion was problems
corresponding to missing descriptions of library components and API documen-
tation [20]. Finally, up-to-dateness ensures that the documentation is in sync
with the other parts of the system [20]. A major difference with the other two
criteria is the information can be correct and complete before the introduction
of a change [20]. One of the identified issues was inconsistency as the system’s
behaviour did not conform to the description in the documentation [20]. This
inconsistency was a change in the code that required certain parts of the doc-

31

umentation to be modified [20]. The inverse is also evident in their findings,
whereby code does not reflect with is described in the documentation, for ex-
ample, requests by users [20]. In one of their data sources, a debate was posed
as to whether the code or documentation needs to be updated in that case [20].
Also, deprecated information in the documentation is another violation of up-
to-dateness [20], which can result in misleading information.

The second category introduced by Aghajani et al. (2019) is Information Con-
tent (How). Figure 2.18 represents a simplified version of this category of issues.
It defines maintainability, readability, usability, and usefulness as sub-
criteria to discuss problems relating to the writing style and organisation of
documentation [20].

Figure 2.18: Information content (how) related issues. Adapted from [20].

“Usability of documentation refers to the degree to which it can be used by
readers to achieve their objectives effectively” [20, p. 1205]. Half of the is-
sues found by Aghajani et al. (2019) related to the ease of finding information.
There were questions about missing parts of the documentation. Additionally,
information organisation was the second most common concern in this cate-
gory [20]. It refers to the degree to how intuitively and clearly information is
organised [82]. Moreover, the availability of documentation was also evident
as an issue in their analysed artefacts. A minor issue was poor or inconsistent
formatting such as missing headings, and template structure. However, they are
seen as minor issues because they are perceived as “not really a barrier for using
documentation” [20, p. 1205]. Maintainability refers to the degree of ease to

32

apply changes to documentation [20]. A concern in this criterion is duplicated
content, which impedes the effective maintenance of documentation. Addition-
ally, the evidence of superfluous files was seen as a potential cause of confusion
for the stakeholders [20]. Not all information is needed by each stakeholder and
in turn, large documents are difficult to maintain. Readability, on the other
hand, defines the degree of ease to read a document. Issues related to lack of
clarity and typos were identified as the most common problems with regard to
this category [20]. Lastly, usefulness defines whether the documentation “is of
practical use to its readers” [20, p. 1205]. Each stakeholder has different needs
and that affects the degree of usefulness of a particular artefact. Feedback from
various stakeholders is therefore crucial to ensure useful documentation [20].

The last category presented by Aghajani et al. (2019) entails Process Related
issues, as shown in Figure 2.19. This category defines internationalisation,
traceability, development issues caused by documentation, contribut-
ing to documentation, and doc-generator configuration as sub-categories
of issues related to the documentation process.

Figure 2.19: Process related issues. Adapted from [20].

Firstly, internationalisation discusses issues related to the translation process,
the need to review translated documents as well as the problems caused by char-
acter encoding [20]. Furthermore, traceability describes the issues relating to the
ability to track changes made to the documentation. A solution to keeping track
of changes to documentation is using version control systems, however, this is

33

a challenge for documentation in binary format or in a database [20]. More-
over, development issues caused by documentation entail the “unwanted effects
of documentation on the development process” [20, p. 1207]. An example is
the effect of auto-generated documentation on the code itself [20]. Addition-
ally, contribution to documentation highlights the issues that contributors with
regard to writing documentation [20]. The scarcity of well-explained guidelines
and sometimes documentation templates are common issues within this sub-
category. The lack of knowledge about best practices to write documentation
are also an evident issue. At last, doc-generator configuration issues related
to documentation generators [20]. These are caused by infrastructure or con-
figuration errors resulting in warnings that affect the complete generation of
documentation.

To conclude, the challenges facing documentation were categorised by Agha-
jani et al. (2019). Two potential future research directions on documentation
practices were suggested that may be relevant to this research. It was advised
that future research should optimise the documentation processes and answer
fundamental research questions, for example, what makes a good contributors
guide? [20].

2.5.3 Artefacts in ASD

An artefact is defined by Wagenaar et al. (2015) as “a tangible deliverable
produced during software development” [91, p. 2]. In this context, tangible was
defined as “being easily seen or recognised rather than being restricted to only
being touched or felt, thus including materials in both physical and electronic
format” [91, p. 2]. Artefacts in ASD include architecture, requirements, and
design artefacts [92]. In turn, artefacts serve as a means of communication and
knowledge transfer in software development [19].

Communication is a fundamental aspect of all agile methods [91]. The Agile
Manifesto emphasises that “The most efficient and effective method of conveying
information to and within a development team is face-to-face conversation.” [5].
Contrary to face-to-face communication is documentation by means of arte-
facts [91]. The practice of explicit documentation is not encouraged in ASD,
which conforms to the Agile principle of having working software over extensive
documentation [5]. Although ASD methods are described as lightweight, there
are many artefacts scattered throughout the entire ecosystem of tools as op-
posed to being documented in a single self-contained document [17]. Therefore,
“‘working agile’ and ‘using artefacts’ are no contradictory terms” [91, p. 135].
From Figure 2.7, it can be observed that the primary artefacts of Scrum are
the Product Backlog, Sprint Backlog and the Software Product Increment. In
Kanban, the main artefact is the Kanban Board as discussed earlier. And XP
utilises story cards, task lists, customer acceptance tests, Class-Responsibility-
Collaboration cards, acceptance tests, and visible wall graphs as artefacts [76].

Wagenaar et al. (2015) performed a case study on three organisations using
Scrum, identified, and compiled the artefacts used in ASD from a Scrum per-
spective. Prior to conducting the case study, the authors identified an artefact
model by Kuhrmann et al. (2013) as the basis for expansion in their case study.
This Agile Scrum artefact model (Figure 2.20) was derived from a systematic

34

Figure 2.20: Initial Scrum artefact model for agile methods. Adopted from [93].

literature review and consists of four parts; project management, requirements
specification, production process, and other documentation parts [93]. The
artefacts used in Scrum development are more than the core Scrum artefacts
themselves. The other artefacts can be categorised into non-scrum, product
and process artefacts [91]. These categories were also applied to the results of
their case study and the artefact model was extended with design, test, and
release-related material. Figure 2.21 presents the extended model of artefacts
in Scrum.

Figure 2.21: Extended Scrum artefact model for agile methods. Adopted
from [91].

35

A subsequent study on artefacts in ASD built upon the findings of Wagenaar
et al. (2015). In the study, the rationales behind the use of agile artefacts were
investigated in 19 agile teams. These organisations were software-producing
organisations and were involved in software product management. The find-
ings revealed 55 artefacts with confirmed the previous results on artefacts in
ASD [25]. Five rationales for the use of artefacts in ASD (Figure 2.22) were
identified as agility, governance, internal communication, quality assurance, and
external follow-up rationale.

Figure 2.22: Categories of rationales for the usage of agile artefacts. Adopted
from [25]

Agility represents the rationale behind the usage of artefacts due to the adop-
tion of an ASD method [25]. For instance, the use of a Product and Sprint
Backlog in Scrum. Governance defines the rationale for which artefacts the
agile team decides to use. This rationale may be influenced by the organisation
or imposed externally [25]. Examples are the acceptance criteria, the definition
of done (DoD), and the definition of ready (DoR). Agile teams value internal
communication, hence artefacts such as a design flow, functional design, and
technical documentation aid communication and transfer of knowledge among
team members. Moreover, quality assurance refers to the rationale of using
artefacts to ensure quality in the project, such as a test plan, test report, and
user acceptance tests [25]. Lastly, the external follow-up rationale relates to the
usage of post-development artefacts which are not of so much use to the agile
team itself but rather for external parties outside the agile team such as the
customer, or another part of the organisation [25].

36

2.5.4 Documentation Practices in ASD

A practice is defined as an activity that is regularly conducted [17]. Previous
literature has confirmed the absence of practices or tooling that can be used for
documentation purposes and rather, documentation information is distributed
across various tools in the eco-system of the software development team [17].
A review of tools within this domain can be found in Section 2.5.6. In this
sub-section, we discuss the known documentation practices in literature as well
as the perceptions of documentation in agile teams.

The most evident knowledge-sharing practice in ASD is verbal communica-
tion [17]. As mentioned earlier, this is one of the principles of agile methods
stated in the Agile Manifesto [5]. It is more effective in aiding mutual under-
standing compared to written documentation [17]. Often verbal communication
in agile teams is supported by sketches, informal drawings [17], and flow di-
agrams. However, ASD also entails formal communication which blends both
traditional and agile artefacts [94]. User stories are widely used as an artefact
to communicate requirements [17]. In addition to artefacts created for docu-
mentation purposes such as knowledge transfer, artefacts are also created as
part of the development process that can serve as a type of documentation arte-
fact [17]. An example is executable specifications of the to-be system, where
tests or behavioural flow are defined in an executable format in the case of TDD
and Behavioural Driven Development (BDD), respectively [17].

Although the emphasis is made on verbal communication in agile methods, there
are various artefacts used in ASD with different rationales as illustrated in Fig-
ure 2.22. Knowledge sharing without documentation artefacts and solely based
on face-to-face communication is likely to result in issues such as undocumented
knowledge gaps, and inadequate architecture [16]. Artefacts in ASD potentially
lose their effectiveness if the reader lacks a shared and overall understanding
of the project [16]. Also, valuable knowledge about the software is likely to
evaporate with time due to employee turnover [1]. In a research conducted by
Sharp et al. (2009), empirical data was used from six teams who are mature in
using XP on the topic of investigating the role of two artefacts (the story card
and the Wall) in ASD [95]. With the term ‘mature’, they refer to a team that
has used XP for more than a year and have successfully produced software [95].
They found that the artefacts in agile methods lack detailed information about
the system being developed [95]. By a means of questionnaires, Stettina and
Heijstek (2011) captured the perceptions of seventy-nine ASD practitioners with
regard to the documentation in their projects. They found that agile practition-
ers admit that too little documentation is available in their projects and they
spend too little time on writing documentation [1].

The shift from traditional software engineering methods to agile methods has
caused companies and clients to still use software documents [83]. This as
a result imposes the external follow-up rationale for the agile team. If the
documentation is of no use to the team, then the motivation is rather external.
One of the main reasons for the lack of enough documentation can be attributed
to the lack of developers’ motivation [83]. The process of writing documentation
is perceived as a burdensome intrusive side-task and it is usually submitted
at the end [15]. Developers tend to focus on the deadline at hand to deliver

37

working software and there is rarely enough time to document the decisions
and knowledge after the project has been delivered [16]. In an exploratory
study conducted by Shmerlin et al. (2015) on the motivation of developers
toward writing code, the following findings were concluded. Documentation is
perceived as a tedious task, for instance explaining how a problem was solved.
Also, it was seen as a difficult task to be formal and write down the necessary
decisions. Moreover, it was perceived as an intrusive task interrupting the flow
of coding. Lastly, due to time constraints documentation tends to have the least
priority and it tends to be neglected due to time constraints [83].

2.5.5 Guidelines on Agile Documentation

In Section 2.4.2, we introduced Disciplined Agile Delivery (DAD) as one of
the approaches to scaled agile development, as a method that focuses on the
full delivery life cycle of a software project. The modelling and documentation
practices in DAD are based on the principles of Agile Modelling (AM) [96].
AM “is a collection of practices, guided by principles and values, for software
professionals to apply on a day-to-day basis. [..] it does not define detailed
procedures for how to create a given type of model, instead, it provides advice
for how to be effective as a modeler” [97, p. 8]. It is usually combined with
other methods such as Scrum, XP, and DSDM, to enhance the processes with
a focus on modelling and documentation [97]. The term ‘Agile Documentation’
is introduced by Ambler (2002), as a lean and minimal documentation artefact
which is “good enough in the eyes of the beholder” [97, p. 155]. With this
concept, we discuss the strategies for ensuring agile documentation within AM
by Ambler (2002).

• Focus on the customer(s) [97, p. 163]. Acquiring the stakeholders’ require-
ments for documentation and negotiating with them for a minimal subset of
documentation to ensure lean documentation [97].

• Keep it just simple enough, but not too simple [97, p. 163]. Start simple and
build upon the documentation if necessary. To investigate the extent to which
documentation should be enough, it is crucial to identify how the target stake-
holders intend to use the documentation as well as the rationale of use [97].

• The customer determines sufficiency [97, p. 163]. Sufficiency is achieved if
the documentation satisfies the intended rationales of use. To ensure that, the
writer should validate whether the documentation provides value to the stake-
holders [97].

• Document with a purpose [97, p. 164]. If a documentation artefact contributes
significantly to the overall goal of the project, then it is worth creating it [97].

• Prefer other forms of communication [over] documentation [97, p. 164]. Even
though documentation facilitates knowledge transfer, there are other alternative
media of communication to consider [97].

• Put the documentation in the most appropriate place [97, p. 164]. Where docu-
mentation should be kept and how it should be organised depends on the needs
of the stakeholders concerning that information [97].

• Wait for what you are documenting to stabilize [97, p. 164]. “Delay the cre-
ation of all documents as late as possible, creating them just before you need
them” [97, p. 164].

38

• Display models publicly [97, p. 164]. When information about the project is dis-
played publicly, the transfer of information is promoted. Thereby, reducing the
need for detailed documentation as the project stakeholders gain more insights
into the project via the shared information [97].

• Start with models you actually keep current [97, p. 165]. Focus on creating
models that are less likely to get outdated. Models that keep getting outdated
are of no value to document [97].

• Require people to justify documentation requests [97, p. 165]. Inform stakehold-
ers about what is involved in making and updating the document as well as
asking the need and the justification for the need of a particular documentation
artefact [97].

• Write the fewest documents with least overlap [97, p. 165]. A recommendation is
to split large documentation artefacts into smaller parts with the least overlap,
this improves the ease of maintainability [97].

• Get someone with writing experience [97, p. 165]. “Technical writers bring
a lot to the table when it comes time to writing documentation because they
know how to organize and present information effectively” [97, p. 165]. Or an
alternative is to provide training to the team members on how to approach agile
documentation [97].

• Make it easy to remember the fundamentals [97, p. 166]. Amber (2002) rec-
ommends that these guidelines should be made publicly visible for the team
members to serve as a reminder of how to “take an agile approach to documen-
tation” [97, p. 166].

However, these guidelines are rather abstract for application in practice and they
are mainly channelled towards documentation created for external purposes.
Also, in Section 2.5.3, we discussed the rationales for use of documentation.
A factor driving the use of documentation is not only external follow-up, but
also, agility, governance, internal communication, and quality assurance [25].
Therefore these guidelines may not be suitable to apply to ASD projects to
address the challenges found in documentation, but are useful to provide insights
into how the literature perceives agile documentation.

2.5.6 Tools for Documentation in ASD

Documentation artefacts are scattered across the entire eco-systems of tools
within an ASD project and there is hardly a single source of truth [17]. As dis-
cussed in Section 2.4, scaling factors such as organisational size and governance
drive the adoption and adaption of agile methods in large software projects. In
a systematic mapping literature study by Theunissen et al. (2022), the develop-
ments in documentation and tools in Continuous Software Development (CSD)
were discussed. CSD is an overarching term for the combination of Lean, ASD,
and DevOps to cover the activities for the entire SDLC of a product [17]. Since
it is a relatively new paper to the date of writing, we are convinced that it covers
an updated evidence of the use of tools in agile methods. The authors found
that the tools used in CSD entail information on the source code, tests, deploy-
ment, and the quality of the software [17]. The categories of tools discussed by
Theunissen et al. (2022) are summarised in Table 2.5.

39

Table 2.5: Categories of tools in CSD. Summarised from [17].

Category Sub-category Example(s)

Development

Requirements management tools Blueprint, RequirementONE
Integrated Development Environ-
ments (IDEs)

Eclipse, IntelliJ

Agile Management tools JIRA, Agile Bench
Development Analytics tools SonarQube, Metrixware
Repositories GitLab
Development community StackShare, StackOverflow

Test

Quality attributes requirements test
tools (performance, reliability, and
security)

JMeter, SmartStorm

Functional Automation tools Cucumber, Appium
Continuous testing tools test.ai, Buildbot
Service Virtualisation testing tools Smartbear, Parasoft

Deployment
App Automation tools Ansible, Puppet, Chef
Continuous Integration/Continuous
Delivery (CI/CD)

CircleCI, Jenkins

Service execu-
tion

Cloud/Container Orchestration/-
Management

Docker, Mesos

Monitoring Monitoring and Management tools DataDog, RunDeck

Security
Container Security AppArmor, Cloud Insights
Application Security Threat Stack, HyTrust
DevSecOps Cigital, CheckMarx

API
management

API management tools RapidAPI, OpenAPI
API directories ProgrammableWeb

The type of tools used determines the documentation information and artefacts
produced and used in the agile team. “The amount of structure of the informa-
tion is strongly related to the tool” [17, p. 13]. For requirements management
tools, information such as stakeholders’ concerns, risks, and constraints are pre-
sented as specifications which can be informal such as high-level user stories or
formal and concrete such as detailed use cases with pre-and post-conditions [17].
Moreover, agile management tools such as JIRA and Agile Bench provide sup-
port for developers to find information about requirements, tasks, progress,
planned and achieved goals for the iterations, as well as the traceability be-
tween requirements, tasks and code [17].

2.6 Conclusion

Throughout this section, we explored the background knowledge essential for
this research. We discussed the transition of software development methods
from plan-driven approaches to adaptive and iterative-driven approaches. ASD
approaches have gained popularity over the past two decades. Requirements
engineering activities, such as elicitation techniques, reside in ASD methods.
Although agile RE practices address several challenges such as communication
gaps and unreliable requirements specifications in traditional RE, they also pose
new challenges such as minimal documentation. ASD methods were originally
intended for use by small and co-located teams. However, due to its benefits
such as adaptability and close-customer collaboration, the approach became
increasingly embraced in LSOs. To address the issues of scaling agile methods,
methods such as SAFe, DAD, etc. have been proposed. We see the different

40

adoption of scaled agile methods in the literature with various processes, roles,
and use of tools. This serves as a basis for the design of our case study.

The risk of insufficient documentation in scaled-agile projects is higher than
in smaller projects, as it may significantly impact the cost and timeline of the
project. Ensuring the quality of documentation has been a renowned problem in
Software Engineering even before the adoption of ASD. In the literature, several
attempts have been made to define what makes a good documentation artefact.
We adopt the taxonomy defined by Aghajani et al. (2019), as it contained most
of the earlier defined aspects of good documentation. Out of the four defined
categories, we focus on the Information Content (What), Information Content
(How), and Process Related quality aspects of documentation. We apply these
categories to identify the strengths and issues of documentation in case studies.
Lastly, the feedback cycles identified in Section 2.2.4 is a potential aspect of the
treatment design.

41

Chapter 3

Research Methods

We discuss the objective of this research using the goal-oriented approach of
the Goal-Question-Metric (GQM) model in Section 3.1. Then, we introduce
the design science approach which we adopted for this research, in combination
with a multiple-case study. A discussion of this approach is found in Section 3.2.
Finally, we present the data collection techniques and data analysis approaches
in Sections 3.5 and 3.6, respectively.

3.1 Research objective

The goal of this research is presented using the Goal-Question-Metric (GQM)
template by Basili et al. (1994). The GQM approach is based on declaring
the objectives of the research, linking those objectives to the research to oper-
ationalise the goals, and providing a framework for understanding the data in
relation to the stated objectives [98]. The GQM perspective is based on the
theory that all measurements should be goal-oriented [98]. Hence, the goal of
this research is to:
Analyse the requirements engineering practices in scaled-ASD,
for the purpose of evaluation
with respect to their impact on documentation practices and artefacts
from the point of view of the agile project teams
in the context of multi-team projects.

The GQM model distinguishes three levels namely: conceptual, operational and
quantitative level. We explain these levels briefly.

• Conceptual level. Goals are defined for an object for a variety of reasons and
from a specific viewpoint [98]. Examples of objects used for measurement in
software engineering research are products such as artefacts and deliverables,
processes such as designing and testing, and resources such as personnel, hard-
ware and software [98].

• Operational level. A set of questions are identified to define how a specific
goal will be performed on the object of measurement [98].

42

• Quantitative level. This level identifies the metrics to answer every ques-
tion quantitatively [98].

Even though the metric is intended for quantitative measurements, the goal-
oriented concept of the GQM is applied in qualitative studies such as [99], [100].
For example, Fuggetta et al. (1998), studied the application of GQM in an in-
dustrial software setting [99]. Their questions included ones that are answered
by qualitative metrics such as the knowledge of the testing team on the appli-
cation domain, the understandability of requirements, the origin of a software
failure, and differences across certain platforms, among others [99]. Also, in
a qualitative study by Machado et al. (2021), the perceptions of practitioners
during a transition from a traditional to an agile process model were studied
using semi-structured interviews [100]. They used the GQM to formulate the
interview questions and identified the perceived benefits of the transition to
ASD, the challenges faced as well as solutions to those challenges [100].

Our main research question is divided into seven sub-questions as introduced
in Section 1.2. For each sub-question, we operationalise the goal using a GQM
model. Figure 3.1 illustrates the goal of investigating how multi-team software
projects in Large Software Organisations adopt agile methods. Here, we are
interested in the type of roles, processes, and tools involved in the scaled agile
method of the project in question.

G1: Adoption of agile
methods in LSPs

Q1: How is ASD adopted within a
multi-team software project?

M3: Tools M1: Roles M2: Processes

Figure 3.1: A GQM model of SRQ1

Subsequently, with the insights from the adoption of agile methods in the multi-
team software project, the evidence of requirements engineering practices are
studied and categorised into the phases of RE by Dieste (2009). These phases
are elicitation, analysis, specification, validation, and requirements manage-
ment [50]. These requirements engineering phases are discussed in Section 2.3.
Figure 3.2 presents an overview of this categorisation as metrics to answer the
second sub-research question.

The scope of software documentation is broad. Therefore, we focus on the doc-
umentation artefacts which are used in the RE practices identified from the
previous research question. Hence, the goal of the third sub-research question is

43

G2: Categorisation of RE
practices

Q2: Which requirements
engineering practices can be
identified in the adopted ASD

approach?

M4: Elicitation M5: Analysis M6: Specification M7: Validation M8: Requirements
management

Figure 3.2: A GQM model of SRQ2

to identify and categorise the documentation artefacts into the categories intro-
duced by Wagenaar et al. (2015) in Section 2.5.3, as product artefacts, process
artefacts, core agile method artefacts (scrum artefacts), and non-agile method
artefacts (non-scrum artefacts) [91]. The GQM model of this sub-question is
illustrated in Figure 3.3.

G3: Categorisation of
RE-related documentation

Q3: Which kinds of documentation
artefacts are used for the various

requirements engineering practices
within the ASD approach?

M9: Product
artefacts

M10: Process
artefacts

M11: Core agile
method artefacts

M12: Non-agile
method artefacts

Figure 3.3: A GQM model of SRQ3

After identifying and categorising documentation related to the RE practices,
the fourth sub-question analyses the strengths and weaknesses of the docu-
mentation found. Figure 3.4 presents an overview of the GQM model of this
sub-question. The findings will be measured according to the categorisation
of documentation issues presented by Aghajani et al. (2019), as elaborated in
Section 2.5.2. The categories of good documentation were introduced as In-
formation Content (What), Information Content (How), and Process Related
categories [20]. These categories are also used to analyse the impact of require-
ments change on the documentation as shown in Figure 3.5.

44

G4: Strength and weakness
analyses of current

documentation

Q4: What is the current state of
the identified documentation

within the project?

M13: Information
content (what)

M14: Information
content (how)

M15: Process-
related

Figure 3.4: A GQM model of SRQ4

G5: Impact of requirements
change on the documentation

Q5: What is the impact of
requirements change on the

identified documentation within
the project?

M13: Information
content (what)

M14: Information
content (how)

M15: Process-
related

Figure 3.5: A GQM model of SRQ5

The potential aspects for improvement identified in the documentation with
regard to what information is presented, how it is presented, and the process of
writing documentation, are used as requirements for the framework. The goal of
the framework is to address the issues found in the documentation and improve
documentation practices in multi-team software projects. Hence, Figure 3.6
presents the GQM model of the sixth sub-question. The fitness of the designed
framework is measured by how well it satisfies the requirements.

Finally, the designed framework is evaluated by practitioners. An experiment is
conducted to study the proposed framework in two multi-team ASD projects.
We conduct a literature study on what variables can be used to evaluate the
framework to improve documentation practices. We adopt the research model
of Green et al. (2005) to evaluate our framework, where the authors studied the
impacts of quality and productivity perceptions on the use of software process
improvement innovations [101]. In their study, they adopted the variables: ease

45

SRQ6: What framework can be used to
address documentation issues by

improving documentation practices in
multi-team software projects?

G6: Design a framework to
improve documentation practices

Figure 3.6: A GQM model of SRQ6

of use, quality, productivity, usefulness, and use. We adopt these variables to
evaluate the effectiveness of our framework in practice. Additionally, we set up
a validation survey at the end of the experiment to gather perceptions on the
adoption of the framework based on the aforementioned variables. Figure 3.7
highlights the corresponding GQM model of the seventh sub-question.

SRQ7: What is the
effectiveness of the

proposed framework from
SRQ6?

M17: ProductivityM16: Ease of use

G7: Validate the proposed
framework

M18: Quality M19: Usefulness M20: Use

Figure 3.7: A GQM model of SRQ7

3.2 A Design Science Approach

For this research, design science is adopted and incorporated with a multiple-
case study for the Problem Investigation phase. The multiple-case study enables
us to study the organisations and investigate the issues facing documentation
in multi-team software projects. To define a multiple-case study, we introduce
the definition of a case study. Yin (2018) defined a case study as “an empirical
method that investigates a contemporary phenomenon (the “case”) in depth
and within its real-world context, especially when the boundaries between phe-
nomenon and context may not be clearly evident” [22, p. 15]. A multiple-case
study is a case study organised around two or more case studies [22]. The design
of a multiple case study must follow an analogous logic such that each case must
be carefully selected to ensure that literal replication or theoretical replication

46

is the aim of the individual case studies [22]. The terms literal and theoretical
replication imply the prediction of similar results and the prediction of contrast-
ing results but for expected reasons, respectively [22]. Studying more than one
case allows the derivation of findings to draw stronger analytical conclusions by
confirming and potentially revising the initial theory based on the findings if
necessary [22]. We use this multiple-case study method to answer our first four
sub-questions (see Section 1.2). With the selected cases, we study the context
of each case, how agile methods are adopted, which RE practices are evident,
which documentation artefacts are used within the project, and what is the
quality of the documentation artefacts.

Implementation evaluation /
Problem investigation

Treatment designTreatment validation

Treatment implementation

Figure 3.8: The engineering cycle. Retrieved from [21, p. 28].

The findings from the multiple-case study serve as input for the Problem Inves-
tigation phase of the design science method. Design science is a research method
mainly adopted in software engineering, information systems and computer sci-
ence research [21]. Design science is the design and investigation of artefacts in
context [21, p. 5]. The artefacts to be studied should be designed to interact
with a problem context in order to improve a problem in that context [21]. The
design cycle consists of the Problem Investigation, Treatment Design, and Treat-
ment Validation phases [21]. It is a subset of the engineering cycle (Figure 3.8),
which consists of the Problem Investigation, Treatment Design, Treatment Vali-
dation, Treatment Implementation, and Implementation Evaluation phases [21].
The design cycle is used for this research as “design science research projects
do not perform the entire engineering cycle but are restricted to the design
cycle” [21, p. 30]. The Treatment Design phase is used to identify the require-
ments and possible treatments [21] to answer the sixth sub-research question.
Moreover, the Treatment Validation phase ensures that the proposed treatment
satisfies the requirements and is suitable for its context [21]. Hence, the seventh
sub-question is answered using the treatment validation phase. Implementation
and implementation evaluation are activities that take place outside the re-
search, where the recommendations from the research are implemented in their
original context [21].

3.3 Research Context

The setting of this research is multi-team software projects in Large Software
Organisations (LSOs). The context of multi-team software projects refers to
projects with at least two teams [102]. Each agile team should have at least
five members. We choose a minimal threshold of five team members because
the ideal size of teams in ASD in the literature is approximately five to nine
members [103]. There is no limitation to the type of agile method being used,
as in Section 2.4 it is apparent that agile methods are implemented variably

47

across large software organisations. Additionally, the adopted agile approach
may have a different perspective on documentation. XP for instance focuses
on pair-programming as a core aspect of communication [41]. Scrum, on the
other hand, focuses on delivering a working iteration of the software product
with close customer collaboration [42]. In scaled agile methods such as SAFe,
there are additional documentation artefacts such as a shared portfolio, a local
product backlog, a roadmap, and a release plan [74]. Furthermore, we aim for
a variance in the type of industry or clientele range for the software projects to
be able to generalise our results across large software companies.

3.4 Case Selection

The cases for this study are selected using purposive sampling, a sampling
method “where members conform to certain criteria for selection” [104, p. 3511].
Therefore, the following selection criteria are defined. As discussed in detail
in Section 3.5, semi-structured interviews are one of the main data collection
methods in this research. The first criterion states that the participating organ-
isation should be willing to participate in the interviews, allowing at most five
hours for interviews per project team. Additionally, the data on documentation
in ASD will not be complete if we only rely on interviews without evidence
analysis. Therefore, the second criterion ensures the willingness of the partici-
pating projects to share documentation artefacts related to the project such as
the product backlog, user stories, requirements specifications, design, and test
documentation. Figure 2.22 shows an example of documentation expected to
find in these project teams as well as the rationale of use. Since the seventh
sub-question concerns validation of the proposed framework, the willingness of
the project team to participate in the validation activities is preferred but not
mandatory.

Using the Key Informant Technique (KIT) (Marshall, 1996), experts will be se-
lected for the semi-structured interviews as the key informant. A key informant
must possess these characteristics: knowledge, willingness, communicability, im-
partiality, as well as having a role with seniority in the project team [105]. KIT
is a participant selection technique originally used in ethnographic research to
ensure the reliability of obtaining an expert source of information [105]. The
experts we aim to select from the project teams are the senior or managerial
roles such as project manager, scrum master, lead developer, lead architect, lead
analyst, and lead tester. As mentioned in Section 3.3, a selected project should
contain at least two agile teams with at least five members per team, this should
provide some insight into how different teams in the same project communicate
aside from verbal communication. Since the context of the research is large soft-
ware projects in The Netherlands, it is useful to state a selection criterion that
the participant should be willing to communicate in English. Microsoft Stream
will be used to automatically transcribe the recordings, as the tool is available
to the researcher but the transcription feature for Dutch is not yet available in
this tool.

48

3.4.1 Overview of selected cases

In this section, we introduce the cases to be studied in this research. We found
three large organisations that were willing to participate in this research. How-
ever, only two of these companies had multi-team software projects. Therefore,
the case study is based on these companies, referred to as C1 and C2 due to
confidentiality. C1 is an IT consultancy firm with their main focus on digitali-
sation in the public sector. This company has about 4000 employees worldwide,
having offices in Europe and Asia. For this research, we were assigned a multi-
team project within The Netherlands referred to as P1. The project develops a
web-based solution for resource planning in the educational sector.

C2, on the other hand, is a civil engineering firm in The Netherlands with
about 1000 employees, that delivers designs and advice for construction projects
within the country. For this research, we were assigned to the first and only
multi-team software project at the time of writing. This project is referred to
as P2, and it is found in the Digital Transformation department of C2. The
aim of this department is to optimise the daily work of the civil engineers in
order to increase efficiency within the company. Hence, the project develops
a solution for performing calculations and optimisation of design activities for
construction projects. The solution is used by the civil engineers within the
company. In table 3.1, we provide an overview of the companies, projects, and
team information.

Table 3.1: An overview of the selected cases.

Company
ID

Project
ID

Project duration
(on March 2022)

Team
ID

Team
size

C1 P1 2½ years
P1T1 8
P1T2 6

C2 P2 4 years
P2T1 6
P2T2 6

3.5 Data Collection

The data collection techniques of this research are structured by the levels of
data collection techniques by Lethbridge et al. (2005). In their research on
data collection techniques for software engineering research, three levels of data
collection techniques are defined as the first, second, and third degrees [106].
Having data collection methods from the three levels provides the advantage of
gaining insights from different perspectives for this qualitative research. The
first-degree techniques involve direct involvement with the researcher and the
subjects, while data is collected simultaneously [106]. Interviews are a first-
degree technique, which involves at least one researcher asking questions to at
least one respondent [106]. For this research, we adopt semi-structured inter-
views as it provides the ability to gain information from the subjects according
to the defined script as well as a follow-up on open questions. We conduct
two types of interviews. Type 1 interviews are aimed at getting to understand
the project, the chosen agile approach, RE activities, and the documentation
used in the project. Type 2 interviews are targeted at understanding the cur-
rent state of documentation in each team with regard to the variables outlined

49

in Figures 3.4 and 3.5.

Furthermore, the second-degree data collection techniques define techniques
that do not require direct contact between the subjects and the research [106].
Here, we combine the direct observation approach with experimentation to vali-
date the proposed framework with two multi-team software projects. With pas-
sive participation, we gain insights into how effective is the use of the proposed
framework within each team. Subsequently, the third-degree of data collection
techniques “attempt to uncover information about how software engineers work
by looking at their output and by-products” [106, p. 329]. With this technique,
we adopt documentation analysis. We look at the documentation produced and
used by the team (output) and the tools used in this process (by-products).
Table 3.2 shows how these three selected data collection techniques are used to
answer each sub-question.

Table 3.2: An overview of research methods per sub-question

sub-research question Data collection methods
SRQ1: How is Agile Software Development
(ASD) adopted within a multi-team software
project?

Semi-structured interviews.

SRQ2: Which requirements engineering prac-
tices can be identified in the adopted ASD ap-
proach?

Semi-structured interviews.

SRQ3: Which kinds of documentation arte-
facts are used for the various requirements en-
gineering practices within the ASD approach?

Semi-structured interviews and docu-
mentation artefacts analysis.

SRQ4: What is the current state of the iden-
tified documentation (from SRQ3) within the
project?

Semi-structured interviews and docu-
mentation artefacts analysis.

SRQ5: What is the impact of requirements
change on the identified documentation (from
SRQ3) within the project?

Semi-structured interviews.

SRQ6: What framework can be used to ad-
dress documentation issues by improving doc-
umentation practices in multi-team software
projects?

Semi-systematic literature study and
applying the guidelines of the treat-
ment design by Wieringa (2014).

SRQ7: What is the effectiveness of the pro-
posed framework from SRQ6?

An experiment with observations and
a validation survey.

3.5.1 Data Collection Procedure

Before the start of the case study, consent forms are sent out to the participants
to inform them of the objective of the research and assure that the collected data
will be treated confidentially. The consent form can be found in Appendix B.
The study of each case begins with a preliminary study (we refer to this as Type
1 interviews). A semi-structured interview, with a duration of at most one hour,
is conducted with the Team Manager or Scrum Master of each project, to gain
insights into the project and understand how ASD is embedded in the way of
working. The questions for this type of interview can be found in Appendix C.
The interviews are recorded with the permission of the interviewee and are
transcribed. Additionally, documentation analysis is conducted to gain insights
into the kinds of documentation used by the project and gain a general idea of
the state of documentation. A combination of these two techniques answers the

50

first sub-research questions.

The next step after the preliminary study is to conduct semi-structured inter-
views (Type 2 interviews) in accordance with the goal and metrics defined in
Section 3.1 to answer the fourth and fifth sub-research questions. The questions
for this type of interview can be found in Appendix D. Documentation analyses
involve making an inventory of the documentation relating to RE activities per
category, comparing the documentation artefacts to analyse their quality based
on a set of guidelines, and also studying what tools are used by the agile team
to write documentation. Then, the problems identified with documentation are
used as input for the literature study to design and propose a suitable treatment.

As discussed in with the GQM models in Section 3.1, the findings of the first
four sub-questions are used as requirements input for the designing of a suitable
framework using the techniques of design science treatment design. The treat-
ment design phase of design science ensures that requirements are specified to
aid the search for useful possible treatments [21]. Finally, the proposed frame-
work is validated industrially using the treatment validation phase of the design
cycle by studying the framework in an experiment to observe its effectiveness.

3.5.2 Pilot Study

According to Yin (2018), a pilot study is conducted as an initial phase of the
data collection procedure to adapt the data collection procedure with respect
to “both the content of the data and the procedures to be followed” [22, p.
106]. One of the potential cases for this research is selected for the pilot study
due to the availability of participants in relation to the timeline of the pilot
study. The interviews for the pilot study were scheduled to start in March
2022. For this research, the pilot study is conducted on a project with two agile
teams developing a software package for a client. The teams are divided on a
functional level. The insights from the pilot study are used to refine the case
study protocol and is retained in the findings of this research. An overview of
this case can be found in Section 4.1.1. During the data collection, we reach
a point of theoretical saturation whereby the fifth interview was confirming
information already collected in the previous interviews. Therefore, we decided
to interview three team members in the subsequent case study. This also made
it easier for C2 to commit to participating in the research as it entailed a lesser
time effort.

3.6 Data Analysis

In this section, we present the various approaches to data analyses for answer-
ing the research questions. The data analysis triangulates data from semi-
structured interviews, documentation analysis, and a treatment validation ex-
periment. During the data analysis phase, the transcripts of the Type 1 inter-
views are analysed for problem orientation and familiarity with the adoption of
ASD within the organisation and the project in the study. The findings from
these interviews are used to guide the semi-structured interview questions of
Type 2 interviews as well as the documentation analyses.

51

3.6.1 Semi-structured interviews

The transcripts from each of the interviews are analysed using thematic analy-
sis. Thematic analysis is a data analysis approach used in multiple qualitative
case studies, where recurring themes and issues are identified, interpreted, and
conclusions are drawn from the findings [107]. First, the data is made anony-
mous and stored in the database of this research. For each case, the project is
described as well as the agile teams. Subsequently, notes are taken by reading
through each transcript to form initial codes. Patterns and differences across
cases relating to the adoption of agile methods, RE activities, documentation
processes and artefacts are noted in other to establish thematic patterns. For
instance, the findings of RE activities in SRQ2 will be mapped to the phases of
the RE cycle as shown in Figure 3.2. For SRQ3, an inventory will be made of
which RE-related documentation is evident in the project, what are the ratio-
nales for use (see Figure 2.22), and how the use of tools influences the kind of
documentation in the project. The data is visualised using a relational model.
In Figure 3.9, we present a conceptual model of the potential flow of data in
this research.

The flow of data in the conceptual model (Figure 3.9) begins with a project
that executes an agile method, a combination of agile methods or an internally
created method to scale agile to the project. A project consists of two or more
agile teams, where each team consists of roles, processes, and tools. At least one
role performs a certain RE activity as part of a process in the agile method and
he or she may use a tool for that activity. An RE activity is an overarching term
for elicitation, analysis, specification, validation, and requirements management-
related activities. These types of RE activities are based on the phases of RE by
Dieste (2009). Then, an RE activity may produce or use some documentation
artefacts, whereby at least one role in the team is responsible for that artefact.

A documentation artefact is shaped by the rationale of use by the agile team,
tool, and agile method. The type of a documentation artefact can be classified
as either a product, process, core agile method or non-agile method artefact,
based on the findings of Wagenaar et al. (2015). Moreover, the quality of a
documentation artefact is assessed by quality categories based on the categories
defined by Aghajani et al. (2019). This quality category is an input for the
treatment requirements, which contributes to the design of the treatment. The
satisfaction of the requirements towards the designed treatment is reached if
the treatment is suitable for use in practice. In turn, the designed treatment
is validated by measuring its effectiveness with regard to the variables defined
in the research of Green et al. (2005). Table 3.3 presents an overview of the
semi-structured interviews conducted in this research.

Table 3.3: An overview of the conducted interviews.

