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Abstract 

Public urban green spaces (PUGSs) are a vital part of cities. They have a positive influence on the 

ecosystem and the well-being of local citizens. This is widely recognizable now with the United Nations 

(UN) mentioning public urban green spaces accessibility in their Sustainable Development Goals (SDG). 

To make the most of PUGSs, create them, and manage them sustainably we need to understand them 

and their spatial and temporal characteristics better. There is also a need for more accessible and 

cheaper PUGSs datasets so that officials and locals can use that in designing more sustainable 

neighbourhoods and cities. While spatial PUGSs data for some cities are available in land use dataset, 

these are often inaccessible to outside researchers, and not updated frequently. Hence there are 

methodological limitations on how PUGS can be created more efficiently for a wider usage. Deep 

learning methods with the usage of satellite images are a great way to achieve that because they can 

capture geometric patterns of land cover types using freely available satellite images of moderate 

spatial and temporal resolution. This study evaluates two convolutional network architectures, U-Net 

and U-Net with a ResNet-34 encoder, for semantic segmentation of PUGSs at a metropolitan level from 

multiple cities worldwide. Open-source data, mainly Sentinel and ground truth data about PUGSs from 

various open data portals are used as an input data. The chosen best model had an average test 

Intersection over Union (IoU) of 0,5610, and average test F1 score of 0,64515 across two external 

cities, which is a moderate to good performance of the deep learning model in detecting PUGSs. 

It shows that this approach is promising to create reliable, new PUGSs datasets that can help officials 

in urban planning. 

 

Keywords: Convolutional Neural Networks, Public Urban Green Spaces, Image Processing, Satellite 
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1. Introduction 

Nowadays more than half of people globally live in cities, and this proportion is expected to increase 

to 68% by 2050 according to United Nations (UN). That is why making our cities healthier to live 

in, by significantly transforming the way we build and manage our public urban green spaces (PUGSs) 

is even more important than before. In 2015 United Nations Development Programme created 

Sustainable Development Goals (SDG) as a “universal call to action to end poverty, protect the planet, 

and ensure that by 2030 all people enjoy peace and prosperity”. Goal 11 is about “Sustainable 

cities and communities”. It highlights that everyone should have universal access to safe, 

inclusive, accessible, green, and public spaces. Therefore, it is important to study PUGS, 

so we get an understanding of how they are exactly influencing neighbourhoods, and how we should 

be transforming our cities to make the most of them.  

PUGS can be studied in various ways using tools and techniques related to GIS, satellite images, 

and recently also machine learning. Spatial delineation of GIS elements (so e.g. PUGSs) has often been 

based on a re-classification of available land cover data combined with information about the natural 

values of each cover class, or by visual interpretation of aerial imagery, remotely sensed data 

interpretation, and manual digitalization (Skokanová et al., 2020). These processes are often costly 

and time-consuming, and they are often outdated due to irregular update frequency. Therefore, 

in the last few years, there have been various studies that try to use different machine learning 

algorithms for the detection of green spaces or landcover classification. Among them are supervised 

maximum likelihood classification used on Sentinel-2A satellite imagery, provided in the frame of the 

European Copernicus program (Kopecká et al., 2017), random forest, and support vector regression 

used on Landsat (Sharifi & Hosseingholizadeh, 2019), and Convolutional Neural Networks (CNN), 

precisely a U-Net architecture and very high resolution (VHR) imagery (Huerta et al., 2021). 

It is especially important because CNNs have recently shown the state of the art performance in high-

level vision tasks, such as image classification and object detection (Chen et al., 2014). Some studies 

implemented CNN with a transfer learning approach. Transfer learning builds upon learned knowledge 

from one dataset to improve learning in another dataset (Wurm et al., 2019). It uses weights 

pre-trained on datasets from other domains to improve learning accuracy and rate for a model 

on a second task (Ulmas & Liiv, 2020).  

When trying to study urban green spaces in a more global approach some studies used datasets that 

are available worldwide, for example, Open Street Map (OSM), and Urban Atlas (Ludwig et al., 2021). 

This information might be outdated quite fast, because of rapid city growth, and updating these 

datasets is costly. There might also be some inconsistencies in these datasets because the definition 
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of urban greenspaces might differ across countries. That’s why there is a need of creating a uniform 

dataset containing urban green spaces. 

The goal of this study is to analyse to what extent can a reproducible CNN model that identifies public 

urban green spaces based on open source data be created. The process involves creating two CNN 

models. One was the baseline U-Net model from scratch, and the other was the U-Net with ResNet34 

backbone (details discussed in Section 2.2) implemented from the Segmentation Models library (Pavel 

Yakubovskiy, 2019) to make use of the transfer learning approach. Sentinel satellite imagery channels 

and vegetation indices calculated from them, European Space Agency (ESA) WorldCover land cover, 

and PUGSs dataset from local open-source portals were used as input data. Updated PUGSs dataset 

at a metropolitan level, created by this study, would improve the understanding of public urban green 

spaces for better urban area management.  

Subsequently, in Section 2 literature review of related studies, and network architectures is presented. 

In Section 3 input data, preprocessing methods, model setup, training, and metrics are described. 

Section 4 presents the results, external test performance, and created PUGS dataset. Section 5 

is a discussion, and this study is concluded in Section 6. 

2. Literature 

2.1 Related work 

The literature on the use of remote sensing data for applications in urban planning, environmental 

science, and others has a long and rich history (Albert et al., 2017). Recently with technological 

advancement and the evolution of deep learning automatization of the acquisition of urban green 

spaces is possible through the detection of spectral and geometric patterns available in satellite 

imagery (Khryaschev & Ivanovsky, 2019).  

