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Abstract

In the one-way trading problem, a player is presented with a number
of rates. For each rate the player needs to decide if they want to trade,
and how much of their budget they want to trade for a profit. This trade
will be done according to the rate currently available to the player. The
goal of the player is to maximise the profit they make on the sum of all
trades. The discussed algorithm for one-way trading uses a semi-online
environment. More specifically, the number of rates that will be presented
is known and the bounds on the minimum and the maximum exchange
rates are also known.

In this work, the online one-way trading algorithm is extended so that
it can use a piece of advice that is given before the algorithm starts. This
advice will influence the performance of the algorithm. More precisely,
the effect on the performance will depend on the error of the advice and
on the trust that is put in the advice. With advice that has no error, the
algorithm can achieve the optimal amount of profit. Depending on how
big the error is, the algorithm that uses advice can perform worse than
the original online algorithm that doesn’t use advice. In this work, two
different kinds of advice are tested. The best day to trade on and the
highest rate that will be presented.

With the advice tested in this work, one-way trading with perfect
advice will always be as good or better than one-way trading without
advice. When the presented number of rates is large the online algorithm
with advice can outperform the standard online algorithm, even with a
significant error in the advice. This is especially true for the advice that
predicts the best day to trade on.
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1 Introduction

Algorithms are commonly used to make decisions based on the available in-
formation. However, in many cases this information might not be complete,
especially when making decisions about the future. Algorithms that have to
make decisions based on incomplete information are called online algorithms.
Information is given to the online algorithm piece by piece in a serial fashion.
After new information is revealed the online algorithm has to make a decision,
this decision is irrevocable.

To compare different online algorithms for the same problem the competi-
tive ratio is used. The competitive ratio measures how well an online algorithm
performs compared to the offline optimal solution. The optimal solution has
access to all of the information, including future information that is not avail-
able to the online algorithm. Online algorithms can never be better than the
optimal solution, otherwise the optimal solution would not be optimal. The
competitive ratio is an upper bound on the ratio between the optimal solution
and the solution of the online algorithm on all possible input instances I.

ALG(I)

OPT(I)
≤ c

This competitive ratio is for minimisation problems. A competitive ratio of
two means that no matter what the input instance is the online algorithm will
never be more than two times worse than the optimal solution. The online algo-
rithm can be less than two times worse for some input instances, but will never
be more than two times worse. The competitive ratio will never be smaller than
one, since this would mean that the online algorithm is better than the opti-
mal solution. The competitive ratio is calculated differently for maximisation
problems.

OPT(I)

ALG(I)
≤ c

With a competitive ratio of two the online algorithm will still never be more
than two times worse than the optimal solution. But now the online algorithm
will have a lower result than the optimal. When using the competitive ratio for
comparing online algorithms the goal is to make the competitive ratio as close
to one as possible.

Financial analysis and online algorithms go well together since these prob-
lems are often online in nature. In the buy or rent problem, a player is going
to use something for an unknown number of days. Every day the player is pre-
sented with a choice. The player either buys for a fixed cost B, or keep renting
for cost R per day. The player can rent for as long as they want and buy on
any day. Depending on how long the player is going to rent it might be cheaper
to buy instead. The optimal solution is to check if R times the number of days
is more than B. If buying will cost less then the optimal solution buys on day
one for cost B, otherwise the optimal solution rents. The online algorithm does
not have this luxury and will most likely pay more than the optimal.
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2 Online Trading Algorithms

The online one-way trading problem is defined as follows. A player starts with
a budget, which the player wants to trade into a profit. At each time step an
exchange rate is provided at which the player can trade any fraction of their
budget for profit at the given exchange rate. Since this is an online problem
the player only knows the revealed exchange rates, and any decision made can’t
be reversed. The goal of the player is to trade their starting budget for the
maximum amount of profit. In this work only the profit will be counted, any
remaining budget is irrelevant. If there is any budget left on the last exchange
opportunity this will all be spent using the last rate.

2.1 Semi-Online Environment

To measure the performance of an online algorithm it is compared to the optimal
solution. This can lead to some issues when using a purely online environment,
in which nothing is known by the online algorithm. If the number of exchange
opportunities are unknown, then the online algorithm would have a hard time
choosing when to spend the budget. There might be only one trading oppor-
tunity, so if the algorithm doesn’t trade anything on the first day then the
resulting profit would be 0. Since the optimal solution will trade their budget
the resulting competitive ratio is OPT

0 . A solution that isn’t very useful.
If there are many trading days, there is still an issue since the online algo-

rithm is pressured to trade early to prevent any budget remaining after the last
trading day. Any of the first trading days can be a fraction of the rate that the
optimal solution will take. There can be an infinite amount of trading days, at
some point the algorithm is bound to spend all of it’s budget. Eventually some
arbitrarily high exchange rate can be presented. The optimal solution will take
this rate, and the competitive ratio will be ∞

ALG .
These examples show that to talk about solution to the online one-way

trading problem certain limitations have to be put in place. The second example
shows a second limitation of a purely online environment. If the online algorithm
spends most of its budget before the last trading day, the last day can still have
an arbitrarily large exchange rate. Again, the competitive ratio is ∞

ALG . This
means an upper limit is needed on the possible exchange rates. The same is
true with exchange rates that get infinitely close to 0, so a minimum exchange
rate also needs to be determined.