ID Role of interviewee Team ID Date and time Format
1* Team Manger P1T1 18th March 2022,

at 13:00
Online

2 Architect/Lead Devel-
oper

P1T1 20th April 2022, at
15:30

On-site

3 Analyst P1T1 22nd April 2022, at
10:30

On-site

4 Analyst P1T2 29th April 2022, at
10:45

Online

5 Architect P1T2 10th May 2022, at
13:30

On-site

52

Table 3.3: (continued from previous page)

ID Role of interviewee Team ID Date and time Format
6* Scrum Master P2 16th May 2022, at

15:00
On-site

7 Team Lead/Lead Devel-
oper

P2T1 30th May 2022, at
13:00

On-site

8 Product Owner/Domain
Expert

P2T2 30th May 2022, at
14:30

Online

* means the interview is a Type 1 interview, whereas the others are Type 2 interviews

Additionally, in Table 3.4, we define the themes for each category using the
sub-categories and aspects from Figures 2.17, 2.18, and 2.19 as inspiration.

Table 3.4: An overview of the themes defined for the data analyses.

ID Theme
1 Information content (What)
1a Correctness
1a1 Preciseness of documentation
1a2 Adherence of documentation to the given templates
1a3 Examples of the most problematic documentation to keep correct
1b Completeness
1b1 The extent to which requirements are documented
1b2 The extent to which design is documented
1b3 Accuracy and completeness of references used in user stories
1c Up-to-dateness
1c1 The consistency of the documentation with the working software
1c2 Examples of functionality in the code that is not yet documented
1c3 The extent documentation is sufficient to extend or maintain the

application
1c4 The extent to which the translation in the documentation is out-

dated
1c5 The challenges faced when ensuring documentation is kept up-to-

date
1c6 The difficulty in tracing the versioning and updates of the docu-

mentation
2 Information content (How)
2a Maintainability
2a1 The difficulty in adding changes to the requirements documenta-

tion
2a2 The difficulty in adding changes to the design documentation
2a3 The awareness of how a change in one documentation impacts the

others
2a4 The challenges of incorporating change requests in the documen-

tation
2a5 Addressing the question of what is enough documentation
2b Readability
2b1 Processes in place to review documentation and ensure that they

are clear to read
2b2 The conciseness of the contents of the documentation
2c Usability
2c1 Issues faced when using the various tooling to write documenta-

tion
2c2 The level of difficulty for external stakeholders to find information

in the various documentation
2c3 Processes in place to ensure shared documentation is maintained

correctly by both teams

53

Table 3.4: (continued from previous page)

ID Theme
2d Usefulness
2d1 Processes in place to encourage the various stakeholders to review

and give feedback on the documentation
2d2 Planning and incorporating feedback in the documentation pro-

cess
3 Process Related
3a Internationalisation
3b Contribution to documentation
3c Automated documentation
3d Other issues
3e Strengths of documentation processes

3.6.2 Documentation analyses

Documentation analysis is performed on the documentation artefacts relating
to RE activities to provide insights on the types of documentation used and the
quality of that documentation. The quality of documentation cannot be assessed
based on the documentation analysis alone, therefore the Type 2 interviews are
used to support this objective.

3.6.3 Treatment validation experiment

The purpose of this experiment is to provide an understanding of how the pro-
posed framework is adopted in practice and how effective is it in improving
documentation practices. The treatment is applied to two multi-team software
projects. The notes taken from the passive observations will be used to support
the analysis of SRQ7. Similar to the semi-structured interviews, the thematic
analysis approach is employed to derive codes related to the variables outlined
in Figure 3.7. To conclude the experiment, a survey is given to all the par-
ticipants to give their feedback on the use of the proposed framework. These
insights enrich the findings from the observation. A detailed description of the
experiment is provided in Chapter 7.

54

Agile team M2: Process Documentation
artefact

Rationale of use of
documentation

M1: Role

M3: Tool

2..*

1..*

1..*

RE activity
0..*1..*

0..*

1..*

0..*

0..*

M5: Analysis M6: Specification M7: ValidationM4: Elicitation M8: Requirements
management

1..* 0..*

0..*

is responsible for

has a 1..*

Agile method

comprises of

2..*

1

1..* 1..*

shapes the

1..*

1..*

Quality category
1..*

1..*

is assessed by

M13: Information
content (what)

M14: Information
content (how)

M15: Process-related

Documentation
type

M9: Product artefacts M10: Process
artefacts

M11: Core agile
method artefacts

M12: Non-agile
method artefacts

11
is of

Requirements
change

handles a

is impacted by

1..*

1..*
1..*

1..*

Treatment
Requirement

is input for

Effectiveness measure
of SPI

defines
Proposed treatment

1..*

11..*

is validated with

1

1..*

uses

is used for

has a
entails

performs

contributes to
1..*

1
1

1

Project

contributes toexecutes 1..*
1..*

M17: ProductivityM16: Ease of use M18: Quality M19: Usefulness M20: Use

Figure 3.9: An overview of the conceptual model of the empirical data in this research.

55

Chapter 4

Case Descriptions

We present the first set of results from the multi-case study conducted as part of
the Problem Investigation phase. We introduce the explored cases in Section 4.1,
then we discuss the agile approach and evidence of RE activities in Sections 4.2
and 4.3, respectively. Finally, we present an overview of the findings of the use
of documentation artefacts within the studied projects in Section 4.4.

4.1 Introduction to the Cases

The case studies involved interviews and documentation analysis of two projects
within two different companies. Due to confidentiality and privacy reasons, we
refer to these cases as P1 and P2.

4.1.1 P1: Education

P1 is a project within C1, that builds a solution for the educational sector. The
solution consists of two web applications for the same client. Both applications
concern the resource planning of staff in the educational sector. The project
consists of two teams (P1T1 and P1T2), each web application is developed by
one team. This implies that the teams are divided based on functionality with a
common goal to align and reuse components. The development of the products
within P1 has a long-term duration and has been ongoing for two and half years
(as at the time of interviews).

P1T1 is currently developing a web application as part of the solution for a client,
to assist the reintegration of teaching staff into the workforce after a long-term
absence due to illness or disabilities, for instance. The team is responsible for
developing and maintaining the frontend of the application, whereas a third-
party provider is responsible for the development of the backend. The team
consists of eight members at the time of interviews. This number is subjected
to change as the up-scaling and down-scaling of teams is an ongoing activity
for projects in C1. Initially, the team consisted of fourteen members in the
[DevOps] phase, and this number was down-scaled to eight. The project is
currently in a ‘sort of a handover phase’ (Team Manager, Interview 1), where

56

the functional delivery has been completed for the first release and it is in the
process of transfer to the maintenance team while the team still develops new
functionalities in parallel. The team manager describes this process as such.
The first releases ‘have gone to production already, so it is a hybrid situation
where the project team is working on new features and the maintenance team
will pick up the production incidents’ (Team Manager, Interview 1). P1T1
delivers increments of the product to the production environment monthly with
a process known as the monthly release.

P1T2 also develops a web-based solution for resource planning for educational
institutions. What differentiates their product from P1T1 is that, the projects
divide the teams based on functionality. Different functionality and different
target users are a core distinguishing feature of the end-products of both teams.
P1T2 consists of 6 members at the time of the interviews. This number, like that
of P1T1, is subjected to change as up-scaling and down-scaling is an ongoing
activity for projects in C1. In contrast with P1T1, where the team deploys
a monthly release, the releases in P1T2 are less frequent. P2T2 deploys their
product increment on a quarterly basis to the production environment.

4.1.2 P2: Civil Engineering

The second project explored is P2. P2 is a ‘long-term’ project aimed at opti-
mising the processes and work of the design engineers within C2. The project
consists of four solutions which are developed by two teams within the project,
for confidentiality, these teams are referred to as P2T1 and P2T2. The solu-
tions are used to visualise construction structures as well as to make various
calculations for these structures. Currently, the solution is used internally with
the aim of extending it to external users. ‘Our main stakeholders will be the
users of the software, and [..] the project manager is involved in the milestones
of the project’ (Scrum Master, Interview 6).

The teams are divided based on functionality, but also different infrastructure
is used among the teams to deliver the functionality. P2T2 mainly consists of
Digital Engineers who are writing scripts to perform calculations for bridges.
‘So, they are delivering tools, and the users can use the tools to make the
decisions for the bridges. But they are mainly involved in calculating the bridges’
(Scrum Master, Interview 6), whereas P2T1 entails .NET and Unity developers
developing an application to validate the calculations. Additionally, there is one
Product Owner for each team and a Scrum Master responsible for both teams.

4.2 Agile method

We identified two different approaches to large-scale agile software development.
In P1, an internally created method by C1 is used. This method is referred to
as C1M in this research, due to confidentiality. On the other hand, P2 adopts
SAFe. The methodology adopted by each project reflects the roles, processes,
and tools used by the various projects.

57

4.2.1 Roles

Across cases, there are some similar roles. In Table 4.1, we present a role matrix
highlighting the similar and different roles across the projects. Then, we explain
what each role means.

Table 4.1: A matrix of roles identified within the teams of P1 and P2.

Role P1T1 P1T2 P2T1 P2T2
Scrum Master o o ✓ ✓
Analyst ✓ ✓ x x
Architect ✓ ✓ e e
Tester ✓ ✓ ✓ x
Developers ✓ ✓ ✓ x
Lead Developer o o ✓ x
Product Owner e e ✓ ✓
Digital Engineers x x x ✓
Domain Experts x x ✓ ✓

o = Role exists with another name, ✓= Role exists with exactly the same name, e = External
role outside the team, x = Role does not exist.

• Scrum Master. Both teams in P2 share the same Scrum Master. Within each
team, the Scrum Master is responsible for coordinating the activities of the
team as well as moderating the Scrum events of the team. Similarly, in P1, the
role of the Scrum Master is adopted by the team manager. The team manager
performs a similar function to the role of the Scrum Master in P2, but with
additional project management duties. Per team in P1, there is a different team
manager, who ensures ‘that all the team members are happy and, working on the
right [requirements] towards the customer, [..] managing customer relationships,
tracking status, and communicating it back [to the customer]’ (Team Manager,
Interview 1).

• Analyst. The role of the analyst is evident in both teams in P1. They are either
referred to as Analysts or Business Consultants within the company. In P1,
an Analyst is responsible for gathering the functional requirements, organising
workshops, and responsible for the analysis documentation. Also, non-functional
requirements are handled using workshops, but the developers and testers ensure
that it has been implemented correctly per user story. In P2 the role of the
analyst is similar to that of the Product Owener.

• Architect. There is a shared Architect for both P1T1 and P1T2. The Architect
guides the technical implementation of the project and advises on high-level
decisions. For instance, they advise the customer ‘on the right solution, [as well
as] on [how Azure] components should be used [and] even which Azure services
should be used and [..] on the security details’ (Architect, Interview 2). For both
teams in P2, the architect is not part of the team but is within the department,
and he or she is consulted for help when there are questions from the team.

• Tester. The role of the Tester is similar across P1T1, P1T2, and P2T1. The
Tester is responsible for ‘perform[ing] all the manual and regression testing and
making sure that we are delivering quality’ (Team Manager, Interview 1).

• Developers. Both teams in P1 consist of frontend, backend, and full-stack De-
velopers. Whereas, P2T1 consists of application developers in .NET and Unity.
The Developers are responsible for implementing the user stories planned in the
sprint.

58

• Lead Developer. The role of a Lead Developer is similar for teams P1T1, P1T2,
and P2T1. ‘That is the person responsible for the technical implementation’
(Team Manager, Interview 1). As well as, coaching the developers and helping
them when there are any questions. Also, in P1, or more generally in C1, Lead
Developers have the job title of a Senior Specialist.

• Product Owner. In the teams of P2, the Product Owner is responsible for
maintaining the requirements documentation such as the feature descriptions
and user stories. And they ‘will have some insights from the domain experts for
it’ (Scrum Master, Interview 6).

• Digital Engineers. Even though Digital Engineers perform a similar role as
Developers in an agile team. They are referred to as Digital Engineers in P2T2
because they ‘are writing scripts [.. and] they are delivering tools and the users
can use [..] to make the decision for the bridges. But they are mainly involved
in calculating the bridges’ (Product Owner, Interview 8). In other words, they
are also using the solution they develop in their daily work and they use tools
like Grasshopper1 to develop their scripts as opposed to the developers who use
Visual Studio as a development environment.

• Domain Experts. The Domain Experts in both teams in P2 provide explanations
of the domain knowledge in the field of civil engineering for various features and
requirements within the project.

4.2.2 Processes

We discuss the activities of the teams toward internal and external commu-
nication as an essential aspect of agile methods. Also, we present C1M, the
internally created method used by P1 and the adoption of SAFe by P2.

Internal and external communication

A fundamental aspect of ASD methods is communication and adaptability to
change. In this part of the section, we introduce the approach of the explored
cases to internal communication (within the team) and external communication
(across the teams and with other stakeholders).

Both teams in P1 are collocated in the same office and are mostly seated together
on one floor on the company’s premises. In addition to working on-site, there is
also a hybrid situation where the team members work from home occasionally.
This is similar to that of P2, where the teams are also located in the same
office on C2’s premises. However, the teams mostly work from home. ‘most
of the time we work from home, [P2T1] is mostly at the office but [P2T2] is
mostly working from home, so I should say they are not [always located] in
the same building’ (Scrum Master, Interview 6). Within each team, there is
a Daily Scrum held every morning to discuss the progress of the user stories,
tasks and any impediments. P1 and P2 use Azure DevOps to keep track of
the requirements and manage the backlog. Communication within each team
or across teams is also done via Microsoft Teams in the form of messaging and
calls. But when there are complex topics to discuss, P2 adopts face-to-face
meetings at the office, even though they mostly work from home. Also in both

1https://www.rhino3d.com/6/new/grasshopper/

59

projects, ‘some team members are involved in [..] both teams’ (Scrum Master,
Interview 6), as highlighted in Section 4.2.1.

Although both teams in P1 are building separate applications as part of one
solution, there is not much alignment needed in terms of functionality, rather,
reusability of components is required by the customer. ‘The customer requires
that we do not do double work, so the alignment that is needed is mostly done
in chapter meetings2’ (Team Manager, Interview 1). ‘We have these chapters
[for] the frontend chapter and backend chapter. [..] We [hold it] weekly and the
idea behind this is for knowledge sharing. Otherwise, there are small islands
within the teams in the [P1] team. And usually, we can share code between
the projects, so that is one reason to have the meetings’ (Architect, Interview
2). Per team, there is someone responsible for the frontend or backend chapter
meetings to align on a high level what the team is working on and whether
resources can be shared between the teams. There is the same architect in both
teams to ensure that the high-level architectural aspects are aligned. Moreover,
for the alignment of design and analysis, the analysts from both teams have a
weekly meeting to discuss components that may be reused among the teams.
Also, a team lead stand-up is held to discuss resourcing within the teams when
necessary.

Similarly, alignment is needed between both teams in P2 based on functionality.
The scope of the project is such that functionality depends on each other, and
therefore, the teams may depend on the functionality of each other from time to
time. In contrast to the teams in P1, P2 does not share code across teams. This
is mainly due to the different technology stack used by each team. Additionally,
there is one Scrum Master for both teams, who ensures that the processes of
both teams are aligned, and that dependencies are taken into account during the
PI planning. P2 has a ‘PI planning and a feature board, [as well as] dependencies
between the two projects which are doable so that is where we align. And if
someone has moved something [in the] planning, then we can adjust development
as well’ (Scrum Master, Interview 6).

Moreover, members in P1 make use of the Centre of Excellence (CoE) across
the global company (C1). The CoE is a platform where employees within the
branches of C1 in The Netherlands and other countries can also contribute to
knowledge sharing and help each other. ‘There is the Centre of Excellence [..],
so you can ask questions, and maybe there are [also] best practices or examples
out there’ (Architect, Interview 2).

Furthermore, since the solution of P1 is developed for external use. There are
few media of communication between both teams and the customer. There is a
weekly status update meeting held with the customer and the scrum masters of
both teams. ‘During this status update is where officially both teams explain
what the status is, what the progress and impediments [. . .], and such. Also,
[this is] where resourcing can be discussed’ (Team Manager, Interview 1). Ad-
ditionally, team members can have direct contact with the client via email or
verbal communication. ‘However, the general rule is that if something has been
decided or if questions are bigger than just a simple yes or no to proceed, then
it should be monitored through the SharePoint’ (Team Manager, Interview 1).

2A chapter meeting is used to share knowledge among the developers per team.

60

The SharePoint environment is a customised platform used by both P1T1 and
P1T2. This is also discussed in Section 4.2.3.

The following alignment meetings are used to align the processes between the
teams and/or external stakeholders.

• Bi- or tri-weekly architecture meetings (P1). This meeting is held with lead
developers and architects from both teams to align the high-level architecture
and reusable components.

• Frontend and backend chapter meetings (P1). A weekly meeting is used to share
knowledge among the developers in both teams. ‘We have these chapters [for]
the frontend chapter and backend chapter. [..] We [hold it] weekly and the
idea behind this is for knowledge sharing. Otherwise, there are small islands
within the teams in the [P1] team. And usually, we can share code between the
projects, so that is one reason to have the meetings’ (Architect, Interview 2).

• Technical stand-up (P1). This meeting is held three times per week to dis-
cuss technical challenges and solutions within the team. It is held on ‘Monday,
Wednesday, [and] Friday, [.. where] developers are involved plus architects,’
(Architect, Interview 2).

• Weekly design and analysis meeting (P1). ‘There is also a weekly design and
analysis meeting. And also yeah, it’s used to align the design between the two
teams’ (Analyst, Interview 3).

• Weekly status update meeting (P1). ‘The progress is monitored in a weekly
session with the customer. So, during this status update is where officially both
teams explain what the status is, what progress and impediments [are], and
such. Also, where resourcing can be discussed’ (Team Manager, Interview 1).

• Agile Release Train (ART) Sync meeting (P2). A biweekly meeting ‘with the
product manager, product owners and the scrum master. So mostly for this
ART. So it’s like an ART sync meeting [for] not only this project, but for all
products in this ART’ (Scrum Master, Interview 6). ‘The ART sync is the
common base for aligning the two teams’ (Scrum Master, Interview 6).

• Weekly PO Sync meeting (P2). A weekly meeting with the product owner of
each team and the technical manager to align the status of the projects with
the long-term goals of the department.

• Tri-weekly Guild meetings (P2T1). These are meetings on a particular area of
expertise to share knowledge across teams within the company. ‘For example,
we have a DevOps Guild and there, we discuss different DevOps topics because
DevOps is not associated [with] one particular topic or one particular team.
There are people from all the different teams. And also, [there is a] testing guild
and cloud infrastructure guild’ (Lead Developer, Interview 7).

• Team alignment meeting (P2T2). Within P2T2, there is a meeting that is
organised occasionally to discuss their appointments and align the setup and
guidelines of the code.

P1: Internally created method

Company C1 designed and uses an internally created method, we call it C1M
due to confidentiality. C1M is based on an approach that combines aspects of
Waterfall with agile software development. This method is based on agile with
control. Working with fixed contracts, the aspects of time, budget, and quality

61

are fixed within the project. Therefore, changes to the scope of the requirements
are handled by utilising change requests. ‘In a truly agile sense, you cannot have
all three aspects locked: time, budget, and quality. And for us, it is important
that we make sure that the budget and the deadlines are set to an expectation
based on what we agreed upon. So, this is then where it is really important to
be clear about what you are supposed to build or guide the customer in change
requests that might affect the deadline and maybe work towards an alternative
deadline for changes so you can stick to the original plan as much as possible’
(Team Manager, Interview 1).

C1M guides the projects to initiate with a clarification phase. This is the phase
where requirements are analysed from the contract and existing documentation.
Then the functional requirements are written as user stories and divided into
workshops. Preparation for these workshops is done by preparing the user stories
and prototypes, as well as determining the potential risks and problems. ‘In
these workshops, we gather all necessary stakeholders from the customer from
third party providers and we go through all the user stories which are not clear
to us’ (Team Manager, Interview 1).

Subsequently, a core principle of C1M is to ensure that decisions are recorded
as much as possible and approved by the client. The team manager of P1T1
explained the core principle of the company’s methodology as ‘the process of
recording decisions and actions in a set state or in a set of predefined documents
which allow you to be very explicit in what you are doing and what you will do’
(Team Manager, Interview 1). Documentation of decisions and the approval of
the client is very crucial to the C1M. The company’s SharePoint environment,
provides extensive guidelines and templates for documentation at every stage of
the SDLC. The approval of documentation and decisions is also done via Share-
Point. However, P1T1 deviates from the tooling aspect of the methodology.
P1 uses Azure DevOps to coordinate development activities and manage the
backlog. Therefore, the approval of user stories by the client is done via Azure
DevOps instead of SharePoint.

After the backlog has been defined, the functional requirements in the backlog
are planned into sprints. The development of the system in the teams is guided
using Scrum with sprints of two weeks. The following Scrum events are utilised
by each team using the DevOps phase.

• Sprint Planning

• Daily Scrum

• Sprint Retrospective (every two sprints for P1T1 and every sprint for P1T2)

• Refinement session

• Sprint Review

During the sprint, there is also a change management process that takes place
to handle new requirements to the original scope of the project. These require-
ments are referred to as change requests and are handled by creating a backlog
item known as a change. The change is then linked to a user story in Azure
DevOps. For each team, there is a release at the end of each sprint which is
deployed to the Functional Acceptance Test (FAT) environment for the client to

62

test and report defects. Besides the FAT testing, a monthly or quarterly release
is deployed to the Production environment by P1T1 and P1T2 respectively. Ad-
ditionally, the output of the retrospective may be process improvement actions
referred to as cases which are added and tracked in SharePoint.

P2: SAFe

P2 adopts SAFe as introduced in Section 2.4.1. However, some adjustments
are made to the method. Within the Digital Transformation department of C2,
Agile Scrum is used by most teams. However, P2 adopted SAFe about half a
year ago (at the date of Interview 6), to improve the collaboration among the
teams within the project. The portfolio version is used as shown in Figure 2.10.

Moreover, a Program Backlog and a Kanban board per team in Azure DevOps
are utilised to keep track of the progress. Since the experience with the use of
SAFe within C2 is fairly new, not all the elements are used as yet. These are
gradually being integrated into the project. The main reason why P2 adopted
SAFe is explained by the Scrum Master. ‘There was a need for more collabo-
ration between the teams and we were looking for a framework and that which
was supporting that. And SAFe [..] is used a lot in The Netherlands, so we
picked that one and we choose the [SAFe activities] which are really helpful for
us at the moment. And I have to say there are not a lot of multi-team projects
yet in [C2]. But this is really the first one, and especially in the current PI we
saw it, it was very helpful that [..] during the PI planning and we could [clarify]
what are the dependencies between the teams’ (Scrum Master, Interview 6).

The following activities are adopted by P2 at the time of interviews.

• Continuous Deployment Principle. ‘For other projects, we [are] using that
more and more, but especially for the product of [P2T1], it is still a stan-
dalone application. And for [P2T2] we deliver scripts so we still have to
have to find out what is the best way to release the software’ (Scrum Mas-
ter, Interview 6). In P2T1, they have a website where the application is
made available for download for the end-users. The application is deployed
automatically, but for P2T2, they do not have automated deployment yet.

• Design Thinking. Design thinking is adopted within the project to some
extent whereby feedback is collected from users and used to improve the
solution. ‘At least we start with [a] pilot bridge. So, we start finding out
[whether] the software is usable [..] for the type of bridge. So, that could
be a kind of design thinking. But as a team, we are a bit further away
from the customer, [..] and for [the solution of P2T1], the user starts using
it and find some things to improve’ (Scrum Master, Interview 6).

• Implementation Roadmap. There is a roadmap for both teams which de-
scribes the ‘planning for the project, [and the] milestones in it. [It] con-
nects the rest of the year, so multiple PI’s [are specified in the] roadmap’
(Scrum Master, Interview 6). The teams have an overview of what is being
developed. ‘They know what is on the PI Planning, so they know what
they are doing and. So, they are aware of the features they are making,
so for some features, they are depending on the other team, and they are
aware of it’ (Scrum Master, Interview 6).

63

• PI Planning Event. A periodic event is used to plan the epic and features
for the coming Product Increment (PI) as well as the dependencies among
the teams.

During the PI planning phase, the Product Owner of each team organises the
team backlog by planning and defining the features as well as the feature descrip-
tions and user stories. After the team backlog has been defined, the development
of the PI is planned into a bi-weekly sprint using a Sprint Planning meeting for
each team. The team backlogs of P2T1 and P2T2 are therefore on separate
boards in Azure DevOps, as the dependencies are already identified during the
PI planning event. Similarly to the teams in P1, Scrum is used to guide the
DevOps activities of each team. And the same Scrum events as P1 are used,
and the Retrospective is conducted at the end of each sprint.

Using automated deployment P2T1 deploys after the completion of each user
story. P2T2 on the other hand does not deploy as yet, but the scripts they
develop are immediately executable and ready to be used by the Digital Engi-
neers themselves or the other engineers within the company. Lastly, there is a
360 Degrees Feedback Session for each team in April and October, where team
members give each other feedback on their performance.

Process Models

Using BPMN 2.0 we designed process models for the happy flow processes of
the SDLC from requirements elicitation to deployment for all the teams. To
understand the difference between the documentation artefacts, we provide a
legend in Figure 4.1, that distinguishes formal documentation artefacts from
informal documentation artefacts. In this context, the formal documentation
artefacts are created using Microsoft Word and fixed templates prescribed by
the agile methodology used by the project.

LEGEND

[name]

Formal document
[name]

(Informal) Documentation artefact

Figure 4.1: A legend showing the types of documentation artefacts used within
the process models.

The processes are divided into two phases for each team. The first phase is
the requirements elicitation phase whereby at least the high-level requirements
are elicited. For both teams in P1, this is referred to as the clarification phase
and in P2, this is referred to as the PI planning phase. The activities of the
clarification phase for P1T1 and P1T2 are similar with some different sub-
activities, whereas the same activities are used in the PI planning phase of both
teams in P2, due to the guidelines of SAFe. Therefore, we present these phases
of P1T2 and P2 in Figures 4.2, and 4.3, respectively. The activities during
the DevOps phase of P1T1 and P1T2 are similar, therefore we illustrate an
overview of these activities in Figure 4.4. Additionally, the process models for
the activities during the DevOps phases of P2T1 and P2T2 can be found in
Figures 4.5 and 4.6, respectively.

64

Clarification started

Analyse initial
documentation

Divide epics into
user stories

Initial
Contracts

Project
Plan

Analysis
report

Prepare user
stories

Prepare
wireframe

Determine
potential risks
and problems

Clarify user
stories in

workshops

Record decisions
and issues

Have minutes /
decisions
approved

Adjust user
stories

Have user stories
approved

Organise
workshops

Product
Backlog

End of clarification

User stories

Functional
document

Meeting minutes

User
stories

A few comments
on US from dev.

Recorded meeting

Wireframes

Clickable
 prototypes

User stories (assumptions)

Meeting
 minutes

Client
Documentation

Organize project
scope workshop

Analysis
report

Meeting
minutes

Scope
proposal

Product Backlog
(Epics)

Prioritize user
stories

Plan user stories

Wireframes

Update
wireframe

User stories

Clickable
prototypes

User stories Issues

SLA

Figure 4.2: A process model showing the activities during the clarification phase
of P1T2.

Define the
roadmap

Plan the product
increments

Specify/describe
technical aspects

of features
Define user

stories

User storiesRoadmap

Define the
product

increments
(epics) Portfolio planning started

Team backlogs

Identify
dependencies

Feature descriptionsWorking agreements
(Werk afspraken)

Epics

End of Pl planning phase

PI planning

Define features

Features

Figure 4.3: A process model showing the activities during the PI planning phase
of P2T1 and P2T2.

65

Conduct sprint
planning
meeting

Product Backlog

Sprint
Backlog

Daily stand-up

Sprint Backlog

Tech standup (3
times p/w)

End of two sprints?
yes

Start bi-weekly
sprint

Conduct sprint
retrospective

Refinement
session

Change
management

Weekly chapter
meetings

User stories

Weekly design
and analysis

meeting

Status report

New requirements?
yes

no

Detailed design

Change requests
(P120)

Change
 linked to US

Sprint
Planning

Sprint review

Sprint review

Daily Scrum
 started

End of day

Daily Scrum

Change
 management

Wiki Cases Programming
guidelines

Bi/tri-weekly
architect

meetings with
client

External interface design

Cases

Defects

Email with
release description

Maintenance
guide

Weekly status
update

Prepare for
deployment of
sprint release

Test report

Deploy product
increment to
acceptance

Perform FAT test
(client)

SLA

Monthly release ready?
yes

Review and
verify defects

Product
Backlog

Deploy release to
production

User Interface
Design

Clickable
 prototypes

Issues

SLAs

Perform sprint
tasks

Adjust SLA

First deployment
to production?

yes

no

Development phase
 started

Figure 4.4: A process model showing the activities during the DevOps phase of P1T1 and P1T2.

66

Conduct sprint
planning
meeting

Team Backlog

Sprint
 Backlog

Daily stand-up

Sprint Backlog

Tri-weekly Guild
meetings

April or October?
yes

Start bi-weekly
sprint

Conduct 360
degrees

feedback session

Backlog
Refinement

Bi-weekly ART
sync meeting

Weekly PO Sync
meeting

New requirements?
yes

no

User Story

Sprint review

Sprint
 review ppt

Daily Scrum
 started

End of day

Daily Scrum

Perform sprint
tasks

Add user story

Sprint Backlog

Team Backlog

Sprint
retrospective

End of sprint?

Yes

Feedback

Perform
regression test Report results

Add
improvements

and/or bugs

Team BacklogTest cases Regression test
 report

Adjust sprint
planning

Recording Sprint Backlog

Sprint BacklogTeam Backlog

Define process
improvement

actions

Development phase
 started

Figure 4.5: A process model showing the activities during the DevOps phase of P2T1.

67

Conduct sprint
planning
meeting

Team Backlog

Sprint Backlog

Daily stand-up

Sprint Backlog

April or October?
yes

Start bi-weekly
sprint

Conduct 360
degrees

feedback session

Backlog Refinement

Bi-weekly ART sync
meeting

Weekly PO Sync meeting

New requirements?

yes

no

User Story

Sprint review

Sprint
review ppt

Daily Scrum
 started

End of day

Daily Scrum

Perform sprint
tasks

Add user story

Sprint Backlog

Team Backlog

Sprint
retrospective

End of sprint?

Yes

Feedback

Perform
regression test Report results

Add
improvements

and/or bugs

Team BacklogRegression test
 report

Recording
Sprint

Backlog

(ocassionaly) Team
alignment meeting

(Only T2)

Sprint Backlog Team Backlog

Adjust sprint
planning

Development phase
 started

Figure 4.6: A process model showing the activities during the DevOps phase of P2T2.

68

In Figures 4.4, 4.5 and 4.6, we see the ‘Perform sprint tasks’ activity with sub-
activities. The sub-activities for P1T1 are the same and it is shown in Figure 4.7.
On the other hand, the sprint tasks differ per team within P2 due to the way
of working of the teams and the fact that P2T2 develops scripts without a UI.
These sub-activities are shown in Figures 4.8 and 4.9.

Test
report

Implementation

Test plan

Perform sprint tasks

TestingDesign

User Interface
 Design

Functional
document

Detailed
design

Documentation

Start user story

User story

User story
 completed

Detailed
design

Figure 4.7: An overview of the sub-activities in ‘Perform sprint tasks’ in P1T1
and P1T2.

DoDCode
Comments

Design

Perform sprint tasks

(Optional)
Check DoDImplementation

Conduct analysis

Testing

Start user story
Complex

 user story?

Yes

No

User story completed

Analysis
report

User story C4 diagrams Test casesValidation plan WikiUI design

Validate UI with
the UI/UX team

Discuss with
domain experts
and implement

Analysis
user story

Implementation
user story

Major UI
change?

No

Yes

Automated
Deployment

Figure 4.8: An overview of the sub-activities in ‘Perform sprint tasks’ in P2T1.

DoD

Perform sprint tasks

(Optional)
Check DoD

Implementation

Conduct
 analysis

Manual test by
 colleague (4

eyes principle)
Start user story

Complex
 user story?

Yes

No

User story
 completed

Analysis
report

User story Notes in the scripts

Discuss with
domain experts
and implement

Analysis
user story

Implementation
user story

For calculations
test expected

results

Spreadsheet with expected results

Testing by visual
inspection of the

3D model

Figure 4.9: An overview of the sub-activities in ‘Perform sprint tasks’ in P2T2.

69

4.2.3 Tools

In Table 4.2, we present a tool matrix highlighting the similar and different
tools used across the projects in writing documentation. Then, we discuss the
purpose of each tool.

Table 4.2: A matrix of tools used for documentation identified within the teams
of P1 and P2.

Tool P1T1 P1T2 P2T1 P2T2
Axshare ✓ ✓ x x
Azure DevOps ✓ ✓ ✓ ✓
DrawIO ✓ ✓ x x
Figma ✓ ✓ x x
PlantUML x x ✓ x
Microsoft Office ✓ ✓ ✓ ✓
Microsoft Teams ✓ ✓ ✓ ✓
SharePoint ✓ ✓ x x
Visual Studio ✓ ✓ ✓ ✓
Wiki ✓ ✓ ✓ x

✓= tool is used by the team, - = tool is not used by the team.

• Axshare. Used to design wireframes to facilitate discussions at the workshop.
The wireframes used by the teams in P1 are defined as such. ‘We have wireframes
[..] and it is unstyled. It is just black and white, just to define the structure’
(Analyst, Interview 3). Based on this the validation of specific parts of a feature
or user story is performed during the workshops.

• Azure DevOps. Used by both P1 and P2 to manage the backlog and keep track
of the requirements. The functional requirements are written in the form of
user stories. In P1, these user stories are also approved by the client in Azure
DevOps.P2T1, also uses Azure DevOps to keep track of the test scripts for the
manual tests conducted by the team.

• Draw IO. Used by the teams in P1 for modelling requirements by drawing UML
diagrams such as sequence, flow, and use case diagrams.

• Figma. Used by the teams in P1 to mock out designs and prototypes which are
then used as ‘a clickable prototype in HTML’ (Analyst, Interview 3).

• PlantUML. Used by P2T1 to generate C4 diagrams to document high-level archi-
tecture, by specifying ‘which components you have and how those are connected,
and then the program makes a layout for that automatically’ (Lead Developer,
Interview 7).

• Microsoft Office. Used by the teams to edit Word documents, design presenta-
tions for the Sprint Review, and email communication among others. The test
cases for the scripts developed by P2T2 are also Excel files with calculations
and expected results.

• Microsoft Teams. Microsoft Teams is used by team members to communicate
with each other.

• SharePoint. A dedicated SharePoint environment designed and used by com-
pany C1, of which all the teams in P1 and the customer have access. ‘All [formal]
documentation is gathered in [SharePoint]’ (Team Manager, Interview 1).

70

• Visual Studio. Used by all the teams. But it is used by P2T1 and P2T2 to write
code comments. Code comments are an important documentation artefact in
both teams to explain complex formulas in the code. As well as for tracking
version history and changes in P2T2. In P2T1 a general rule whether to update
the Wiki or code comments is, ‘usually for small [notes or explanations] it is
better to just use the code comments, but [when] it gets more complicated and
it requires for example pictures, then something in the wiki is more appropriate’
(Lead Developer, Interview 7).

• Wiki. Used by P2T1 to document the ‘explanation of domain and [..] the
working of the software’ (Scrum Master, Interview 6). In comparison with P2T1,
the teams in P1 do not use the wiki as often, they use it to keep track of ‘a list of
knowledge sharing topics’ (Architect, Interview 2) to be discussed in the various
chapter meetings.

4.3 RE Activities

In Section 2.3, we discussed the aspects of Requirements Engineering (RE).
Here we present our findings with regards to the evidence of elicitation, analysis,
specification, validation, and requirements management in scaled-agile software
development projects.

4.3.1 Elicitation

The activities involved in eliciting requirements differ for the teams in P1 and
P2. We discuss the approaches of both projects to requirements elicitation.

P1 develops a solution for an external client. Therefore, during the clarification
phase of the C1M approach, the first source of information available to the teams
is the initial contract documentation which includes the problem statement, an
overview of the proposed solution by C1 as well as initial requirements with
estimates for the fixed-priced project. By conducting documentation analysis
from those sources, the analyst in each team identifies the initial requirements
for the to-be system. Afterwards, user stories are defined at a high level due
to the limited available information. The user stories are then planned into
workshops. The aforementioned activities are a summary of the activities from
‘Analyse initial documentation’ until ‘Organise workshops’ in Figure 4.2.

Workshop is an elicitation technique used by both P1 to present and discuss
the proposed user stories with the customers and occasionally, other external
parties. During the preparation for a workshop, the assumptions of user stories
are written, wireframes, and optionally technical designs are drawn. These are
then clarified at the workshop with the client. The decisions are recorded as
minutes in the Meeting Minutes artefact. Adjustments to the user stories may
be made on the spot or afterwards by analysing the recorded decisions from
the workshop. At the end of the clarification phase, the backlog is planned
with user stories for the DevOps phase. During the DevOps phase, the product
owner on the client side ‘would provide [..] the description of the user story.
This description will then be adjusted or refined, with the help of our analyst
and possibly also developers’ (Team Manager, Interview 1). And that forms
the basis for new user stories or changes in existing requirements by means of
documentation analysis. The clarification phase ends with a Product Backlog

71

of user stories ready to be refined. The process described entails the activities
from ‘Organise workshops’ until the ‘End of clarification’ in Figure 4.2.

On the other hand, P2 approaches elicitation differently since the project is
guided by SAFe. As shown in Figure 4.3, each team makes use of the Working
Agreements artefact, which specifies what kind of expertise is in the team and
how the team works. During the PI planning phase, the Roadmap is defined by
the Product Manager means of discussions with the Civil Engineers and Domain
Experts within the department about the features to be developed for optimising
the processes of the Civil Engineers within the company. The Roadmap entails
an ordered list of functionality to be implemented in the coming years. The
Product Manager defines ‘the roadmap [as well as] the epics. And [the Product
Owners] are allowed to make the features and the [user] stories. So [the] road
map has mostly the combination of [..] the overview [and] the big picture and
the product owner does the more specific details’ (Product Owner, Interview
8). After the features have been defined, the Product Owner adds the feature
descriptions and decomposes the feature into user stories. The user stories are
then defined and ready to be refined by the agile team.

4.3.2 Analysis

Each team in P1 models wireframes and technical designs such as the Exter-
nal Interface Design artefact, before the workshops. These may be adjusted
during workshops and afterwards, further details of the user story are written.
Additionally, the functionality of the user story is modelled as a clickable pro-
totype. This type of prototyping is used to model the flow of the application,
what the inputs and outputs are, and what the User Interface (UI) looks like.
During the DevOps phase, as shown in Figure 4.4, refinement sessions are used
to discuss the user story, whereby the completeness and understanding of the
US are checked. Then, the user story is updated to be more precise and clear.
Additionally, user stories with a complex scope are also accompanied by require-
ments models such as UML diagrams using the Detailed Design artefact. ‘in
the case of a complex user story, [..] you would see more UML diagrams, mostly
sequence or flow diagrams to describe how a certain flow is and use cases are
used when [the functionality] is truly new’ (Team Manager, Interview 1).

Moreover, one or more design task(s) form part of the tasks of a user story in P1,
as shown in the process model of the sub-activities of a sprint task in Figure 4.7.
A design task may either be additional UI designs which are documented in the
User Interface Design artefact or a technical design such as a UML sequence
diagram which is documented in the Detailed Design artefact. These tasks
ensure that the user interface is clear as well as the technical flow of the user
story.

Similar to P1, P2 uses of the refinement sessions to ‘discuss the [user] stories
and questions about it, and even estimate them right during the refinement
in the [DevOps] phase. When they are estimated, and we know enough from
the requested functionality and then we are ready to build’ (Scrum Master,
Interview 6). Another approach used by the teams in P2 is the use of a Research
user story to handle complex user stories. ‘It is depending on how complicated
the user story is, but, normally [we] first [specify] kind of resource or research

72

user story, so we first analyse what the problem is, [..], write about the problem,
and we present what kind of options we have to tackle the problem. And then
we make a choice and show that could be kind of [..] the solution you want to
implement, and the next year story will be to implement the proposed solution’
(Scrum Master, Interview 6). If this user story to be implemented is not clear,
then the developer may discuss the complex details with the Domain Experts.
The analysis activities for a user story are similar for both teams in P2 as shown
in Figures 4.8 and 4.9.