Convolutional Networks, precisely a U-Net architecture with ResNet34 and ResNet50 backbone were 

used to study urban green spaces by Huerta et al. (2021). They used very high-resolution satellite 

imagery, WorldView-2 with 0,5m spatial resolution, and focused on one area. They had green, red, and 

NIR bands, and they calculated Normalized Difference Vegetation Index (NDVI), Two-band Enhanced 

Vegetation Index (EVI2), and Normalized Difference Water Index (NDWI) from which they made 

three-band compositions to check which gives the best results. For measuring the model performance, 

they used the F1 score, known also as Dice coefficient, which is often used as a metric to evaluate 

semantic segmentation when there is class imbalance (F1 score is also explained in Section 3.5). They 

found that NDVI–red–NIR composition gave them the best results using the ResNet34 encoder with 
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a F1 score of 0.5748 and an accuracy of 0.9503, and that different band compositions are producing 

models with a different performance level. 

A more global, and open-source approach had Albert et al., (2017). They used convolutional neural 

networks, Google Maps satellite images of 1.2 meters of spatial resolution and the Urban Atlas dataset. 

They used two different architectures – ResNet50 and VGG-16 and found that ResNet50 gave better 

results for their purpose. They also studied the transferability of their models, so the model learned 

on data from one city was applied to another city. They found that the model trained on a diverse set 

(few cities) yielded better performance when applied at different locations than models trained 

on individual cities. They also tested different tile sizes and found that 224x224 was the best tile 

size for them and suggested that images at smaller scales might not capture enough variation in urban 

form. They used only 3 visible bands – green, blue, and red. 

While the previous studies used only spectral bands and combination of indices, GülçiṄ and Akpinar 

(2018)  were doing Object-Based Image Analysis (OBIA) to combine spectral and shape features to map 

urban green spaces. They were extracting the features from orthophoto that had three visible bands 

– blue, green, and red in 10 cm resolution. They also calculated Green-Red Vegetation Index (GRVI). 

The study was focused on one area. They firstly did a segmentation and selected optimal values for 

the main parameters. To combine spectral and shape features, multiresolution segmentation was 

implemented in this research which has been proven to be one of the most successful image 

segmentation algorithms in the OBIA framework, though they did not use a deep learning approach. 

2.2 Neural network architectures 

The typical use of convolutional networks is on classification tasks, where for one input image a single 

or few class labels are the output. Although in many visual tasks, such as this study, desired output 

should include localization, i.e., a class label is supposed to be assigned to each pixel (Ronneberger      

et al., 2015). This is a semantic segmentation approach, and there are at least few different model 

architectures that can be used for such purpose. 

First worth mentioning is Pyramid Scene Parsing Network (PSPNet) created by Zhao et al. (2016), which 

is a semantic segmentation model that utilises a pyramid parsing module, meaning that it has kernels 

of smaller sizes like 3x3 and bigger ones like 6x6, and etc. Pyramid parsing module is applied to harvest 

different sub-region representations, followed by upsampling and concatenation layers to form the 

final feature representation, which carries both local and global context information. Finally, the 

representation is fed into a convolution layer to get the final per-pixel prediction. The local and global 
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clues together make the final prediction more reliable (Zhao et al., 2016). Its architecture is presented 

in Figure 1. 

Second one is LinkNet created by Chaurasia and Culurciello (2017). This network was created to make 

semantic segmentation in real time for tasks such as self-driving vehicles, augmented reality, etc. 

It is achieved by efficiently sharing the information learnt by the encoder with the decoder after each 

downsampling block. This proves to be better than using pooling indices in decoder or just using fully 

convolutional networks in decoder. This feature forwarding technique gives good accuracy values 

(Chaurasia & Culurciello, 2017). Its architecture is presented in Figure 2. 

Third example is a U-Net model architecture. It is a convolutional network that was created for 

biomedical image segmentation by Ronneberger et al. (2015) but various geoscience studies already 

used it for the segmentation or classification of satellite images and achieved good results (Huerta et 

al., 2021; Ulmas & Liiv, 2020; Rakhlin et al., 2018). Its architecture is presented in Figure 3. 

Figure 1 PSPNet architecture (Zhao et al., 2016) 

Figure 2 LinkNet architecture (Chaurasia & Culurciello, 2017). 
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The U-Net architecture is based on a Fully Convolutional Network (FCN) and similarly has symmetric 

encoder–decoder composition. Encoder or sometimes called ‘contracting path’ is on the left side, and 

it’s responsible for capturing context. It follows the typical architecture of a convolutional network, 

and it’s used to detect features on an image. It consists of the repeated application of two 3x3 

convolutions, each followed by a rectified linear unit (ReLU) and a 2x2 max pooling operation with 

stride 2 for downsampling. Each downsampling step doubles the number of feature channels and 

makes the feature maps’ size smaller (Ulmas & Liiv, 2020). 

The second, right part is called a decoder, and it’s responsible for upsampling the feature map to the 

input image’s original size. It consists of a 2x2 convolution (‘up-convolution’) that halves the number 

of feature channels, a concatenation with the correspondingly cropped feature map from the encoder 

part, and two 3x3 convolutions, each followed by a ReLU. The cropping is necessary due to the loss 

of border pixels in every convolution. At the final layer, a 1x1 convolution is used to map each 

64-component feature vector to the desired number of classes. In total U-Net has 23 convolutional 

layers (Ronneberger et al., 2015). The second, decoder part is bringing back the spatial information 

of the input image (Ulmas & Liiv, 2020).  

The biggest advantage of U-Net architecture is that it effectively fuses low-level and high-level image 

features by combining low-resolution and high-resolution feature maps through skip connections. 

That’s why it’s so useful for geoscience and segmentation purposes, or other when we want to have 

the output size that is equal to the inputs’ size and not only labels of the detected features. 

Figure 3 U-net architecture example from Ronneberger et al. (2015) Each blue box corresponds 
to a multi-channel feature map. The number of channels is denoted on top of the box. 

The x-y-size is provided at the lower left edge of the box. White boxes represent 
copied feature maps. The arrows denote the different operations. 
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Some studies tried using a backbone approach, so using different architectures as an encoder in their 

chosen CNN architecture. A backbone network is used to extract basic features for detecting objects, 

and usually designed originally for image classification and pre-trained on the ImageNet dataset. 