In this paper, an algorithm proposed by El-Yaniv et al. [4] will be used.
This algorithm uses a known amount of trading days n and has a minimum and
maximum bound on the possible exchange rates, m and M , respectively. The
minimum and maximum exchange rates may not be tight bounds. This means
that the presented exchange rates have to be between m and M but don’t have
to include these bounds. This means that the algorithm is not a pure online
algorithm, but a semi-online algorithm.
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3 Threat Based Approach

The algorithm that El-Yaniv et al. [4] proposed has a variable competitive ratio
c. This algorithm relies on c being an achievable competitive ratio, but not all
c are achievable. If c is not achievable the algorithm will spend parts of the
budget on rates that are too low. The resulting competitive ratio will be higher
than c. To make calculating an achievable c possible, the algorithm follows two
rules.

1. Only trade on days when the current rate is a new maximum.

2. Only convert the minimum amount to maintain a competitive ratio of c.

These two rules apply to all but the last trading day; on the last trading day
all of the remaining budget is traded since any remaining budget could have
been turned into more profit. Section 3.2 shows how to get an achievable c. For
now it is simply assumed that c is an achievable competitive ratio.

3.1 Optimal “Threat Based” Policy for One-Way Trading

The threat based approach works by making the online algorithm operate under
a realistic assumption about future exchange rates. In the semi-online model,
the exchange rates are still unknown, but not completely unknown since ex-
change rates have an upper and lower bound.

To achieve a competitive ratio of c, the algorithm is threatened by the sce-
nario where exchange rate dropping to the minimum rate for all future rates.
If you have a series of n days on which you can exchange once per day, these
n days can be divided into two parts. A series of k consecutive days where the
exchange rate goes up every day, meaning that every day is a new maximum.
Then after day k, the rest of the rates will all be the minimum m until the last
day n with k ≤ n.

Since the first day is always a new maximum, according to rule 1 the algo-
rithm will want trade on this day. Since it knows the minimum possible rate, the
algorithm can calculate what the resulting competitive ratio is if trades some it
the budget. The profit will always be at least the current profit plus all of the
remaining budget traded at the minimum rate. If the exchange rate on the first
day is higher than the minimum, then the achieved competitive ratio will be
lowered by trading right now. When using this strategy, a maximum amount of
budget can be saved to spend on higher maximal values that might be presented
in the future. Only if the presented rate is the highest possible rate should the
online algorithm spend all of its budget.

The optimal solution gets the largest profit by trading on the day with the
highest exchange rates. The online algorithm can also trade at this exchange
rate though. The worst case scenario is when the algorithm has nothing left
to trade when this maximum is reached. To reduce the budget as much as
possible only new maximal rates should be presented. These rates should be
smaller than the rate the optimal solution will trade at when possible. If a new
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maximal exchange rate is presented, this will always increase the profit that the
optimal solution will make. The player can only increase their profit if they save
more of their budget for this rate.

Let r be a competitive ratio that the online algorithm can achieve. That
is, OPT(I)/ALG(I) ≤ r for all possible input instances I. When a viable r
is known the algorithm is clear, simply trade just enough to maintain r if all
future exchange rates are equal to m. The amount that needs to be traded
si is dependant on the budget before making the trade Xi−1, the profit before
making the trade Yi−1, the current given exchange rate pi and the threat m.
The amount can be calculated according to (1)[4].

si =
pi − r ∗ (Yi−1 +Xi−1 ∗m)

r ∗ (pi −m)
(1)

To find r we look at the worst sequence of exchange rates. The sequence
where the ratio between OPT and ALG is maximised. The sequence of rates
needs the length of the series of consecutive maximal values k, the smallest
presented rate and the biggest presented rate. We need to determine the worst
values these variables can take. The smallest rate is at least m and the biggest
rate is at most M .

The player would normally only know the competitive ratio after the algo-
rithm is done. Since the competitive ratio needs to be known beforehand it has
to be calculated. El-Yaniv et al. [4] provide a way to calculate this r in such a
way that r is minimal but will still always be a viable competitive ratio (2).

r = n ∗
(
1− m(r − 1)

M −m

)(1/n)

(2)

3.2 Calculating an Achievable Competitive Ratio c

The variables m, M and n are known, where m < M and k is the number of
days that have consecutive maximal values with k ≤ n and k is unknown to the
player. The proof relies on the worst values the smallest presented exchange
rate, the biggest presented exchange rate and k can take. If all of these worst
values are known and we can calculate the competitive ratio possible on these
values, we will have an achievable competitive ratio. After minimising this ratio
the best possible, achievable, ratio c has been found.

We know how much the player will spend each day, though this depends on r.
Since the entire budget will be spend on day n the total spending is also known.
The remaining variables are biggest exchange rate, the smallest exchange rate
and k. Figure 1a shows that as the difference between m and M goes up, so
does the competitive ratio, the same is true for n (Figure 1b). The full proof
can be seen in [4].

The competitive ratio will be the worst when the difference between the
smallest and largest values is the biggest, and when there are as many consec-
utive maximal values as possible. This gives us a smallest exchange rate of m,
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(a) c goes up as M/m goes up with a
fixed n

(b) c goes up as n goes up with a fixed
M/m

Figure 1: Limits of n and M/m.

biggest exchange rate of M and k = n as the worst input instance of consecutive
maximum values.

