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Thesis summary 

Understanding the spatial and temporal variability of droughts in cities around the globe is essential 

to adequately manage water resources and meet the needs of all urban users. As the use of hydrological 

models to simulate water availability over large regions of the world becomes feasible, establishing methods 

to turn model output into actionable insights is necessary. The use of globally available open data for drought 

hazard assessment based on hydrological models enables scientists and water managers to better understand 

how cities are affected by drought, regardless of the economic resources available to achieve this. Using 

metrics directly derived from hydrological model output makes it possible to maintain a high level of 

automation (and consistency) across cases, even when large samples of cities are assessed. In this thesis, I 

propose an automated approach to measure drought hazard at a city scale using a global hydrological model, 

apply it to four cities located in different regions, and assess the extent to which the approach can reproduce 

city-specific urban drought occurrences recorded in literature and a climate incident database. Results show 

that the approach can replicate most urban droughts reported in literature in the case study cities; however, 

several modelled droughts did not match drought incident records of a global database. This research 

expands existing hazard assessment methods by offering a fully automated approach to measure drought 

severity, frequency, and persistence based on modelled water storage. Additionally, it points out the practical 

challenges in determining thresholds for drought in cities. The developed approach can be used to achieve an 

initial understanding of the current drought hazard any city faces, and it sets the ground for hydrological 

model-driven assessment of future drought hazard in cities. 

 

Key Concepts: Urban drought, climate hazard assessment, open data, hydrological models. 
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1. Introduction 
 

1.1 Background 
 

Access to sufficient clean freshwater in cities has been a challenge throughout time; a historical 

struggle that has determined to a great extent where urban centres have spawned (Salzman, 2017). Despite its 

importance, the risk of water insufficiency in cities continues to be poorly understood in some regions of the 

world. As an essential element for the survival of human communities, ensuring its continuity and 

sufficiency is fundamental for urban areas, where a large fraction of the population of the world currently 

lives (McDonald et al., 2014). As the urban population grows and droughts become more variable due to 

climate change, understanding the extent to which individual cities and their residents are at climate risk is 

key in preserving their livelihoods (AghaKouchak et al., 2021; Pokhrel et al., 2021; Zhang et al., 2019). 

Drought is a natural disaster caused by reduced availability of water to support ecosystems, most 

often due to scarce precipitation (lack of rain and snow). While drought has only been intensively studied in 

the past few decades, it has had a life-long relationship with humans and the ecosystems we’ve inhabited. 

Historical and geological records establish the existence of droughts as a product of climate oscillation long 

before the establishment of the cities we live in today and even before the appearance of intelligent life 

(Stine, 1994; Stone & Fritz, 2006). In current-day urban areas, the temporal and spatial availability of fresh 

water is an increasingly present challenge as their populations grow and so does the amount of water 

required to support them (AghaKouchak et al., 2021; Zhang et al., 2019).  

It is clear that reduced precipitation and population growth both contribute to periodic episodes of 

water scarcity for urban areas (urban drought) (AghaKouchak, 2014); however, the intensity and temporal 

distribution with which individual cities are affected by these factors remains difficult to understand.  

It is widely accepted that risk, in the context of natural disaster management, is the possibility of 

occurrence of an unexpected, hazardous event capable of causing damage to exposed, vulnerable elements, 

such as people or assets (IPCC, 2021). Hazard is one of the three components of risk and it represents the 

physical potential to cause harm or loss; the extent to which such harm materializes depends as much on the 

hazard, as it does on vulnerability and exposure to the hazard (Cardona et al., 2012). This research tackles 

singularly the hazard component of drought risk by using water storage at a city level as a study variable. 

In this thesis, I present an explorative approach to quantifying urban drought hazard using a global 

water balance model, and verify the results produced using literature records and satellite observations of 

water bodies. The approach is designed to function in a fully automated manner and is intended for the initial 

or preliminary hazard assessment. The approach is spatially relevant since it operates on a physically-based, 

spatially-distributed water balance model; however, it does not capture system dynamics beyond water 

availability and should be complemented with locally sourced data for a deeper understanding of location-

specific conditions.  
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1.2 Water availability in cities 
 

Cities are zones characterized by a built-up environment, infrastructure, and services that allow their 

dwellers to distance themselves from agricultural activities and the rural areas where they take place (Weeks, 

2010). The 19th and 20th centuries were marked by a large distributional change in the urban and rural 

population driven by industrialization, with the urban population living in cities larger than 100,000 

inhabitants growing from only 2% in 1850 to around 50% at the beginning of the 21st century.  

As cities expand, the rural/urban dichotomy is often blurry. This can be seen when water supply and 

sewage services and infrastructure extend to surrounding, supporting areas (known as peri-urban areas). In 

these zones population density increases as portions of rural area become surrounded by the city, and water 

resources must be shared and potentially competed for by diverse users who depend upon each other for a 

large part of their economy (and livelihood) (Flörke et al., 2018; Salzman, 2017; Weeks, 2010). 

Within cities, water serves multiple purposes for different users, such as domestic, industrial, and 

agricultural use (especially in peri-urban areas). While drinking water and sanitation, under the domestic 

category, are essential in the short term for human survival and health, industrial and commercial use of 

water are necessary for cities to function as economic hotspots. A fraction of the resources must also be 

devoted to maintaining environmental flows to guarantee ecosystems are safeguarded and continue to 

function (Salzman, 2017; Young, 2010).  

Freshwater availability plays a critical role in the ‘Water-Energy-Food’ nexus, where the three 

systems are dependent on each other, and limited water resources lead to trade-offs among these systems 

which may have impacts on the social welfare of urban areas (Gannon et al., 2022; He et al., 2019). To 

illustrate such a case, an example is proposed where limited water availability leads to deciding between 

losing crops due to reduced irrigation or not operating turbines for electricity and sustained economic 

development; while neither agriculture nor power generation necessarily take place within the urban area, 

they likely directly influence the continued availability of food and electricity in the city.  

Currently, around 3% of the land surface is occupied by urban areas, which contain close to 54% of 

the world’s population. With such a high concentration of water users, cities have extended their 

infrastructure to transport clean water long distances to supplement their local water sources (Zhang et al., 

2019). It has been estimated that at present, 41% of the global land surface is contributing as headwaters for 

urban water supply; however, as water availability presents strong spatial and temporal variability, and 

transportation carries a high cost, around one in four cities in the world is currently suffering from water 

stress (McDonald et al., 2014). 

The Urban Climate Risk Index (UCRI) is a risk ranking tool under development by Deltares to 

quantify city-specific climate risk based on hazard, exposure, and vulnerability scores, which are calculated 

from globally available datasets (Hemel, 2021). The output of the tool is a risk index for each of the cities in 

the sample. While the flood hazard score is based on hydrological modelling and simulation, the drought 

hazard score is composed of regionally aggregated indicators, which are not spatially relevant at a city level, 

and are not intentionally designed to measure urban drought, limiting the reliability and meaningfulness of 

the index (Hemel, 2021; Peeters et al., 2021). The lack of spatial relevance can be seen when cities within a 

basin that are affected by drought differently are scored with a basin-wide average that is meaningful only at 

a regional scale (Peeters et al., 2021). 

Notwithstanding these limitations, the UCRI has been presented to several Chief Resilience Officers 

(CROs) of the Resilient Cities Network (RCN), receiving a positive response from them regarding the 
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relevance of the assessment for regional adaptation and resilience planning; however, they currently see 

limited application at a city-specific level (Peeters et al., 2021), making its improvement a priority for 

Deltares.  

The RCN is a network of 100 cities, each with a CRO tasked with developing resilience and 

adaptation strategies for their city. The CROs are supported by the network of cities and other partners from 

NGOs and the private sector who provide in-kind services and insights that can be used to fuel their efforts. 

This research seeks to contribute to such insights to further enable strategy development for resilience and 

adaptation by improving the spatial relevance of the hazard score as an input parameter for risk models, 

including the UCRI.  

 

1.3 Climate oscillation and drought incidence 
 

When assessing water availability, several terms are at times used interchangeably depending on the 

source; for clarity, a distinction must be made between “water scarcity”, “water stress”, and “drought”; 

within this thesis, they will be used according to these definitions: 

- Water scarcity refers merely to the sufficiency of amount of water to satisfy human needs. In the 

case of cities, it is driven by variable water availability and the city-specific needs depending on 

size and land use (European Environment Agency, 2007).  

- Water stress is a much broader concept that also considers factors such as water quality, whether 

individuals can access that water due to physical or social-economic conditions, and the 

availability of water resources to meet ecological demands. It contemplates elements such as 

infrastructure to transport water from source to consumers and affordability of the water 

(European Environment Agency, 2007; McDonald et al., 2014).  

- Drought is cyclical in nature and arises when a reduced amount of water is made available in an 

area compared to the past. It generally translates into a degree of water scarcity by reducing the 

amount of water available; however, the frequency and extent to which it affects regions are 

highly variable, with some regions being more prone to droughts than others (European 

Environment Agency, 2007).  

Drought, as a natural process, is a climate phenomenon characterized by a reduction of precipitation 

over a period of time in a specific area, limiting the freshwater availability at the Earth’s surface. The effects 

of drought are felt locally, where precipitation is reduced, but also in downstream areas where run-off for use 

is also affected. Severe and prolonged water scarcity produces water stress which has detrimental, and 

occasionally irreversible effects on ecosystems (Flörke et al., 2018). Several types of drought have been 

established based on their causes and evolution process, as well as the effects they have on the landscape and 

society; the most recognized categories are: 

- Meteorological drought. Reduction or lack of precipitation compared to the long-term average, 

sometimes also considering increases in evapotranspiration due to higher temperature. It is the 

most basic type of drought and usually leads to other types of drought if it is prolonged (Van 

Loon, 2015; Zhang et al., 2019). 

- Hydrological drought. Reduced surface water storage and base flow and abnormally low 

groundwater levels, stressing ecosystems (Van Loon, 2015). 
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- Soil moisture drought. Reduced soil moisture resulting from reduced precipitation or increased 

evapotranspiration, often also called ‘agricultural drought’. Strongly linked to soil moisture 

retention capacity characteristic of land-use zones, soil types, and land-use history 

(AghaKouchak et al., 2021; Van Loon, 2015) 

- Socio-economic drought. Result of the impacts derived from the other types of drought, 

culminating in reduced water supply, stressed sewage and sanitation systems, pressures on the 

health system, shortage of economic goods, and interruption of services, among other effects 

(Van Loon, 2015; Zhang et al., 2019) 

Within the context of the Anthropocene, drought is a complex phenomenon; a system with various 

feedback loops also involving society and its economic development, where human activity and management 

influences water availability and use, making it as much of an anthropogenic process, as it is a natural one 

(AghaKouchak et al., 2021; Van Loon et al., 2016). In this thesis I adopt the definition of drought as “an 

exceptional lack of water compared with normal conditions” (Van Loon et al., 2016, p. 90), regardless of the 

cause that is leading to the lack of water.  

Urban drought has been defined as a sub-type of socio-economic drought where a temporary water 

scarcity – the water gap – arises either as a consequence of water supply decrease, or sharp water demand 

increase. This may lead to impacts on the well-being of the city in question, as well as on public health, 

economic activity, water prices, and life quality in general (Zhang et al., 2019). During periods of drought, 

cities may experience water and power cuts, migration into and out of the city (Mcleman & Ploeger, 2012; 

Rain et al., 2011), increased local groundwater extraction leading to land subsidence (Tessitore et al., 2015), 

surging food prices (Hill & Porter, 2017), and scarcity of goods (Zhang et al., 2019). While lack of water 

resulting in wilting and dehydration is common, other processes leading to loss of life in ecosystems and 

indirectly affecting cities are increased concentration of nutrients and pollutants due to reduced water flows, 

outbreaks of diseases due to stagnant water and contaminants, destructive competition over the scarce 

resources, and in extreme cases, events such as wildfires (Brando et al., 2019; Guy Howard et al., 2003). In 

this thesis, the recorded occurrence (or incidence) of a water scarcity event resulting in any of these 

consequences will be referred to as an incident. 

It is common for cities to depend on surface freshwater bodies, naturally or artificially created, to 

meet an important part of their water needs (with over 70% of people in large cities relying on it) (McDonald 

et al., 2014), and the amount of water these storages contain often varies with time based on water 

availability. When water inflows to the storage are larger than outflows (including losses to evaporation and 

groundwater interactions), the water level rises and a larger surface area becomes inundated by water; on the 

other hand, if outflows exceed inflows, the water level falls, and the surface area covered by water shrinks. 

Since the change in surface area covered by water (known as surface water extent, SWE) is observable from 

satellite images, it has been used to identify drought in cities (Pekel et al., 2016; Wieland & Martinis, 2020; 

Wu et al., 2021). 

Four main challenges exist in modelling drought when measured as an exceptional lack of water 

compared with normal conditions: 

- Subtle onset. The onset of drought is often a gradual process, where progressively less water is 

available for use in an area; it may be short-lived or span multiple years before it subsides; 

because of this, drought is often described as a climate stress, rather than a climate shock (Hall 

& Leng, 2019; Hemel, 2021). 

- Variable recovery time. Once precipitation has resumed, a recovery period exists where 

ecosystems recuperate a stable, semi-stationary water balance; depending on the severity of the 
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drought, this process may be long and the system behaviour may be different from previous 

conditions, especially if desertification, land degradation, or relevant land-use changes have 

happened (Hall & Leng, 2019; Schwalm et al., 2017).  

- Difficulty to determine linkages to a specific drought event. As civilizations grow, several water 

sources are often developed for a city, and a single source of water may be utilized by more than 

a single user (Flörke et al., 2018; McDonald et al., 2014); this means the affectation of a single 

source of water will have a different degree of impact in the water available for each city using it 

(Hall & Leng, 2019). 

- Human responses to water scarcity can be unique in each city and are generally not captured in 

existing global models (Mulder et al., 2021); an example of this is pumping water across long 

distances and different basins to meet water demand. 

Indicators and indices to measure droughts have been developed, usually based on the intensity, 

duration, and frequency of the events (McMahon et al., 2006; Mulder et al., 2021). Even with indicators 

specifically designed for this purpose, drought is still an elusive phenomenon to measure, largely because 

there is hardly a universal threshold for drought (Hall & Leng, 2019; Rijsberman, 2006); on the other hand, 

some authors argue that there is a threshold that can be exceeded, upon which most users begin to be affected 

by drought (instead of just the vulnerable few) and gain interest in the issue, that the problem is recognized 

and begins to be addressed (Janakarajan et al., 2007).  

In this research, I propose an approach to score urban drought hazard assuming the existence of a 

water scarcity threshold, by utilizing outputs of a hydrological model and drought records from databases, 

scientific papers, event reports, and news articles in a pilot city. I then assess whether water scarcity 

exceeding that threshold consistently leads to consequences associated with urban drought in the city, and 

whether the threshold is valid for a sample of cities in different regions. 

 

1.4 Hydrological model use 
 

Hydrological models are simplifications of the behaviour of water resources in reality. They are 

defined based on aspects such as the land elevation, soil type, and land use, that interact with climate 

forcings, such as precipitation and temperature, to calculate the different components of the water cycle 

within a modelled area – usually a river basin (Devi et al., 2015) 

The use of hydrological models allows water managers to calculate how the variation of some 

elements within the model affect others in time and space, based on equations that govern their behaviour. 

While hydrological models are – like all models – never fully accurate, they can be used to study 

hydrological trends and produce predictions on future system behaviour based on hypothetical input 

parameters (Salvadore et al., 2015). 

Since the main focus of the thesis is to develop an approach to use the output of a hydrological 

model, the uncertainties will not be quantified; applications of the approach will be subject to their own, 

individual uncertainties, based on the hydrological model chosen and the input data used to force it 

(Salvadore et al., 2015). 

PCR-GLOBWB 2 (abbreviation for PCRaster Global Water Balance) was the model selected for this 

research; it is an open-source global hydrology and water resources model implemented at 5 arcmin 

resolution (~10 km grid cells close to the equator) which calculates water states and fluxes at a daily 
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timestep; while the model operates at a coarse resolution (compared to the size of most cities), it has the 

possibility to model large regions over extended periods of time (Sutanudjaja et al., 2018). 