If a backbone can extract more representational features, its host detector will perform better 

accordingly. In other words, a more powerful backbone can bring better detection performance (Liang 

et al., 2021). Various studies used this approach of using a pre-trained encoder (backbone) in other 

CNN architecture (Huerta et al. (2021); Ulmas and Liiv (2020); Pollatos et al. (2020), so a combination 

of this approach and transfer learning, and found this to be successful. 

Transfer learning approach allows to use the learning gained in the first task to solve a new, more 

complex task (Ulmas & Liiv, 2020). This approach was mentioned by other studies to yield both better 

performance and faster training times because the network already has learned to recognize basic 

shapes and patterns (Albert et al., 2017). It is executed by using a pre-trained weights as the starting 

values for weights while training model for a second task, and as mentioned earlier it is often done 

by adding an encoder that has pre-trained weights to chosen architecture (Huerta et al. (2021); Ulmas 

and Liiv (2020); Pollatos et al. (2020)). 

Various studies used different model architectures as encoders, ResNet50 was used as an encoder 

in a U-Net architecture by Ulmas and Liiv (2020) and by Pollatos et al. (2020). ResNet34 encoder 

in a U-Net architecture was compared with other encoders and was found the best by Rakhlin et al. 

(2018) and Huerta et al. (2021) for similar to this studies’ tasks. 

ResNet34 is a residual model with 34 layers, which uses a repeating pattern of layer blocks (Figure 4), 

with skip connections. They are to avoid the leak gradient problem, which helps to maintain 

performance and precision despite increases in the number of training layers (He et al., 2015). When 

ResNet34 is used in U-Net architecture as the encoder it is used to detect features on an image, and 

carries out a downsampling process, as in encoder–decoder composition explained earlier. At the point 

of the greatest compression in the network, a decoder is attached that follows the principle of the 

U-Net architecture to finally obtain an output equal in size to the input images’ (Huerta et al., 2021). 

Figure 4 Residual learning: a building block from Resnet architecture (He et al., 2015) 
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3. Data and Methods 

The workflow of the whole methodological process is presented in Figure 5. 

Figure 5 Summary of the current methodological process for semantic segmentation of PUGSs using 
deep learning. Input data in grey. Data preprocessing in blue, CNN model setup and implementation 

in yellow, and evaluation in green. Abbreviation: Public Urban Green Spaces (PUGS). 
Visualisation methods adapted from Huerta et al. (2021) 
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3.1 Study area 

This study was not centred around one particular case study area, instead, it focused on multiple cities 

from across the world with a focus on European, and US cities. The cities, that were used in this study 

are presented in Table 1. Ten cities were used as training cities, two cities, Tel Aviv and Washington, 

were used for external testing, and Kampala was used for prediction. 

Training and validation: 

Number City Name Country Name Coordinates 

1 Amsterdam The Netherlands 52° 22' 40'' N 4° 53' 49'' E 

2 Buffalo USA 42° 52' 48'' N 78° 52' 43'' W. 

3 Dhaka Bangladesh 23° 46' 37 '' N 90° 23' 58'' E 

4 Dublin Ireland 53° 21' 0 '' N 6° 15' 58'' W 

5 Ghent Belgium 51° 2' 59'' N 3° 43' 59'' E 

6 London United Kingdom 51° 30' 35''N 0° 7' 5'' W 

7 Manchester United Kingdom 53° 29' 2'' N 2° 14' 40'' W 

8 Philadelphia USA 39° 57' 9'' N 75° 9' 54'' W 

9 Seattle USA 47° 36' 28'' N 122° 20' 6'' W 

10 Vancouver Canada 49° 14' 46'' N 123° 6' 58'' W 

External testing and prediction: 

1 Tel Aviv Israel 32° 6' 33'' N 34° 51' 19'' E 

2 Washington USA 47° 45' 3'' N 120° 44' 24'' W 

3 Kampala Uganda 0° 20' 51'' N 32° 34' 57'' E 

Table 1 Cities included in this project 
 

3.2 Input data  

In this project a few different data sources were used: satellite images, public urban greenspaces 

datasets, landcover, and city boundary data. 

Satellite images that were used are Sentinel-2 multispectral images. They were downloaded from 

the open-source online tool EarthExplorer (U.S. Geological Survey). Downloaded images had different 

image acquisition dates, and those dates are presented in Table 2. Sentinel-2 has radiometric and 

geometric corrections along with orthorectification to generate highly accurate geolocated products. 

It is especially important when we are using it to analyse areas in different parts of the world. 
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Sentinel-2 has 13 spectral bands with spatial resolutions of 10 m (three visible and a near-infrared 

band), 20m (6 red-edge/shortwave infrared bands), and 60m (3 atmospheric correction bands). In this 

study blue, green, red, near-infrared and short-wave infrared bands were used. 

PUGS data was collected from different open-source data sources. Those sources are presented 

in Table 2 along with Sentinel image acquisition dates.  

City 
Name of PUGS data 

source 
Link to PUGS data source 

Sentinel image 
acquisition dates 

Buffalo 

“Protected Areas 
Database of the 

United States (PAD-
US) 2.1” database 

https://doi.org/10.5066/P92QM3NT 

20.06.2020 

Philadelphia 09.06.2020 

Seattle 26.06.2020 

Washington 14.07.2020 

London 
OS Mastermap 

Greenspace Layer 

https://www.ordnancesurvey.co.uk/ 
business-government/products/ 

open-map-greenspace 

25.06.2020 

Manchester 29.05.2020 

Amsterdam 
Gemeente 

Amsterdam 
https://maps.amsterdam.nl/ 

open_geodata/?k=99 
30.05.2020 

Dhaka 
Detail Area Plan 

(DAP) by RAJUK (City 
planning authority) 

http://43.243.207.51/Website/ 
R2_2_1/viewer.htm 

17.01.2020 

Dublin Dublinked https://data.smartdublin.ie/ 01.06.2020 

Ghent Open Data Stad Gent 
https://data.stad.gent/explore/ 

dataset/parken-gent/table/ 
24.06.2020 

Tel-Aviv TLV Open Data 
https://opendata.tel-aviv.gov.il/ 

en/pages/item.aspx?ids=10 
14.07.2020 

Vancouver 
City of Vancouver 
Open Data Portal 

https://opendata.vancouver.ca/ 
explore/dataset/parks-polygon-

representation/information/ 
29.06.2020 

Kampala - - 21.09.2020 

Table 2 Data sources for PUGS and dates for  
 

Landcover data was also used –  European Space Agency (ESA) WorldCover, which is a worldwide land 

cover mapping, that provides a new baseline global land cover product at 10 m resolution for 2020 

based on Sentinel-1 and 2 data (European Space Agency). Landcover data was used to evaluate 

if adding already classified data would be beneficial for the segmentation model performance. 