4 Advice for online algorithms

Advice given to the online algorithm is information about the future. The
goal of using advice is to improve the competitive ratio [2]. How the advice
impacts the competitive ratio is dependant on the quality of the advice. If the
advice is perfect an online algorithm can perform as well as the optimal solution,
depending on what the advice is. However, assuming that the advice is perfect
is not realistic. Even if the advice is assumed to be trustworthy, it could still
give wrong advice sometimes. Especially when the advice comes from machine
learning[3].

Depending on how reliable the given advice is, the algorithm might be better
off without advice. Following bad advice can result in a much higher competitive
ratio. It is impossible for the online algorithm to know if the advice is correct
or not until the prediction either comes true or it doesn’t. When designing
the algorithm, the possibility of bad advice should be taken into account. The
reliability of machine learning, and advice generated by machine learning, is
variable.

One way to deal with this is to limit the impact the advice has on the
algorithm to a certain extent. There will always be a trade off, more trust in
the advice means there is a higher risk, but there is also a higher reward. The
online algorithm doesn’t have to follow the advice at all times. If certain advice
leads to an undesirable outcome the algorithm might not follow advice in this
case and instead continue without advice. Making decisions like this impact
the competitive ratio as well. More complex algorithms can result in a better
competitive ratio, but also a more complex one.

In the buy or rent problem the advice can be whether the player should
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buy on the first day. Following this advice no matter what can lead to a bad
outcome. If the advice is correct then the online algorithm will be as good
as the optimal solution. If the advice is incorrect depending on how far off
the advice is the cost of the online algorithm with advice can be much higher
than an algorithm without advice. A safer option, for example, would to buy
if the advice tells the algorithm to buy and otherwise use an online algorithm
without advice to determine whether to buy or not. This enables the algorithm
to benefit from correct predictions while still limiting the competitive ratio of
the algorithm when the advice is incorrect.

5 Advice for one-way trading

Two types of advice were tested as an addition for the one-way trading problem.
The first is a prediction for the day on which the highest exchange rate will be
presented, the second is what the highest presented rate will be. Both of these
types of advice are a single integer that is calculated at the start of the one-way
trading game.

The algorithm that uses advice will set aside a part of the budget that is
saved for the predicted event. The rest of the budget will be spend according
to the standard online algorithm for one-way trading. The amount of budget
that is set aside depends on the trust that is put in the prediction.

5.1 The maximum rate

If the advice is correct then the online algorithm can achieve a competitive ratio
of 1 by simply waiting for the predicted ratio and spending the budget at this
rate.

With this type of advice there are two possible scenarios, the prediction can
be too high or it can be too low. These two cases are very different. When the
advice is too low the algorithm will still spend the saved budget but this will be
done at a rate less than OPT. If the prediction is too high then the algorithm
will never spend and will hold onto the savings until the last day. On the last
day it will be forced to spend the savings on the current rate.

The prediction error ϵ is calculated through the difference in the predicted
rate and the actual maximum rate that was presented to the player.

An advantage of this prediction is that even if ϵ is small the ratio between
the ALG and OPT can still be low. This is only true if the error is below
the maximum rate. The downside being that if the prediction is too high then
the predicted rate will never come and the algorithm will only spend the saved
budget on the last day. This can result in a very low profit, when the last rate
is equal to m for example.
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5.2 The day with the maximum rate

If the advice is correct then the online algorithm can achieve a competitive ratio
of 1 by simply waiting for the predicted day and then spend the entire budget
on this day.

The error ϵ is calculated by the difference in days between the prediction
and the correct day. An error of one means that either the next or the previous
day would be the correct prediction. Since the player knows n, the advantages
of this advice is that the predicted day will always occur. Even if the predicted
day might not be correct the algorithm will spend the saved part of its budget.

The disadvantage is that even with a very low error the competitive ratio can
be very bad. A difference in rates when there is one day between the prediction
and the true value can be large. When using data from the real world a difference
of one will almost never be very large but there are still exceptions to this.

6 Two competitive ratios

Instead of using a single competitive ratio, two competitive ratios can be used
to measure the impact advice has on online algorithms [1].

Any online algorithm ALG that uses advice has the competitive ratio rALG

which is the competitive ratio when the advice is correct and the competitive
ratio wALG which is the competitive ratio if the advice is incorrect. wALG can
not be better than the competitive ratio of the best known online algorithm
without advice. The best case for wALG is to ignore the advice, which would
lead to the same competitive ratio as an online algorithm that does not use
advice. rALG will be at least as good as wALG since the advice is assumed to
be correct.