During the sprint, P2T2 does not have design activities as part of their user
stories, this can be seen by comparing the sub activities of a sprint task in
Figures 4.8 and 4.9. The reason for this is that P2T2 implements their user
stories as scripts without a UI, and they do not design the architecture as well.
On the other hand, P2T1 performs design activities similar to the teams in P1,
but to a different extent. Only the high-level architecture is documented, as the
team also uses code comments to explain specific reasoning and examples in
the code. The high-level architecture is designed using C4 diagrams. For UI
design, the decision is made whether the user story imposes a major change to
the UI. If the UI change is major, then it has to be validated with the UI/UX
team within the company.

4.3.3 Specification

For the teams in P1 and P2, requirements are specified as user stories in Azure
DevOps using the hierarchy of Epic, Features, and User Stories. They are
specified using the role, action, and benefit format. Also, for user stories in
P1, they are expanded with acceptance criteria and a functional and technical
description, as well as a link to the documentation. ‘In Azure DevOps, all user
stories have their descriptions and links towards all these documents’ (Team
Manager, Interview 1). Also, ‘documentation is standardised in a template’
(Team Manager, Interview 1), and the team ‘usually refer to [the requirements]
in the documentation or the other way around, [..] we say this requirement
is covered by user story x’ (Analyst, Interview 3). Documentation such as the
User Interface Design artefact describing the UI, authorisation matrix, and client
documentation is attached to the user stories of P1T2. Moreover, requirements
in P1T2 are documented in three formats, user stories, requirements backlog,
and business rules.

In P2T1 and P2T2, the Domain Experts also attach documentation to the user
stories where necessary, to explain a certain topic or provide domain knowl-
edge. ‘[As] a domain expert, I deliver documents’ (Product Owner, Interview
8). These documents, in the case of P2T2, are attached as a Word document
for instance, but not a link to a shared document.

4.3.4 Validation

User stories in both P1T1 and P1T2 are reviewed and approved by the customer,
as shown with the ‘Have minutesdecisions approved activity ’ in Figure 4.2. A
core aspect of C1M is to record decisions and have them approved by the cus-
tomer to ensure clarity and traceability. During the clarification phase, the
Meeting Minutes and the User Stories are reviewed by the client and approved

73

before the Dev—Ops phase. Also, in the case of a new user story, the Product
Owner provides a description that serves as the basis of the requirements for
that user story. Subsequently, after a user story has been implemented, it is
tested and reported upon using the Test Report. The activities of the testing
process are illustrated in Figure 4.7. Afterwards, the Functional Documenta-
tion artefact is updated with the correct flow of the functionality. These are all
documentation artefacts made available for internal and external stakeholders
to validate requirements. After the product increment has been deployed, the
client tests and verifies the correct implementation of the user story and reports
any defects. Finally, there are acceptance documents to keep track of the status
of each user story when it is delivered to the client. ‘There is a set of user sto-
ries with an ID. Those will be listed as delivered on time and as expected, and
that is something that you will then find in the acceptance documents’ (Team
Manager, Interview 1).

Both teams in P2 use the Refinement and Sprint Planning to clarify any ques-
tions or missing information in the user story. During the refinement, the Scrum
Master assigns the user stories ‘to the developers and plans them in [the cur-
rent] sprint and or in the next sprint. And there are always extra questions or
something, but normally we try to get most of it clear during the refinement and
the planning is normally shorter meeting with a lot of assigning to people and
priorities’ (Scrum Master, Interview 6). In P2T1, the user story is tested after
the implementation, these activities are illustrated in Figure 4.8. The tester
writes the test scripts and tests the implemented user story according to those
test cases. Afterwards, the Definition of Done (DoD), may be checked before
the user story is closed. But that is not always the case. P2T2 takes a different
approach to testing, there is no tester on the team and the test cases are not
defined in Azure DevOps as P2T1. However, there are three different ways a
script may be tested, these are shown in the latter part of Figure 4.9. If it is
a calculation user story, it is tested using the attached Spreadsheet with the
expected results. If the user story outputs a 3D model from the scripts, this is
validated by visual inspection by another team member. Other user stories are
tested by another team member ensuring the 4-eyes principle.

4.3.5 Requirements Management

Changes to the original scope or original requirements is inevitable in both
projects. As mentioned earlier, in P1, there is a set scope based on a fixed
contract. However, ‘it is possible for the customer to introduce changes to the
scope, which [is] then analysed and fit into upcoming sprints’ (Team Manager,
Interview 1). A change request process is used to handle new requirements
within the sprint, which is shown in Figure 4.4. ‘It is not like [the Analyst]
would change an existing requirement in the document, but [she] they would
rather write a change request ’ (Team Manager, Interview 1). Change requests
are artefacts stored in the SharePoint known as changes, and a change is linked
to the user story. But the original requirements from the clarification phase
do not change, they are only expanded with more details. ‘The requirements
themselves will not change that much, only maybe more details’ (TeamManager,
Interview 1).

The process of handling requirements change in the teams in P2 is similar to

74

that of P1, however, different artefacts are used. In Figures 4.5 and 4.6, we
illustrate the process of handling requirements change during the sprint. To
handle a change, a new user story is introduced. ‘You normally have a new
user story, which is describing the change’ (Scrum Master, Interview 6). Also,
changing an existing user story depends on whether it is opened. ‘It depends
on if it’s still open and we can change this and [it is] still in the Sprint. If it
is closed, then we will not reopen it, and change it, [..]. Sometimes we use it
as a kind of improvement and then it is like a small user story. But [..] this
will be reflected in a new user story. And [.. in the] definition of done where it
has a rule that we also check [whether] the wiki is still up to date if we change
something. Because that is not automatically changed in the wiki. So, another
thing is that we also look at the validation tests, [and] if something changes
every Sprint, we do are regression test and there is a check. If there is new
functionality, we change the regression test as well’ (Scrum Master, Interview
6). The new user stories are also stored as user stories in Azure DevOps and
if the DoD is used, it ensures that the Validation Tests and Regression Tests
cases are updated.

4.4 Documentation Artefacts

We present the documentation artefacts used within the agile teams in P1 and
P2. As introduced in Section 2.5.3, documentation can be categorised as a prod-
uct, process, core agile method, or non-agile method artefact. In P1, the team
also makes a distinction between technical and functional/analysis documen-
tation. Technical documentation artefacts are mainly product documentation
written by the developers and/or architects. During the case study, we identi-
fied from the Type 1 interviews an extensive list of documentation, especially
in P1. Therefore, for the interview questions, we used groups of documenta-
tion relating to the purpose of the documentation such as requirements, design,
and test-related documentation. There is a more exhaustive list of documen-
tation artefacts used within P1, but we only discuss the documentation that
is relevant to the clarification and DevOps phases. The use of documentation
artefacts throughout the activities of each team can be understood from the
process model in Section 4.2.2. In Tables 4.3 and 4.4, we present an inventory
of documentation artefacts used by P2 and P1, respectively.

Table 4.3: An inventory of (but not limited to) documentation artefacts used
by each team in P2.

Name of artefact
(in English)

Role respon-
sible

RE ac-
tivity

Type of
artefact

Rationale of use

Working Agreements Scrum Master - PROC Internal communication
Project planning Product Owner E CAM Agility
Program Backlog Product Man-

ager
S CAM Agility

Team Backlog Product Owner S CAM Agility
Sprint Backlog Product

Owner, Scrum
Master

S CAM Agility

Epics Product Man-
ager

S CAM Agility

75

Table 4.3: (continued from previous page)

Name of artefact
(in English)

Role respon-
sible

RE ac-
tivity

Type of
artefact

Rationale of use

Feature Descriptions Product Owner S CAM Agility
User Stories Product Owner S CAM Agility
Wiki* Developers - PROD Internal communication
Analysis report Developers E,A PROD Internal communication
C4 diagrams* Lead Developer A PROD Internal communication
Validation Plan* Tester V PROD Quality assurance
Test cases* Tester V PROD Quality assurance
Regression Test Re-
port

Tester V PROD Quality assurance

Code Comments Developers - PROD Internal communication
DoD* Scrum Master - PROC Agility and Governance
DoR* Scrum Master - PROC Agility and Governance

* means the artefact is only used by P2T1. Code comments are referred to as ‘notes in scripts’
by P2T2. RE activity: E = Elicitation, A = Analysis, S = Specification, V = Validation, RM
= Requirements Management, - = not applicable.
Type of artefact: PROD = Product artefact, PROC = Process artefacts, CAM = Core agile
method artefact, CAM = Non-agile method artefact.

Table 4.4: An inventory of (but not limited to) documentation artefacts used
by each team in P1.

Name of artefact
(in English)

Role respon-
sible

RE ac-
tivity

Type of
artefact

Rationale of use

Initial Contracts and
Client Documentation

Client E - Internal communication

Project Plan Team Manager - - Internal communication
Epics Analyst S CAM Agility
Analysis Report Analyst E, A PROC Internal communication
Scope Proposal* Analyst E NAM Internal communication
Functional Scenarios Analyst S NAM Internal communication
User Stories Analyst S CAM Agility
Wireframes Analyst A PROD Agility
External Interface De-
sign

Lead Developer A,V PROD External follow-up

Detailed Design Lead Developer A PROD Internal communication
Recorded Meeting Analyst E PROC Internal communication
Meeting Minutes Analyst E PROC External follow-up
Clickable Prototypes Analyst A, S, V NAM Agility
Product Backlog Analyst, Team

Manager
S CAM Agility

Functional Document Analyst S, V PROD External follow-up
Sprint Planning Team Manager - PROC External follow-up
Sprint Review report Team Manager V PROC Internal communication
Sprint Backlog Analyst, Team

Manager
S CAM Agility

User Interface Design Analyst S PROD Internal communication
Test Plan Tester V PROD Quality assurance
Test Report Tester V PROD Quality assurance
Wiki Developers - PROC Internal communication
Cases Analyst - NAM Internal communication
Programming Guide-
lines

Developers - PROC Governance

Status Report Team Man-
ager, Analyst

- PROC External follow-up

76

Table 4.4: (continued from previous page)

Name of artefact
(in English)

Role respon-
sible

RE ac-
tivity

Type of
artefact

Rationale of use

Issues Analyst E NAM External follow-up
Change Management Team Manager - PROC External follow-up
Change Requests Analyst S,RM NAM External follow-up
Change (linked to user
story)

Analyst S,RM NAM Internal communication

Defects Analyst S,RM NAM Internal communication
SLA Team Manager - PROC External follow-up
Maintenance Guide Developers - PROD External follow-up
Release-related emails Developers - PROD External follow-up
DoD Team Manager - PROC Agility and Governance
DoR Team Manager - PROC Agility and Governance

* means the artefact is only used by P1T2. RE activity: E = Elicitation, A = Analysis, S =
Specification, V = Validation, RM = Requirements Management, - = not applicable.
Type of artefact: PROD = Product artefact, PROC = Process artefacts, CAM = Core agile
method artefact, CAM = Non-agile method artefact.

4.5 Conclusion

We explored two multi-team ASD projects using a multiple-case study approach
with interviews and document analysis. The explored projects –P1: Education
and –P2: Civil Engineering adopt scaled ASD differently. P1 uses an internally
created method within the company, whereas P2 adopts SAFe. Furthermore,
the processes of each team are divided into two phases, the requirements elici-
tation phase and the DevOps phase. The first phase ensures the elicitation and
planning of at least the higher level requirements. The latter phase entails ac-
tivities of the DevOps such as implementation, design, testing, and deployment.
This phase is governed by Scrum for both projects. One of the common tools
used by all the teams is Azure DevOps to keep track of the requirements..

RE activities are evident in the explored cases. For elicitation, techniques such
as workshops and documentation analysis are used by the teams in P1, whereas
P2 uses the planning recommendations by SAFe to guide the elicitation pro-
cess. This entails the definition of a Roadmap and informal discussions with
the stakeholders. The Roadmap entails epics, which are refined into features
and user stories by the Product Owner. In addition to the models used by P1,
all the teams in both projects make use of the refinement sessions to discuss any
questions about the user stories. Also, the teams in P2 define an analysis task or
research user story to conduct more analysis on complex user stories. In all the
teams, requirements are specified using user stories which are stored in Azure
DevOps. Various attachments in the form of links or documentation artefacts
are added to a user story where necessary. In P1, user stories are reviewed and
approved by the customer to validate the details of the requirement, whereas P2
takes the approach of discussing the user stories at the Refinement and Sprint
Planning with the Product Owner to clarify any uncertainties. The process of
handling requirements change in P1 is similar to that of P2, even though differ-
ent artefacts are used. Usually, the existing user story is not changed, instead
a new user story is added and the sprint plan is adjusted where necessary.

77

Chapter 5

Problem Investigation

From the explored cases in Chapter 4, we identified the various RE activities
along with the documentation artefacts used. In this chapter, we discuss the
results from the Problem Investigation phase of the Design Science Cycle within
this research. Interviews and documentation analysis were conducted to identify
the challenges facing the identified documentation as well as the best practices.
We analysed the data of the findings and present a cross-case study analysis
on the quality of documentation artefacts and practices. As discussed in Sec-
tion 3.1, our research on the quality of documentation is centred around the
taxonomy of documentation issues by Aghajani et al. (2019), as: Informa-
tion Content (What), Information Content (How), and Process Related and the
themes presented in Table 3.4.

5.1 Information Content (What)

For the assessment of the issues facing the content presented in documentation
within the multi-team agile teams, we discuss the correctness, completeness,
and up-to-dateness aspects of the quality of documentation.

5.1.1 Correctness

Preciseness of documentation

We asked the participants how the teams ensure the preciseness of documen-
tation within the teams. A common answer was that it is ensured during the
Refinement. In P1T1, the analyst asks the team members to review the user
stories before the Refinement session, whereby questions are discussed among
the team during the Refinement to ensure that the description of the user story
is precise. ‘Mainly by our Refinement sessions, [..] I would ask [the] team to
read the description and to make sure they [..] are prepared. They might have
questions, something might not be clear, but also before Refinement, we have
a lot of discussions and checking in with each other’ (Analyst, Interview 3).
Also, informal discussions before the Refinement are evident in P2T2 as well,
whereby the Product Owner discusses the user stories with the Domain Expert.

78

‘Before the Refinement, [I discuss] it with the domain expert in the group. Then
we have the Refinement and after that the Sprint Planning, everybody is ask-
ing questions. And then [..] we are making the [user] story [..] more detailed’
(Product Owner, Interview 8). Feedback from developers is also used to ensure
the preciseness of user stories in P1T2, ‘I am also discussing with developers
[..] to see if the technical side of what has been written down about the func-
tionality is [feasible to implement]’ (Analyst, Interview 4). Similarly for P2T1,
the Refinement session is also used to clarify the details of user stories.

Another approach used by the teams in P1 is the use of workshops with the
clients to clarify requirements. The analyst elicits user stories based on docu-
mentation analysis from the existing client documentation. Then, ‘during work-
shops, we discuss everything of what I wrote down or that I copied [from existing
documentation], to see if it is still relevant, if it is important, [and] what needs
to be changed’ (Analyst, Interview 4). Afterwards, the team ensures that the
details of the user story are precise by using the approval process, whereby the
Product Owner checks and performs ‘the actual approval of the user story, if
they [the client] say it is correct then we do not change anything unless we get
approval by the Product Owner again’ (Analyst, Interview 3).

Since evidence of other requirements documentation was found in the case stud-
ies, we asked how the preciseness of requirements documentation is ensured.
Again this is done during the Refinements in the case of P2T1. For P2T2, the
requirements are made precise using discussions among team members. Also,
P2T1 adopts the INVEST criteria when defining requirements. Similarly, the
Refinement session is used by the other teams, as well as the approval process
in the case of P1 teams. On the contrary to P2, where user stories are not
updated after implementation, P1 updates requirements documentation after a
user story has been implemented. ‘Once build is done and [UX designers] do
a design and general functional check [on the] happy flow, [..] not nearly as
detailed as testers do it, and then we update documentation. So once the new
story is approved, we write it on functional documentation and add screenshots
and make sure that, so if there is a change we really have to look back into the
user story description’ (Analyst, Interview 3). This also serves as a means to
establish traceability of the requirements. However, this documentation artefact
is not always updated after the implementation task of a user story have been
completed. A reason why the functional document is not reviewed is due to the
agile mindset, that the user story has a higher priority and that is leading. ‘As
long as we have the user story, that is the priority for everyone because then you
can build something, what is written down in the functional documentation, it
feels like an afterthought’ (Analyst, Interview 4).

Furthermore, in the case of P1, the process of writing design documentation
(software architecture and detailed design) depends on the user story, documen-
tation may be updated after the implementation task(s) of the user story have
been completed. ‘Sometimes it is quite obvious what needs to happen and af-
ter we have developed the story, we update the documentation. Because the
detailed design document is consisting of a use case diagram for a very basic
schematic drawing of the functionality, it describes the functionality. So, it is
not something that needs to be designed beforehand. [..], depending on the user
story, if it is a larger one, [or] more complex one, then an architect or a lead

79

developer would make at least [..] a sequence diagram with it, so a developer
has more context, [and] there is more information on how to build it’ (Architect,
Interview 2). Apart from that, we see a similarity in the review process, whereby
peer review is used by the teams in P1 and P2 to ensure the preciseness of de-
sign documentation. An example of how this peer review process takes place for
P2T1 is discussed. ‘It is some kind of peer review process, so if you finish an
analysis document, for example, you also have it read by the other developers,
and the other developers can give comments on it. So, there they can [..] give
some feedback, they can say what is well written and what has to be improved’
(Lead Developer, Interview 7).

Adherence of documentation to the given templates

Adherence to the given templates of the various kinds of documentation within
the project is also an essential aspect to ensure the correctness of documen-
tation. The adoption of templates varies in both projects. For P1, there is a
standardised template for documentation prescribed by C1M, whereas P2 does
not have a fixed template for requirements documentation and user stories.

In P1, user stories are mainly written by the analysts, which helps ensure that
the given template is used. ‘I am the only one that writes down the user stories,
so knowing that I already wrote down the templates, I just follow that template
all the time. If there is someone else, I had sometimes some help from others,
[and] then we review. Once they are done, it goes through me I review it and
if there is something missing then I send it back to them’ (Analyst, Interview
4). Also, a copy is usually made from an old user story to the new one. ‘I
usually start with pasting every header we need, [..] a design link header, [..]
the functional description, [..] a technical description part, maybe some issues or
questions that we have and other notes [or] anything. We usually define this list
of what we want to add to user stories, and then I copy [and] paste this from
the first line’ (Analyst, Interview 3). Additionally, as part of the training of
new employees within C1, they learn how to use the templates and best practices
available on the intranet of the C1M. ‘During the [training] they tell you about
that. So, they say you have a document, and you have to fill in these things, so
they prepare you to work like that’ (Analyst, Interview 4).

In spite of the existence and use of templates for user stories within P1, there are
challenges. The template tends to get outdated due to constant improvements.
‘It is not up to date anymore, [..] the reason why is that we constantly try to
improve it during Retrospectives, so I always ask the developers, what do you
want to see or how can I make it better for you to understand? So, since we have
been constantly changing it, the template is not accurate anymore’ (Analyst,
Interview 4). Also, the Definition of Ready (DoR) defined for the project is not
often used. The reason for this is that most team members are not aware of
the DoR. Similarly, the teams in P2 have the Definition of Done (DoD) and
DoR, but they are hardly used due to time constraints. ‘We have a [..] definition
of done [..], but most of the time, we do not use it because of time’ (Product
Owner, Interview 8).

Similar to the responsibility of analysts in P1, the Product Owners in P2 are
responsible for writing up the user stories. ‘The product owner is responsible

80

for setting up everything according to this template’ (Lead Developer, Interview
7). The problem is that ‘there is a bit of a template, but [..] we do not always
follow it. Actually, for most [developers], we do not follow it, [..] because of
time constraints. And because of many of the other jobs that [have a higher
priority], it is not always done like this’ (Lead Developer, Interview 7).

For design documentation, the situation of both projects is similar to that of the
requirements documentation. The structure of design documentation depends
on the particular topic. The situation for P2T1 is explained as such. ‘The
design documents, so like [the analysis document] for example, [..] does not
have a fixed template. So, the only one that is really fixed here is [..] the C4
diagram, and for that, it is basically interpreted by the tool [..]. The analysis
report or the wiki for example, there is not really a standard format. This can
really depend on the topic’ (Lead Developer, Interview 7). In comparison with
P2 where there are no fixed templates used, the internally created method of
C1 provides templates and best practices for various types of documentation
used in P1. The quality of templates and availability of best practices within
C1M differs per type of documentation. For design documentation such as the
detailed design document, the template is pretty empty and there is a lack
of best practices to learn from within the company. On the other hand, the
template for the functional documentation ‘could be very detailed, they have
templates with headers and explanations [of] what they expect for each header.
But in the end, the template is just templates and we use it for inspiration.
I used to look into best practices to see what others did for this particular
document and as best practices within [C1 ..]’ (Analyst, Interview 3).

Examples of the most problematic documentation to keep correct

Before we elaborate on our findings with regard to the aforementioned topic, we
add that these examples may be subjective as most of the given answers were
based on the role of the interviewee within the project and what documentation
he or she is responsible for. We elaborate upon the examples of most problematic
documentation to keep correct in P1 and P2.

• Documentation in general (P1). ‘Documentation is something nobody likes, and
it is never a priority, which is understandable because, in the end, we need to
deliver a product. [..], but it is [still] very important’ (Analyst, Interview 3).

• Detailed design document (P1). ‘I would say the detailed design because it is
quite technical, time-consuming, and it gets outdated sometimes’ (Architect,
Interview 2). The main reason why it gets outdated is due to the fact that
diagrams have to be updated manually. First, they are drawn using Draw IO,
then exported as XML and PDF. Afterwards, they are copied to the document.

• Functional documentation (P1). ‘Since I only work with functional documenta-
tion, I would say that is the most painful one [..]. Especially, because [..] after
I’m done with [analysing] the user story, the developers will work on it and [..]
eventually they say, we try to create it as you mentioned but we cannot, so we
need to adjust it or the design needs to be adjusted a little bit, or there are
change requests that cause the user story to be different or defects that changes
the requirements, those kinds of things that I am pretty sure I forgot [to update]
a lot of them’ (Analyst, Interview 4).

• User story descriptions (P2T1). ‘One of the most difficult things might be

81

the user story descriptions, and that is because even one description seems
to be complete at first and after the implementation of a user story, it might
actually turn out that this was not the correct implementation. Even though
the implementation matches the user story exactly, it could be that after the
[implementation], you notice [..] that it gives weird results for example. And
that might mean that you have to rewrite the user story, or perhaps approach
[it] in a completely different way. This often leads to some new user stories, and
that might mean that we have multiple versions of the same user story’ (Lead
Developer, Interview 7).

• Code comments (P2T2). ‘We do not have GitHub or versioning, [..] so what [..]
we do [is], we are adding a date, the description, and the author. But if you are
making a change and you forget to change the date, [..] it is not automatically,
so it is all by hand. And people make mistakes. So, you can forget it. And then
so that is the most problematic’ (Product Owner, Interview 8).

5.1.2 Completeness

The extent to which requirements are documented

We asked the participants whether all the requirements are documented. All the
known requirements are documented for P1T1, meaning there are no unwritten
sources for the known requirements. ‘We have a clear list of requirements, we
usually refer to them in the documentation or the other way around, [..] we say
this requirement is covered by user story x’ (Analyst, Interview 3). Moreover,
in the case of P1T2, requirements are found in three locations. There are user
stories, requirements backlog, and business rules. Each of these sources of re-
quirements serves a different purpose. In addition to the sources of requirements
for P1T2, user stories in Azure DevOps have certain attached documents in the
form of links which are outlined as follows:

• Description of UI for the user story.

• Authorisation Matrix.

• Client documentation.

Similar to the other teams, the backlog is the main source of truth for the user
stories in P2T1. However, since the user stories are disjoint, the wiki is used to
collect central information about the requirements. ‘Requirements [can] also be
found in the analysis report [or] from the wikis, especially because these user
stories can be a bit disjointed. We also have, for example, this wiki to collect
more of the information in one place instead of in disjointed user stories’ (Lead
Developer, Interview 7). In comparison, P2T2 takes a different approach to
documenting requirements. ‘For each user story, [we (P2T2)] first have like an
explore or analysis task, mostly it is a sort of POC. So you make something and
then you discuss if this is what we want to have, then we rebuild it and make
it in [the] format which we have discussed with each other’ (Product Owner,
Interview 8).

The extent to which design is documented

We asked the participants if all the designs and tests are documented and
whether there are some unwritten sources. In P1T1, the architectural docu-

82

mentation is well-documented for the most part. ‘For the most part, we have
documented everything because, we have an international team, it is important
to document things in the first place’ (Architect, Interview 2). For the user
interface design documentation, these are updated based on feedback from the
workshops. There is a log of the feedback but not on the changes to the proto-
type design, as the design might evolve a few iterations before it is accepted for
the user story. ‘I usually prepare wireframes for workshops and then they get
feedback. Then, we document feedback, and then, we revise the design and then
they approve it in the end by the user story, so we do not really have version
control or anything on prototypes’ (Analyst, Interview 3). However, in general,
the completeness of documentation appears to be solely reliant on the assigned
person or role, but not the responsibility of the team as a whole.

Furthermore, there was evidence of undocumented design in P2T1. The team
faces the challenge of finding the right balance between documenting and making
the code self-documenting. ‘The main reason is that the documentation has
advantages and disadvantages. So, the advantages are quite obvious I think,
but also a disadvantage is that every time something changes and the person
who changed it, might forget to update the documentation, in which case you
get some inconsistency between the documentation and the actual code. And
that is why when something is obvious from the code structure itself, we attempt
to not document it, but we let the code be self-documented. But of course, a
pitfall here could be that someone thinks that their code is self-documented,
but then when reading it back later, it might actually be more difficult than
people thought originally. So there is a bit of a fine balance here between
doing documentation and keeping things self-documenting’ (Lead Developer,
Interview 7).

Additionally, we notice that the design documentation in P2T2 lacks a clear file
structuring making it difficult to keep all the various sources complete and up-to-
date. ‘We have several folders on Teams, and maybe that is not a good spot but.
And we have the Kennisbank, the knowledge side, which will which we want
to expand upon’ (Product Owner, Interview 8). In addition, the ‘Kennisbank’
is used to document information about the solution of P2T2. It is a knowledge
platform being created to facilitate knowledge sharing about the solutions of
the team with other stakeholders both internally within C2 and externally.

Accuracy and completeness of references used in user stories

We asked the participants how accurate and complete are the references (to doc-
umentation artefacts) used in user stories. For P2T1, ‘these are usually quite
accurate, so for example, they are often used for bugs. So if you want to repro-
duce the bug, then we often attach a save file in which that bug occurs, so you
can easily reproduce [the bug] by simply loading that save file’ (Lead Developer,
Interview 7). Additionally, if there is any missing documentation, these are dis-
cussed during the Refinement session. ‘Again, we ensure that those are complete
using the Backlog Refinements. So, if there seems to be not enough information
to reproduce something, we just ask for one of those lacking documents’ (Lead
Developer, Interview 7). On the contrary, the references used within P2T2 may
not be accurate as different static versions of the same documentation are used
in the user stories. ‘In Azure, we can add a link to a parent or another user

83

story, and if I have a document, I mostly add it as an attachment. [But] that
is not the best way to do it, [but it makes it] very easy for the user to have it
all together as one package. [..] I think it is better to do it another way [..] it
is really something that overview would help’ (Product Owner, Interview 8).

In comparison with P2, C1M provides an advantage to P1 by prescribing lay-
out and landscape of documentation. References are used within user stories as
follows. In P1T1, the team ‘usually links [the user story] to related tasks or
related user stories, and not so much to documentation [..] it depends [..], but
the documentation is in [SharePoint]. [We] follow [the documentation structure
of C1M] so not a lot of new documents are added or get renamed or something’
(Architect, Interview 2). For P1T2, the same benefits apply to the structuring
of documentation. However, the challenge occurs when the specification of the
requirement or the authorisation matrix is constantly changing. ‘So the text
[of the functional document] and the authorisation is always changing [..]. If
there are textual changes while the user story has been completed, then it is
a change request. So, you do not need to check the user story again’ (Archi-
tect, Interview 4). Rather, in the case of change requests, new user stories are
added.

5.1.3 Up-to-dateness

The consistency of the documentation with the working software

For this aspect of up-to-dateness, we asked the participants whether they per-
ceive the documentation as consistent with the working software or product
increment. There were a variety of answers, we begin with the strengths fol-
lowed by the challenges as a potential for improvement.

In general, the documentation of P1T1 is improved because the team had some
time at the end of the release to catch up on documentation. ‘So, at the moment,
it is because we had some more time and we actually working on it’ (Architect,
Interview 2). P1T1 attempts to ensure that the documentation is consistent
with the working software. There is documentation task(s) as part of a user
story. ‘We have this task, documentation for every user story. So, the goal or
the aim for it is to update [the] documentation with any user story that you
finish’ (Analyst, Interview 3). Additionally, the four-eyes principle is used to
ensure that the documentation task is reviewed by another individual. ‘There is a
separate task to update the documentation and when necessary we do this. And
the way we ensure the quality is that it is a task on the board, so it gets assigned
to a person and [..] like any other tasks, the development task gets moved into
a review column and then it gets reassigned to someone else. So, there is always
a four-eyes principle that someone else reviews the documentation updates’
(Architect, Interview 2). However, the review mainly works for documentation
whereby the responsible has a similar role as multiple people in the team. For
example, if a developer is responsible for a documentation task, it is likely that
the task will be reviewed by another developer. But if an analyst is responsible
for a documentation task, it occurs that he or she may have to review it on their
own, because there is only one analyst on each team.

Despite the use of documentation tasks by the teams in P1, there are still some
challenges. Firstly, the decision to update documentation is at the discretion

84

of the person implementing the user story. ‘It is really easy to say that [..]
for user story, we do not really need documentation, [but] usually you should
[document]’ (Architect, Interview 2). There is no process in place to discuss
to what extent the team should document or what the acceptance criteria of
that documentation task is. So even though there is a documentation task,
the responsible assignee may move it to ‘completed’ without actually updating
the documentation. Also, team members are not always motivated to work on
documentation, so the documentation task tends to be skipped sometimes. ‘We
always have to check [the documentation task] at least. And like I said, it does
not always happen, people just do not feel like doing it’ (Analyst, Interview 3).

Moreover, the process of updating documentation is still a learning process for the
teams within P1, especially since change requests hardly include documentation
tasks. ‘That was a learning process for us to not forget [that,] once we have
a change request or defect, we should document that as well. And we did not
do that for a very long time, so [..] the new things that we are doing [are]
documented, so that is up to date. But all the things are not up to date, so
the document will never be perfect’ (Analyst, Interview 4). Also, since tasks
may be completed or moved along the columns of the sprint board, there is no
process in place to review a user story and assess if it is really done. ‘How it
happens is because we do not [review] a user story and [we] do not follow strictly
the definition of done. Like there is usually [no] other formal moment where we
look at our user story and say OK, is it really done’ (Architect, Interview 2).

In comparison with the teams in P1, P2 do not define a documentation task as
part of the user story. The scope of documentation per user story is not clear
and there is no formal check in place to ensure documentation is updated. As
mentioned earlier, P2T1 deals with the challenge of finding the right balance
between documenting and keeping the code self-documenting. ‘That is why
when something is obvious from the code structure itself, we attempt to not
document it, but we let the code be self-documented. But of course, a pitfall
in here could be that someone thinks that their code is self-documented, but
then when reading it back later, it might actually be more difficult than people
thought originally’ (Lead Developer, Interview 7). P2T2 have only been working
on the project for nine months, so at the time of interviews, the documentation
was perceived as ‘sort of ’ consistent with the working software. However, there
are concerns for the future as the project expands. ‘But it is easy to say after
nine months or something and [P2T1] are working on it for 4 years, and in four
years many things will change, and then you will get this situation. I think that
is more difficult, but that is also because the application grows. Sometimes you
are making, a feature and you make it documentation, and then after a while,
you add something to the application, and the additional parts have an effect
[..] on everything and the documentation stays the [same], so sometimes it [gets]
outdated’ (Product Owner, Interview 8).

Examples of functionality in the code that is not yet documented

As evidence to support the previous question about consistency, we asked the
participants to recall any examples of functionality in the code that is not yet
documented. We discuss the examples.

85

• The frontend, due to a large refactoring (P1T1). ‘Once you get into this habit
of not updating the documentation, it is really easy to postpone it. And we
spent a lot of time actually refactoring existing code, which is part of the reason
why we ran out of time. We built a frontend, but we build it in the wrong way,
so we spent a lot of time refactoring the frontend. And [..] if we did not have to
spend all the time refactoring, we would have had a lot more time for quality,
and so for documentation’ (Architect, Interview 2).

• The functionality to create a new declaration is not documented correctly (P1T2).
‘There was a functionality [..] instead of creating a new [declaration], you copy
all the information into a new page. I do not think that is documented correctly,
that it is now copying instead of creating a new one. [..] So, the software [..]
works and the guidelines that they have for the users are all updated, but the
documentation that we have is not’ (Analyst, Interview 4).

• The frontend and the functionality of the design margins (P2T1). ‘The frontend
is not very well documented in general. [..] It is something called the design
margins, and it is generally not very well documented. So, those could be
two examples like the frontend and design margins [..] there is hardly any
documentation about the frontend’ (Lead Developer, Interview 7).

• Nothing in particular, but more of a general perception (P2T2). ‘I cannot [recall]
it, but I think [..] we need to do it better, but that will take more time. So, it
is maybe it is just a feeling [..] we want to have progress, and if you want to
go too fast, you do other things less, so the documentation is maybe too little’
(Product Owner, Interview 8).

The extent documentation is sufficient to extend or maintain the ap-
plication

Here, we asked the participants whether they perceive the documentation to be
sufficient to extend or maintain the application. We present the findings begin-
ning with the strengths and the potential areas we identified for improvement.

The general perception of the teams within P1 is that the documentation is suffi-
cient to extend or maintain the application. ‘At the moment, yes [it is sufficient],
I would say there is definitely room for improvement [..]. The detailed design
document is fairly extensive, so we have use cases. We have those sequence
diagrams for almost all of the functionality now. There is an explanation of
how the backend code and the frontend also are structured. So basically, the
files on disk, and how the files are stored in a file structure. And the reasoning
behind it, especially the frontend framework that we developed, is documented.
So,[..] if a separate company needs to take over this application, I think they are
pretty well served’ (Architect, Interview 2). Also, from a functional perspective,
the documentation is perceived as sufficient. The new requirements and change
requests to the original scope of the project are well documented. ‘I would [say
we] do have to keep track of [the] functional documentation because we do get
change requests’ (Analyst, Interview 3).

In the case of P2T2, a strength is the development of a knowledge bank, to
provide other stakeholders with knowledge about the application by providing
videos and also organising workshops. ‘That is the part where you want to
have small movies, so the workshop is to first know the program, and then to
know the tooling. And the next step is to use our tooling [..] and that [..]

86

takes some effort to get there’ (Product Owner, Interview 8). However, since
the knowledge bank is still in progress and the documentation is not sufficient,
P2T2 faces the challenge of not having sufficient documentation to extend or
maintain the application. ‘I think that the documentation is too small. We can
document more, but that will also take more time, so [..] there is a balance
between making things and documenting things. And our focus is more on
making things, and that is a bit of a risk’ (Product Owner, Interview 8).

Moreover, P2T1 does not have sufficient documentation to extend or maintain
the documentation and that is mainly due to the challenge of documenting and
making the code self-documenting. The risk of that is the knowledge of some
parts of the application are strongly reliant on specific experts within the team.
‘At the current moment, I definitely do not think it is sufficient. So, I talked
before about this balance between having documentation. But also, to avoid
inconsistencies. You also do not want to have too much documentation, but I
think on the sliding scale we are too much on the side of too little. And [..] you
can notice this. For example, [..] the current development of the application is
quite dependent on specific persons’ (Lead Developer, Interview 7).

The extent to which the translation in the documentation is outdated

We asked the participants whether translation is used for documentation and
if it is outdated. The teams in P2 do not have translation issues as P2T1
works entirely in English and P2T2 works in Dutch. Each team agreed on a
common language for the team. For the teams in P1, they work in both English
and Dutch. English is internally used as the teams are made up of different
nationalities, whereas Dutch is used to communicate with the customer. This
provides a challenge as to what documentation should be in Dutch and which
ones can be in English. Also, it means for the Dutch documentation, not all
team members are able to review and update the documentation.

There are no translations for the requirements documentation for P1T2 that are
outdated, but both versions have to be updated simultaneously. ‘Because [P2T1]
just started translating it this year. So, only the new user stories that we have
are in Dutch and English. And once I edit, I adjust the Dutch immediately
added [and] adjust the English version as well’ (Analyst, Interview 4). Further-
more, it is not clear whether to keep the technical documentation in English or
Dutch. ‘We mostly translated the documents to Dutch. Actually, the preference
is to keep them in English, but [..] it is still a bit unsure if the technical docu-
mentation can be in English or not [..]. I know there is a software architecture
document. [..] currently, it is part in English, part in Dutch, and still, the
decision needs to be made [whether to have it in Dutch or English]’ (Architect,
Interview 2).

The challenges faced when ensuring documentation is kept up-to-date

We asked the participants about the challenges faced when ensuring documen-
tation is kept up-to-date. There is a broad spectrum of reasons, we discuss them
as follows.

• The increase of documentation debt due to the deadlines of the sprints and the
focus on delivering a product increment at the end of each iteration (an agile

87

principle). ‘So, in some cases we cannot finish the user story in a single sprint.
And then, the documentation task or some other additional tasks get moved
to the next sprint [..]. Sometimes, it falls through the cracks and then when
we near a release period like right now, we have a week or two where we need
to write a lot of documentation. So, in the end, it does get done because part
of the non-functional requirements is that we have up-to-date documentation’
(Architect, Interview 2). Also, the time constraint is evident in P2 as well.
‘Time constraints can often be a thing, like if there is a product deadline, then,
something will have to be scrapped from the planning. And very often stuff
like the non-functional requirements such as documentation gets scrapped the
earliest’ (Lead Developer, Interview 7).

• Updating the UML diagrams in the detailed design documentation is inconve-
nient and time-consuming. ‘Our challenge is the fact that we use Draw IO, and
it requires discipline [for the] team [to] update the Draw IO file because you
have to download it to your computer. So, when you make changes, then you
upload it again to [SharePoint], and then you generate a PNG file and update
it in the Word document. So, in that sense that is quite a challenge that it is
updated in that way’ (Architect, Interview 2).

• The motivation of the team members to update documentation is lacking. That
is mainly due to the goal of the sprint in line with the agile mindset to focus
more on the working software rather than writing comprehensive documentation.
Hence, ‘people just do not feel like doing it [writing documentation]’ (Analyst,
Interview 3).

• Documentation gets forgotten and managers have to enforce the process of up-
dating documentation. ‘Right now, we see those tickets [documentation tasks]
stay in the to-do [column] and then the managers [enforce that the team] have
to do it, so we will not continue with the new user story before you finish doc-
umentation then we would just assign it to people’ (Analyst, Interview 3).

• For the functional documentation, review with the four-eyes principle is lacking.
‘Review [..], once it is written down, we had reviews, and we do not have that
any more’ (Analyst, Interview 4). In this case, the problem is due to the down-
scaling of the team. ‘When we were with 2-3 analysts, [..] once you are done
with the documentation, that [was reviewed] by someone else. But now because
I work alone, it is difficult’ (Analyst, Interview 4).

• It is not clear what documentation needs to be updated. ‘Knowing when docu-
mentation has to be updated. Because some changes in the application require
updates in the documentation and some of them do not and beforehand you
might not always know if something requires an update of the documentation
or not’ (Lead Developer, Interview 7).