The city bounding boxes, which were used to crop the satellite images were extracted from 

OpenStreetMap using the OSMnx package.  
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3.3 Data preprocessing 

Preprocessing was done in QGIS 3.16.14 open-source software and included: cropping satellite images 

and landcover to city bounding boxes, resampling SWIR band to 10 m resolution, rasterization of vector 

urban greenspace dataset, and finally calculating 3 indices: 

1. Normalized Difference Vegetation Index (NDVI) 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

where NIR represents the near-infrared channel and Red is the red channel 

2. Normalised Difference Build-up Index (NDBI) 

𝑁𝐷𝐵𝐼 =  
𝑆𝑊𝐼𝑅 −  𝑁𝐼𝑅

𝑆𝑊𝐼𝑅 + 𝑁𝐼𝑅
 

Where SWIR represents the short-wave infrared channel, and NIR the near-infrared channel 

3. Normalised Difference Water Index (NDWI) 

𝑁𝐷𝑊𝐼 =  
𝐺𝑟𝑒𝑒𝑛 −  𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 +  𝑁𝐼𝑅
 

where NIR represents the near-infrared channel and Green is the green channel 

After the QGIS preprocessing two rasters per city were created, first one with 8 bands – blue, green, 

red, NIR, NDVI, NDBI, NDWI and ESA landcover, and second categorical raster with two values – 

1 representing PUGSs and 0 representing the background. Both rasters and all their bands had 

a 10 m spatial resolution.  

3.4 Model setup 

To train an image processing model image needs to be divided into smaller parts, called chips 

or patches (Huerta et al., 2021). Creating these chips was the first part of the model setup and was 

done in Python, on the Google Colab platform with the Google Colab Pro subscription. 

Nine different three-band compositions were chosen, similar to what Huerta et al. (2021) did. 

Those compositions were: Blue-Green-Red, Green-Red-NIR, Red-NIR-NDVI, NDVI-NDBI-Landcover, 

Red-NDWI-Landcover, NDVI-NDWI-Landcover, NIR-NDWI-NDBI, NDBI-NDWI-Landcover, and NIR-

NDWI-Landcover. For each band composition, one set of image chips per training city was done. This 

process included creating image chips for each city from both the satellite image and the mask raster.  

All the chips had a size of 256x256, but they were created with a different stride. Stride represents 

a step between two neighbouring chips, so a number of pixels between two consecutive chips. When 

stride is smaller than the chip size then chips are overlapping. Smaller stride, e.g., 30 makes the chips 

overlap more than bigger stride e.g., 60. Strides were chosen for each city separately depending 

on the city’s size, which is more explained in section 4.1. Chips were created with the Patchify library 
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(Weiyuan Wu et al., 2021) and were saved as NumPy arrays on Google drive. Examples of chips are 

presented in Figure 6. 

The amount of public green space differs between cities with Amsterdam and San Francisco having 

only 13%, and Dublin 26%, but it rarely goes up to 30% or 40% (World Cities Culture Forum), which 

makes the dataset imbalanced. Because of that, it was decided to filter out those image chips that have 

a smaller percentage of public green spaces than the given threshold of 10%. It was done to get a more 

balanced dataset to train the models on, and to make the data load smaller.  

Next step was data augmentation. It was done using the ImageDataGenerator library, with a batch size 

of 8, and included: 

• rotation of images up to 45°,  

• shift of the pixels of the image horizontally by a range of 0.1, 

• shift of the pixels of the image vertically by a range of 0.1, 

• shear up to 0.2, 

• zoom up to 0.1, 

• random horizontal flip, 

• random vertical flip, 

• reflect fill mode 

These techniques generated transformations for each epoch within the models and increased the size 

of the training samples. 

Figure 6 Examples of image chips 
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Input data was also split to training and validation sets with the 80% of input data used for training and 

20% for validation. When using a model with a backbone setup also included preprocessing the training 

and validation data to fit its architecture, and it was done using a function from the Segmentation 

Models library, from where the model was also from. 

3.5 Model calibration and training 

Eighteen different semantic segmentation models were implemented because there were nine three-

band compositions and two CNN models used. The first model was a baseline U-Net model from 

scratch, so built layer by layer. Second model was a U-Net with a ResNet34 backbone that had weights 

pre-trained on the 2012 ILSVRC ImageNet dataset, and it was implemented from the Segmentation 

Models library.  All the models were trained and validated to choose the best model. 

The first model had each layer built separately, thanks to which there was a possibility to see how each 

layer was built and alter the dropout rate or size of the convolution kernel. This model was built from 

9 layers, had a dropout between 0.2 and 0.5 at each layer, and a sigmoid activation function. For the 

training a learning rate of 1e-4, a batch size of 16, and 50 epochs were used. 

The second model was implemented from a Segmentation Models library, so it was more like a ‘black 

box’ approach, but it had a ResNet34 backbone with weight pre-trained on the 2012 ILSVRC ImageNet 

dataset. Using transfer learning in this study was a great way to try to improve model performance 

and tackle the limited RAM issue. Learning rate of 1e-4, batch size of 16, and 40 epochs were used. 