These competitive ratios should not only take all possible input instances
into account, but also all possible instances of advice. rALG represents the
competitive ratio of algorithm ALG on all possible input instances σ using advice
ϕ where ϕ is the perfect advice. wALG represents the competitive ratio on all
possible input instances σ using advice ϕ where ϕ is the worst possible advice.
For wALG we essentially assume that a malicious entity is giving advice to the
algorithm, following this advice will result in the worst possible performance.

rALG = sup
σ

inf
ϕ

ALG(σ, ϕ)

OPT(σ)
and wALG = sup

σ
sup
ϕ

ALG(σ, ϕ)

OPT(σ)

Using rALG and wALG an online algorithm with advice has a tuple of com-
petitive ratios (rALG, wALG). To compare different algorithms the notion of
dominance is used. Algorithm A dominates algorithm B if rA ≤ rB and
wA < wB or rA < rB and wA ≤ wB . When comparing a (4,8)-competitive al-
gorithm it’s easy to see this is better than a (4,10)-competitive algorithm. This
isn’t true when comparing it to a (6,4)-competitive algorithm.
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6.1 The competitive ratio for one-way trading with advice

To calculate the competitive ratios rALG and wALG a number of extra values are
also needed. p∗ is the true maximum rate so the correct prediction and ppred,
the actual prediction. The budget b, the trust λ and the achievable competitive
ratio c.

The trust in the advice λ will be used to save a certain part of the budget
to spend on the prediction, λ has a value between 0 and 1. 0 signifies no trust
in the advice while 1 is full trust in the advice. Using a budget b, λ ∗ b will be
set aside to spend on the maximum predicted rate. The remaining (1 − λ) ∗ b
will be spent according to the algorithm without advice. When using λ = 0 the
algorithm will be the same as the standard online algorithm without advice.

6.1.1 Advice is the maximum rate

We need to separate the competitive ratio for this advice into three separate
ratios. One where the advice is correct and two when the advice is incorrect. If
the advice is incorrect the prediction can either predict a rate that is too high,
in that case the algorithm will not spend since the prediction never happens.
The other case is when the prediction is too low, in this case the algorithm will
spend at a rate that is below the actual maximum rate.

OPT(I)

ALG(I)
≤ c

ALG(I) ≥ OPT(I)

c

When the advice is correct, rALG.

OPT = b ∗ p∗

ALG ≥ (1− λ) ∗ b ∗ p∗

c
+ λ ∗ b ∗ p∗

OPT

ALG
≥ b ∗ p∗

(1−λ)∗b∗p∗

c + λ ∗ b ∗ p∗

≥ 1
(1−λ)

c + λ

≥ c

(1− λ) + λ ∗ c

The advice is incorrect and the predicted rate ppred is lower than the max-
imum rate p∗ so the λ ∗ b part of the budget will be spend at a rate p with
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p ≥ ppred.

OPT = b ∗ p∗

ALG ≥ (1− λ) ∗ b ∗ p∗

c
+ λ ∗ b ∗ ppred

OPT

ALG
≥ b ∗ p∗

(1−λ)∗b∗p∗

c + λ ∗ b ∗ ppred

≥ p∗c

(1− λ) ∗ p∗ + λ ∗ ppred ∗ c

The advice is incorrect and the predicted rate ppred is higher than the max-
imum rate p∗ so the λ ∗ b part of the budget will be spent on the last day. The
only thing known about the last rate p is that p ≥ m.

OPT = b ∗ p∗

ALG ≥ (1− λ) ∗ b ∗ p∗

c
+ λ ∗ b ∗m

OPT

ALG
≥ b ∗ p∗

(1−λ)∗b∗p∗

c + λ ∗ b ∗m

≥ p∗c

(1− λ) ∗ p∗ + λ ∗m ∗ c

Since for all rates p ≥ m this means that ppred ≥ m. From this it’s easy to
see that a prediction that is higher than p∗ is always equal to or worse than a
prediction that is lower than p∗. This means that wALG is when the predicted
rate is too high.

6.1.2 The day

There are only the two possible cases when using advice that predicts the day.
Either the advice is correct or incorrect. Any incorrect prediction can result in
the algorithm spending the saved budget on a day with exchange rate m in the
worst case.

The advice is correct rALG.

OPT = b ∗ p∗

ALG ≥ (1− λ) ∗ b ∗ p∗

c
+ λ ∗ b ∗ p∗

OPT

ALG
≥ b ∗ p∗

(1−λ)∗b∗p∗

c + λ ∗ b ∗ p∗

≥ 1
(1−λ)

c + λ

≥ c

(1− λ) + λ ∗ c
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The advice is incorrect wALG. When the advice is incorrect then the ex-
change rate on the day can be any possible rate. The worst rate will be the
minimum rate.

OPT = b ∗ p∗

ALG ≥ (1− λ) ∗ b ∗ p∗

c
+ λ ∗ b ∗m

OPT

ALG
≥ b ∗ p∗

(1−λ)∗b∗p∗

c + λ ∗ b ∗m

≥ p∗c

(1− λ) ∗ p∗ + λ ∗m ∗ c

6.2 Error

The prediction error can be calculated as the absolute difference between p∗ and
the predicted rate, |p∗ − ppred|.

Both the maximum prediction and the day prediction have the same rALG

and wALG (Equation 3). This means that neither of them dominates the other.

(rALG, wALG) =

(
c

(1− λ) + λ ∗ c
,

p∗c

(1− λ) ∗ p∗ + λ ∗m ∗ c

)
(3)

7 Experiments

7.1 Setting the benchmarks

(a) n = 5 with increasing M/m (b) n = 2500 with increasing M/m

Figure 2: The influence of the remaining budget on the last day on c.