• Determining what and how much to document is at the discretion of each individ-
ual. As mentioned earlier in Section 5.1.3, the decision to update documentation
within P2 is at the discretion of the individual. ‘Within the team there are some
varied opinions on where you should be within that spectrum, that makes sense
because it is a spectrum. So, we do not really have any formal requirements on
when to document and when not to document. So, in this case it is mostly at
the discretion of each individual’ (Lead Developer, Interview 7).

• There is no check in place to remind developers to update the documentation
in P2. ‘I think there is no such reminder in place at the moment, so at most,
it could be that during the Refinement we might see that some update to the
documentation is needed and that would just mention it within the user story

88

as well.’ (Lead Developer, Interview 7).

• The limited capacity of P2T2. ‘A challenge is the capacity, so now we have four
people [..], and they work part-time so and at the end, we have two FTEs (full-
time employees). But [..] we want to have more progress and we have much
work to do, so capacity is a challenge’ (Product Owner, Interview 8).

• The process of acquiring projects for P2T2. Functionality within the project
is in line with the project obtained by C2. ‘And in projects, what we see
in The Netherlands is that [..] sometimes we have a project and it doesn’t
start because they are not allowed because the sometimes [the contractor] [does
not comply with legal regulations]. And we have several projects and so the
contractor [obtain their] goals first [..], but if the project starts, they do not
need us anymore because [..] several projects are stopped’ (Product Owner,
Interview 8).

The difficulty in tracing the versioning and updates of the documen-
tation

We asked the participants how difficult is it to keep track of the versioning
and updates of the documentation. In general, we found a number of good
approaches in how the versioning and updates of the documentation are kept
up-to-date to ensure traceability. However, we also found some challenges.

The internally created method of C1, C1M, provides templates for documen-
tation which also includes guidelines toward keeping track of versions of the
document. In the template, ‘there is a legend for it, but people do not fill it
in always. And you can cross-reference documents whereby you can [refer] to a
specific version of another document’ (Architect, Interview 2). However, even
though the template guides writers to fill in the versioning and references, it
tends to be forgotten. ‘That is also not being updated [..], because it is not
formalised in any process’ (Architect, Interview 2).

Moreover, adding versioning to documentation is taught during the training for
new employees within C1, so they should be equipped to incorporate it in the
process of writing documentation. ‘During the [training] they tell you about
that. So, they say you have a document, and you have to fill in these things, so
they prepare you to work like that’ (Analyst, Interview 4). However, even with
this knowledge, not everyone remembers to update the versioning and reference
tables in the document.

Nonetheless, user stories in Azure DevOps for both P1 and P2, automatically
provides information about the history and changes made to the user story. For
P2T1, the versioning of changes made to the wiki is kept track of automatically.
‘This is mostly done automatically. For example, the wiki has an automated
system for tracking changes. It is very much like Wikipedia, which always has
[a] revision history, the same with Azure DevOps. And with the analysis report,
for example, we used the word functionality for tracking revisions [..]. So for this
we really do not have to do much as a team, that is really all done automatically,
which is quite convenient’ (Lead Developer, Interview 7).

P2T2 on the other hand has to manually update the versioning by means of code
comments in their scripts. ‘But if you are making a change and you forget to

89

change the date, [..] it is not automatically, so it is all by hand. And people
make mistakes, so you can forget it’ (Product Owner, Interview 8).

5.2 Information Content (How)

For the assessment of the quality of the information present in the documen-
tation artefacts used within the multi-team agile teams. We discuss the main-
tainability, readability, usability, and usefulness of the documentation.

5.2.1 Maintainability

The difficulty in adding changes to the requirements documentation.

As the first aspect, we consider for the maintainability of documentation within
the team, we asked the participants whether it is easy to add changes to the
requirements documentation and if it is clear to know what other documentation
artefacts to update in this case. We discuss our results.

For both teams in P1, it is fairly easy to add changes to the documentation,
this is because C1M provides a landscape of documentation and the templates
also include a reference table that indicates what other documentation is re-
ferred to in a particular documentation. ‘There is [..] the landscape of [C1M]
documentation. Because they are all connected in a way and it is like we have
connections in LinkedIn, like this web collection or connections, there is also a
web of documentation.’ (Analyst, Interview 3). Also, the documentation pre-
scribed from C1M and used by the team are defined with a clear purpose. ‘It
is fairly easy to add changes. Again, we followed [C1M], the documents there
have a clear purpose which really helps. Some have like a standardised format,
so a standardised list of chapters’ (Architect, Interview 2).

Furthermore, most of the documentation used by the teams in P1 based on C1M
are Word documents stored within the SharePoint environment of the team.
‘The documents that we deliver are pretty easy [to change] because they are in
[SharePoint]. So, it is in Word and then you can just edit, everybody has access
to it. The good part also about [SharePoint] is you can see who modified for the
last time, who checked it out and you can even go back to previous versions. In
Azure DevOps the user story changes are also pretty easy, everybody has access
there’ (Analyst, Interview 4)

In spite of the benefits C1M provides to the documentation of P1, it is still not
always clear what other documentation needs to be updated. ‘No idea on that
(knowing what other documentation to adjust), that is a really good question,
[..] I find myself pretty lost [about] what we all need to document with those
kinds of things [..]. And it depends also on the change request, so, if it is a
validation or [..] a business rule or requirement, I will reconsider checking then
one of the places that we fill that in. But quite often, things are very specific so,
you do not need to adjust on those things, but only on the user story. So that
is my part, but I sometimes think also it should be updated somewhere else as
well, but [..] if it is technical, then I rely [..] on my team to know’ (Analyst,
Interview 4).

90

In P2T2, the scripts are tightly coupled to each other and also the comments
are updated manually. Since there is no clear overview of the landscape of
documentation, a change affecting multiple documentation is difficult to address.
‘If we change one thing, we must do it in every document so it is not that simple.
And this we have to do it manually per document, so [..] it is challenging’
(Product Owner, Interview 8).

On the other hand, the issue facing P2T1 is not about having documentation
to update in different sources or duplicates, but rather, the team has outdated
documentation. ‘You could of course have like more of implicit duplication in
the sense that you always have [..] the code itself and its documentation and
those could not match with each other, because like the code describes the same
thing as the document. In that case, it is more of an implicit duplication’ (Lead
Developer, Interview 7).

The difficulty in adding changes to the design documentation.

With reference to the design documentation within P1T1, some of the docu-
mentation are pretty large, making it difficult to find the right place to update.
In this case, it will require knowledge of the person who wrote the document to
figure out which part of the documentation to update. ‘It might be difficult to
find [the] right place in which you need to update it [the functional document].
Because I think the document we have now is over 80 pages. And I wrote it
myself, so I know exactly what’s in what chapter. But that is what we used for
user story references. So, if it is a change, it is usually linked to a user story,
and if it is not, I somehow know I remember what part of the functionality is
from. So, you just go to that part of the document’ (Analyst, Interview 3).

For P2T1, the level of difficulty in adding changes to the design documentation is
the same as that of the requirements. Basically, they try to eliminate duplicates
as much as possible to make it clear and easy to update documentation. ‘The
documents there also should not be [of] any duplication. So if there is, we just
address it and move on’ (Lead Developer, Interview 7).

The awareness of how a change in one documentation impacts the
others.

For this topic, we asked the participants whether there are processes in place to
know how a change in one documentation impacts the others. The results are
discussed as follows.

In P1, sometimes the user story also mentions what kind of documentation to
update. ‘Basically, we have those workshops with the customer and we have Re-
finements and during the Refinement estimation session, we specified [..] what
kind of documentation do we need to update’ (Architect, Interview 2). How-
ever, this is not always the case. Even though it tends to be asked during the
Refinement, it is not formalised in the structure of the meeting so it tends to be
forgotten sometimes. ‘Sometimes when you are picking up a user story, to know
which documents you need to update, it is not always clear, that should be part
of the template for [the] user story on Azure DevOps. But when we have a Re-
finement session, we ask the question, ‘which documents need to be updated?’.

91

That is good [and] very helpful. So, we need to formalise the procedure for
those kinds of meetings’ (Architect, Interview 2).

Similarly, in P2, it is not always clear how a change in one documentation
impacts another. ‘This is definitely not always clear so that you have to know
[..] which things are documented and which are not and also where they are
documented. That is very much a team responsibility, so if someone thinks of
documentation that is associated to something, you should mention it during
Refinement session for example so that we can make a note that it has to be
updated’ (Lead Developer, Interview 7).

The challenges of incorporating change requests in the documenta-
tion.

We investigated the challenges of managing requirements volatility. We asked
the participants about the challenges their team faces when working with changes
in requirements. There was one best practice from P2T1, which we discuss as
follows and then, we elaborate upon the challenges we identified as well.

The documentation in P2T1 is maintained with the principle that documenta-
tion is made modular. If the documentation gets large, the team splits it into
smaller parts. ‘We usually try to split up into smaller pieces. So not trying to
do everything at once, but split it into smaller pieces, where each of those pieces
is a bit simpler to do. [..] otherwise, you might just lose the overview because
indeed there could be something that is described both in the user story and
in the wiki. So one [..] from the requirements point of view, and one [from a]
design point of view, but sometimes even though different points of view, they
might still describe the same thing, just from different viewpoints, both have to
be updated. But splitting everything into small pieces you restrict the number
of places that have to be updated as much as possible’ (Lead Developer, Inter-
view 7).

The challenges facing the incorporation of changing requirements on documen-
tation is highlighted as follows.

• Limitations of the tools (P1). ‘The [SharePoint] does not always work, that
is the downside of it, [..] so I could not save it to the cloud. I could only
save it locally. So the connection is not stable enough, and sometimes if those
things happen sometimes people save things locally, [..] and people forget to
upload it soon. There is not always the latest version in [SharePoint], and
if someone else changes it, you get changes or version conflicts and that is a
problem’ (Analyst, Interview 3).

• It is not communicated clearly what needs to be updated in the documentation
(P1). As already discussed in this section, this is also a challenge that hinders the
effectiveness when incorporating changes to requirements in the documentation.
‘With user stories, we have this template. [..] We have this fixed list of tasks we
add to user stories, that is different [from change requests]. For instance, now
in this phase of the project, we are in this functional acceptance test phase for
[the] customer and there are change requests, but I do not get notifications to
change functional documentation, so it is the release process is very clear and
after the release, once the change request process starts [..], then documentation
is forgotten’ (Analyst, Interview 3). Also, ‘one of the things is also the content.
I think that we have not discussed what is truly necessary to document, [and]

92

what are things that you do not need. Because [..], I have been struggling a
little bit sometimes’ (Analyst, Interview 4).

• Even though there is a formal process in place to handle change requests, the
documentation aspect is not enforced (P1). ‘There is [a formal process for change
requests], but I do not think we [..] use it or, change requests are usually small
bits of things that we need to change that, it is not necessarily a big chunk of
functionality or a lot of hours. We try and think it is just ticking checking boxes’
(Analyst, Interview 3). Due to the need to implement those small functionalities
quickly, the documentation tends to be forgotten.

• The code comments in the scripts are updated manually (P2T2). When new user
stories are added, the documentation has to be adjusted manually. As P2T2
makes use of code comments to track versioning and changes, these have to be
maintained manually in all dependencies after a change has been implemented.
‘We add new stories, and we make it as a note in the code by hand. [We
document] the author and the date and what is changed, but it is all by hand’
(Product Owner, Interview 8).

Addressing the question of what is enough documentation.

As we noticed from the interview, there was an occurring concern that it is diffi-
cult to know what is enough to document. Therefore, we asked the participants
how they address the question of what is enough documentation as a team. We
discuss the two recommendations.

Firstly, P1T2 addresses this by means of feedback from the various expertise
within the team. At some moments within the project, the analyst asked for
feedback from the team on the user stories. ‘That was only a few times at
the start of the project, but also halfway through. [..] the first time was just
in general, the analysis team came together and they [discussed] how are you
going to write the user story, what is the expertise, what do we need, what
is essential, what kind of headlines do we want, and from there we [discussed]
what do we need for the functional documentation. And then, because you
have more people with different experiences and [skills within] in this project,
[some said] I thought it was really nice to see links to the user story inside the
functional documentation because then you can check and click and you know
it is accessible, then you add that to the list. Others say, well, I like that it
has numbers so you can discuss chapter 1.1.1.1.1, and then someone will know
where it is. And that is how then we organised it. And there was for me it is
also important [..] after [we had] done it. So that is why after a year, I discussed
with the rest of the team, how are you feeling now with the document, are there
still things missing also with the user stories, basically asked them for their
feedback on the documentation’ (Analyst, Interview 4).

Similarly, P2T1 tackles this challenge mainly via informal communication among
the team. ‘[It is] mostly [done] via informal discussion. Within the team there
are some varied opinions on where you should be within that spectrum, which
makes sense because it is a spectrum’ (Lead Developer, Interview 7).

93

5.2.2 Readability

Processes in place to review documentation and ensure that they are
clear to read.

We asked participants whether there are processes in place to review documen-
tation and ensure that they are clear to read. We found some strengths in how
the teams approach this aspect, but also, depending on the type of documenta-
tion, there are some challenges. We first elaborate upon the strengths and then
discuss the challenges as potential aspects for improvement.

• Feedback on user stories is obtained during the workshops with the cus-
tomer (P1). Feedback on the clarity of the details of the user story is
attained through the workshop and the approval process with the cus-
tomer after the workshop. ‘We have the workshops as a result of that, we
define the user stories and the user stories get accepted. So, we do have a
meeting for that, [..] it is per user story or we take a bunch of user stories
and go through them and then you know the customer can give feedback’
(Architect, Interview 2).

• Peer reviews among team members (P2T1). ‘This is mostly done through
peer review [..]. For example, the requirements are checked during the
backlog Refinement. Where every developer can have to look at some
readable for the design. Usually before publishing something [you have it]
read by other developers [and they] give feedback [..]. In that way, we try
to ensure that is a good quality’ (Lead Developer, Interview 7).

• Using the Scrum events (P2T2). ‘We do a lot of talking. So, we discuss
it in the Refinement or [Daily Scrum]. And so [..] we are using our work
process’ (Product Owner, Interview 8).

With that, we discuss the problems hindering the review of documentation.

• There is no review in place for the functional documentation (P1). As
mentioned earlier in Section 5.1.2, feedback is mainly given on documen-
tation within P1, when there is more than one occurrence of the role of
the responsible, for example, the role of a developer. Hence, documenta-
tion such as the functional document or analysis documents do not get
reviewed by other team members. ‘For us the analysis team, we do not
have reviewers.’ (Analyst, Interview 4). ‘We usually have one person writ-
ing it and then assigning it to the other person who can review it. If you
are the only analyst that is hard, so then you have to just trust yourself
basically’ (Analyst, Interview 3).

• Documentation is rapidly reviewed and updated nearing the end of the
release (P1). ‘At the moment we do not have like a recurrent task for this,
so for [the product of the team] we are nearing the production years and
because of that we are going through all the non-functional requirements,
and as a result, we are updating the documentation, so that is one in
one moment, at least when we are looking at documentation’ (Architect,
Interview 2).

94

The conciseness of the contents of the documentation.

To assess whether the contents of the documentation within P1 and P2 are
concise, we asked the participants for their opinion. Due to the lack of feedback
from both external and internal stakeholders, this is quite difficult to determine.
We discuss the arguments.

Firstly, in the case of the teams in P1, without adequate feedback, it is difficult
to ensure conciseness of the content of the documentation. For the analysis doc-
umentation of P1, they have not received any feedback from the target readers.
‘I have not [had any feedback from the client] yet. I am not even sure if they
have checked documentation’ (Analyst, Interview 3). Also, for the technical
documentation as well, they do not get any feedback from any reviewers outside
the team such as the client. This is because the client does not have the neces-
sary technical skills to review this documentation. ‘Because I do not think [the
customer] reviewed them. This customer, [..] does not have a lot of technical
knowledge’ (Architect, Interview 2).

On the other hand, for P2T1, the level of conciseness depends on the complexity
of the topic being written in the documentation. ‘It really depends not on the
topic, so usually, the more complex the topic is, the more documentation it
requires’ (Lead Developer, Interview 7).

5.2.3 Usability

Issues faced when using the various tooling to write documentation.

As discussed in Section 4.2.3, there are various tooling used by the studied cases
in writing documentation artefacts. We asked the participants what issues they
face with the tooling with regards to writing documentation.

There are a few challenges facing the use of SharePoint for P1. Firstly, the
performance of the tool, the ‘[SharePoint] is really slow’ (Architect, Interview
2). Also, we see evidence of connectivity issues sometimes which in turn causes
problems such as merge conflicts when the connection resumes. ‘The [Share-
Point] does not always work, that is the downside of it, [..] so I could not save
it to the cloud [..]. So the connection is not stable enough, and sometimes if
those things happen sometimes people save things locally, [..] and people forget
to upload them soon. There is not always the latest version in [SharePoint],
and if someone else changes it, you get changes or version conflicts and that is
a problem’ (Analyst, Interview 3).

For the teams in P1, even though the documentation is in SharePoint or Azure
DevOps, feedback from external stakeholders is gained via email, and then the
document has to be updated. ‘For the change request, [..] last time what hap-
pened is that we sent a link to the document in an email, and they email back
saying it is OK, and I think the customer is able to edit the document them-
selves and change the status to approved. But [..] usually, we do it for them’
(Architect, Interview 2). With this approach, the feedback cannot be traced to
a central location.

Furthermore, one of the challenges P2T1 faces occurs with the use of PlantUML.
‘The C4 diagrams are a little more difficult because PlantUML is a bit of a

95

restricted language, so sometimes there could be things here that are not possible
within that language, just because it is not very expressive’ (Lead Developer,
Interview 7).

The level of difficulty for external stakeholders to find information in
the various documentation.

We asked the participants about the difficulty for external stakeholders to find
information in the various documentation. There are two best practices we
identified with regard to making information accessible to the stakeholders.
Besides, a general remark was that there is no feedback from the external users
yet with regard to this. We discuss these findings.

The documentation structure based on C1M is standardised across projects within
the company. Therefore, ‘once you are familiar with [C1M] and you know about
the different kinds of documents, [..] it is easy to find them’ (Architect, Inter-
view 2). However, P1 have not received any questions about documentation from
external stakeholders as yet due to the skill set of the client. ‘I do not think [the
customer] reviewed them. This customer, [..] they do not have a lot of technical
knowledge’ (Architect, Interview 2). ‘I have not really heard from the customer
a lot about the documentation yet, [..] about the deliverables, no, I have not
really had that [many] questions, and they either did not read it or it is very
clear’ (Analyst, Interview 3). In P2T1, we also see a similar remark. ‘I have
rarely had those types of questions. I do not really know why, I would person-
ally expect a lot more of those questions, but I have [..] rarely had someone [..]
asked for documentation’ (Lead Developer, Interview 7). Instead, if there are
questions, external stakeholders tend to ask them in the form of emails or via
Teams.

On the contrary, P2T2 receives questions from stakeholders outside the team,
specifically within their department. Due to the limited capacity of the team
and the inefficiency in giving the same explanation a number of times, P2T2
decided to address this issue by creating the ‘Kennisbank’, this is a knowledge
platform with videos. ‘Yes, I think it is [difficult for other stakeholders to
find information] and that is why we have made the Kennisbank, to share the
information we want to share. Because we do not want to to share everything,
[..] that is too much, we want to share the only the parts we [can] share [at the
moment]’ (Product Owner, Interview 8).

Processes in place to ensure shared documentation is maintained cor-
rectly by both teams.

Having a multi-team project, we were interested to know how the teams collab-
orate to maintain shared documentation. We discuss our findings.

As both projects consist of teams that are divided based on functionality, the
shared documentation among teams is usually on a higher level. Within P2,
documentation is mainly shared on a higher level, such as features and program
increments. ‘Between [P2T1] and [P2T2], it is mostly at the high-level overview,
so not at the level of design or testing, but at some of the requirements level, not
at the level of user stories, but really at the level of features and the program

96

increments. That is the only place where the connections between two are
documented’ (Lead Developer, Interview 7).

Similarly, a high-level functional documentation artefact is shared by both teams
in P1. Each team has their own functional document, and they share a global
functional document that outlines the common components and functionality
within the team. However, this is not updated by both teams simultaneously,
rather, a responsible is assigned to maintain the document. The analyst in
P1T2 is responsible for updating the document. Hence, if there are changes
that impact the shared functionality, they should be communicated properly.
documentation ‘It depends if it is a change in [P1]. [..] if it is a global change
and they [the other team] need to be aware, then it is in the global document’
(Analyst, Interview 4).

Despite the benefits of the alignment meetings across the teams in P1, the meet-
ings hardly incorporate, discuss or review documentation. ‘Earlier, we talked
about this design analysis [meeting] with the designers or the interface con-
sultants. We have this weekly meeting in which we discussed the component
sharing part, but [..] we only use it for wireframing and prototyping. And I am
not sure if they do it on a documentation level’ (Analyst, Interview 3).

5.2.4 Usefulness

Processes in place to encourage the various stakeholders to review
and give feedback on the documentation.

To understand how useful the documentation is to the various stakeholders, we
asked the participants whether there are processes in place to encourage the
various stakeholders to review and give feedback on the documentation. We
discuss our findings.

In the case of P2T1, that depends on the stakeholder. ‘The design documen-
tation is mostly used among the developers. So, it is really documentation by
developers for developers, so it is not really read very often by external stake-
holders. And the requirements depend [..] on how high-level it is. So the
low-level requirements [..] mostly stay within the team because it is often a bit
too low-level. For example, managers do not look at [..] the user story exactly,
but the more high-level requirements, so [..] the level of features or epics or the
program increments [..]. So this could for example also be discussed together
with other users to see, where they would like to see the program go and this
is also interesting for managers to make a bit of a high-level planning’ (Lead
Developer, Interview 7).

In turn, P2T2 and both teams in P1, do not receive feedback from external stake-
holders, and the process of encouraging feedback is absent within the teams. For
the technical documentation, ‘There are no processes in place, so we do not pe-
riodically ask [the client] for feedback, we could do that. It would really improve
the usefulness’ (Architect, Interview 2). Also for the analysis documentation, we
see the teams do not receive any feedback. ‘I do not hear [the client] discussing
or reading or approving the documentation, so I feel like it gets forgotten, not
only from our part but their part as well’ (Analyst, Interview 4). Also, for
P2T2 they do not get feedback until they use the solution within an engineering

97

project. ‘We do not [..] have feedback yet from stakeholders. But sometimes we
[use] a small part [of the solution] in the project and then we get feedback. [..]
But we do not get much feedback’ (Product Owner, Interview 8).

According to the Architect, a reason why there is no review process in place in
P1 for external stakeholders is that it is not part of the DoD. ‘If it was a part
of the definition of done that the documentation needs to be updated, and the
customer would do a critical review, then that would be the formal process.
It is not part of the [DoD], we do not really follow the definition of done very
strictly, and the customer does not critically look at the deliverables’ (Architect,
Interview 2).

Planning and incorporating feedback in the documentation process.

In the case of feedback on documentation, we asked the participants about how
feedback is planned and incorporated into the documentation process. Our
findings are discussed as follows.

Within P1, there is no process in place describing how feedback or issues should
be handled. However, the teams incorporate a number of approaches to address
feedback on documentation. Firstly, the Daily Scrum may be used to discuss
any feedback or issues with documentation. ‘If someone spots an issue in the
documentation, you can of course always mention it during [the Daily Scrum] or
otherwise’ (Architect, Interview 2). Then, the functional document is approved
at the end of each release. ‘At the end of the project, [the customer] approves
user stories on a functional basis. But they do not approve the document each
week, they do it at the end of [..] the release’ (Architect, Interview 2). After
documentation artefacts such as the Functional Document or the Minutes of
Meeting are sent to the client for review and approval, communication is mostly
done by email, the feedback is incorporated into the documentation as soon as
possible.

The aforementioned situation is similar to that of P2. When there is feedback,
the team tries ‘to update it this quickly as possible. When feedback [is given],
if you agree with the feedback, you can just immediately update it. If you
disagree then you just discuss it with each other to try to come to some kind
of agreement. But, to prevent these processes from taking too long, we often
try to keep the time between the feedback and the update as soon as possible’
(Lead Developer, Interview 7). Also, on a high level when there are comments
on a feature, the product owners of both teams discuss it together. In future,
they intend to address this using an issue-tracking system. ‘If you have any
feature in [which] we have much feedback. Then you have to process this, [..]
I have talked to [the Product Owner of P2T1] about it and we have discussed
the ticket system, and in the future we [..] must process the feedback with
tickets [..], because you have to prioritise them or you have to think about what
is cheap and more gains [..]. So we are thinking about the process about the
feedback [process]’ (Product Owner, Interview 8).

98

5.3 Process Related

For the assessment of the challenges facing the processes of writing documenta-
tion within the multi-team agile teams, we investigated the challenges of inter-
nationalisation, contribution to documentation, automated documentation and
other issues facing documentation. Lastly, we conclude with the strengths or
best practices used in documentation practices within the teams.

Internationalisation

We asked the teams whether there are difficulties faced during the translation of
documents. Teams in P2 do not need to translate documentation, P2T1 works
entirely in English, as the team is international and P2T2 works in Dutch, as
the team consists of only Dutch speakers. Teams in P1 on the other hand, face
challenges with translating documentation artefacts and keeping these aspects
up-to-date.

Firstly, to address the language barrier, both teams, P1T1 and P1T2, conduct
the activities and Scrum events such as the Daily Scrum, Sprint Planning, Ret-
rospectives, etc. in English. ‘I do think that I do everything in English. The
code, [..] chats are in English, meeting chats, [Daily Scrums], Retrospectives,
Refinements [are] all [in] English, all team activities and meetings are English’
(Analyst, Interview 3). However, there is a language conflict between what the
client expects and the communication of an international team. ‘It is really
challenging because our customer requires Dutch documentation and also user
stories. And actually [as the] language during workshops, they do not really like
doing it in English, which I understand, [..] like the terms as well, the domain
knowledge you do not always have a translation. So it is hard to do it in English,
but it really sorts of puts the non-Dutch speaking people outside of our team
because they cannot join the workshops [..]. It is excluding people basically,
but we try to write user stories in at least full sentences so that you can easily
translate it. And for user stories specifically, we write an English translation
ourselves, but still not every translation is as good [and] understandable for
everyone’ (Analyst, Interview 3). Also, the translation of text in diagrams is a
challenge, which results in redrawing a diagram to update with the translation
of the text. ‘The difficulties are mostly when also the diagrams are in English
and need to be translated into Dutch [..]. You have to edit the Draw IO file and
export it again and it is time-consuming, but that is the difficulty I would say’
(Architect, Interview 2).

Contribution to documentation

To assess the processes in place to ensure adequate contribution to documen-
tation. We asked the participants about the processes in place to consider the
planning of documentation to ensure documentation is not forgotten due to
time constraints. Also, we ask how the issues found in the documentation are
reported and the support in place for external contributors.

For all four teams, there is no process in place to ensure the planning of docu-
mentation. A common reason for this is due to the agile mindset of prioritising
the working software and documenting less. We first discuss the perceptions of

99

documentation for P1 followed by P2. ‘It is difficult [to plan documentation] be-
cause we do not put so much priority on the documentation’ (Analyst, Interview
4). Due to the estimation of user stories and prioritising of tasks, there is a lack
of time to focus on having quality documentation. ‘There is lack of time and
what is the cause of the lack of time is, [..] that our estimates are too low and
so development takes too much time, and then we do not have enough time for
documentation that is one thing. Then there is pressure, [..] you need to finish a
user story, and otherwise, you need to postpone delivery of a user story, like the
formal delivery, because documentation is not yet done’ (Architect, Interview
2). However, if documentation is scrapped due to time constraints, nearing the
end of the project, the documentation is updated. ‘that is usually the case [the
documentation] is left to the end and then with two or three people we have to
spend a couple of days to update and correct, that is usually how it goes, and
it is a shame’ (Architect, Interview 2).

Similarly, these issues are identified in the teams of P2. In P2T1, ‘when there
are time constraints, documentation is usually one of the earliest things that get
scrapped ’ (Lead Developer, Interview 7). Also, if documentation is scrapped due
to the deadline, it is difficult for the team to go back and fix it, resulting in a huge
documentation debt. ‘In practice, this does not happen (fixing documentation
debt) because the deadline was finished. There might be yet another deadline
to work for us, so that is [..] very unfortunate, but that is the way it often
goes’ (Lead Developer, Interview 7). P2T2 does not have a process in place to
plan documentation. But the assumption is that when they are nearing the end
of the project, they will incorporate activities to catch up on documentation.
However, there is some evidence of addressing the issue of documentation debt
at the Retrospective. ‘Maybe if we are finishing a project, [..]. So the only
moment is not now is the is maybe the Retrospective, someone making the
notes [what] could be better [with regards to documentation], but mostly, I
think it is good if you have a project and after a while, you have to look back
and look how you can do better, sort of an evaluation, but that is not the case
at the moment though. [..] maybe it is something we can do [..] at the end of
the PI or something, but [..] it is not something that is generic in the agile way
of working’ (Product Owner, Interview 8).

Moreover, there is no process in place for any of the four teams to report issues
found in the documentation. The teams in P2 address this via a conversa-
tion on Teams or face-to-face conversations, whereby they discuss issues about
documentation. As mentioned in Section 5.2.4 feedback or issues relating to
documentation are solved immediately within P2T1, meaning the issues tend to
have a high priority. Additionally, there are no guidelines in place for external
contributors, as they hardly write or update documentation within the project.
‘Usually, the team writes it’ (Architect, Interview 2).

Automated documentation

We asked the participants whether any aspects of the documentation is auto-
mated. In general, there is not so much automation of documentation and the
reasons are given as follows. However, P1 makes use of HTML clickable pro-
totypes and unit tests, whereas P2T1 uses C4 diagrams and unit tests, which
entails some automation. P2T2 does not have any automated documentation.

100

The HTML clickable prototype is an executable documentation artefact that is
also used for the styling of the frontend. ‘Apart from having a clickable proto-
type that is as much [of] a reality as it could be, we also use it to help developers
using the styling components’ (Analyst, Interview 3). Automated documenta-
tion is an area that could be potentially looked into by the team. ‘We need to look
into that as possible and the quality of the generated documentation. Because,
I know you can generate those class diagrams, but they get quickly outdated.
Usually, a class diagram that gets generated is not very readable, so you would
still need to manually organise the boxes and lines’ (Architect, Interview 2).

Also, it is argued that it is difficult to automate the documentation within P2 due
to the domain knowledge required. It involves a lot of domain knowledge. ‘Many
aspects are a bit hard to automate. Because, it very much involves domain
knowledge, which is something that cannot always be automated. [It] requires
an understanding of what you want to describe, especially for very complex
[functionality] it is just very complicated to do’ (Lead Developer, Interview 7).

Other issues

Furthermore, we asked the participants whether there are any other challenges
facing documentation that have not yet been discussed in the interviews. A re-
curring issue is the time constraint. In P2 we see that ‘The main constraints are
[..] the time constraints [..]. It is really related to priority constraints, [..] and
perhaps also, a bit of an awareness of the importance of documentation because
it always seems like something that just costs time and does not gain people any-
thing [..]. It would be worthwhile [if] people would actually see documentation
as something that is valuable in itself, that it is not all about delivering feature’
(Lead Developer, Interview 7). Also, the issue of time is mentioned in the other
teams such as ‘Time is always an issue, documentation is never [a] priority, it is
just not and it will never be, that is the main challenge’ (Analyst, Interview 3).

Additionally, the Lead Developer in P2T1 suggests that the awareness of the
essence of documentation should be achieved ‘through education or through dis-
cussion from the team just to see what problems could arise from having too
little documentation, and what is the best way to address this’ (Lead Devel-
oper, Interview 7).

Strengths of documentation processes

Finally, we asked the participants to name what is going well with regard to the
documentation at the moment. We discuss the strengths and evidence of best
practices within the documentation practices in P1 and P2.

• The user stories of P1T1 are of high quality and are constantly reviewed. ‘The
user stories themselves [are going well], because we depend on them, and review
[them] and everyone is involved’ (Architect, Interview 2).

• The user story template automatically adds a documentation task (P1). ‘How
we maintain and make sure is that there is always a [documentation] task, so
automatically if you add a user story in Azure DevOps, it will have a functional
or architecture or whatever documents task with it, so you cannot escape and
we can see if someone did it or not. And if it is missing, you can backtrack the
person who worked on it’ (Analyst, Interview 3).

101

• The manager enforces the updating of documentation (P1T1). ‘What we have
done now is that the manager said do not start a new user story before you finish
documentation from the one you finished before. So a user story is only finished,
that could be the definition of done, once every task is done. So, if there is just
one small thing like documentation, it is not done we are still working on it’
(Analyst, Interview 3).

• Planning time-slots in one’s own agenda to work on documentation (Analyst,
P1T1).‘For me personally, [for the] functional documentation, I usually plan a
couple of hours once per sprint to [update] and make sure I do the documentation
by the end of every Sprint’ (Analyst, Interview 3). This is also a good way to
learn and improve the estimations of documentation tasks. ‘That is my way of
learning my task because then I have more insight. I know how much time I
usually need for [minutes of meeting], so I can plan it. And then I can make
sure that I have enough time to do all my tasks’ (Analyst, Interview 3).

• The availability of templates and best practices in C1M accelerate the documen-
tation process (P1). ‘Overall, we do a really good job documenting our stuff
and I think the task documentation really helps to do it more structured. And
the main thing is the [SharePoint] and [C1M], I think that really helped us
to focus or to at least start documentation, to know what documentation was
right. Because before [C1M], we did not have these templates but let alone best
practices. So, I think those best practices and templates really help you to just
start. And then, it just goes on. I think the document just grows during the
process’ (Analyst, Interview 3).

• The increase in awareness of documentation (P2T1). ‘The awareness of the
need for documentation is becoming greater over time. So I think one year ago,
we had like almost no documentation and now it is already a bit better. [..] the
wiki is coming along really nicely and I think that is a very good way to put
your documentation, it [is] very easy to change and very organised, [..] those
are the main things that are going well’ (Lead Developer, Interview 7).

• Development of a knowledge sharing platform ’Kennisbank’ (P2T2). P2T2 started
with the development of ‘the Kennisbank, the knowledge side, which will which
we want to expand upon’ (Product Owner, Interview 8). The ‘Kennisbank’ is
a knowledge platform being created to facilitate knowledge sharing about the
solutions of the team with other stakeholders both internally within C2 and
externally.

5.4 Conclusion

Throughout the Problem Investigation phase, we identified issues and strengths
of the documentation within the explored projects with regard to what is writ-
ten, how is it written, and what are the documentation processes within the
projects. A common challenge is time constraints that result in huge documen-
tation debt due to the Agile mindset of focusing more on implementing and
testing and documenting less. All teams use the Refinement session to clarify
requirements. While C1M introduces templates and best practices for writing
documentation, the downfall is that templates such as that for a user story tend
to get outdated easily. Even though P1 defines documentation tasks and P2
does not, the scope of the documentation is not clear for either project.

Moreover, P2T1 faces the challenge of finding the right balance between docu-

102

menting and making the code self-documented. The lack of a clear file structure
is seen in P2T2 which hinders the process of writing documentation. In P1, the
update and completion of the documentation solely rely on the assignee rather
than a shared team responsibility. The larger the documentation artefact, as
seen in P1, the more difficult it is to maintain it. Hence, P2T1 approaches this
issue by making the documentation more modular. For all teams but P2T2
feedback and review from external stakeholders are lacking. P2T2 is addressing
the feedback from stakeholders by realising a knowledge-sharing platform. A
common pattern of feedback among the teams is through the four-eyes princi-
ple. Lastly, the processes of planning documentation, encouraging feedback and
incorporating feedback are absent in all of the teams.

103

Chapter 6

Treatment Design

We consider the problems identified in Chapter 5 such as time constraints, lack
of awareness, lack of a clear documentation scope, planning, review, and esti-
mation, among others as areas of potential improvement. With these insights,
we propose a treatment to address the challenges found in documentation as the
second phase of the Design Science cycle. Our approach is based on a combina-
tion of a semi-systematic literature study with the guidelines of the treatment
design by Wieringa (2014). For the literature study, we searched for literature
within the past decade on software process improvement within agile teams.
The guidelines for documentation practices in agile development (Section 2.5.5)
are rather abstract to be applied in practice. To the best of our knowledge,
there is no framework or Software Process Initiative that addresses the chal-
lenges facing documentation in agile teams. Nonetheless, based on the research
of Hess et al. (2019), we considered the recommendations to develop a checklist
as a guideline for face-to-face meetings [108]. Then, we researched further into
the potential of software process improvement via informal communication. In
the literature, we found the benefits of team meetings and the recommendations
for a game-based and data-driven approach to the Retrospective. With these
insights, we design the Documentation Improvement Framework via Feedback
Cycles (DIFFC).

The remainder of this chapter is as follows. We explain the reasons why one
treatment framework does not fit all large-scale agile projects in Section 6.1.
Then, we address the state of Software Process Improvement initiatives from
the literature in Section 6.2. Subsequently, we discuss the potential for pro-
cess improvement in self-organising agile teams using informal interactions by
means of feedback cycles in Section 6.3, as well as the challenges faced during
these feedback cycles such as Daily Scrum, Retrospective, and Sprint Planning
meetings in Section 6.4. We zoom in on the facade of our treatment based on
informal interactions. In parallel, we identify requirements for the treatment de-
sign in the aforementioned sections, which are italicised and assigned as labels
R1-R6. Then, we propose the DIFFC method in Section 6.5 in an attempt to
address the issues found in the documentation with both practical and scientific
contributions. Finally, we wrap up in Section 6.6.

104

6.1 Variations in Scaled ASD Projects

We discuss the variations among scaled agile projects and why ‘one size’ of
the treatment does not fit all contexts. Firstly, there is no one size fits all
solution for approaching agile software projects [7], and this applies to improving
documentation practices in scaled ASD projects, as the documentation needs
of each project are different. Our sixth sub-research question covers the design
of a framework to improve documentation practices in scaled agile software
projects. However, with the insights from the case studies, we see variations in
the context and structures of these projects. This also confirms the statement
in project management literature that ‘one size does not fit all’ [109, p. 14].
Moreover, in a study conducted by Shenhar et al. (2002) on the differences
among projects and classifying projects according to frameworks, the authors
conclude that ‘one (project classification) framework does not fit all either’ [109,
p. 14]. In the context of documentation practices in scaled agile development,
we highlight the variations.

The rationale for use and the quantity of documentation differs per project. In
P1, it was evident that the number of documentation artefacts used is higher
than that of P2. The goals of the projects to deliver a product to a client or
for internal use varies. The organisation and processes within P1 are driven by
the internally created method of C1 (C1M), whereas the P2 is organised and
structured by an adaptation of SAFe within C2. C1M requires more documen-
tation artefacts from the teams in the form of formal documents whereas the
documentation in P2 is mainly informal documentation artefacts. Having ex-
ternal clients as stakeholders also influences the governance, quality assurance,
and external follow-up rationales. For instance, in P1T1, a Maintenance Guide
is used to accompany a release and that should be approved by the customer.

Moreover, the process maturity level differs per team. C2 adopted SAFe about
half a year ago and P2 is the only team as yet that uses SAFe within the com-
pany. On the other hand, C1 adopts C1M for almost three years, and almost
all the projects within C1 adopt the methodology. Therefore, there is more
experience and expertise in the agile method practices of P1 compared to P2.
In P2, the process maturity level even differs per team. P2T1 for instance has
worked with Scrum for about 4 years, whereas P2T2 is relatively new to the agile
way of working, and adopted agile practices after SAFe was introduced. With
these findings, we conducted further research into Software Process Improve-
ment (SPI) and the Capability Maturity Model (CMM). CMM was designed
to aid software organisations in selecting process improvement strategies based
on their current process maturity [110]. The model distinguishes five levels of
process maturity in software projects from ‘initial’, where the software process
is categorised as “ad hoc, and occasionally even chaotic’ to ‘optimising’, where
there is continuous improvement to the software processes by means of feedback
and innovation [110].