For each timestep and each grid cell, the model calculates the amount of water stored in an area, 

divided into layers, as a result of climate forcings (precipitation, temperature, and evapotranspiration). This 

is done based on the water exchanged among the model layers and the atmosphere at each grid cell, as well 

as with surrounding grid cells. PCR-GLOBWB 2 also integrates sector-specific water use, considering 

withdrawal rates (surface water, groundwater, and desalination abstraction) and return flows, into the 

hydrological simulation, which makes it possible to account for anthropogenic influences (Sutanudjaja et al., 

2018). The model is capable of calculating terrestrial water storage (TWS) and fluxes at a global scale based 

on climate forcings and water allocations, making it possible to estimate how a specific area of interest is 

affected by climatic variability originating over large regions of the world; the components of the modelled 

terrestrial water storage are water intercepted by vegetation, snow and ice, surface water, soil moisture in two 

separate soil layers, and groundwater (Sutanudjaja et al., 2018). 

The model can use different routing methods and its modular structure makes coupling it with other 

groundwater and hydrodynamic models possible. While the model can be highly customized and can operate 

in more complex ways, the default settings were intentionally maintained to enable reproducibility and 

further development of this hazard scoring method; the setup details for the model runs can be found in 

Appendix 1. The model schematic overview showing the modules that compose it is reproduced in this thesis 

as Figure 1 and can be found in the publication supporting the model, along with an evaluation of the model 

performance (Sutanudjaja et al., 2018).  
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Figure 1. Schematic overview of a PCR-GLOBWB 2 cell and its modelled states and fluxes. S1, S2 (soil 

moisture storage), S3 (groundwater storage), Qdr (surface run-off – from rainfall and snowmelt), Qsf 

(interflow or stormflow), Qbf (baseflow or groundwater discharge), and Inf (riverbed infiltration from 

to groundwater). The thin red lines indicate surface water withdrawal, the thin blue lines groundwater 

abstraction, the thin red dashed lines return flows from surface water use, and the thin dashed blue 

lines return flows from groundwater use surface. For each sector, withdrawal − return 

flow = consumption. Water consumption adds to total evaporation. In the figure, the five modules that 

make up PCR-GLOBWB 2 are portrayed on the model components.  

Image and caption reproduced from Sutanudjaja et al., 2018, under the Creative Commons 

Attribution 4.0 License.  
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1.5 Research relevance and aim 
 

Tool and model development in drought assessment have largely focused on meteorological and 

agricultural drought; however, there is a knowledge gap in the risk assessment of socio-economic drought in 

cities (Hendriks et al., 2018). This research aims to tackle this void by developing an alternative approach to 

computing the hazard component of drought risk in cities, using a global open data-driven methodology. 

Ultimately, this knowledge is intended to support drought risk model development and use, guiding actors to 

better communicate and strategically respond to climate hazards. The use of global open data provides 

transparency in research and guarantees it can be accessed, and further developed, by anyone for any region 

of the world. This promotes diversity and inclusion within scientific practice and enables collaboration 

between the private and public sectors (data.europa.eu, 2020). For data to be considered “open”, it must be 

placed in the public domain or usable with minimal restrictions (legally open) and also be accessible with 

ease through non-proprietary electronic means (technically accessible) (World Bank, 2019). 

Developing freely and openly accessible frameworks and models to assess and communicate urban 

drought risk to city representatives and stakeholders enables informed decision-making; the accelerated 

emergence and growth of urban areas around the world demands that these tools can be applied with limited 

local data, at a low cost, and in a short time. Access to this information is urgent as climate adaptation plans 

are carried out to meet the 2030 Agenda for Sustainable Development (Zhang et al., 2019). In this agenda, 

five Sustainable Development Goals (SDGs) contain targets directly related to urban drought and water 

scarcity:  

- SDG 6 – Clean water and sanitation  

- SDG 11 – Sustainable cities and communities 

- SDG 12 – Responsible production and consumption 

- SDG 13 – Climate actions, and 

- SDG 15 – Life on land (Zhang et al., 2019)  

To meet the aim of this research, the following main research question is presented: How can 

drought hazard be quantified at a city level using open data and a water balance model on a global scale? 

To answer this overarching research question, two supporting research questions are presented: 

Research Question 1: How can global open data be collected, processed, and modelled at a single 

city level to measure urban drought hazard? 

Research Question 2: To what extent can the method be applied to multiple cities, and how does the 

output relate to urban drought incidence?  

This research was conducted as part of an internship in the Climate Risk in Cities project at Deltares 

and considers learnings acquired by the project team and project collaborators in the past; however, the 

methods applied within this research are new to the project; the approach developed as a product of this 

research is intended to be expandable to drought hazard under different climate scenarios in future research.  
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2. Materials and methods  
 

The materials and main models used will be explained in this section, as well as the methods used to 

address the research questions. A brief site description of the pilot and case study cities is also included in 

this section. 

 

2.1 Materials 
 

I carried out the research using computational tools provided by Deltares; however, only openly 

accessible data was used in the application of the approach. Prior research carried out as part of the 

WaterLoupe project was used as the methodological basis for this research (Deltares, 2022). 

WaterLoupe is a tool developed and applied by Deltares to determine the water gap for different 

stakeholders, using a combined bottom-up and top-down approach. The tool is fed by the processed outputs 

of PCR-GLOBWB 2 after which a series of post-processing steps must be taken to produce a hazard score 

(Deltares, 2022). As an initial step of this research, I eliminated or replaced all the case-specific processing 

steps of the WaterLoupe Python module and used it exclusively for data extraction. The rest of the research 

steps were carried out using a new Python script; a detailed description of the functionality of WaterLoupe 

and the adapted version of it can be found in Appendix 2. 

PCR-GLOBWB 2 was used to produce input information for analysis. Data extraction, processing, 

management, and analysis were done using Python, R Studio, and QGIS. The verification processes were 

done using the JRC Monthly Water History v1.3 dataset (Pekel et al., 2016) accessed through Google Earth 

Engine in the case of water storage, while search results of Google Scholar and Google search (for news 

articles) were used in the case of the water gap. 

All the scripts used for data production and processing are included in Appendix 3 and are 

available for use and future development of drought hazard assessment. 

 

2.2 Methods 
 

This research is structured into two parts following the research questions. In the first part, I propose 

an approach to quantify drought hazard in cities using open data with Chennai as a pilot city. I use the active 

water storage thickness variable produced by PCR-GLOBWB 2 to propose a threshold beyond which water 

scarcity events are triggered and assess whether the calculated water gap events match literature records.  

In the second part, I apply the approach in a case study containing the pilot city and three additional 

cities in different regions. I compare city-specific water storage time series with satellite observations of 

SWE to establish the temporal and spatial match of the model for the city and compare the computed water 

gap with literature records of drought to determine the agreement of the different sources with the modelled 

water gap. As the last step, I perform statistical testing on the storage and water gap time series and a 

database of climate incidents to determine whether the storage variable and the water gap variable are 

significantly different during recorded drought incidence. 
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The following table presents the detailed method for each part of the research and the rationale for 

the research design. A conceptual flow diagram of the methods can be found at the end of the section (Figure 

2). 

 

 

Objective 1: Quantify the water 

gap for a single pilot city using 

active water storage produced by 

a water balance model and 

propose a hazard scoring 

approach 

 

Rationale: This method seeks to use water storage calculated with a 

hydrological model to measure water scarcity in an urban area by applying 

the concept of a water gap; this makes it possible to propose a climate-

driven, urban drought metric.  

 

Method to address Research Question 1 

 

Site and time range selection  

The city of Chennai was used as a pilot city for this research. The city was selected according to the 

availability of previous implementations of WaterLoupe which were used to help identify and correct errors in 

the model setup and to understand and consider the barriers that required reliance on manual data processing or 

local data. The study period used was 1981-2010, with 1980 used as a spin-up year but not considered in the 

calculations. The time range was selected since these are years the model includes in the default model set-up, 

but the method is applicable to any multi-year period.  

 

Data production and processing  

To propose an approach to measure drought hazard, I produced a 5 arc-min (approximately 10 km at 

the equator) realization of the PCR-GLOBWB 2 model using whole basin sub-samples of the global model 

input maps and climate forcings (precipitation, temperature, and reference PET); Appendix 1 contains details of 

the settings used to run the model, and the modelled regions can be seen in Figure 5.  

The city footprint was extracted from the Global Human Settlement – Urban Centre database (GHS-

UCDB) (Florczyk et al., 2019). This database was chosen as it is designed and accepted for international and 

regional statistical comparison purposes among cities (Florczyk et al., 2019).  

I produced simplified polygons of the cities using the QGIS distance-based simplify tool, with a 

tolerance of 0.01 degrees to reduce processing time. An adapted version of the WaterLoupe Python module 

capable of using the raw output of PCR-GLOBWB 2 was developed and used. The adapted module and 

explanation of WaterLoupe can be found as Appendix 2. 

 

Hazard scoring 

For the pilot city, I did a conceptual literature review to understand the patterns and trends of urban 

drought and support the choice of moving from frequently used flow variables, to a water storage variable. I 

then evaluated the possibility of meeting the objective of the research using this variable considering the main 
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desirable attributes for a globally applicable quick-scan methodology: Applicability to any city and not 

requiring manual inputs to operate. The total active storage thickness (or just “storage”, ws) [meters] was used 

for this approach. This variable considers water stored in the canopy, snowpack, both soil layers, and a part of 

the groundwater storage, but excludes the groundwater which is not interacting with any of the other model 

layers. 

The use of water storage rather than instantaneous availability and demand required that the definition 

of the water gap be adjusted. Instead of subtracting demand rates from availability rates, the water gap was 

computed as the negative exceedance of a threshold of low water storage, since a similar method (based on 

discharge) has been used to model hydrological extremes (Engeland et al., 2004). 

Using a Jupyter Notebook script file, the water gap (wg) [meters] was calculated as the negative 

exceedance of the mean annual low storage (Equation 1); a graphical explanation of the method can be seen in 

Figure 3. The mean annual low storage (MALS [meters]) is defined as the mean of the lowest monthly storage 

value of each year in the study period.  

 

𝑤𝑔 [𝑚] = 𝑀𝐴𝐿𝑆 [𝑚] − 𝑤𝑠 [𝑚] Equation 1 

                                                                                

For the calculation of the MALS, the time series for each city was first re-sectioned into low flow 

hydrological years to avoid double-counting minimum storage levels of the same season twice during 

abnormally dry years (Harkness, 1998). This was done by aligning the month that most recurringly had the 

lowest storage with the middle of the 12-month cycle. In this way, the study year for a city with the driest 

months around February would start in August and would end in July.  

I used the generated water gap time series to compute a hazard score, which is comparable to other 

cities. The hazard score is based on 3 parameters derived from the water gap time series.  

The three parameters composing the hazard score are frequency, persistence, and severity of 

modelled water gap events. These parameters are dimensionless and can span from 0 to 1, where lower 

numbers are associated with less hazardous events (less frequent, less persistent, or less severe water gaps), and 

higher numbers with more hazardous events (more frequent, more persistent, or more severe water gaps). The 

parameters to calculate the hazard score are defined as follows: 

Frequency: How often there is a water gap (Equation 2). This parameter is synonymous with the 

failure rate and represents the fraction of timesteps that the storage falls under the threshold. The 

equation is adapted from the time-based reliability equation, which measures the success periods in 

reservoirs out of all periods (McMahon et al., 2006). 

Persistence: How the water gaps are distributed, whether the water gaps are few and long (persistent), 

or many and short (not persistent) (Equation 3). The equation is adapted from the dry-to-dry transition 

probability used by Moon et al., 2018, and is defined as the proportion of timesteps with a water gap 

immediately preceded by another timestep with a water gap (denoted as A), out of all timesteps with a 

water gap (denoted as B) (Moon et al., 2018). 

Severity: Average intensity of the water gaps relative to the oscillation range of the time series 

(Equation 4). This parameter is normalized by dividing the intensity of the water gap events by the 

range of oscillation of the storage time series (Equation 5). It is adapted from the WaterLoupe severity 

parameter, which measures exceedance of water demand compared to total demand (Mulder et al., 

2021). 

The hazard score (Equation 6) ranges from 0 (low hazard) to 1 (high hazard) and is dimensionless, as 

are all its components. In this research, the geometric mean of the three parameters was used to find the hazard 
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score. The geometric mean is favoured over the arithmetic mean since it conserves the distributional 

characteristics of the conforming parameters and is independent of expert judgement weighing (Cogswell et al., 

2018) 

The equations used to calculate the hazard parameters are: 

 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝑚𝑜𝑛𝑡ℎ𝑠 𝑤𝑖𝑡ℎ 𝑤𝑎𝑡𝑒𝑟 𝑔𝑎𝑝 [−]

𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝑚𝑜𝑛𝑡ℎ𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 [−]
 Equation 2 

𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒 =
𝐴 [−]

𝐵 [−]
 Equation 3 

𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 =
∑ max 𝑟𝑤𝑔𝑛

1 [−]

𝑐𝑜𝑢𝑛𝑡  𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 𝑔𝑎𝑝 𝑒𝑣𝑒𝑛𝑡𝑠 [−]
 Equation 4 

 

Where n is the number of water gap events in the time series and the relative water gap is computed from the 

water gap as:  

 

𝑟𝑤𝑔 =  
𝑤𝑔 [𝑚]

max(𝑤𝑠 [𝑚]) − min (𝑤𝑠 [𝑚]) 
 

Equation 5 

 

The hazard score is then: 

 

𝐻𝑎𝑧𝑎𝑟𝑑 = (𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ∗ 𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒 ∗ 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦)
1
3 

Equation 6 

 

 

 

Where:  

Variable – Description – [Unit] 

wg – Water gap – [m]  

ws – Total active storage thickness – [m] 

MALS – Mean annual low storage – [m]  

A – Number of timesteps with a water gap immediately preceded by another timestep with a water gap – [-] 

B – Number of timesteps with a water gap – [-] 

n – Number of water gap events (consecutive water gap sequences) – [-] 

rwg – Relative water gap – [-] 

Hazard – Hazard score – [-]  
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Objective 2: Determine whether 

the methodology to calculate the 

water gap can be applied to 

multiple cities and assess how the 

water gap relates to reported 

drought incidences. 
 

Rationale: The methodology developed for the pilot city is tested for a 

larger sample of cities through a case study using the same top-down 

approach to understand the stability and scalability of the method and 

assess the relationship between reported drought incidents and computed 

water gaps, as well as assess the existence of a threshold that can 

consistently determine periods of water scarcity. 

 

Method to address Research Question 2 

 

Application of the approach  

For each of the modelled basins, I filtered the cities with footprints larger than 100 km2 and processed 

them using the same method as was previously described; for each city, a water gap time series was produced 

and the hazard score was computed. Four case study cities were selected and analysed to verify the approach: 

Cali (Colombia), Cape Town (South Africa), and Sao Paulo (Brazil), in addition to Chennai (India). These 

cities were also selected based on the availability of WaterLoupe case studies. 

 

Temporal and spatial verification  

To understand how closely the modelled variable reflected the trends of freshwater availability in 

reservoirs near the city, the modelled variable time series was visually compared with a time series of 

observations of surface water extent derived from the JRC Monthly Water History satellite data product (Pekel 

et al., 2016) using Google Earth Engine. The use of surface water extent is motivated by the close relationship 

that exists between reservoir storage and water availability for urban areas, whether for water supply, electricity 

production, irrigation for food supply (especially in peri-urban areas), or a combination of these (Souza et al., 

2022; Zarfl et al., 2014). In this process, non-water areas and pixels with no data were masked out. The 

reference areas of the water bodies were used according to the ReaLSAT database (Khandelwal et al., 2022), 

considering the following water bodies by city: 

Chennai: Chembarambakkam Lake, Poondi Reservoir, Red Hills Lake (Puzhal), and Thenneri Lake. 

Cali: Salvajina Reservoir. 

Cape Town: Berg River Dam, Steenbras Dam, Theewaterskloofdam, and Wemmershoekdam. 