In the experiments either n will be fixed while M/m goes up or M/m is
fixed while n goes up to show the exact effects these values have on the online
algorithm. When either of the values increases the competitive ratio should
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also increase. m is fixed during the experiments and only M will be changed
to increase M/m. With an adversarial opponent the difference between pi and
pi−1 is constant. The experimental results don’t use an very large M/m or n,
which is assumed in the threat based approach. This influences experiments
done with smaller values because the step size between two rates, (pi − pi−1),
will be bigger with a smaller n. The opposite is true when decreasing M/m,
(pi − pi−1) will get smaller. This can also be seen when comparing Figure 2
with Figure 3. When increasing M/m the remaining budget will increase while
increasing the n will cause the remaining budget to decrease.

When using smaller values for n this results in the algorithm keeping a
bigger part of the budget for the last day. With an adversarial opponent the
last day will have the best rate and so the algorithm will earn a higher profit
by saving (Figure 2a). This becomes less of a problem as n increases, but will
make the experimental results deviate from the theoretical results if the number
of presented rates is too small, a large enough value for n is needed (Figure 2b).

When the number of days goes up the amount that is saved for the last
day will be less and less significant and the experimental results will almost
match the theoretical ones. With a very large number of days, as was assumed
when applying the algorithm in theory, the remaining budget on the last day is
not significant. This means that a large number of days is needed for reliable
experimental results. n = 2500 is large enough for the remaining budget on the
last day to be negligible. When using a very high M/m even n = 2500 still has
a visible effect but for the experiments smaller values will be used for M/m.

(a) M/m = 5 with increasing n (b) M/m = 2500 with increasing n

Figure 3: The influence of the remaining budget on the last day on c.

Increasing M/m does not have the same effect on the performance. Increas-
ing M/m will result in a larger value for pi − pi−1 as well as a larger value
for c (Figure 3). This means that results will be similar for different values for
M/m. As can be seen in the figures, a higher value for M/m means that the
competitive ratio will be higher. There is a difference in how many days are
needed for the online algorithm to achieve close the limit for the competitive
ratio as well.
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7.2 Experiments with advice

Advice has a λ between 0 and 1, for each experiment multiple levels of trust are
tested. A trust of 0 is also used to show how well the algorithm without advice
performs compared to algorithms with advice on the same input sequences.
First the experiments with perfect advice will be compared to each other. After
looking at the cases with perfect advice the two different kinds of advice are
split into their own separate sections.

7.2.1 Experiments with Perfect advice

These experiments are done with advice that enables the algorithm to achieve
a competitive ratio of 1. For the maximum advice this means that the advice
is the highest maximum rate that will be presented to the player. M only
shows the maximum possible rate, but this rate might not be presented to the
player. For the advice on the day to trade on the advice will be the day with
the highest rate. In both cases the online algorithm will trade on the same day
as the optimal solution would.

(a) Advice is the maximum rate, n is fixed at 2500 and M/m
is increasing till 1000.

(b) Advice is the maximum rate, M/m is fixed at 1000 and
n is increasing till 500

(c) Advice is the day with the highest rate, n is fixed at 2500
and M/m is increasing till 1000

(d) Advice is the day with the highest rate, M/m is fixed at
1000 and n is increasing till 500

Figure 4: Experiments done with perfect advice on adversarial rates.
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It’s easy to see that both types of advice perform the same when using
adversarial rates (Figure 4). When the advice is perfect and the algorithm has
complete trust a competitive ratio of 1 is achievable. As soon as this is no
longer the case the algorithm will have a higher competitive ratio, and a worse
performance.

(a) Advice is the maximum rate, n is fixed at 2500 and M/m
is increasing till 200.

(b) Advice is the maximum rate, M/m is fixed at 200 and n
is increasing till 500.

(c) Advice is the day, n is fixed at 2500 and M/m increasing
till 200.

(d) Advice is the day, M/m is fixed at 200 and n is increasing
till 500.

Figure 5: Experiments done with perfect advice on uniform random rates, the
algorithms were repeated 100 times.

When using random rates and perfect advice the algorithm with advice is
still clearly better than the algorithm without advice (Figure 5). The dotted
line shows the average competitive ratio c from all smaller values including
the current one. This average value has been smoothed to show results more
clearly. Even though n was only increased till 500 in the case of random rates
the average competitive ratio stabilises earlier than this. Much earlier than the
2500 that was needed when using adversarial rates. In all of the experiments
the competitive ratio’s are limited at about the same values for each respective
level of trust.
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7.2.2 Advice is the maximum rate

First advice that predicts the maximum rate that will be presented to the algo-
rithm will be discussed. Like with the perfect advice the first experiments will
be done with adversarial rates and then random rates will be used.

(a) Results when the advice is higher than the optimal
advice = OPT*1.5

(b) Results when the advice is lower than the optimal
advice = m.

(c) Results when the advice is lower than the optimal
advice = OPT/2

(d) Results when the advice is lower than the optimal
advice = OPT/2, M = 20

Figure 6: Experiments done with n = 2500 with increasing M/m.