Setup and training of the models was done in Google Colab with the Pro subscription, with provided 

Tesla P100 PCIe 16 GB GPU and 25 GB of available RAM. This allowed for using data from 10 cities, 

after deleting chips with less than 10% of PUGSs and using three-band compositions to train models. 

The data from 10 training cities were divided into two sets with the proportion of 80% for training and 

20% for validation. Validation set was used to choose the best model. Additional data from 2 external 

cities were used for testing and evaluation of the chosen model. There is also a third external city 

for prediction purposes. 

In machine learning tasks, the loss function is used to evaluate the difference between training results 

and labelled data. To decide which loss function fits the best in this semantic segmentation project 

two factors were taken under consideration – binary aspect, and imbalance. This model has two output 

classes – PUGSs and background, which makes it a binary case. As mentioned before PUGSs are a small 

portion of a city. It can be between a few to a few dozens of percent, but usually below 40%. This 

causes an imbalance that could produce errors and bias towards the background class that covers most 

of the area of interest. Because of that, it was decided to use a combination of two loss functions that 
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were found to be useful by others – binary focal loss (Lin et al., 2017) and dice loss (Huerta et al., 2021). 

Both losses were used from a Segmentation Models library (Pavel Yakubovskiy, 2019), and the used 

total loss was calculated as follows: 

Total loss =  binary focal loss +  dice loss 

Binary focal loss is a focal loss for binary classification. This loss function generalizes binary cross-

entropy by introducing a hyperparameter called the focusing parameter that allows hard-to-classify 

examples to be penalized more heavily relative to easy-to-classify examples. Therefore, the focal loss 

is designed to address the scenario in which there is an extreme imbalance between foreground and 

background classes during training (Lin et al., 2017), and the library implementation defines it as: 

𝐹𝐿(𝑔𝑡, 𝑝𝑟) =  −𝑔𝑡𝛼(1 − 𝑝𝑟)𝛾 log(𝑝𝑟) − (1 − 𝑔𝑡)𝛼𝑝𝑟𝛾log (1 − 𝑝𝑟) 

Where: 

• gt – pixel value of ground truth 

• pr – pixel value of prediction 

• 𝛼 – float or integer, the same as a weighting factor in balanced cross entropy, used a default 

value of 0.25 

• 𝛾 – float or integer, a focusing parameter for modulating factor (1 - p), using the default 

value of 2 

Semantic segmentation studies that used deep learning have proved that the dice coefficient (F1 score) 

is a loss function adequate for configurations when there is big imbalance of classes. Using it helps 

preventing errors and bias towards the background class that covers most of the area (Huerta et al., 

2021). The Dice coefficient is a measure of overlap between two sets and was used both as a loss 

function and as a measurement met. The dice loss in the used library is defined as follows: 

𝐷𝐿(𝑡𝑝, 𝑓𝑝, 𝑓𝑛) =  
(1 + 𝛽2) ∗ 𝑡𝑝

(1 + 𝛽2) ∗ 𝑓𝑝 + 𝛽2 ∗ 𝑓𝑛 + 𝑓𝑝
 

Where: 

• tp – true positive 

• fp – false positive 

• fn – false negative 

• 𝛽 – float or integer coefficient for precision and recall balance, using the default value of 1 

The F1 score (dice coefficient) was also used as a metric in this study and can also be interpreted 

as a weighted average of the precision and recall, where an F1 score reaches its best value at 1 and 
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worst score at 0. The relative contribution of precision and recall to the F1 score are equal. The formula 

for the F1 score (dice coefficient) using precision and recall in the used library is defined as follows: 

𝐹1(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑟𝑒𝑐𝑎𝑙𝑙) =  
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

When it comes to assessing the performance of the model this study used Intersection over Union 

(IoU) as the first performance measurement, and already explained F1 score as the second one. This 

is because there is a lot of imbalance in the dataset, so those measures fit that configuration best. 

IoU, also known as the Jaccard index computes the amount of overlap between the predicted polygons 

and the ground truth data (Huerta et al., 2021), with values > 0.50 considered to be correctly predicted. 

The used function in the library defines it as follows: 

𝐼𝑂𝑈(𝐴, 𝐵) =  
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
 

Where: 

• A - the input ground truth, 

• B - output segmentation. 

4. Results 

4.1 Model setup results 

The model setup included steps like creating chips, filtering them and data augmentation. For the 

process of creating data chips different strides were used for different cities based on their size, and 

proportions of PUGSs in the city. The stride for each city was chosen arbitrarily and it is presented 

along with the final chips number in Table 3. The presented number of chips is after filtering out chips 

that had less than 10% of PUGSs on them. 

From this data, it is clear, that there is an imbalance, and PUGSs pixels are a lot smaller percentage 

of input images then the background pixels. The proportion presented in this table though cannot 

be treated as a proportion of PUGSs in a city, but in the city bounding box. Bounding box is a bigger 

area than the city itself, making the imbalance bigger. That also caused that there were parts of the 

mask raster that had only background pixels, which created some chips without any PUGSs pixels. 

It is visible that the data is imbalanced also when it comes to city representation. Some cities had more 

chips than the others, and cities with the most chips were Manchester, London, and Philadelphia. 

Manchester and London are both a lot bigger than the rest of the cities with an average percentage 
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of PUGSs pixels. Philadelphia on the other hand is not that bigger than the rest, it had a lot more chips 

because it had a higher percentage of PUGSs pixels. 

No. City Name 
Image size after 
clipping to city 

boundaries (in km2) 

Percentage 
of PUGSs 

pixels 

Used 
stride 

Percentage 
of used 

chips 

Number of 
chips after 

filtering 

1 Amsterdam 2,6662 5,70 % 24 21,55% 723 

2 Buffalo 1,5154 6,71 % 20 25,42% 604 

3 Dhaka 1,9942 1,09 % 20 1,04% 34 

4 Dublin 2,1066 9,15 % 25 30,47% 712 

5 Ghent 3,9967 2,08 % 20 5,62% 435 

6 London 27,1262 5,33 % 65 18,19% 1060 

7 Manchester 19,5396 5,76 % 65 26,43% 1100 

8 Philadelphia 7,9294 9,48 % 45 33,51% 1107 

9 Seattle 3,8969 6,97 % 30 24,45% 812 

10 Vancouver 1,8275 6,26 % 30 14,06% 429 

Table 3 List of cities included in the project along with model setup results 
 

Model setup also included data augmentation of matching image and mask chips. Examples are 

presented on Figure 7.  