Sao Paulo: Billings Reservoir, Guarapiranga Reservoir, Jundiaí Reservoir, and Taiaçupeba Reservoir. 

This method assumes that SWE and the modelled water storage are directly proportional (positive 

when there is surplus water). Therefore, scarcity situations with abnormally low water body fractional area 

coverage (i.e. dry lakes and reservoirs) were expected to coincide with periods of abnormally low water 

storage. The comparison consisted of three components, month-to-month variability, where the congruence 

among both time series of an upward or downward trend from one month to the next was assessed, year-to-year 

variability, where the upward or downward trend from one year to the next was assessed, and temporal shift of 

the time series to earlier or later months. The analysis was carried out for the period 2000-2010 since SWE data 

before this point is not continuously available. 
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Separately, but with the same intent, I compared the water gap time series with literature records of 

urban drought. This was done to determine agreement in periods of incidence of drought between literature 

records and modelled water gap events. In this case, appearances of water gap (a variable inversely proportional 

to water availability) were expected to coincide temporally with water scarcity events, sharing a start date and 

an end date. I used white paper and grey literature records of water scarcity events to assess the extent to which 

the water gap reflected the temporal distribution of urban drought in each city over the study period. The 

literature search consisted of using the terms “water scarcity”, “water stress”, and “urban drought” in 

combination with the name of the city and the year each water gap appeared in, filtering the results by decade 

over the studied period, and extending until 2020. I read the search results to confirm that the context these 

terms were used in was connected to losses caused by drought in the city and reported it as either a match (if 

losses connected to urban drought were indeed reported in that period) or not a match (if there were none). In 

the case of Cali, all the searches were done adding the exclusion term “-California”, to filter out results related 

to the state in the United States. In the case of Chennai, the search was repeated using the city name “Madras” 

for the period of 1981-1990. 

To perform the white paper literature review, the search was carried out progressively filtering results 

by decade (1981-1990, 1991-2000, 2000-2010, 2010-2020) using Google Scholar advanced search, since 

search results tended to be dominated by recent content, rather than by old records. The search for news reports 

was executed using the Google search engine. In both cases, for each search, only the first page (consisting of 

10 results sorted by relevance) was reviewed. For each year, the search was completed when 2 concurring 

sources were found. When the inspected literature included a range of dates or several ranges of dates, they 

were also recorded and considered; this mostly happened in papers listing multiple periods where drought was 

observed, rather than in news reports. If conflicting dates were found, 2 additional records were consulted.  

 

Statistical testing with drought incidents 

The Emergency Events Database (EM-DAT) was used to find drought incidents that occurred in the 

modelled regions and statistically test whether the modelled water storage was capable of replicating incidences 

of urban drought. For each incident record, all the listed locations were queried from the OpenStreetMap 

(OSM) database through the Nominatim Application Programming Interface (API) using Python. These 

locations were then intersected with the footprints of the study cities using QGIS and a record containing the 

incident reference and affected city names was generated for each incident. A monthly drought incidence time 

series was then constructed using all the incidents applicable to each city. During this process the following 

cases where dates were incomplete were found: 

In the case of Chennai, an incident is reported starting in June 1982 and ending in 1983; the whole 

year of 1983 is considered as under drought. The same happens with an incident starting in July 2002 and 

ending in 2002 – the remainder of 2002 is considered under drought. Similarly, in the case of Cali, an incident 

is reported starting in 1998 with no end date reported, consequently the entire year was considered as under 

drought. In South Africa, an incident is reported in March 1982 ending in 1983; all of 1983 is considered under 

drought.  

Using the time series of each city, the timesteps were grouped either as ‘under drought’, when 

incidences had been recorded during a timestep, or ‘not under drought’, when no records of incidence were 

found. The goal of this test is to answer the following two questions: 

Storage: Is the modelled water storage significantly lower during periods of reported drought 

incidents, than in periods with no drought incidents? 

Water Gap: Is the modelled water gap significantly greater during periods of reported drought 

incidents, than in periods with no drought incidents? 
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 I defined hypotheses to test whether the storage variable and the water gap variable were significantly 

different among the groups of timesteps (in drought and not in drought). The non-parametric Wilcoxon–Mann–

Whitney test was used motivated by the unequal sample size and variances of the groups. The test was carried 

out in R Studio using the stats package. A two-tailed test was preferred over the one-tailed alternative and the 

sign of the z-score was used to determine the direction of the relationship between samples (if present). The 

following null hypothesis (H0) and an alternate hypothesis (H1) are defined for each variable:  

 

Storage: 

H0,s: Modelled storage is equal in time steps with drought incidents and in time steps without drought incidents 

H1,s: Modelled storage is not equal in time steps with drought incidents and in time steps without drought 

incidents. 

Water Gap: 

H0,wg: Modelled water gap is equal in time steps with drought incidents and in time steps without drought 

incidents. 

H1,wg: Modelled water gap is not equal in time steps with drought incidents and in time steps without drought 

incidents. 

 

 

Figure 2. Conceptual flow diagram of the research. Green items represent inputs, blue items 

process steps, and orange items results that respond to the research questions. The diagram is split 

into two blocks, the left one with Research Question 1, and the right one with Research Question 2. 
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Figure 3. Graphical explanation of the water gap using MALS as a threshold. 3A consists of 

modelled water storage and mean annual low storage (horizontal red line indicated as the 

threshold), 3B contains the water gap as the negative exceedances of the mean annual low storage, 

and 3C shows how each separate water gap event has variable intensity (vertical arrows) and 

duration (horizontal arrows). 
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2.3 Site description 
 

The city used as a pilot is Chennai, India (Figure 4), an 11 million inhabitant city located on the 

Eastern Coastal Plains of peninsular India, in the state of Tamil Nadu. Chennai, previously known as 

Madras, is one of the major cities of India, and one that has long struggled with sufficient water supply to the 

city, due to a growing population, climate variability, and saltwater intrusion. (Narain, 2005; Venkatesan, 

2019) 

The Chennai Municipal Water Supply and Sewerage Board (CMWSSB) is responsible for water 

supply to the city, which is carried out using four main reservoirs. The water is sourced from local runoff, as 

well as water transfers from outside the city, well fields East of the city, the Southern Coastal Aquifer, and 

an abundance of wells within the city (Thomas, 2010). Citizens and residents of peri-urban areas that are not 

served (or are insufficiently served) by the city supply often have individual or shared wells to tap into the 

available groundwater resources. As such, the city relies on surface water stores, as well as on groundwater 

availability (Srinivasan et al., 2013).  

While the city receives a yearly average of ~1200 mm of rain, this supply is not evenly distributed 

throughout the year; over half of this usually falls during the Northeast monsoon over October, November, 

and December, the period during which reservoirs are refilled and the groundwater is recharged (Rajendran, 

2012). As a result of this cyclical process, deficits in the Northeast monsoon of one year often translate into 

water scarcity throughout the city in the months before next year's monsoon (July, August, September), when 

storage runs low and the groundwater table drops, causing wells in and around the city to run dry (Institute 

for Environment and Human Security, 2007) 

Water scarcity in the City of Chennai has been experienced many years over the past decades, and as 

the city continues to grow, adequately responding to it continues to be a critical concern to preserve the 

health and livelihood of its inhabitants (Kabilan et al., 2005; Narain, 2005; Venkatesan, 2019).  

Over the past 20 years, in responding to water scarcity issues, the city has implemented rainwater 

harvesting within the local regulation and has heavily invested in desalination plants to supplement water 

deficits, but this has not sufficed to fully meet water needs (Kabilan et al., 2005; Mulder et al., 2021; 

Venkatesan, 2019). 
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Figure 4. Location of Chennai (dot on map) within India (highlighted). The inset in the bottom 

right of the figure shows the location of the visualized region within the globe. Created using 

DataWrapper from OpenStreetMap data. 

 

 

Figure 5. Location of modelled regions as highlighted zones covering Central America, the middle 

section of South America, a Southern section of Africa and a Southern section of Asia. The case 

study cities are called out and indicated with a larger yellow marker. Locations of cities derived 

from the GHS-UCDB. Created using QGIS.  
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3. Results 
 

3.1 Drought hazard for a pilot city 
 

Hazard scoring 

The water gap was calculated for the 

pilot city of Chennai using the negative 

exceedance of the mean annual low storage as 

a threshold. The process was done by running 

the notebook script UrbanWaterGap.ipynb in 

Jupyter Notebook which meets the 

expectation of the approach being automatic.  

The water gap (Figure 6) appeared 

most in July, August, and September, which 

are the months before the North-east 

monsoon; this is congruent with the months 

where urban droughts have frequently been 

recorded in Chennai (Anand, 2007, 2014; 

Narain, 2005). Sporadic water gaps can be 

seen in the months of February through May 

and only exceptionally in January and 

October.  

The large drought experienced in 

2000-2005 can be seen with varying 

intensities in every year in the range, 

suddenly stopping in November 2005, which 

is congruent with the large flood experienced 

that year (Srinivasan et al., 2013; Thomas, 

2010). Between 2006 and 2010, no records 

suggesting water scarcity were found; on the 

contrary, stable release of water from the Red 

Hills reservoir – an important drinking water 

source for the city – is recorded (Venkatesan, 

2019). 

The hazard scoring process was done for the 

City of Chennai, yielding the following 

values: 

Severity: 0.05 

Frequency: 0.22 

Persistence: 0.79 

Hazard score: 0.21 

 

Figure 6. Heat map of the water gap for the city of 

Chennai. Darker shades represent more intense water 

gaps. Years are shown as the vertical axis, while months 

are shown as the horizontal axis. 



24 

 

   

 

3.2 Application of the approach and verification of results 
 

Application of the approach 

I selected all cities with footprints larger than 100 km2 in the 4 modelled basins and processed them 

using the same method as was previously described, over the same study period; for each city, a water gap 

time series was derived and the hazard score was computed successfully. Cape Town had the lowest score 

(0.17), followed by Cali (0.19), and finally Chennai and Sao Paulo were tied for the highest score (0.21). 

Regarding the composing parameters, the cities with the most severe gaps were found to be Cali and Cape 

Town, while Chennai and Sao Paulo leaned towards more frequent gaps of a lower intensity; the most 

persistent droughts were found in Chennai and Sao Paulo. 

The yearly water gap pattern for all the cities followed a unique trend, with frequent water gap 

months varying among them. 

Table 1 presents the frequency, persistence, and vulnerability scores for each city, as well as the 

resulting hazard score.  

 

Table 1. Water gap severity, frequency, persistence and resulting hazard score.  

City Chennai Cali Cape Town Sao Paulo 

Severity 0.05 0.13 0.15 0.05 

Frequency 0.22 0.09 0.08 0.23 

Persistence 0.79 0.55 0.41 0.80 

Hazard score 0.21 0.19 0.17 0.21 

 

The water gap distribution for each case study city can be seen in Figure 7 along with the 

distribution of precipitation signal and the storage response. 

The application of the approach was carried out for 217 cities (though these were not analysed); the 

total computing time on a single Windows-based computer was 88 hours, where modelling took the longest 

time (80 hours), followed by data extraction (6 hours). The post-processing was carried out in approximately 

2 hours. The complete list of the derived hazard scores for the cities in the modelled regions can be found in 

Appendix 4. 
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Figure 7. Monthly precipitation (climate forcing, first row), storage (modelled response, second row), 

and water gap (synthetic variable, third row) for each study city (6A – Chennai, 6B – Cali, 6C – Cape 

Town, 6D – Sao Paulo) from 1981 to 2010. The variables are grouped by month from January to 

December. All dots represent outliers that exceed the mean plus (or minus) 1.5 times the interquartile 

range.  

 

Temporal and spatial verification 

Process 1. Visual comparison of modelled storage and SWE observations 

A visual comparison was carried out between the modelled storage and the SWE observations that 

were extracted from the satellite data product (Figure 8). 

Chennai (Figure 8A). The modelled storage shows a very good match to observations of SWE. The 

range of oscillation for active water storage thickness is from 0.3 to 1.1 m and SWE from 0 (empty) to 1 

(full). The month-to-month and year-to-year oscillation of storage and SWE are coherent for most time steps, 

as both variables rise or fall simultaneously. In 2001, 2004, and 2005, storage is observed at its lowest point, 

while the highest point is in the last quarter of 2005.  

Cali (Figure 8B). The modelled storage shows a good match to observations of SWE, even when 

data gaps are common. The range of oscillation for active water storage thickness is from 0.3 to 0.7 m and 

SWE from 0.6 to 1. The month-to-month oscillation is generally coherent between the modelled storage and 

the observations, but a single month shift can be seen in some cases. The year-to-year oscillation is much 

more coherent, with years where modelled storage was low matching reductions in SWE.  
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Cape Town (Figure 8C). The modelled storage shows a good match to observations of SWE. The 

range of oscillation for active water storage thickness is from 0.05 to 0.4 m and SWE from 0.5 to 1. The 

month-to-month oscillation is coherent; however, the year-to-year oscillation is not as coherent, with no 

consistent shift in storage and SWE.  

Sao Paulo (Figure 8D). The modelled storage shows a good match to observations of SWE. The 

range of oscillation for active water storage thickness is from 3.5 to 4 m and SWE from 0.8 to 1. The month-

to-month oscillation is only partially coherent, with no consistent trend in storage and SWE after 2006; 

however, the year-to-year oscillation is very coherent, with a decreasing trend during 2000-2004, and an 

increasing trend from 2005 to 2010. The observations for this case are the noisiest among the sample, with 

frequent erratic months. 

 

 

Figure 8. Modelled storage (top) and observed SWE (bottom) of the water bodies servicing each 

city (7A – Chennai, 7B – Cali, 7C – Cape Town, 7D – Sao Paulo) for the years 2000-2010. 

Observations connected by dashed lines indicate there are no data gaps between the points. 
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Process 2. Comparison of water gap with records of urban drought 

Figure 9 shows the water gap that was computed for the case study cities. For each city, the events 

were verified against literature. The main observations for each city are detailed below. 

 

Figure 9. Water gap time series for each city (8A – Chennai, 8B – Cali, 8C – Cape Town, 8D – Sao 

Paulo) for the years 1981-2010.  

Chennai (Figure 9A). The water gap time series for Chennai is characterized by persistent periods of 

scarcity in the early 1980s and early 2000s, with shorter, less intense occurrences over the 1990s. Recorded 

incidents are generally well captured by the water gap. Records of drought affecting Chennai exist for 1981-

1983 (3/3 match) (Devadas, 1987; Nathan, 1995; Sundari, 2005; Venkatramani, 1983), 1987 (match) and 

1989 (no match), (C.P.R. Environmental Education Centre, 2001; Nathan, 1995; Sundari, 2005), 1993 

(match) (Charlesworth & Adams, 2013; Ruet et al., 2002), and 1998 (no match) (Sundari, 2005); for the 

period of 1999-2005, there is general consensus of the presence of a continuous drought (6/7 match) 

(Institute for Environment and Human Security, 2007; Janakarajan et al., 2007; Narain, 2005; Paul & 

Elango, 2018; Ruet et al., 2002; Srinivasan et al., 2013; Sundari, 2005; Thomas, 2010; Venkatesan, 2019). 

There are few sources on water scarcity in the decade of the 1990s. The water gap events which are not 

supported by literature appear in 1991, 1992, 1994, 1996. 
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Cali (Figure 9B). The water gap time series for Cali shows multiple short events throughout the time 

series and captures most of the recorded drought periods well. While not much literature is available 

specifically for the city, Cerón, et al., 2020 give an extensive account of droughts in Cali. Most of the water 

gaps occur in years where the El Niño Southern Oscillation (ENSO) is present; ENSO is a periodic climate 

oscillation that has been linked to the prevalence of drought conditions leading to wildfires around Cali (and 

many other effects in different regions of the world) (Cerón et al., 2020). Drought conditions affecting Cali 

are reported in 1983-1984 (1/2 match), 1990-1993 (3/4 match), 2009-2010 (2/2 match) (Carvajal et al., 1998; 

Cerón et al., 2020). While not specific to the city, regional effects for Western Colombia are reported in 1985 

(no match), 1987-1988 (2/2 match), 1991 (no match) and 1997-1998 (2/2 match) (Cerón et al., 2020). 