Adversarial rates with a fixed n and increasing M/m Both advice that
is too high and advice that is too low results in almost equal performance given
enough rates (Figure 6a, 6c). The main difference is when the ratio between
M and m is low. Figure 6d shows that just after a ratio of eight the algorithm
that uses advice starts performing better than the algorithm without advice.
When the advice is too low the algorithm will end up spending the budget at
a bad rate, since the advice depends on the ratio between M and m in this
case there is a certain point where the advice becomes good enough so the
algorithm with advice outperforms. When the prediction is too high something
different happens. In this case the budget is saved until the last day. Since these
experiments are done with adversarial rates the longer the budget is saved the
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better the algorithm will perform. When the advice is the lowest possible rate
the algorithm that uses this advice will simply spend the budget on the first
day. Since the rates are only going up for this experiment this is the absolute
worst choice. The effects of this choice are a linearly increasing competitive
ratio (Figure 6b).

(a) Results when the advice is higher than the optimal
advice = OPT*1.5

(b) Results when the advice is lower than the optimal
advice = m.

(c) Results when the advice is lower than the optimal
advice = OPT/2

(d) Results when the advice is lower than the optimal
advice = OPT/2, n = 100

Figure 7: Experiments done with m/M = 200 with increasing n.

Adversarial rates with a fixed M/m and increasing n When using ad-
versarial rates an advice that is too high will have the same results as perfect
advice would have. Since the predicted maximum rate never is presented the
algorithm will spend on the last day. With adversarial rates this day will be the
optimal rate (Figure 7a).

The competitive ratio with a low n is heavily dependant on the remaining
budget on the last trading opportunity. There are certain points at which the
competitive ratio goes down even though it should increase as n increases. When
the advice is too low, but not the minimum (Figure 7c, 7d) the performance
of the algorithm fluctuates up and down, the variance goes down as n goes up.
This is examined further in Section 7.3. There is a certain point where the
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algorithm with advice starts outperforming the algorithm without advice. This
happens after 88 rates.

The fluctuation is caused by the fact that the algorithm only trades above
a certain minimum rate depending on c. There are breakpoints where the first
rate is not high enough for the algorithm to consider trading which causes more
of the budget to be saved. Since both the value of c and the step size between
rates relies on n this causes the competitive ratio to fluctuate.

Rates drawn from a uniform random distribution. These experiments
were done by generating the rates from a uniform random distribution multiple
times. The average was then taken of all of the results, in these experiments
the rates were generated 100 times. Each graph has a trend line that shows
the average competitive ratio of all the smaller values of the x-axis, M/m or n
respectively. The line has been smoothed using the average value of all compet-
itive ratios for that line.

(a) The advice is lower than the optimal advice = OPT/2. (b) The advice is lower than the optimal, advice = m.

Figure 8: Experiments done with n = 2500 with increasing M/m, M/m goes
up to 200. The rates are drawn from a uniform random distribution.

Uniform random rates with a fixed n and increasing M/m. With an
increasing M/m the error of the advice still has influence on the competitive
ratio even with random rates. There is a clear difference in the average com-
petitive ratios when comparing the different errors (Figure 8). As was the case
before, with an advice of m the algorithm without advice performs better than
the algorithm with advice. The trend of the competitive is upwards as M/m
increases.

Uniform random rates with a fixed M/m and increasing n. Even
though the random generation is the same as with a changing M/m the graphs
look different. With an advice of m the algorithm without advice performs bet-
ter. The increasing of the n makes the variance of the graph increase compared
to increasing the M/m (Figure 9).
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(a) The advice is lower than the optimal, advice = OPT/2. (b) The advice is lower than the optimal, advice = m.

Figure 9: Experiments done with M/m = 1000 with increasing n, n goes up to
500. The rates are drawn from a uniform random distribution.

There is still a clear difference between the different levels of trust. The
difference in increasing the value of n is also noticeable.

Depending on the error of the advice the fluctuation is also different. A
lower error results in more stable results, a higher error has much more unstable
results, this can be seen in both Figure 8b and Figure 9b.

7.2.3 Advice is the day to spend

Experiments done when the advice is which day to spend the budget on. Dif-
ferent error values were used for the experiments. The error is the difference in
days between the predicted value and the correct value. Two different values for
the error were tested. An error of one was used, meaning the prediction is one
day off from the correct prediction and an error of n/2 was used, this would be
a significant error. A worst case prediction was also tested, in this case there is
not a fixed error but the error depends on the difference in the number of days
that would be between the day with the highest rate and the day that is the
lowest rate.

Adversarial rates with a fixed n and increasing M/m When the error is
one the algorithm performs close to when the advice is the optimal rate (Figure
10a). When using adversarial rates if the error is low the difference between a
small number of days will be low. When the error is n/2 the algorithm with ad-
vice still performs much better than the algorithm without advice (Figure 10b).
When the advice is correct within a certain margin the algorithm is improved
by advice, even being off by n/2 days will still improve the performance. There
is still a point where the advice will cause the algorithm that uses advice to
perform worse than the algorithm without advice (Figure 10c).

Adversarial rates with a fixed M/m and increasing n When using the
adversarial rate and a low number of days the difference between days is very
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(a) The advice is wrong by a single rate. (b) The advice is wrong by n/2 rates.

(c) The advice is the day with the lowest rate, M/m goes to
200

Figure 10: Experiments done with fixed n = 2500 with increasing M/m, in-
creasing to 1000.

significant (Figure 11). With the worst advice the algorithm without advice
performs better (Figure 11a). With a significant error the algorithm without
advice still outperforms the algorithm with advice (Figure 11b). There is a
certain point where if the advice is good enough the algorithm with advice will
outperform, when given enough rates to trade on (Figure 11d). Even though
increasing the number of trading opportunities should increase the competi-
tive ratio, a certain amount of opportunities are needed for the algorithm with
advice.