6.2 Software Process Improvement (SPI) in ASD

SPI refers to activities that are aimed at assessing and improving the processes
and practices involved in software development [111]. It has roots in plan-driven

105

methods in software development, however, over the past two decades, it is in-
creasingly being adopted in ASD [112]. In a systematic literature study on
SPI in ASD by Santana et al. (2015), two fundamental approaches to SPI in
agile were identified [112]. The approaches were based on the dissertation of
Salo (2007), where the top-down and bottom-up approaches are discussed [113].
The top-down approach focuses on the utilisation of organisational procedures
and explicit knowledge transfer [113]. This approach is based on a plan-driven
approach to software processes whereas the bottom-up approach is more inclined
toward the agile mindset. The bottom-up approach focuses on the adaptation
of processes to the “contextual needs of project teams and improving the con-
textual needs of individual project teams” [112, p. 329]. It distinguishes two
sub-approaches:

• “Adapting the process to the contextual needs of individual project teams” [113,
p. 59].

• “Improving the effectiveness of individual project teams” [113, p. 59].

These bottom-up approaches are the basis for Agile SPI which reflects the first
principle of the agile manifesto [112], where individuals and interactions are
prioritised over processes and tools [5]. As self-organising teams as referred to
in ASD, they ‘are usually responsible for managing and monitoring their own
processes and executing tasks’ [114, p. 27]. Hence, the adoption of lightweight
process improvement is more suitable for this context, rather than introducing a
heavyweight framework for process improvement (R1).

A treatment framework that requires a process-heavy approach by introducing
new processes to the already existing processes and activities of the various
scaled agile methods is not preferred due to the potential risk of low adaptabil-
ity. ASD recommends a more ‘adaptive’ and ‘exploratory’ approach towards its
processes, with eliminating unnecessary formalities [115]. It discourages plan-
driven approaches that are process-heavy and entail high ceremony. An example
of the high ceremony mindset can be seen as ‘I write a document because now
is the prescribed time to write that document even though nobody can say why
that document is necessary or valuable’ [115, p. 57]. In essence, Agile Software
Development is lightweight, allowing organisations to adopt its practices to suit
their context. Also, the methods used by large-scale software projects such as
SAFe, DAD, LeSS, and internally created methods, introduce additional pro-
cesses and activities making it more difficult to introduce a heavyweight process
improvement. Implementing heavyweight approaches demand extensive assess-
ment activities and are costly to adopt [116].

Besides, as self-organising Agile teams, a big part of adaptability change is work-
ing in iterations and constantly improving based on feedback among the team
members [48]. In Section 2.2.4, we discussed the feedback cycles in ASD, specif-
ically in Scrum. In these meetings, artefacts may be used such as the Sprint
Backlog in the case of the Daily Scrum, as evident in P1 and P2. However, the
main process improvement feedback is elicitation through verbal communica-
tion [48]. With verbal communication in an offline, online, or hybrid meeting
setting, the team members discuss progress and problems, but also share sugges-
tions for improving processes within the team (R2). Therefore, the treatment
design focuses on a lightweight approach to improve documentation

106

practices from within the team in a large-scale ASD project.

6.3 Process Improvement via Informal Interac-
tions

With scaled agile methods focusing more on informal communication rather
than extensive knowledge transfer [10], there are still a considerable amount of
artefacts in the explored cases. Informal communication is one of the fundamen-
tal factors for success within ASD [117]. “Communication and collaboration are
at the heart of agile software development” [118, p. 298]. However, heavily re-
lying on informal communication introduces the risk of knowledge evaporation,
especially in the case of larger software projects [117]. We argue that informal
communication among the team members at feedback sessions can contribute
to improving the documentation process.

In Section 6.1, we introduced the idea of improving documentation practices
with a lightweight approach which is based on the feedback sessions among
the team. The most popular agile methodology, Scrum, evolves around four
feedback cycles which are the Daily Scrum, Retrospective, Sprint Planning,
and Sprint Review [115]. Since the Sprint Review is mainly for evaluation
purposes and may involve external stakeholders, we scope the treatment design
to focus on the internal meetings that may be used to coordinate processes within
the team (R3). The reason for this is to investigate the effectiveness of the
process improvement initiative within the self-organising team. Therefore, we
discuss the Daily Scrum, Retrospective, and Sprint Planning. ASD involves
self-organising teams who rely on daily meetings to coordinate their work and
make decisions [119]. The Daily Scrum is a meeting of approximately 15 minutes
whereby the team members are kept up-to-date about the progress of the Sprint
and discuss any issues or impediments [120]. The Retrospective is seen as an
‘inspect-and-adapt’ activity that occurs at the end of the sprint with the focus
on continuous process improvement [115]. This activity facilitates discussions
about the processes within the team, as well as the results of the iteration and
possible improvements to the processes for the next iteration(s) [121]. Sprint
Planning initiates the next sprint. During this meeting, estimates are made for
the user stories on the Sprint Backlog for the next iteration [115].

In a study conducted by Stray et al. (2012) to investigate team meetings in
ASD, the authors discuss the relevance of team meetings. Team meetings are
essential for the coordination of team members, tasks, and tools [119]. In turn,
a software team integrates its members’ efforts, as well as their activities and
goals, with suppliers, clients, and other organisations both inside and outside
the firm through these meetings [119]. Additionally, through team meetings, the
team is able to share information, combine expertise and address problems, and
make decisions [119]. During a week, a software developer usually spends several
hours in various types of meetings such as planning, review, retrospective, daily
meetings, and customer meetings [119]. Also, team performance is strongly
linked to the effectiveness of teamwork coordination [122]. Hence, team meetings
with a more proactive approach such as problem-solving interaction and action
planning contribute to higher team productivity [123].

107

The benefit of incorporating process improvement into these feedback meetings
is that these meetings already exist and are used by the project teams. For exam-
ple, all the teams in P1 and P2 organise Daily Scrum, Retrospective, and Sprint
Planning meetings. In the literature, the Daily Scrum is perceived as the most
essential medium of communication among the team in Scrum [124]. Consider-
ing the relevance of these channels of communication, using the Daily Scrum,
Retrospective, and Sprint Planning as a platform to improve documentation
practices provide the benefit of reusing existing processes without introducing
any additional complexity to the preexisting activities of the team, making it
a more adaptable approach. Therefore, we incorporate the use of preexisting
feedback cycles within agile teams into our treatment design.

6.4 The Challenges Associated with Feedback
Cycles

Despite the benefits of using feedback cycles as a medium for process improve-
ment, there are some hindrances. In a study conducted by Hess et al. (2019), to
address the challenges facing requirements’ communication in agile teams, two
guidelines were recommended. Even though the guidelines are directed towards
addressing the gap of details in requirements in ASD, the second guideline is
rather generic and may be applied in other contexts. This guideline proposes
the introduction of a checklist to guide feedback meetings such as “sprint meet-
ings in order to assure that important information for agile team members is
explicitly discussed and clarified” [108, p. 9]. The daily scrum meeting is cen-
tred around at least these three main questions, ‘What did I do yesterday?’,
‘What will I do today?’, and ‘Do I see any impediments?’ [120]. In contrast, the
Retrospectives do not have a prescribed set of steps to support the discussions of
estimation and process improvement, among others [121]. Retrospectives games
are adopted during Retrospectives which are a set of interactive group activities
to keep the discussions interesting and encourage active participation in those
discussions [121]. Having a guide for the structure of these meetings will there-
fore be an interesting prospect towards process improvement of documentation
practices within the agile team (R4).

Another problem facing Retrospectives is the lack of data. Even though Ret-
rospective games keep these meetings interesting and encourage involvement, a
critique is that the ‘hard facts’ are ignored [121]. It is without a doubt that these
interactions are highly relevant to improving team satisfaction [125]. Resulting
in a list of actionable items as a potential for process improvement within the
team [126]. However, Matthies (2020) emphasises the relevance of modern soft-
ware project data and proposes the need to combine insights from the data with
the informal interactions [121]. Therefore, we incorporate this proposal within
our treatment design. The framework should combine a data-driven approach
with informal communication (R5). Software project data is very essential in
providing insights into the progress and the issues facing the developed prod-
uct [127], which also includes the documentation artefacts.

The integration of tools in ASD provides access to agile teams about the project
status without much effort required to collect and prepare this data [121]. Cat-

108

egories of tools such as version control systems, issue trackers, software testing
suites, status monitors, and communication tools provide the team with infor-
mation about the progress and quality of the various aspects of the projects
ranging from code quality, frequency of code commits, to the frequency of com-
munication, among others [121]. This data is certainly useful to guide the
discussions on processes and results within the team rather than having a sub-
jective discussion about process improvement only based on ‘feelings’ [121]. In
justifying the proposal to incorporate guidelines to the structure of retrospec-
tives, a recommendation to start with the facts, a ‘set the stage’ phase was
introduced [121]. This phase as the start of the Retrospective allows the use of
data to provide more insights into the progress and behaviour of the team [121].
Matthies (2020) presented a quote by Derby and Larsen (2006), that supports
the aforementioned, “Without a shared picture, people are working from a nar-
row set of data - their own” [128]. Retrospectives should start with data of
the team’s milestones of the last iteration [121]. However, in the context of
documentation activities, the question thus remains whether these data provide
insights into the progress and quality of documentation within the project.

Metrics are an important aspect of software process improvement. Pandian
(2003) explains that the ‘ability to improve is aided by the ability to mea-
sure’ [129, p. 25]. Metrics support decision-making and provide data for iden-
tifying issues which eventually results in problem-solving [129]. A number of
the artefacts and tools used within ASD provide insights into the progress of
the product and artefacts. User stories are tracked in issue tracking systems,
whereby burn-down chats are used to visualise the velocity against the planned
effort [91]. Velocity is measured in story points which indicates the team’s
productivity through the amount of work accomplished by the team within
a sprint [130]. The higher the velocity, the higher the number of sprints re-
quired to complete the defined story points [130]. Additionally, the number
of requirements, defects, and customer satisfaction scores are performance in-
dicators adopted by Agile teams [131]. Therefore, if documentation is made
measurable like other tasks within the user story, then it should provide the
opportunity of monitoring the progress of documentation (R6). Data on how
much effort was spent for a documentation task in comparison to the planned
effort, contributes to better estimation. As a result, the risk of documentation
being scrapped, forgotten or moved to the end due to time pressure, is reduced
with better planning and estimation.

6.5 Documentation Improvement Framework via
Feedback Cycles (DIFFC)

In this section, we propose Documentation Improvement Framework via Feed-
back Cycles (DIFFC) to address the issues found in documentation activities
in large-scale ASD projects. The focus is on process improvement on a team
level via informal discussions. DIFFC is a lightweight framework that can be
incorporated into the existing feedback cycles of the agile team. The rationale
behind this framework is to stimulate process improvement actions to address
the issues with documentation within the team itself, rather than imposing ex-
ternal processes and guidelines for a self-organising agile team. The framework

109

is not to be rigidly implemented, instead, it may be used as a guide to in-
corporate structure already existing feedback cycles such as the Daily Scrum,
Retrospective, and Sprint Planning, among others.

Our treatment addresses the following requirements:

• R1: The framework should be lightweight and easy to adopt by agile teams.
(Section 6.2)

• R2: The framework should incorporate the use of verbal communication, whereby
the team members discuss progress and problems, but also share suggestions for
improving processes within the team. (Section 6.2)

• R3: The framework should focus on the use of internal meetings to coordinate
processes within the team. (Section 6.3)

• R4: By applying the framework, a Retrospective should be accompanied by
guidelines for its structure. (Section 6.4)

• R5: The framework should combine a data-driven approach with informal com-
munication. (Section 6.4)

• R6: Documentation should be made measurable to provide the opportunity of
monitoring the progress of documentation activities. (Section 6.4)

As outlined in Section 1.3, our research aims at both scientific and practical
implications. Therefore we introduce the DIFFC model for practitioners in
Section 6.5.1 and the scientific overview of the framework in Section 6.5.2.

6.5.1 DIFFC for Practitioners

To ensure the DIFFC is adopted by practitioners, we provide a simplified and
comprehensive model of our framework. Here, the activities within the phases
are more compressed making it more adaptable for multi-team software projects
with pre-existing structures and processes in place. In Figure 6.1, we present
the model of DIFFC for practitioners. The Planning phase entails activities
to ensure that the user stories include documentation tasks that are estimated
and assigned. This should ensure that documentation tasks are included in
the sprint estimation and are not forgotten. On a daily or frequent basis, the
progress of not only the user stories but also the documentation tasks, as well as
the process improvement actions (derived from the Reflecting phase), should be
reported during the Monitoring phase. Also, if any dependencies are hindering
the progress of both kinds of tasks, that may be discussed during the progress
update meeting. The purpose of this phase is to ensure that the team is aware
of the progress of the various tasks.

Moreover, the most important phase of this model is the Reflecting phase. In
order to make this phase successful, an agenda should be made with regard to
tackling specific issues facing documentation processes and artefacts within the
team. The activities of the Reflecting phase are divided into two parts, the
first part combines the perceptions of the team members with a data-driven
approach to team reflection. For instance, during a Retrospective, the team
members may begin by sharing their perceptions about the results and processes
within the previous sprint. Also, the progress of the process improvement tasks
from the previous iteration is evaluated. Then, insights from Software Project

110

Figure 6.1: An overview of the DIFFC framework aimed at practitioners.

Data such as the burn-down chart, progress of deliverables, release information,
documentation debt, etc. are gathered based on the agenda of the meeting and
presented to the team. Based on the data, the team can begin to elicit ideas
on how to address the problem. To support an interactive and collaborative
approach, we recommend the use of Retrospective games in Section 6.5.3. Also,
it is important to incorporate the role of the facilitator, if not already present in
Retrospectives. From the literature, it is recommended to have the facilitator
support the activities of the Retrospective and refrain from making decisions
to allow active participation of the team members [132]. Using the game-based
approach, ideas are generated by the team and process improvement tasks are
agreed upon. These tasks are then assigned to team members as responsible for
the execution of the tasks.

As mentioned in Section 6.5, the goal of the DIFFC model is not to have all ac-
tivities incorporated within the process of the team, but rather to evaluate one’s
existing processes and incorporate the recommendations of the model. Having
discussed the variations of scaled ASD projects in Section 6.1, the expectation
for this model is that not all the proposed activities might be applicable to a
certain case. Therefore, this framework may be used as a guideline for practi-
tioners, if an activity or sub-activity already exists in the current process, it may
be skipped when incorporating it into the process of the team. For instance,
during the case exploration, we identified that the teams in P1 already have
documentation tasks which are assigned to a responsible, but not a reviewer as
yet, and the tasks were not estimated. In the case of P2, documentation tasks
are not defined as part of the user story. In the case of monitoring, both projects
report on the progress of the user stories during the Daily Scrum, but there is
no specific mention of documentation tasks. For reflection, the meetings follow
an informal structure during the Retrospectives whereby the perceptions of the
team members are discussed and eventually, some process improvement tasks
are made. Hence, the structure and activities (except the discussion of percep-
tions) we introduce in the Reflecting phase are not yet implemented by these
projects. Hence, we test the DIFFC model in the explored cases, to investigate
whether our model addresses the problems facing documentation in large agile
software projects, and how it contributes to software process improvement.

111

6.5.2 DIFFC for Science

In Figure 6.2, we adopt the Process Deliverable Diagram (PDD) notation [133]
to describe the main processes and activities as well as deliverables in the DIFFC
method. The method consists of three phases. The first phase defines the Plan-
ning phase where DOCUMENTATION TASK(s) are explicitly added to user
stories to ensure that the documentation aspect of the USER STORY is made
measurable and not forgotten. Here, the need for documentation within the
USER STORY is discussed among the AGILE TEAM at a feedback cycle such
as the Sprint Planning. The REASON FOR DOCUMENTATION determines
the scope of the documentation. The SCOPE OF DOCUMENTATION is used
to address the question of ‘what is enough documentation?’. With these insights,
the AGILE TEAM defines a DOCUMENTATION TASK as part of the USER
STORY. This task is then estimated by the AGILE TEAM, and assigned to at
least one RESPONSIBLE and one REVIEWER.

Subsequently, the second phase defines the monitoring of both the DOCUMEN-
TATION TASK(s) and IMPROVEMENT TASK(s). The RESPONSIBLE as-
signed to a task gives a PROGRESS UPDATE on the completion, as well as
any issues or dependencies on other tasks. The monitoring phase can be seen as
a progress update to keep the AGILE TEAM in sync with the progress of the
various tasks. This phase can be incorporated into the feedback cycle focused
on progress updates such as the Daily Scrum.

The third and most important phase is the Reflecting phase. This is described
as such because it introduces a new change that was not evident in any of the
explored cases. In both P1 and P2, the Retrospective meeting is used to discuss
the perceptions of the team members of the previous sprint and propose process
improvement ideas. However, there were no formal guidelines for this meeting,
the topic of documentation is barely discussed, and these meetings did not make
use of any project data. With DIFFC, we propose a data-driven approach to
team reflection, that combines the perceptions of the TEAM MEMBERs with
SOFTWARE PROJECT DATA. The Reflecting phase can be incorporated into
the feedback cycle focused on progress updates such as the Retrospective in
Scrum. The first three activities of this phase were adopted from the book of
Derby and Larsen (2006) where the authors proposed a structure for Retrospec-
tives by making use of Software Project Data (SPD).

112

Identify the need for documentation

Identify the scope of documentation

Define documentation tasks

Assign roles to the tasks

Planning

Agile team

Reflecting

Estimate documentation tasks

Gather data

Generate insights

Collect improvement actions

REASON FOR
DOCUMENTATION

USER STORY

SPRINT
BACKLOG

SCOPE OF
DOCUMENTATION

1

1..*

AGILE TEAM

DOCUMENTATION
TASK

RESPONSIBLE REVIEWER

decides upon

1

0..*

contributes to

1

defines the
1
1

ROLE

1

2..*

ESTIMATE

UNASSIGNED

TEAM MEMBER

Agile team

Report on progress of
documentation tasks

Report on progress of
improvement actions

Report on dependencies

Set the stage

Assign improvement actions

Monitoring

Agile team

PROGRESS
UPDATE

IMPROVEMENT
TASK

SOFTWARE
PROJECT DATA

DATA
VISUALISATION

11

is assigned to

reports on
1..*

1

1..*

1

1..*

1

defines

is assigned to

0..*

1..*

is input for

1

1..*

1

1 1..*

1
1

1

is measured by

is measured by
1

1

1

1..*

is input for

Figure 6.2: A process deliverable diagram of the proposed DIFFC method.

113

Derby and Larsen (2006) identified proposed five stages for the structure of
a Retrospective meeting, known as ‘set the stage’, ‘gather data’, ‘generate in-
sights’, ‘decide what to do’, and ‘close’ the Retrospective [128]. Setting the
stage prepares the team for the activities of the Retrospective. This phase en-
tails reviewing the goal of the meeting, reviewing the agenda, checking in, and
evaluating working agreements made in the previous Retrospective [128]. After-
wards, during the gathering data phase, a shared picture is introduced with the
data of what happened during the previous iteration [128]. ‘Without data, the
team is speculating on what changes and improvements to make’ [128, p. 50].
Subsequently, generating insights allows the team to evaluate their data and
draw meaningful conclusions from it. These activities help the team interpret
the data, analyse it, and discover implications for change [128].

The team gathers SOFTWARE PROJECT DATA to generate insights into
variables such as the number of USER STORIES completed, the number of
DOCUMENTATION TASKS successfully completed, and the actual effort of
documentation versus the planned effort, among others. With these insights,
not only can the AGILE TEAM focus on eliciting ideas for process improvement,
but for example, they may make decisions on whether the cost of updating
documentation is in line with the effort spent on the actual implementation of
the user story. After the SOFTWARE PROJECT DATA has been visualised,
the next activities are to collect and assign process improvement actions.

Collect improvement
actions

Agile Team

Decide on the problem(s) to address

Play a retrospective game

Identify possible improvement actions

Play a Retrospective game

Figure 6.3: A PDD showing the sub-activities for the ‘Collect improvement
actions’ activity.

We expand upon this research with the work of Mesquida et al. (2019) on
developing a collaborative game toolbox for SPI in agile teams [132]. The au-
thors introduced a ‘Playing Up’ step during Retrospectives. The purpose of
this activity is to explore old processes in a new way [132]. We incorporate the
‘Decide what to do’ activity [128] with the ‘Playing Up’ activity to combine a
data-driven approach with an interactive approach, to stimulate the team to
interactively participate in generating ideas on addressing issues identified from
the project data. The idea to include incorporate a data-driven approach with
the game thinking approach was inspired by the proposal of Matthies (2020)

114

to use SPD in Retrospectives [121]. Hence, the ‘collect improvement actions’
activity consists of three sub-activities as shown in Figure 6.3. This entails se-
lecting a problem to address, selecting and playing a Retrospective game, and
defining a list of IMPROVEMENT TASKs to address the problem in question.
An IMPROVEMENT TASK is assigned to at least one RESPONSIBLE and it
is added to the SPRINT BACKLOG of the next iteration.

6.5.3 Retrospective Games

In the previous section, we briefly touched upon the relevance of Retrospective
games. As an essential activity of the DIFFC method, we elaborate more on
the game-based approach to Retrospective based on the literature.

Agile teams mainly trigger process improvement initiatives during the Retro-
spective meetings, this feedback cycle takes place at the end of the sprint with
the focus on continuous process improvement [134]. An essential component
of these feedback cycles is the tools and techniques used. The game thinking
approach towards SPI via Retrospectives is discussed in the literature includ-
ing the work of Jovanović et al. (2016). The authors emphasise that the use of
games in Retrospectives increases team motivation and contributes to a positive
impact on social behaviour and team development [126]. Therefore, incorporat-
ing this method in the software development process has a good impact on team
members’ motivation and encourages the use of task-oriented resources [126].

Before selecting a Retrospective game, Mesquida et al. (2019) recommend that
the Retrospective meeting should be planned and prepared in advance by the
project team [132]. The agenda for the Retrospective meeting should be de-
cided upon by considering social and environmental factors [132]. These factors
include ‘group dynamics, maturity, social and interpersonal aspects’ of both
the team and the individual team members [132, p. 107]. Especially for group
dynamics, Mesquida et al. (2019) pinpointed the group development stages by
Tuckman (1965), which are the forming, storming, norming, and performing
stages [135].

• Forming is the first stage of group dynamics where the team members are ob-
serving and orienting themselves toward one another, and adopting the expected
and recommended working methods [135].

• Storming is the second stage of group development, during which members of
the group may frequently experience disagreements in the course of their regular
activities [135].

• Norming is the third phase and it is assumed that the disagreements and various
working styles are aligned into one recognised way of working and interacting,
group members communicate more, they have a feeling of belonging to the team,
and they begin to be more proactive in terms of improvement [135].

• Performing is the last and optimal phase, where the group is working most
effectively at this stage, individual tasks are recognised as group assignments,
everyone is focused on completing the task as a group rather than individually,
roles are interchangeable, and the overall task is completed successfully [135].

Another factor to consider when selecting a Retrospective game is ‘the meeting
time phase in which the game is most applicable’ [132, p. 108]. By applying the

115

principles of design thinking, Mesquida et al. (2019) propose three time phases
for a meeting known as ‘Warming up’, ‘Playing up’ and ‘Wrapping up’ [132].
The first phase is aimed at stimulating ideas. At this time of the meeting,
it is recommended to propose innovative ideas and opportunities during this
phase but not to engage in critical analysis or scepticism’ [132]. The playing up
meeting time phase is an exploratory phase appropriate to explore old processes
in a new way [132]. Finally, the wrapping up phase should include a critical
and realistic overview, which entails a conclusion regarding decisions, and a list
of activities that need to be completed before the following meeting (the next
Retrospective) [132].

In addition to the aforementioned factors, the setup of Retrospective meetings
is essential. In order to allow all team members to participate and have a say in
the decision process, it is crucial that the facilitator refrains from making deci-
sions [132]. To promote collaboration and encourage idea generation, Mesquida
et al. (2019) combined the game-based approach with design thinking and in-
troduced a collaborative game toolbox that ‘contains a set of games to be used
by the team members during a meeting with the main objective of improving
communication, cohesion, and coordination’ [132, p. 108]. The toolbox consists
of twelve games which are summarised as follows.

• Game 1: Defining the team principles [132, p. 108]. During this activity, partic-
ipants are encouraged to converse and engage in debate. This game’s objective
is to democratically establish the team’s core values. These guidelines should
outline the qualities that team members should encourage or refrain from [132].

• Game 2: Future Facebook posts [132, p. 108]. With this activity, team members
are encouraged to focus on their desired future course. The aim of this exercise
is to prioritise and come to an agreement on the team’s short-, medium-, and/or
long-term goals [132].

• Game 3: Lessons learned [132, p. 108]. It alludes to looking for lessons following
a significant event. The objective of this game is to compile project lessons that
may be applied to future projects [132].

• Game 4: Peaks and valleys timeline [132, p. 108]. It is a useful method for
identifying team interactions as well as “ups and downs.” The objectives of
this activity are to recognise the issues which were apparent during a previous
working period and search for potential solutions to ensure that they do not
occur again in the future [132].

• Game 5: Role expectations matrix [132, p. 108]. In order to prevent future
conflicts brought on by unspoken or concealed expectations, this activity seeks
to understand how each member might profit from the others. This game’s
objective is to clarify and establish team members’ expectations for each of the
defined roles [132].

• Game 6: Roles we play [132, p. 108]. This activity facilitates a conversation
about all the roles people play in life. It is beneficial for a group that starts
working together in particular. The objectives of this exercise are to learn
about team members’ interests, preferences, and hobbies as well as to build
and reinforce the bonds between coworkers by fostering new connections and
relationships [132].

• Game 7: Speed car [132, p. 108]. This activity is a simple approach for as-
sisting the team in determining what causes it to move more quickly and what

116

causes it to move more slowly. The objectives of this game are to uncover team
productivity-affecting strengths and weaknesses, potential future dangers, and
risk mitigation strategies [132].

• Game 8: Starfish [132, p. 108]. It involves obtaining information and assist-
ing team members in comprehending the perceived value of one another. This
activity’s objective is to evaluate the team’s tasks so that we can decide which
ones to prioritise and which ones to drop [132].

• Game 9: The team is – is not – does – does not [132, p. 108]. By describing the
team, the exercise highlights both the team’s strengths and weaknesses. In this
game, everyone must agree on the characteristics that define the team [132].

• Game 10: Understanding the group knowledge [132, p. 108]. The objectives of
this activity are to evaluate a team’s knowledge and abilities and to suggest ways
to improve team knowledge. The group knowledge is evaluated by responding
to the following statements: ‘we know that we know’, ‘we know that we don’t
know’, ‘we didn’t know that we know’, and ‘we didn’t know that we don’t
know’ [132].

• Game 11: Visual phone [132, p. 108]. It is a motivator for better communication
and improving interpretation. The purpose of this game is to create a bond
between team members and give them the confidence to initiate a meeting [132].

• Game 12: Who-what-when steps to action [132, p. 108]. This activity helps
to define obligations among team members by clearly stating what each team
member is expected to perform and by when. The objectives of this activity are
to identify and plan the work that will be completed over the next period and
to make the tasks completed by other team members visible [132].

To accompany the descriptions of the games, Mesquida et al. (2019) developed
a platform known as FunPMBOX1. According to the website, it emerged from
a collaborative project at the University of the Balearic Islands. This platform
allows researchers and practitioners to find instructions about the various games.
For each game, a recap of the goal, instructions, duration, number of players,
group stage, meeting time phase, and a list of materials needed to play the
game is presented. However, currently, agile practitioners mostly rely on the
web and other sources for knowledge to assist their daily work as opposed to
the literature [136]. Retromat2 is an online tool used to plan Retrospective
agendas [121]. The tool provides a wide range of activities for the different
phases of Retrospective meetings [121]. We include this as an alternative for
practitioners who may prefer to use these activities instead of the game toolbox
proposed by Mesquida et al. (2019).

6.6 Conclusion

The problems identified in the Problem Investigation phase of this research
were an inspiration for the treatment design. We started by looking at the
variations of scaled ASD projects such as the adopted method, the process
maturity level and the structure and process in place. These variations pose a
challenge to propose an extensive treatment. Therefore we looked at the benefits
of the pre-existing structures and processes in place within agile teams. Informal

1https://funpmbox.github.io/
2https://retromat.org/en/?id=43-128-69-117-53

117

communication by means of feedback cycles is a strong contributor to addressing
issues and improving processes within these teams. Hence, we dived deeper into
the literature about informal communication, feedback cycles and SPIs. The
recommendations of Hess et al. (2019) were a starting point with regard to
incorporating guidelines in team meetings. We proposed the DIFFC model, a
lightweight and easily adaptable framework, that utilises the preexisting forms
of feedback cycles within agile teams. The DIFFC model ensures the planning,
scope definition, estimation and progress report of documentation within user
stories. As well as incorporating a data-driven and game-based approach with
the preexisting discussions of perceptions as a process improvement initiative.
Lastly, we recommend twelve games from the literature for the game-based
approach.

118

Chapter 7

Treatment Validation

We implement the third and final phase of the design science cycle. We validate
the proposed DIFFC model by applying it to a multi-team ASD project. “The
goal of validation research is to develop a design theory of an artefact in a context
that allows us to predict what would happen if the artefact were transferred to
its intended problem context” [21, p. 59]. We adopt the guidelines of a single-
case mechanism [21] experimental approach for our treatment validation. This
type of experiment is used to test a mechanism in a single object of study and
may be used in validation research to test treatment models [21]. However, our
validation research is centred on two cases, the first is explored longitudinally
and the second is studied preliminary due to resource constraints. In Section 3.1,
we adopted the GQM approach to describe the overall goal of this research.
Hence, we use the GQM approach again to describe the goal of this validation
research. The goal of our validation research is to:
Analyse the effectiveness of the DIFFC model,
for the purpose of evaluating its effectiveness
with respect to reducing documentation debt
from the point of view of agile project teams
in the context of multi-team projects.

Our goal is to investigate how the DIFFC model addresses the issues found in
the documentation and how it contributes to the reduction of documentation
debt within large-scale agile software teams. The remainder of this chapter
describes the experiment as well as the evaluation.

7.1 Research Approach

In the literature, research on SPI mainly focuses on software development out-
comes. To the best of our knowledge, most papers that study the impact of
SPI initiatives on software teams, present analysis from the perspective of soft-
ware project data and not so much on the observation of adoption in practice.
According to Unterkalmsteiner et al. (2011), Pre-Post Comparison is the most
used approach to evaluate the effectiveness of SPI initiatives [137]. Using back-
ward sampling to study the cited works by the author, which used Pre-Post

119

comparison we found that the evaluation of the Pre-Post comparison approach
is based on the context of the research itself, and there was no model used that
can be reused in this research.

Therefore, our validation research covers two dimensions. We adopt the Pre-
Post Comparison approach [137] to measure the effectiveness of the DIFFC
model with regard to the Software Project Data (SPD) on documentation. We
compare the SPD on documentation tasks of the sprint before the model’s intro-
duction (Sprint n) with the results of the sprint(s) after the model’s introduction.
We measure the following variables:

• V1: Number of planned documentation tasks on the sprint backlog.

• V2: Estimated effort for documentation in hours per sprint.

• V3: Number of completed documentation tasks per sprint.

• V4: Completed effort for documentation in hours per sprint.

• V5: Number of documentation tasks in the project backlog.

With these insights, we can determine whether the DIFFC model enhanced the
documentation process within the team by completing planned documentation
tasks within the estimated time and whether it contributes to a decrease in
documentation debt.

In parallel with the Pre-Post Comparison, we observe the feedback cycles of
the teams whereby the phases of the DIFFC model are applied to the Sprint
Planning, Daily Scrum, and Retrospective. These are described in detail in the
subsequent sections, Sections 7.2 and 7.3. We adopt the research model of Green
et al. (2005), as shown in Figure 7.1, where the authors studied the impacts of
quality and productivity perceptions on the use of software process improvement
innovations [101]. The authors also stated the following hypotheses:

• H1: Higher perceptions of software quality improvements from using a SPI will
be associated with higher perceptions of the usefulness of the SPI [101, p. 545].

• H2: Higher perceptions of developer productivity gains from using a SPI will be
associated with higher perceptions of the usefulness of the SPI [101, p. 545].

• H3: Higher perceptions of the ease of use of the SPI will be associated with
higher perceptions of SPI usefulness [101, p. 545].

• H4: Higher perceptions of the usefulness of the SPI will be associated with
higher levels of SPI use [101, p. 545].

• H5: Higher perceptions of the ease of use of the SPI will be associated with
higher levels of SPI use [101, p. 546].

Even though the research of Green et al. (2005) tackles SPI from a development
perspective, we adopt their approach and tailor it to measure the impact of the
DIFFC model on addressing challenges in documentation. Our hypotheses are
therefore formulated based on the aforementioned hypothesis on the impact of
SPI on software development by Green et al. (2005).

• H1: Higher perceptions of documentation quality improvements from using the
DIFFC model will be associated with higher perceptions of the usefulness of the
DIFFC model.

120

Figure 7.1: An overview of the research model adopted from [101, p. 546].

• H2: Higher perceptions of documentation productivity gains from using the
DIFFC model will be associated with higher perceptions of the usefulness of the
DIFFC model.

• H3: Higher perceptions of the ease of use of the DIFFC model will be associated
with higher perceptions of the usefulness of the DIFFC model.

• H4: Higher perceptions of the usefulness of the DIFFC model will be associated
with higher levels of the use of the DIFFC model.

• H5: Higher perceptions of the ease of use of the DIFFC model will be associated
with higher levels of the use of the DIFFC model.

We explain the variables: ease of use, productivity, quality, usefulness, and
use. The perceived ease of use defines the complexity of the process improve-
ment initiative whereas the perceived usefulness defines the relative advantage
of adopting the process improvement initiative [138]. Davis (1989), introduced
the variables ease of use and usefulness in his works on the Technology Ac-
ceptance Model (TAM) [139]. He stated that ease of use is a prerequisite to
ensure usefulness [139]. Hence, the benefits of using the DIFFC model should
outweigh the required effort to apply the phase of the model in the feedback
cycles. In research by Hardgrave et al, (2003) on the factors that determine
the intention of software developers to adopt a methodology, the authors con-
firm that the perceived usefulness of a software development approach positively
correlates to the intention to use that particular approach [140]. According to
Green et al. (2005), quality and productivity are “the most frequently claimed
benefits of SPIs that make them useful to organizations” [101, p. 544]. In the
context of the research by Green et al. (2015) productivity refers to developer
productivity, which includes aspects such as the reduction of defects preceding
a release, and time spent on development, among others [101]. Whereas, quality
refers to the software quality using metrics such as robustness, maintainability,
and code quality [101]. Since we are applying these variables to our validation
research that focuses on documentation, we define the variables using the fol-
lowing statements in Table 7.1. With these variables, we design the guidelines
for observation notes and validation survey. The statements accompanying the
variables are then used as a basis for the observation and survey.

121

Table 7.1: An overview of variables and statements for the experiment and
validation survey.

Variable Statement Original
Source

Ease of use

I found it easy to apply the phases of the DIFFC model
to the Scrum events of my team.

[139]

The guidelines provided for each phase of the DIFFC
model were clear and understandable.

[139]

I found the DIFFC model to be flexible to implement. [139]
It was easy for me to become skilful at using the
DIFFC model

[139]

Productivity
The use of the DIFFC model has speeded up the pro-
cess of updating documentation within the past sprint.

[141]

The use of the DIFFC model has made documentation
more measurable within the project.

Researcher

The use of the DIFFC model has increased my pro-
ductivity with regard to keeping documentation up-
to-date.

[141]

Quality

The use of the DIFFC model has enhanced the quality
of documentation within the project.

[141]

The use of the DIFFC model has decreased the amount
of forgotten documentation within the project.

Researcher

The use of the DIFFC model has clarified exactly what
needs to be documented per user story.

Researcher

The use of the DIFFC model has improved the overall
quality of the Sprint Planning, Daily Scrum, and Ret-
rospective.

Researcher

The use of the DIFFC model has made me more con-
scious of documentation quality.

[101]

Usefulness
Using the DIFFC model improved the state of docu-
mentation within the project.

Researcher

Using the DIFFC model added more structure to the
way we approach documentation as a team.

Researcher

The DIFFC model integrated well into our way of
working as a team.

Researcher

I found the activities prescribed by the DIFFC model
useful in my job.

[139]

Use
I would keep using the activities of the DIFFC model
in my team.

Researcher

I would recommend the DIFFC model to other teams
within the company.

Researcher

7.2 Experimental Setup

The experiment consists of three parts, preparation, execution, and evaluation.
We present the preparation of this experiment. Firstly, the success of this exper-
iment largely depends on the willingness and involvement of the project teams,
and the timing of the feedback cycles of these teams. For instance, whether the
Retrospective is held per sprint or after every two sprints affects the timing of
this experiment. Moreover, the availability of the key roles is an essential suc-
cess factor of this experiment. For example, implementing the DIFFC method
without the Scrum Master present may lead to the risk of incorrect implemen-
tation due to the possible lack of guidance during the agile ceremonies of the
team. In order to mitigate these risks, we require the participating teams to
satisfy the following prerequisites:

• The willingness to participate and apply the (applicable) changes proposed in

122

the DIFFC method to the existing processes.

• The availability of key roles such as Scrum Master or the Team Manager.

• An adequate representation of the team. There should be enough team members
throughout the timeline of the experiment, such that the various roles within
the team are represented.

The initial plan was to apply the treatment to the four agile teams in P1 and P2.
However, due to resource constraints such as the availability of team members
and timing reasons both teams in P1 could not participate in the validation
study. P1 had transitioned to the maintenance team within C1, the project
has been down-scaled to a few people, and the focus was solely on preparing
for their go-live and their goals and timeline were not suitable for this SPI. For
P2, the key team members who needed to be present for this observation were
on vacation until mid-August. At that time, we found out that the team has
shifted from a bi-weekly to a tri-weekly sprint. Even though P2 had met all the
prerequisites and was willing to experiment with the model, the timeline of their
tri-weekly sprint beginning on 1st September and ending on 22nd September
conflicted with the deadline of this thesis. Therefore we conducted a preliminary
validation on this case by studying the application of the DIFFC model to the
Retrospective (sprint n), and Sprint Planning (sprint n + 1). Due to resource
constraints within the project, the ScrumMaster of P2 was willing to experiment
with P2T1 and then based on its effectiveness, he will apply it to P2T2 in the
future. Therefore, they agreed to participate in this validation study with P2T1.

To conduct an in-depth validation study, we selected another multi-team project
within C1 which is referred to as P3 in this research. P3 satisfied all the afore-
mentioned prerequisites and has a similar structure to P1. The project is made
up of three teams divided based on functionality. Each team consists of 6-8
members. The entire project develops a financial solution for applying for loans
and budgeting for the public sector. The team is geographically distributed,
with members in Europe and Asia. Hence, the need for communication and
documentation is as essential as in the case of P1. P3 also adopts the C1M
approach to the project, giving it a similar structure and organisation as P1.
The documentation artefacts used by P1 are also very much similar to that of
P3, in essence, we can say the issues facing documentation by P1 described in
Section 5 are comparable. The main difference in the timeline of this experi-
ment is that the project has sprints of 4 weeks rather than the biweekly sprints
observed in P1. Also, due to the conflicting schedules of the meetings of two
of the teams, we are only able to conduct the experiment on two of the teams
within P3, which are referred to as P3T1 and P3T2.

Similar to the case studies conducted in the Problem Investigation phase, we
inform participants of their rights and present a consent form as specified in
Appendix E, to the participants who have not signed this form yet. In Ta-
ble 7.2, we present an overview of the tasks for the experimental setup as well
as the subjects involved. Prior to this, we prepare a presentation explaining the
proposed DIFFC model as well as the proposal for validation research within
each team.

In our PDD notation and the practitioners’ of the DIFFC method, we proposed
the gathering of data and generating insights in the reflecting phase. However,

123

Table 7.2: An overview of preparations tasks for the treatment validation re-
search

Task Overview Estimated
Duration

Subject(s)

Schedule a meeting with the Scrum Masters to
explain the proposal.