Additionally, reduced water availability is documented in the region in 1995 (match) and 2005 (match) 

(Domínguez Calle et al., 2008; Pérez-vidal et al., 2012; Weng et al., 2020). There are some water gap events 

present in the series that are not recorded in literature, specifically: 1982, 1994, and 2004.  

Cape Town (Figure 9C). The water gap time series shows small short events almost every year 

starting from 1998 (except for 2002), and very few events before that point. In this case, the water gap 

matches reported events very poorly. Water stress has been reported in Cape Town for many years, with the 

establishment of consumption restrictions during the dry summer months dating back to the 1970s; while 

very few outstanding water scarcity events were identified in the studied period, limiting water is a common 

practice during dry periods (City of Cape Town, 2018; J. F. Warner & Meissner, 2021). This is congruent 

with the months where the water gap appears most frequently, particularly towards the end of the dry 

Summer season in February and March. One source identifies drought periods affecting the Western Cape 

(though not specifically Cape Town) in 1986-1989 (not a match), 1991-1992 (1/2 match), 2000-2001 (2/2 

match), and 2004-2005 (2/2 match), where low dam levels are specifically cited (Mukheibir & Ziervogel, 

2007). The water gap events present in the series that are not recorded in literature happen in 1982, 1984, 

1994, 1995, 1998, 1999, 2003, 2006, 2007, 2008, 2009, and 2010.  

Sao Paulo (Figure 9D). The water gap time shows long periods of water scarcity in the mid-1980s 

and 2000s, with shorter, less intense, and less frequent events in 1981, 1991, and 1995. For Sao Paulo, the 

water gap matches water scarcity records well; however, few sources citing specific dates in the study period 

were found. The city has faced severe periods of water scarcity, especially during 1985-1986 (2/2 match) 

(Guarapiranga crisis) and 2000-2005 (5/5 match) (Souza et al., 2022). The 1985-1986 water shortages which 

affected the Metropolitan Region of Sao Paulo are specifically reported, starting in October 1985 and ending 

in March 1986, which matches the dates observed in the water gap (Souza et al., 2022). Several sources 

mention water scarcity events starting in 2004 affecting the city, and requiring expansion of the supply 

system, but no sources cite an ending date of the supply limitations (Ruijs et al., 2008; Souza et al., 2022). 

Water gaps not reported in the literature appear in 1981, 1982, 1987, 1988, 1991, 2007, and 2008. 
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Statistical testing with drought incidents 

Drought incident reports from EM-DAT were used to group time steps into either ‘Drought’ 

condition or ‘No drought’ condition for each city. EM-DAT was queried for the entire study period (360 

months), resulting in each city having a different number of drought months on record between 1981 and 

2010 (Chennai 25, Cali 12, Cape Town 22). This process resulted in Chennai, Cali, and Cape Town having 

recorded incidents, and Sao Paulo having none, consequently, only the first three cities were tested in this 

approach. 

This ordered data was used to test the two following hypotheses for each variable: 

H1,s: Modelled storage is not equal in time steps with drought incidents and in time steps without drought incidents. 

H1,wg: Modelled water gap is not equal in time steps with drought incidents and in time steps without drought incidents. 

The results from the statistical test are shown in Table 2 and the distribution of the data in Figure 10. 

Table 2. Summary table of statistical tests. 

City 

n=360 
Water Gap Storage 

  Drought     No drought 

 (D)  (ND) p-value z-score Effect size p-value z-score Effect size 

Chennai 25 335 1.8E-08 5.63 0.297 2.5E-05 -4.21 0.222 

Cali 12 348 0.392 0.86 0.045 0.468 -0.73 0.038 

Cape Town 22 338 0.510 -0.65 0.034 0.719 0.36 0.019 

Sao Paulo 0 360 NA NA NA NA NA NA 

 

In the case of Chennai, the median modelled water storage during reported drought periods was 

lower (0.41 m) than during non-drought periods (0.55 m); the median of the relative water gap was 0.02 

during drought periods and 0.00 during non-drought population. The Wilcoxon test showed that the 

difference between both groups was significant (p < .001) for the modelled storage variable and the relative 

water gap, with an effect size of .222 and .297, respectively, since there is a large overlap among the groups 

as can be observed in Figure 10A. 

In the case of Cali and Cape Town (Figure 10B/C), no significant difference was found in either 

variable. For Cali, the median storage and relative water gap during drought were 0.46 m and 0.0, while 

outside of drought they were 0.45 m and 0.0 (no change in water gap) with p-values of .392 and .468 

respectively. For Cape Town, the median storage and relative water gap during drought were 0.15 m and 0.0, 

while outside of drought they were 0.14 m and 0.0 (no change in water gap) with p-values of .510 and .719 

respectively; note that the storage during drought periods is higher than outside of drought periods in the case 

of Cape Town.  

With these results, it is possible to reject the null hypotheses for the case of Chennai, it is not 

possible to reject the null hypotheses for the cases of Cali and Cape Town, and it is impossible to perform the 

test for the case of Sao Paulo.  
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Figure 10. Violin plots of the modelled storage (left pairs) and relative water gap (right pairs) for the 

case study cities (9A – Chennai, 9B – Cali, 9C – Cape Town). Time-steps are categorized by drought 

condition based on the drought incidents database. The width of each ‘violin’ is proportional to the 

frequency of occurrence of values of the plotted data. The sample quartiles are indicated in the 

boxplot. Outliers exceeding 1.5 time the interquartile range are shown as points.  
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4. Discussion  
 

As part of this research, I present an initial, explorative approach to measure drought hazard at a city 

scale. The approach is quick to apply and relies only on open, globally available data, using modelled water 

storage thickness as a study variable. As part of this research it was qualitatively determined that this 

variable can give information about the city-specific cycles of water availability and scarcity at a monthly 

resolution by modelling the basin-wide behaviour of water, though a quantitative assessment must be 

performed for improved reliability.  

This research proposes a way to measure climate-driven water scarcity hazard in cities based on the 

severity, frequency, and persistence of water scarcity events, or water gaps; these are calculated using a 

water scarcity threshold which is then applied in other cities. While the approach produces water gap events 

that often resemble observed water scarcity periods (yielding a good temporal and spatial match during the 

verification of the output), some mismatches are present (especially for the case of Cape Town) and 

quantitative verification using more observations of urban drought is necessary.  

The approach is intended for use as an initial hazard assessment tool, which can be built up through 

workshops and case studies involving stakeholders and decision-makers to better understand and prepare for 

local drought risk. Achieving an approach that required minimum fine-tuning before meaningful information 

could be derived from it was therefore a priority; while this represents a trade-off in terms of reliability 

(compared with using local data), it allows (almost) any city to access meaningful information on the climate 

hazards they face based on the regional weather patterns and historical hydroclimatic conditions of the area.  

Water storage can be a key variable to better understand water resource availability, especially as 

methods to verify modelled data become available (Pokhrel et al., 2021); this thesis examines a possible use 

of this variable in drought hazard assessment and highlights the advantages and limitations of its use for this 

purpose, feeding the growing body of literature on drought hazard modelling. Ahead, a detailed discussion of 

each of the research methods is presented, as well as possible routes for future research. 

 

4.1 Model use and dataset availability 
 

A great variety of models and global open datasets exist which can be used for most parts of this 

research; generally speaking, the models are well documented, and there were few limitations in producing 

results specifically with PCR-GLOBWB 2. The largest challenge when identifying global datasets was 

finding records of drought incidents for verification purposes. 

The use of a hydrological and water resources model capable of simulating entire basins makes it 

possible to understand how changing conditions and climate anywhere in the basin translate to an effect on 

the area of interest (Van Beek & Bierkens, 2008). For this research, the approach was applied only for cities 

larger than 100 km2; however, application for smaller cities should be possible using the same (unfiltered) 

database used. An exception exists for small cities in coastal regions and islands which can be outside of the 

model extent. Other models working on a finer scale can be used to supplement the output of PCR-

GLOBWB 2; this can be done for missing data regions and to improve resolution to achieve finer detail in 

specific zones of interest. Models such as Wflow may be better suited for this but will likely take longer to 
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process large regions; a combination of PCR-GLOBWB 2 and Wflow may be attractive to circumvent this 

difficulty (Schellekens, 2021). 

Regarding the city footprints used, UCDB was selected since it matched the intended research 

purpose; however, many databases exist which could be alternatively used to extract data from the model 

results. In this specific database, some urban centres have expanded to the point of merging with a 

contiguous city and are considered as a single entity (Peeters et al., 2021; Schiavina, 2020); these outlines 

must be corrected to ensure the results produced by the model are specifically for the city in question, and 

not for a potentially much larger area including other neighbouring cities.  

For data extraction by city, care must be taken to verify a (semi)stationary state has been achieved in 

the basin of interest; some regions have been documented to require very extensive spin-up periods, such as 

the Niger and the Amazon basins (Sutanudjaja et al., 2018). An adequate spin-up period should be 

considered when selecting a basin to model, to guarantee the trends observed are a product of climate 

variability and not a trend caused by the initial conditions of the model.  

 

4.2 Use of water storage thickness 
 

In the development of the approach, water storage thickness was chosen as a variable of interest, 

supported by matching urban drought literature, and having the possibility to operate automatically without 

city-specific considerations; by doing this, a high level of automation can be maintained, limiting the need 

for manual adjustments on a city-by-city basis. The storage variable measures how dry (and how wet) the 

modelled layers of storage in an area are, as a combination of water-thickness-equivalent snow-pack, canopy 

interception, soil moisture, surface water storage, and groundwater storage. Low storages are associated to 

low flows and discharges, while high storages are associated with flooding events.  

The change in storage indicates whether the area is gaining water or losing water from one timestep 

to the other due to inflows and outflows, and can help characterize droughts in terms of duration and severity 

(Pokhrel et al., 2021; Ponce, 2016; Sutanudjaja et al., 2018). The operating principle of the model is that the 

amount of water available in an area at any given moment is the result of how much water was not used up 

before reaching the city (either by nature or by humans), the amount the area retains through infiltration, and 

the amount of run-off and interflow caused by local precipitation (Sutanudjaja et al., 2018; Van Beek & 

Bierkens, 2008). Based on this, an exceptionally low amount of water being stored in the city area reflects 

diminished inflows (or excess outflows), which will possibly be impactful to the local water supply capacity 

(among other consequences). This is compatible with the idea that the amount of water available for use at 

any given moment is as much a result of the precipitation in the sub-basin, as it is of our capacity to retain it 

and manage it in times of scarcity.  

The water storage variable presents the main shortcoming that it is difficult to determine how 

reductions in water storage translate to diminished water supply and other consequences; however, this may 

be better captured within the vulnerability component of a drought risk model (Albulescu et al., 2022). Some 

elements that may affect how drought-vulnerable a city is are largely dependent on local water infrastructure 

and management strategies which the model would not capture, such as: 

- Water re-use and circularity within a city 

- Infrastructure such as well fields and recharge wells  

- Access to deep aquifers 
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- Crisis responses such as use of allocation schemes during drought (Miranda et al., 2022) 

Understanding the way water is split among model layers may yield additional information on water 

source availability; while this is possible within the model, it is hard to state whether these storages are 

accurate or meaningful at a city scale and whether the water would be accessible and safe to use. While 

storage distribution among layers is highly variable across cities, some observed patterns are consistent in 

behaviour. For example, it is generally the case during periods of drought that the fraction of active storage 

belonging to groundwater becomes larger, as surface water is the first to dwindle, which is congruent with 

records of reliance on groundwater, particularly during extended droughts (Terrett et al., 2020). During the 

recovery of a drought, less surface water can often be available, as groundwater storage is recovered (Tweed 

et al., 2009; Van Loon, 2015); since the total water storage is measured, the effect cannot be captured 

through this approach.  

 

4.3 Hazard Scoring 
 

Studying the behaviour of the pilot city time series, I observed records of urban drought aligned 

better with the months of lowest storage of the year, regardless of how long before the incident precipitation 

irregularities had occurred. This supported the selection of using a single fixed threshold exceedance metric 

rather than a monthly average exceedance, which is more popular in discharge-based studies (Henderson et 

al., 2003; New Zealand Rivers Group, n.d.); however, the pinpointing the conditions where consequences of 

drought start is currently a matter of active research, and the specific criterion used varies by author (Valiya 

Veettil & Mishra, 2020; Wanders et al., 2010). Several approaches exist, using different thresholds as a cut-

off point for drought: 

- Mean annual low flow. The method which largely inspired the selected threshold was the use 

of the mean annual low flow, which relies on the calculation of the 7-day moving average for 

discharge, and averages the lowest 7-day moving average of each year to find a single 

threshold value. This value is then used to assess viability of withdrawal permits, effluent 

limits, and to design water supply infrastructure (Harkness, 1998; Henderson et al., 2003; 

New Zealand Rivers Group, n.d.; Ouyang, 2012). The 7-day moving average was not used 

since the model output was not available at a daily timestep.  

- Flow exceedance probability. Studying hydrological droughts, Engeland et al. propose the 

use of the 70 percent exceedance probability flow (Q70) of the time series given their 

particular dataset, and support the choice by assessing whether the points remaining after the 

cut-off fit a generalized Pareto distribution (GPD); in conjunction, they use a shape parameter 

to identify the relevant droughts; on the other hand, they also indicate this is a case-specific 

selection (Engeland et al., 2004). Other authors, such as Domínguez Calle et al., 2008, use 

Q97.5, for example. Fully automating this process may be feasible and may bring new insights. 

- Monthly deviation from mean. When dealing with meteorological drought, detrending the 

time series, subtracting the monthly mean, and taking any negative values as droughts based 

on the deviation relative to the monthly average has been done (Moon et al., 2018); however, 

no periods of urban drought were generally reported outside of the months with the lowest 

storage, so this alternative was discarded. 

In this thesis, the mean annual low flow is considered to be analogous to the mean annual low 

storage, under the assumption that flow is proportional to storage, for both surface- and groundwater 
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(Ponce, 2016). This is motivated by the lack of drought thresholds specifically defined for terrestrial 

water storage, though further research may reveal more adequate storage-based thresholds. 

The hazard parameter scores indicate important differences in the distribution and intensity of 

droughts in the different cities, suggesting that Cape Town and Cali have more severe, short episodes of 

drought, while Chennai and Sao Paulo have long drawn periods of drought. While a difference exists in 

the resulting hazard scores, it is relatively minor compared to the variation among the composing 

parameters. 

 

4.4 Temporal and spatial verification 
 

For the first part of the verification, a visual comparison was used to understand whether the storage 

variable that was modelled was relevant in time and space, meaning that it reflected the behaviour of the 

water system specifically for each city area at any given moment in time. A visual comparison of the 

timeseries was preferred to assess the temporal and spatial match of the modelled water storage over the 

correlation between the two variables. How closely the SWE follows the water storage is a consequence of 

many factors, including the bathymetry of the water body and the existing interactions with the groundwater 

system (Ferreira et al., 2020; Getirana et al., 2018; Tweed et al., 2009); understanding the strength of the 

association between the two variables deviated from the scope of the research question. In general, it was 

clear that the changes in modelled storage were well matched in time and proportional to the observed 

changes in SWE for the case study cities.  

A remarkable resemblance was observed in the case of Chennai, indicating that the reservoir 

behaviour closely mimics the water storage in the area; additionally, slow flows in shallow reservoirs with 

gentle slopes, characteristic of Chennai (Janakarajan et al., 2007; Rajendran, 2012; Venkatesan, 2019), are 

beneficial for the method, as small changes in fill level translate to large variations in SWE. 

A limitation of this verification method is that the observations of SWE only consider water supply 

reservoirs for the city, while the modelled storage variable captures all water uses and layers and is not 

limited to surface water. Additionally, when dealing with cities that use bulk water storage tanks artificially 

refilled for supply to the urban area, the oscillation may behave independently from the naturally occurring 

water storage in the area (and in the model). This may be the case for the city of Cape Town, where water is 

often pumped from other regions to meet water demand (City of Cape Town, 2018), partly explaining the 

relatively lower congruence of modelled storage and SWE.  