Rates drawn from a uniform random distribution. These experiments
were done by generating the rates from a uniform random distribution multiple
times. As with the maximum rate advice the average was then taken of all
of the results, in these experiments the rates were generated 100 times. Each
graph has a trend line that shows the average competitive ratio of all the smaller
values of the x-axis, M/m or n respectively. The line has been smoothed using
the average value of all competitive ratios for that line.
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(a) Results when the advice is the day with the lowest rate. (b) Results when the advice is off by n/2 rates.

(c) Results when the advice is off by a single rate. (d) Results when the advice is off by a single rate, the first
10 rates.

Figure 11: Experiments done with M/m = 10 with increasing n, increasing to
100.

Uniform random rates with a fixed n and increasing M/m. When
using random rates the algorithm without advice seems to always outperform
the algorithm with advice (Figure 12). In later experiments more realistic data
is used, but with random rates an error of one can have a huge effect on the
competitive ratio. This means that even if the error is one, the algorithm with
advice can perform very badly.

Uniform random rates with a fixed M/m and increasing n. As was the
case in Figure 12, even a very low error on the prediction results in the algorithm
without advice performing worse than the algorithm with advice. Better advice
does have an effect on the performance of the algorithm with advice though.
Better advice clearly makes the algorithm perform better (Figure 13a).
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(a) Results when the advice is off by one day. (b) Results when the advice is by n/2 days.

(c) Results when the advice is the day with the lowest rate.

Figure 12: Experiments done with n = 2500 with increasing M/m, M/m goes
up to 200. The rates are drawn from a uniform random distribution.

(a) Results when the advice is off by one day. (b) Results when the advice is the day with the lowest rate.

Figure 13: Experiments done with M/m = 10 with increasing n, n goes up to
100. The rates are drawn from a uniform random distribution
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7.3 Fluctuation in the Competitive Ratio

Figure 7b shows a very high fluctuation even though you would expect the
competitive ratio to go up as n increases. Since adversarial rates are used this
means that OPT always trades at a rate of M , which is presented on the last
possible trading opportunity. This leaves a fluctuation of the performance of
ALG.

The fluctuation happens because of the rule that the algorithm will only
spend on rates above c∗m. With adversarial rates the step size between rates is
always equal, there are certain breakpoints where c < this step size. This means
that the for the first rate p1, p1 ≥ c ∗m so the algorithm will spend. There are
certain values for n and m where p1 < c ∗ m so the algorithm will not spend.
Instead it will spend on p2, which has a rate that is twice as high as p1. The
next break point will happen when p2 ≥ c ∗ m after which the algorithm will
spend on p3. This difference is less, p3 = p2 ∗ 2/3, so the difference in the two
succeeding competitive ratio’s is also smaller. The effects of this can be best
seen in Figure 7b

7.4 Experiments with a low M .

When using the maximum rate as the advice on adversarial rates a M/m of
over 8 was needed before the algorithm with advice outperformed the algorithm
without advice. Even though a ratio of 8 is possible it will be rare in the real
world. There are cases where it happens if a big enough time period is taken.
Taking the apple stock for example, going back 5 years results in M/m =
182.94/36.43 ≈ 5.0. When the time scale is smaller a more realistic assumption
is that M/m < 2. When looking at something more stable, like the Dollar and
Euro, a M/m < 2 is expected. Even if you take the last 13.5 years M/m barely
goes above 1.5. With low values for M and m the value of c will be very close
to 1.

When using a small value for M/m the difference in n becomes a lot less no-
ticeable. There is a difference between n = 100 and n = 2500 but this difference
in competitive ratio is small (Figure 14a, 14b). As with the previous experi-
ments an advice that is wrong by OPT/2 has an error that is large enough for
the algorithm without advice to outperform the algorithm with advice. When
the error of the advice is reduced, the algorithm with advice performs better
even at a low M/m (Figure 14c)
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(a) n=100 and advice is lower than the optimal
advice = OPT/2

(b) n=2500 and advice is lower than the optimal
advice = OPT/2

(c) n=2500 and advice is lower than the optimal
advice = OPT ∗ 4

5

Figure 14: Experiments done with a fixed n and increasing M/m, M/m goes
up to 2. Adversarial rates are used.

Both the advice that predicts the higest rate and the best day to trade
on were applied to historical Apple stock value and historical Euro to Dollar
exchange rate data. Figures 15a and 16a were generated from the historical data
from the past 10 months. Figures 15b and 16b were generated with data from
the past five years. The data was collected from https://www.nasdaq.com/.
The values for m and M are in Dollars.

When the advice gives the maximum rate an error that is too high results in
a better performance compared to the algorithm without advice. This is only
because the most recent stock price has been relatively high. Especially when
compared to how low valued the stock was 5 years ago. The best performance
is still with an error of 0. Even if the error is high, if one of the first rates
presented is a relatively high rate an increase in the error won’t matter (Figure
15a).