Figure 7 Examples of data augmentation on image and mask chips. First and third 
row are original chips, second and fourth augmented ones 
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4.2 Training, validation results and choosing the best model 

In this section training and validation results are presented for all the created models. Training set was 

80% of the input data, and validation was 20%. There were 18 models created in total, because there 

were 9 different three-band compositions, and two different model architectures – baseline U-Net 

model from scratch and U-Net model with a pre-trained ResNet34 encoder. All the models were 

trained on 10 cities mentioned in Table 2. The aim was to find the best combination of model 

architecture and band composition based on validation metrics. Table 4 shows the results for baseline 

U-Net model for scratch, and Table 5 for U-Net with a pre-trained Resnet34 backbone. 

Baseline U-Net model from scratch 

 Training Validation 

Band 
composition 

Accuracy IoU F1 score Accuracy IoU F1 score 
Validation 
average 

Blue-Green- 
Red 

0,9249 0,6753 0,8055 0,9212 0,6581 0,7931 0,7908 

Green-Red- NIR 0,9436 0,7435 0,8524 0,9406 0,7286 0,8423 0,8372 

Red-NIR-NDVI 0,9405 0,7241 0,8395 0,9388 0,7139 0,8325 0,8284 

NDVI-NDBI- 
Landcover 

0,9485 0,7565 0,8610 0,9465 0,7444 0,8530 0,8480 

Red-NDWI- 
Landcover 

0,9450 0,7393 0,8497 0,9430 0,7257 0,8401 0,8363 

NDVI-NDWI- 
Landcover 

0,9495 0,7610 0,8639 0,9478 0,7493 0,8561 0,8511 

NIR-NDWI-
NDBI 

0,9445 0,7406 0,8505 0,9422 0,7278 0,8418 0,8373 

NDBI-NDWI- 
Landcover 

0,9503 0,7660 0,8672 0,9471 0,7487 0,8558 0,8505 

NIR-NDWI-
Landcover 

0,9489 0,7568 0,8611 0,9455 0,7370 0,8479 0,8435 

Average 0,9440 0,7403 0,8501 0,9414 0,7259 0,8403  

Table 4 Training and validation accuracy, IoU, and F1Score of different band compositions 
for baseline U-Net model from scratch. Average validation values for separate 
band compositions models and average of metrics for all models are in green 

 

For baseline U-Net from scratch average validation IoU was 0,7259, average validation F1 score was 

0,8403. For U-Net with ResNet34 encoder it was 0,8681 and 0,9274, which is a 12% rise for validation 

IoU and 8% for validation F1 score. This visible rise shows that U-Net with a ResNet34 backbone 

achieved better performance than the baseline model, and that transfer learning is a very good 

approach. The best model should be chosen from the models with a pre-trained encoder. 
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NIR-NDWI-NDBI composition with U-Net with ResNet34 encoder architecture achieved the best 

average validation score among all the models and was chosen as the best model to be used later for 

evaluation and predictions. It had validation IoU of 0,8770, and validation F1 score of 0,9326. 

U-Net with a Resnet34 backbone model 

 Training Validation 

Band 
composition 

Accuracy IoU F1 score Accuracy IoU F1 score 
Validation 
average 

Blue-Green-
Red 

0,9552 0,8669 0,9266 0,9534 0,8616 0,9234 0,9128 

Green-Red-
NIR 

0,9581 0,8738 0,9308 0,9562 0,8677 0,9271 0,917 

Red-NIR-NDVI 0,9570 0,8709 0,9291 0,9554 0,8659 0,9261 0,9158 

NDVI-NDBI- 
Landcover 

0,9548 0,8667 0,9265 0,9530 0,8612 0,9232 0,9125 

Red-NDWI- 
Landcover 

0,9607 0,8810 0,9351 0,9595 0,8769 0,9326 0,923 

NDVI-NDWI- 
Landcover 

0,9564 0,8699 0,9284 0,9545 0,8632 0,9243 0,914 

NIR-NDWI-
NDBI 

0,9611 0,8813 0,9352 0,9600 0,8770 0,9326 0,9232 

NDBI-NDWI-
Landcover 

0,9601 0,8787 0,9338 0,9586 0,8740 0,9310 0,9212 

NIR-NDWI- 
Landcover 

0,9573 0,8712 0,9293 0,9555 0,8656 0,9259 0,9157 

Average 0,9579 0,8734 0,9305 0,9562 0,8681 0,9274  

Table 5 Training and validation accuracy, IoU, and F1Score of different band compositions 
for U-Net with a Resnet34 backbone model. Average validation values for separate 

band compositions models and average of metrics for all models are in green. 
The chosen model is in light green 

 
 
Transfer learning is not only helping in achieving better performance, but also in making the training 

process converge faster. For U-Net with ResNet34 encoder, the learning process is also less bumpy 

than for the model from scratch, meaning that the loss and IoU are changing more smoothly. Figure 8 

compares the process of the training of the chosen best model, so NIR-NDWI-NDBI composition with 

U-Net with ResNet34 encoder and NDVI-NDWI-Landcover for baseline U-Net model from scratch, 

which had the highest validation average scores across the models from scratch. 
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4.3 External evaluation and prediction of PUGSs based on the best model 

External evaluation was based on test set that consisted of two external cities – Washington and Tel 

Aviv. Both of those cities were not a part of testing or validation process. Test performance of the 

chosen model, so the NIR-NDWI-NDBI U-Net with a ResNet34 encoder is presented in Table 6. 