The SWE dataset that was used is limited by the images the satellite(s) capture. As more and better 

satellites have been put into orbit, the update frequency and image quality have also improved. This is the 

reason why only the latter part of the data was analysed through this process. There are still important 

sources of variability in this method that must be mentioned (Wu et al., 2021): 

- Cloud cover represents a large barrier to image acquisition. This is problematic for two reasons. 

First, they may cover the area of interest, resulting in ‘No data’ zones. Second, the shades 

projected by clouds close to the water bodies may cause the area to be misclassified or masked.  

- Steep hills and rugged landscapes may also project shades which lead to the same issue. 

- Changing water quality has a direct effect on what is observed by the classification algorithms 

and may also result in inadequate classification, especially during extreme flows (high or low). 
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Finally, in a best-case scenario, two images per month are taken of a water body, and they are taken 

on different days of the month every year, which contributes to the noise and gaps observed in the plots (Wu 

et al., 2021). 

For the second part of the verification process, assessing the congruence of water gaps with drought 

reports of each year, a much more robust and systematic method should be applied to improve reliability and 

reduce time of manual process; the main difficulty lies in finding records of old events where documents are 

often not searchable. Another significant challenge is filtering out crisis events that were highly publicized 

and obscure lesser events; unfortunately, three of the four case study cities have recently had large crisis 

events (Sao Paulo 2015, Cape Town 2018, and Chennai 2019) (Gaya et al., 2021; J. F. Warner & Meissner, 

2021; Zhang et al., 2019).  

Another limitation for this approach is limited availability of records in English language, especially 

for scanned documents that are difficult to translate. In the case of Cali, records in Spanish were also 

considered, and for Sao Paulo, records in Portuguese were considered too.  

 

4.5 Statistical testing with drought incidents 
 

As part of this research, incidents recorded in the EM-DAT were processed to test the performance 

of the modelled storage and water gap. With the incident records available from this source it was not 

possible to reject the null hypothesis for three of the four case study cities.  

For Chennai, there is an overlap in the values of modelled storage and water gap across the two 

conditions (drought and no drought). This also means that it is not feasible, based on the data used, to find an 

absolute threshold for drought for the city which can be pointed out as a tipping point of urban drought.  

In the case of Cali, the EM-DAT contains only one incident reported as a country-wide drought 

linked to El Niño in 1998. This incident is reflected in the water gap (as two close events between July 1997 

and February 1998), however, many other apparent water gaps cannot be linked to incident reports in this 

database.  

In the case of Cape Town, not being able to consider the artificial refilling of water supply tanks 

within the model impacts the reliability of the results and reduces the possibility of finding significant 

differences in storage (and water gaps) under drought and no drought conditions.  

In general, while the EM-DAT provides valuable knowledge that can be used for retrospective risk 

assessment and to improve response preparedness, the records on drought that it contains are limited, 

especially for events that are not catastrophic. For an event to be recorded in the database, two concurring 

sources of information are needed, which is difficult when there is no clearly defined way of measuring 

drought loss. Therefore, the database relies on self-reporting from each country and on records of proven 

exceedance of certain thresholds (for example, 10 deaths, or 100 people left homeless) (EM-DAT, n.d.). 

Since such proof is difficult to attribute to drought stress, many incidents are not captured, although they are 

well documented in other sources. Future attempts to link drought incidence to drought metrics should 

consider this situation within their research design.  

Another issue present in the EM-DAT database is the inconsistency in incident dating; while some 

records in the database contain complete information (month and year) for the start and the end of the 

incident, others lack the end date, or only report the year (without the month). When no end date was 



36 

 

   

 

indicated, or the end date was incomplete, the remainder of the year (until December) was considered as part 

of the incident which severely hinders the usability of the data, since it introduces bias (systematically, more 

droughts end in December than in other months), and it leads to large groups of months being considered as 

in drought, when possibly only a fraction of them were actually in drought. This issue is most prevalent in 

older records. 

 

4.6 General limitations 
 

Regarding the use of a hydrological model for this approach, underestimation of water storage trends 

when compared to satellite records of terrestrial water storage has been reported and is currently a general 

limitation for research relying on model outputs (Scanlon et al., 2018). As scientists better understand how to 

improve this aspect of hydrological models, the reliability of modelled terrestrial water storage is bound to 

improve. 

The developed approach has the limitation that large regions must be processed to obtain reliable 

information at a city level, even when cities only represent a small fraction of the modelled surface area. This 

issue can be broken down into two parts, a processing time/power limitation, and a data storage limitation. 

While producing runs of the model is resource intensive and requires a large storage buffer, once the data is 

extracted and processed, the output information can be stored in much smaller files. To enable the 

reproducibility of results, PCR-GLOBWB 2 is scripted to save a copy of the initialization file used for the 

run.  

4.7 Future research  
Further verification is essential before the approach can be rolled out in the form of a hazard 

assessment tool and applied for decision-making; three elements should be done for this:  

- Perform a sensitivity analysis on the hazard parameters to understand the response on the 

hazard score and the correlation between the variables; this is especially important for the 

frequency and persistence metrics. Additionally, an uncertainty analysis with model and 

observation uncertainty should be considered. 

- The hazard scoring results must be verified for a larger sample of cities. The verification 

process may be improved by using sources different from EM-DAT, such as locally 

available physical records. A systematic literature review, a meta-analysis, or structured 

interviews with diverse stakeholders in different regions may be used to carry out the 

categorization of time steps into drought and non-drought periods more thoroughly, and shed 

more light on the temporal distribution of drought losses in cities.  

- Defining a systemic way to produce input datasets from data sources extending beyond 2010 

is key to enable future research with PCR-GLOBWB 2. While creating the input files is not 

complicated, doing so consistently and with adequate sources is key to achieving meaningful 

results. Producing such input data is the next step to extending the application of the 

approach beyond 2010, and eventually to future scenarios. Studying periods between 2011 

and the present date may benefit from more reliable satellite data products and from more 

recent, fully digitized drought records for verification.  

Once the approach has been verified, applying it for future scenarios can help understand how 

specific changes within a basin will affect a city, as well as to study options available for climate adaptation 
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and resilience. Implementing adaptation concepts into the hydrological model (such as sponge cities, green 

roofs, and rainwater infiltration technologies) at a local and regional scale may help orient decision making 

to preserve the livelihoods of urban citizens. 

As an additional dimension to this research, future efforts on urban drought hazard may also focus 

on understanding how water quality can be integrated into urban drought risk and hazard models, to reflect 

the extent to which available water is usable for the desired purposes. 

5. Conclusion 
 

This research aimed to answer the research question, “How can drought hazard be quantified at a 

city level using open data and a water balance model at a global scale?”  

An explorative drought hazard assessment approach based on modelled water storage using open 

data with global coverage was proposed. The method was proposed using a pilot city and tested for a sample 

of cities in diverse regions of the world, where it was often able to reproduce water scarcity conditions as 

reported by literature, and water storage trends as captured by satellite data products.  

The use of a global hydrological model operating on global open data means the method can be 

applied independently of the economic resources that are available to a specific city. This is a very valuable 

attribute given the quick urbanization that is expected to continue in the coming decades, particularly in 

developing countries.  

While further verification of the results is required before it can be rolled out, and it was not possible 

to establish a universal threshold for urban drought, the approach can currently be used as a spatially and 

temporally relevant starting point for more thorough hazard assessment, meeting the intent of the research.   
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Appendix 1. PCR-GLOBWB 2 Settings 
 

 

 PCR-GLOBWB 2 was used to produce the input data for the water gap calculation. While 

the goal of the research focuses on the use of the model results to provide insights into urban drought, the 

settings used are here presented.  

The model was run for the four regions separately before the data was processed and collected into a 

single file for analysis. In all the cases, the simulation period ran from January 1, 1980 to December 31, 

2010. The extent used for the simulation was selected based on previously defined groups of river basins, 

which were created during the parallelization of the global model (Sutanudjaja et al., 2018), and which are 

maintained in the Deltares implementation of PCR-GLOBWB 2. The climate forcing used are monthly 

precipitation and temperature values extracted at a monthly frequency from the CRU TS 3.2 data set, which 

have been downscaled to a daily timescale using ERA-interim by Sutanudjaja et al., 2018. The Monthly 

reference potential evaporation data comes from the application of the Penman-Monteith equation using the 

daily temperature forcing, and is also provided by Sutanudjaja et al., 2018. 

The model was run using the 2 default soil layers, and no coupling with any additional models was 

used. To run the model the ‘accuTravelTime’ routing setting was used to maintain low computation times, 

which is the most simple routing method available for the model. The run was carried out starting from 1980, 

however, the results of the first year were not used and are considered as a spin-up period.  

Finally, the model area subsample of the default crop coefficients, interception capacity, cover 

fraction of different vegetation, irrigation efficiency, water demand, regional abstraction limits, drainage 

direction map, cell area map, and lake and reservoir parameters were downloaded prior to running the model 

for the case of Cape Town, Sao Paulo, and Cali, since the response time of the server importantly extended 

running time; however, the input data is identical. This (along with all the default input files) can be 

downloaded from the link below, and the original sources can be found in Table 3:  

https://opendap.4tu.nl/thredds/dodsC/data2/pcrglobwb/version_2019_11_beta/pcrglobwb2_input/ 

  

https://opendap.4tu.nl/thredds/dodsC/data2/pcrglobwb/version_2019_11_beta/pcrglobwb2_input/
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Table 3. List of default model inputs and parameters. Image reproduced from Sutanudjaja et al., 2018, 

under the Creative Commons Attribution 4.0 License.
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Appendix 2. WaterLoupe framework and changes 
 

Framework of Water Loupe 

 

WaterLoupe is a tool (methodology implemented in Python) in development by Deltares to initially 

quantify and project water scarcity risk in different regions of the world. The tool is used in case studies of 

the WaterLoupe Project as an initial base for collaboration with local stakeholders; specifically, the Python 

module helps the researcher in extracting data from the gridded hydrological model output (produced by a 

Deltares implementation of PCR-GLOBWB 2) and process it into region-specific monthly time series of 

flow variables covering the study period. These time series are then used to estimate water availability and 

demand and calculate a climate-driven water gap based on monthly water deficits (Deltares, 2022; Mulder et 

al., 2021).  

In the process of the calculation, water availability and water demand are often not accurately 

matched in time, requiring manual alignment on a case-by-case basis to produce correct results. Since the 

process is done collaboratively with local stakeholders at each city, this adjustment is done using local data, 

which may include, for example, water transfers from other basins. Once the availability and demand have 

been adjusted, and a water gap time series has been created, a water gap index is calculated and used as a 

hazard score (Mulder et al., 2021).  

In Water Loupe, to calculate water availability (WA), the interflow (IF), run-off (RO), and 

groundwater recharge (GWR) are extracted using zonal statistics of the areas of interest (Equation 7), and 

water demand (WD) is taken as the sum of domestic, industrial, and agricultural demand (Dd, Di, Da) 

[m/month for all variables] (Equation 8). Groundwater recharge is only considered as a water source when 

positive; negative values, reflecting capillary rise, are taken as 0, since they do not represent water that could 

have potentially been used in that timestep. The water gap (wgWL) [m/month] is then computed as the 

difference between demand and availability at each timestep (Equation 9); in all the points where availability 

exceeds demand, the water gap is taken as 0, since there is an excess of available resources. The following 

equations are used, noting that subscript WL is used to distinguish these equations from the ones used in the 

developed approach (Mulder et al., 2021): 

𝑊𝐴𝑊𝐿 = 𝑅𝑂 + 𝐼𝐹 + 𝐺𝑊𝑅           Equation 7 

𝑊𝐷𝑊𝐿 = 𝐷𝑑 + 𝐷𝑖 + 𝐷𝑎                      Equation 8 

𝑤𝑔𝑊𝐿 = 𝑊𝐷 − 𝑊𝐴                                              Equation 9 

 

A water gap event initiates when the water demand exceeds the water available at a timestep 

(monthly). The exceedance becomes the magnitude of the water gap for that timestep. The event finishes 

when water availability can meet demand, and the intensity of the event is defined as the largest water gap in 

the sequence; in this process, the number of individual sequences computed (n) is also recorded (Mulder et 

al., 2021). After this, the relative water gap is found by dividing the water gap (or unmet demand) by the 

total demand in each timestep (Equation 10).  

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑤𝑎𝑡𝑒𝑟 𝑔𝑎𝑝𝑊𝐿 =
𝑤𝑔𝑊𝐿

𝑊𝐷
                                          Equation 10 
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Subsequently, the water gap frequency (Equation 11), persistence (Equation 12), and severity 

(Equation 13) are computed and used to calculate a Water Gap Index (WGI) (Equation 14).  

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑊𝐿 =
# 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑤𝑖𝑡ℎ 𝑤𝑎𝑡𝑒𝑟 𝑔𝑎𝑝

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑟𝑖𝑜𝑑𝑠
         Equation 11 

𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒𝑊𝐿 =
# 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 𝑔𝑎𝑝

𝑇𝑜𝑡𝑎𝑙 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 𝑔𝑎𝑝
                       Equation 12 

𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦𝑊𝐿 =
 ∑ max 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑤𝑎𝑡𝑒𝑟 𝑔𝑎𝑝𝑊𝐿

𝑛
1

𝑛
                 Equation 13 

𝑊𝐺𝐼𝑊𝐿 =
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑊𝐿+𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒𝑊𝐿+𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦𝑊𝐿

3
    Equation 14 

 

Since the use of local data and manual adjustment were not possible given the aim of the research, I 

adapted the method to calculate water scarcity based on the active water storage time series which requires 

no manual temporal alignment or city-specific post-processing. I then redefined the equations used to 

calculate the hazard score, conserving the 3 conceptual parameters that make up the water gap index – 

frequency, persistence, and severity. The purpose of this change was to achieve dimensional congruence 

since the use of Equation 12 results in units [1/month].  

The main components of the Water Loupe module and the changes made are explained in Table 4 

(Mulder et al., 2021). 

Table 4. List of inputs, outputs, and processing steps used in the original Water Loupe script and in the 

adapted Water Loupe script. All the manual processing steps have been eliminated. 

Original Water Loupe Adapted Water Loupe 

Inputs 

1. List of water availability and water demand 

variables to extract 

2. Time range of study period 

3. Single-month rasters of the PCR-GLOBWB 2 

model for each month in the study period 

4. Shapefile of areas of interest 

 

 

Outputs 

1. Time series of water availability and water 

demand variables by area of interest 

2. Time series of the water gap by area of interest 

3. Water Gap Index (hazard score) by area of 

interest 

 

Processing steps 

1. The flow variables that will be used for the 

calculation of the water gap are given as input 

These variables are surface runoff, interflow, 

groundwater recharge, domestic water 

Inputs 

1. List of water storage variables and climate 

forcings to extract (now capable of handling 

both) 

2. Time range of study period (no change) 

3. Raw output of PCR-GLOBWB 2 model 

covering the study period 

4. Shapefile containing study city footprints 

 

Outputs 

1. Time series of water storage variables and 

climate forcings 

 

 

 

 

Processing steps 

1. The variable(s) that will be used for the 

calculation of the water gap are given as input. 

In this research, I used only active water storage 

thickness, but the individual water layers 
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withdrawal, agricultural water withdrawal, and 

industrial water withdrawal.  

2. The geometries of the areas of interest supplied 

are projected to the correct coordinate system 

(EPSG:3857) and the area for each one is found. 

3. The extent of the geometries provided is 

calculated and used to define the sampling 

extent of the input data. 

4. A fine grid (1/1000 of input resolution) is 

created over the extent of the areas of interest 

and used to sample the individual output rasters 

of PCR-GLOBWB 2 within each defined 

geometry. 

5. The area-weighted mean (by defined 

geometries) for the water availability and water 

demand variables at each monthly timestep is 

calculated. 

6. Several post-processing steps are used for 

calibration and to temporally align water 

demand and water availability, accounting for all 

site-specific conditions, and producing a water 

gap. The specific steps taken for post-processing 

depend on the application of WaterLoupe. 