30 minutes Scrum Masters

Organise a meeting to discuss the proposed
framework and the outline of the experiment.

30 minutes Scrum Masters

Select a Retrospective game. -
Agree upon the frequency of the Planning,
Monitoring, and Reflecting phases for the ex-
periment.

- Scrum Masters

Ask the team to plan for the first reflection
by gathering software project data on docu-
mentation debt within the team. The aim of
this task is for the Scrum master to identify
what to show to the team to aid the process
improvement discussions.

1 hour Scrum Masters

Organise a meeting to introduce the proposed
framework and the selected retrospective game
to the team.

30 minutes Team Members

Send detailed guidelines for each phase of the
experiment to the Scrum Masters. (See Ap-
pendix F)

Scrum Masters

even though they are in one phase, we split these actions into preparatory
and executable actions for the treatment validation due to the timing of the
experiment and the expected learning curve. In order to avoid the team waiting
for the data to be generated and visualised, it is best for the Scrum Master to
prepare for the Retrospective by having the data visualisation ready before the
meeting to save time.

7.3 Experimental Execution

During the execution of the experiment, the researcher will have an observatory
role, whereby the team applies the treatment model based on the instructions
discussed in this section. The researcher records the behaviours and perceptions
of the team members towards the application of the DIFFC model based on the
variables outlined in Table 7.1. The observations will be written per meeting
and analysed qualitatively. The approach of thematic analysis, as used in the
Problem Investigation phase, is reused for the analysis of the recorded notes.
The notes are analysed to search for patterns of the variables: ease of use,
productivity, quality, usefulness, and use. Subsequently, using the insights from
SPD, we compare the pre (sprint n) and post (sprint n+1) results of the variables
outlined in Section 7.1. These variables will give insights into whether the
DIFFC model has contributed to reducing documentation debt and improved
documentation processes within the teams.

Our proposal for the experiment with P3T1 and P3T2 (longitudinal case) is
as follows. The Planning, Monitoring, and Reflecting phases of the DIFFC
model will be applied in the Sprint Planning, Daily Scrum, and Retrospective,
respectively. We investigate the application of this framework in two sprints as

124

shown in Figure 7.2. The ideal situation would have been to observe the team
for three sprints, but due to the fact that the sprints have a duration of four
weeks and the timeline of this research, the researcher decided to observe two
sprints. The observation will be conducted from the current iteration (Sprint n).
Here, the experiment begins by applying the activities of the Reflecting phase
described in the DIFFC model for practitioners, as shown in Table 7.3. The
main activities are using data to generate insights and stimulating the team
to generate process improvement actions. The reason why we start with the
Reflecting phase is to give the team the opportunity to reflect on the state of
documentation within their project and create awareness about the expectations
of the various stakeholders within the team towards documentation. Also, it
allows us to compare the data at the starting iteration with the data in the
last iteration of this experiment (Sprint n + 1). Moreover, the set-up for the
experiment of P2T1 (preliminary case) is similar to the aforementioned of P3.
The only difference is we experiment with the application of the Reflecting phase
to the one Retrospective (Sprint n) and one Sprint Planning (Sprint n + 1).

Ex
pe

ct
ed

 le
ar

ni
ng

 c
ur

ve

TimeSprint n+1 Sprint n + n

Legend

Planning

Monitoring

Reflecting

Stee
p

pro
gre

ss

Plateau /
Saturation point

Sprint n

Figure 7.2: An overview of the timeline of the application of the various phases
of the DIFFC model within the experiment of the longitudinal study.

Table 7.3: An overview of experimental tasks for the Retrospective.

Activity Task Overview

Set the stage
Proceed with any informal discussions the team already have
at Retrospectives.
Discuss individual perceptions of the previous sprint.
Review improvement actions from the previous retrospective.

Generate insights Visualise and present the data to the team.

Collect improvement actions
Decide on what problem to address from the data. For exam-
ple the amount of documentation debt.
Play a retrospective game. For example the role-expectation
matrix.
Identify possible improvement actions

Assign improvement actions Assign process improvement actions to team members.

Using the game-based approach, we select a game suitable for the nature of
the team and experiment. The role expectation matrix retrospective game as

125

introduced in Section 6.5.3, is selected for this step, as it is recommended by
Mesquida et al. (2019) for use dueing the norming stage of group dynamics, and
it helps set the expectations of the team members towards each role to address
the issue of documentation debt. Instructions for this Retrospective game can
be found via the FunPMBOX with this link1. Also, we contacted the authors
of the research by Mesquida et al. (2019), which we used as a basis for the
game-based approach to Retrospectives. The authors provided us with more
material on the Retrospective games which are used to aid the preparation of
the retrospective games. We designed an interactive board for the Retrospective
to facilitate a hybrid approach to the meeting. The interactive board can be
found in Appendix G.

Furthermore, the awareness of the DIFFC model and the process improvement
actions elicited from the team will set the stage for the Planning, and Mon-
itoring activities for the next iteration (Sprint n + 1). In Sprint n + 1, we
recommend the occurrence of the Planning phase at the start of the iteration.
The planning activities are done per user story to ensure that documentation is
made measurable and operationalised. The proposed activities of the Planning
phase on a user story level are to be incorporated in the Sprint Planning meet-
ing for Sprint n + 1. Furthermore, we recommend at least four occasions of
process monitoring for the four-week sprint, during the Daily Scrum. Whereby
the progress of the documentation tasks within the user stories, and the pro-
cess improvement actions proposed during the Retrospective of Sprint n, are
reported as well as any issues or dependencies preventing the successful comple-
tion of these tasks. Finally, we conclude with an occurrence of the Reflecting
activities, whereby the perceptions of the team members towards the change
are discussed, and then a data-driven approach is taken for the Retrospective as
done in Sprint n. Here, we select another Retrospective game to generate new
ideas and encourage active participation. We expect to observe feedback about
the changes introduced in the previous iteration due to the introduction of the
DIFFC model. From the Retrospective of Sprint n, we saw that the DIFFC
model was effective in creating awareness within the team about the state of
documentation. The next step was to stimulate the team to derive more process
improvement actions to address the documentation issues. For the Retrospec-
tive of Sprint n + 1, we select the who-what-when retrospective game. As it is
recommended as an approach to define and plan the tasks to be carried out by
the team in the upcoming period [132].

For the experiment with both teams in P3, we expect to see a steep learning
curve of the team members in the beginning to a point of saturation, where the
team is familiar with the activities of the DIFFC and the process of documenta-
tion is improved within the team. After this experiment, for instance in Sprint
n + n, it is up to the team, as a self-organising team to select which phases to
use for each iteration, which retrospective game to use, and when and how often
to use it. We present timelines of the frequency of observation in Tables 7.4 and
7.5 for the selected teams in P3 and P2, respectively.

1https://funpmbox.github.io/jekyll/update/test/2014/04/20/que-esperas-de-mi.eng.html

126

Table 7.4: An overview of feedback cycles to observe the longitudinal application
of the DIFFC model in P3.

Phase (Feedback Cycle) Team Sprint Date sched-
uled

Duration

Reflecting (Retrospective)
P3T1 Sprint 26 26th July 2022

at 11:00.
1 hour

P3T2 Sprint 26 26th July 2022
at 12:30.

1 hour

Planning (Sprint Planning)
P3T1 Sprint 27 27th July 2022

at 10:00.
1 hour

P3T2 Sprint 27 27th July 2022
at 11:00.

1 hour

Monitoring (Daily Scrum)

P3T1 Sprint 27 28th July 2022
at 09:15.

15 minutes

P3T2 Sprint 27 28th July 2022
at 09:30.

15 minutes

P3T1 Sprint 27 5th August
2022 at 09:15.

15 minutes

P3T2 Sprint 27 5th August
2022 at 09:30.

15 minutes

P3T1 Sprint 27 12th August
2022 at 09:15.

15 minutes

P3T2 Sprint 27 12th August
2022 at 09:30.

15 minutes

P3T1 Sprint 27 19th August
2022 at 09:15.

15 minutes

P3T2 Sprint 27 19th August
2022 at 09:30.

15 minutes

Reflecting (Retrospective)
P3T1 Sprint 27 23rd August at

11:00, 2022
1 hour

P3T2 Sprint 27 24th August at
14:30, 2022

1 hour

Table 7.5: An overview of feedback cycles to observe the preliminary application
of the DIFFC model in P2T1.

Phase (Feedback Cycle) Team Sprint Date sched-
uled

Duration

Reflecting (Retrospective) P2T1 Sprint
PI22.3-5

1st September
2022 at 11:00.

1 hour

Planning (Sprint Planning) P2T1 Sprint
PI22.3-5

1st September
2022 at 14:15

1 hour

7.3.1 Validation Survey

The survey was given after the longitudinal study to the participants from P3.
The survey entails Likert scale-type questions. The questions are based on the
variables and the statements in Table 7.1. To ensure consistency and the ease-
of-use of the survey, we adopt a 5-point Likert scale for all the Likert scale types
of questions. For example, the scale ranges from Strongly Agree to Strongly
Disagree. The questions are for each phase of the DIFFC model. We present
the survey in Appendix H. The survey was given to the participants at the end
of the retrospective for sprint n +1, therefore the survey was only given in the
longitudinal study. Out of 17 participants (8 from P3T1 and 9 from P3T2), 13
participants (8 from P3T1 and 5 from P3T2) filled in the survey.

127

7.4 Findings (Longitudinal study)

We discuss the results of the experiment and survey to validate the DIFFC
model as a means to address documentation debt and improve documentation
processes within P3.

7.4.1 Retrospective Sprint n (26)

The first studied Retrospective meetings were divided into two parts, and both
teams took slightly different approaches to the Retrospective. For the first part
of the Retrospective P3T1, the Retrospective board in Azure DevOps was used
with three columns to discuss the following about the last sprint.

• What did we do well?

• What could be better?

• What needs our attention?

This part of the meeting was time-boxed, allowing time for the documentation
process improvement part of the meeting. We saw that there were some issues
in the third column concerning the outdated documentation as a result of the
change requests. For example, the original scope is not clear after a change is
implemented. Azure DevOps provides the Collect, Group, Vote, and Act steps
for Retrospectives. Collect is where the team post their ideas in the form of
notes on the virtual board. Group is where similar topics are grouped to make
it easier for voting. Then, the team had 3 minutes to vote, where each team
member was given 3 votes to vote on the most important notes. Afterwards, the
last step, Act is used to highlight the most voted points and have a discussion
and possibly make improvement actions, also referred to as retrospective actions.

The second part of the Retrospective involved using the guidelines of the Re-
flecting phase of the DIFFC model. The researcher prepared a Miro2 interactive
board beforehand with the roles in each team to facilitate the Role Expectation
Matrix game. A similar approach to the Retrospective was taken by P3T2.
However, the two parts of the meeting were organised the other way around.
They began with the documentation part of the Retrospective using the DIFFC
model and then discussed the perceptions of the team using the Retrospective
board in Azure DevOps. The team also followed the Collect, Group, Vote,
and Act steps provided by Azure DevOps.The Retrospective Board entails four
columns which are explained as follows.

• Keep (What should we keep doing?)

• Add (What should we incorporate into our way of working?)

• Less (What should we do less of?)

• More (What should we do more of?)

From this part of the observation, we see evidence of the discussion of percep-
tions about the previous sprint which relates to the first activity of the Reflecting
phase.

2https://miro.com/

128

7.4.2 Sprint Planning Sprint n + 1 (27)

The Sprint planning meetings for P3T1 and P3T2 were scheduled for 2 and
3 hours, respectively. The researcher observed the first hour of each Sprint
planning, due to the conflicting schedules of both teams and the timeline of
this research but, was informed about the decisions made and the use of the
DIFFC model throughout the rest of the meetings. For both teams, a proposal
of the sprint backlog was set up and discussed with the team during the meeting.
The guidelines were given to the Scrum Masters of the team to incorporate the
Planning phase of the DIFFC model.

During the Sprint Planning of P3T1, tasks from the user stories that are not
finished are moved from the previous sprint to the new sprint. Then, there was a
discussion about the tasks and what needs to be done. Links to documentation
are checked for some of the user stories. And the team members give estimates
in hours per task. It was difficult to see the guidelines being applied in the
first hour observed, as there were a lot of tasks as part of a huge user story
to be estimated. However, the Scrum Master reported that the guidelines were
used in the later part of the Sprint Planning for a change request. Here, they
added two tasks, one to update the documentation and the other to review the
documentation. The scope of the documentation was also discussed among the
team and written down in the task.

In the case of P3T2, the setup of the Sprint Planning was very similar to that
of P3T1. The team went through the tasks to discuss what it entails and what
work needs to be done, afterwards, estimation is given in hours. We saw the
guidelines of the Planning phase of the DIFFC model, being applied in the first
hour of observation. Tasks were added to update the migration documentation
for the migration PBI. But the scope was not defined, and a rough estimate was
given.

7.4.3 Daily Scrum meetings Sprint n+1 (27)

We observed a 15-minute Daily Scrum in the first week of Sprint 27 for P3T1 and
P3T2 separately. The order of the meeting was based on the alphabetical order
of the names of the team members using the Sprint Board in Azure DevOps.
The team members discuss the following questions per turn.

• What did I do yesterday?

• What will I do today?

• Are there any impediments?

They report on the tasks they are working on or have worked on. Hence, if the
task is not a documentation task, then, they do not report on documentation
and this was the case of the first observed Daily Scrum meetings. Additionally,
process improvement actions were not discussed in these meetings as there was
no progress to report on those as yet. The situation was similar to the observa-
tion of the subsequent Daily Scrum meetings. This shows that the effectiveness
of the guidelines of the Monitoring phase depends on the productivity in the
Planning phase. If documentation tasks are defined in the Planning Phase, the
progress of these tasks is reported in the Monitoring phase.

129

7.4.4 Retrospective Sprint n + 1 (27)

The Retrospectives for both teams in P3 took a similar approach to that of the
previous sprint. As mentioned in Section 7.2, we selected the who-what-when
retrospective game to stimulate the idea generation of process improvement
actions. Here, the documentation part of the retrospective was scheduled for
the second part of the meeting. For P3T1, due to the large number of backlog
items to address from the previous sprint, they also applied the who-what-when
game to address those topics. There were a total of seven topics of which one
addressed the issue of incomplete documentation tasks in the user stories. From
the guidelines for the sprint planning, documentation tasks were added that were
not completed, and those hindered the completion of the user stories towards
the end of Sprint 27. As their chosen approach to include other topics was not
in line with the guidelines, it reflected in the results whereby the focus was not
on documentation and there was only one process improvement action for the
documentation. Therefore, those results were not used for further analysis. Yet
this confirms that the success of the application of the DIFFC model largely
depends on the willingness of the team to apply the guidelines and also prepare
SPD concerning documentation. If the SPD concerning the documentation was
gathered and visualised, the focus on documentation would have increased in
this exercise.

On the other hand, the approach of P3T2 was a success thanks to the will-
ingness of the team to apply the guidelines and to schedule enough time for
it. 30 minutes were scheduled for this part of the meeting. The goal of the
exercise was to ask the team members to write down what was lacking in the
documentation. The discussions about the topic were interactive and the team
had a high involvement in idea generation. Seven aspects of the documentation
were identified as areas for improvement, including the Detailed Design arte-
fact for the loans functionality, the referencing to the old design in user stories
(when the old design is no longer correct), features without descriptions and
links to specific documentation, and the suggestion of a separate teams channel
to announce documentation updates.

7.5 Findings (Preliminary study)

The Retrospective for Sprint PI22.3-5 was organised as a pilot to apply the
DIFFC model. Prior to the Retrospective, the Scrum Master had prepared
the interactive environment, a Mural3 board for the role expectation matrix.
As part of the preparation guidelines, we asked the Scrum Master to prepare
the SPD with regard to the issues facing documentation and decide upon what
needs to be addressed. The task was assigned to the Lead Developer, however,
this was forgotten. To continue, the team brainstormed for ideas on what is
going wrong in the documentation and decided to address the question of ‘How
complete are the user stories?’ Therefore, the exercise was to address what each
role expect from the others to ensure the completeness of user stories. We see a
similar pattern with the teams in P3, whereby the SPD was not prepared before
the meeting because it was forgotten or due to time constraints.

3https://www.mural.co/

130

Subsequently, we observed the Sprint Planning after the Retrospective for P2T1.
The Sprint Planning took a different approach than that observed in the teams in
P3. Here, the user stories had already been estimated and at this meeting, they
were being assigned to the developers and ensuring that the planning, timing,
and dependencies of the user stories are addressed. Therefore, the Planning
Phase of the DIFFC model will be more suitable to apply at the Refinement
where the estimations are made. However, tasks per user story are created by
the assigned developer after the Sprint Planning, so the tasks are not created
and discussed upfront.

7.6 Results: Measure of effectiveness of the DIFFC
model

We address the variables based on the experiment and the results from the
validation survey introduced in Section 7.3.1.

7.6.1 Ease of use

During each Retrospective session, the ease of use of the model was observed
by how easy it is for the team to adapt to the Reflecting phase of the model.
At the start of the documentation part of the Retrospective (in the case of
P3), or the Retrospective (P2T1), we see a similar pattern of unfamiliarity
with the guidelines where questions are asked upfront about how the interactive
environment works, or how the Role Expectation Matrix is played. Even though
there were guidelines about the model and the Role Expectation Matrix. But
after the explanation was given, the team gained familiarity with using the tool
and interacting with the Role Expectation matrix.

Two of the guidelines of the Reflecting phase ensure the gathering of software
project data and generating insights to be used as a topic for discussion among
team members. What we saw is that the teams did not have the time to prepare
and gather data for the Retrospectives. The Scrum Master of each team in
P3 decided that the goal was to address issues facing documentation within the
team, for the Retrospective of Sprint n. Not only was time an issue in preparing
the data, but it turned out that there is not always SPD about documentation
debt, because there might be no tasks that were forgotten or moved back to
the backlog. But the documentation artefact lacks updates, and it needs to be
analysed before having data about how much work is needed to update it, for
instance. A similar issue was also identified in P2, whereby the user stories
do not have documentation tasks. For P3T1, there were two matrices created,
which addressed the topics of ‘Underestimating the number of hours for tasks’,
and ‘Updating or adding documentation on a PBI (Product Backlog Item)’.
Whereas P3T2 addressed the topic of ‘Improving documentation’. During the
second Retrospective session (Sprint 27), P3T1 used the what-who-when game
to address the issues from the first part of the Retrospective. This reduced the
focus on documentation as discussed in Section 7.4.4. P3T2 on the other hand
address the subject of lacking documentation as proposed by the Scrum Master.

During the Sprint Planning for P3T1, the Planning activities from the DIFFC
model were not used as much as we expected due to the large among of tasks

131

in the sprint and the time needed to estimate each task. But for both teams
in P3, we saw that the guidelines that were sent to the Scrum Master were
clear. Indeed, the researcher did not need to explain how to use the steps. In
P3T2, the ScrumMaster started a discussion with the team members about their
perceptions of the current state of documentation within the team. The issue for
P3T2 is that the documentation is out of sync with the change requests, and this
is the same situation for P3T1 as well. Both teams added tasks for the change
requests, where applicable for updating and reviewing the documentation. An
example is the addition of a task to update the documentation with the specific
name of the documentation as well as the scope of what should be documented.
Here, the business consultant also elaborated upon the documentation task and
the team also added a review task for the documentation. For P3T2, besides the
addition of documentation update and review tasks, there were also discussions
about the documentation debt and how it can be addressed in the upcoming
sprint, therefore some other documentation tasks relating to documentation
debt were added to the Sprint Backlog.

Survey results

From the 13 responses, we discuss the results of the ease of use of the Planning
(PP), Monitoring (MP), and Reflecting (RP) phases in Figure 7.3.

Figure 7.3: Survey results of the ease of use of the phases of the DIFFC model.

132

From the survey, we see that for most aspects of ease of use, the results were
positive. Also, more than half of the respondents agreed that it is easy to
adapt the guidelines to suit the Sprint Planning. However, the perception of
becoming skilful at using the guidelines of the Planning phase is rather low with
the agreement of only 6 respondents.

7.6.2 Productivity

For P3, we see a difference across both teams in how interactive the Role-
Expectation Matrix was. A factor in this is the allocated time. P3T2 planned
this as the first activity of the Retrospective, meaning they had about 30 minutes
allocated for it, whereas P3T1 performed this as the last activity, with about 30
minutes allocated, but to address both topics. In Figures 7.4 and 7.5, we see the
Role expectation matrix used for P3T2 and that used for the documentation
topic of P3T1, respectively. With regard to the assessment of productivity, it
was not clear from the Retrospective of Sprint n whether the use of the model
has helped speed up the process of writing documentation. This will be assessed
in the Retrospective of Sprint n+1, as well as the survey. Moreover, assessing
whether documentation has been made more measurable within the project can
be possible by identifying process improvement actions towards addressing the
issues found in the documentation. Team P3T1 added an improvement task to
adapt the template of a user story in Azure DevOps, and add a documentation
specification section. In P3T2, there were no improvement actions derived. The
essence of this approach was to facilitate the discussions, identify issues fac-
ing documentation, and create awareness of the expectations of team members
towards one another.

Figure 7.4: An overview of the result of the role-expectation matrix by P3T2.

133

Figure 7.5: An overview of the result of the role-expectation matrix for updating
documentation by P3T1.

Similarly, the Retrospective of P2T1 facilitated discussions and created aware-
ness to address the issue of incomplete user stories. The level of interactivity
was very high, it is interesting to see that since 1 hour was allocated for the
experiment, the team had more time to discuss the ideas and even made two
process improvement actions to be incorporated in the upcoming Sprint. The
actions are as follows.

• To ensure that the value of Product Risk is clarified by the tester for each
user story. This corresponds to the expectations from the Developers and Lead
Developer to the tester.

• To ensure that the Developers take into account the updates made to user stories
but also update use stories, using the comments section where the implementa-
tion deviates from the requirement.

During the Sprint Planning, both teams in P3 added tasks to update and review
documentation as well as defined the scope of what should be documented. This
had made documentation more measurable in the project by ensuring both
teams add tasks for documentation with estimates for not only updating the
documentation but also reviewing the documentation.

134

Survey results

We present the survey results for the perceptions of productivity from the lon-
gitudinal study. The results are presented in Figure 7.6.

Figure 7.6: Survey results of the productivity of the phases of the DIFFC model.

From the results, we see a high agreement on how the guidelines of the Planning
phase have helped speed up the process of updating documentation within the
team. Similarly, we see 9 respondents agree with this same aspect for the
Reflecting phase. About half of the respondents did not agree or were neutral
about whether the Monitoring phase has increased productivity with regard to
keeping the documentation up-to-date. A similar result is also seen in whether
this same phase has sped up the process of writing documentation.

7.6.3 Quality

Considering the increased awareness of the quality and issues facing documen-
tation, the Reflecting phase of the DIFFC model is likely to contribute to im-
proving the quality aspects of the documentation. Also, the addition of a process
improvement action by P3T1 to improve the template of the user story is likely
to ensure that the team clarifies exactly what needs to be documented. P2T1
also added process improvement actions which are likely to improve the quality
of user stories and ensure traceability of functionality after the user stories have
been developed.

During the Sprint Planning, the discussions about the outdated documenta-
tion within P3 as a result of the change requests were certainly an eyeopener
for the team members. As discussed in Section 7.6.2, the addition of docu-
mentation update and review tasks also helped clarify what exactly needs to

135

be documented and this approach is likely to reduce the amount of forgotten
documentation within the team. Also, the awareness made the team more con-
scious of documentation quality and aware of the documentation that is missing
updates.

Survey results

We present the survey results for the perceptions of quality from the longitudinal
study. The results are presented in Figure 7.7.

Figure 7.7: Survey results of the quality of the phases of the DIFFC model.

We see a range of approximately 80-50% of respondents agreeing with the various
aspects defined for the three phases of the model. The lowest agreement with the
given statements is the aspect of whether the Monitoring phase has enhanced
the quality of the documentation, followed by whether this phase has minimised
the issue of forgotten documentation during the past sprint.

7.6.4 Usefulness

At the end of the first Retrospectives for P3, there was a short feedback round
where the team members could give feedback on the use of the reflecting phase
of the DIFFC model during the Retrospective. In both P3T1 and P3T2, there
were positive remarks about the use of the model and the role expectation matrix
that created awareness among the team members about the state of the documen-
tation. Also, it generated a lot of ideas about how the team can improve upon
documentation. For P2T1, there was no feedback round due to the timing, but
there were remarks about how useful the guidelines were in creating awareness
of the issues facing the user stories.

136

As discussed in Section 7.6.1, the teams had some initial difficulty using the
prescribed tool. Also, it did not integrate well into their way of working as a
team for the teams in P3. Using the free version of the Miro board, it was not
possible to export the result of the role expectation matrix in a readable format.
Therefore, the Scrum Masters had to manually summarise the noted points and
email the team about it. Using their existing way of conducting Retrospectives,
Azure DevOps provide an easy and clear export functionality, and it is easy
to make process improvement actions in the ‘Act’ stage of the Retrospective.
However, with this tool, it is not possible to directly create process improvement
actions as tasks in Azure DevOps. Therefore, for the Retrospective sessions
for Sprint n + 1 for P3, the researcher asked the Scrum Master to prepare
the board in Azure DevOps, as this is an environment they already used for
the Retrospective prior to the experiment. Hence, this addressed the issue of
integrating well into the way of working. However, not all the recommended
Retrospective games can be prepared using the column-based interactive board
in Azure DevOps.

With the guidelines in place for the teams to review user stories and add tasks to
update and review documentation, we believe this initiative will be useful to the
team by adding more structure to the way the team approaches documentation.

Survey results

We present the survey results for the perceptions of usefulness from the longi-
tudinal study. The results are presented in Figure 7.8.

Figure 7.8: Survey results of the usefulness of the phases of the DIFFC model.

From the results, 11 respondents agreed that the guidelines of the Planning

137

phase have improved the overall state of documentation within the sprint. The
same number of respondents also agreed that the use of the Planning phase
added more structure to the way documentation is approached by the team.
Considering the aspect with the lowest rate of agreement, we see that only 42%
agreed that the Monitoring phase integrated well into the way of working as a
team. This may relate to our findings from observing that the guidelines of the
Monitoring phase are only useful when there is progress on the documentation
or process improvement tasks prior to the Daily Scrum.

7.6.5 Use

From the observations, it is not enough data to verify whether the team will
keep using the activities of the DIFFC model. Even though there were positive
remarks as mentioned in Section 7.6.4, it is not enough to make a solid con-
clusion. There were also some improvement points for the Retrospectives for
Sprint n + 1 for P3. That is to select a Retrospective game with a lesser dura-
tion than the role expectation matrix, therefore we selected the who-what-when
game. Also, the majority of the team has a Developer role, so discussing the
writing notes per row took longer and it was sometimes difficult to know who
to ask to explain the tasks because you cannot see who wrote what if they do
not volunteer to explain their written note. The survey, therefore, gives a much
better perspective of whether the various phases of the model will be used or
recommended to other teams within the company.

Survey results

We present the survey results for the perceptions of use from the longitudinal
study. The results are presented in Figure 7.9.

Figure 7.9: Survey results of the use of the phases of the DIFFC model.

From the results, the lowest rate of agreement (only 7 participants) concerns
the Monitoring phase, and whether the guidelines of this phase will be recom-

138

mended. This corresponds to the lower rates of agreement we saw for the aspects
of usefulness for this phase. In general, more than 60% of the respondents will
keep using the activities of the various phases of the DIFFC model. Even though
the Retrospectives were successful in creating awareness of the issues found in
the documentation, only 7 respondents agreed that they will recommend the
guidelines of the Reflecting phase to other teams. There was no feedback on
this, but the remarks on the Reflecting phase from the survey are presented in
Table 7.6.

Table 7.6: Remarks for the phases of the DIFFC model from the validation
survey.

Phase Feedback
Reflecting Applying this phase helped to put more focus on the missing doc-

umentation.
Reflecting I believe that before [the application of the Reflecting phase] the

topic of missing or incomplete documentation was rarely brought
up.

Planning Having documentation as part of implementation is not something
that was not done before. However, it was often forgotten. Having
this as an explicit step during planning brings valuable attention
to documentation and lets the team look critically at what is miss-
ing.

Planning Due to the documentation not being up to date, it is hard to mea-
sure effectiveness. Definitely, I could see improvements in team
focus on the documentation tasks.

7.6.6 Pre-Post Comparison

We addressed the variables with regard to insights from the SPD before the
experiment (start of sprint 26), during the experiment (start of sprint 27), and
at the end of the experiment (end of sprint 27). This data concerns only the
longitudinal case as the experiment entailed the application of the DIFFC model
to a complete sprint. Figures 7.10 and 7.11 present an overview of the data
received from the Scrum Masters of P3T1 and P3T2, respectively.

During the experiment, we observed that documentation tasks were added for
the user stories during the Sprint Planning of Sprint 27. Compared to the
previous sprint, we see an increase from 3 of these tasks to 8 tasks for P3T1.
This also corresponds with the estimation from 10 hours of documentation for
Sprint 26 to 34 hours. Only 3 out of the 8 documentation tasks were completed.
The completed effort for those 3 documentation tasks was 12 hours in total. This
also reflects the discussion in the Retrospective of Sprint 27, that the user stories
were not closed due to the incomplete documentation tasks. It is interesting to
look into why most of the documentation tasks were not completed, and how
can the DIFFC model be enhanced to address this issue in future research.

In the case of P3T2, we see some similarities such that the number of planned
documentation tasks increased from 2 tasks with an estimate of 10 hours to
8 tasks with an estimate of 34 hours. In contrast with P3T1, this team had
completed 6 out of 8 documentation tasks, in a time span of 27 hours, with
the remaining 2 documentation tasks having a total estimated effort of 7 hours.
With this effort spent on documentation during the sprint, we also observed

139

Figure 7.10: Results of the variables for pre-post comparison in P3T1.

that during the Retrospective of Sprint 27, there were more specific insights
from the team members with regard to what can be addressed to improve the
current state of the documentation.

Figure 7.11: Results of the variables for pre-post comparison in P3T2.

For the last variable, V5, the numbers of P3T1 are not significant enough to
draw conclusions about whether the model contributed to realising more docu-
mentation tasks to improve the current state of the documentation. For P3T2,
we see that the number of documentation tasks in the product backlog increased
from 6 to 26 at the start of Sprint 27. The Scrum Master explained that this
occurred due to a new change request that changes 16 flows in the system, for
which a documentation task was added for each flow.

140

7.6.7 Evaluation of Hypotheses

The number of respondents is not sufficient enough to identify significant find-
ings for testing the hypothesis. Therefore we evaluate the hypotheses quali-
tatively. For H1, we see that the quality aspects associated with the various
phases of the DIFFC model, such as creating awareness of the current state
of the documentation, generation of ideas and creating process improvement
actions to address these issues are benefits that may contribute to high percep-
tions of usefulness of this model. This is similar to that of H2, if the guidelines
of each phase contribute to keeping the documentation up-to-date, making the
documentation more measurable and increasing accountability, then it is more
likely that the team members will find this model more useful. From observing
the various agile ceremonies, we saw that once the guidelines are clear and un-
derstood by the team, they are more likely to embrace the study. Even though
the team, members had to get familiar with the guidelines at the beginning, it
became clear and the team members actively participated in most cases. This
confirms the possible link with H3 from these findings.

Furthermore, the last two hypotheses discuss the effect of usefulness and ease
of use on the use of the DIFFC model. Again, with the survey responses, we
cannot conclude any solid response. But we see if the guidelines of the various
phases are useful and improve the state of documentation, then the team is
likely to adopt the model and keep using it.

7.6.8 Conclusion

To conclude we see promising results from the experiment and validation survey
with regard to the effectiveness of the DIFFC model in addressing the issue of
documentation debt within multi-team ASD projects. It is of course in the early
stages of validation of this model, it has not been validated with a wider range
of projects and not for a longer period of time (more than one sprint). We
therefore cannot generalise our results to all multi-team ASD projects. But we
can learn from this validation study towards improving the DIFFC model in
future research.

The findings confirm that a huge part of the success of the application of the
DIFFC model depends on the willingness of the team members to follow the
prescribed guidelines, participate actively, and dedicate time to preparing the
SPD prior to the Retrospective. However, as none of the teams prepared the
SPD, it is an area of improvement for the DIFFC model to address the question
of ‘What happens when there is no prepared data or subject to address? ’. Also,
we learnt that in practice the Planning phase may be incorporated in not only
the Sprint Planning but other agile ceremonies such as the Refinement. Lastly,
we observed an overlap in the phases. The effectiveness of the monitoring phase
largely depends on the productivity in the Planning and Reflecting phases.
Without documentation tasks or process improvement actions, the guidelines
of the Monitoring phase cannot be applied effectively.

141

Chapter 8

Conclusions

Using the Design Science research approach, this thesis explored the impact of
RE in multi-team ASD projects. In particular, we researched the aspects of
scaled agile software development of SAFe and an internally created method
(C1M) in practice. We identified the various activities, roles, and tools, used by
the explored projects in their approach to ASD. We highlighted evidence of RE
practices in scaled-agile approaches such as the use of workshops, refinement
sessions, and informal communication as activities in agile requirements engi-
neering. Here, we identified RE activities and documentation artefacts used for
elicitation, analysis, specification, validation, and requirements management.

Having understood the activities involved in the scaled-agile approach and the
documentation artefacts employed by the projects, we investigated the current
state of documentation within the project by identifying the strengths and po-
tential areas for improvement by considering the Information Content (What),
Information Content (How), and Process Related aspects. The challenges facing
documentation for the studied projects became a motivation to design a frame-
work to fill the research gap on a prescribed approach to addressing documen-
tation issues by improving documentation processes through feedback cycles.
As a result, we introduced the DIFFC model with both scientific and industrial
relevance to address this problem. Finally, we validated our proposed model by
applying it to a real-world context by means studying its effectiveness in two
cases. The results regarding its usefulness are promising and there are also ideas
for further improvement of the model.

8.1 Answers to Research Questions

Our research question, stated as: How can the challenges facing documentation
due to Agile RE activities in multi-team software projects be addressed? is
answered as follows. The DIFFC model is proposed to address the issues facing
the documentation such as time constraints, planning, establishing a clear scope,
estimation, review, tracking progress, and reducing documentation debt. This
framework also combines a data-driven approach with a game-based approach
to improve the documentation process within the team. We elaborate upon

142

the aforementioned response using our seven sub-research questions which are
discussed subsequently.

8.1.1 SRQ1: How is Agile Software Development (ASD)
adopted within a multi-team software project?

From the explored cases, we identified two different approaches to scaled ASD
which are SAFe and an internally created method referred to as C1M. We high-
light the roles, processes, and tools used in the adoption of scaled ASD in each
of the explored cases.

Roles

In Table 8.1, we outline the common and different roles across the teams. The
common roles across teams are the Scrum Master and Product Owner, even
though the Scrum Master role is performed by the Team Manager in P1. Also,
the Product Owner in P1 is an external stakeholder, and the Analyst performs
the role of the Product Owner internally, by eliciting the requirements from
the client and translating them to user stories. The role of Developers, Lead
Developer, and Tester exist in all teams but P2T2, while in P2T2 the role of
the developer is performed by Digital Engineers. Although P2T2 does not have
a Tester, testing activities are conducted by the Digital Engineers using the
four-eyes principle.

Table 8.1: Overview of similarities and differences in roles across teams.

Common Roles (P1, P2T1) Unique Roles P1 All Roles P2T2
Scrum Master Analyst Scrum Master
Developers Domain Experts (Also in

P2T1)
Lead Developer Digital Engineers
Tester Product Owner
Architect
Product Owner

Processes

A common feature across cases is the division of the project into two phases;
the planning/elicitation phase and the DevOps phase. The elicitation phase is
referred to as the clarification phase in P1 and the PI planning phase in P2. In
P1, the clarification phase begins with analysing the initial project documen-
tation, depending on the team as shown in Figure 4.2. The scope and epics or
user stories are defined and planned into workshops. Prior to the workshops,
the user stories are prepared together with wireframes where applicable. During
the workshop, decisions are recorded and the user stories are updated. The PI
planning phase of P2 is centred around the project’s adoption of SAFe. During
this phase, as shown in Figure 4.3, the roadmap is defined for the subsequent
PIs, which define product increments or epics. These epics are then planned
across the teams, dependencies across teams and features are identified, and
then the features are described by the Product Owner. Afterwards, the user
stories are written and defined in the Team Backlog.

143

The DevOps phase for P1T1 is similar to that of P1T2, whereas the DevOps
phase of P2T1 differs from P2T2. We discuss the main activities in this phase.
In P1, the Sprint Backlog defines the user stories proposed for the sprint. A new
biweekly sprint begins with a Sprint Planning meeting. During the sprint, each
team follows Scrum where the day starts with a Daily Standup and then, sprint
tasks such as design, implementation, testing, and documentation are performed
per user story. P2 also follows a similar adoption of Scrum on a team level. The
DevOps phase begins with the Team Backlog (similar to the Product Backlog
of P1T1 and P1T2). Then, the Sprint Backlog is a proposal for the sprint. A
Sprint Planning meeting is also used to plan and estimate the effort for the
user stories and start the biweekly sprint. Each working day, the daily Scrum is
used similar to the teams in P1, however, the difference is in the activities of the
sprint tasks. Before the design of a user story, analysis is performed for complex
user stories. P2T1 incorporates a design task for the user stories, whereas
P2T2 do not have any design tasks and moves straight to implementation after
the analysis. Manual tests are performed in both P2T1 and P2T2, however
in different formats, as shown in Figures 4.8 and 4.9. Afterwards, the DoD
may be checked but this is done occasionally and not enforced by either of
the teams. Then for P2T2, the user story is completed, whereas P2T1 has
automated deployment in place in parallel with the synchronisation of the source
code before a user story is completed.

All the teams use alignment meetings to communicate processes within the
team, across teams within the project, or even across knowledge groups. In P1
examples of these meetings are chapter meetings, weekly design and analysis
meeting, technical standup, bi- or tri-weekly architecture meetings with the
client, weekly sprint update, and Refinement. The Refinement session is also
adopted by the teams in P2. Other common alignment activities for both teams
in P2 are the bi-weekly ART sync meeting and the weekly PO sync meeting.
P2T1 also participate in Guild meetings to share knowledge across projects and
teams within the company on a specific topic. Occasionally, P2T2 holds a team
alignment meeting to discuss their processes as a team. Lastly, across teams,
change requests are handled by adding new user stories and adjusting the sprint
plan.

Tools

All teams use Azure DevOps to manage the backlog and as the main source of
truth for the user stories. Additionally, Microsoft Teams is used by each team
for communication. Microsoft Office tools such as Word is heavily used in P1
to write documentation as most of the documentation artefacts are prescribed
by C1M and are Word processing files. In contrast, Microsoft Word is not used
as much for documentation, it is mainly used for writing the Analysis Report.
A SharePoint environment is prescribed by C1M for use in P1, where all the
templates are documentation are stored for the project. P2T1 uses the wiki
for most documentation within the team such as the explanation of the domain
and the code. P1 does not use the wiki as often, they use it to aid the chapter
meetings. Other tools such as DrawIO and Figma are used in P1 to model
and detail requirements, whereas P2T1 uses PlantUML, to model the high-level
architecture of the functionality. In Table 8.2, we an overview of the different

144

and similar tools used across teams.

Table 8.2: Overview of similarities and differences in tools across teams.

Common Tools Unique Tools P1 Unique Tools P2T1
Azure DevOps Axshare Wiki
Microsoft Office DrawIO PlantUML
Microsoft Teams Figma
Visual Studio SharePoint

Wiki

8.1.2 SRQ2: Which requirements engineering practices
can be identified in the adopted ASD approach?

The subsequent step after identifying the ASD approach of the projects was to
identify evidence of elicitation, analysis, specification, validation, and require-
ments management activities.