 Washington Tel Aviv 

 IoU F1 score IoU F1 score 

NIR-NDWI-NDBI U-Net 
with a Resnet34 encoder 

0,6084 0,7160 0,5137 0,5743 

Table 6 External evaluation (testing) of the NIR-NDWI-NDBI U-Net with a Resnet34 encoder model 
 

Figure 8 Comparison of the training process between the NIR-NDWI-NDBI U-Net with 
a ResNet34 backbone and NDVI-NDWI-Landcover baseline U-Net from scratch 

NDVI-NDWI-Landcover baseline U-Net model NIR-NDWI-NDBI U-Net with a ResNet34 backbone 
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The best model achieved an average test IoU of 0,5610, and average test F1 score of 0,64515 across 

two external cities. Washington had an average of 0,6622 test metrics, and Tel Aviv had 0,544, 

so the model performed visibly better on Washington then on Tel Aviv. 

Differences between validation metrics of baseline models from scratch and models with a backbone 

were visible, but when we compare their prediction on external dataset this difference in performance 

is even more apparent. Figure 9 illustrates differences in prediction of Washington PUGSs between 

chosen NIR-NDWI-NDBI U-Net with a Resnet34 encoder, and model from scratch that achieved the 

best validation metrics, so NDVI-NDWI-Landcover baseline model. It is evident that the transfer 

learning model is performing a lot better on an external test set. 

The best, chosen model, so NIR-NDWI-NDBI U-Net with a Resnet34 encoder was used to create new 

PUGSs datasets for 3 external cities – Washington, Tel Aviv, and Kampala. Figure 10 presents ground 

truth PUGSs dataset, and prediction for Washington. Predictions for Tel Aviv and Kampala are shown 

in the appendix. Looking at the predictions for Washington there are some parts, like the big green 

space in the north, and longitudinal green space in the middle, that were predicted good, but there 

are also some misclassifications that should be analysed up close. 

Figure 9 Comparison of PUGSs prediction in Washington. Left – ground truth, middle –the chosen NIR-
NDWI-NDBI U-Net with a Resnet34 encoder model, right - best model from scratch, 

so NDVI-NDWI- Landcover. PUGS are white, and background is black 
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Looking more closely at the predicted and the ground truth PUGSs data for Washington there are 

a few groups of misclassifications present: 

1. Small PUGSs in high-density neighbourhoods. 

Figure 11 shows a comparison of the true colour Washington image (left) and PUGSs prediction 

on top of ground truth data (right). These examples show that when there are small PUGSs in 

a dense neighbourhoods model sometimes fails or predicts just parts of the PUGSs.  

Figure 10 Left - ground truth PUGS data for Washington, right – predicted 
PUGS data for Washington. 

PUGS are green, background is white 

Figure 11 Left – true colour Washington image, right - satellite image, on top of that PUGSs predictions 
as green, and ground truth PUGSs symbolised with cross filling. 
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2. Some parts of PUGSs that are build-ups, not green space. 

Figure 12 shows an example when part of a PUGS is infrastructure or building, so a build-up 

area, not green. The model might predict that those parts are background, not PUGS. 

3. Green spaces that were not in the ground truth data, that are probably not public. 

Figure 13 shows an example of an area that was predicted as being a public urban green space, 

but probably it is a golf club, which is not public.  

 

 

 

 

Figure 12 Left – true colour Washington image, right - satellite image, on top of that PUGSs 
predictions as green, and ground truth PUGSs symbolised with cross filling. 

Figure 13 Left – true colour Washington image, right - satellite image, on top of that PUGSs 
predictions as green, and ground truth PUGSs symbolised with cross filling. 
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5. Discussion 

5.1 Key findings 

Two presented multi-city models created to identify public urban green spaces at the metropolitan 

level across the world, and their external accuracy, show that this approach is promising. It allows for 

efficient creation of new PUGSs datasets that yields useful information about the location, geometry, 

and other spatial attributes. This can be very helpful for local authorities while managing cities and the 

decision-making process about future development for cities. 

The transfer learning approach shows a really big improvement comparing to a baseline model built 

from scratch. ResNet34, which was used as an encoder for a U-Net model was pre-trained on the 2012 

ILSVRC ImageNet dataset on blue, green, and red bands. The benefits coming from this approach are 

visible – average validation performance for U-Net with ResNet34 backbone is better than the baseline 

model built from scratch, and fewer epochs are needed for training. 

Cities that these models were trained on were mostly from the US and Europe, and model performance 

on external testing dataset is higher for Washington than for Tel Aviv. Washington is a US city and 

is spatially close to some of the cities that the model was trained on. Being located in the same country 

and culture makes its structure and urbanization features more similar to training cities than Tel Aviv. 

Tel Aviv is on a different continent, has a different urbanization style, and is a city that has 

neighbourhoods that date back to the 14th century BC. Those big differences are probably the reason 

why Washington has a higher prediction performance. 

This approach was based solely on open-source data, which makes it cheaper than using data from 

third-party providers but is especially important when thinking about cities from developing countries 

in Africa or Asia.  The fastest-growing cities in the world are on those continents (Investment Monitor, 

2022), and those are usually the countries that do not have the resources to buy (very) high resolution 

satellite images. 

This study was done using a Google Colab Pro subscription, which shows that fairly advanced and heavy 

computationally work can be done using not that expensive services. This was because of a relatively 

big for this kind of study spatial resolution of the images, and deletion of image chips that had less 

than 10% of PUGSs in them. Both of those things contributed to making the data load smaller, and thus 

enabled as many as 10 cities to be used for training. 
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5.2 Literature comparison 

This study is one of the many studies that focus on urban analysis with the usage of satellite images 

and CNN type models. The methodology used in this project is fairly similar to this chosen by Huerta 

et al. (2021), meaning that U-Net models with a Res-Net encoder are used with a group of three-band 

compositions to analyse urban green spaces. The biggest difference is that they used satellite images 

with 0.5 m spatial resolution in contrast to 10 m resolution Sentinel images used by this study. Huerta 

et al. (2021) also focused on one study area, whereas this study included 10 cities in the training 

process. They got the best results for NDVI–red–NIR composition using ResNet34 encoder with 

an F1 score of 0.5748, and evaluation IoU of 0.75. This study got the best results for the NIR-NDWI-

NDBI composition with the same architecture - U-Net with ResNet34 encoder. It achieved an average 

test IoU of 0,5610, and average test F1 score of 0,64515 across two external cities. Model performance 

was calculated by this study based on 2 external cities that were not part of the training process, and 

Huerta et al. (2021) used a subset of 1% of the initial training dataset for evaluation purposes. 