7. The water gap time series is computed using the 

post-processed availability and demand. 

8. The Water Gap Index is computed using the 

water gap time series. 

 

composing the model, as well as the forcings 

used, can also be produced. 

2. The geometries of the areas of interest supplied 

are renamed and projected to the correct 

coordinate system (EPSG:3857) and the area for 

each one is found (minor change). 

3. The extent of the geometries provided is 

calculated and used to define the sampling 

extent of the input data (no change). 

4. A fine grid (1/1000 of input resolution) is 

created over the extent of the areas of interest 

and used to sample the raw output of PCR-

GLOBWB 2 within each defined geometry.  

5. The area-weighted mean (by defined 

geometries) for the specified variables at each 

monthly timestep is calculated. 

 

The remaining steps were eliminated 

 

 

Changes made to the WaterLoupe python module 

 

As part of this research, I did the following modifications to the initial code: 

1. Changed the input variables from flow variables to the storage variable and the precipitation 

forcing. 

2. Changed the code to use the city footprints in the UCDB as input instead of manually produced 

regions. 

3. Changed the code to operate on the raw output of PCR-GLOBWB 2, consisting of a single multi-

dimensional file per variable for the whole simulation period, instead of an individual file per 

month. 

4. Discarded steps 6, 7, and 8 listed above, to replace them with new code to calculate the water gap 

and the hazard score presented in the main text.  

 

The finalized code used to process the PCR-GLOBWB 2 output is the following: 

import imod 
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import xarray as xr 

import numpy as np 

import geopandas as gpd 

import pandas as pd 

import matplotlib.pyplot as plt 

from pathlib import Path 

 

path_areas = 'data/1-input/subareas.shp' 

path_areas_correct = 'data/2-interim/subareas_corrected.shp' 

path_areas_csv = 'data/3-results/areas.csv' 

 

datasets = 

['precipitation','totalWaterStorageThickness','totalActiveStorageThickness'] 

shp = gpd.read_file(path_areas).to_crs(epsg=4326) 

shp_correct = shp[['fid', 'UC_NM_MN', 'geometry']] 

 

shp_correct.columns = ['area_id', 'name', 'geometry'] 

 

shp_correct['area_id'] = [int(x) for x in shp_correct['area_id']] 

print(shp_correct) 

shp_bbox = shp.geometry.total_bounds 

print(shp_bbox) 

shp_correct1 = shp_correct.copy() 

shp_correct1 = shp_correct1.to_crs({'init': 'epsg:3857'}) #switch from degrees to 

meters 

shp_correct["area"] = shp_correct1['geometry'].area/ 10**6 #Find area and convert 

from m2 to km2 

shp_correct.to_file(path_areas_correct)  

shp_correct[['area_id','name','area']].to_csv(path_areas_csv, index=False) 

 

#make celltable: a table that indicates which pixel lies (partially) in each area 

mock_data = xr.open_dataset(f'C:/Users/peregrin/ModelOutput/PCR-

GLOBWB/M25_SAm_NW_Salv_Col_Ecu/netcdf/{datasets[0]}_monthTot_output.nc') 

data_var = list(mock_data.data_vars)[0] 

mock_data = mock_data[data_var] 

mock_data = mock_data.rename({'lon': 'x','lat': 'y'}) 

print(mock_data.shape) 

dxy = np.array([abs(np.diff(mock_data.x).mean()), 

abs(np.diff(mock_data.y).mean())]).mean() 

dy = -1*dxy 

dx = dxy 

mock_data = mock_data.sel( 

    y=slice(shp_bbox[3]-dy,shp_bbox[1]+dy), 

    x=slice(shp_bbox[0]-dx,shp_bbox[2]+dx) 

    ) 
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mock_data = mock_data.isel(time=0).reset_coords('time', drop=True) 

mock_data.to_netcdf('C:/Users/peregrin/Urban_wloupe/data/2-interim/mockdata.nc') 

mock_data['dx']=dx 

mock_data['dy']=dy 

celltable = imod.prepare.celltable( 

    path=path_areas_correct, 

    column='area_id', 

    resolution=dx/1000, 

    like=mock_data 

) 

 

#create figure of study location 

path_plot = f'data/3-results/plots/{Path(__file__).stem}' 

Path(path_plot).mkdir(parents=True, exist_ok=True) 

fig, ax = imod.visualize.plot_map(mock_data,'viridis',np.linspace(0.05, 3.15, 10), 

[{'gdf':shp, "edgecolor":"black", "facecolor":"None"}]) 

fig.savefig(f'{path_plot}/location.png', bbox_inches='tight') 

 

#make a list of all relevant (and unique) pixels 

celltable_unique = celltable[['row_index', 

'col_index']].drop_duplicates().reset_index(drop=True) 

celltable_unique.index.name='index' 

celltable_x_coords = mock_data.x[celltable_unique['col_index'].values] 

celltable_y_coords = mock_data.y[celltable_unique['row_index'].values] 

 

#place to store 

times = pd.date_range("1980-01-01", "2010-12-31", freq="M")  

pcr = xr.Dataset( 

    coords=dict( 

        area_id=list(shp_correct['area_id']), 

        time=times 

        ) 

) 

 

print(pcr) 

print(times) 

 

#loop over all datasets 

for dataset in datasets: 

    print(dataset) 

    das = [] 

    for time in times: 

        # read the data to shp's bbox 

        try: 

            try: 
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                p = f'C:/Users/peregrin/ModelOutput/PCR-

GLOBWB/M25_SAm_NW_Salv_Col_Ecu/netcdf/{dataset}_monthTot_output.nc' 

                if time.month==1: 

                    print(time.strftime("\t%Y")) 

                data = xr.open_dataset(p) 

            except: 

                p = f'C:/Users/peregrin/ModelOutput/PCR-

GLOBWB/M25_SAm_NW_Salv_Col_Ecu/netcdf/{dataset}_monthAvg_output.nc' 

                data = xr.open_dataset(p)                 

            data = data.sel(time=time) 

 

            data_var = list(data.data_vars)[0] #changed from 2 to 0 

            data = data[data_var] 

            data = data.rename({'lon': 'x','lat': 'y'}) 

            data['dx']=dx 

            data['dy']=dy 

 

            #get the value the data_var for each relevant pixel 

            celltable_unique_data = imod.select.points_values(data, 

x=celltable_x_coords, y=celltable_y_coords) 

 

            #merge data back together 

            celltable_data = 

celltable_unique.merge(celltable_unique_data.to_dataframe(), 

on='index').merge(celltable, on=['col_index', 'row_index']) 

 

            #calulated waighted value of the data_var for each municipality 

            celltable_data[f'{data_var}_weighted'] = celltable_data[data_var] * 

celltable_data['area'] 

            celltable_data_grouped = 

celltable_data.groupby('area_id').sum()[[f'{data_var}_weighted', 'area']] 

            result = 

celltable_data_grouped[f'{data_var}_weighted']/celltable_data_grouped['area'] 

 

            #merge results 

            das.append(xr.DataArray(result).assign_coords(time=data.time.values)) 

        except: 

            print(f'error in {p}') 

    pcr[dataset] = xr.concat(das, dim='time') 

    pcr[dataset].attrs = data.attrs 

 

pcr.to_netcdf('data/2-interim/pcr.nc') 
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#plot 

pcr = xr.open_dataset(f'data/2-interim/pcr.nc') 

 

for var in pcr.data_vars: 

    fig, ax = plt.subplots(1, 1, figsize=(12, 9)) 

    for area_id in pcr.area_id.values: 

 

        pcr[var].sel(area_id=area_id).plot(ax=ax, label=area_id) 

     

    ax.set_title(var) 

    fig.legend() 

    fig.savefig(f'{path_plot}/pcr_results_{var}.png', dpi=300, 

bbox_inches='tight') 
  

The feedback obtained from running this section of code is the following:  

(hydromt-wflow) PS C:\Users\peregrin\Urban_wloupe> python 

C:\Users\peregrin\Urban_wloupe\src\1-process-pcrglobwb-results_PCR_EDP_Thesis.py 

C:\Users\peregrin\Miniconda3\envs\hydromt-wflow\lib\site-

packages\geopandas\geodataframe.py:1351: SettingWithCopyWarning: 

A value is trying to be set on a copy of a slice from a DataFrame. 

Try using .loc[row_indexer,col_indexer] = value instead 

 

See the caveats in the documentation: https://pandas.pydata.org/pandas-

docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy 

  super().__setitem__(key, value) 

    area_id            name                                           geometry 

0       116         Morelia  POLYGON ((-101.21229 19.77159, -101.16435 

19.7... 

1       122        Acapulco  POLYGON ((-99.82180 16.94147, -99.79051 

16.908... 

2       153      Cuernavaca  POLYGON ((-99.26110 18.99421, -99.23435 

18.977... 

3       177          Puebla  POLYGON ((-98.29311 19.14296, -98.26210 

19.142... 

4       180        Tlaxcala  POLYGON ((-98.17632 19.35791, -98.14640 

19.333... 

5       202          Oaxaca  POLYGON ((-96.77013 17.14716, -96.72611 

17.106... 

6       225        Veracruz  POLYGON ((-96.24873 19.23389, -96.21172 

19.217... 

7       255    Villahermosa  POLYGON ((-92.94304 18.05327, -92.88619 

18.036... 

8       288  Guatemala City  POLYGON ((-90.55845 14.71700, -90.52370 

14.700... 

9       321    San Salvador  POLYGON ((-89.29443 13.84116, -89.24168 

13.832... 

10      345  San Pedro Sula  POLYGON ((-87.98118 15.62700, -87.92794 

15.618... 

11      350         MÃ©rida  POLYGON ((-89.63659 21.05664, -89.56483 

21.031... 
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12      359     Tegucigalpa  POLYGON ((-87.22768 14.12751, -87.14246 

14.111... 

13      367         Managua  POLYGON ((-86.38963 12.19923, -86.35927 

12.199... 

14      392       San JosÃ©  POLYGON ((-84.16337 10.04848, -84.09025 

10.032... 

15      427       Guayaquil  POLYGON ((-79.96341 -2.04635, -79.90402 -

2.062... 

16      458     Panama City  POLYGON ((-79.55984 9.14588, -79.52967 9.14588... 

17      467           Quito  POLYGON ((-78.46523 -0.04853, -78.40538 -

0.064... 

18      473          Havana  POLYGON ((-82.28912 23.18014, -82.23338 

23.171... 

19      512            Cali  POLYGON ((-76.50920 3.52708, -76.48800 3.50280... 

20      561       MedellÃ­n  POLYGON ((-75.57978 6.36193, -75.49892 6.35382... 

21      586       Cartagena  POLYGON ((-75.49446 10.48792, -75.48193 

10.471... 

22      600        Kingston  POLYGON ((-76.81706 18.06976, -76.78618 

18.069... 

23      621          Bogota  POLYGON ((-74.05724 4.82244, -74.02724 4.82244... 

24      626    Barranquilla  POLYGON ((-74.83452 11.04978, -74.79030 

11.025... 

[-101.28664201   -2.2890465   -74.01076879   23.18013548] 

C:\Users\peregrin\Miniconda3\envs\hydromt-wflow\lib\site-

packages\geopandas\geodataframe.py:1351: SettingWithCopyWarning: 

A value is trying to be set on a copy of a slice from a DataFrame. 

Try using .loc[row_indexer,col_indexer] = value instead 

 

See the caveats in the documentation: https://pandas.pydata.org/pandas-

docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy 

  super().__setitem__(key, value) 

(372, 336, 384) 

<xarray.Dataset> 

Dimensions:  (area_id: 25, time: 372) 

Coordinates: 

  * area_id  (area_id) int32 116 122 153 177 180 202 ... 512 561 586 600 

621 626 

  * time     (time) datetime64[ns] 1980-01-31 1980-02-29 ... 2010-12-31 

Data variables: 

    *empty* 

DatetimeIndex(['1980-01-31', '1980-02-29', '1980-03-31', '1980-04-30', 

               '1980-05-31', '1980-06-30', '1980-07-31', '1980-08-31', 

               '1980-09-30', '1980-10-31', 

               ... 

               '2010-03-31', '2010-04-30', '2010-05-31', '2010-06-30', 

               '2010-07-31', '2010-08-31', '2010-09-30', '2010-10-31', 

               '2010-11-30', '2010-12-31'], 

              dtype='datetime64[ns]', length=372, freq='M') 

precipitation 

        1980 

        1981 

… 

        2009 

        2010 

totalWaterStorageThickness 

        1980 

        1981 
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… 

        2009 

        2010 

totalActiveStorageThickness 

        1980 

        1981 

… 

        2009 

        2010 

 

After the data has been extracted to an interim NetCDF file, it is processed into a CSV file and plotted 

for easier inspection with the following code. 

import imod 

import xarray as xr 

import geopandas as gpd 

import matplotlib.pyplot as plt 

from pathlib import Path 

import numpy as np 

 

data = xr.open_dataset(f'data/2-interim/pcr.nc') 

vars = list(data.data_vars) 

area_ids = list(data.area_id.values) 

 

waterbalance = xr.Dataset( 

    coords=dict( 

        area_id=data.area_id, 

        time=data.time 

        ) 

) 

 

Path('data/3-results/pcr').mkdir(parents=True, exist_ok=True) 

for var in vars: 

    t = data[var].to_pandas().T 

    t.to_csv(f'data/3-results/pcr/{var}.csv') 

    print(var) 

 

waterbalance['totalActiveStorageThickness'] = data['totalActiveStorageThickness'] 

waterbalance['precipitation']=data['precipitation'] 

 

#plot 

path_plot = f'data/3-results/plots/{Path(__file__).stem}' 

Path(path_plot).mkdir(parents=True, exist_ok=True) 

 

for area_id in waterbalance.area_id.values: 
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    fig, ax = plt.subplots(1, 1, figsize=(12, 9)) 

    waterbalance.sel(area_id=area_id).drop('area_id').to_dataframe()[['totalActiv

eStorageThickness']].plot(ax=ax) 

    fig.savefig(f'{path_plot}/totalActiveStorageThickness_{area_id}.png', 

bbox_inches='tight') 

 
 

The feedback obtained from running this section of code is the following:  

(hydromt-wflow) PS C:\Users\peregrin\Urban_wloupe> python 

C:\Users\peregrin\Urban_wloupe\src\2-make-waterbalance_PCR_EDP_Thesis.py 

precipitation 

totalWaterStorageThickness 

totalActiveStorageThickness 

C:\Users\peregrin\Urban_wloupe\src\2-make-

waterbalance_PCR_EDP_Thesis.py:35: RuntimeWarning: More than 20 figures have been 

opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) 

are retained until explicitly closed and may consume too much memory. (To control 

this warning, see the rcParam `figure.max_open_warning`). 

  fig, ax = plt.subplots(1, 1, figsize=(12, 9)) 

With this code, a CSV file is created containing the time series for the variables specified within the 

first section of code, in this example precipitation, total water storage thickness, and total active storage 

thickness. Further processing is done with the water gap code of my authorship, included in Appendix 3 with 

all other scripts used.  
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Appendix 3. Scripts used  

 

During this research Python, Google Earth Engine, and RStudio were used for data analysis and processing. 

Table 5 contains a list of the scripts used for this research: 

Table 5. List of scripts used for this thesis indicating the function and the software used with each. 