Elicitation

The teams in the explored cases take different approaches across projects. Most
of the elicitation takes place during the clarification phase for P1 and the PI
planning phase P2. The technique of documentation analysis is identified in
two different activities during the clarification phase of P1. The first occurrence
is the initial analysis of the client and contract documentation. The second
adoption of documentation analysis is for analysing the recorded decisions from
the workshop to adjust and detail the user stories. Workshops are also to
discuss high-level user stories with the client. Similar to the teams in P1, where
the Analyst defines the user stories, the Product Owner in each team in P2
defines the features and user stories. This activity takes place after the roadmap
has been defined. The roadmap is defined by the Product Manager using the
technique of informal discussions with stakeholders such as Civil Engineers and
Domain Experts. The user stories defined at the end of the clarification or PI
planning phase are then ready to be refined by the team.

Analysis

A common technique used by all the explored teams is the Refinement session.
Here, any questions and uncertainties about the user story are discussed. Also,
both teams in P1 model the details of the user story using wireframes and tech-
nical designs such as UML diagrams. Similarly, P2T1 also models technical
specifications for complex user stories and occasionally the UI specification if
necessary. P1T1 and P1T2 make use of Clickable Prototypes to detail the func-
tionality as well as a way to reuse the prototype for the frontend development.
Both teams in P2 use a Research User Story to handle complex user stories. In-
formal communication is also used by each team in P2 with the Domain Expert
to clarify the details of the user story.

Moreover, both teams in P1 have separate task(s) for design. P2T1 also per-
forms design activities similar to the teams in P1, but only the high-level archi-
tecture is documented as C4 diagrams, as the team also uses Code Comments to

145

explain specific reasoning and examples in the code. In contrast, P2T2 does not
use design tasks, this is mainly because they develop with scripts that do not
have a UI, and they are still in a learning phase with regard to the structuring
of the code.

Specification

User Stories are structured using the hierarchy of Epics, Features, and User Sto-
ries. These artefacts are stored in Azure DevOps for each of the explored teams
and the user stories are specified using the role, action, and benefit format. Also,
for user stories in P1, they are expanded with acceptance criteria and a func-
tional and technical description, as well as a hyperlink to the documentation.
Similarly, the Domain Experts in P2 attach documentation to the user stories
where necessary, to explain a certain topic or provide domain knowledge.

Validation

In P1, the use of documentation artefacts such as the Functional Document
and the Test Report makes it possible for internal and external stakeholders
to validate requirements. Also, user stories are reviewed and approved by the
customer. After the product increment has been deployed, the client tests and
verifies the correct implementation of the user story and reports any defects. In
contrast, P2 uses informal discussions at the Refinement and Sprint Planning
to clarify questions and obtain missing information for the user story.

Furthermore, the implemented user story is then tested to ensure conformance
with the original requirement. In all teams but P2T2, the tester writes the
test scripts and tests the implemented user story according to those test cases,
whereas there is neither a tester in P2T2 nor defined test cases.

Requirements Management

All the teams handle requirements volatility in a similar manner. In P1, a
change request process is used to address the new requirements. The existing
requirements are not changed, rather new requirements are introduced. If the
new requirements are closely related to an original requirement from the clar-
ification phase, that is expanded with more details but not changed. Change
documentation artefacts are created which are then linked to a user story. P2
also adopts a similar approach but with different artefacts. A new user story is
introduced, or in some cases, an existing user story is only changed if it is still
opened. The team also ensure that the Validation Tests and Regression Tests
Cases artefacts are updated using the DoD.

8.1.3 SRQ3: Which kinds of documentation artefacts are
used for the various requirements engineering prac-
tices within the ASD approach?

We discuss the differences and similarities of documentation artefacts used for
the RE activities within the teams.

The Analysis Report is used for requirements elicitation within both projects.

146

The high-level requirements and roadmap for the teams in P2 are outlined in
the Project Planning, whereas P1 uses the Initial Contracts and Client Docu-
mentation as a starting point as well as the Meeting Minutes and Recordings
of the workshops. Besides, the Issues artefact is used by P1 to document open
questions to the client. In addition to the Analysis Report, other documenta-
tion artefacts are used by the teams for analysis. In P2T1 C4 diagrams are
used, while P1 uses Detailed Design and External Interface Design. Moreover,
Wireframes and Clickable Prototypes are used to design the UI in P1.

In all teams, requirements are specified using the hierarchy of Epics, Features,
and User Stories which are planned using the Sprint Backlog. Also, the Prod-
uct Backlog is used by each team, whereas P2 refers to it as the Team Backlog.
For the high-level requirements, P2 uses the Program Backlog, while P1 uses
Functional Scenarios. P1 also use additional artefacts such as Clickable Proto-
types, User Interface Design to specify requirements. To specify requirements
that were not part of the original scope, Change Requests, Changes, and De-
fects are used which are also the documentation artefacts used for requirements
management.

Lastly, requirements are validated by testing in all teams. P1 uses the Test Plan
and Test Report, whereas P2 uses the Validation Plan and Test Cases. At the
end of each sprint, the teams validate the outcome of the implementation of
the user stories. In P2, the Regression Test Report is used, whereas P1 uses
the Sprint Review Report. P1 uses additional artefacts such as the Functional
Document and the Clickable Prototype to compare the implementation to the
specified requirements.

8.1.4 SRQ4: What is the current state of the identified
documentation (from SRQ3) within the project?

We address this sub-question by using the taxonomy of documentation issues
by Aghanjani et al. (2019) which are known as Information Content (What),
Information Content (How), and Process Related.

Information Content (What)

For this aspect of documentation, we discuss the correctness, completeness, and
up-to-dateness of the documentation.

Correctness of documentation is ensured using informal communication such
as discussions during the Refinement sessions. Furthermore, P1 makes higher
use of documentation templates than P2: templates and examples are part of
C1M, and the method also prescribes specific roles for writing and updating user
stories. User stories are used in both projects, and they are written mainly by
the Analysts in P1, and by the Product Owner in P2. The use of templates has
also drawbacks, as the templates easily become outdated. Additional artefacts
such as DoR are hardly used in both projects due to time constraints.

About completeness, all the known requirements are documented for each team,
with the main source of truth being the Backlog in Azure DevOps. User stories
are not the only artefact used for requirements: in P1T2, the Analyst attaches
other requirements to user stories via hyperlinks; in P2T1, a wiki collects central

147

information about the requirements, and the user stories are disjoint. Also,
P2T1 faces difficulties in finding the right balance between documenting and
making the code self-documented. The lack of a clear file structure is seen in
P2T2 which is a hindrance to keeping documentation complete and up-to-date.
In P1, keeping the documentation complete appears to be the responsibility of
the assignee, rather than a shared team responsibility.

Keeping the documentation up-to-date is a challenge: in agile development,
as per the agile manifesto, there is more focus on implementation and testing
activities rather than on documentation. Unfortunately, this leads to documen-
tation debt. Different techniques are used to overcome this difficulty. In P1, the
four-eyes principle is used to review documentation, although it is not always
effective as it depends on individual commitment and motivation. Also, the
decision to update documentation is at the discretion of the assignee of the user
story. Teams in P2 do not have documentation tasks defined. In both projects,
the scope of documentation per user story is not clear and there is no formal
check, nor a process to ensure the update of documentation is not forgotten.

Regarding the sufficiency of the documentation for extension and maintenance
of the application, the teams in P1 are positive, perhaps because they have some
time nearing the end of the release to update the documentation. In P2, the
lack of a process leads to ad-hoc solutions: P2T1 focuses on documenting the
code itself, while P2T2 is building a knowledge bank and is planning to organise
workshops. Also, multi-lingual documentation in P1 is an additional obstacle
that increases the effort and the challenge of keeping the versions aligned. Lastly,
for all the teams but P2T2, the versioning of changes is managed automatically
by the tools, while P2T2 faces challenges due to the manual nature of the task.

Information Content (How)

For this aspect of documentation, we discuss the maintainability, readability,
usability, and usefulness of the documentation.

Concerning maintainability, the teams in P1 find it easy to add changes to the
documentation, due to the organisation of documentation prescribed by C1M.
However, identifying what other documentation artefacts need to be updated is
not always straightforward. P1 addresses this by mentioning which documen-
tation artefact needs to be updated in the user story, however, this activity is
sometimes forgotten. Furthermore, it requires additional effort to add changes
to the documentation within P2T2 due to the organisation of the scripts and
the lack of a clear file structure. Efforts are made by the teams to address the
complexity of updating large documentation artefacts: P2T1 ensures modular
documentation, whereas P1T1 addresses this via informal communication.

Readability is ensured through feedback on the documentation. P1 obtains feed-
back on the user stories during the workshops and the approval process. P2T1
uses peer reviews whereas P2T2 informally discuss this using the Scrum events.
Necessary documentation artefacts for requirements validation are not reviewed
until nearing the end of the release when it is rapidly reviewed. For all the teams,
it is difficult to determine the conciseness of the contents of the documentation
without adequate feedback from external and internal stakeholders.

148

Issues faced with the tools affect the usability of the documentation. Teams in
P1 face connectivity issues with SharePoint. Receiving feedback from external
stakeholders via email requires a manual effort to update the documentation
artefact either in SharePoint or Azure DevOps. Also, P2T1 faces limitations
when updating the C4 diagrams in PlantUML due to its level of expressive-
ness. So far, the teams in P1 have not received any questions about the doc-
umentation from external stakeholders. P2T2 receives questions from external
stakeholders and is building a knowledge bank to address the questions. Due
to the functionality-based division of teams in each project, documentation is
shared on a higher level: P2 shares documentation on a feature and program in-
crement level, while P1 shares a high-level Functional Documentation artefact.
This artefact is updated by one assignee to avoid conflicting changes. Although
there are alignment meetings within P1, they hardly incorporate a review of
documentation.

We evaluate usefulness by feedback given from stakeholders. The process of
encouraging feedback is absent within the teams. P1 lacks this process in the
DoD, whereas in P2T1, receiving feedback depends on the type of artefact and
the stakeholder. Neither of the teams has a process in place to address the
incorporation of feedback to the documentation, which has led to ad-hoc solu-
tions. The teams discuss this via the Daily Scrum. Additionally, P2 addresses
the comments on high-level requirements by means of discussions among the
Product Owners.

Process Related

To address the strengths and challenges related to the process of writing doc-
umentation, we address internationalisation, contribution, and automated doc-
umentation issues. The internationalisation of the teams in P1 requires addi-
tional effort to synchronise the versions of documentation artefacts. To address
the language barrier, documentation artefacts intended for internal use are kept
in English as well as the language used in the Scrum events.

Contribution to documentation depends on the planning of the documentation.
Neither of the teams has a process to ensure the planning of documentation,
mainly due to the agile mindset of prioritising the working software and docu-
menting less. Also, due to time constraints documentation tends to be scrapped
within the teams. P1 updates the missing documentation nearing the end of
the release, whereas in P2 it is difficult to address the missing documentation,
resulting in a huge documentation debt. Furthermore, none of the four teams
has a process to report issues found in the documentation, this is addressed by
means of informal communication. Also, the lack of awareness about the rele-
vance of documentation in P2T1 led to a suggestion to increase the awareness
of the value of documenting within the team.

There are a few automated documentation in the explored teams. P1 uses HTML
clickable prototypes and unit tests, whereas P2T1 uses C4 diagrams and unit
tests. P2T2 does not have any automated documentation. It is difficult to auto-
mate the documentation within P2 due to the pre-required domain knowledge.

We identify the strengths of documentation processes. In P1, the template and
review of user stories ensure that each user story is of high quality and includes

149

a documentation task. Also, the team manager enforces the completion of doc-
umentation tasks. Also, the process of updating documentation is accelerated
due to the availability of templates and examples prescribed by C1M. In P2T1,
the awareness of documentation has increased over the years, whereas P2T2 is
developing a knowledge-sharing platform.

8.1.5 SRQ5: What is the impact of requirements change
on the identified documentation (from SRQ3) within
the project?

The change of requirements is inevitable for the explored projects. SRQ2 and
SRQ4 already discussed aspects of this topic, however, this sub-research ques-
tion zooms into the challenges of incorporating changing requirements in the
documentation. In P1, a number of challenges are faced. Although there is a
formal process in place to handle the change requests, the documentation as-
pect is not enforced. The documentation tends to be skipped as the change
usually entails a small functionality. As a result, the skipped documentation
piles up into a huge documentation debt. Also, the limitations of the tools and
the lack of clarity on the scope of documentation hinder the process of updating
documentation.

In P2T2 using Code Comments to keep track of the changes to the code, in-
troduces additional overhead to incorporate change in the project. After new
user stories are introduced and implemented, the references and versioning have
to be updated manually using code comments. Due to the poor structuring of
documentation this activity requires additional effort. However, P2T1 address
change by ensuring their documentation is kept modular, thereby requiring less
effort to update the documentation.

8.1.6 SRQ6: What framework can be used to address
documentation issues by improving documentation
practices in multi-team software projects?

From the problem investigation phase, we identified issues such as the lack of
planning and estimation, time constraints, lack of a clear scope, and the lack
of review for documentation. We observed variations in the organisation and
structure of scaled-ASD projects. The process maturity level of the adoption of
ASD varies even within the explored projects. Hence, the need for a lightweight
and easily adaptable framework.

Furthermore, in self-organising teams, a value of ASD is constant improvement
from within the team rather than imposing external guidelines. The literature
emphasises the benefits of informal communication within feedback cycles to
improve processes within Agile teams. Therefore, we combine the strengths
of informal communication within agile teams with the recommendations from
the literature to design a framework that addresses the issues found in the
documentation.

We designed and propose a lightweight framework known as the DIFFC model
consisting of Planning, Monitoring, and Reflecting phases. The Planning phase

150

ensures that documentation is not forgotten as part of user stories. The Mon-
itoring Phase ensures that the progress of the documentation, as well as any
dependencies, are reported. Lastly, the Reflecting phase allows the team to
address the issues concerning documentation and improve the documentation
processes within the team. This phase combines a data-driven approach and
a game-based approach with the pre-existing discussion of perceptions within
the team. The output of this phase is process improvement actions for the next
sprint to improve aspects of the documentation.

8.1.7 SRQ7: What is the effectiveness of the proposed
framework from SRQ6?

We studied the effectiveness of the DIFFC model through an experiment and
concluded with a validation survey. The experiment was conducted using two
cases: an in-depth study was conducted with P3, whereas a preliminary study
was conducted in P2 due to timing and resource constraints. Reusing the vari-
ables used in the experiment of Green et al. (2005), we applied the DIFFC
model to the Retrospective, Sprint Planning, and Daily Scrum in an experi-
ment to observe the Ease of use, Quality, Productivity, Usefulness, and Use of
the model.

Although the experiment was only conducted for one sprint due, the results are
promising. Considering the ease of use of the model, the guidelines were clear
and easy to understand. During the observation of the Reflecting phase, there
were questions in the beginning, but afterwards, the team gained familiarity
with using the tooling and guidelines. The productivity increased with regard
to keeping the documentation up-to-date by the introduction of documentation
tasks for the Change Requests in P3 with estimations and clarified scope. Also,
awareness of the quality and the current state of documentation increased within
all the teams. In general, there were a number of Process Improvement actions
collected from the ideas, even though it is not as much as expected. There was
positive feedback from the teams with regard to the usefulness of the model:
it helped create awareness and interactively involved the team to collect ideas
about how the team can improve the challenges facing documentation. Due
to the early nature of the results, we cannot generalise that the model will be
used, however, the results are promising with potential areas to improve in the
DIFFC model.

8.2 Implications for Research and Practitioners

Our main aim was to explore the impact of RE practices in scaled-ASD on
documentation and propose a framework to address the issues found in the doc-
umentation. We have done so by conducting case studies with semi-structured
interviews, documentation analysis, designing a treatment and experimenting
with the proposed treatment and a real-world context.

We contributed to the literature by adding evidence of the variations in the
adoption of scaled-ASD methods from the multiple-case studies. We provide
empirical data on the RE activities found on the scaled-ASD approach of each
project with the accompanying documentation artefacts. The issues of mini-

151

mal documentation and requirements volatility in ASD were tackled using the
taxonomy of documentation issues by Aghanjani et al. (2019). The challenges
facing documentation confirmed the literature with regard to the agile way of
working with more focus on implementation and testing activities and less fo-
cus on documenting. Our findings contribute to the literature by proposing a
framework to address the challenges using the existing processes of agile teams.

Furthermore, we provide practitioners in the software engineering industry with
insights into the various similarities and differences in the adoption of ASD
in two multi-team software projects. Projects can learn from each other with
regard to the shared solutions to the challenges facing the documentation. More
importantly, the DIFFC model is valuable in addressing the issues found in the
documentation and improving this process as a team. Even though the results
are preliminary, they are promising and the model has the potential to address
the renowned issue of documentation in ASD.

8.3 Implications for Future Work

The exploratory nature of our research raises a number of opportunities for
future research in terms of theory development and treatment validation.

Firstly, while we scoped our research to scaled-ASD projects, we believe that
if the context is expanded to include smaller projects or single-team projects,
the results will be comparable. This assumption is based on the findings that
even though the explored projects are large, the teams are divided based on
functionality and only interact on a higher level. Therefore, it will be interesting
for future research to apply this research protocol and the proposed DIFFC
model to other ASD projects in order to generalise the results.

Moreover, the scope of the validation experiment could be much broader as we
were limited by time and resource constraints. We recommend future research
to study the effectiveness by observing longer periods, ideally more than three
sprints, as we saw that the first Retrospective was mainly to create awareness
and the second derived more process improvement actions than the first. In
addition to the in-depth observation, we propose future research to include
more projects in the validation of effectiveness with a variety of scaled-ASD
approaches.

Lastly, we observed two main aspects for improvements regarding the DIFFC
model: The preparation of data and a subject for discussion among the team
during the Retrospectives; The completion of the documentation tasks, which
were added during the Planning phase. We recommend an action research
approach to improve the model with regard to these aspects and investigate
the impact. The latter relates to the motivation of the team members toward
updating documentation which is out of the scope of the proposed model. The
subject of motivation is certainly a strong recommendation for future research.

152

Chapter 9

Discussions

We discuss the limitations of this research. We explain for each of the four
categories the threats to validity: construct validity, internal validity, external
validity, and reliability [22]; as well as how we mitigate these threats.

9.1 Research Limitations

Construct validity ensures that the correct operational measures are identified
for the concept being studied [22]. The goal to satisfy construct validity is
to make research as objective as possible. We mitigate this threat during the
data collection phase by having multiple sources of evidence. We collect data
from semi-structured interviews and documentation analysis with two cases,
and multiple people in one team to eliminate the subjectivity in data as much
as possible. However, since not one agile method suits every organisation, we
expect to find subjectivity in the way the agile methods are presented by the
participants. For the validation research, we incorporate two sources of data
an experiment and a validation survey with two cases. Also, we mitigate the
threat of construct validity by making a report of each case study as well as an
experimental report. However, due to the agreed confidentiality, these sources
are not openly available.

Furthermore, internal validity seeks to establish a causal relationship for ex-
planatory case studies [22]. Another concern of internal validity is making
inferences [22]. We mitigate this threat using the suggested tactics by Yin
(2018) such as pattern matching, addressing rival explanations, and using logic
models [22]. An example of how we mitigate this threat is by modelling the
conceptual model in Figure 3.9 and using it as a guide to collect the data. We
address rival explanations in the perceptions of the current state of documenta-
tion using interviews with multiple team members and documentation analysis
as an inspection. The case study protocol and the experimental guidelines en-
sure that we use themes to guide the study with a logical flow. These were
reviewed by means of a four-eyes principle with the first supervisor. Addition-
ally, in the validation experiment, we compare our observations to the results
of the survey which is based on the same variables. This gives us a clear insight

153

to determine the effectiveness of our proposed model. However, we admit that
the pre-post comparison data is subjected to limitations as it was collected from
the Scrum Masters. This threat could not be mitigated as the researcher did
not have direct access to the environments of those projects, due to the privacy
policies of the projects. Hence, we ask for an explanation of the data from the
Scrum Masters to ensure the credibility of these figures.

External validity addresses whether the findings from the case study can be gen-
eralised outside the context of the investigated cases [22]. Here, we recognise
a potential bias in our results since all the samples are collected using purpo-
sive sampling at large-scale ASD projects. Our attempt to mitigate this threat
is by selecting projects from a variety of organisations in various sectors. A
total of two projects and selection criteria defined in Section 3.4 ensure that
the data may lead to generalisable conclusions for multi-team software projects.
Additionally, the scope of our research is limited to that of RE-related docu-
mentation since the subject of documentation is broad. Here, we accept that
the findings based on RE-related documentation might be different from other
kinds of documentation, but other kinds of documentation are out of the scope
of this research. Moreover, we admit that due to timing limitations, our results
from the validation study are preliminary and require a much longer period of
observations rather than one four-week sprint to draw solid conclusions.

Finally, reliability validity is concerned with whether the operations of the
study, such as the data collection procedures, can be repeated with the same
results [22]. Yin (2018) recommended some tactics to mitigate the threat of
reliability which are developing a case study database and maintaining a chain
of evidence [22]. Therein, we log the chain of evidence as discussed in construct
validity, but due to the confidentiality of the interviews and project-specific
information, the consensual agreement prohibits the use of the collected data
outside the purpose of this study. Therefore, there is no database available
for the public audience. However, the interview questions and experimental
guidelines are included as Appendices in this thesis.

154

Bibliography

[1] C. J. Stettina and W. Heijstek, “Necessary and neglected? An empirical
study of internal documentation in agile software development teams,”
in Proceedings of the 29th ACM international conference on Design of
communication, 2011, pp. 159–166.

[2] B. Hobbs and Y. Petit, “Agile methods on large projects in large orga-
nizations,” Project Management Journal, vol. 48, no. 3, pp. 3–19, 2017.

[3] K. N. Rao, G. K. Naidu, and P. Chakka, “A study of the agile software
development methods, applicability and implications in industry,” In-
ternational Journal of Software Engineering and its applications, vol. 5,
no. 2, pp. 35–45, 2011.

[4] M. Al-Zewairi, M. Biltawi, W. Etaiwi, A. Shaout, et al., “Agile software
development methodologies: Survey of surveys,” Journal of Computer
and Communications, vol. 5, no. 05, p. 74, 2017.

[5] K. Beck, M. Beedle, A. Van Bennekum, et al., The agile manifesto. 2001.
[6] S. W. Ambler, “The agile scaling model (ASM): Adapting agile methods

for complex environments,” pp. 1–35, 2009.
[7] P. Kettunen, “Extending software project agility with new product devel-

opment enterprise agility,” Software Process: Improvement and Practice,
vol. 12, no. 6, pp. 541–548, 2007.

[8] T. Dingsøyr, S. Nerur, V. Balijepally, and N. B. Moe, “A decade of agile
methodologies: Towards explaining agile software development,” Journal
of systems and software, vol. 85, no. 6, pp. 1213–1221, 2012.

[9] M. Lindvall, D. Muthig, A. Dagnino, et al., “Agile software development
in large organizations,” Computer, vol. 37, no. 12, pp. 26–34, 2004.

[10] J. B. Barlow, J. Giboney, M. J. Keith, et al., “Overview and guidance
on agile development in large organizations,” Communications of the
Association for Information Systems, vol. 29, no. 2, pp. 25–44, 2011.

[11] A. De Lucia and A. Qusef, “Requirements engineering in agile soft-
ware development,” Journal of emerging technologies in web intelligence,
vol. 2, no. 3, pp. 212–220, 2010.

[12] T. V. Ribeiro, C. D. F. Souza, and H. A. T. Leao, “Sidd-scrum iteration
driven development: An agile software development and management
process based on scrum (s).,” in SEKE, 2018, pp. 502–501.

[13] E. Bjarnason, K. Wnuk, and B. Regnell, “A case study on benefits and
side-effects of agile practices in large-scale requirements engineering,” in
proceedings of the 1st workshop on agile requirements engineering, 2011,
pp. 1–5.

155

[14] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira, “A study of
the documentation essential to software maintenance,” in Proceedings of
the 23rd annual international conference on Design of communication:
documenting & designing for pervasive information, 2005, pp. 68–75.

[15] T. Clear, “Documentation and agile methods: Striking a balance,” ACM
SIGCSE Bulletin, vol. 35, no. 2, pp. 12–13, 2003.

[16] C. J. Stettina, W. Heijstek, and T. E. Fægri, “Documentation work in
agile teams: The role of documentation formalism in achieving a sustain-
able practice,” in 2012 Agile Conference, IEEE, 2012, pp. 31–40.

[17] T. Theunissen, U. van Heesch, and P. Avgeriou, “A mapping study on
documentation in continuous software development,” Information and
Software Technology, vol. 142, p. 106 733, 2022.

[18] G. Garousi, V. Garousi-Yusifoğlu, G. Ruhe, J. Zhi, M. Moussavi, and B.
Smith, “Usage and usefulness of technical software documentation: An
industrial case study,” Information and Software Technology, vol. 57,
pp. 664–682, 2015.

[19] B. Curtis, H. Krasner, and N. Iscoe, “A field study of the software design
process for large systems,” Communications of the ACM, vol. 31, no. 11,
pp. 1268–1287, 1988.

[20] E. Aghajani, C. Nagy, O. L. Vega-Márquez, et al., “Software documenta-
tion issues unveiled,” in 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE), IEEE, 2019, pp. 1199–1210.

[21] R. J. Wieringa, Design science methodology for information systems and
software engineering. Springer, 2014.

[22] R. K. Yin, Case study research and applications - design and methods.
Sage Publications, 2018.

[23] A. Chakraborty, M. K. Baowaly, A. Arefin, and A. N. Bahar, “The role
of requirement engineering in software development life cycle,” Journal
of emerging trends in computing and information sciences, vol. 3, no. 5,
pp. 723–729, 2012.

[24] I. Inayat, S. S. Salim, S. Marczak, M. Daneva, and S. Shamshirband, “A
systematic literature review on agile requirements engineering practices
and challenges,” Computers in human behavior, vol. 51, pp. 915–929,
2015.

[25] G. Wagenaar, S. Overbeek, G. Lucassen, S. Brinkkemper, and K. Schnei-
der, “Working software over comprehensive documentation–rationales of
agile teams for artefacts usage,” Journal of Software Engineering Re-
search and Development, vol. 6, no. 1, pp. 1–23, 2018.

[26] K. Madampe, R. Hoda, J. Grundy, and P. Singh, “Towards understand-
ing technical responses to requirements changes in agile teams,” in Pro-
ceedings of the IEEE/ACM 42nd International Conference on Software
Engineering Workshops, 2020, pp. 153–156.

[27] G. Wong, T. Greenhalgh, G. Westhorp, J. Buckingham, and R. Paw-
son, “Rameses publication standards: Meta-narrative reviews,” Journal
of Advanced Nursing, vol. 69, no. 5, pp. 987–1004, 2013.

[28] H. Edison, X. Wang, and K. Conboy, “Comparing methods for large-
scale agile software development: A systematic literature review,” IEEE
Transactions on Software Engineering, 2021.

156

[29] R. Hoda, N. Salleh, J. Grundy, and H. M. Tee, “Systematic literature
reviews in agile software development: A tertiary study,” Information
and software technology, vol. 85, pp. 60–70, 2017.

[30] A. Mishra and D. Dubey, “A comparative study of different software
development life cycle models in different scenarios,” International Jour-
nal of Advance Research in Computer Science and Management Studies,
vol. 1, no. 5, pp. 64–69, 2013.

[31] N. B. Ruparelia, “Software development lifecycle models,” ACM SIG-
SOFT Software Engineering Notes, vol. 35, no. 3, pp. 8–13, 2010.

[32] R. Ibrahim and S. Y. Yey, “Formalization of the data flow diagram rules
for consistency check,” International Journal of Software Engineering
Applications, vol. 1, no. 4, pp. 95–111, 2010. doi: 10.5121/ijsea.2010.
1406.

[33] J. Henkel, C. Bird, S. K. Lahiri, and T. Reps, “Learning from, under-
standing, and supporting devops artifacts for docker,” in 2020 IEEE/ACM
42nd International Conference on Software Engineering (ICSE), IEEE,
2020, pp. 38–49.

[34] P. Perera, R. Silva, and I. Perera, “Improve software quality through
practicing devops,” in 2017 Seventeenth International Conference on Ad-
vances in ICT for Emerging Regions (ICTer), IEEE, 2017, pp. 1–6.

[35] A. Alshamrani and A. Bahattab, “A comparison between three sdlc mod-
els waterfall model, spiral model, and incremental/iterative model,” In-
ternational Journal of Computer Science Issues (IJCSI), vol. 12, no. 1,
p. 106, 2015.

[36] K. Jammalamadaka and V. R. Krishna, “Agile software development
and challenges,” International Journal of Research in Engineering and
Technology, vol. 2, no. 08, pp. 125–129, 2013.

[37] S. Shylesh, “A study of software development life cycle process models,”
in National Conference on Reinventing Opportunities in Management,
IT, and Social Sciences, 2017, pp. 534–541.

[38] S. Nerur, R. Mahapatra, and G. Mangalaraj, “Challenges of migrating
to agile methodologies,” Communications of the ACM, vol. 48, no. 5,
pp. 72–78, 2005.

[39] P. Abrahamsson, J. Warsta, M. T. Siponen, and J. Ronkainen, “New
directions on agile methods: A comparative analysis,” in 25th Inter-
national Conference on Software Engineering, 2003. Proceedings., Ieee,
2003, pp. 244–254.

[40] M. R. J. Qureshi and J. S. Ikram, “Proposal of enhanced extreme pro-
gramming model,” International Journal of Information Engineering and
Electronic Business, vol. 7, no. 1, p. 37, 2015.

[41] R. Fojtik, “Extreme programming in development of specific software,”
Procedia Computer Science, vol. 3, pp. 1464–1468, 2011.

[42] G. S. Matharu, A. Mishra, H. Singh, and P. Upadhyay, “Empirical study
of agile software development methodologies: A comparative analysis,”
ACM SIGSOFT Software Engineering Notes, vol. 40, no. 1, pp. 1–6, 2015.

[43] K. Schwaber and J. Sutherland, “The scrum guide,” Scrum Alliance,
vol. 21, no. 19, p. 1, 2011.

[44] D. J. Anderson, Kanban: successful evolutionary change for your tech-
nology business. Blue Hole Press, 2010.

157

https://doi.org/10.5121/ijsea.2010.1406
https://doi.org/10.5121/ijsea.2010.1406

[45] R. B. Wakode, L. P. Raut, and P. Talmale, “Overview on kanban method-
ology and its implementation,” IJSRD-International Journal for Scien-
tific Research & Development, vol. 3, no. 02, pp. 2321–0613, 2015.

[46] M. O. Ahmad, J. Markkula, and M. Oivo, “Kanban in software develop-
ment: A systematic literature review,” in 2013 39th Euromicro conference
on software engineering and advanced applications, IEEE, 2013, pp. 9–
16.

[47] M. O. Ahmad, P. Kuvaja, M. Oivo, and J. Markkula, “Transition of soft-
ware maintenance teams from scrum to kanban,” in 2016 49th Hawaii In-
ternational Conference on System Sciences (HICSS), IEEE, 2016, pp. 5427–
5436.

[48] C. Matthies, “Agile process improvement in retrospectives,” in 2019
IEEE/ACM 41st International Conference on Software Engineering: Com-
panion Proceedings (ICSE-Companion), IEEE, 2019, pp. 150–152.

[49] B. Nuseibeh and S. Easterbrook, “Requirements engineering: A roadmap,”
in Proceedings of the Conference on the Future of Software Engineering,
2000, pp. 35–46.

[50] O. Dieste Tubio, M. Lopez, and F. Ramos, “Updating a systematic review
about selection of software requirements elicitation techniques,” 2009.

[51] D. Zowghi and C. Coulin, “Requirements elicitation: A survey of tech-
niques, approaches, and tools,” in Engineering and managing software
requirements, Springer, 2005, pp. 19–46.

[52] L. Zamudio, J. A. Aguilar, C. Tripp, and S. Misra, “A requirements
engineering techniques review in agile software development methods,” in
International Conference on Computational Science and Its Applications,
Springer, 2017, pp. 683–698.

[53] L. Bass, J. Bergey, P. Clements, P. Merson, I. Ozkaya, and R. Sangwan,
“A comparison of requirements specification methods from a software
architecture perspective,” Tech. Rep., 2006.

[54] J. Estublier, “Software configuration management: A roadmap,” in Pro-
ceedings of the Conference on the Future of Software Engineering, 2000,
pp. 279–289.

[55] B. Ramesh, L. Cao, and R. Baskerville, “Agile requirements engineer-
ing practices and challenges: An empirical study,” Information Systems
Journal, vol. 20, no. 5, pp. 449–480, 2010.

[56] L. Cao and B. Ramesh, “Agile requirements engineering practices: An
empirical study,” IEEE software, vol. 25, no. 1, pp. 60–67, 2008.

[57] A. Eberlein and J. Leite, “Agile requirements definition: A view from
requirements engineering,” in Proceedings of the International Work-
shop on Time-Constrained Requirements Engineering (TCRE’02), 2002,
pp. 4–8.

[58] S. Heng, “Impact of unified user-story-based modeling on agile methods:
Aspects on requirements, design and life cycle management,” Ph.D. dis-
sertation, Université catholique de Louvain, Louvain La Neuve, Belgique,
2017.

[59] M. Daneva, E. Van Der Veen, C. Amrit, et al., “Agile requirements prior-
itization in large-scale outsourced system projects: An empirical study,”
Journal of systems and software, vol. 86, no. 5, pp. 1333–1353, 2013.

158

[60] K. Boness and R. Harrison, “Goal sketching: Towards agile requirements
engineering,” in International Conference on Software Engineering Ad-
vances (ICSEA 2007), IEEE, 2007, pp. 71–71.

[61] N. A. Ernst, A. Borgida, I. J. Jureta, and J. Mylopoulos, “Agile require-
ments engineering via paraconsistent reasoning,” Information systems,
vol. 43, pp. 100–116, 2014.

[62] D. M. Berry, “The inevitable pain of software development, including of
extreme programming, caused by requirements volatility,” 2002.

[63] N. N. B. Abdullah, S. Honiden, H. Sharp, B. Nuseibeh, and D. Notkin,
“Communication patterns of agile requirements engineering,” in Proceed-
ings of the 1st workshop on agile requirements engineering, 2011, pp. 1–
4.

[64] Y. Yu and H. Sharp, “Analysing requirements in a case study of pairing,”
in Proceedings of the 1st Workshop on Agile Requirements Engineering,
2011, pp. 1–6.

[65] Y. Zhu, Requirements engineering in an agile environment, 2009.
[66] T. Dingsøyr, N. B. Moe, T. E. Fægri, and E. A. Seim, “Exploring software

development at the very large-scale: A revelatory case study and research
agenda for agile method adaptation,” Empirical Software Engineering,
vol. 23, no. 1, pp. 490–520, 2018.

[67] D. J. Reifer, F. Maurer, and H. Erdogmus, “Scaling agile methods,” IEEE
software, vol. 20, no. 4, pp. 12–14, 2003.

[68] T. Dyb̊a and T. Dingsøyr, “Empirical studies of agile software develop-
ment: A systematic review,” Information and software technology, vol. 50,
no. 9-10, pp. 833–859, 2008.

[69] M. Laitinen, M. E. Fayad, and R. P. Ward, “Thinking objectively: The
problem with scalability,” Communications of the ACM, vol. 43, no. 9,
pp. 105–107, 2000.

[70] D. Leffingwell, Scaling software agility: best practices for large enter-
prises. Pearson Education, 2007.

[71] C. Larman and B. Vodde, Large-scale scrum: More with LeSS. Addison-
Wesley Professional, 2016.

[72] B. Aschauer, P. Hruschka, K. Lauenroth, M. Meuten, and G. Rogers,
Handbook of RE@Agile According to the IREB Standard. International
Requirements Engineering Board, 2019.

[73] A. Putta, Ö. Uludağ, S.-L. Hong, M. Paasivaara, and C. Lassenius, “Why
do organizations adopt agile scaling frameworks? a survey of practition-
ers,” in Proceedings of the 15th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), 2021, pp. 1–
12.

[74] D. Leffingwell, Agile software requirements: lean requirements practices
for teams, programs, and the enterprise. Addison-Wesley Professional,
2010.

[75] K. Schwaber and M. Beedle, Agile software development with Scrum.
Prentice Hall Upper Saddle River, 2002, vol. 1.

[76] K. Beck, Extreme programming explained: embrace change. addison-wesley
professional, 2000.

[77] A. Vaidya, “Does dad know best, is it better to do less or just be safe?
adapting scaling agile practices into the enterprise,” Pacific NW Software
Quality Conference (PNSQC), pp. 1–18, 2014.

159

[78] M. Kuhrmann, P. Diebold, J. Munch, et al., “Hybrid software develop-
ment approaches in practice: A european perspective,” IEEE software,
vol. 36, no. 4, pp. 20–31, 2018.

[79] M. Kuhrmann, J. Münch, P. Diebold, O. Linssen, and C. Prause, On
the use of hybrid development approaches in software and systems devel-
opment: construction and test of the HELENA survey. Gesellschaft für
Informatik, 2016.

[80] D. Turk, F. Robert, and B. Rumpe, “Assumptions underlying agile software-
development processes,” Journal of Database Management (JDM), vol. 16,
no. 4, pp. 62–87, 2005.

[81] A. Forward and T. C. Lethbridge, “The relevance of software documenta-
tion, tools and technologies: A survey,” in Proceedings of the 2002 ACM
symposium on Document engineering, 2002, pp. 26–33.

[82] J. Zhi, V. Garousi-Yusifoğlu, B. Sun, G. Garousi, S. Shahnewaz, and G.
Ruhe, “Cost, benefits and quality of software development documenta-
tion: A systematic mapping,” Journal of Systems and Software, vol. 99,
pp. 175–198, 2015.

[83] Y. Shmerlin, I. Hadar, D. Kliger, and H. Makabee, “To document or
not to document? an exploratory study on developers’ motivation to
document code,” in International Conference on Advanced Information
Systems Engineering, Springer, 2015, pp. 100–106.

[84] T. T. Barker, Writing software documentation: A Task-oriented Ap-
proach. Allyn and Bacon, 2003, vol. 2.

[85] W. Ding, P. Liang, A. Tang, and H. Van Vliet, “Knowledge-based ap-
proaches in software documentation: A systematic literature review,”
Information and Software Technology, vol. 56, no. 6, pp. 545–567, 2014.

[86] L. C. Briand, “Software documentation: How much is enough?” In Sev-
enth European Conference on Software Maintenance and Reengineering,
2003. Proceedings., IEEE, 2003, pp. 13–15.

[87] I. Sommerville, “Integrated requirements engineering: A tutorial,” IEEE
software, vol. 22, no. 1, pp. 16–23, 2005.

[88] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical software engineering,
vol. 14, no. 2, pp. 131–164, 2009.

[89] T. C. Lethbridge, J. Singer, and A. Forward, “How software engineers
use documentation: The state of the practice,” IEEE software, vol. 20,
no. 6, pp. 35–39, 2003.

[90] E. Arisholm, L. C. Briand, S. E. Hove, and Y. Labiche, “The impact of
UML documentation on software maintenance: An experimental eval-
uation,” IEEE Transactions on Software Engineering, vol. 32, no. 6,
pp. 365–381, 2006.

[91] G. Wagenaar, R. Helms, D. Damian, and S. Brinkkemper, “Artefacts
in agile software development,” in International Conference on Product-
Focused Software Process Improvement, Springer, 2015, pp. 133–148.

[92] G. Wagenaar, S. Overbeek, G. Lucassen, S. Brinkkemper, and K. Schnei-
der, “Influence of software product management maturity on usage of
artefacts in agile software development,” in International Conference on
Product-Focused Software Process Improvement, Springer, 2017, pp. 19–
27.

160

[93] M. Kuhrmann, D. M. Fernández, and M. Gröber, “Towards artifact mod-
els as process interfaces in distributed software projects,” in 2013 IEEE
8th International Conference on Global Software Engineering, IEEE, 2013,
pp. 11–20.

[94] W. Gerard, S. Overbeek, and S. Brinkkemper, “Fuzzy artefacts: Formal-
ity of communication in agile teams,” in 2018 11th International Con-
ference on the Quality of Information and Communications Technology
(QUATIC), IEEE, 2018, pp. 1–7.