The second study, done by Albert et al. (2017) was identifying urban patterns, which is a different 

purpose than this study, but there are still a lot of similarities. Albert et al. (2017) worked on open-

source data, but satellite images used by them had a spatial resolution of1,2 m. They experimented 

with transfer learning and found that it gave them around of 5% increase in performance. For this 

study the gain was bigger - 12% rise in validation IoU and 8% in validation F1 score. They also noticed 

that performance was poor when the model was trained on samples from one city and tested on 

samples from a different city. This was visibly worst when cities were more different, and a bit better 

when they were more similar. This is in line with the results that this study got, especially that model 

trained on mainly US and European cities had better performance on Washington than on Tel Aviv. 

5.3 Project strengths and limitations 

This study aimed at identifying public urban green spaces based on open-source data, and a multi-city 

model. This was achieved using a transfer learning approach, which made the results a lot better. Most 

of similar studies were performed on satellite images that had a lot smaller spatial resolution, 

so achieving an average test IoU of 0,5610, and average test F1 score of 0,64515 on an open-source 

satellite images is a moderate to a good result, and very promising for future research. Thanks 

to filtering out some of the image chips more global approach was possible, with 10 cities being used 

for the training process, which also contributed to a high performance.  

There were three main limitations that this study faced. The first one is connected to how complex the 

definition of public urban green space is. It is hard to determine what is public and what is private with 

only satellite images and landcover data, and this was probably the main reason for not that high test 
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performance. This model was trained to identify public urban green spaces but looking at the 

prediction for external cities, especially examples for Washington presented in 4.3 Section, might 

suggest that it predicts urban green spaces, both public and private. 

The second limitation was computational load, both the RAM capacity and the training time. This study 

had a global approach, and 10 cities were able to be included after filtering out some chips. It was done 

using the 25 GB of RAM available for Google Colab Pro subscription. Training time of one model was 

around an hour for transfer learning, and two hours for baseline model from scratch. This was 

specifically challenging, because 18 models in total were created. 

This project was done using open-source data Sentinel satellite images, which have a quite big spatial 

resolution when comparing to different studies from this field. This had the disadvantage of being less 

detailed, yielding less information about objects, and not being able to depict smaller details. 

5.4 Recommendations for future research 

Future research should focus on improving few aspects. The first one is the number, and the location 

of cities that were used for training. There is a discrepancy between Washington and Tel Aviv 

prediction performance, which as discussed above is thought to arise from the fact that more cities 

similar to Washington were in the training set. So, if similar approach were to be used to predict PUGSs 

for cities in Asia or Africa, more cities from these areas should also be included in the training process. 

This should positively influence performance on those cities. 

If future research is focused on having higher performance in general, than satellite images with 

smaller spatial resolution should be taken under consideration. Using them would give so many more 

details and should give a better performance. Focusing on the difference between private and public 

urban green spaces could be also done to improve the performance. More various data sources 

connected to PUGSs, such as their size, proximity to accompanying infrastructure like roads and 

bridges, frequency of visits or other data about urban features and the ways they are being used could 

be included in input data to achieve better performance. 

Future research could also focus on including even more cities into the training set. To do so mentioned 

above technical aspects should be improved, such as having more available RAM, having more disc 

memory to host the data and models, and having a better machine to execute the training process 

faster. Usage of services that provide ready-to-use image chips such as Google Earth Engine could also 

be considered. 
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6. Conclusion 

This study aimed at investigating the use of convolutional neural networks for identifying public urban 

green spaces through multi-source and open-source data at the metropolitan level with a global focus. 

This goal was attained with a moderate to good performance. This study focused on evaluating two 

deep learning model techniques for semantic segmentation of PUGSs with the use of U-Net 

architecture, and U-Net with a pre-trained ResNet34 encoder architecture. It used the transfer learning 

approach to improve the performance of the created model. 

Results show that this approach is promising for creating new, open source based PUGSs datasets 

for various cities. Especially transfer learning approach, which gave an average test IoU of 0,5610, 

and average test F1 score of 0,64515 across two external cities. This is a quite good result considering 

limitations of this study, but also leaves a room for improvement for future research. Using a pre-

trained encoder also allowed for using less epochs, which makes the learning process faster. 

Usage of similar, deep learning models could improve processes of identification of public urban green 

spaces for management and development purposes. Nowadays most people live in urban areas and 

working towards making these cities greener and more sustainable with more accessible green spaces 

is one of the UN Sustainable Development Goals. If those goals are meant to be achieved new ways 

of urban management should be created, and this kind of deep learning approach could be part of this 

process. 
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Appendix 

GitHub repository link with all code - https://github.com/mar-koz22/Park-NET-identifying-Urban-
parks-using-multi-source-spatial-data-and-Geo-AI/tree/main/Marta's-approach 

Figure 15 Left - Tel Aviv ground truth PUGSs dataset, right - predicted PUGS data for Tel Aviv 
using NIR-NDWI-NDBI U-Net with ResNet34 encoder architecture. PUGS are green, 

background is white 

Figure 14 Right – true color satellite image of Kampala, left - predicted PUGS data for Kampala 
using NIR-NDWI-NDBI U-Net with ResNet34 encoder architecture. 

PUGS are green, background is white 
 

https://github.com/mar-koz22/Park-NET-identifying-Urban-parks-using-multi-source-spatial-data-and-Geo-AI/tree/main/Marta's-approach
https://github.com/mar-koz22/Park-NET-identifying-Urban-parks-using-multi-source-spatial-data-and-Geo-AI/tree/main/Marta's-approach
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