Function Type of script 

Data extraction for cities  Python scripts found in Appendix 2 

Calculation of the water gap time series and hazard score  Python script  

Query of incident location geometries  Python script 

Query of surface water extent time series (Chennai sample) Google Earth Engine script 

Statistical testing of drought incidences  R script 

 

Calculation of the water gap time series and hazard score 
 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

from scipy import stats 

from scipy.stats import gmean 

def df_from_csv(file): 

    df = pd.read_csv(file, header = 1) 

    return df 

def remove_negatives(df): 

    #df is a row from a multi-cuty timeseries dataframe 

    for i, d in enumerate(df): 

        if df[i]<=0: 

            df[i]=0 

        else: 

            df[i]=df[i] 

    return df 

def find_seq_maxs(df): 

    #df is a row from a multi-cuty timeseries dataframe 

    peaks = 0 

    seq_max = 0 

    maximums = [] 

    for i, d in enumerate(df): 

        if i < len(df) - 1: 

            if df[i] == 0: 

                maximums.append(seq_max) #when a sequence of non-zeros ends 

capture recorded maximum of the sequence 

                seq_max = 0 

                if df[i+1] != 0: 

                    peaks += 1 

            elif df[i] > 0: 

                if df[i+1] != 0: 

                    maximum = max(df[i], df[i+1]) 

                    if maximum > seq_max: 

                        seq_max = maximum #record new sequence maximum 

                    else: 
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                        pass 

                else: 

                    if df[i-1] == 0: 

                        seq_max = df[i] 

            else: 

                i += 1 

        else: 

            seq_max = max(seq_max,df[-1]) 

            maximums.append(seq_max) 

    maximums = [i for i in maximums if i != 0] 

    return maximums, peaks 

def transitions_count(df): #probability FF 

    #df is a row from a multi-cuty timeseries dataframe 

    FF = 0 

    FAll = 0 

    maximums = [] 

    for i, d in enumerate(df): 

        if i < len(df) - 1: 

            if df[i] == 0: 

                pass 

            elif df[i] > 0: 

                FAll += 1 

                if df[i+1] != 0: 

                    FF += 1 

            else: 

                i += 1 

        else: 

            pass 

    return FF, FAll 

#Open file and reorder 

df=pd.read_csv('UrbanWloupe_storage.csv', header=None).drop([0]).T 

df.columns=df.iloc[0] 

df=df[1:].rename(columns={"area_id": "date"}) 

#df=df.rename(columns={"area_id": "date"}) 

#df=df[1:] 

df['date'] =  pd.to_datetime(df['date'], dayfirst=True) 

df.index=df['date'] 

df=df.drop(axis=1, labels='date').astype(float, errors = 'raise') 

df 

 

#Define simulated period and calculate the relevant timeseries parameters 

y_start=1981 

y_end=2010 

stor_df=df.loc[str(y_start):str(y_end)] 

years=np.arange(y_start, y_end+1, 1, dtype=None) 

average_min=[] 

range=[] 

for col in stor_df.columns: 

    print(col) 

    cit = stor_df[str(col)]  

    range.append(np.ptp(cit,axis=0))  

    minimums=[] 

    lowflow_month=[] 

    for y in years: 

        ins=cit.loc[str(y)] 

        y_min=min(ins) 

        y_max=max(ins) 
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        lowflow_month.append(np.isin(ins,y_min)) 

    lowestflows=np.where(sum(lowflow_month)==max(sum(lowflow_month))) 

    if lowestflows[0][0]<=6: 

        cit_wy_series = cit.index.year.where(cit.index.month-1 <= 

(lowestflows[0][0]+5), cit.index.year+1) 

    else: 

        cit_wy_series = cit.index.year.where(cit.index.month-1+12 > 

(lowestflows[0][0]+5), cit.index.year-1) 

    frame = { 'WaterYear':cit_wy_series ,'Storage': cit} 

    cit_wy = pd.DataFrame(frame) 

    for y in years: 

        select_wy=np.where(cit_wy.WaterYear==y) 

        ins2=cit_wy.iloc[select_wy[0][0]:select_wy[0][-1]+1,1] 

        y_min_wy=min(ins2)     

        minimums.append(y_min_wy) 

    average_min.append(np.mean(minimums)) 

wg_raw=average_min-stor_df 

 

 

    

#Calculate water gap from interim water gap with negatives 

wg=[] 

for col in stor_df.columns: 

    citwg = wg_raw[str(col)] 

    wg_i=remove_negatives(citwg) 

    wg.append(wg_i) 

     

wg_df=pd.DataFrame(data=np.transpose(wg),index=stor_df.index, 

columns=stor_df.columns) 

#Generate a normalizer for the WG and normalize WG 

normalizer=np.array(range) 

wg_norm=np.divide(np.array(wg_df),np.array(normalizer)) 

#Find the count of failed months and the number of transitions from failed month 

to failed month 

wg_count=[] 

wg_sev=[] 

Suc=[] 

Fail=[] 

FailFail=[] 

FailAll=[] 

pers_pap=[] 

 

for cit in wg: #cit is a timeseries of watergaps 

    Fail.append(np.count_nonzero(cit)) 

    Suc.append(len(cit)-np.count_nonzero(cit)) 

    process=find_seq_maxs(cit) 

    peaktotal=sum(process[0]) 

    wg_count.append(process[1]) 

    process2=transitions_count(cit) 

    FailFail=process2[0] 

    FailAll=process2[1] 

    pers_pap.append(np.divide(np.array(FailFail),np.array(FailAll))) 

    wg_sev=peaktotal/wg_count 

total=len(wg[0]) 

wg_norm_sev=wg_sev/normalizer 

wg_freq=1-(np.array(Suc))/total 

wg_pers=pers_pap 
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#Calculate the hazard score based on the geometric mean of the 3 parameters: 

Severity, Frequency, Persistence 

hazard=gmean([wg_norm_sev, wg_freq, wg_pers],axis=0) 

hazard_df=pd.DataFrame(data=[wg_norm_sev, wg_freq, wg_pers, hazard], 

index=['Severity', 'Frequency', 'Persistence', 

'Hazard'],columns=stor_df.columns[0:len(hazard)]) 

hazard_df 

 

print(hazard_df['8675']) 

print(hazard_df['512']) 

print(hazard_df['3268']) 

print(hazard_df['1303']) 

wg_norm_df=wg_df/normalizer 

wg_norm_df['Type']='Water Gap' 

wg_norm_df.to_csv('wgn.csv') 

wg_norm_df 

stor_df['Type']='Storage' 

stor_df.to_csv('stor.csv') 

wg_df['Type']='Water Gap' 

wg_df.to_csv('wg.csv') 

hazard_df.to_csv('hazard.csv') 

# Define Plot 

def plot_df(df, x, y, title="", xlabel='Date', ylabel='Water gap in m', 

dpi=100): 

    plt.figure(figsize=(16,3), dpi=dpi) 

    plt.plot(x, y, color='tab:red') 

    plt.gca().set(title=title, xlabel=xlabel, ylabel=ylabel) 

    plt.show() 

#Draw inspect plot by year 

city=8675 

 

from matplotlib import rc 

rc('font',**{'family':'serif','serif':['Times']}) 

rc('text', usetex=True) 

plotdf=pd.DataFrame( 

    {'date' : df.index, 

    'ws' : df[str(city)], 

    'wg' : wg_df[str(city)]}) 

 

definesize=(15,3) 

fig = plt.figure() 

ax = fig.add_subplot(111) 

dateticks = pd.date_range('2000', '2007', freq=pd.DateOffset(years=1)) 

plotdf.plot(ax=ax, layout=(1,2), color='#56B4E9', xlim=(plotdf.date[239], 

plotdf.date[-50]),x='date', y='wg', grid=0, figsize=definesize, ylabel='Water 

Gap [m]',rot=45) 

ax.xaxis.set_ticks(dateticks); 

ax.xaxis.set_ticklabels(dateticks.strftime('%Y')); 

ax.get_legend().remove(); 

image_name = 'wg_zoom.png' 

image_format= 'png' 

#fig.savefig(image_name, format=image_format, dpi=300) 
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city=8675 

storsample=stor_df[str(city)] 

wgsample=wg_df[str(city)] 

plot_df(storsample, x=storsample.index, y=storsample, title='Storage', 

ylabel='Storage in m')  

plot_df(wgsample, x=wgsample.index, y=wgsample, title='Water Gap', ylabel='Water 

Gap in m')  

 

%matplotlib inline 

plt.rcParams.update({'figure.figsize':(7,5), 'figure.dpi':300}) 

 

Query of incident location geometries 
 

import pandas as pd 

import urllib.request 

import geojson 

import geopandas as gpd 

data = pd.read_csv("input_dataset_incidents.csv") 

df = pd.DataFrame(data) 

useful_data = df[["Country", "Zones", "ID"]] 

for row in useful_data.itertuples(index=False): 

    print(row) 

    for i, location in enumerate(row.Zones.split(", ")): 

        for l in location.split(", "): 

            l = l.replace(" ", "%20") 

            country = row.Country.replace(" ", "%20") 

            target = l + ',' + country 

            adress = 

f"https://nominatim.openstreetmap.org/search.php?q={target}&limit=1&polygon_geoj

son=1&polygon_threshold=0.01&format=geojson" 

            name = row.ID + "_" + str(i) 

            destination = f"Output/{name}.geojson" 

            try: 

                urllib.request.urlretrieve(adress, destination) 

                print("SUCCESS! Features for") 

                print(name) 

            except: 

                print('WARNING: FAILED TO PROCESS') 

                print(name) 

 

Query of surface water extent time series 
 

// Load a JRC collection, filter to year coverage, 

// and map the time band function over it. 

var collection = ee.ImageCollection('JRC/GSW1_3/MonthlyHistory') 

                  .filterDate('2000-01-01', '2010-12-31');                 

 

print(collection) 

 

var visualization = { 

  bands: ['water'], 
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  min: 0.0, 

  max: 2.0, 

  palette: ['ffffff', 'fffcb8', '0905ff'] 

}; 

 

Map.setCenter(80.17144, 13.15551, 11); 

 

 

var table = ee.FeatureCollection("projects/ee-

danielperegrina/assets/ReaLSAT_Chennai_WB"); 

var geometry = table.geometry(); 

print(geometry) 

 

var mask = function(image) { 

  return image.mask(image).clip(geometry) 

} 

collection=collection.map(mask) 

 

Map.addLayer(collection, visualization, 'Water'); 

 

  

var chart = ui.Chart.image.series({ 

    imageCollection: collection.select('water'), 

    region: geometry 

    }).setOptions({ 

      interpolateNulls: false, 

      lineWidth: 1, 

      pointSize: 3, 

      title: 'Water presence over Time at a Single region', 

      vAxis: {title: 'Water presence'}, 

      hAxis: {title: 'Date', format: 'YYYY-MMM', gridlines: {count: 12}} 

    }) 

print(chart) 

 

 

Statistical testing of drought incidents 
 

#Import Libraries 

library(ggstatsplot) 

library(tidyverse) 

library(ggpubr) 

library(coin) 

library(reshape2) 

library(lme4) 

library(lubridate) 

library(cowplot) 

library(ggplot2) 

library(datarium) 

library(rstatix) 

 

#Import Data 

wgn = read.csv("C:/Users/peregrin/thesis_models/UrbanWaterGap/wgn.csv") 

stor = read.csv("C:/Users/peregrin/thesis_models/UrbanWaterGap/stor.csv") 

inc = read.csv("C:/Users/peregrin/thesis_models/UrbanWaterGap/incidents_dnd.csv") 
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areas = read.csv("C:/Users/peregrin/thesis_models/UrbanWaterGap/areas_id.csv") 

 

stor$date_m<-as.Date(stor$date,"%d/%m/%Y") 

format(stor$date_m, "%m/%Y") 

wgn$date<-as.Date(wgn$date,"%Y-%m-%d") 

format(wgn$date, "%m/%Y") 

inc$date<-as.Date(paste0(as.character(inc$date), '-01'), format='%Y-%m-%d') 

format(inc$date, "%m/%Y") 

inc$Type<-"Incident" 

 

inc.date<-inc$date 

inc.fact<-as.factor(inc$X8675) 

norm.wg<-wgn$X8675 

stor.tot<-stor$X8675 

 

df_all1<-data.frame(inc$date,inc.fact,norm.wg) 

df_all2<-data.frame(inc$date,inc.fact,stor.tot) 

 

head(df_all1) 

df1_long <- melt(df_all1, id.vars=c("inc.date","inc.fact","norm.wg")) 

df2_long <- melt(df_all2, id.vars=c("inc.date","inc.fact","stor.tot")) 

str(df1_long) 

 

stat.test <- df1_long %>%  

  wilcox_test(norm.wg ~ inc.fact) %>% 

  add_significance() 

stat.test 

 

df1_long %>% wilcox_effsize(norm.wg ~ inc.fact) 

 

#-----------For loop 

 

cities <- c(8675, 512, 3268,1303) 

 

#///////////////LOOP START//////////////////// 

count <- 0 

plt_keep <- matrix(ncol=1, nrow=length(cities)) 

stat_wg_keep <- matrix(ncol=1, nrow=length(cities)) 

stat_s_keep <- matrix(ncol=1, nrow=length(cities)) 

for (val in cities) { 

count<-count+1 

fid=val 

#find corresponding name for reporting 

print(fid) 

#PART 0 

inc_call<-gsub(" ", "",paste("inc$X",fid)) 

wgn_call<-gsub(" ", "",paste("wgn$X",fid)) 

stor_call<-gsub(" ", "",paste("stor$X",fid)) 

area_call<-eval(parse(text=(gsub(" ", "",paste("areas$X",fid))))) 

 

#PART 1 

inc_data<-eval(parse(text = inc_call)) 

inc.fact<-as.factor(inc_data) 

norm.wg<-eval(parse(text = wgn_call)) 

stor.tot<-eval(parse(text = stor_call)) 
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length(levels(inc.fact)) 

 

if (length(levels(inc.fact)) == 1){ 

    print ("City has no drought incidents recorded") 

 

} else { 

 

#PART 2 

df_all1<-data.frame(inc$date,inc.fact,norm.wg,stor.tot) 

df_alls<-data.frame(inc$date,inc.fact,stor.tot) 

df_allw<-data.frame(inc$date,inc.fact,norm.wg) 

 

df1_long <- melt(df_all1, id.vars=c("inc.date","inc.fact","norm.wg","stor.tot")) 

df1_longs <- melt(df_alls, id.vars=c("inc.date","inc.fact","stor.tot")) 

df1_longw <- melt(df_allw, id.vars=c("inc.date","inc.fact","norm.wg")) 

 

 

 

stat.tests <-   wilcox_test(stor.tot ~ inc.fact, alternative = c("two.sided"), detailed=TRUE) %>% 

  add_significance() 

print(stat.tests) 

ef_sizes<-df1_longs %>% wilcox_effsize(stor.tot ~ inc.fact) 

print(ef_sizes) 

 

stat.testn <-   wilcox_test(norm.wg ~ inc.fact, alternative = c("two.sided"), detailed=TRUE) %>% 

  add_significance() 

print(stat.testn) 

ef_sizen<-df1_longw %>% wilcox_effsize(norm.wg ~ inc.fact) 

print(ef_sizen) 

 

 

sample_size = df1_longs %>% group_by(inc.fact) %>% summarize(num=n()) 

 

plt1<-df1_longs %>% 

  left_join(sample_size) %>% 

  mutate(myaxis = paste0(inc.fact, "\n", "n=", num)) %>% 

  ggplot( aes(x=myaxis, y=stor.tot, fill=inc.fact))+ 

    geom_violin(width=1.0, trim=FALSE) + 

    geom_boxplot(width=0.1, color="black", fill="grey")+ 

    theme( 

      legend.position="none", 

      plot.title=element_text(size=18, face="bold"), 

      text=element_text(size=14))+ 

      ggtitle(paste("Storage -",area_call))+ 

 

    xlab("")+ 

    ylab("Storage [m]")+ 

    scale_fill_manual(values=c("#E69F00", "#56B4E9")) 

 

plt2<-df1_longw %>% 

  left_join(sample_size) %>% 

  mutate(myaxis = paste0(inc.fact, "\n", "n=", num)) %>% 

  ggplot( aes(x=myaxis, y=norm.wg, fill=inc.fact))+ 

  geom_violin(width=1.0, trim=TRUE) + 

  geom_boxplot(width=0.1, color="black", fill="grey")+ 

  theme( 
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    legend.position="none", 

    plot.title=element_text(size=18, face="bold"), 

    text=element_text(size=14))+ 

    ggtitle(paste("Water Gap -",area_call))+ 

 

  xlab("")+ 

  ylab("Relative Water Gap [-]")+ 

  scale_fill_manual(values=c("#E69F00", "#56B4E9")) 

 

 

plot_grid(plt1,plt2, 

 labels = "", 

 ncol=2) 

#  

 target<-paste0('massplot/',as.character(val), 'dist_plot', '.svg') 

 ggsave(target) 

 

} 

} 
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Appendix 4. List of hazard scores for cities 
Table 6. List of all the cities larger than 100 km2 that were processed to test the scalability of the urban 

drought hazard scoring approach to a large group of cities. The hazard score is the geometric mean of 

drought Severity, Frequency, and Persistence. 