[95] H. Sharp, H. Robinson, and M. Petre, “The role of physical artefacts in
agile software development: Two complementary perspectives,” Interact-
ing with computers, vol. 21, no. 1-2, pp. 108–116, 2009.

[96] M. Alqudah and R. Razali, “A review of scaling agile methods in large
software development,” International Journal on Advanced Science, En-
gineering and Information Technology, vol. 6, no. 6, pp. 828–837, 2016.

[97] S. Ambler, Agile modeling: effective practices for extreme programming
and the unified process. John Wiley & Sons, 2002.

[98] V. R. Basili, G. Caldiera, and H. D. Rombach, “The goal question metric
approach,” Encyclopedia of software engineering, pp. 528–532, 1994.

[99] A. Fuggetta, L. Lavazza, S. Morasca, S. Cinti, G. Oldano, and E. Orazi,
“Applying gqm in an industrial software factory,” ACM Transactions on
Software Engineering and Methodology (TOSEM), vol. 7, no. 4, pp. 411–
448, 1998.

[100] T. de Souza Machado, Y. T. Ximenes, V. de Oliveira Neves, and L. C.
de Castro Salgado, “A case study on the perceptions of IT professionals
during the transition from a traditional to an agile process model,” in
Anais do XVII Simpósio Brasileiro de Sistemas de Informação, SBC,
2021.

[101] G. C. Green, A. R. Hevner, and R. W. Collins, “The impacts of quality
and productivity perceptions on the use of software process improve-
ment innovations,” Information and Software Technology, vol. 47, no. 8,
pp. 543–553, 2005.

[102] T. Dingsøyr, T. E. Fægri, and J. Itkonen, “What is large in large-scale?
a taxonomy of scale for agile software development,” in International
Conference on Product-Focused Software Process Improvement, Springer,
2014, pp. 273–276.

[103] G. Gutierrez, J. Garzas, M. T. G. de Lena, and J. M. Moguerza, “Self-
managing: An empirical study of the practice in agile teams,” IEEE
Software, vol. 36, no. 1, pp. 23–27, 2018.

[104] C. Sibona and S. Walczak, “Purposive sampling on twitter: A case study,”
in 2012 45th Hawaii International Conference on System Sciences, IEEE,
2012, pp. 3510–3519.

[105] M. Marshall, “The key informant technique,” Family Practice, vol. 13,
no. 1, pp. 92–97, Feb. 1996, issn: 0263-2136.

[106] T. C. Lethbridge, S. E. Sim, and J. Singer, “Studying software engineers:
Data collection techniques for software field studies,” Empirical software
engineering, vol. 10, no. 3, pp. 311–341, 2005.

[107] D. S. Cruzes and T. Dyba, “Recommended steps for thematic synthesis
in software engineering,” in 2011 international symposium on empirical
software engineering and measurement, IEEE, 2011, pp. 275–284.

161

[108] A. Hess, P. Diebold, and N. Seyff, “Understanding information needs of
agile teams to improve requirements communication,” Journal of Indus-
trial Information Integration, vol. 14, pp. 3–15, 2019.

[109] A. J. Shenhar, D. Dvir, T. Lechler, and M. Poli, “One size does not fit all:
True for projects, true for frameworks,” in Proceedings of PMI research
conference, Project Management Institute, 2002, pp. 14–17.

[110] M. C. Paulk, B. Curtis, M. B. Chrissis, and C. V. Weber, “Capability
maturity model, version 1.1,” IEEE software, vol. 10, no. 4, pp. 18–27,
1993.

[111] D. N. Card, “Research directions in software process improvement,” in
Proceedings of the 28th Annual International Computer Software and
Applications Conference, 2004. COMPSAC 2004., IEEE, 2004, 238–vol.

[112] C. Santana, F. Queiroz, A. Vasconcelos, and C. Gusmão, “Software pro-
cess improvement in agile software development a systematic literature
review,” in 2015 41st Euromicro Conference on Software Engineering
and Advanced Applications, IEEE, 2015, pp. 325–332.

[113] O. Salo, “Enabling software process improvement in agile software devel-
opment teams and organisations,” PhD dissertation, University of Oulu,
Finland, 2006.

[114] T. Dingsøyr and T. Dyb̊a, “Team effectiveness in software development:
Human and cooperative aspects in team effectiveness models and pri-
orities for future studies,” in 2012 5th international workshop on co-
operative and human aspects of software engineering (chase), IEEE, 2012,
pp. 27–29.

[115] K. S. Rubin, Essential Scrum: A practical guide to the most popular Agile
process. Addison-Wesley, 2012.

[116] M. Zarour, A. Abran, J.-M. Desharnais, and A. Alarifi, “An investigation
into the best practices for the successful design and implementation of
lightweight software process assessment methods: A systematic literature
review,” Journal of Systems and Software, vol. 101, pp. 180–192, 2015.

[117] M. Hummel, C. Rosenkranz, and R. Holten, “The role of communication
in agile systems development,” Business & Information Systems Engi-
neering, vol. 5, no. 5, pp. 343–355, 2013.

[118] H. Karhatsu, M. Ikonen, P. Kettunen, F. Fagerholm, and P. Abrahams-
son, “Building blocks for self-organizing software development teams a
framework model and empirical pilot study,” in 2010 2nd International
Conference on Software Technology and Engineering, IEEE, vol. 1, 2010,
pp. 297–304.

[119] V. Stray, N. Moe, and A. Aurum, “Investigating daily team meetings in
agile software projects,” in 2013 39th Euromicro Conference on Software
Engineering and Advanced Applications, Los Alamitos, CA, USA: IEEE
Computer Society, 2012, pp. 274–281. doi: 10.1109/SEAA.2012.16.

[120] V. Stray, N. B. Moe, and D. I. Sjoberg, “Daily stand-up meetings: Start
breaking the rules,” IEEE Software, vol. 37, no. 03, pp. 70–77, 2018.

[121] C. Matthies, “Playing with your project data in scrum retrospectives,” in
2020 IEEE/ACM 42nd International Conference on Software Engineer-
ing: Companion Proceedings (ICSE-Companion), IEEE, 2020, pp. 113–
115.

162

https://doi.org/10.1109/SEAA.2012.16

[122] R. E. Kraut and L. A. Streeter, “Coordination in software development,”
Communications of the ACM, vol. 38, no. 3, pp. 69–81, 1995, issn: 0001-
0782. doi: 10.1145/203330.203345.

[123] S. Kauffeld and N. Lehmann-Willenbrock, “Meetings matter: Effects of
team meetings on team and organizational success,” Small group re-
search, vol. 43, no. 2, pp. 130–158, 2012.

[124] M. Pikkarainen, J. Haikara, O. Salo, P. Abrahamsson, and J. Still, “The
impact of agile practices on communication in software development,”
Empirical Software Engineering, vol. 13, no. 3, pp. 303–337, 2008.

[125] P. Caroli and T. C. Coimbra, Funretrospectives: Activities and Ideas for
Making Agile Retrospectives More Engaging. Leanpub, Layton, 2015.

[126] M. Jovanović, A.-L. Mesquida, N. Radaković, and A. Mas, “Agile retro-
spective games for different team development phases,” Journal of Uni-
versal Computer Science, vol. 22, no. 12, pp. 1489–1508, 2016.

[127] C. Ziftci and J. Reardon, “Who broke the build? automatically iden-
tifying changes that induce test failures in continuous integration at
google scale,” in 2017 IEEE/ACM 39th International Conference on
Software Engineering: Software Engineering in Practice Track (ICSE-
SEIP), IEEE, 2017, pp. 113–122.

[128] E. Derby, D. Larsen, and K. Schwaber, Agile retrospectives: Making good
teams great. Pragmatic Bookshelf, 2006.

[129] C. R. Pandian, Software metrics: A guide to planning, analysis, and
application. Auerbach Publications, 2003.

[130] K. M. Bumbary, “Using velocity, acceleration, and jerk to manage agile
schedule risk,” in 2016 International Conference on Information Systems
Engineering (ICISE), IEEE, 2016, pp. 73–80.

[131] H. Sedehi and G. Martano, “Metrics to evaluate & monitor agile based
software development projects-a fuzzy logic approach,” in 2012 Joint
Conference of the 22nd International Workshop on Software Measure-
ment and the 2012 Seventh International Conference on Software Process
and Product Measurement, IEEE, 2012, pp. 99–105.

[132] A.-L. Mesquida, J. Jovanović, M. Jovanović, and A. Mas, “Agile soft-
ware process improvement: A collaborative game toolbox,” IET Software,
vol. 13, no. 2, pp. 106–111, 2019.

[133] I. van de Weerd and S. Brinkkemper, “Meta-modeling for situational
analysis and design methods,” in Handbook of research on modern sys-
tems analysis and design technologies and applications, IGI Global, 2009,
pp. 35–54.

[134] P. Kua, The retrospective handbook. Leanpub, Victoria, Canada, 2013.
[135] B. W. Tuckman, “Developmental sequence in small groups.,” Psycholog-

ical bulletin, vol. 63, no. 6, p. 384, 1965.
[136] S. Beecham, P. O’Leary, S. Baker, I. Richardson, and J. Noll, “Making

software engineering research relevant,” Computer, vol. 47, no. 4, pp. 80–
83, 2014.

[137] M. Unterkalmsteiner, T. Gorschek, A. M. Islam, C. K. Cheng, R. B.
Permadi, and R. Feldt, “Evaluation and measurement of software process
improvement—a systematic literature review,” IEEE Transactions on
Software Engineering, vol. 38, no. 2, pp. 398–424, 2011.

163

https://doi.org/10.1145/203330.203345

[138] E. M. Rogers, A. Singhal, and M. M. Quinlan, “Diffusion of innovations,”
in An integrated approach to communication theory and research, Rout-
ledge, 2014, pp. 432–448.

[139] F. D. Davis, “Perceived usefulness, perceived ease of use, and user ac-
ceptance of information technology,” MIS quarterly, pp. 319–340, 1989.

[140] B. C. Hardgrave, F. D. Davis, and C. K. Riemenschneider, “Investigating
determinants of software developers’ intentions to follow methodologies,”
Journal of management information systems, vol. 20, no. 1, pp. 123–151,
2003.

[141] J. Iivari, “Why are case tools not used?” Communications of the ACM,
vol. 39, no. 10, pp. 94–103, 1996.

164

Appendix A

Invitation to participate

This appendix presents an invitation for participants to present in this re-
search.

165

Invitation to participate in a research project on requirements documentation in large-scale agile
software development projects.

We invite you to participate in a research project that aims to explore how documentation is shaped
by requirements engineering activities in multi-team software development projects that adopt agile
methods like Scrum, Kanban, SAFe, Scrum@Scale, LeSS, etc.

The objectives of the study are:

• To explore the variations in how large software teams adopt agile methods across different

organisations.

• To study how requirements engineering activities are conducted in scaled agile software

development approaches. Insights into the RE activities allows us to analyse the current state

of documentation artefacts within the project.

• To propose a framework and recommendations to address the identified documentation

challenges and to improve documentation practices.

This study is conducted by the student researcher Agnes Wadee, as part of the master thesis for MSc.

Business Informatics at Utrecht University, and supervised by Dr. Fabiano Dalpiaz.

What does participation in the study involve?

Participation in the study involves one 45 to 60-minute interview per participant with the researcher.

The interview may be conducted online or offline. In addition, documentation analysis on sample

documentation artefacts with non-sensitive data will be conducted to study the requirements

engineering documentation in the project. We ensure strict confidentiality standards while analysing

the documentation.

What are the criteria for participation?

Participating projects are required to meet the following criteria:

1. A multi-team software project that consists of at least two teams, each team having at least

five members.

2. The team should be using an agile software development method. This could be pure agile

methods such as Scrum, Kanban, XP, etc. Scaled-agile methods such as SAFe, LeSS, Disciplined

Agile Delivery, etc. Or an internally created method using a combination of agile activities

with other traditional project management methods.

3. The project should concern the development of a software product or service.

4. The commitment to participate in at least 2 interviews per team with senior team members

(e.g., scrum master, lead developer, lead architect, lead tester), and one interview with the

project manager.

5. The willingness to share sample documentation artefacts with non-sensitive data with the

assurance that this information will be handled confidentially and anonymised before analysis

and writing of findings.

What is in it for you/your organisation?
Your organisation and the members of the participating project(s) will enjoy the benefits of obtaining
insights into their agile development approach, requirements engineering activities and the impact of
RE activities on documentation. Not only will these insights be based on the collected data from your
organisation, but also the anonymised shared data from the analysis of other participating projects.
For example, best practices and lessons learnt can be shared from these insights as a learning

opportunity for your organisation. Also, the challenges of documentation in large scale agile software
projects will be analysed for giving recommendations. A framework will be designed to improve the
documentation practises in this context and may help improve the state of documentation artefacts
and documentation practices in your projects.

Additional information

Participation in the study is voluntary, and the participants can withdraw from the study at any time

without consequences. If you agree to participate, you will receive a consent form to be signed. Data

confidentiality is guaranteed by keeping the data within the research team, and by using

anonymization and pseudonymisation techniques. For more details, see Consent Form.pdf

Interested to participate?

If you are interested in participating in the research, or should you have any questions, please reach

out to us via e-mail.

Looking forward to hearing from you!

Kind regards,
Agnes Wadee Dr. Fabiano Dalpiaz
a.a.wadee@students.uu.nl f.dalpiaz@uu.nl

Appendix B

Consent form

In this appendix, the consent form is presented.

168

Informed consent form

The research project:

Title: Exploring Requirements Engineering Practices in Agile Software Development in Large

Software Organisations with focus on documentation

Researchers and responsible institution:
Agnes Wadee (Thesis researcher, Utrecht University),
Dr. Fabiano Dalpiaz (First Supervisor, Utrecht University)

Project Description:
This research is conducted as part of the requirements of the master’s thesis in Business Informatics
at the Department of Information and Computing Sciences, Utrecht University. The main research
question of the study is phrased as: “How is documentation impacted by Requirements Engineering
practices in Agile Software Development in Large Software Organisations?”.

The purpose of the research is threefold:

1. We aim to gather empirical evidence of the variation of agile development methods in large
software projects, i.e., how agile is adopted differently in large-scale software projects. Data
concerning the employed requirements engineering (RE) practices are collected to study the
use of RE in large scale agile software development as well as the impact of RE activities on
documentation.

2. Insights into the RE activities allows us to study the current state of documentation artefacts
within the project. Documentation in the context of this research includes both formal
documentation such as specification documents, but also semi-formal and/or informal
documentation such as the product backlog, sprint backlog, user stories, bugs descriptions,
etc. With these, we seek to analyse the challenges facing RE-related documentation in large
scale agile software development.

3. We propose a framework and recommendations to address these challenges and improve
documentation practices.

Contact person (name, email, phone number):
Agnes Wadee (a.a.wadee@students.uu.nl), Dr Fabiano Dalpiaz (f.dalpiaz@uu.nl)

Participation in the project includes:

- At least 2 interviews per team with senior team members (e.g., scrum master, lead

developer, lead architect, lead tester), and one interview with the project manager.

- Documentation analysis of sample documentation artefacts.

Voluntary participation:

Participation is entirely voluntary, and the participant, team, and/or project may withdraw from the

study at any time without any negative consequences. In that case, we will inform you about what

will happen with the collected data up to the point of withdrawal.

Data confidentiality

Measures will be taken to ensure the confidentiality and anonymity of any data collected in this

study. The transcripts and recorded interviews will be kept securely and not be released to any third

party other than the first supervisor and researcher. Information on the participation and non-

participation of any participating party will be kept confidentially. Pseudonyms will be used for

names of participants, names of projects and/or teams, stakeholders, name and company of clients,

and any unique identifier of the software product such as the name of the product. If an internally

created method is used, the name of the method, if unique to the company may be pseudo-coded

upon request. Your organisation and/or the participating projects have the right to review the

information gathered from their project to be published in the thesis for the purpose of data

protection compliances.

Further use of the data

I consent to having my data anonymised for use by the aforementioned research team at the

Department of Information and Computing Sciences, Utrecht University, for the purpose of this

research only.

I hereby confirm with my signature that my questions have been satisfactorily answered by the

contact person and that I have read and understood the terms of this consent and participate

voluntarily in this project.

Participant

Name, first name:

Place, date, signature:

Contact person

Name, first name:

Place, date, signature:

Appendix C

Questions for
semi-structured interview -
Type 1

The following questions are used as a guide for the first problem orientation
interviews with the project manager.

Prior to the interview

• Ensure consent form has been signed.

• Ask what development method is used in the project for preparation. If
it is a standard method, prepare a picture of this method for discussion.

• If available, have documentation on SD method available for the meeting.

Introduction

• Build rapport with the participant.

• Introduce the research project.

• Introduce the interview: in this meeting, we will be discussing your project,
the software development methodology as well as how documentation is
used within this project.

• Ask for permission to record the meeting.

Project Information

• Can you give me an overview of your project?

• What is your role in the project?

• Can you briefly explain your main responsibilities as a ¡project manager¿
in the project?

• What is the duration of the project?

• In which stage of the SDLC is the project?

171

Team Information

• How many teams are there in the project?

• How are the teams formed?

• Which roles does each team comprises of?

• How many people are there per team?

• Are the teams located in the same location?

• In which ways do the teams communicate when gathering and clarifying
requirements?

• Are there any channels (tools) used to support the communication between
teams?

• How do the teams communicate and align the (functionality, infrastruc-
ture) with each other?

• Are there activities for the team managers (scrum masters) to align the
requirements and progress of the teams (for example, scrum of scrums)?

• How do the teams communicate with the client?

Agile development methods

• How many teams are there in the project?

• What software development methods are you using within the project?

• Can you briefly describe how the (type of method) is used in the project?

• How does (name of project) deviate from the (agile method)?

• Is there documentation on how this method is implemented within (com-
pany name) or the project?

Problem orientation

• What kind of documentation and tools are used to elicit (gather) require-
ments in the project?

• What kind of documentation and tools are used to analyse the require-
ments in activities such as prototyping, modelling, writing the test plan
in the project?

• What kind of documentation and tools are used to document (specify) the
agreed requirements in the project?

• How are the agreed requirements validated with the client?

• To what extent do you find that the changes in requirements are reflected
in the documentation?

• Who is responsible for writing and maintaining these documentation?

• Are there standardised templates for the documentation? Is the type of
documentation standardised across the project teams, or do they differ
per team?

172

• Which documentation is shared across teams? (Both formal and informal
artefacts)

• Which kind of documentation is not standardised by the project and differs
per team?

Closing

• Thank the participant for his/her time and contribution.

• Get information on who to interview next within the team or project.

• Any open questions.

173

Appendix D

Questions for
semi-structured interview -
Type 2

174

Interview questions type 2
Prior to the interview

• Ensure the consent form has been signed.
• Send the process model for review and preparation

Introduction
• Build rapport with the participant (how are you doing?, etc.)
• Introduce the research project
• Introduce the interview: in this meeting, we will be discussing how documentation is used

within this project and the state of these documentation. (Discussions do not have any
implication on your job at <company name>, the purpose of this meeting is solely for the
purpose of the research)

• Permission to record the meeting: To begin, I would like to ask if you do not object to
recording this meeting.

Participant Information
• Can you briefly introduce yourself and your role in this project?

Requirements engineering practices
• For the first part of this interview, we will discuss the activities in the process model and

how your work relates to it. [check for missing activity, artefacts, flow, etc.]
• [If the rationale of use is not yet known] Now that we have understood the process

flow, why is <documentation> used in the project?
• What are the main documentation relevant to your activities? (both formal and informal

artefacts) (for the context of this interview)
• Which documentation do you use during those activities? [naming specific

activities]
• Which documentation do you contribute to during those activities?
• Which documentation are you responsible for?

• Other open questions from the previous interview

Documentation artefacts
Information content (What): captures the issues of what is written in the documentation[2].
Correctness, completeness, up-to-dateness
Correctness ensures that the information provided in the documentation is precise and in
accordance with the facts [98].

• How do you ensure that the user stories are written precisely?
• How do you ensure that the user stories adhere to the given template?
• How do you ensure that the requirements documents are written precisely?
• How do you ensure that the requirements documents adhere to the given template?

• [Is there any difference in] how you ensure that the design documentation is written
precisely?

• [Is there any difference in] how you ensure that the design documentation adheres
to the given template?

• [Is there any difference in] how you ensure that the test cases are written
precisely? [Is there any difference in] How you ensure that the test cases adhere to
the given template?

• In your opinion, which documentation is the most problematic to keep correct? (And why?)
Completeness ensures that the documentation provides the information needed by stakeholders
about the system or its modules to perform their tasks [98].

• Are all the requirements in the documentation, or are there other (unwritten) sources? (Is
the <documentation> complete without any missing information?)

• Is that the same situation for the design documentation?
• Is that the same situation for the test documentation?

• How accurate and complete are the references to other documentation in the user story in
Azure DevOps?

Up-to-dateness ensures that the documentation is in sync with the other parts of the system [2]. A
major difference with the other two criteria is the information can be correct and complete prior to
the introduction of a change [2].

• Is the documentation consistent with the working software/ product increment?
• Do you know of any functionality in the code that is not yet documented?
• Do you think that the documentation is sufficient to extend or maintain the application?
• (Only if they have translations) Are there any translations in the documentation that are

outdated?
• What are some of the challenges faced when ensuring documentation is kept up-to-date?
• Is it easy to trace the versioning and updates of the documentation?

Information content (How) discusses problems relating to the writing style and organisation of
documentation [2].
Maintainability, readability, usability, usefulness
Maintainability refers to the degree of ease to apply changes to documentation [2].

• Can the requirements be found in many sources or is there only one source of truth?
(duplicates)

• Is this situation the same for the test cases?
• Is this situation the same for the design specifications/architecture documentation?

• How easy is it to add changes to the requirements documentation (including the user
stories)? Do you also have to update other documentation?

• Is this situation the same for the test cases?
• Is this situation the same for the design specifications/architecture documentation?

• Is there a process in place to know how a change in one documentation such as the
(requirements/test cases/ design specification, architecture) impacts the others?

• [if not discussed] What are the challenges of incorporating change requests in the
documentation?

Readability defines the degree of ease to read a document.
• Are there processes in place to review documentation and ensure that they are clear to

read?
• In your opinion, how concise are the contents of the documentation?

Usability “Usability of documentation refers to the degree to which it can be used by readers to
achieve their objectives effectively” [2, p. 1205].

• Are there any issues faced when using Azure DevOps/other tools such as drawing programs
to write documentation? If so, what are the workarounds

• Is it difficult for the project members and the client to find information in the various
documentation?

• Do writers adhere to the best practices and templates for writing the documentation?
• Are there processes in place to ensure shared documentation is maintained correctly by

both teams? (If any shared documentation)
Usefulness defines whether the documentation “is of practical use to its readers” [2, p. 1205].
Feedback from various stakeholders is therefore crucial to ensure useful documentation [2].

• Are there processes in place to encourage the various stakeholders to review and give
feedback on the documentation?

• How is feedback planned and incorporated into the documentation process?
Process-related discusses issues relating to the documentation process. The sub-categories are
internationalisation, contribution to documentation, doc-generator configuration, development
issues caused by documentation, and traceability.

• (If there is a need for translation) what are the difficulties faced in translating and reviewing
the translation of the documents?

• Are there processes in place to ensure the planning of documentation to ensure it is not
forgotten due to lack of time?

• Is there a process in place to report issues found in documentation? (Are there issues found
in the documentation assigned a priority?)Is there support in place for external contributors
to the documentation (such as clients)?

• Is any of the documentation automatically generated?
• What are the challenges facing the process of writing documentation?
• What is going well with regards to the documentation process in your opinion?
•

Closing
• Thank the participant for his/her time and contribution
• Any open questions?

Appendix E

Consent form of
experimental study

In this appendix section, we present the consent form for the participants of the
experiment.

178

Introduction

Dear participant,
Thank you for participating in this research thus far!
The purpose of this survey is to gather your perceptions of the
application of the DIFFC model within your team during the past
sprint.

This is a short survey and will take approximately 6-8 minutes of your
time. Please answer all the required questions. You may press 'Next' to
continue.

Kind regards,
 Agnes Wadee

Planning phase

These questions relate to your perceptions of the effectiveness of the
use Planning Phase of the DIFFC model during the Sprint Planning of
Sprint 27.

Ease of use

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

I found it easy to apply
the Planning Phase of the
DIFFC model to the Sprint
Planning.

Productivity

Quality

Usefulness

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

The guidelines provided
by the Planning Phase
were clear and
understandable.

I found it easy to adapt
the guidelines of the
Planning Phase to the
Sprint Planning.

It was easy for me to
become skilful at using
the guidelines of the
Planning Phase.

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

The use of the Planning
phase has sped up the
process of updating
documentation within the
past sprint.

The use of the Planning
phase has made
documentation more
measurable within the
past sprint.

The use of the Planning
Phase has increased my
productivity with regard to
keeping documentation
up-to-date.

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

The use of the Planning
Phase has enhanced the
quality of documentation
during the past sprint.

The use of the Planning
Phase has minimised the
issue of forgotten
documentation during the
past sprint.

The use of the Planning
Phase has clarified
exactly what needs to be
documented per user
story.

The use of the Planning
Phase has improved the
overall quality of the
Sprint Planning.

The use of the Planning
Phase has made me
more aware of
documentation quality.

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

Use

Any other remarks on the Planning Phase:

Monitoring phase

These questions relate to your perceptions of the effectiveness of the
use Monitoring Phase of the DIFFC model during the Daily Stand-ups
of Sprint 27.

Ease of use

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

Using the Planning Phase
improved the overall state
of documentation within
the past sprint.

Using the Planning Phase
added more structure to
the way we approach
documentation as a team.

The Planning phase
integrated well into our
way of working as a team.

I found the guidelines
prescribed by the
Planning Phase useful to
my job.

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

I would keep using the
activities of the Planning
Phase within my team.

I would recommend the
guidelines of the Planning
Phase to other teams
within the company.

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

I found it easy to apply
the Monitoring Phase of
the DIFFC model to the
Daily Stand-up meetings.

Productivity

Quality

Usefulness

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

The guidelines provided
by the Monitoring Phase
were clear and
understandable.

I found it easy to adapt
the guidelines of the
Monitoring Phase to the
Daily Stand-up meetings.

It was easy for me to
become skilful at using
the guidelines of the
Monitoring Phase.

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

The use of the Monitoring
phase has sped up the
process of updating
documentation within the
past sprint.

The use of the Monitoring
phase has made
documentation more
measurable within the
past sprint.

The use of the Monitoring
Phase has increased my
productivity with regard to
keeping documentation
up-to-date.

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

The use of the Monitoring
Phase has enhanced the
quality of documentation
during the past sprint.

The use of the Monitoring
Phase has minimised the
issue of forgotten
documentation during the
past sprint.

The use of the Monitoring
Phase has improved the
overall quality of the Daily
Stand-up meetings.

The use of the Monitoring
Phase has made me
more aware of
documentation quality.

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

Using the Monitoring
Phase improved the
overall state of
documentation within the
past sprint.

Use

Any other remarks on the Monitoring Phase:

Reflecting phase

These questions relate to your perceptions of the effectiveness of the
use Reflecting Phase of the DIFFC model during the Retrospective of
Sprint 26 and 27.

Ease of use

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

Using the Monitoring
Phase added more
structure to the way we
approach documentation
as a team.

The Monitoring Phase
integrated well into our
way of working as a team.

I found the guidelines
prescribed by the
Monitoring Phase useful
to my job.

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

I would keep using the
activities of the Monitoring
Phase within my team.

I would recommend the
guidelines of the
Monitoring Phase to other
teams within the
company.

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

I found it easy to apply
the Reflecting Phase of
the DIFFC model to the
Retrospective sessions.

Productivity

Quality

Usefulness

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

The guidelines provided
by the Reflecting Phase
were clear and
understandable.

I found it easy to adapt
the guidelines of the
Reflecting Phase to the
Retrospective sessions.

It was easy for me to
become skilful at using
the guidelines of the
Reflecting Phase.

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

The use of the Reflecting
phase has sped up the
process of updating
documentation within the
past sprint.

The use of the Reflecting
phase has made
documentation more
measurable within the
past sprint.

The use of the Reflecting
Phase has increased my
productivity with regard to
keeping documentation
up-to-date.

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

The use of the Reflecting
Phase has enhanced the
quality of documentation
during the past sprint.

The use of the Reflecting
Phase has minimised the
issue of forgotten
documentation during the
past sprint.

The use of the Reflecting
Phase has improved the
overall quality of the
Retrospective sessions.

The use of the Reflecting
Phase has made me
more aware of
documentation quality.

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

Using the Reflecting
Phase improved the
overall state of
documentation within the
past sprint.

Powered by Qualtrics

Use

Any other remarks on the Reflecting Phase:

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

Using the Reflecting
Phase added more
structure to the way we
approach documentation
as a team.

The Reflecting Phase
integrated well into our
way of working as a team.

I found the guidelines
prescribed by the
Reflecting Phase useful to
my job.

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

I would keep using the
activities of the Reflecting
Phase within my team.

I would recommend the
guidelines of the
Reflecting Phase to other
teams within the
company.

Appendix F

Emailed guidelines for
experiment

In this appendix section, we present an overview of the email with guidelines
that was sent to the Scrum Masters and/or Scrum Master representative of each
team.

186

Dear [Scrum Master],
Thank you once again for your wiliness to help out in the validation research. Here is some additional
information about the observations from next week.

2. In the Sprint Planning, the team will incorporate the following into the existing process.
For each user story:

a. Define the scope of the documentation
b. Define documentation task(s)
c. Estimate and assign documentation tasks (responsible, and reviewer)

I will be observing the Sprint Planning scheduled for next week
3. In the Daily-Stand-up, as progress on user stories and tasks are already been reported upon,

the team will incorporate the reporting of progress on:
a. Documentation tasks
b. Tasks dependencies hindering the progress of documentation task
c. Process improvement actions (from the retrospective)

4. In the Retrospectives, the team will incorporate the following:
a. Discussing perceptions of the previous sprint (this is already being done)
b. Gathering data. For each of your teams, would you be able to decide on a subject for

discussion?, for example ‘Reducing documentation debt’,
Then, gather some data on the documentation debt on the backlog?

c. Afterwards, you can visualise the data for the retrospective.
d. Then, during the retrospective, we will use the game-based approach to stimulate

idea generation.
Lastly, if an activity from these phases already exists, it does not need to be introduced again.

I will be observing the meetings and taking notes (and not recording, so the team may speak
freely ѮѯѰѱ), so I will be available for questions.

In this link, a consent form is provided for all participants, please have a look at it and I will
appreciate if you can forward it to your team, so they can fill it in before the first observation.
Here is a link to the consent form https://survey.uu.nl/jfe/form/SV_3xagw6Us324slwO

Kind regards,
Agnes Wadee

Appendix G

Prepared Retrospective
Board using the
Role-Expectation Matrix
game

Figure G.1: A screenshot of the Retrospective board for sprint n.

188

Appendix H

Validation Survey

In this appendix section, we present the validation survey for the participants.

189

Introduction

Dear participant,
Thank you for participating in this research thus far!
The purpose of this survey is to gather your perceptions of the
application of the DIFFC model within your team during the past
sprint.

This is a short survey and will take approximately 6-8 minutes of your
time. Please answer all the required questions. You may press 'Next' to
continue.

Kind regards,
 Agnes Wadee

Planning phase

These questions relate to your perceptions of the effectiveness of the
use Planning Phase of the DIFFC model during the Sprint Planning of
Sprint 27.

Ease of use

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

I found it easy to apply
the Planning Phase of the
DIFFC model to the Sprint
Planning.

Productivity

Quality

Usefulness

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

The guidelines provided
by the Planning Phase
were clear and
understandable.

I found it easy to adapt
the guidelines of the
Planning Phase to the
Sprint Planning.

It was easy for me to
become skilful at using
the guidelines of the
Planning Phase.

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

The use of the Planning
phase has sped up the
process of updating
documentation within the
past sprint.

The use of the Planning
phase has made
documentation more
measurable within the
past sprint.

The use of the Planning
Phase has increased my
productivity with regard to
keeping documentation
up-to-date.

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

The use of the Planning
Phase has enhanced the
quality of documentation
during the past sprint.

The use of the Planning
Phase has minimised the
issue of forgotten
documentation during the
past sprint.

The use of the Planning
Phase has clarified
exactly what needs to be
documented per user
story.

The use of the Planning
Phase has improved the
overall quality of the
Sprint Planning.

The use of the Planning
Phase has made me
more aware of
documentation quality.

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

Use

Any other remarks on the Planning Phase:

Monitoring phase

These questions relate to your perceptions of the effectiveness of the
use Monitoring Phase of the DIFFC model during the Daily Stand-ups
of Sprint 27.

Ease of use

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

Using the Planning Phase
improved the overall state
of documentation within
the past sprint.

Using the Planning Phase
added more structure to
the way we approach
documentation as a team.

The Planning phase
integrated well into our
way of working as a team.

I found the guidelines
prescribed by the
Planning Phase useful to
my job.

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

I would keep using the
activities of the Planning
Phase within my team.

I would recommend the
guidelines of the Planning
Phase to other teams
within the company.

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

I found it easy to apply
the Monitoring Phase of
the DIFFC model to the
Daily Stand-up meetings.

Productivity

Quality

Usefulness

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

The guidelines provided
by the Monitoring Phase
were clear and
understandable.

I found it easy to adapt
the guidelines of the
Monitoring Phase to the
Daily Stand-up meetings.

It was easy for me to
become skilful at using
the guidelines of the
Monitoring Phase.

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

The use of the Monitoring
phase has sped up the
process of updating
documentation within the
past sprint.

The use of the Monitoring
phase has made
documentation more
measurable within the
past sprint.

The use of the Monitoring
Phase has increased my
productivity with regard to
keeping documentation
up-to-date.

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

The use of the Monitoring
Phase has enhanced the
quality of documentation
during the past sprint.

The use of the Monitoring
Phase has minimised the
issue of forgotten
documentation during the
past sprint.

The use of the Monitoring
Phase has improved the
overall quality of the Daily
Stand-up meetings.

The use of the Monitoring
Phase has made me
more aware of
documentation quality.

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

Using the Monitoring
Phase improved the
overall state of
documentation within the
past sprint.

Use

Any other remarks on the Monitoring Phase:

Reflecting phase

These questions relate to your perceptions of the effectiveness of the
use Reflecting Phase of the DIFFC model during the Retrospective of
Sprint 26 and 27.

Ease of use

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

Using the Monitoring
Phase added more
structure to the way we
approach documentation
as a team.

The Monitoring Phase
integrated well into our
way of working as a team.

I found the guidelines
prescribed by the
Monitoring Phase useful
to my job.

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

I would keep using the
activities of the Monitoring
Phase within my team.

I would recommend the
guidelines of the
Monitoring Phase to other
teams within the
company.

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

I found it easy to apply
the Reflecting Phase of
the DIFFC model to the
Retrospective sessions.

Productivity

Quality

Usefulness

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

The guidelines provided
by the Reflecting Phase
were clear and
understandable.

I found it easy to adapt
the guidelines of the
Reflecting Phase to the
Retrospective sessions.

It was easy for me to
become skilful at using
the guidelines of the
Reflecting Phase.

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

The use of the Reflecting
phase has sped up the
process of updating
documentation within the
past sprint.

The use of the Reflecting
phase has made
documentation more
measurable within the
past sprint.

The use of the Reflecting
Phase has increased my
productivity with regard to
keeping documentation
up-to-date.

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

The use of the Reflecting
Phase has enhanced the
quality of documentation
during the past sprint.

The use of the Reflecting
Phase has minimised the
issue of forgotten
documentation during the
past sprint.

The use of the Reflecting
Phase has improved the
overall quality of the
Retrospective sessions.

The use of the Reflecting
Phase has made me
more aware of
documentation quality.

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

Using the Reflecting
Phase improved the
overall state of
documentation within the
past sprint.

Powered by Qualtrics

Use

Any other remarks on the Reflecting Phase:

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

Using the Reflecting
Phase added more
structure to the way we
approach documentation
as a team.

The Reflecting Phase
integrated well into our
way of working as a team.

I found the guidelines
prescribed by the
Reflecting Phase useful to
my job.

Strongly agree

Somewhat
agree

Neither agree
nor disagree

Somewhat
disagree

Strongly
disagree

I would keep using the
activities of the Reflecting
Phase within my team.

I would recommend the
guidelines of the
Reflecting Phase to other
teams within the
company.

	Introduction
	Problem Statement
	Research Questions and Objectives
	Expected Contributions
	Thesis Outline

	Related Literature
	The Software Development Life Cycle
	Evolution of Software Development Methods

	Agile Development Methods
	EXtreme Programming (XP)
	Scrum
	Kanban
	Feedback in ASD

	Agile Requirements Engineering
	Agile RE Practices
	Challenges of Agile RE Practices

	Agile Methods in Large Software Organisations
	Scaled Agile Framework (SAFe)
	Disciplined Agile Delivery (DAD)
	Agile Scaling Method (ASM)
	Large-Scale Scrum (LeSS)
	Scrum@Scale (S@S)
	Internally Created Methods
	Comparison of scaled agile methods

	Software Documentation Practices
	Benefits of Documentation
	Challenges Concerning Documentation
	Artefacts in ASD
	Documentation Practices in ASD
	Guidelines on Agile Documentation
	Tools for Documentation in ASD

	Conclusion

	Research Methods
	Research objective
	A Design Science Approach
	Research Context
	Case Selection
	Overview of selected cases

	Data Collection
	Data Collection Procedure
	Pilot Study

	Data Analysis
	Semi-structured interviews
	Documentation analyses
	Treatment validation experiment

	Case Descriptions
	Introduction to the Cases
	P1: Education
	P2: Civil Engineering

	Agile method
	Roles
	Processes
	Tools

	RE Activities
	Elicitation
	Analysis
	Specification
	Validation
	Requirements Management

	Documentation Artefacts
	Conclusion

	Problem Investigation
	Information Content (What)
	Correctness
	Completeness
	Up-to-dateness

	Information Content (How)
	Maintainability
	Readability
	Usability
	Usefulness

	Process Related
	Conclusion

	Treatment Design
	Variations in Scaled ASD Projects
	Software Process Improvement (SPI) in ASD
	Process Improvement via Informal Interactions
	The Challenges Associated with Feedback Cycles
	Documentation Improvement Framework via Feedback Cycles (DIFFC)
	DIFFC for Practitioners
	DIFFC for Science
	Retrospective Games

	Conclusion

	Treatment Validation
	Research Approach
	Experimental Setup
	Experimental Execution
	Validation Survey

	Findings (Longitudinal study)
	Retrospective Sprint n (26)
	Sprint Planning Sprint n + 1 (27)
	Daily Scrum meetings Sprint n+1 (27)
	Retrospective Sprint n + 1 (27)

	Findings (Preliminary study)
	Results: Measure of effectiveness of the DIFFC model
	Ease of use
	Productivity
	Quality
	Usefulness
	Use
	Pre-Post Comparison
	Evaluation of Hypotheses
	Conclusion

	Conclusions
	Answers to Research Questions
	SRQ1: How is Agile Software Development (ASD) adopted within a multi-team software project?
	SRQ2: Which requirements engineering practices can be identified in the adopted ASD approach?
	SRQ3: Which kinds of documentation artefacts are used for the various requirements engineering practices within the ASD approach?
	SRQ4: What is the current state of the identified documentation (from SRQ3) within the project?
	SRQ5: What is the impact of requirements change on the identified documentation (from SRQ3) within the project?
	SRQ6: What framework can be used to address documentation issues by improving documentation practices in multi-team software projects?
	SRQ7: What is the effectiveness of the proposed framework from SRQ6?

	Implications for Research and Practitioners
	Implications for Future Work

	Discussions
	Research Limitations

	Invitation to participate
	Consent form
	Questions for semi-structured interview - Type 1
	Questions for semi-structured interview - Type 2
	Consent form of experimental study
	Emailed guidelines for experiment
	Prepared Retrospective Board using the Role-Expectation Matrix game
	Validation Survey