The results when the advice is the day to trade are very different depending
on the time scale. With a large n a error of 100 will be less significant than
with a small n (Figure 16). n = 1258 in Figure 3b, so when the error is within
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(a) Error from -100 to +20, M/m ≈ 1.38. m = 132.39 and
M = 182.94

(b) Error from -100 to +20 M/m ≈ 5.02. m = 36.43 and
M = 182.94

Figure 15: The online algorithm using the maximum rate as advice applied on
historical Apple stock value. The error was changed from -100 to +20.

(a) Error from -100 to +100, M/m ≈ 1.38
m = 132.39 and M = 182.94

(b) Error from -100 to +100, M/m ≈ 5.02
m = 36.43 and M = 182.94

Figure 16: The online algorithm using the day as advice applied on historical
Apple stock value. The error was changed from -100 to +100.

a margin of almost 16% off from the perfect prediction the performance is still
better in all cases.

The algorithm with both kinds of advice was also applied to a much more
stable currency, the Euro. The Euro will be compared to the Dollar. Figures
17a and 18a were generated from the historical data from the past 2 years.
Figures 17b and 18b were generated with data from the past 13.5 years. The
data was fetched from https://www.investing.com/. The values for m and M
are in Dollars.

The M/m is much lower than with the previous example, the competitive
ratio’s are also lower. When the advice predicts the maximum rate the algorithm
is punished for overestimating. Since you can get less Dollars for Euros that
you could in the past the algorithm gains a smaller profit by saving. When
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(a) M/m ≈ 1.230.
m = 1.0018 and M = 1.2327

(b) M/m ≈ 1.529.
m = 0.8268 and M = 1.2641

Figure 17: The online algorithm using the maximum rate as advice applied on
historical Euro to Dollar exchange rates. The error was changed from -0.1 to
+0.02.

(a) M/m ≈ 1.230.
m = 1.0018 and M = 1.2327

(b) M/m ≈ 1.529.
m = 0.8268 and M = 1.2641

Figure 18: The online algorithm using the day as advice applied on historical
Euro to Dollar exchange rates. The error was changed from -100 to +100.

the advice predicts a maximum that is too low then the performance if better.
Even when the error is pretty significant. M/m = 1.230 so even with an error
of 42% the algorithm with advice outperforms the algorithm without advice, so
long as the error is an underestimation. When the advice predicts the day the
performance is always better in this case. n is large in both cases here, n = 688
for Figure 18a and n = 5000 for Figure 18b.
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8 Conclusion

The biggest difference between the theoretical and practical results comes from
the fact that the amount of budget left on the last day can impact the results
of the algorithm. If there are not enough trading opportunities then the impact
of this is significant. n has to be large, at least 2500, for it not to impact the
results significantly when using adversarial rates.

Adversarial rates are useful for figuring out the competitive ratio but not
as useful when trying to incorporate the advice tested for this paper. If the
algorithm tends to save for a specific rate and the best rate is presented at the
end then the algorithm will perform better depending on how much is saved for
the last rate.

The theoretical results show that depending on n and M/m the quality
of the advice needs to be higher. With a low M/m especially the quality of
the advice is important. Perfect advice will always result in the algorithm with
advice performing at least as good as the algorithm without advice. This means
there is always a point where the advice is good enough for the online algorithm
with advice to outperform the algorithm without advice.

When data from Apple and the exchange rate from Dollars to Euro’s was
used this was no longer the case. Even with a low M/m and a high error in the
advice the algorithm that used the prediction for the best day still outperformed
the online algorithm on Dollar to Euro exchange rate data. This has to do with
the fact that the exchange rates are much more stable than is the case with
adversarial rates and with random rates.

There are too many variables involved to make a definitive conclusion about
whether an online algorithm with advice generated by machine learning will
be better than online algorithms without advice. The results are promising
though, and if the machine learned advice has a low enough error the results
will be better than not using advice.

8.1 Two way trading

Two-way trading is one-way trading with one addition. The player can still
trade budget, X into profit, Y , but now the player can also trade back. There
is a single exchange rate, Y to X uses the inverted exchange rate of X to Y .
The goal is to maximise Y , like with the one-way trading problem the remaining
amount X is irrelevant. This means the algorithm will trade all remaining X
to Y on the last day. This adds another layer of complexity, which raises the
maximum Y both the online algorithm and the optimal solution can achieve.

The sequence of exchange rates can be seen as a series of upward- and down-
ward runs. The optimal solution will convert all X to Y at the end of an upward
run, and all of the Y to X at the end of a downward run. The one-way trading
algorithm can be applied to each individual run. Where the one-way trading
will convert X to Y on an upwards run and Y to X on a downwards run.

Expanding one-way trading with advice to two-way trading with advice will
need a number of extensions, the budget is assumed to be only decreasing, the
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profit is assumed to be only increasing. This is acceptable for one-way trading
but not for two-way trading. With two-way trading we can split the sequence of
rates into l sets of upwards and downwards runs respectively [4]. As was seen in
the experiments the length of downwards and upwards runs can impact results
significantly if they are not long enough. Applying this algorithm on real world
data might not be effective given the fact that’s it’s unrealistic to assume long
upwards or downwards runs.

When adding advice to two-way trading it might be interesting to split the
rates into parts that are long enough and then use prediction to see weather
it’s more profitable to assume if it will be a downwards run or an upwards run.
Since the nature of the algorithm is online the advice can be requested at the
start of each sequence of rates and will be in effect be a series of applications of
the one-way trading algorithm.
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