City Region Severity Frequency Persistence Hazard 

Acapulco Central America 0.03 0.14 0.65 0.15 

Barranquilla Central America 0.05 0.13 0.62 0.16 

Bogota Central America 0.26 0.10 0.64 0.26 

Cali Central America 0.13 0.09 0.55 0.19 

Cartagena Central America 0.33 0.09 0.56 0.25 

Cuernavaca Central America 0.03 0.31 0.79 0.19 

Guatemala City Central America 0.12 0.07 0.48 0.16 

Guayaquil Central America 0.05 0.29 0.83 0.22 

Havana Central America 0.13 0.13 0.61 0.22 

Kingston Central America 0.08 0.15 0.65 0.19 

Managua Central America 0.04 0.30 0.87 0.22 

Medellin Central America 0.09 0.22 0.78 0.25 

Merida Central America 0.13 0.14 0.79 0.24 

Morelia Central America 0.09 0.11 0.63 0.18 

Oaxaca Central America 0.11 0.17 0.72 0.24 

Panama City Central America 0.08 0.06 0.25 0.10 

Puebla Central America 0.07 0.11 0.53 0.15 

Quito Central America 0.11 0.10 0.49 0.17 

San Jose Central America 0.06 0.06 0.33 0.10 

San Pedro Sula Central America 0.06 0.11 0.59 0.16 

San Salvador Central America 0.06 0.06 0.23 0.10 

Tegucigalpa Central America 0.13 0.07 0.33 0.14 

Tlaxcala Central America 0.07 0.13 0.62 0.17 

Veracruz Central America 0.10 0.08 0.41 0.15 

Villahermosa Central America 0.06 0.05 0.37 0.11 

Cape Town Southern Africa 0.15 0.08 0.41 0.17 

Durban Southern Africa 0.21 0.21 0.82 0.33 

Johannesburg Southern Africa 0.18 0.16 0.70 0.27 

Klipgat Southern Africa 0.20 0.15 0.72 0.28 

Maputo Southern Africa 0.08 0.20 0.68 0.22 

Port Elizabeth Southern Africa 0.25 0.21 0.73 0.34 

Pretoria Southern Africa 0.20 0.13 0.65 0.26 

Asuncion Southern America 0.06 0.12 0.57 0.16 

Buenos Aires Southern America 0.12 0.15 0.61 0.23 

Campinas Southern America 0.07 0.26 0.88 0.26 

Campo Grande Southern America 0.12 0.13 0.62 0.21 

Ceilandia Southern America 0.06 0.12 0.64 0.17 

Ciudad del Este Southern America 0.01 0.26 0.81 0.12 



67 

 

   

 

City Region Severity Frequency Persistence Hazard 

Cordoba Southern America 0.16 0.14 0.67 0.25 

Cuiaba Southern America 0.07 0.14 0.69 0.18 

Curitiba Southern America 0.09 0.25 0.85 0.27 

El Alto La Paz Southern America 0.23 0.23 0.83 0.35 

Florianopolis Southern America 0.25 0.25 0.89 0.38 

Goiania Southern America 0.05 0.18 0.71 0.18 

Joinville Southern America 0.13 0.23 0.84 0.29 

Jundiai Southern America 0.05 0.31 0.89 0.23 

La Plata Southern America 0.11 0.26 0.86 0.29 

La Serena Southern America 0.34 0.32 0.86 0.46 

Londrina Southern America 0.15 0.10 0.50 0.19 

Maringa Southern America 0.15 0.11 0.53 0.20 

Montevideo Southern America 0.18 0.18 0.80 0.29 

Novo Hamburgo Southern America 0.19 0.13 0.61 0.24 

Porto Alegre Southern America 0.30 0.11 0.55 0.26 

Praia Grande Southern America 0.20 0.26 0.83 0.35 

Ribeirao Preto Southern America 0.09 0.17 0.72 0.22 

Rio de Janeiro Southern America 0.04 0.48 0.87 0.26 

Rosario Southern America 0.02 0.13 0.62 0.11 

San Miguel de Tucuman Southern America 0.14 0.11 0.58 0.20 

Santa Fe Southern America 0.10 0.16 0.66 0.22 

Santiago Southern America 0.12 0.19 0.73 0.25 

Santos Southern America 0.05 0.28 0.86 0.22 

Sao Goncalo Southern America 0.06 0.54 0.94 0.32 

Sao Jose dos Campos Southern America 0.05 0.21 0.76 0.20 

Sao Paulo Southern America 0.05 0.23 0.80 0.21 

Sorocaba Southern America 0.08 0.27 0.89 0.27 

Uberlandia Southern America 0.08 0.09 0.52 0.15 

Vina del Mar Valparaiso Southern America 0.10 0.16 0.68 0.22 

Volta Redonda Southern America 0.06 0.30 0.86 0.24 

Agartala Southern Asia 0.08 0.11 0.63 0.18 

Agra Southern Asia 0.04 0.10 0.50 0.13 

Ahmedabad Southern Asia 0.06 0.10 0.46 0.14 

Alappuzha Southern Asia 0.31 0.07 0.38 0.20 

Aligarh Southern Asia 0.14 0.18 0.76 0.27 

Amritsar Southern Asia 0.15 0.19 0.61 0.26 

Asansol Southern Asia 0.04 0.12 0.58 0.14 

Aurangabad Southern Asia 0.09 0.22 0.91 0.26 

Bagha Southern Asia 0.07 0.07 0.44 0.13 

Bahadurabad Southern Asia 0.05 0.06 0.35 0.10 

Bareilly Southern Asia 0.05 0.15 0.69 0.18 

Begusarai Southern Asia 0.02 0.09 0.45 0.09 

Bengaluru Southern Asia 0.07 0.26 0.83 0.25 
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City Region Severity Frequency Persistence Hazard 

Berhampore Southern Asia 0.09 0.07 0.36 0.13 

Bhopal Southern Asia 0.03 0.20 0.73 0.17 

Bhuapur Southern Asia 0.04 0.09 0.59 0.12 

Bhubaneshwar Southern Asia 0.12 0.07 0.30 0.14 

Bogura Southern Asia 0.06 0.16 0.72 0.19 

Brahmanbaria Southern Asia 0.02 0.07 0.37 0.07 

Canning Southern Asia 0.10 0.07 0.41 0.15 

Chandigarh Southern Asia 0.11 0.08 0.52 0.17 

Chapainawabganj Southern Asia 0.06 0.08 0.45 0.13 

Chattogram Southern Asia 0.06 0.11 0.65 0.16 

Chennai Southern Asia 0.05 0.22 0.79 0.21 

Coimbatore Southern Asia 0.05 0.21 0.78 0.20 

Colombo Southern Asia 0.04 0.27 0.85 0.21 

Comilla Southern Asia 0.11 0.07 0.42 0.15 

Daganbhuiyan Southern Asia 0.07 0.08 0.54 0.15 

Dehradun Southern Asia 0.08 0.09 0.48 0.15 

Delhi New Delhi Southern Asia 0.08 0.11 0.47 0.16 

Dhaka Southern Asia 0.06 0.06 0.30 0.10 

Dhanbad Southern Asia 0.07 0.18 0.72 0.20 

Dhing Southern Asia 0.12 0.06 0.35 0.13 

Durg Southern Asia 0.06 0.06 0.30 0.10 

Erode Southern Asia 0.08 0.14 0.63 0.19 

Ettumanoor Southern Asia 0.06 0.10 0.51 0.14 

Faisalabad Southern Asia 0.19 0.11 0.49 0.22 

Faizabad Southern Asia 0.02 0.10 0.51 0.11 

Gorakhpur Southern Asia 0.04 0.12 0.57 0.13 

Gouripur Southern Asia 0.10 0.08 0.55 0.17 

Gujranwala Southern Asia 0.15 0.14 0.52 0.22 

Guruvayur Southern Asia 0.07 0.07 0.44 0.13 

Guwahati Southern Asia 0.05 0.06 0.38 0.11 

Gwalior Southern Asia 0.13 0.05 0.28 0.12 

Haridwar Southern Asia 0.07 0.11 0.56 0.17 

Hatisala Southern Asia 0.10 0.09 0.41 0.15 

Homna Southern Asia 0.02 0.08 0.45 0.08 

Hyderabad Southern Asia 0.11 0.10 0.56 0.19 

Hyderabad Southern Asia 0.08 0.24 0.80 0.24 

Imphal Southern Asia 0.09 0.07 0.38 0.13 

Indore Southern Asia 0.06 0.13 0.60 0.17 

Irinjalakuda Southern Asia 0.03 0.09 0.48 0.11 

Jabalpur Southern Asia 0.05 0.11 0.60 0.15 

Jaipur Southern Asia 0.09 0.14 0.63 0.20 

Jalandhar Southern Asia 0.13 0.10 0.54 0.19 

Jamalpur Southern Asia 0.10 0.10 0.60 0.18 
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City Region Severity Frequency Persistence Hazard 

Jammu Southern Asia 0.10 0.07 0.27 0.13 

Jamshedpur Southern Asia 0.06 0.10 0.51 0.15 

Jaynagar Majilpur Southern Asia 0.08 0.07 0.40 0.13 

Jodhpur Southern Asia 0.16 0.17 0.74 0.28 

Kabul Southern Asia 0.09 0.36 0.92 0.31 

Kandy Southern Asia 0.03 0.23 0.78 0.18 

Kannur Southern Asia 0.06 0.07 0.40 0.12 

Kanpur Southern Asia 0.03 0.10 0.43 0.11 

Karachi Southern Asia 0.32 0.18 0.78 0.35 

Kathmandu Southern Asia 0.05 0.07 0.32 0.10 

Kharupetia Southern Asia 0.12 0.06 0.25 0.12 

Khulna Southern Asia 0.06 0.07 0.40 0.12 

Kishoreganj Southern Asia 0.10 0.07 0.44 0.14 

Kochi Southern Asia 0.05 0.10 0.54 0.13 

Kolkata Southern Asia 0.07 0.08 0.45 0.14 

Kollam Southern Asia 0.06 0.09 0.42 0.13 

Kota Southern Asia 0.13 0.07 0.52 0.17 

Kozhikode Southern Asia 0.03 0.08 0.39 0.10 

Kuchai Kot Southern Asia 0.04 0.10 0.49 0.12 

Kushinagar Southern Asia 0.09 0.14 0.63 0.20 

Lahore Southern Asia 0.12 0.13 0.51 0.20 

Lakshmipur Southern Asia 0.12 0.11 0.66 0.20 

Lauiyah Nandangarh Southern Asia 0.09 0.10 0.49 0.16 

Lucknow Southern Asia 0.07 0.10 0.54 0.16 

Ludhiana Southern Asia 0.13 0.12 0.61 0.22 

Madhabpur Southern Asia 0.07 0.14 0.70 0.19 

Madurai Southern Asia 0.05 0.26 0.83 0.22 

Malappuram Southern Asia 0.05 0.07 0.40 0.11 

Mandalay Southern Asia 0.07 0.07 0.46 0.13 

Mangaluru Southern Asia 0.04 0.08 0.40 0.11 

Manikgonj Southern Asia 0.08 0.10 0.57 0.17 

Mardan Southern Asia 0.13 0.18 0.63 0.25 

Meerut Southern Asia 0.12 0.16 0.65 0.23 

Mondoldia Southern Asia 0.08 0.07 0.44 0.14 

Moradabad Southern Asia 0.08 0.19 0.69 0.22 

Muktagacha Southern Asia 0.11 0.12 0.70 0.21 

Multan Southern Asia 0.18 0.14 0.61 0.25 

Mumbai Southern Asia 0.05 0.09 0.55 0.13 

Muzaffarpur Southern Asia 0.03 0.09 0.48 0.12 

Mymensingh Southern Asia 0.10 0.12 0.68 0.20 

Mysuru Southern Asia 0.07 0.28 0.84 0.25 

Nagapattinam Southern Asia 0.52 0.18 0.69 0.40 

Nagpur Southern Asia 0.06 0.11 0.55 0.15 
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City Region Severity Frequency Persistence Hazard 

Naogaon Southern Asia 0.07 0.17 0.73 0.21 

Nashik Southern Asia 0.06 0.14 0.71 0.19 

Neeleshwaram Southern Asia 0.09 0.06 0.33 0.12 

Nibua Raiganj Southern Asia 0.10 0.21 0.73 0.25 

Noakhali Southern Asia 0.12 0.08 0.57 0.18 

Pabna Southern Asia 0.02 0.09 0.42 0.09 

Panipat Southern Asia 0.14 0.27 0.73 0.30 

Patna Southern Asia 0.02 0.09 0.42 0.10 

Payyanur Southern Asia 0.06 0.08 0.37 0.13 

Peshawar Southern Asia 0.13 0.16 0.66 0.24 

Pokhariya Southern Asia 0.08 0.14 0.59 0.19 

Prayagraj Southern Asia 0.02 0.08 0.34 0.08 

Pune Southern Asia 0.08 0.07 0.41 0.13 

Quetta Southern Asia 0.17 0.19 0.72 0.29 

Raipur Southern Asia 0.07 0.07 0.33 0.12 

Rajkot Southern Asia 0.04 0.27 0.82 0.20 

Rajshahi Southern Asia 0.02 0.09 0.42 0.09 

Ranchi Southern Asia 0.07 0.09 0.55 0.15 

Rangpur Southern Asia 0.08 0.21 0.79 0.23 

Rawalpindi Islamabad Southern Asia 0.12 0.11 0.51 0.19 

Rourkela Southern Asia 0.06 0.10 0.51 0.14 

Salem Southern Asia 0.06 0.28 0.75 0.23 

Samaguri Southern Asia 0.12 0.05 0.26 0.12 

Satkania Southern Asia 0.07 0.08 0.48 0.14 

Shaistaganj Southern Asia 0.09 0.09 0.59 0.17 

Sialkot Southern Asia 0.12 0.17 0.55 0.23 

Sirajganj Southern Asia 0.08 0.11 0.63 0.18 

Srinagar Southern Asia 0.15 0.12 0.60 0.22 

Surat Southern Asia 0.04 0.07 0.32 0.09 

Swat City Southern Asia 0.07 0.18 0.74 0.21 

Sylhet Southern Asia 0.13 0.07 0.50 0.17 

Tamluk Southern Asia 0.04 0.08 0.40 0.11 

Tangail Southern Asia 0.09 0.12 0.64 0.19 

Tezpur Southern Asia 0.03 0.06 0.33 0.08 

Thalassery Southern Asia 0.05 0.06 0.32 0.10 

Thanagaon Southern Asia 0.05 0.14 0.57 0.16 

Thiruvananthapuram Southern Asia 0.04 0.19 0.81 0.19 

Thrissur Southern Asia 0.04 0.08 0.47 0.11 

Tiruchirappalli Southern Asia 0.06 0.19 0.75 0.21 

Tiruppur Southern Asia 0.08 0.16 0.61 0.20 

Uchkagaon Southern Asia 0.10 0.15 0.64 0.21 

Udaipur Southern Asia 0.06 0.41 0.85 0.28 

Vadodara Southern Asia 0.06 0.12 0.59 0.16 
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Varanasi Southern Asia 0.04 0.10 0.51 0.13 

VasaiVirar Southern Asia 0.06 0.07 0.46 0.12 

Vellore Southern Asia 0.05 0.37 0.81 0.24 

Vijayawada Southern Asia 0.04 0.23 0.83 0.19 

Visakhapatnam Southern Asia 0.04 0.36 0.89 0.23 

Warangal Southern Asia 0.05 0.18 0.74 0.18 

Yangon Southern Asia 0.05 0.06 0.20 0.08 

 


